UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2024-088
Faculty of Science, Technology and Medicine

DISSERTATION

Defense held on 23 October 2024 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L'UNIVERSITE DU LUXEMBOURG
EN BIOLOGIE

by

Polina NOVIKOVA

Born on 2 September 1995 in Podolsk, Moscow Region (Russian Federation)

Systematic Characterization of Human Gut
Microbiome in Relation to Parkinson's Disease

Dissertation defense committee

Dr. Paul Wilmes, Dissertation supervisor
Professor, Université du Luxembourg

Dr. Alexander Skupin, Chairman
Professor, University of Luxembourg, Luxembourg

Dr. Patrick May, Vice Chairman
Senior scientist, University of Luxembourg, Luxembourg

Dr. Mark Morrison
Professor, The University of Queensland, Australia

Dr. AlImut Heinken
Professor, Université de Lorraine, France



Table of Contents

ABBREVIATIONS 4
ACKNOWLEDGMENTS 6
AFFIDAVIT 8
LIST OF PUBLICATIONS 9
MANUSCRIPTS INCLUDED IN THE THESIS 9
MANUSCRIPTS NOT INCLUDED IN THE THESIS 9
ABSTRACT 10
AIMS AND OBJECTIVES 12
MATERIALS AND METHODS 13
MATERIALS AND METHODS RELEVANT FOR PAPER 1 AND PAPER 2 13
COHORT DESCRIPTION 13
SEQUENCING DATA PROCESSING AND ANALYSIS 13
METABOLIC NETWORK CONSTRUCTION 14
CO-EXPRESSION NETWORK CONSTRUCTION 15
MATERIALS AND METHODS RELEVANT FOR PAPER 3 15
ARCHAEAL PROTEIN FUNCTIONAL ANNOTATION 16
SYNOPSIS: THE HUMAN MICROBIOME IN PD 17
STATE OF THE ART, PD AND MICROBIOME 17
MICROBIOME OF THE HUMAN GUT AND ITS IMPORTANCE IN PD 17
PARKINSON’S DISEASE PATHOGENESIS 24
PD ETIOLOGY, PRE-CLINICAL, PRODROMAL AND CLINICAL STAGES 26
DOPAMINE AND GLUTAMATE METABOLISM DYSREGULATION 28



MICROBIOME LINKS TO PD: FROM THEORY TO EVIDENCE 32

META-OMICS FOR MICROBIOME RESEARCH 35
BIOLOGICAL NETWORKS 38
TYPES OF BIOLOGICAL NETWORKS 40
NETWORKS TOPOLOGY AND METRICS 41
RESULTS AND DISCUSSION OF PUBLICATIONS 45
CONCLUSIONS AND PERSPECTIVES 159
BIBLIOGRAPHY 169




Abbreviations

PD Parkinson’s disease

iRBD idiopathic rapid-eye-movement sleep behavior disorder
REM rapid eye movement

HC healthy control

WGCNA Weighted Gene Co-Expression Network Analysis

MG metagenomic

MT metatranscriptomic

MP metaproteomic

MB metabolomic

IMP Integrated Meta-omic Pipeline
ORF open-reading frame

KO KEGG orthology

MAG metagenome-assembled genome
TR trRosetta

AF AlphaFold

PF ProFunc

ENS enteric nervous system

CNS central nervous system

SNpc substantia nigra pars compacta
DOPAL 3,4-dihydroxyphenylacetaldehyde
ROS reactive oxygen species



GABA

SCFA

LPS

BA

HDAC

BCAA

BCFA

LBP

CDCA

GCA

BMC

GSEA

PTM

gamma-aminobutyric acid
short-chain fatty acid
lipopolysaccharide

bile acid

histone deacetylase
branched-chain amino acid
branched-chain fatty acid
LPS-binding protein
chenodeoxycholic acid
glycocholic acid

bacterial microcompartment
gene set enrichment analysis

post-translational modification



Acknowledgments

First and foremost, | extend my deepest gratitude to my supervisors, Prof. Paul Wilmes and
Dr. Patrick May, for the incredible opportunity to delve into microbiome research within the
context of Parkinson’s disease. Their guidance, expertise, and support throughout the past
four years have deeply influenced both my research and my development as a person. |

truly wouldn’t be where | am today without them.

| also wish to thank the external jury members, Prof. Aimut Heinken and Prof. Mark
Morrison, for their participation in my defense committee and reviewing my thesis. My
sincere thanks go to Prof. Alexander Probst for being on my CET committee and for the
scientific discussions and encouragement throughout my PhD. Additionally, | am grateful to
Prof. Alexander Skupin for kindly taking on the role of chairman for my defense at the

University of Luxembourg.

To my colleagues in the Systems Ecology group, thank you for your practical support,
engaging conversations, and the much-needed lunch breaks that provided a safe space to
talk about life and science. I'm also deeply appreciative of my former colleagues — Velma
Aho, Sofija Andric, Emna Bouhajja, Jordan Caussin, Ben Kunath, Francesco Delogu, Pedro
Teixeira Queirds, Susheel Bhanu Busi, and Milena Despotovic — for their invaluable support
and advice. Special thanks to everyone I've shared an office with during my four moves —

each of you has contributed to making this journey memorable.

| am forever grateful to my dear friends who have been unwavering pillars of support
throughout this PhD. Varya, Jane, Vova, and Denis, you've been there from the very
beginning, reminding me of the significance of this journey — even in the toughest moments.
Your words of encouragement and belief in me were priceless. To Charlotte De Rudder and
Rémy Villette, | am thankful not only for the friendship that emerged during this time but also
for our countless evenings filled with laughter. Rémy, you’'ve been both a friend and mentor,
and I've learned so much from you. A special shout-out to Marabu Lucchetti, my work bestie

and cherished friend, for your endless support, advice, and warmth.

Cnacubo moein nwobumon cembe 3a BEpPYy B MEHA C CaMOro Ha4ana. Cnacunbo 3a Bawly
HeOUeHMYI0 NnoanepXKy u Bknaga B Moe 6y,1:|,yu.|,ee n aoctmkeHusi. bea Bac HU4ero Gbl He
nony4ymnocb, U 4 HaaekwcCb, 4YTO Bbl 6y/:|,eTe ropanTbC4d HalnmMmun ooLwmmMn ycnexamu. A Bac

noonto.



Lastly, to the most amazing man in my life, Kaan — this accomplishment is as much yours
as it is mine. You stood by me in the darkest moments, reminding me of my purpose when
| doubted myself. Thank you for wiping away my tears, for your calm presence, your
wisdom, and for always knowing how to lift my spirits with your humour, boundless creativity
and experimentalism. You remind me that together, "we can" overcome anything. | am

eternally thankful for your boundless love, patience, and the deep faith you have in me.



Affidavit

| hereby declare that the dissertation entitled “Systematic Characterization of Human Gut
Microbiome in Relation to Parkinson’s Disease” has been written only by the undersigned
and without any assistance from third parties. Furthermore, | confirm that no sources have

been used in the preparation of this thesis other than these indicated herein.

Luxembourg, October 2024

Polina Novikova



List of publications

Manuscripts included in the thesis

Published:

1.

Novikova, P. V., Busi, S. B., Probst, A. J., May, P., & Wilmes, P. (2024). Functional
prediction of proteins from the human gut archaeome. *ISME Communications,
4*(1), ycad014. htips://doi.org/10.1093/ismeco/ycad014

In submission:

1.

Villette, R.*, Ortis Sunyer, J.*, Novikova, P. V.*, Aho, V. T. E.*, Petrov, V. A., Hickl, O.,
... Wilmes, P. (2024). Integrated multi-omics highlights alterations of gut microbiome

functions in prodromal and idiopathic Parkinson’s Disease.

2. Novikova P. V.*, Villette R.*, Laczny C. C., May P., Wilmes P. (2024) Microbiome

Expression Network is Dysregulated in Parkinson’s Disease Individuals.

Manuscripts not included in the thesis

1.

Banas, I., Esser, S. P., Turzynski, V., Soares, A., Novikova, P., May, P., Moraru, C.,
Hasenberg, M., Rahilff, J., Wilmes, P., Klingl, A., & Probst, A. J. (2023). Spatio-
functional organization in virocells of small uncultivated archaea from the deep
biosphere. *The ISME Journal, 17*(10), 1789-1792.
https://doi.org/10.1038/s41396-023-01474-1

Wilmes, P., Martin-Gallausiaux, C., Ostaszewski, M., Aho, V. T. E., Novikova, P. V.,
Laczny, C. C., & Schneider, J. G. (2022). The gut microbiome molecular complex in
human health and disease. *Cell Host & Microbe, 30%*9), 1201-1206.
https://doi.org/10.1016/j.chom.2022.08.016

Queirés, P., Novikova, P., Wilmes, P., & May, P. (2021). Unification of functional
annotation descriptions using text mining. *Biological Chemistry, 402*(8), 983-990.
https://doi.org/10.1515/hsz-2021-0125




Abstract

The human gut microbiome, which includes a diverse array of microorganisms such as
bacteria, archaea, and viruses, plays a crucial role in maintaining overall health and
influencing disease outcomes. This microbiome integrates environmental, genetic, and
immune signals to support various physiological functions, including digestion, immune
regulation, and detoxification. Dysregulation of the gut microbiome has been implicated in
several diseases, including Parkinson’s Disease (PD). Although PD is not traditionally
associated with gut disorders, emerging evidence links microbial imbalances in the gut to
disease onset and progression. This connection is supported by the observation that PD-
related protein aggregations and gastrointestinal symptoms often precede motor
symptoms. In PD, there is an elevated abundance of pro-inflammatory bacteria and a
reduction in beneficial bacterial species. Furthermore, an increased presence of
methanogenic archaea, particularly Methanobrevibacter smithii, has been observed,
indicating a potential involvement in the gut-related symptoms frequently associated with
PD. These findings underscore the importance of the gut-brain axis and highlight the need
for further research into how gut microbiota may contribute to neurodegenerative diseases
like PD.

This thesis investigates the role of the gut microbiome in PD through a range of
computational and analytical methods. The primary objective of this work is to elucidate the
complex interactions between microbial functions and PD using advanced meta-omics and
network-based techniques. A key finding of this research is the alteration in microbial
structure and function associated with PD, particularly the elevated levels of B-glutamate
linked to specific microbial genera. This study identifies glutamate metabolism as a central
process within the PD-associated microbiome, highlighting disruptions that correlate with
decreased transcript abundances in chemotaxis and flagellar assembly among PD-related
taxa. The reduction in flagellin transcription by certain bacteria in PD indicates intricate
interactions between microbial changes and host immune responses. Further analysis
utilizing Weighted Gene Co-Expression Network Analysis (WGCNA) revealed significant
differences in co-expression patterns in PD. Notably, modules of co-expressed genes in
healthy controls (HC) demonstrated greater functional diversity, while PD was characterized
by reduced gene diversity and specific metabolic alterations, including glycerolipid
metabolism, peptidoglycan biosynthesis, lipoic acid metabolism, and valine degradation.
The network-based approach confirmed significant enrichment in flagellar assembly among

HC, alongside the identification of secondary bile acid biosynthesis as an enriched process.
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Additionally, our study revealed significant alterations in bacterial microcompartments
(BMCs) within certain commensal bacteria, exhibiting a strong correlation with flagellar
assembly genes, further underscoring their interconnected roles in PD. To our knowledge,
this work is the first to establish a link between BMCs and flagellar assembly in the context
of PD, revealing essential microbiome functions that are disrupted in this disease. These
findings offer valuable insights into the microbial mechanisms contributing to PD

pathogenesis and lay the groundwork for future experimental validation.

The study also explored the role of intestinal archaea, particularly Methanobrevibacter
smithii, in PD. This archaeon, known for its involvement in gastrointestinal disorders, was
found to have significant interactions with gut microbiome functions, with implications for
gastrointestinal symptoms commonly seen in PD. Advanced protein structure prediction
identified gut-specific archaeal proteins potentially involved in defense mechanisms,
virulence, adhesion, and the degradation of toxic substances. Preliminary evidence also
suggested interdomain horizontal gene transfer between Clostridia species and M. smithii,

based on structure-based protein annotation.

In conclusion, this thesis underscores the significant role of the gut microbiome in the
pathogenesis of PD. Through comprehensive computational and analytical methods, the
research highlights critical alterations in microbial structure and function, particularly in
glutamate metabolism and microbial diversity. The study also brings to light the involvement
of intestinal archaea, such as Methanobrevibacter smithii, in microbiome function. These
insights pave the way for future research aimed at understanding the gut-brain axis and

developing microbiome-based interventions for neurodegenerative diseases like PD.
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Aims and Objectives

This study aims to advance the field of microbiome research by deepening the
understanding of microbial ecology and the interactions between human-associated

microbiota and health. The following key objectives guided this research:

1. To utilize an integrated multi-omics approach to elucidate the functional activities
and alterations of the gut microbiome in Parkinson’s disease (PD) and its prodromal
stage idiopathic rapid-eye-movement sleep behavior disorder (iRBD), by identifying
and characterizing differential metabolite levels, gene expression patterns, and
microbial functions between PD individuals, iRBD individuals, and healthy controls.

2. To investigate the dysregulation of microbial co-expression networks in PD, with the
goal of identifying key regulatory mechanisms and altered biological processes that
contribute to PD pathogenesis.

3. To advance the functional annotation of archaeal proteins, by utilizing advanced
computational and structural methodologies to uncover their roles in the human gut

microbiome and their potential implications for gut-related disorders.
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Materials and Methods

Materials and Methods relevant for Paper 1 and Paper 2

The studies titled “Integrated Multi-omics Highlights Alterations of Gut Microbiome
Functions in Prodromal and Idiopathic Parkinson’s Disease” and “Microbiome Expression
Network is Dysregulated in Parkinson’s Disease Individuals” were conducted using the
same cohort of patients and healthy individuals. This section will outline the primary
methods and techniques employed in these investigations. For a comprehensive
understanding, readers are encouraged to refer to the manuscripts available in the “Results

and Discussion of Publications” chapter.
Cohort description

All subjects provided informed written consent, and the sample analysis was approved by
the Comité National d’Ethique de Recherche of Luxembourg. The Kassel cohort involved a
prospective, biannual follow-up study of PD patients at the Paracelsus-Elena Kiinik,
Germany, with fecal samples collected during a 4-year follow-up visit. The Marburg cohort
recruited patients with polysomnography-confirmed idiopathic rapid-eye-movement sleep
behavior disorder from the Department of Neurology, Philipps-University, Germany. Fecal
samples were collected, flash-frozen, and stored at —80 °C. The initial set of samples
included 50 PD patients, 30 idiopathic rapid-eye-movement sleep behavior disorder
patients, and 50 healthy control subjects. However, some samples were excluded due to
clinical reasons such as adjusted diagnoses, logistical issues, and the use of microbiome-
altering medications like metformin, antidepressants, statins, and proton pump inhibitors.
Additionally, samples were excluded due to missing values in metabolomics or a low
number of identified analytes in metaproteomics. These exclusions led to the final sample
numbers for various analyses: 49 HC, 27 iRBD, and 46 PD for metagenomics and
metatranscriptomics; 42 HC, 22 iRBD, and 40 PD for metaproteomics; and 49 HC, 27 iRBD,

and 41 PD for meta-metabolomics.
Sequencing data processing and analysis

Sequencing data utilized in the studies “Integrated Multi-omics Highlights Alterations of Gut
Microbiome Functions in Prodromal and Idiopathic PD” and “The gut microbiome gene
expression network is dysregulated in individuals with Parkinson’s disease” were obtained

from fecal samples of PD patients, iRBD patients, and HC. Metagenomic (MG) data was
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employed to investigate the functional potential and structure of microbial communities in
these samples. Additionally, metatranscriptomic (MT) data was used to analyze gene

expression, providing insights into microbial community function.

MG and MT data were processed and hybrid-assembled using the Integrated Meta-omic
Pipeline (IMP) (https://qit-r3lab.uni.lu/IMP/imp3, commit
8c1bd6fa443d064511909c9eede20703f45e6¢c69) (Narayanasamy et al.,, 2016). This

pipeline encompasses several steps, including the trimming and quality filtering of reads,

the exclusion of rRNA sequences from the MT data, and the elimination of human reads by
mapping against the human genome (hg38). The pre-processed MG and MT reads were
then assembled through the IMP-based iterative hybrid-assembly pipeline utilizing
MEGAHIT (version 1.0.3) (D. Li et al., 2015). Post-assembly, structural features such as
open-reading frames (ORFs) were predicted and annotated using a modified version of
Prokka (Seemann, 2014), followed by functional annotation with Mantis (Queiros et al.,
2021). Quantification of these structural features at both MG and MT levels was performed
using featureCounts (Liao et al., 2014). Taxonomic annotation of reads and contigs was
conducted using Kraken2 (Wood et al.,, 2019) with the GTDB (release 207) database
(http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release207/kraken2) and a confidence
threshold of 0.5. Additionally, taxon abundances were estimated using mOTUs (version
2.5.1) (Milanese et al., 2019). These mOTU abundances were utilized to create abundance
matrices for each taxonomic rank (phylum, class, order, family, genus, and species) by

aggregating taxon marker read counts at the respective levels.

Metabolic network construction

In the study “Integrated Multi-omics Highlights Alterations of Gut Microbiome Functions in
Prodromal and Idiopathic PD” we utilized metabolic network-based approach to highlight
the importance of metabolites and related genes in the microbial metabolism. We
reconstructed metabolic networks as previously described in the study by (Roume et al.,
2015). The metabolic network analysis was performed by linking KEGG Orthology (KO)
identifiers with corresponding ChEBI IDs and visualized using the NetworkX package
(version 3.3) (Hagberg et al., 2008). In this network, nodes represented KEGG KOs, while
edges corresponded to the associated metabolites. Such compounds as water, energy
transporters and cofactors were removed, to only consider main compounds of a given
reaction. The analysis focused on genes present in at least 50% of the samples. Gene

expression effect size was quantified by normalizing gene expression, calculated as the
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Gene MT expression

ratio of MT gene expression to MG gene abundance as follows: :
Gene MG abundance

construct metabolite-specific networks, KEGG KOs associated with specific metabolites in
KEGG were used. Subnetworks specific to glutamate, thymine, glycerol, serine, alanine,
and glucuronate were extracted by searching for the given metabolite in the list of
metabolites associated with KEGG KOs. The network topology metric ‘betweenness
centrality’ was employed to highlight the significance of each metabolite in microbial

metabolism.
Co-expression network construction

In our study “The gut microbiome gene expression network is dysregulated in individuals
with Parkinson’s disease” we attempted to decipher complex interactions within the human
gut microbiome using the Weighted Gene Co-Expression Network Analysis (WGCNA)
approach (Wan et al.,, 2018; B. Zhang & Horvath, 2005). This analysis was entirely
unsupervised, with no prior filtering based on differential expression or function. Using this
method, we were able to find correlation patterns of genes across a large set of PD and HC
samples, and modules of co-expressed genes as well as their correlation with external traits

such as disease state.

Co-expression patterns were analysed using the pyWGCNA package implemented in
Python (Rezaie et al., 2023). Of the 8334 genes, 4879 genes were included in this analysis,
only genes present in at least 50% of samples were kept. Gene abundance normalized
expression as described previously was used as gene values. WGCNA function was run on
power transformed data with sklearn.preprocessing.PowerTransformer() (https://scikit-
learn.org/stable/api/sklearn.preprocessing.html) with the following parameters: minimum
module size  minModuleSize=20, dissimilarity = threshold  MEDissThres=0.18,

networkType="signed’.
Materials and Methods relevant for Paper 3

Our study, titled “Functional Prediction of Proteins from the Human Gut Archaeome,”
extends the understanding of microbiome functions by specifically focusing on intestinal
archaea. To achieve this, we utilized publicly available metagenomic data from the
Genomes from Earth’s Microbiomes (GEM) catalog (Nayfach et al., 2020) and the Unified
Human Gastrointestinal Genome (UHGG) collection (Almeida et al., 2020), as well as
bacterial metagenome-assembled genomes (MAGs) from the UHGG collection. Figure 1

((Novikova et al., 2024)) depicts the workflow employed in this study, detailing the
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integration and application of sequence and structure annotation methods for the functional

annotation of archaeal proteins.
Archaeal protein functional annotation

In our study “Functional Prediction of Proteins from the Human Gut Archaeome” we utilized
protein annotation based on both sequences and structures of proteins in question.
Sequence annotation was performed with KEGG orthologs (KOs) using Mantis (1.5.4)
(Queirds et al., 2021). We employed trRosetta (TR) (Du et al., 2021) and AlphaFold (AF)
(Jumper et al., 2021) for structure prediction, annotating each predicted structure
separately. TR-based models used high-identity and high-coverage templates, while AF
models were annotated via the ProFunc (PF) web server (Laskowski et al., 2005). Only
highly certain matches were used for functional assignments. DeepFri was used as an

auxiliary tool to verify or refute annotations (Gligorijevi¢ et al., 2021).
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Synopsis: The Human Microbiome in PD

State of the Art, PD and Microbiome
Microbiome of the Human Gut and Its Importance in PD

The human gut microbiome, consisting of commensal, symbiotic, and pathogenic
microorganisms such as bacteria, archaea, microeukaryotes, and viruses, has emerged as
a significant contributor to various diseases. The gastrointestinal tract, which contains the
largest microbial biomass, encodes a genetic repertoire vastly exceeding that of human
genes (Miyauchi et al., 2022). Thus, the gut microbiome acts as a central hub, integrating

environmental inputs with genetic and immune signals to influence host physiology.

In a healthy state, the gut microbiome performs vital functions, including digesting dietary
components, synthesizing vitamins, regulating the immune system, outcompeting
pathogens, detoxifying harmful substances, and supporting intestinal function. These
interconnected functions contribute to overall human metabolism, with microbial
metabolites playing essential roles in immunomodulation (Fig. 1). The gut microbiome also
interacts with other body systems through the circulatory, immune, endocrine, and nervous
systems. The functional repertoire of the gut microbiome results in the production of diverse

biomolecules that stimulate the host’s immune system (Wilmes et al., 2022).
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Health @ 6 @ Disease

Intestinal
barrier

Immune system

K

Figure 1. Microbiome-derived molecules that trigger inflammatory processes. In diseases
with inflammatory signatures, the balance between cytotoxic and anti-inflammatory, pro-
healing immune activation is dysregulated, reflecting microbial dysbiosis. Adapted from
Wilmes et al., 2022.

Systematic studies of the gut microbiome-derived biomolecular complex have highlighted
the uniqueness of extracellular biomolecular fractions (DNA, RNA, peptides, and
metabolites) in terms of their taxonomic and functional affiliations within and between
individuals (De Saedeleer et al., 2021). These microbiome-derived molecules are detected
by epithelial, innate immune, and dendritic cells, which connect to adaptive immunity. Due
to their continuous exposure to microbial molecules in the gut, epithelial and immune cells
have adapted to tolerate beneficial microbiota while still protecting against harmful
pathogens. Additionally, the gut microbiome modulates host responses to microbial
molecules to stabilize its niche by stimulating antimicrobial peptide production and

regulating mucosal homeostasis (Blander et al., 2017).

Microbial dysbiosis likely leads to differential enrichments in microbiome-derived molecules,

either as a cause or consequence of disrupted microbiome-immune system interactions
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(Fig. 1). Functional differences in the microbiome may more clearly distinguish healthy from
diseased individuals than taxonomic changes alone (Heintz-Buschart & Wilmes, 2018). Our
understanding of how variations in microbial taxa abundance affect diseases is still quite
limited. This lack of knowledge hampers our ability to identify the crucial roles these
microbes play in maintaining human health. Furthermore, we need to explore how changes
in the microbiome’s composition and function might lead to the onset and progression of

diseases over a person’s lifetime (Wilmes et al., 2022).

Parkinson’s disease (PD) is not traditionally associated with the gut, yet studies reveal
significant changes in microbial taxonomy in PD patients (Heintz-Buschart et al., 2018;
Romano et al., 2021). PD is linked to the gut through several mechanisms. The primary
pathogenic characteristics of PD include the progressive degradation of specific neurons in
brain areas like the substantia nigra. Furthermore, aggregations of the protein a-synuclein
(a-Syn), a hallmark of PD, have been observed in both the central and peripheral nervous
systems, suggesting a potential origin in the gut (Heintz-Buschart et al., 2018).
Epidemiological studies indicate a decreased risk of PD following complete truncal
vagotomy, implicating the vagus nerve in the disease’s progression from the gut to the brain
(Heintz-Buschart et al., 2018; Sampson et al., 2016). Additionally, inflammation and
increased permeability of the colonic mucosal lining are common in PD, creating an
environment that promotes a-Syn aggregation and disease progression, which is influenced
by the gut microbiome (Clairembault et al., 2015; Schwiertz et al., 2018). Studies have
identified over 100 taxa with differing abundances between PD patients and controls, with

some linking specific taxa to disease severity (Romano et al., 2021).

Therefore, studies on PD underscore the significant role of the gut microbiome and its
functions in diseases not traditionally linked to the gut. This underscores the need to
consider the microbiome’s impact on human physiology alongside environmental, genetic,

and immune factors.
Immuno-modulation of PD by Microbiome: Modern Approach to PD Etiology

In general, the gut microbiota comprises a complex and diverse community of bacteria,
archaea, fungi, and viruses, which together maintain physiological homeostasis and
influence various body functions. In PD, significant alterations in the gut microbiota
composition have been observed, often characterized by a decrease in beneficial bacteria

and an increase in potentially harmful bacteria (Keshavarzian et al., 2015; Scheperjans et
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al., 2015). These alterations are not only biomarkers but also likely contributors to disease

pathogenesis.

Recent research into PD has expanded beyond traditional neurocentric views, increasingly
highlighting the role of gut microbiota and their metabolic products. These microbial
metabolites and molecules play pivotal roles in the gut-brain axis, influencing neurological
processes and potentially contributing to the pathogenesis of neurodegenerative diseases
like PD. This section explores key molecular and cellular factors that are relevant in the
context of the microbiome and PD, focusing on short-chain fatty acids (SCFAs),

lipopolysaccharides (LPS), neurotransmitters, bile acids (BAs), and flagella.
Short-chain fatty acids

In PD, the production of SCFAs is often disrupted, reflecting broader alterations in gut
microbiota composition. Studies have consistently shown that individuals with PD exhibit a
reduction in SCFA-producing bacteria, such as those from the genera Prevotella,
Roseburia, and Faecalibacterium (Keshavarzian et al., 2015). This decrease is important
because SCFAs contribute to the maintenance of the intestinal barrier, which in turn
prevents translocation of bacteria and their endotoxins, such as lipopolysaccharides, into
the bloodstream. The translocation of these substances can trigger systemic inflammation

and potentially exacerbate neuroinflammation, thereby promoting PD progression.

SCFAs play a crucial role in the regulation of the host's immune system, the maintenance
of intestinal barrier integrity, and the modulation of energy metabolism. SCFAs exert their
influence on multiple physiological systems, including gut barrier function, the vagus nerve,
the enteric nervous system, immune function, and the integrity of the blood-brain barrier
(Aho et al., 2021; Dalile et al., 2019; Liddle, 2018; Silva et al., 2020). Beyond their role as
immune modulators, certain SCFAs, such as propionate and butyrate, have demonstrated
the ability to inhibit neuroinflammation by suppressing cytokine storms and viral
pathogenesis (Majumdar et al., 2023; McCarville et al., 2020). This anti-inflammatory action
is particularly relevant in the context of PD, where neuroinflammation is a key pathological
feature. Specifically, butyrate has been shown to reduce the permeability of the blood-brain
barrier, mitigate microbial activation, and alleviate depressive symptoms that are commonly
associated with PD (Xie et al., 2022).

By reducing systemic and neural inflammation, SCFAs like butyrate could potentially slow
the progression of neurodegeneration in PD (Cryan & Dinan, 2012). Recent research has

also explored the therapeutic potential of SCFAs in PD (J. Liu et al., 2024). Experimental
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models of PD have shown that supplementation with SCFAs or SCFA-producing probiotics

can restore gut microbial balance and reduce neuroinflammation (Macfarlane et al., 2008)

Acetate, the most abundant SCFA, is vital for maintaining energy balance and is involved
in lipid metabolism and appetite regulation. It also serves as a substrate for the synthesis
of other SCFAs, such as butyrate. Propionate, though less abundant, is crucial for hepatic
gluconeogenesis and has immunomodulatory effects, particularly in promoting the
generation of regulatory T cells, which are important for maintaining immune homeostasis.
Additionally, propionate plays a significant role in neuroprotection by ameliorating motor
deficits and dopaminergic neuronal loss in PD models, primarily through its interaction with
the FFAR3 receptor in the enteric nervous system, which modulates gut microbiota and
reduces neuroinflammation (Hou et al., 2021). Butyrate, well-known for its anti-inflammatory
properties, supports gut health by serving as the primary energy source for colonocytes and
by maintaining intestinal barrier integrity. It also inhibits histone deacetylases (HDACs),
reducing inflammation and oxidative stress, which are all key factors in neurodegenerative
diseases like PD (S. Wu et al., 2012).

Valerate, isobutyrate, and isovalerate, although less abundant than other SCFAs , play
crucial roles in gut microbial ecology and host metabolism (J. Liu et al., 2024). Valerate has
been shown to enhance gut barrier function and protect dopaminergic neurons (Jayaraj et
al., 2020; Y. Li et al., 2020), contributing to overall gut health and brain function. Isobutyrate
is produced through the fermentation of branched-chain amino acids (BCAAs) like valine in
the colon. It has been shown to stimulate colonic sodium absorption, which is crucial for
maintaining fluid and electrolyte balance in the gut (Rios-Covian et al., 2020). Additionally,
isobutyrate contributes to the overall health of the gut microbiota by promoting the growth
of beneficial bacteria (Peterson et al., 2022). Isovalerate is branched-chain saturated fatty
acid (BCFA) derived from the fermentation of BCAAs, specifically leucine. It has been
associated with the regulation of glucose and lipid metabolism, suggesting a role in
maintaining metabolic health (Rios-Covian et al., 2020). High levels of isovalerate in feces
have also been linked to human depression and elevated cortisol levels, indicating its
potential impact on mental health. Furthermore, isovalerate, along with other BCFAs, has
been found to increase the relative abundance of B vitamin-producing bacteria, which are

essential for various metabolic functions (Peterson et al., 2022).

In conclusion, the disruption of SCFA production and balance in PD underscores the critical
role of gut microbiota in maintaining intestinal barrier integrity and regulating systemic

inflammation. The reduction in SCFA-producing bacteria in PD patients highlights the
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importance of these metabolites in preventing neuroinflammation and supporting overall gut
health. SCFAs such as acetate, propionate, and butyrate, along with less abundant BCFAs
like valerate, isobutyrate, and isovalerate, play multifaceted roles in immune regulation,
energy metabolism, and neuroprotection. Their therapeutic potential in restoring gut
microbial balance and reducing neuroinflammation offers promising avenues for managing

PD and enhancing overall neurological health.
Lipopolysaccharides

Lipopolysaccharides (LPS), components of the outer membrane of Gram-negative bacteria,
play a crucial role in the immune response, eliciting potent inflammatory reactions by
activating the innate immune system. In the context of PD, elevated levels of LPS-binding
protein (LBP) have been correlated with an increased risk of developing the disease,
suggesting that endotoxemia, characterized by the presence of LPS in the bloodstream,
may contribute to PD pathogenesis, particularly through neuroinflammatory mechanisms
(Y. Zhao et al., 2023).

Disruptions in gut microbiota composition have been linked to increased intestinal
permeability, commonly referred to as a “leaky gut,” which allows bacterial products like
LPS to enter the bloodstream and potentially reach the brain (X. Zhang et al., 2023). This
compromised intestinal barrier is a critical factor in PD development. The increased
permeability permits not only LPS but also other harmful substances and pathogens to
translocate from the gut into the bloodstream, triggering systemic inflammation (Q. Li et al.,
2023). This systemic inflammation exacerbates neuroinflammatory processes in the brain,

significantly contributing to the progression of PD.

Once LPS enters the bloodstream, it can activate microglia, the resident immune cells in
the brain, leading to chronic neuroinflammation (Y. Zhao et al., 2023). Additionally, the
transmission of inflammatory signals from the gut to the brain via the vagus nerve amplifies
neuroinflammation and neuronal damage. Chronic microglial activation results in the
release of pro-inflammatory cytokines and reactive oxygen species, further exacerbating
neuronal damage and accelerating the neurodegenerative process (Muzio et al., 2021;
Woodburn et al., 2021).

In summary, LPS and disruptions in gut microbiota significantly contribute to PD through
mechanisms involving neuroinflammation. Elevated LPS levels, coupled to a compromised

intestinal barrier, allow harmful substances to enter the bloodstream and may culminate in
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systemic inflammation. This inflammation, in turn, activates microglia in the brain, leading

to chronic neuroinflammation and the degeneration of dopaminergic neurons.
Bile acids

Bile acids (BAs) are another significant class of microbiome-derived metabolites that have
been increasingly associated with PD. These compounds, synthesized initially by the host
in the liver from cholesterol, play a crucial role in the digestion and absorption of dietary
fats. Upon their release into the gut, primary bile acids are subjected to further metabolism
by the gut microbiota, transforming them into secondary bile acids with distinct biochemical
properties (Ridlon et al., 2006). This microbial transformation is not merely a digestive
process; it profoundly influences the gut's immunological landscape and systemic health.
Emerging research has highlighted that secondary bile acids possess a range of cytotoxic
and immunomodulatory activities, which can impact the progression of neurodegenerative
diseases such as PD. For instance, alterations in the composition of gut microbiota in PD
patients may lead to an imbalance in bile acid metabolism, which in turn can contribute to
the disease's pathology through mechanisms such as inflammation and cellular stress
(Hurley et al., 2022; Li et al., 2021). Studies have observed changes in bile acid profiles in
the plasma, serum, and stool samples of individuals with PD, suggesting that these
metabolites might serve as biomarkers for disease progression and severity (Figura et al.,
2018; Hertel et al., 2019; Hirayama et al., 2016; P. Li et al., 2021b; Vascellari et al., 2020).
The immunomodulatory capacities of secondary bile acids are of particular interest, as they
can interact with various receptors in the gut and other tissues, influencing immune
responses and potentially exacerbating or mitigating neuroinflammation (Wahlstrém et al.,
2016). Understanding the precise role of bile acids in PD not only offers insights into the
gut-brain axis's involvement in the disease but also opens up potential avenues for
therapeutic intervention aimed at modulating bile acid metabolism and its downstream

effects.
Flagella

Flagella, the whip-like appendages that facilitate bacterial motility, are highly immunogenic.
Flagellin, the protein constituting flagella, is a potent antigen and pro-inflammatory agent in
pathogens (Gram et al., 2021; F. Qian et al., 2015; Tran et al., 2019). These structures can
elicit robust immune responses, thereby influencing the gut-brain axis. In mammalian hosts,
flagellar motility enables bacteria to evade clearance mechanisms, access epithelial cells,

and reach nutrient-rich niches. This mobility is associated with pathogenic activities such as
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epithelial invasion, translocation across epithelial barriers, and biofilm formation, which
disrupt homeostasis and reduce host reproductive fithess (Akahoshi & Bevins, 2022).
Bacterial movement driven by flagella is directed by chemotaxis, allowing bacteria to move
toward beneficial chemical gradients and away from harmful ones (Colin et al., 2021).
Flagella and flagellin are involved in inflammatory responses by inducing pro-inflammatory
cytokines such as IL-8 and TNF-a (Cruz-Cérdova et al., 2012). Through the activation of
Toll-like receptor 5 (TLRS), flagella can also trigger the MAPK and NF-kB signaling
pathways, leading to further cytokine production (Batah et al., 2017). Conversely, flagella
can stimulate the production of anti-inflammatory cytokines like IL-10, which helps modulate
immune responses and maintain gut homeostasis (Cruz-Cérdova et al., 2012). Flagellin has
also demonstrated potential in anti-tumor and radioprotective therapies (Sfondrini et al.,
2006; Vijay-Kumar et al., 2008). Also, metagenomic analyses have reported a decrease in
flagellar assembly genes in PD patients (Boktor et al., 2023). The dual role of flagella in
both pro- and anti-inflammatory responses underscores their complex involvement in PD,

making them crucial for understanding the disease’s etiology.
Parkinson’s Disease Pathogenesis

PD is a progressively debilitating neurodegenerative disorder that primarily impairs the
motor system, leading to a spectrum of clinical manifestations that severely affect an
individual's quality of life. The hallmark motor symptoms of PD include involuntary or
uncontrollable movements such as tremors, muscle rigidity, bradykinesia (slowness of
movement), and postural instability, which collectively contribute to significant difficulties in
balance, coordination, and overall motor function. These motor deficits typically emerge
insidiously and tend to exacerbate as the disease advances, eventually culminating in
profound impairments that hinder an individual’s ability to walk, speak, and execute routine
daily activities (Jankovic, 2008; Sveinbjornsdottir, 2016). In addition to these well-
documented motor symptoms, PD is increasingly recognized for its wide array of non-motor
symptoms, which often manifest long before the onset of motor impairments (Adams-Carr
et al., 2016; Blesa et al., 2021). These non-motor symptoms encompass a broad spectrum
of cognitive, psychiatric, and autonomic disturbances, including sleep disorders,
depression, constipation, anxiety, cognitive decline, memory impairment, and pervasive
fatigue (Roos et al., 2022). The early appearance of these non-motor symptoms — often
preceding the motor symptoms by a decade or more — suggests that PD pathology may
begin long before the clinical diagnosis is made, and that these symptoms are critical in

understanding the full impact of the disease on patients' lives. The recognition of non-motor
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symptoms as integral components of PD has profound implications for early diagnosis,
patient management, and the development of therapeutic strategies aimed at mitigating the

overall burden of the disease (Jankovic, 2008; Sveinbjornsdottir, 2016).

PD, while having the potential to impact any individual, demonstrates a notable
epidemiological trend with a higher incidence observed in males compared to females (Cerri
et al., 2019). Despite extensive research, the precise reasons underlying this sex disparity
remain elusive, though hormonal, genetic, and environmental factors are often
hypothesized as influencing factors (Savica et al., 2016). Age emerges as a significant risk
factor for PD, with epidemiological data indicating that more than 1% of the population aged
60 and above is afflicted by the condition. However, it is crucial to note that a subset of PD
cases, estimated between 5% and 10%, manifests before the age of 50. These early-onset
cases are frequently attributed to genetic variants, underscoring the role of hereditary
factors in disease etiology (Funayama et al., 2022; Kolicheski et al., 2022; Pitz et al., 2024).
Nevertheless, the majority of PD cases occur sporadically, with only 10% of patients having
causative genetic variants. Consequently, the remaining cases are classified as idiopathic
PD (Tredici & Braak, 2013).

Despite this genetic predisposition, the pattern of inheritance in many cases remains
unclear, suggesting a complex interplay between genetic susceptibility and other factors. In
addition to genetic predisposition, environmental factors have been increasingly recognized
as significant contributors to the onset and progression of PD. Epidemiological surveys have
consistently shown that individuals residing in rural areas, particularly those engaged in
agricultural work, exhibit a higher relative risk of developing PD compared to their urban
counterparts (Corsini et al., 1985; Ngo et al., 2024; Perrin et al., 2021; Pouchieu et al., 2018;
Seidler et al., 1996). This heightened risk is strongly suspected to be associated with chronic
exposure to pesticides and herbicides, environmental toxins that have been linked to
neurodegenerative processes. Such findings underscore the multifactorial nature of PD,
where both genetic and environmental factors converge to influence disease pathogenesis
(Kline et al., 2021; Tsalenchuk et al., 2023; Yuan et al., 2022).

Recent advancements in molecular genetics have underscored the intricate interplay
between genetic predispositions, aging, and environmental exposures in the pathogenesis
of PD. These studies illuminate how specific genetic variants, when combined with the
natural aging process and environmental factors such as toxin exposure, can significantly
increase the risk of developing PD. Among these contributing factors, an emerging and

compelling body of research has highlighted the critical role of gut microbiome dysbiosis in
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both the onset and progression of PD (Miyauchi et al., 2022; Nie & Ge, 2023; K. Zhang et
al., 2022). This dysbiosis, or imbalance in the gut microbiota, has been increasingly
recognized as a key player in PD pathogenesis, suggesting that the disease is not merely
confined to the central nervous system (CNS) but also involves significant peripheral
mechanisms. The gut-brain axis, a sophisticated and bidirectional communication network
that links the gastrointestinal tract and the CNS, is central to this evolving understanding.
This axis enables the gut microbiome to influence brain function and behavior, while also
allowing the brain to affect gastrointestinal processes. Emerging evidence suggests that
disruptions of the gut-brain communication pathway, often mediated by microbiome
alterations, can contribute to the neuroinflammatory and neurodegenerative processes
characteristic of PD (Boertien et al., 2022; Cryan & Dinan, 2012; Hashish & Salama, 2023;
Z.Lietal., 2023). This growing recognition of the gut-brain axis in PD represents a paradigm
shift, broadening the scope of PD research and treatment from a disorder traditionally
viewed as being limited to the CNS to one that involves systemic interactions, particularly
those involving the gastrointestinal tract. By considering the gut microbiome and its
influence on the CNS, researchers and clinicians are beginning to appreciate the
multifaceted nature of PD, which may pave the way for novel therapeutic strategies
targeting not just the brain, but also the gut and its microbial inhabitants. This holistic
approach could potentially offer new avenues for early intervention and a more

comprehensive management of the disease, ultimately improving patient outcomes.
PD Etiology, Pre-clinical, Prodromal and Clinical stages

To frame the discussion of PD etiology in a broader context, it's important to start by
addressing the concept of prodromal stages in the disease's progression. One of
characteristic features of PD is the aggregation of a-synuclein, a protein that abnormally
accumulates and forms Lewy bodies in the nervous system (Cheng et al., 2023). The
pathological process begins years before the onset of motor symptoms, during what is
known as the prodromal phase (Fig. 2). During this phase, aggregation of misfolded a-
synuclein, which is thought to play a major role in nigral dopaminergic neuronal loss, often
starts in the enteric nervous system (ENS), part of the peripheral nervous system located
in the gastrointestinal tract (Beach et al., 2016; Fricova et al., 2020; W. Liu et al., 2022;
Mahbub et al., 2024; Mu et al., 2015; Ortiz de Ora et al., 2024; Wakabayashi et al., 1990).
This early involvement of the ENS is crucial, as it suggests that the pathological process of
PD may begin in the gut and then spread to the central nervous system via the vagus nerve

(Braak et al., 2003). The presence of a-synuclein in the ENS can lead to various
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gastrointestinal symptoms, such as constipation, which are common in the prodromal stage
of PD (Warnecke et al., 2022). As the disease progresses, a-synuclein pathology spreads
to other parts of the nervous system, including the brainstem and the olfactory bulb, leading
to non-motor symptoms such as olfactory dysfunction and sleep disturbances (Dodet et al.,
2024; Gu et al., 2024).

One of the most notable non-motor symptoms that often occurs during the prodromal stage
is rapid eye movement (REM) sleep behavior disorder. Isolated REM sleep behavior
disorder (iRBD) is a parasomnia characterized by the loss of normal muscle atonia during
REM sleep, which leads to the physical enactment of dreams. Typically, during REM sleep,
the body is in a state of muscle paralysis — a mechanism that prevents individuals from
acting out their dreams. However, iRBD is characterized by the loss of normal muscle atonia
during REM sleep, leading to the enactment of vivid and often violent dreams. The clinical
significance of iIRBD extends far beyond its impact on sleep quality. Over the past few
decades, a substantial body of evidence has emerged demonstrating that iRBD is not
merely an isolated sleep disorder but is predictive of future neurodegenerative diseases,
particularly synucleinopathies such as PD (Figorilli et al., 2023; Shrestha et al., 2021).
Among these, PD is the most common disorder associated with iRBD, with longitudinal
studies showing that a significant proportion of patients with iRBB — ranging from 40% to
80% — develop PD within ten years from the initial iRBD diagnosis (Galbiati et al., 2019;
Iranzo et al., 2014; Postuma et al., 2009, 2015).
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Figure 2. Progression of clinical symptoms from the initial prodromal phase to the confirmed
diagnosis of PD. Adapted from Ravenhill et al., 2023.

This prodromal phase, characterized by neurodegeneration without overt motor symptoms,
is crucial for identifying potential disease-modifying interventions. Isolated REM sleep
behavior disorder is a key prodromal marker for PD and other synucleinopathies, indicating
an underlying neurodegenerative process that may lead to the full development of PD. As
the disease advances, three major pathological features emerge: the progressive loss of
dopaminergic neurons in the substantia nigra pars compacta (SNpc) (Mamelak, 2018), the
formation of Lewy bodies composed primarily of aggregated a-synuclein (Tanei et al., 2021;
Wakabayashi et al., 1990), and pervasive neuroinflammation (Muzio et al., 2021; Sampson
et al.,, 2016). The loss of dopaminergic neurons results in a significant reduction in
dopamine, a neurotransmitter essential for motor function regulation, leading to the classical
motor symptoms of PD, such as bradykinesia, tremor, and rigidity. Lewy bodies, abnormal
intracellular inclusions primarily consisting of aggregated a-synuclein, are a pathological
hallmark of PD. The exact role of a-synuclein in PD, its genetic links, and its contribution to
neurodegeneration remain active areas of research, with ongoing studies aiming to clarify
how these aggregates contribute to the disease's progression (Braak et al., 2003; Spillantini
& Goedert, 2018).

Dopamine and Glutamate Metabolism Dysregulation

Impaired dopamine metabolism is a critical aspect of PD pathogenesis, contributing
significantly to the neurodegenerative processes observed in this disorder. (Masato et al.,

2019; Scheffer et al., 2021) The dysregulation of dopamine homeostasis in PD leads to the
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accumulation of toxic metabolites, particularly 3,4-dihydroxyphenylacetaldehyde (DOPAL)
(Mattammal et al., 1995). DOPAL is a highly reactive aldehyde that can modify functional
protein residues, leading to oxidative stress and neuronal cell death (Bisaglia et al., 2014).
Furthermore, DOPAL interacts with a-synuclein, and this interaction promotes the
oligomerization and aggregation of a-synuclein, further impairing neuronal function and
survival (Masato et al., 2019; Mor et al., 2017, 2019). This metabolite is especially
detrimental to dopaminergic neurons in the substantia nigra (Masato et al., 2019). The
interplay between dopamine metabolism abnormalities and mitochondrial defects are also
relevant to PD (Xu & Yang, 2022). The catabolism of dopamine involves mitochondrial
processes that produce reactive oxygen species (ROS). Under physiological conditions, the
rate of dopamine oxidation is slow, and the cellular antioxidant machinery can manage the
formation of reactive products. However, in PD, the increased oxidative stress overwhelms
these protective mechanisms, leading to mitochondrial damage and further impairing
cellular energy metabolism (Xu & Yang, 2022). This interplay between dopamine
metabolism and mitochondrial dysfunction creates a vicious cycle that exacerbates

neuronal degeneration in PD.

While PD has traditionally been conceptualized as a disorder primarily driven by
dopaminergic deficits, it is now increasingly recognized that disturbances in glutamatergic
neurotransmission also play a critical role in the disease’s progression. Research has
shown that alterations in glutamate signaling are not merely secondary consequences but
are integral to the pathological cascade that exacerbates neurodegeneration in PD (Blandini
et al.,, 1996) (Fig. 3). In PD, the regulation of glutamate release and receptor activity is
significantly impacted by the loss of dopamine. Dopamine typically inhibits the release of
glutamate in certain brain regions. However, in PD, the degeneration of dopaminergic
neurons in the substantia nigra and the resulting depletion of dopamine cause an
overactivity of glutamate in the basal ganglia, which is neurotoxic (Blandini, 2010; J. Wang
et al., 2020).

Glutamate, a pivotal neurotransmitter within the central nervous system, plays a significant
role in the onset and progression of PD. As the primary excitatory neurotransmitter in the
mammalian brain, glutamate is integral to many essential functions and metabolic
processes. The precise regulation of excitatory and inhibitory neuronal activity is vital for
maintaining normal brain function, and disruptions in this balance can have profound
pathological consequences. Excessive activation of glutamate receptors, particularly in
nigrostriatal neurons, may induce neuronal death through a mechanism known as

glutamate-induced excitotoxicity (Bergman et al., 1994). This pathological condition arises
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when there is an excessive release of glutamate from presynaptic terminals or a failure in
the reuptake mechanisms, resulting in an abnormal accumulation of extracellular glutamate
(Lin et al., 2012).

Elevated extracellular glutamate levels lead to the hyperactivation of NMDA receptors,
which are permeable to calcium ions, culminating in calcium overload within the neurons.
This calcium overload triggers excitotoxic damage, a process characterized by the
activation of deleterious enzymatic pathways, the generation of toxic free radicals, and the
disruption of cellular energy production. Such excitotoxicity is further aggravated by the
activity of microglia and astrocytes, which, under pathological conditions, release additional
glutamate, thereby exacerbating neuronal injury (Wetherington et al., 2008). The sustained
elevation of intracellular calcium levels, driven by this glutamate surge, activates enzymes
that further damage cellular structures, leading to oxidative stress and, ultimately, cell death.
Beyond the receptor-mediated excitotoxicity, elevated glutamate levels can also provoke
oxidative stress through non-receptor-mediated mechanisms, contributing to what is termed

oxidative glutamate toxicity (Shirlee Tan et al., 2001).
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Figure 3. Mechanisms of glutamate toxicity in PD. Dysregulation of synaptic glutamate
levels can result in excitotoxicity, where excessive glutamate accumulation leads to

neurotoxicity and ultimately cell atrophy or death.

30



Previous studies have implicated glutamate excitotoxicity as a contributing factor in the
degeneration of dopaminergic neurons, a hallmark of PD (Meredith et al., 2009). Clinical
investigations have revealed subtle alterations in glutamate levels within the brains of PD
patients, indicative of enhanced glutamate neurotransmission (Groger et al., 2014;
O’Gorman Tuura et al., 2018; Weingarten et al., 2015). While the exact causal relationship
between these alterations in glutamate-related pathways and neurodegeneration in PD
remains to be fully elucidated, it is clear that both inflammation and glutamate-induced
excitotoxicity are central to the pathophysiology of PD. The resultant dopamine deficit linked
to increased neurotoxicity of glutamate further exacerbates this pathological cycle,
establishing a self-perpetuating loop that accelerates the neurodegenerative process, (dos-
Santos-Pereira et al., 2018; J. Wang et al., 2020).

In the gastrointestinal tract, glutamate originates from several key sources: it is ingested
through the diet, produced by the gut microbiota, and synthesized endogenously by gut
epithelial cells (Reeds et al., 2000). This versatile neurotransmitter plays a pivotal role in
various gastrointestinal functions, including the regulation of gut motility and secretion, as
well as the maintenance of the intestinal barrier's integrity. These functions are mediated
through interactions with specific glutamate receptors, such as NMDA and AMPA receptors,
which are distributed along the gut lining (Hamnett et al., 2024). The influence of the gut
microbiota on glutamate levels and metabolism is profound, with certain bacterial species
actively participating in the synthesis and conversion of glutamate into other bioactive
compounds, such as gamma-aminobutyric acid (GABA) and short-chain fatty acids (SCFAs)
(Strandwitz, 2018). This microbial activity is essential not only for maintaining gut health but
also for the proper functioning of the gut-brain axis — a sophisticated, bidirectional
communication network that integrates gut physiology with central nervous system
processes. Glutamate signaling within the gut has significant implications for brain function,
primarily via peripheral neural pathways and the vagus nerve, which conveys signals
directly between the gut and the brain. Additionally, glutamate or its metabolites may cross
the blood-brain barrier through humoral pathways, subsequently modulating
neurotransmission within the central nervous system (Baj et al., 2019). The delicate balance
of glutamate within the gut, and its broader impact on brain health, highlights the importance
of the gut-brain axis in the pathogenesis of PD. Disruptions in this balance, whether due to
microbial dysbiosis or other factors, may contribute to the progression of PD, emphasizing

the critical role of gut-derived glutamate in the disease's underlying mechanisms.

Glutamate, a key amino acid in neurotransmission, exists as two enantiomers: L-glutamate

and D-glutamate. L-glutamate is a versatile amino acid that provides the umami taste in
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foods and serves as a key player in metabolism and neurotransmission (Yamaguchi, 1991).
It is crucial for amino acid and carbohydrate metabolism, impacting various cells like
intestinal, liver, muscle, and immune cells (Kondoh et al., 2009). As the main excitatory
neurotransmitter in the brain, it is vital for learning and memory (Meldrum, 2000). L-
glutamate receptors are found in gut epithelial cells, which, when stimulated, activate vagal
afferent nerve fibers and influence brain regions such as the cerebral cortex, basal ganglia,
limbic system, and hypothalamus (Kondoh & Torii, 2008; M. T. Liu et al., 1997; Tsurugizawa
et al.,, 2008). Therefore, L-glutamate has importance in both dietary and physiological
functions. D-glutamate is less common and primarily found in the peptidoglycan cell wall of
bacteria and certain fermented foods (Cava et al., 2011; Marcone et al., 2019). Unlike L-
glutamate, D-glutamate is not commonly involved in human metabolic processes or
neurotransmission, and its role in neurocognitive function remains unclear (Marcone et al.,
2019). Another molecule related to L- and D-glutamate is B-glutamate. Although B-
glutamate is structurally distinct from L- and D-glutamate due to the position of its amino
group, it shares the fundamental glutamate backbone with the other two forms. Given the
established implications of glutamate excitotoxicity in the pathogenesis of PD, the study of
B-glutamate emerges as a particularly promising avenue of research. B-glutamate, which
has been identified for its role as an osmolyte in archaea and its involvement in specific
enzymatic reactions, presents several intriguing possibilities for enhancing our
understanding of gut-brain interactions and neurodegenerative diseases. Its function as a
substrate for glutamine synthetase, although with reduced efficiency compared to other
substrates, underscores its biochemical versatility and potential implications for metabolic
processes (Robinson et al., 2001a). Additionally, its established role in maintaining cellular
integrity under conditions of osmotic stress highlights its importance in microbial metabolism

and gut function (Robertson et al., 1990a).
Microbiome Links to PD: From Theory to Evidence

In the context of PD, the concept of the gut-brain axis offers a crucial physiological
framework for understanding how gut microbiota might influence neurological health. This
axis facilitates communication between the gut and brain through various pathways,
including neural, endocrine, and immune routes. Gut microbes can modulate brain function
and behavior by affecting immune responses, neurotransmitter production, and metabolism,

all of which have implications for neurodegenerative conditions such as PD.

The involvement of the gut microbiome in PD is further supported by the Braak hypothesis,

which posits that PD pathology might originate in the gut before spreading to the brain via
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the vagus nerve (Braak et al., 2003; Morais et al., 2020; Schmit et al., 2023). One proposed
mechanism involves the bacterial amyloid protein curli, which can enhance the misfolding
and aggregation of a-synuclein in the gut. Curli, produced by certain gut bacteria, can cross-
seed with a-synuclein, promoting its aggregation into pathogenic forms (Chen et al., 2016;
C. Wang et al., n.d.). This misfolded a-synuclein can then propagate in a prion-like manner,
traveling from the gut to the brain via the vagus nerve, contributing to the neurodegenerative
processes observed in PD. This hypothesis is bolstered by clinical observations that
gastrointestinal symptoms, such as constipation, often precede the onset of motor
symptoms in PD by several years. These early non-motor symptoms suggest that
alterations in the gut microbiome could serve as potential early biomarkers for PD, thus
shifting the focus of research from solely the brain to include peripheral systems like the

gastrointestinal tract.

A growing number of clinical studies have provided compelling evidence linking gut
microbiome alterations to PD (Heintz-Buschart & Wilmes, 2018; Z. Li et al., 2023; X. Zhang
et al., 2023). These studies consistently reveal patterns of dysbiosis in PD patients, with
specific microbial taxa either increased or decreased in abundance compared to healthy
controls. One of the most frequently reported findings is the increase in the family
Verrucomicrobiaceae, particularly the genus Akkermansia, in PD patients. Several studies
have documented elevated levels of Akkermansia muciniphila in individuals with PD,
suggesting that this bacterium may play a significant role in the disease's pathology
(Barichella et al., 2019; Bedarf et al., 2017; Heintz-Buschart et al., 2018). The increase in
Akkermansia might reflect a compensatory response to the maintenance of gut barrier
integrity, which is often compromised in PD, potentially leading to an enhanced permeability
of the gut lining and subsequent systemic inflammation. Moreover, other microbial families
such as Lactobacillaceae and Enterobacteriaceae have also been reported to be increased
in PD. These taxa are known for their roles in immune modulation and have been implicated
in inflammatory processes that may exacerbate neurodegeneration in PD (Barichella et al.,
2019; Scheperjans et al., 2015; Tan et al., 2021).

Conversely, a consistent decrease in the family Prevotellaceae, especially the genus
Prevotella, has been observed in multiple studies (Aho et al., 2019; Bedarf et al., 2017).
Prevotella species are involved in the production of SCFAs, which have neuroprotective
effects. The reduction in Prevotellaceae suggests a disruption in SCFA production,
potentially contributing to the neurodegenerative processes observed in PD. Additionally,
genera such as Roseburia and Faecalibacterium, which are crucial producers of the SCFA

butyrate — a compound with well-documented anti-inflammatory properties —have also been
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found to be decreased in PD patients (Aho et al., 2019; Cirstea et al., 2020). This decrease
may be associated with the heightened inflammatory state that characterizes PD, further

underscoring the potential link between gut dysbiosis and the progression of the disease.

Studies reveal that while there may not be significant differences in alpha-diversity — an
indicator of the variety of microbial species within an individual — between PD patients and
healthy controls, there is often a trend towards reduced alpha-diversity in PD, suggesting a
potential loss of microbial richness and complexity (Y. Qian et al., 2018, 2020; K. Zhang et
al., 2022). This reduction in diversity could imply a diminished resilience of the gut
microbiome, making it more susceptible to imbalances and potentially contributing to
disease progression. In terms of beta diversity, which measures the differences in microbial
communities between individuals, several studies have reported significant differences
between PD patients and healthy controls. These findings indicate that PD is associated
with a distinct microbial composition, further supporting the notion that gut dysbiosis plays
a role in the disease (W. Li et al., 2017; Scheperjans et al., 2015; Wallen et al., 2022).

The consistent alterations in specific microbial taxa, such as the increase in pro-
inflammatory bacteria like Akkermansia and Enterobacteriaceae, and the decrease in
beneficial, SCFA-producing bacteria such as Prevotella, Roseburia, and Faecalibacterium,
underscore the potential role of the gut microbiome in fostering a pro-inflammatory
environment that may contribute to the pathogenesis of PD. These microbial changes
suggest that the gut microbiome could be a crucial factor in the development and
progression of PD, potentially offering new avenues for early diagnosis and therapeutic

interventions.

In addition to bacteria, the gut microbiome encompasses archaea, which have been
reported to exhibit higher abundances in patients with PD. Notably, methanogenic archaea,
such as Methanobrevibacter smithii, have been identified in increased numbers within the
gut microbiota of individuals with PD (Cem Duru et al., 2024; Romano et al., 2021; Wallen
et al., 2022b; F. Zhang et al.,, 2020). These methanogens are integral to methane
production, a process that can influence gut motility and is associated with gastrointestinal
symptoms frequently observed in PD, such as constipation (Sharma et al., 2020). Among
the various methanogenic phylotypes, M. smithii is particularly significant, contributing to
over 90% of methane production. The abundance and proportion of M. smithii in stool
samples correlate strongly with the amount of breath methane in patients with irritable bowel
syndrome (IBS) (Ghoshal et al., 2016; G. Kim et al., 2012).
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The emerging evidence linking the gut microbiome to PD highlights the significant role that
the gut-brain axis plays in neurodegeneration. The consistent patterns of microbial
alterations observed in PD patients across multiple studies point to gut dysbiosis as a
contributing factor to the disease’s progression, possibly through mechanisms involving
neuroinflammation, immune modulation, the disruption of SCFA production, and the role of
bacterial amyloid protein curli in promoting the misfolding and aggregation of a-synuclein.
As research continues to explore these connections, it becomes increasingly clear that
understanding the gut microbiome's role in PD could lead to the development of
microbiome-based biomarkers for early detection and novel therapeutic strategies aimed at

modulating gut health to slow or prevent disease progression.

Meta-omics for Microbiome Research

The study of the microbiome has evolved significantly over the past few decades, driven by
advancements in sequencing technologies and computational methods. Initially,
microbiome research relied heavily on culture-based techniques, which were limited by the
inability to grow many microbial species in the laboratory. The advent of metagenomics in
the early 2000s marked a pivotal shift, allowing researchers to analyze microbial
communities directly from environmental samples without the need for culturing (X. Zhang
et al., 2019). This breakthrough enabled the identification and characterization of a vast

array of previously unrecognized microbial species.

Meta-omics, encompassing metagenomics, metatranscriptomics, metaproteomics, and
metabolomics, represents a comprehensive approach to studying the microbiome. This
integrative methodology allows for a holistic understanding of microbial communities and
their functional roles within various ecosystems, including the human gut. Leveraging
multiple omics technologies allows to elucidate the complex interactions between microbes

and their hosts, providing insights into health and disease states.

Recent advancements in meta-omics have significantly enhanced our ability to study
microbial communities in a detailed and integrative manner. Meta-omics combines various
omics approaches to provide a comprehensive view of the microbiome, encompassing
genetic, transcriptomic, proteomic, and metabolomic data (T. Ma et al., 2019; L. Wang et
al., 2022).

This integrative approach has been pivotal in uncovering the complex interactions between

microbes and their hosts, particularly in the context of human health and disease. Meta-
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omics has in particular been instrumental in identifying biomarkers for disease diagnosis
and monitoring, as well as understanding the functional roles of microbial communities in
different environments (T. Ma et al., 2019). By integrating meta-omics with other advanced
technologies, researchers can achieve a more nuanced understanding of microbial

ecosystems, ultimately leading to better diagnostic tools and therapeutic strategies.

Recent advances in MG have significantly enhanced our understanding of microbial
communities (Lema et al., 2023; L. Zhang et al., 2021). These technologies enable rapid
and detailed analysis of microbial diversity, community structure, genetic relationships, and
functional potential. Metagenomics has been instrumental in identifying novel and
uncultivable microorganisms, providing insights into microbial interactions and their roles in
various environments. For instance, functional metagenomics allows for the screening of
new bioactive substances and functional genes from microbial communities (L. Zhang et
al., 2021). Despite these advancements, challenges remain, such as the inability to
determine gene expression levels and the dynamic responses of microbial communities to
environmental changes (Lema et al.,, 2023). By integrating MG with other omics
approaches, such as MT, researchers can gain a more holistic understanding of microbial

ecosystems, bridging the gap between genetic potential and actual functional activity.

To address these challenges, MT analyzes RNA transcripts in a sample, providing a
dynamic view of gene expression within the microbiome. This approach identifies which
microbial genes are actively transcribed under specific conditions, offering insights into the
functional state of the microbial community. RNA sequencing (RNAseq) is employed to
capture expressed transcripts within a microbiome at a particular time, allowing for a
detailed view of active microbial members. Applications of metatranscriptomics include
characterizing active microbes in a community, uncovering novel microbial interactions,
detecting regulatory antisense RNA, and monitoring gene expression to elucidate the
relationship between viruses and their hosts (Bao et al., 2015; Bashiardes et al., 2016; Bikel

et al., 2015; Moniruzzaman et al., 2017).

Metaproteomics (MP) extends the analysis of microbial communities by examining their
protein expression, thereby providing detailed functional information about the dynamic
interactions between hosts and their microbiota. Proteins, as the functional molecules
executing the biological activities encoded by genes, offer insights into the actual functional
output of the microbiome. Consequently, metaproteomics has emerged as a crucial
complementary approach to metagenomics, focusing on the large-scale characterization of

proteins from environmental microbiota, such as those found in the human gut (Van Den
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Bossche et al., 2021). This approach underscores the importance of integrating multiple
omics techniques to capture the full spectrum of microbial activity, thereby providing a more

comprehensive understanding of microbial functions and their impact on host health.

Metabolomics (MB), the study of small molecules and metabolites produced by microbial
communities, provides insights into the biochemical interactions between microbes and
their hosts. It is a key technology for detecting and identifying small molecules produced by
the human microbiota and understanding their functional roles. By examining the complete
set of metabolites produced by microbial communities, metabolomics reflects their
metabolic activity and interaction with the host. This approach helps identify microbiome-
derived metabolites that may serve as biomarkers or modulators of disease(David et al.,
2014; Hanash et al., 2011; Lanpher et al., 2006). In PD studies, metabolomics can reveal
alterations in key metabolites, such as short-chain fatty acids and bile acids, elucidating
their roles in disease mechanisms and overall host health (Morrison & Preston, 2016;
Zacharias et al., 2022).

The integration of these meta-omics approaches, as demonstrated in studies of the human
gut microbiome, allows for a more comprehensive understanding of the microbial
ecosystem. For example, in a study of familial type 1 diabetes, researchers employed
metagenomic, metatranscriptomic, and metaproteomic analyses to investigate the gut
microbiota’s taxonomic and functional attributes (Heintz-Buschart et al., 2016). The study
demonstrated that gastrointestinal microbiome community structures are consistent across
all omic levels, with each level showing individuality and family specificity. This work
highlights the need for integrated multi-omic analyses to understand host-microbe
interactions in health and disease. Moreover, meta-omics has been instrumental in
advancing our understanding of drug-microbiome interactions. Recent studies have shown
that the gut microbiome can influence drug metabolism, efficacy, and toxicity (Kolli et al.,
2023; Wuyts et al., 2023; Q. Zhao et al., 2023). By integrating meta-omics data, researchers
can identify microbial genes and pathways involved in drug metabolism, paving the way for
personalized medicine approaches that consider an individual's microbiome structure and

function.

The study of the human microbiome through meta-omics has revolutionized our
understanding of the complex microbial ecosystems residing within us. Meta-omics
encompasses a suite of high-throughput techniques that collectively analyze the genetic
material, transcripts, proteins, and metabolites of microbial communities. This

comprehensive approach allows researchers to capture the full breadth of microbial
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diversity and function, providing insights into how these communities interact with their host
and influence health and disease. By integrating data from metagenomics,
metatranscriptomics, metaproteomics, and metabolomics, scientists can construct detailed
models of microbial ecosystems, elucidating the roles of specific microbes and their
metabolic pathways in various physiological processes. This holistic perspective is crucial

for understanding the dynamic nature of the microbiome and its impact on human health.

In conclusion, meta-omics provides a powerful framework for microbiome research,
enabling the simultaneous analysis of microbial composition, gene expression, protein
function, and metabolic activity. By integrating these diverse datasets, researchers can gain
a deeper understanding of the microbiome’s role in health and disease, paving the way for

novel therapeutic strategies and personalized medicine.
Biological Networks

Biological networks provide a powerful and systematic framework for understanding the
intricate interactions and functional relationships within microbial communities and various
biological systems. By integrating diverse omics data with interactome data, including
protein-protein interactions and gene-gene associations, network biology uncovers complex
patterns that are often hidden in traditional, linear analyses. The application of network
approaches has become indispensable across nearly all domains of science, particularly in
the life sciences, where capturing the inherent complexity of biological systems is crucial
(Bray, 2003; Koonin et al., 2002; Wall et al., 2004). These networks function at multiple
spatial scales, from molecular interactions within cells to ecosystem-level interactions (Fang
et al., 2020; Luck et al., 2020). In particular, on a broader ecological scale, networks that
represent interactions between species within ecosystems have provided essential insights
into keystone species and their roles in conservation efforts (Bascompte, 2010; Roume et
al., 2015). Within cells, biological processes are intricately regulated at multiple levels,
involving complex networks of transcriptional, post-transcriptional, and post-translational
events. The network approach allows researchers to move beyond gene-centric analyses
and adopt a more holistic, systems-oriented examination of biological data. This shift
emphasizes the interactions and relationships between biological entities — such as genes,
proteins, and metabolites — offering a more comprehensive understanding of how these

elements coordinate to drive overall cellular functions (Barabasi & Oltvai, 2004).

Traditional genome-wide omics studies generate lists of genes or their products that exhibit

significant alterations under specific conditions. However, focusing solely on individual
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genes or proteins in complex systems, such as environmental samples, can lead to the
oversight of broader, unexpected relationships between genes or even entire pathways. In
contrast, network biology recognizes that biological processes are not predominantly
governed by isolated proteins or linear pathways but are controlled by intricate networks of
molecular interactions at the system level (Gardy et al., 2009). Furthermore, network
medicine theory expands on this concept by suggesting that disease-associated traits arise
not from isolated single gene genetic variants, but from disruptions within the broader
network context of genes (Charitou et al., 2022; Kennedy et al., 2020). Therefore, not all
disease-related phenotypes are caused by genetic variants in single genes functioning
independently, but instead stem from disturbances in the complex network of gene
interactions . Understanding the connections, nodes, and patterns within these networks is
crucial for understanding the broader context of gene function and the manifestation of

complex phenotypes in both health and disease.

A network-based approach is a highly effective complement to traditional functional
annotation methods, such as enrichment analyses. Techniques like gene set enrichment
analysis (GSEA), which ranks gene sets based on factors like differential expression, rely
heavily on well-annotated gene sets. While these methods are useful, they can miss
important connections between functionally related genes, especially when gene sets share
few overlapping genes but are involved in similar pathways or represent different
subcomponents of the same biological process. Moreover, the sensitivity of these analyses
is often constrained by the size of the gene set. In contrast, network-based methods model
interactions between genes, proteins, and molecules rather than treating them as isolated
entities. They capture relationships that enrichment analyses might overlook by linking well-
annotated and poorly annotated elements, thus integrating diverse biological mechanisms.
Examples include the use of protein-protein interaction data to predict protein functions
based on the annotations of interacting partners (Deng et al., 2004), the application of
pathway enrichment analysis with networks (L. Liu et al., 2017), and the prediction of protein
functions via network-derived clusters (Song & Singh, 2009). Additionally, proximity-based
methods in gene networks can reveal associations between gene sets and biological
functions (Glaab et al., 2012). By incorporating expression data with cellular network
information, like protein-protein and protein-DNA interactions, we can reveal the regulatory
mechanisms behind these changes (Cline et al., 2007). Network analyses provide a broader
and less biased view of genes and proteins, avoiding the overemphasis on well-
characterized pathways. This approach allows for a more comprehensive understanding of

biological systems by highlighting novel and significant components that might be
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overlooked in traditional studies (Charitou et al., 2016). Therefore, networks are particularly
valuable for predicting the functions of uncharacterized genes or proteins based on their
interactions with known entities, aiding in the annotation of newly discovered or poorly

understood components .
Types of Biological Networks

There are several distinct types of biological networks, each representing different aspects
of cellular processes: protein-protein interaction networks, genetic interaction networks,
regulatory networks, signaling networks, and metabolic networks. Despite their focus on
different cellular functions, these networks share common organizational and functional
principles. Protein-protein interaction networks illustrate the physical interactions between
proteins, highlighting the collaborative nature of proteins in executing cellular functions.
These networks are essentially representations of how proteins interact with one another
within the cellular environment, encompassing all the proteins and their interactions
(Vazquez, 2010). Through the study of protein-protein interaction networks, researchers can
explore specific protein interactions, protein complexes, and signaling cascades. Genetic
interaction networks describe the relationships between genes, particularly how the
modification of one gene can influence the expression or function of another gene (Boucher
& Jenna, 2013). Genetic interaction networks indicate that two genes have a functional
relationship, which may manifest through their involvement in the same biological processes
or pathways, or through compensatory mechanisms with functions that may not be
immediately apparent. Gene regulatory networks focus on the interactions between
transcription factors and their target genes, shedding light on the mechanisms that regulate
gene expression. These networks integrate multiple elements of gene regulation, including
transcription factors, splicing factors, long non-coding RNAs, microRNAs, and metabolites
(Badia-i-Mompel et al., 2023). Cell signaling networks map out the pathways through which
cells communicate and respond to external stimuli. These networks involve a series of
molecular interactions that relay signals from the cell membrane to the nucleus,
orchestrating cellular responses to environmental changes (Azeloglu & lyengar, 2015).
Metabolic networks are complex systems that outline the biochemical reactions occurring
within a cell (Nikoloski et al., 2008). They illustrate the interconnectedness and regulation
of various metabolic pathways, providing insights into cellular metabolism and its
implications for health and disease. These networks encompass all reactions an organism
can perform, the metabolites involved as substrates and products, and the genes encoding

the enzymes that facilitate these reactions (Chalancon et al., 2013).
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In the study of biological systems, large-scale networks such as networks inferred from
gene expression data offer significant advantages over analyzing individual biological
entities in isolation. Gene co-expression networks, for example, represent gene-gene
interactions as undirected graphs, where nodes denote genes and edges reflect the
strength of their co-expression. Within this framework, weighted gene co-expression
network analysis (WGCNA) emerged as a key method in systems biology. WGCNA is
instrumental in constructing these networks, identifying gene modules, and determining
central hub genes (Chang et al.,, 2010; Wan et al., 2018; B. Zhang & Horvath, 2005).
WGCNA enhances the understanding of gene interactions, highlights key regulatory genes,
and aids in predicting the functions of previously unknown genes. This method provides a
deeper insight into gene expression networks, complementing the broader biological
networks discussed above. The distinct advantage of WGCNA lies in its ability to convert
gene expression data or other omics data such as proteomic (J. X. Wu et al., 2023),
metabolomic (Pei et al., 2017), 16S rRNA amplicon sequencing data (Jameson et al., 2023)
into co-expression modules, thereby facilitating the exploration of signaling networks

potentially associated with phenotypic traits of interest (Langfelder & Horvath, 2008).
Networks Topology and Metrics

Numerous mathematical and computational approaches have been developed to analyze
large networks to identify features of interest. In the realm of biological networks, these
analytical approaches are essential for uncovering the underlying architecture and
identifying key elements that govern complex biological processes. The intricate web of
interactions within these networks can be difficult to decipher, but by applying network
analysis techniques, it is possible to pinpoint critical nodes and pathways that play

significant roles in the functionality and stability of these biological systems.

One of the most powerful and widely used methods in this context is centrality analysis,
which provides valuable insights into the importance of individual nodes within a given
network (Bloch et al., 2023). Given that our analyses involve microbiome data, it's crucial
to consider the topological features of ecological networks. These networks quantify the
structure of ecological interactions, consisting of nodes (representing entities like genes or
species) and edges (representing interactions or relationships between these entities). In
our specific study, “The gut microbiome gene expression network is dysregulated in
individuals with Parkinson’s disease” we use KEGG KOs as nodes and co-expression ratios
between genes as edges. To characterize the system at the level of individual nodes or

edges, we employ various network centrality metrics. These metrics help us understand the
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importance and influence of each node or edge within the network, drawing on established
network centrality metrics (Bonacich, 1987; Costa et al., 2019; Lau et al., 2017; Wasserman
& Faust, 1994).

Centrality analysis stands out as a crucial tool for investigating complex biological networks.
It helps to identify key elements in biological processes (Koschitzki & Schreiber, 2008). The
most common centrality measures used in biological network analysis are degree centrality,
closeness centrality, and betweenness centrality. Studies have shown that the mean
centrality values for these measures are significantly higher for essential proteins compared
to nonessential proteins (Hahn & Kern, 2005). In addition to these centrality measures, other
metrics such as clustering coefficient, connectivity, and eigenvector centrality provide
further insights into network topology and function. These metrics allow for a more nuanced
analysis of how nodes interact, the formation of modules, and the overall flow of information

within the network, thereby enriching our understanding of biological systems .

Degree centrality evaluates the importance of a node based on its number of connections
(Ashtiani et al., 2018; Jeong et al., 2001a). It is one of the most widely used metrics and
has been linked to various dynamic processes in diseases (Checco et al., n.d.; Opsahl et
al.,, 2010). Although it provides insight into a node's connectivity, it can miss important
aspects of network architecture, such as nodes that bridge different parts of the network but

have a low degree of connections (Bloch et al., 2023).

Closeness centrality measures the average length of the shortest paths from a node to all
other nodes, indicating how centrally located a node is within a network (Evans & Chen,
2022). It is used to assess how effectively information flows from one node to others and to
identify ideal starting points for information propagation. This measure has been utilized to
pinpoint important metabolites in genome-based, large-scale metabolic networks (Ashtiani
et al., 2018). It has been found that the centrality measure is the most effective measures

in terms of locating the network’s essential genes (Plaimas et al., 2010).

Betweenness centrality quantifies the proportion of shortest paths passing through a node,
reflecting its role in communication flow within the network (Barthélemy, 2004). In protein
interaction networks, high betweenness indicates a protein's potential to facilitate
communication among various proteins (Bima et al., 2022). Nodes that bridge gaps
between clusters tend to have high betweenness centrality, highlighting their importance in
network structure and function (Ravasz et al., 2002). Hub genes are nodes with a high

degree of connectivity within a network, often playing critical roles in maintaining the
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structure and function of biological systems. These genes are typically involved in key

regulatory processes and are essential for the stability of the network.

Clustering coefficient is a measure that quantifies the extent to which nodes in a network
tend to cluster together. In a biological context, it indicates the likelihood that a gene’s
neighbors are also connected to each other, forming tightly knit groups or modules. A high
clustering coefficient suggests that the network has a modular structure, whereby genes
within the same module are more likely to be involved in related biological processes. This
is particularly relevant in gene co-expression networks, where genes within a highly
clustered module might share similar functions or be co-regulated (Watts & Strogatz, 1998).
The clustering coefficient has been shown to be associated with network robustness and
the ability to withstand perturbations, which is crucial in maintaining biological function under

varying conditions (Pavlopoulos et al., 2011).

Connectivity in network analysis refers to the degree of interaction or linkage among nodes
within the network. In gene co-expression networks, connectivity is often used to identify
hub genes — genes with a high number of connections to other genes. These hub genes
are generally considered to be critical regulators of biological processes, as they can
influence the expression and activity of many other genes (B. Zhang & Horvath, 2005).
Although these genes may not be vital in higher organisms, knock-out experiments in yeast
have demonstrated that hub genes are crucial for survival (Carlson et al., 2006; Jeong et
al., 2001). A high connectivity in a gene network often correlates with essentiality, meaning
that the genes with the most connections are more likely to be crucial for the survival or
proper functioning of the organism (Jeong et al.,, 2001). Moreover, changes in the
connectivity of certain nodes can signal shifts in network dynamics, which may be
associated with disease states or other biological changes (Nikoloski et al., 2010).
Theoretical and empirical analyses have shown that intramodular connectivity, focusing on
connections within specific gene modules in co-expression networks, is a valuable metric
for identifying key genes (Fuller et al., 2011). This concept has been validated in various
studies, including those on brain cancer and inflammatory responses (Gargalovic et al.,
2006; Horvath et al., 2006), underscoring the importance of hub genes in understanding

complex biological processes.

Eigenvector centrality is a measure that extends the concept of degree centrality by not only
considering the number of connections a node has but also the importance of the nodes it
is connected to. This measure assigns relative scores to all nodes in the network based on

the principle that connections to highly connected nodes contribute more to the score of the
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node being evaluated (Bonacich, 1987). In biological networks, eigenvector centrality can
identify influential genes that, while perhaps not the most connected, are linked to other
highly influential genes, thus playing a pivotal role in the overall network structure. This
metric is particularly useful in identifying nodes that are central to the flow of information or

regulation across the network (Golbeck, 2013).

Numerous mathematical and computational approaches have been developed to analyze
large biological networks, uncovering their underlying architecture and identifying key
elements that govern complex biological processes. Centrality analysis, including degree,
closeness, and betweenness centrality, is a powerful method for pinpointing critical nodes
and pathways within these networks. These measures help identify essential proteins and
their roles in maintaining network stability. Additionally, metrics such as clustering
coefficient, connectivity, and eigenvector centrality provide further insights into network
topology, revealing modular structures, hub genes, and influential nodes. Together, these
analytical techniques offer a comprehensive understanding of biological systems, aiding in

the exploration of network dynamics and their implications for diseases like PD.
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Results and Discussion of Publications

Paper 1: Integrated Multi-omics Highlights Alterations of Gut Microbiome

Functions in Prodromal and Idiopathic Parkinson’s Disease

Contribution

e As the shared first author of the paper, | participated in data preparation,
bioinformatical and statistical analysis, data interpretation, visualization of results,
and manuscript writing. In addition to preparing and curating all MG and MT data for
the results, my specific contribution focuses on the metabolic network analysis. This
includes the result section “Metabolites and metabolites-related genes associated
with PD are central to microbiome metabolism” and the corresponding discussion.

e Responsible for the creation of visual elements of the manuscript, including figures
2G, 3D,E,F, 4, extended figures 2, 4:

o Fig. 2G; 3D,EF; 4; Ext. Fig. 2, 4 — handled the preparation and curation of
MG and MT data for figure generation. Prepared tables with specific data for
each plot to visualize the results. Participated in discussions and
adjustments of results related to the aforementioned figures.

o Fig. 5 — prepared and curated MG and MT data for the construction of the
whole-community network, and mapped KEGG KOs to ChEBI identifiers for
network construction. Visualized the network, highlighting key interactions
between KEGG KOs corresponding to selected metabolites. Calculated and
visualized network topology metrics for subnetworks associated with these

metabolites.
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Overview of the study

In our study “Integrated multi-omics highlights alterations of gut microbiome functions in
prodromal and idiopathic Parkinson’s Disease” we delve into the intricate relationship
between the gut microbiome and PD by employing an integrated multi-omics approach,
which includes both meta-metabolomic and metagenomic analyses. The primary objective
was to explore the functional ramifications of the distinct gut microbiome compositions
observed in individuals with PD, those in the prodromal phase of the disease (specifically,
iRBD), and HC. The research is particularly significant as it seeks to bridge the gap in
understanding how alterations in the gut microbiome may contribute to the pathogenesis

and progression of PD.

In the initial phase of the study, meta-metabolomic analyses were conducted to identify
metabolites that exhibited differential abundance in individuals with PD or iRBD when
compared to healthy controls. This analysis revealed 11 metabolites with significant
differences in abundance, among which B-glutamate emerged as a particularly noteworthy
compound. The levels of B-glutamate were markedly elevated in both PD and iRBD
individuals, and this elevation was strongly correlated with the transcriptional activity of
specific bacterial genera, including Akkermansia, Methanobrevibacter, and Clostridium.
These findings suggest a potential link between gut microbial activity and disruptions in
glutamate metabolism, which may play a critical role in the neurodegenerative processes

underlying PD.

This study further explored the transcriptional activities associated with these metabolic
changes. It was observed that transcripts related to glutamate metabolism were significantly
linked to a decrease in the expression of genes involved in flagellar assembly and
chemotaxis — biological processes essential for microbial motility and immune system
interaction. This reduction in gene expression was particularly pronounced in PD patients,
indicating that the dysregulation of these pathways may contribute to the altered immune

responses and gut-brain communication observed in PD.

Interestingly, while no significant differences in overall metagenomic diversity were detected
between PD and iRBD, the study highlighted substantial variations in the transcriptional
activity of specific microbial taxa. Genera including Roseburia, Blautia, and Eubacterium,
which are generally reduced in abundance in PD, exhibited altered gene expression
profiles. These changes in microbial activity were further linked to increased levels of

metabolites including B-glutamate, isovalerate, and isobutyrate — compounds previously
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associated with disease severity and progression in PD. The findings emphasize the
potential impact of these metabolites not only on gut health but also on the central nervous
system, suggesting a broader role for microbial metabolism in influencing pathways

involved in neurodegenerative diseases.

In addition to examining glutamate metabolism, the study also investigated the role of bile
acids in PD. Bile acids are known to have wide-ranging effects on the immune system,
metabolism, and CNS function. Our study found that specific bile acids, such as
chenodeoxycholic acid (CDCA) and glycocholic acid (GCA), were decreased in individuals
with PD and iRBD, respectively. This reduction in bile acid levels was accompanied by
decreased expression of bile acid-related transcripts in PD patients, highlighting a potential
disruption in bile acid metabolism that could contribute to disease progression. Given the
immunomodulatory properties of bile acids, these findings suggest that alterations in bile
acid metabolism may play a role in the pathogenesis of PD by influencing immune

responses and gut-brain interactions.

The study’s results underscore the importance of focusing on the functional aspects of the
gut microbiome rather than merely analyzing its taxonomic composition. By integrating
multi-omics data, the researchers were able to gain a more comprehensive understanding
of the specific microbial activities and metabolic pathways that are disrupted in PD. The
findings suggest that the future of microbiome research in the context of neurodegenerative
diseases like PD may lie in identifying ways to modulate specific microbial functions, with
the goal of improving our understanding of disease mechanisms and developing targeted

interventions.

In conclusion, this study highlights the complex interplay between the gut microbiome,
metabolic processes, and neurodegeneration in PD. The identification of B-glutamate and
other metabolites as central players in this interaction, along with the altered transcriptional
activities of key microbial taxa, provides new insights into the potential mechanisms driving
PD. These findings pave the way for further research aimed at unraveling the microbiome-
driven factors that contribute to the onset and progression of neurodegenerative diseases,

with the ultimate goal of identifying novel therapeutic strategies.
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Abstract

Individuals with Parkinson’s disease (PD) exhibit differences in their gut microbiomes’
composition compared to healthy controls (HC). The functional consequences of these
differences remain unclear. Here we use an integrated multi-omics approach to resolve the
functional activities of the gut microbiome in prodromal PD (idiopathic REM sleep behavior
disorder, iRBD) and PD compared to HC. Meta-metabolomic analyses identified 11
metabolites that were differentially abundant in PD or iRBD. Based on the robustness of these
discriminant features, they guided our subsequent comparisons. Amongst the identified
metabolites, B-glutamate was significantly increased in individuals with PD or iRBD, and
correlated with the transcriptional activities of Akkermansia, Methanobrevibacter and
Clostridium genera. We specifically identified differences in transcripts related to glutamate
metabolism that in turn are linked to decreased transcript abundances in chemotaxis and
flagellar assembly expressed by specific taxa in PD. Our integrated multi-omics data highlights
multifactorial alterations of structure and function in PD with disrupted functions implicated

in disease pathways.
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Introduction

Parkinson’s disease (PD), a neurodegenerative disease impacting movement due to
dopaminergic neuron loss, is the second most prevalent neurodegenerative disease’.
Individuals with PD are often characterized by an increase in gut permeability, inflammation
and constipation which, together, suggest a link between the gut microbiome and PD etiology?
4. This potential link is supported by numerous studies reporting differences in the gut
microbiome structure of individuals with PD compared to healthy individuals®!'!. These

findings have been further confirmed by recent meta-analyses!!

. Together, the studies
highlight a decreased abundance for the genera Roseburia, Blautia, Butyricoccus and
Faecalibacterium in PD while Methanobrevibacter, Akkermansia, Lactobacillus,
Bifidobacterium and Hungatella, are typically enriched® '3. Similar changes in idiopathic REM
sleep behavior disorder (iRBD), a prodromal stage of PD'%, have been reported’-!°. Moreover,
the taxa decreased in PD are known producers of short-chain fatty acids (SCFAs), which
correspondingly have also been found to be decreased in concentration in fecal samples of PD

individuals®!>16,

In addition to SCFAs, several microbiome-derived metabolites such as bile acids (BAs),

1718 or stool!*2!.

glycine and glutamate have been associated with PD, either in plasma, serum
BAs are produced by the host and metabolized by the gut microbiome into secondary bile acids
with different cytotoxic capacities but also immunomodulatory capacities’>?*. Glutamate is the
major excitatory neurotransmitter and exerts toxic activity on neuronal cells®*. Its levels in

d25,26

serum and cerebrospinal fluid have been reported as either increase , not different?’, or

decreased?®, but decreased in the gut in PD compared to healthy controls (HC)?.

Altogether, alterations of the gut microbiome are linked to PD, but less is known about iRBD

or other prodromal stages of the disease. Moreover, most of the associations between PD and
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the gut microbiome are based on taxonomic and metabolomic analyses. The resulting data,
although insightful, lacks functional and systemic information that could better capture the
complex crosstalk between the gut microbiome and the host in the context of PD. To obtain
such information, we performed an integrated multi-omics study on a cross-sectional cohort
comprised of individuals with iRBD and PD alongside HC. Metagenomics (MGQG),
metatranscriptomics (MT), metaproteomics (MP) and meta-metabolomics (MM) were used to
characterize taxonomic (taxMG, taxMT, taxMP) and functional (funMG, funMT, funMP, MM)
differences between HC, iRBD and PD gut microbiomes. We identified substantial differences
in gut microbiome functions and metabolites between the groups, including an increase in -
glutamate levels in PD that were related to a dysregulation of glutamate-related gene
expression. Alterations in glutamate-related genes were linked with chemotaxis and flagellar
assembly pathways, for which we identified strong and distinct taxonomic differences in
transcription between PD and HC. Collectively, our data highlight the importance of multi-
omics approaches for the identification of microbiome-mediated effects on neurological, and

more broadly, complex human diseases involving host-microbiome interactions.
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Results

Study cohort.

Our initial set of subjects consisted of 50 individuals with PD, diagnosed according to United
Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) clinical diagnostic criteria®,
and 30 people with polysomnography-confirmed iRBD as well as 50 healthy control (HC)
subjects. The data from 4 PD and 3 iRBD as well as 1 HC were subsequently excluded (see
Methods), leading to a final data set of 46 PD, 27 iRBD and 49 HCs. The subjects in the three
groups were of similar age but had slightly different gender distributions, with males
overrepresented in the iRBD and PD groups (Table 1, Fisher test, p = 0.004), as is typical for
these conditions®!*2. Constipation, a prevalent non-motor symptom of PD*3, was also more

common in the iRBD and PD groups compared to HC (Fisher test, p < 0.001).

Microbiome function is altered in PD.

Alpha diversity comparisons revealed no statistically significant differences between the three
groups when considering taxMG, taxMT, funMG, taxMP and MM (Fig. 2A, Wilcoxon test, p
> 0.05). However, funMT and funMP showed a statistically significant increase in alpha
diversity in PD compared to HC and iRBD compared to PD, respectively (Fig. 2A, Wilcoxon
test, p <0.05). We then analyzed beta diversity for all omics layers. TaxMG, funMG and taxMP
revealed no statistically significant differences between the three groups (Extended fig. 1 A, B
and D, PERMANOVA, p= 0.2, 0.8 and 0.35, respectively), while taxMT, funMT, funMP and
MM showed a statistically significant separation of the groups, especially for funMT (Fig. 2B
and C, Extended fig. 1 C, PERMANOVA p=0.001, 0.001, 0.005 and p = 0.008, respectively).
Permutation analysis revealed that funMT, funMP and MM resulted in the best separation of

the three groups while taxMG, funMG and taxMP exhibited the lowest separation capacity
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(Extended fig. 1D, PERMANOVA R? of 0.043, 0.041, 0.038, 0.018, 0.014 and 0.017,
respectively). Pairwise comparisons using PERMANOVA demonstrated that most differences
were found between either HC and PD or HC and iRBD, with only funMP and funMT showing
statistically significant differences between PD and iRBD (Fig. 2E). Based on these
differences, we next assessed how the confounding factors sex, age and constipation may
impact beta diversity. Sex and constipation were found to have a significant association with
beta diversity for taxMT and funMT, while age was associated with taxMG (Fig. 2F).

Importantly, MM and funMP were not found to be associated with any confounders (Fig. 2F).

We next looked at differential abundances on taxonomic layers to highlight the compositional
differences between the groups. No significant differences were found in taxMG at the genus
and species levels between any of the three groups (Fig. 2G and Extended fig. 2C, q > 0.05,
SIAMCAT). For taxMT, SIAMCAT highlighted an increase in Alistipes obesi and
Ruthenibacterium lactatiformans in iRBD vs HC, Roseburia incertae sedis, Blautia
massiliensis, B. obeum and Clostridium sp. were decreased in PD vs HC and no significant
differences were found between PD and iRBD (Fig. 2G, q < 0.05, q < 0.05 and q > 0.05,
respectively). We identified the genus Eubacterium as being decreased in PD compared to HC
in taxMT (Extended fig. 2C, q < 0.05, SIAMCAT). The ALDEXx2 algorithm highlighted only

Roseburia incertae sedis to be depleted in PD after FDR correction (Extended fig. 2B).

Subsequently, we investigated overall differences in gene abundances and expressions of the
microbial genes linked to the observed differences in metabolites using the KEGG database.
We observed no statistically significant differences in gene abundances between HC vs PD or
HC vs iRBD (funMG, Extended fig. 4A and B, q > 0.05). Gene expression highlighted one
transcript upregulated in HC vs iRBD, but 145 transcripts downregulated in HC vs PD (funMT,

Extended fig. 4C and D, q < 0.05 and q > 0.05, respectively). No genes or transcripts were
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significantly higher in iRBD or PD compared to HC (Extended fig. 4A-D, q > 0.05). Finally,
we found no statistically significant differences in gene or transcript abundances between PD

and iIRBD (data not shown).

Altered metabolome of PD patients is linked to microbial abundance and
activity.

Considering that MM is associated with PD and iRBD but not with confounders, we chose MM
as a robust guide for further statistical comparisons. In addition, MM can be considered as one
of the final outputs of microbial activity and an important driver of microbial effects on the
host. For this purpose, we removed unidentified compounds from the statistical testing, because
we cannot associate microbial genes with them. Our analyses revealed 11 statistically
significantly different compounds between the groups, including alanine, B-glutamate, serine,
and glycerol (Fig. 3A, q <0.05). We found a significant increase in isovalerate, isobutyrate and
valerate in PD patients (Fig. 3A, q < 0.05) but no differences for butyrate, acetate, formate,
propionate or total SCFAs (data not shown). Primary bile acids glycocholic and
chenodeoxycholic acids were decreased in PD and in iRBD and PD, respectively (Fig. 3A, q <
0.05). Glutamate was not differentially abundant between the three groups (data not shown).
To unravel the effect of confounding factors, we measured the variance explained by each
factor on the compounds’ abundances. Diagnosis explained more variance than constipation or
sex (Fig. 3B, diagnosis: mean= 4.18% ; median = 3.33%, sex: mean = 2.08%, median = 1.3%
; constipation: mean = 3.7%, median = 2.68%). We found only malic acid as being
significantly associated with sex and no compound to be associated with constipation
(Extended fig. 3A and B, q <0.05, g > 0.05). Based on the PERMANOVA results and variance
analysis, the differences observed in MM were most strongly associated with the disease status

and, importantly, not with the confounding factors.
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We next checked correlations between metabolite abundances and microbial abundances
alongside activities. Metabolite abundances were linked to microbial abundances for taxMG
and taxMT. TaxMG exhibited fewer significant correlations with the abundances of
metabolites compared to taxMT, except for the genera Akkermansia and Methanobrevibacter,
which showed the same associations to metabolites in taxMT (Extended fig. 3B, Spearman test,
q < 0.001). Additional correlations seen in taxMT included positive correlations with f-
glutamate, isovalerate, and isobutyrate with Akkermansia and Clostridium alongside
Methanobrevibacter, and negative correlations with Faecalibacterium (Fig. 3C, Spearman test,
q < 0.05). In addition, Roseburia and Eubacterium were positively correlated with glycerol
(Fig. 3C, Spearman test, q < 0.05). Interestingly, Akkermansia, Clostridium and
Methanobrevibacter were positively correlated with compounds increased in PD while
Roseburia, Faecalibacterium and Eubacterium were negatively correlated, highlighting groups

of bacteria being linked with either individuals with PD and iRBD or HC (Fig. 3C).

Expression of genes linked to glutamate and flagella is dysregulated in the

PD gut microbiome, but not in iRBD.

To reinforce the results of the differential analysis, we acquired all the orthologs related to the
metabolites which were statistically significant between the three groups. More specifically,
we used regular expression matching to retrieve all orthologous genes that are linked to the
above-mentioned metabolites in KEGG. Because the KEGG database only has one metabolite
entry annotated as -glutamate, we selected all glutamate-related genes instead (linked to both
L- and D-glutamate). We found no statistically significant differences in gene abundances after
correction between any of the three groups (funMG, Fig. 3D and Extended fig. 3D, q > 0.05,
Wilcoxon test). However, we did find a decrease in transcripts in PD for the three known

glutamate synthase genes (funMT, GLT1:K00264, GLU:K00284 and gltB:K00265, Fig. 3D,
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Wilcoxon test, ¢ = 0.004, g = 0.004 and p = 0.006, respectively) alongside a decrease in cheB
in PD (K03412, protein-glutamate methylesterase/glutaminase, Fig. 3D, q < 0.01, Wilcoxon
test). Furthermore, we found an increase in cofE, mainly found in Archaea and involved in
methanogenesis (K12234, coenzyme F420-0:L-glutamate ligase, q < 0.05, Wilcoxon test). In
addition, we found a decrease in BA-related transcripts in PD while transcripts related to serine
and isovalerate were increased in PD (Fig. 3D, q < 0.05). HC vs iRBD comparisons revealed
significant differences in alanine-related transcripts but not for the other metabolites (Extended
fig. 3D, q <0.05). B-glutamate abundance was negatively correlated with the transcripts of the
three glutamate synthases and carbamoyl-phosphate synthases, but positively correlated with
methyl aspartate mutase, methylamine-glutamate N-methyltransferase and glutaminase

(Extended fig. 5C, Spearman correlation test, q < 0.01).

Since cheB is part of the chemotaxis gene family, we further inspected the chemotaxis and
flagellar assembly pathways (two pathways with overlap in orthologs) to assess the microbial
capacity for motility. We found no statistically significant differences in gene abundances
(funMG) for either flagellar assembly or chemotaxis pathways between the three different
groups (data not shown, q > 0.05). In contrast however, based on funMT, the chemotaxis
pathway (14/26 transcripts downregulated, 0/26 transcripts up-regulated, Fig. 3E, q <0.05) and
the flagellar assembly pathway (30/46 transcripts downregulated, 1/46 transcripts up-regulated
in PD, Fig. 3E, q <0.05) were strongly downregulated in PD but not in iRBD vs HC (data not
shown). Moreover, eight transcripts showed a decrease in alpha diversity for chemotaxis and
flagellin assembly pathways (Fig. 3E, p < 0.01). Finally, we observed a decrease in alpha
diversity for GLU, flagellar assembly transcripts (fliJ, fliQ and fliC) and cheD in PD compared
to the other groups (Fig. 3F, q < 0.05, Dunn test) while dItD and aaaT were elevated in iRBD

(Fig. 3F, Dunn test, p < 0.05).
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Flagellin and chemotaxis are differentially expressed depending on

taxonomy and disease status.

We next assessed the taxa expressing flagellar assembly and chemotaxis pathway genes.
Interestingly, flagella and chemotaxis genes were expressed differentially according to disease
and taxonomy. More specifically, we identified different clusters of taxa expressing flagella
and chemotaxis genes. The first cluster was composed of microbes expressing these genes
principally in PD, including Ruminiclostridium, Enterocloster, Dysosmobacter and Butyvibrio.
A second cluster was composed of microbes expressing these genes principally in HC,
including Roseburia, Agathobacter and Eubacterium (Fig. 4). Strikingly, we found that the
third cluster is composed of taxa expressing flagellin or chemotaxis genes only in PD, including
Escherichia, Cellulosilyticum, Citrobacter or Eisenbergiella; a fourth cluster was composed
only of taxa expressing in HC including Flavonifractor, Succinivibrio, Eisenbergiella or CAG-
603 (Fig. 4). We subsequently investigated the expression levels of genes of the extracellular
parts of flagella in the cluster wherein Roseburia and most Lachnospiraceae were located
(Cluster 2). Overall, we found a decrease in flagellin (fliC), filament cap (fliD, f1iS) and hook-
filament junction genes (flgK, flgl) in PD for Roseburia, CAG-115 and Agathobacter

(Extended fig. 6, p < 0.05, Wilcoxon test).

Metabolites and metabolites-related genes associated with PD are central to

microbiome metabolism.

To quantify the importance of glutamate derivatives and related genes in microbial metabolism,
we next reconstructed microbiome-wide metabolic networks as previously described* . We
mapped genes related to the compounds identified earlier as significantly different between the
different groups. The metabolic network highlighted glutamate-related genes as compact and

placed in the middle of the network while glycerol was more scattered across the network (Fig.
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5A). Strikingly, glutamate-related genes formed a subnetwork central to the overall network
with a betweenness centrality measure (BC) of 93.0 compared to 0.0009 for the whole
community (Fig. 5B). Crucially, L-glutamate was the most central non-cofactor metabolite in
the network and 2-oxoglutarate (L-glutamate derivative) was the second most central
metabolite (Fig. 5C). Considering this, it is apparent that glutamate and glutamate-related genes
are central to microbiome metabolism and that modifications in the levels of these metabolites

or transcripts reflect profound modifications of microbial metabolism.

Multi-Omics Factor Analysis validates p-glutamate and flagella links with

PD.

To validate our findings, we used an unsupervised method with the Multi-Omics Factor
Analysis (MOFA). The resulting MOFA model included 10 factors (F1-10 hereafter) whereby
F1 showed a strong association with disease status (p < 0.05, ANOVA, Fig. 6A). A complete
description of the MOFA model is provided in the Extended information. We found that F1
mainly explained the variance of funMT, taxMT, and MM (17.6%, 9.6%, and 5.7%,
respectively, Extended fig. 6A-B) and showed separation of HC and PD, but not iRBD versus
other groups (p < 0.05, ANOVA, Fig. 6B). Specifically, the microbiome of PD was
characterized by the joint increase in abundance of M. smithii, archaeal proteins and genes
(based on MP and MG data), A. muciniphila (based on taxMT data), 3-glutamate, isovalerate,
isobutyrate, hexadecanoic, and hyocholic acids, whereas the abundance of R. hominis (taxMG
data), flagellin (funMT), GCA and glycerol were decreased in PD (Fig. 6C). Overall, the
MOFA results are strongly consistent with the per omic layer analysis and validate these

findings.
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Discussion

Here we investigate the links between the gut microbiome and PD using an integrated multi-
omics approach based on standardized sample collection and extraction. We include
individuals with iRBD as a prodrome of PD to compare early and later stages of the disease
but do not find statistically significant differences between iRBD and PD, especially in
comparison to the more pronounced differences found between HC and PD. Previous studies
have shown differences in the different early stages of PD, but these studies were performed
using 16S rRNA gene amplicon data’!®. In contrast to the amplicon-based results, no
differentiation between iRBD and PD are found using metagenomic data®. More specifically,
and contrary to previous findings’ including our own work’, we do not find significant
differences between HC and PD individuals in the metagenome with respect to alpha or beta
diversity. However, we show differences in transcriptional activity for Roseburia, Blautia and
Eubacterium which are known to be decreased in PD>%81, Moreover, we find several genera,
including Akkermansia, Methanobrevibacter and Clostridium, correlating positively with the
abundance of compounds increased in PD such as -glutamate, isovalerate or isobutyrate, while
other genera are inversely correlated with these compounds (Faecalibacterium, Blautia,
Eubacterium and Roseburia). Collectively, these findings are in line with findings associating

those genera with PD>%813,

We identify metabolites that are associated with PD, amongst which BAs, alanine, serine and
B-glutamate highlighted linked differences in gene expression. The BA chenodeoxycholic acid
(CDCA) is decreased in PD and iRBD whereas glycocholic acid (GCA) is decreased only in
iRBD. We also detect a decrease in transcripts related to BA in PD but not iRBD. BAs have a

2223

wide spectrum of effects on the immune system?>?*, metabolism>>, hormones>® and also on the

CNS?’. GCA has been found to be increased in the CNS of PD and associated with disease
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duration®’, stressing the importance of analyzing BAs in PD and prodromal stages of PD. In
contrast with previous studies®!>, we do not find a decrease in butyrate, propionate, acetate or
overall levels of SCFAs. However, we find an increase in isovalerate, isobutyrate and valerate
as described previously'>. Previous studies have highlighted the correlation of fecal
concentrations of isobutyrate and isovalerate with PD severity® and concentrations of valerate
with disease duration®. There currently is an apparent lack of knowledge regarding isobutyrate
or isovalerate with respect to host-microbiome interactions and very few related genes
annotated in the KEGG database hindering interpretations concerning potential links between

these metabolites and PD.

B-glutamate and glutamate-related genes are of particular interest in the context of PD because
of the reported toxic effects of L-glutamate on neurons®* and because of its association with
microbial activity. In addition, glutamate levels have been reported to be increased in PD
individuals’ blood sera!”!8. B-glutamate has strikingly only one reaction described in the
KEGG database, in contrast, L-glutamate has 213 reactions and 54 pathways, while D-
glutamate has 12 reactions and 2 pathways. We find that glutamate and glutamate-related genes
are central to microbial metabolism, which underpins the notion that the highlighted differences
reflect a pronounced impact on gut microbiome function. Of note, glutamate likely has local
effects on enteric neurons with subsequent influences on the CNS*’. Although we show
significant differences in B-glutamate and glutamate-related genes in the stool of PD patients,
we detect no significant differences in the glutamate levels (both enantiomers) between the
three groups. We highlight significant differences in B-glutamate for which we currently cannot
evaluate the effects on the ENS and CNS. Overall, based on our results, microbiome-driven
glutamate metabolism and its impact on the glutamatergic system must be comprehensively

studied in the future to disentangle its link with PD.
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Glutamate-related genes are further involved in chemotaxis and flagellar assembly pathways,
highlighting a modification of the latter genes’ expression with a majority being decreased in
PD individuals but not in iRBD. A decrease in flagellar assembly gene abundances has been
previously reported in a metagenomic analyses of PD°. We do not see significant differences
in the linked gene abundances, but their expression levels are significantly different,
highlighting altered regulation of transcription in PD compared to HC. Flagellar assembly and
chemotaxis genes are also differentially expressed by specific microbes; the genera Escherichia
and Cellulosilyticum for instance are expressing flagellar assembly genes only in the context

of PD without being statistically differentially abundant.

Flagellin is a known immunogenic molecule, a potent pro-inflammatory compound in

#1743 and is thus targeted by secretory IgA*. However, flagellin in commensals,

pathogens
especially in the Lachnospiraceae family, has been shown to be either ‘silently recognised’*’
or elicit anti-inflammatory effects***®. Amongst the Lachnospiraceae family, the genus
Roseburia shows a decrease in the transcription of flagellin in the gut microbiome of PD. This
in turn may be linked to immune system dysregulation and exert indirect effect on the CNS,
particularly in microglia as shown in a previous study using a murine model of PD*. Previous
studies have shown an increased inflammatory state in PD, with increased pro-inflammatory
circulating immune cells®, cytokines®!, and activated microglia®?. In addition, microglia may
be activated by a-synuclein via NLRP3 following TLR2 (lipopolysaccharide (LPS) sensing)
and TLRS (flagellin sensing) activation®. Therefore, the activation or inhibition of TLRs by
distinct flagellins may modulate microglia activation by competing with a-synuclein and affect
PD progression. Bacterial antigens such as flagellin are usually regarded as inflammatory
agents that elicit a strong immune response. Our findings, which reveal elevated expression of

flagellin in HC, suggest the need for a re-evaluation of the impact of common antigens on the

immune system. The gut microbiome produces a wide range of immune-modulating
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compounds, the impact of which must be re-evaluated through detailed in vivo and ex vivo

studies.

Overall, our work clearly highlights the importance of studying microbiome functions rather
than restricting microbiome analyses to taxonomic structure. Specifically, the combination of
MT and MM provides clear insight into the activity of specific microbial taxa in relation to
disease. In our present work, MT reveals that disease association is not solely determined by
gene expression levels; the diversity of microbes capable of expressing a specific function and
the specific taxa expressing those functions are also of immediate interest and relevance. The
future of microbiome research might lie in understanding how we can modulate, re-activate or
shut down specific microbial functions in vivo in order to improve knowledge and later improve

or functionally tailor microbiome interventions.
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Methods

Patient cohorts and sampling

All subjects from both cohorts provided informed written consent, and the sample analysis was
approved by the Comité National d’Ethique de Recherche of Luxembourg (reference no.:

140174 ND).

Kassel Cohort

The DeNoPa cohort represents a prospective, biannual follow-up study of (initially de novo)
Parkinson’s disease (PD) patients at the Paracelsus-Elena Klinik, Kassel, Germany. Fecal
samples from PD patients (46) and healthy controls (29) were collected during the 4-year
follow-up visit for the cohort. Details on inclusion and exclusion criteria and ancillary

investigations have been published previously®*>

. Subjects with idiopathic rapid-eye-
movement sleep behaviour disorder (iRBD, 13) were recruited at the same clinic, diagnosed
according to consensus criteria of the International RBD study group®® using video-assisted
polysomnography, and were included only if they showed no signs of a neurodegenerative
disorder. DeNoPa subjects were required to have a 4-week antibiotic free interval before fecal
sample collection. As additional control subjects, we collected fecal samples from (20)
neurologically healthy subjects living in the same household as the DeNoPa participants.
Samples of de novo PD patients from a cross-sectional cohort at the same clinic were included
if subjects were recently diagnosed, drug-naive and met United Kingdom Parkinson’s Disease
Society Brain Bank (UKPDSBB) clinical diagnostic criteria®®. All subjects except household
HC were interviewed and examined by an expert in movement disorders. The study conformed
to the Declaration of Helsinki and was approved by the ethics committee of the Physician’s

Board Hessen, Germany (FF 89/2008). The DeNoPa trial is registered at the German Register
for Clinical trials (DRKS00000540).
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Marburg Cohort

We also added samples from 14 patients with polysomnography-confirmed iRBD which were
recruited from the outpatient clinic of the Department of Neurology, Philipps-University,
Marburg, Germany, between November 2015 and November 2016. iRBD was diagnosed
according to the guidelines of the American Academy of Sleep Medicine (AASM ICSD-3)*’.
A detailed medical history was recorded, and a complete neurological examination performed
to verify the subjects’ suitability. Inclusion criteria were age above 18 years, no dopamimetic
therapy, and no diagnosis of PD, MSA, DLB or PSP. Exclusion criteria were smoking,
antibiotic therapy in the last 24 months, history of other neurological diseases or disorders of
the gastrointestinal tract. Non-motor and autonomic symptoms were evaluated with the
SCOPA-AUT®® and PD-NMS* questionnaires. Motor function was evaluated with the
UPDRS®. Additionally, patients were asked to complete the RBD-Sleep questionnaire®!. The
study conformed to the Declaration of Helsinki and was approved by the ethics committee of

the Medical Faculty of the Philipps-University, Marburg, Germany (46/14).

Fecal sample collection

Fecal samples were collected at the clinics via a stool specimen collector (MedAuxil) and
collection tubes (Sarstedt), as previously described’. Samples were immediately flash-frozen

on dry ice after collection. Samples were subsequently stored at —80 °C and shipped on dry ice.

Sample exclusions

The initial set of samples consisted of 50 PD, 30 iRBD and 50 healthy control subjects (HC).
Three PD and two iRBD cases were subsequently excluded for clinical reasons (adjusted
diagnosis), one iRBD and one PD subject for logistical reasons, and one control due to a
combination of microbiome-altering medications (metformin, antidepressants, statins, and
proton pump inhibitors). Additional samples were excluded due to missing values
(metabolomics) or a low amount of identified analytes (metaproteomics), leading to the final

numbers of samples summarized below:
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- Metagenomics (MG) & metatranscriptomics (MT): 49 HC, 27 iRBD, 46 PD
- Metaproteomics (MP): 42 HC, 22 iRBD, 40 PD

- Meta-metabolomics: 49 HC, 27 iRBD, 41 PD

Metagenomic and metatranscriptomic sequencing

Extractions from fecal samples were performed according to a previously published protocol®?,
conducted on a customized robotic system (Tecan Freedom EVO 200). After extraction, DNA
and RNA were purified prior the sequencing analysis by using the following commercial kits
respectively:  Zymo DNA  Clean&Concentrator-5 (D4014) and Zymo RNA
Clean&Concentrator-5 (R1014). RNA quality was assessed and quantified with an Agilent
2100 Bioanalyser (Agilent Technologies) and the Agilent RNA 6000 Nano kit, and genomic
DNA and RNA fractions with a NanoDrop Spectrophotometer 1000 (Thermo Scientific) as
well as commercial kits from Qubit (Qubit ds DNA BR Assay kit, Q32850; Qubit RNA BR
Assay kit, Q10210). All DNA samples were subjected to random shotgun sequencing.
Following DNA isolation, 200-300 ng of DNA was sheared using a Bioruptor NGS
(Diagenode) with 30s ON and 30s OFF for 20 cycles. Sequencing libraries were prepared using
the TruSeq Nano DNA library preparation kit (Illumina) following the manufacturer’s
protocol, with 350 bp average insert size. For MT, 1 pg of isolated RNA was rRNA-depleted
using the RiboZero kit (Illumina, MRZB12424). Library preparation was performed using the
TruSeq Stranded mRNA library preparation kit (Illumina) following the manufacturer’s
protocol, apart from omitting the initial steps for mRNA pull down. MG and MT analyses, the
qualities of the libraries were checked using a Bioanalyzer (Agilent) and quantified using Qubit
(Invitrogen). Libraries were sequenced on an Illumina NextSeq500 instrument with 2x150 bp

read length.

Metaproteomics

20 pL protein extract were processed using the paramagnetic bead approach with SP3
carboxylate coated beads®***. Briefly, the protein samples were reduced with 2uL 25 mM DTT

in 20 mM ammonium bicarbonate (Sigma-Aldrich) for 1 h at 60°C. Subsequently, 4 uL. 100
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mM iodoacetamide (Merck) in 20 mM ammonium bicarbonate was added and incubated for
30 min at 37°C in the dark. Next, 5 uL of 10% formic acid was added as well as 70 uL. 100%
acetonitrile (ACN) to reach a final organic content higher than 50% (v/v). 2 uL. SP3 beads per
sample were washed with water three times with subsequent addition of the sample. After
protein binding to the beads, the supernatant was discarded. The beads were washed twice with
200 pL 70% (v/v) ethanol, and once with 200 pL ACN. The protein lysates were proteolytically
cleaved using trypsin (1:50) over night at 37 °C. Since trypsin is added in aqueous solution to
the samples, the proteins are not bound to the beads during enzymatic cleavage. ACN was
added to each sample to reach a final organic content higher than 95% (v/v). After peptide
binding to the beads, the samples were washed with pure ACN on the magnetic rack. Finally,
the peptides were eluted in two steps. First, with 200 uL. 87% ACN (v/v) containing 10 mM
ammonium formate (pH 10), and next with two times adding 50 pL. water containing 2 % (v/v)
DMSO and combination of the two aqueous supernatants. Thus, two fractions of peptides were
generated, which were evaporated and re-dissolved in water containing 0.1 % formic acid (20
pL) and analyzed on a Q Exactive HF instrument (Thermo Fisher Scientific) equipped with a
TriVersa NanoMate source (Advion) in LC chip coupling mode. Peptide lysates were injected
on a trapping column (Acclaim PepMap 100 C18, 3 um, nanoViper, 75 um x 2 cm, Thermo
Fisher Scientific) with 5 uL/min by using 98% water/2% ACN 0.5% trifluoroacetic acid, and
separated on an analytical column (Acclaim PepMap 100 C18, 3 pm, nanoViper, 75 um x 25
cm, Thermo Fisher Scientific) with a flow rate of 300 nL/min. Mobile phase was 0.1% formic
acid in water (A) and 80 % ACN/0.08 % formic acid in water (B). Full MS spectra (350-1,550
m/z) were acquired in the Orbitrap at a resolution of 120,000 with automatic gain control (AGC)

target value of 3x10° ions.
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Meta-metabolomics

Untargeted GC-MS as well as targeted measurements (SCFA GC-MS/MS and bile acids LC-
MS/MS) from fecal samples were performed according to a previously published protocol®.
All GC-MS chromatograms were processed using MetaboliteDetector, v3.220190704% while
LC-MS chromatogram were acquired with Thermo Xcalibur software (version 4.1.31.9) and
analyzed with TaceFinder (Version 4.1). Compounds were initially annotated by retention time
and mass spectrum using an in-house mass spectral library. Internal standards were added at
the same concentration to every medium sample to correct for uncontrolled sample losses and
analyte degradation during metabolite extraction. The data was normalized by using the

response ratio of the integrated peak area of the analyte and the integrated peak area of the

internal standard.

Bioinformatics and statistical analysis

Sequencing data processing and analysis

For all samples, MG and MT sequencing data were processed and hybrid-assembled using the

Integrated Meta-omic Pipeline (IMP)®’ (https://git-r3lab.uni.lu/IMP/imp3, commit

8c1bd6fa443d064511909c9eede20703f45e6c69). It includes steps for the trimming and quality
filtering of the reads, the filtering of rRNA from the MT data, and the removal of human reads
after mapping against the human genome (hg38). Pre-processed MG and MT reads were
assembled using the IMP-based iterative hybrid-assembly pipeline using MEGAHIT®® 1.0.3.
After assembly, the prediction and annotation of structural features such as open-reading
frames (ORFs) was performed using a modified version of Prokka® and followed by functional
annotation of those using Mantis’. Structural features were quantified on MG and MT level
using featureCounts’!. Taxonomic annotation of reads and contigs was performed using
Kraken2’? with a GTDB release207 database

(http:/ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release207/kraken2) and a 0.5 confidence
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threshold. Additionally, taxon abundances were estimated using mOTUs 2.5.17%. The mOTU
abundances were used to generate abundance matrices for each taxonomic rank (phylum, class,
order, family, genus and species) by summing up taxon marker read counts at the respective

levels.

Metaproteomics prediction and annotation

For each sample, the predicted proteins were concatenated with a cRAP database of
contaminants and the human UniProtKB Reference Proteome prior to the MP search. In
addition, reversed sequences of all protein entries were added to the databases for the

17* as search

estimation of false discovery rates. The search was performed using Sipros vl.
engine with the following parameters: trypsin was used as the digestion enzyme and a
maximum of two missed cleavages was allowed. The tolerance levels for matching to the
database were 1 Da for MS1 and 0.01 Da for MS2. Peptides with large errors for parent ions
were later filtered out by setting the Filter Mass Tolerance Parent Ion parameter to 0.05 Da.
Carbamidomethylation of cysteine residues was set as a fixed modification and oxidation of
methionines was allowed as a variable modification. Peptides with length between 7 and 60
amino acids, with a charge state composed between +2 and +4 and a maximum missed
cleavages of 3 were considered for identification. The results from all identifications were

filtered by Sipros using at least one unique peptide per protein and peptide false discovery rate

(FDR) was dynamically set to achieve a 1% of protein FDR.

Data analysis was performed on all samples with at least 2000 proteins identified. A summary
matrix of all selected samples consisting of the KO annotations from the integrated MG and
MT analysis and the spectral count from the MP identification was then generated and used for

statistical analysis.
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Dimensionality reduction and ordination

Beta diversity for MG and MT was assessed using the Bray-Curtis dissimilarity and subjected
to a Non-Metric MultiDimensionnal Scaling (NMDS) for both the taxonomic and functional
levels, using the metaMDS() function from the vegan package (2.6.2). Principal Component
Analysis (PCA) was performed for MP and MM using the rda() function in the vegan package
(2.6.4). PERMANOVA was used to assess statistical differences between groups using the

Bray-Curtis dissimilarity and conducted in the vegan R package with the adonis2() function.

Differential abundance analysis and correlations

Differential abundance was done in two different approaches. The first approach consisted in
using SIAMCAT”® and ALDEx27® algorithm to find all the taxa and genes differentially
expressed between groups without prior assumption. We used two different algorithms to have
a sensitive algorithm (SIAMCAT, less prone to have false negative) and a more conservative
one (ALDEx2, less prone to have false positive). The second approach consisted in using the
MM significant compounds to drive the analysis on the functional level for MG and MT.
Therefore, differential abundance tests and multiple correlation tests were conducted with a
classical approach. We used Mann-Whitney or Kruskal-Wallis followed by a Dunn test
(depending on the number of groups) and Spearman correlation tests. We applied FDR
correction using the Benjamini & Hochberg method”’. We depicted both FDR corrected as g-
values and non-FDR corrected p-values to represent most of the differences found in our

datasets. All statistical tests were done using the rstatix package (0.7.2).

Variance analysis

Variance analysis was used to assess the importance of each clinical factor on MM. To verify
the covariance of factors and to assess which factors explained the most variance in our

datasets, we computed the total variance for each clinical factor (removing the NAs for each
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factor) and the variance explained by each group within a clinical factor. Explained variance

1-variance.group

was calculated as follows: var. explained = , .
variance.total

Microbiome-wide metabolic network analysis

The microbiome-wide metabolic network analysis was conducted by establishing an
association between KEGG KOs and corresponding ChEBI IDs. The networks were visualized
utilizing the NetworkX package (release 3.3)’%. In this network, the nodes were represented by
KEGG KOs, while the edges were denoted by the corresponding metabolites (either products
or reactants)**. The analysis was restricted to genes that were present in a minimum of 50% of
the samples. To construct metabolite-specific networks, we used KEGG KOs which have either
a reactant or product in KEGG. Glutamate-, thymine-, glycerol-, serine-, alanine- and
glucuronate-specific subnetworks were composed of 146, 9, 66, 43, 70, 18 genes, respectively.

The network topology metric ‘Betweenness centrality’ was used to underscore the importance

of a metabolite in microbiome-wide metabolism>*.

Integrated multi-omics analysis using MOFA2

Integrative analysis for the seven omics layers was conducted with the Multi-Omics Factor
Analysis (MOFA) 2 R package (version 1.10.0)°. Before the analysis, data were preprocessed
as follows: (I) funMG, funMT, funMP, taxMG, taxMT, and taxMP data were filtered based on
the number of non-zero features, a feature was kept if it was present in at least in 25% of
samples in each group (PD, HC, iRBD) or at least in 75% in any of the groups; (II) funMG,
funMT, taxMG, and taxMT count data were separately residualized in a linear model to remove
variance explained by differences in sequencing depth; (III) funMP and taxMP data were
residualized by the sum of protein counts per sample and information on the number of high-
quality proteins recovered per sample; (IV) regression residuals were cubic-root transformed

to account for heteroscedasticity; (V) MM data were transformed using a centered log-ratio
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transformation. Each dataset was then additionally filtered to retain the features with the largest
variance for the subsequent analysis. For funMG and funMT, we included features with
variances equal to or larger than 90% feature variance for a dataset, for the other datasets we
included features with variance equal to or larger than the median feature variance for a given
dataset. In the results, the feature size for omics layers was as follows: 759 for funMG, 657 for
funMT, 410 for funMP, 109 for taxMG, 71 for taxMT, 115 for taxMP, and 34 for MM. MOFA
analysis was run on scaled omics data with fifteen initial factors. All factors that explained less
than 2% of the variance were excluded from the model. The remaining factors were tested for
differential abundance between the groups studied using the linear regression followed by

ANOVA type II controlling the participants’ sex, age, and recruitment cohort.
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Data availability

The datasets generated by this study are available in the following repositories: metagenomic
and metatranscriptomic data at the NCBI BioProject collection with the ID PRINA782492

(http://www.ncbi.nlm.nih.gov/bioproject/782492), metaproteomic data at the Proteomics

Identifications (PRIDE) database with accession number  PXDO031457

(https://www.ebi.ac.uk/pride/archive/projects/PXD031457), and metabolomic data at

MetaboLights with ID MTBLS5092 (https://www.ebi.ac.uk/metabolights/ MTBLS5092). Due

to privacy restrictions, clinical and demographic data are available on request from the

corresponding author.

Code availability

The IMP pipeline, which was used for analysis of metagenomic and metatranscriptomic data,

is available at https://gitlab.lcsb.uni.lu/IMP/imp3. The R and python code used for statistical

analyses and visualizations is available at https://gitlab.lcsb.uni.lu/ESB/[TBA].
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Figure 1. Schematic representation of the analytical workflow. Metagenomic (MG), metatranscriptomic (MT),
metaproteomic (MP) and meta-metabolomic (MM) data were generated for each sample. Pre-processed MG and MT reads
were sample-wise assembled using the iterative hybrid assembly pipeline of the Integrated Meta-omics Pipeline (IMP).
After assembly, taxonomic annotation was performed at the read and contig levels, followed by gene prediction and
functional annotation on the assembled contigs. Expressed proteins (MP) were identified using the predicted genes from
the MG/MT hybrid assembly. For these three omics levels, we generated taxonomic and functional profiles that are
referred to as taxMG, taxMT and taxMP for the taxonomic level, and funMG, funMT and funMP for the functional level,
respectively. Community-based networks were reconstructed from gene annotations. Finally, the meta-metabolome (MM)
was integrated with the other omics data at the network level. The integrated multi-omics analysis was performed with the
available clinical metadata.
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Figure 2. Microbiome structure is altered in PD and iRBD vs HC. A. Shannon index for different omics between
Healthy Controls (HC), idiopathic REM sleep behaviour disorder (iRBD) and Parkinson’s Disease (PD). P-values are based
on pairwise Mann-Whitney tests. Non-metric Multidimensional Scaling (NMDS) based on Bray-Curtis dissimilarity for
taxonomic annotation of metatranscriptomic (taxMT) (B) and functional metatranscriptomic (funMT) data (C). D. Principal
Component Analysis (PCA) for meta-metabolomic (MM) data based on untargeted, targeted SCFA and targeted bile acids
abundance. All three quantifications have been sum-normalised before any merging. PCA was then computed on the merged
matrix. All tests are based on PERMANOVA with 1000 permutations. E. Pairwise PERMANOVA between groups for each

omics. F. PERMANOVA analysis for “Age”

, “Sex” and “Constipation” for each omics. Size of rectangle is based on —

log10(p-value) and colour on R? value. G. Differential abundance analysis using SIAMCAT for taxMG and taxMT. Values
are pseudo fold changes for pairwise comparison between groups and size is based on —log10(p-value). Shape is based on
significance before and after FDR correction.
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Figure 3 Altered metabolome is linked with microbial activity and transcripts. A. Metabolite relative abundances for
significant compounds. Metabolomic data from untargeted meta-metabolomics, targeted SCFA and targeted bile acids were
combined after normalization by sum for each. Dunn test, FDR corrected. B. Variance for each metabolite associated to the
clinical factors “Diagnosis”, “Sex” and “Constipation”. C. Spearman correlation between taxMT at the genus level with
significant metabolites. All p-values are FDR corrected. Genera are selected based on differential abundance or relevance in
the literature. D. Absolute log2 fold change between HC and PD for funMG and funMT associated to significant
compounds. Dots are scaled by the —log10(p-value), colorized and shaped according to p-value significance before (triangle
shape) and after FDR correction (round shape). E. Chemotaxis and flagellin assembly pathway genes expression and
Shannon index fold change between HC and PD group. Dots are colorized and shaped according to p-value significance
before (triangle shape) and after FDR correction (round shape). Wilcoxon test, FDR corrected. F. Shannon index for
significantly different expressed genes found in pairwise differential analysis in Fig. 2D and Extended fig. 2A. Shannon
index was calculated for each KO for funMG and funMT. Only genes significantly different after FDR correction on a

Kruskal-Wallis test are plotted. P-values are calculated using Dunn post hoc test.
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Figure 5. Metabolic network of whole community interactions. A. Metabolic network of whole community interactions,
with KEGG KOs represented as nodes and associated metabolites as edges. Node sizes reflect MT/MG ratio of normalized
read counts for each KO. Highlighted is the overlap between glutamate-, thymine-, glycerol-, serine-, alanine- and
glucuronate-associated subnetworks mapped on the whole community network. B. Betweenness Centrality calculated for the
key metabolites highlighted in the whole-community network based on genes as nodes. C. The network was inverted to
calculate Betweenness centrality for metabolites, here metabolites are nodes and genes are edges.
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Figure 6 MOFA analysis validates the findings of per omics layer analyses. A. Associations of MOFA factors with the
diagnosis and confounders, the colour of rectangles represents partial R? values, significant associations (FDR-adjusted p-
value < 0.05) marked with an asterisk. B. Abundance of the Factor 1 in studied groups. C. Min-max scaled weights of top
10 features per omics layer contributing to Factor 1. The sign of the weight indicates the direction of the effect, the
abundance of features with positive weights is positively associated with the Factor 1 level, and the abundance of features
with negative weights is negatively associated with the Factor 1 level.
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Extended figure 1. Beta diversity analysis of remaining omics. NMDS analysis of A. metagenomic taxonomic
composition, B. metagenomic functions and C. meta-proteomic taxonomic composition, using a Bray-Curtis dissimilarity
matrix. D. PCA analysis of metaproteomic functions. E. PERMANOVA analysis for the three groups and all omics. Colour
represents R? values and size is —log10(p-value). All PERMANOVA analysis were run using 1000 permutations using a

Bray-Curtis dissimilarity matrix.
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Extended figure 2. A. Differential abundance analysis at the genus level using SIAMCAT algorithm. B. Differential
abundance analysis using ALDEx?2 algorithm at the species level. Values are pseudo fold changes for HC/PD and size
is based on —logl0(p-value). Shape is referring to level of significance, triangular shape for p-value significance
before and round shape for p-values < 0.05 after FDR correction.
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Extended figure 3. A. Percentage of variance explained for each metabolite for “Sex” and “Diagnosis”. B. Percentage of
variance explained for each metabolite for “Constipation” and “Diagnosis”. Metabolites are including untargeted meta-
metabolomics, targeted SCFA and targeted bile acids, normalized by sum before merging and variance quantification. C.
Spearman correlation between metabolites and taxMG. P-values are FDR corrected. D. Absolute log2 fold change
between HC and iRBD for funMG and funMT associated to significant compounds. Dots are scaled by the —logl10(p-
value), colorized and shaped according to p-value significance before (triangle shape) and after FDR correction (round

shape).
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Extended figure 4. A to D. ALDEx2 differential abundance analysis on funMG for HC vs PD (A.) and HC vs iRBD
(B.); funMT for HC vs PD (C.) and HC vs iRBD (D.). All genes and transcripts are colorized and shaped according to
p-value significance before (triangle shape) and after FDR correction (round shape) E. Spearman correlation between
beta-glutamate relative abundance and funMG-funMT KEGG orthologs related to glutamate species. Only genes with at
least one significant correlation are plotted. All p-values are FDR corrected.
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Extended figure 5. Flagellar assembly transcripts encoding for extracellular component of the flagella for
the genus present in Cluster 2. All tests are Wilcoxon tests.
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Extended figure 6. Multiomics variance explained by MOFA factors. A. Variance explained by the MOFA factors

across different omics layers, total. B. Variance explained by the MOFA factors across different omics layers, splitted
by factors.
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Table 1

Variable! Ctrl iRBD PD p-value?
n 49 27 46

Sex (f/ m) 26/23 4/23 19/27 0.004
Constipation 26/3/20 13/14/0 21/22/3 <0.001
Smoking 28/1/20 12/1/14 34/2/10 0.821
Diabetes 24 /5/20 25/2/0 43/3/0 0.328
Metformin medication 27/2/20 25/2/0 42/2/2 0.878
Antidepressant medication 26/3/20 23/4/0 43 /1/2 0.115
Statin medication 27/2/20 22/5/0 39/5/2 0.416
PPl medication 27/2/20 13/1/13 37/7/2 0.534
Levodopa medication 13/1/13 12/32/2 <0.001
Agonist medication 13/1/13 18/26/2 <0.001
Entacapone medication 27/0/0 39/5/2 0.056
Age at sampling (years) 68.1 £ 6.15 65.96 + 7.83 65.8 +9.85 0.327
Disease duration (months) 76.37 £ 56.3 63.46 +42.52 0.271
PD-NMS sum 4,52 £3.05 8.31+3.53 7.83 £3.65 <0.001
UPDRS I-1ll sum 3.31+4.26 6.08 £4.94 31.47 £17 <0.001
Scopa-AUT sum 8.76 £6.35 10.17 £4.91 13.09 £ 6.21 0.018
Sniffin Sticks Identification 12.03 £2.03 7.19 £3.88 6.67 £ 3.88 <0.001
Hoehn and Yahr stage 00 00 2.01+0.77 <0.001

"For categorical variables other than sex, values given as “no / yes / not available”; for
continuous variables, values given as mean  standard deviation.

2 Categorical variables: Fisher's exact test (missing data excluded); continuous
variables: one-way ANOVA.

Ctrl = control subject, PD = Parkinson's disease patient, iRBD = patient with idiopathic
REM sleep behaviour disorder, PPl = proton pump inhibitor, PD-NMS = Non-Motor
Symptoms questionnaire, UPDRS = Unified Parkinson’s Disease Rating Scale, Scopa-
AUT = Scales for Outcomes in Parkinson’s Disease - Autonomic Dysfunction.
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Extended information

Multi-omics data overview

Using our previously developed methodological framework®*®, we performed a systematic
multi-omic analysis of DNA, RNA, protein, and metabolite fractions isolated from flash-frozen
fecal samples. We used MG, MT, MP and MM data to find biomarkers associated with the PD
phenotype (Fig. 1). We generated a mean of 7.5 (std 1.7) Gbps and 7.5 (std 1.4) Gbps of
sequencing data for MG and MT, respectively. After trimming and filtering, we retained a
mean of 6.8 (std 1.7) Gbps and 3.2 (std 1.3) Gbps for MG and MT, respectively. The mean
assembly size was 0.4 (std 0.1) Gbps, with on average 5.9x10° (std 1.7x10°) genes predicted.
Finally, protein databases contained a mean of 7.2x10° (std 1.8x10°) proteins, an average of
4.1x10* (std 0.6x10*) MS spectra per sample were acquired, and a mean of 3.4x10° (std

1.7x10°) proteins were identified.

MOFA model description

MOFA is an unsupervised machine learning approach for the integration of multi-omics data
sets’. It allows for the identification of highly informative features across multiple omics. It
has previously been used in the study of the gut microbiome in several diseases, giving critical
insights into the link between the gut microbiome, health, and disease®' 3. The biggest
proportion of variance was explained by funMG and funMT, followed by the taxMT and
funMP datasets (Extended fig. Aa). F1-2 incorporated most of the variance related to the
funMT and taxMT, whereas funMG and taxMG variance was predominantly covered by F3-
F5 (Extended fig. 8B). The funMP variance was explained mostly by F6, and MM variance
was explained by F1 and F6. MOFA factors were tested in a linear model followed by ANOVA

with disease status, as well as confounders including patients’ sex, age, and recruitment cohort.
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802  Among the MOFA factors, F1 showed an association with the disease status, whereas F4 and

803  F9 were associated with patients’ sex and recruitment cohort, respectively (Fig. 4A).
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Overview of the study

In our study, titled "Microbiome Expression Network is Dysregulated in Parkinson’s Disease
Individuals," we aimed to further elucidate the connections between the gut microbiome and
PD. Traditional bioinformatics and biostatistical methods often fall short in capturing the
complexity of microbiome-host interactions. To address this limitation, we employed
Weighted Gene Co-expression Network Analysis to investigate microbial co-expression
patterns in individuals with PD. This approach revealed dysregulation in microbial networks,
offering novel insights into how microbial factors contribute to the pathogenesis of this
neurodegenerative disorder. By using co-expression networks, our study identifies key
regulatory mechanisms in PD, uncovering altered biological processes beyond mere

differential gene expression.

The human gut microbiome consists of a diverse array of microbial genes that play crucial
roles in maintaining host health. In this study, we constructed a signed co-expression
network of the gut microbiome from both HC and PD individuals using WGCNA. This
network included 4,789 genes from an initial set of 11,876, based on the ratio between
metatranscriptomic and metagenomic reads. We identified 17 modules, 4 of which were
significantly associated with HC and 5 with PD. We hypothesize that the 8 modules not
associated with disease status represent stable, core functions critical for preserving

microbial network integrity in both health and disease.

Following the identification of gene modules, we conducted an in-depth analysis of the co-
expression network's topological properties. We calculated key metrics such as centrality
measures (degree, betweenness, and eigenvector centrality) and the clustering coefficient
for each module to assess their structural roles within the network. Additionally, microbial
diversity within each module was measured using the Shannon index to explore the
relationship between gene co-expression and taxonomic diversity. Although no significant
differences in overall network topology were observed between modules associated with
HC, PD, or unassociated modules, some unassociated modules exhibited higher centrality
and clustering values despite their smaller size. Notably, the diversity of taxa expression
within a module was positively correlated with connectivity and size but negatively
correlated with betweenness and eigenvector centrality. These findings reveal complex
interactions between microbial diversity and network centrality, offering new insights into

the gut microbiome's structural and functional organization in both health and disease.
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We also performed gene set enrichment analysis to investigate the pathway composition of
the modules. Although relatively few significantly enriched pathways were identified — since
approximately 43% of gene orthologs within modules were not annotated to any KEGG
pathway — some notable enrichments were observed. Specifically, modules associated with
HC showed significant enrichment for flagellar assembly and secondary bile acid
biosynthesis, while a module unassociated with either HC or disease exhibited significant
enrichment for biofilm formation. Although not statistically significant after correction, we
also observed enrichment in pathways related to glycerolipid metabolism, peptidoglycan
biosynthesis, lipoic acid metabolism, and valine degradation in modules associated with
PD.

We identified and analyzed hub genes within the network, defining them as the top 100
most connected genes. Most of these hub genes were found in HC and non-associated
modules, with many involved in energy production (oxidative phosphorylation,
glycolysis/gluconeogenesis) and transporter activity (ABC transporters). From the
perspective of functional redundancy, we observed no differences between HC and PD
individuals but, we observed greater overall diversity in gene diversity for genes within HC
associated modules. Genes were categorized into those with increased expression linked
to higher bacterial diversity and those associated with lower diversity. Notably, genes
involved in flagellar assembly were significantly upregulated in HC and associated with
higher microbial diversity. In contrast, 37% of genes significantly upregulated in PD
exhibited reduced diversity, compared to 22% in HC. This trend was more pronounced
among hub genes, with 75% of hub genes upregulated in PD showing decreased diversity.
In this paper, we emphasize the role of flagellar assembly genes as hub genes within the
microbial network, underscoring the significance of this pathway for the gut microbiome.
Additionally, we discovered a notable association between genes involved in bacterial
microcompartment (BMC) formation — an essential mechanism for detoxification and energy

production in microbes, — modules associated with HC and flagellar assembly.

In conclusion, this study used WGCNA to investigate the gut microbiome's role in PD. Gene
modules associated with HC showed greater functional diversity and significant enrichment
in flagellar assembly and secondary bile acid biosynthesis, whereas biofilm formation was
enriched in modules unassociated with disease status. In contrast, genes upregulated in
PD exhibited reduced microbial diversity, particularly among hub genes, where 75% showed
decreased diversity. The enrichment and upregulation of flagellar assembly genes, and their
association with higher microbial diversity in HC and bacterial microcompartment-

associated genes, align with findings from our previous study, "Integrated Multi-Omics
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Highlights Alterations of Gut Microbiome Functions in Prodromal and Idiopathic PD.". This
dysregulation of microbial co-expression patterns suggests altered biological processes in
PD, which may contribute to disease pathogenesis. The upregulation of citrate lyase genes
in PD indicates a possible link to intestinal inflammation. Although not statistically significant
after correction, pathways related to glycerolipid metabolism, peptidoglycan biosynthesis,
lipoic acid metabolism, and valine degradation were observed in PD modules, highlighting
potential metabolic changes. These findings suggest that modulating microbial functions
could be a promising therapeutic approach to address inflammation and slow disease

progression in PD.
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Abstract

In this work, we employed WGCNA on data from an integrated multi-omics study involving a
cross-sectional cohort of PD patients and healthy controls (HC). Our integrated multi-omics
analysis, incorporating metagenomics (MG) and metatranscriptomics (MT), allowed us to
identify significant shifts in gene co-expression patterns associated with PD. Key findings
include the observation that the PD-linked gene network exhibits decreased gene diversity
compared to HC. In contrast, HC gene modules were more central, highly connected, and
enriched in functions such as flagellar assembly and secondary bile acid biosynthesis.
Furthermore, hub gene analysis revealed that most hub genes, which play crucial roles in
microbiome network stability, belonged to the HC-linked network, and particularly were
involved in processes related to microcompartment assembly and flagellin. We found that
genera including Blautia and Anaerobutyricum were the main contributors to
microcompartment assembly genes significantly decreased in PD. Interestingly, PD-
associated gene expression was linked to reduced alpha-diversity, suggesting that increased
gene expression in PD corresponds to a less diverse microbial ecosystem. Conversely, in
HC, higher expression was associated with greater diversity. These findings reinforce the
concept of microbial dysbiosis in PD and reveal a disruption of gut metabolic function at both
functional and taxonomic levels, potentially contributing to the progression of the disease.
Crucially, our work highlights critical microbiome-wide taxonomic and functional gene
expression network features which would need to be restored in future rewilding efforts

directed at the gut microbiome in PD.
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Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder, primarily
caused by the loss of dopaminergic neurons and the formation of Lewy bodies in the brain.
PD is characterized by both motor and non-motor symptoms, with non-motor symptoms such
as dysphagia, constipation, and bloating being linked to the gastrointestinal tract. Notably,
idiopathic constipation, a common symptom of PD, often precedes motor symptoms by over
a decade (Fasano et al., 2015), supporting the hypothesis that the disease can originate in
the gut (Braak et al., 2003). Intestinal dysbiosis has been documented in PD (Cryan et al.,
2020; Keshavarzian et al., 2015), and evidence suggests that the gut might initiate or worsen
the development of PD (Bhattarai et al., 2021; Hirayama & Ohno, 2021; Qian et al., 2018).
These changes in gut microbiota composition can compromise gut permeability and the
integrity of the intestinal barrier, affecting gastrointestinal epithelial cells, the immune system,
and the enteric nervous system (Stolfi et al., 2022; Weiss & Hennet, 2017a). Moreover, a
dysbiotic gut is characterized by decreased microbial richness and diversity (Weiss &
Hennet, 2017b). In the last decade, multiple studies have found evidence for dysbiosis in the
gut microbiome of individuals with PD characterized by shifts in bacterial and archaeal taxa
including Methanobrevibacter, Akkermansia and Roseburia (Boertien et al., 2019; Romano et
al., 2021; Toh et al., 2022). In addition, we recently showed a decrease in flagellar assembly
and chemotaxis transcripts, along with differences in the metabolome in PD gut microbiome

(Villette et al., 2024, submitted).

Traditional bioinformatic and biostatistics methods frequently fall short of capturing the full
complexity of microbiome-host interactions. Indeed, differential expression analysis or multi-
variate approaches doesn’t capture the importance of functions within a complex ecosystem
such as the gut microbiome. Disease-associated phenotypes are believed to result from
disruptions across the entire network rather than from single, isolated gene mutations

(Barabasi et al., 2010). Gene co-expression networks have been widely used to discover
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functional gene clusters and pathways associated with various disease phenotypes (Cai et
al,, 2023; Meng & Mei, 2019). Therefore, we explored the relationship between the
microbiome gene abundance normalized gene expression and the host through a network-
based approach. This effort aimed to inspect how molecular interactions within the gene
network are dysregulated, providing a deeper understanding of the complex phenotypes
associated with diseases such as PD. Weighted Gene Co-Expression Network Analysis (D
module generally consists of genes that are involved in similar functional processes (Galan-
Vasquez & Perez-Rueda, 2019). Centrality analysis is a powerful tool for identifying
significant elements within a network, particularly in biological networks (Brandes & Erlebach,
2005; Koschitzki & Schreiber, 2008). While various centrality metrics are available to
characterize networks, it is advised to consider multiple measures to gain a comprehensive
understanding of biological networks (Koschutzki & Schreiber, 2004; Wuchty & Stadler,
2003). Such an approach ensures a more nuanced and accurate exploration of the network’s

key players.

In this work, we employ WGCNA based on the ratio of MT to MG reads for individuals with
PD and HC. We found modules associated with both disease groups. Amongst the modules,
we find significant enrichment in flagellar assembly and secondary bile acid biosynthesis
pathways. In addition, we find that most of the identified hub genes belong to HC associated
modules and especially in module M2. Interestingly, within this module we identify genes
involved in bacterial microcompartment formation and catabolism, most of these genes had
decreased expression in individuals with PD especially in the context of commensals such as
Blautia obeum and Anaerobutyricum hallii. Finally, we show that the majority of genes with
increased expression in individuals with PD is associated with a decrease in gene diversity,

especially for hub genes. This highlights another side of microbiome dysbiosis.
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Results

Microbial co-expression network is linked with disease
status.

We constructed a network representation of the gut microbiome including samples from both
HC (n=49) and PD individuals (n=46) using WGCNA (Langfelder and Horvath, 2008). From
an original set of 11 876 microbial genes, we inferred a signed co-expression network of 4
789 genes after WGCNA trimming and processing. For the multi-omics co-expression
analysis, we used abundance-normalized gene expression using the ratio of MT and MG
transcripts per million (Figure 1) (Roume et al., 2015). The co-expression network revealed
17 modules, four significantly associated with HC (M13, M2, M11 and M17, p < 0.05), five
significantly associated with PD (M3, M6, M7, M8 and M15, p < 0.05) and eight neither

significantly associated with HC nor PD (Figure 2A).

We next looked at topological features of the network and calculated the diversity of genes
found within each module using the Shannon index, coined module diversity. Modules M2
and M4 showed the highest mean connectivity, highest intramodular connectivity and highest
module diversity despite their large size (Figure 2B and Supplemental fig. 1). M1 had the
lowest clustering coefficient, degree centrality, eigenvector centrality and closeness
centrality, which led us to believe that M1 was a module with only genes not clustering with
the rest of the modules (Figure 2B and Supplemental fig. 1). M6 exhibited high values of
betweenness and eigenvector centrality but low connectivity (Figure 2B and Supplemental
fig. 1A). When analysing the modules based on the trait association, we found no statistically
significant differences in topological measures but important variation between modules,
irrespective of trait association (Kruskal and Wallis test, p > 0.05, Figure 2B and
Supplemental fig. 1A). However, M1 being a clear outlier for clustering coefficient degree and

closeness centrality, we removed it to re-compare modules based on trait association and
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found a significantly higher degree and closeness centrality (Kruskal and Wallis, p = 0.023
and p = 0.013, data not shown). Finally, we noticed the correlation between module diversity
and the different topology metrics such as sum of connectivity and intramodular connectivity
(R> > 0.8, p < 0.001, Figure 2C) while eigenvector and betweenness centrality were
anticorrelated with module diversity (R < -0.8, p < 0.001, Figure 2C). Overall, we found
interesting anti-correlation between connectivity measures and closeness/betweenness
centrality while clustering coefficient was correlated to degree/eigenvector centrality

(Supplemental fig. 1C).
Modules associated with HC showed enrichment in
flagellar assembly and secondary bile acid biosynthesis.

We next proceeded with gene set enrichment analysis (GSEA) to obtain insights into the
pathway composition of the modules. Based on KEGG KO annotations, we found that on
average 43.7% (min: 26%, max: 59%, Figure 3A) of genes within modules did not belong to
any KEGG pathway. Modules comprised on average 28.5 different pathways ranging from 10
(M6) to 42 pathways (M1) (Supplemental fig. 2). We identified an enrichment in flagellar
assembly in M13 and secondary bile acid biosynthesis in M11 for modules associated with
HC, an enrichment in biofilm formation for M16 (no association) and no statistically significant
enrichment in PD-associated modules (Figure 3, q < 0.05, q < 0.05 and q > 0.05,
respectively, GSEA). Although not statistically significant after correction, we noticed
enrichments in the following transformation within modules associated with PD: glycerolipid
metabolism (M3), peptidoglycan biosynthesis (M15), lipoic acid metabolism and valine
degradation (M7) (Figure 3B, p < 0.01). We also noticed the presence of beta-lactam
resistance genes (oppA, oppB, oppC, oppD and oppF) and quorum sensing genes in PD-
associated module M6 (Supplemental fig. 1). In addition, methane metabolism genes were

present in the PD-associated modules M6 and M8 (Supplemental fig. 1).
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Hub genes are restricted to HC-associated modules

We next defined hub genes to appreciate the key functions of the microbial co-expression
network. We first selected the top 100 genes with highest connectivity from all modules
associated with HC and PD, excluding genes from modules not associated with either of the
groups. Out of the 100 genes, 95 were from HC-associated modules and 5 with PD
associated modules (Figure 4A). To access more genes from PD-associated modules, we
selected 10% of the top connected genes from each modules retrieving 125 for HC and 108
for PD (Figure 4A). For the top 100 genes most genes belonged to module M2 (85%) the rest
belonging to M13 and M3 (Figure 4B). Hub genes associated with HC were mainly involved
in energy production (oxydative phosphorylation, glycolysis/gluconeogenesis), transporter
activity (ABC transporters), nucleotide metabolism (pyrimidine and purine metabolism),
saccharide metabolism (pentose and glucuronate interconversions, starch and sucrose
metabolism) and microbial motility (flagellar assembly and two-component system) (Figure
4C). With the 10% per module approach, we noticed the presence of two glutamate
synthases (GLT1 and g/tB) in the module M11 labelled as members of the alanine, aspartate

and glutamate metabolism (Figure 4C).

Amongst the hub genes, we found a significant increase in their expression in HC including
flagellar assembly (figB, fliQ, fliS, flgE, fliK, flgL, fliD, fliP, p < 0.05, Figure 4D). We also found
a significant increased expression for citrate lyase genes in individuals with PD (citD, citC
and citF, p < 0.05, q > 0.05, Figure 4D). We noticed that members of bacterial
microcompartments (BMCs) catabolism and metabolism (eut and pdu operons) genes were
significantly increased in HC (eutM, pduE, eutK, q < 0.05, DeSeq2, Figure 4D and E). These
genes are known to form BMCs in the cytoplasm, and we further investigated the taxa
responsible for these differential expressions. We firstly noticed the disparity in orthologs
annotation between the pdu and eut operons, these annotations were dependent on the
taxonomy, with most of shell proteins annotated as members of the eut operon, while

catabolism/anabolism genes were annotated as members of the pdu operon. We manually

7
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grouped the genes according to their described functions in the literature (Supplemental
table 1). Interestingly, the two genera expressing the most ethanolamine and
propanediol/propionaldehyde genes were Blautia and Anaerobutyricum. Resolving the gene
expression at the species level revealed a significant decrease in expression for these genes
in PD, including in Blautia obeum, Blautia massiliensis, CAG-41 spp. and Anaerobutyricum
hallii (p < 0.05, Wilcoxon test, Figure 4G and H). Of note, this decrease was also observed at
the genus level (data not shown). Interestingly, we found an increase in Flavonifractor plautii
expression of BMCs genes encoding for BMC-H and pduQ in PD (Figure 4G and H, p < 0.05,

Wilcoxon test).
Bacterial microcompartment genes are correlated with

flagellar expression.

We next wanted to investigate the links between bacterial microcompartments (BMCs) genes
and the flagellar expression. In this manner, we tested the correlation between these genes
using both normalized expression and MT TPM. In addition, we also tested the correlations
for all the genes from all taxa or selected taxa based that were of particular interest (see
material and methods for details). We found strong correlations between levels of BMCs
gene expression and flagella assembly genes (Figure 5A and Supplemental fig. 3A-B).
Indeed, we noticed significant correlations for 223 and 1 tests when using normalized
expression (Figure 5A, p < 0.05, g < 0.05, respectively); 635 and 370 tests when using MT
toms (Figure 5A, p < 0.05, q < 0.05, respectively). In addition, correlations using only
expression from selected taxa resulted in even more significant correlations both for
normalized expression (Figure 5A, 500 genes with p < 0.05, 94 genes with q < 0.05,
respectively) (Figure 5A, 569 genes with p < 0.05, 496 genes g < 0.05, respectively). Next,
we checked specifically hub genes correlations, we found significant correlations between all
the hub genes from BMCs and flagellar assembly genes both for normalized expression and

MT tpms (Figure 5 B, q < 0.05, Spearman correlation test).
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Genes enriched in Parkinson’s disease show lower gene
diversity

After noticing interesting modifications in the co-expression network and the lack of hub
genes in PD associated modules, we decided to investigate functional redundancy and the
gene expression diversity (GED) to appreciate the taxonomic differences of gene expression.
In this context, GED refers to the diversity of taxa expressing a specific gene, while functional
redundancy denotes the measure of taxonomic and functional diversity present within a
sample (Tian et al., 2020). The following analyses will differentiate between genes found in
module association to either one of the conditions (trait association, Figure 5A-C) and genes
with differential expression showing an increase or decrease in PD (Figure 5D-F). We did not
observe a difference in functional redundancy between HC and PD individuals (Figure 5A, p
> 0.05, Wilcoxon test). Interestingly, we found no significant differences for overall GED for
non-Hub genes but a significantly lower GED for hub genes in PD (Figure 5B, Wilcoxon test,
p > 0.05 and p < 0.01, respectively). We also noticed hub genes had higher GED than non-
hub genes (Figure 5C, Wilcoxon test, p < 0.001). We then compared the differential
expression and functional diversity of a given gene. We found that gene expression was
linked to either an increase of GED (more microbes expressing a given gene) or a loss of

GED (less microbes expressing a given gene) (Figure 5D and E).

We were able to categorize genes into two groups: those with increased expression linked to
a higher GED, and those with increased expression linked to a lower GED. We finally looked
at the proportion of genes within the two above-mentioned categories. We found that a
significantly higher proportion of genes with decrease GED in PD compared to HC for both
hub genes and non-hub genes that had significantly different expression (p = 0.016 and p =
0.002, Fisher exact test and Chi square test, respectively, Figure 5F). Noteworthy, we
noticed the same link for genes (hub and non-hub) that had were not significantly different in

expression (Figure 5F). Interestingly, hub genes with significant increased expression in PD



217  had a higher ratio of decreased GED than non-hub genes (57% and 43%, respectively,

218  Figure 5F).
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Discussion

Previously, we demonstrated significant differences in the gut microbiome of individuals with
PD (Villette et al., 2024, submitted). In the present study, we employed a network approach
to assess the microbiome-wide impacts of these changes. Our goal was to uncover key
differences in microbial metabolism between PD individuals and HC. We identified strong
associations between co-expression network modules and disease status, with four modules
linked to HC and five to PD. Additionally, we found eight modules that were not associated
with either HC or PD. Except for module M1, that was mainly a module with genes not
clustering with other genes, we found higher values of degree and closeness centrality for
these modules compared to the trait associated modules. Given their overall high centrality
and the lack of trait association, these modules may represent stable, core functions that

uphold the integrity of microbial networks in both health and disease.

Hub genes are important to highlight key functions associated with PD (Calabrese et al.,
2012; Farber, 2010; Horvath et al., 2006; Langfelder et al., 2013; Torkamani & Schork, 2009;
Zhang & Horvath, 2005). Therefore, identifying hub genes is a highly effective strategy for
uncovering genes that contribute to complex diseases such as PD. Using this approach we
first decided to select the top 100 connected genes from modules associated with either HC
or PD, which led to 95% of the genes being associated with HC. To get more insight on the
PD most connected genes we selected the top 10% most connected genes per module. With
this approach we uncovered citrate lyase genes being increased in PD, however, we did not
manage to link these genes to other functions or to resolve the taxonomic expression of
these genes. To our knowledge, there is no record of citrate lyase genes being associated
with disease in humans. Interestingly, 13 genes from the flagellar assembly pathway are hub
genes when using the top 10% approach and 9 when using the top 100 connected approach,
showing once more the importance of this pathway in the microbial network, especially in the

context of PD. Finally, the high number of hub genes from HC-associated modules is
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noteworthy, as it indicates that there is an imbalance in the expression of key functions in the
gut microbiome of PD. Hub genes attributed to the HC associated modules are sought to be

key regulators of the microbial network.

Focusing on M2, a module associated with HC, comprises the most connected genes and
especially genes from pdu and eut operons, two operons forming bacterial
microcompartments. These operons are responsible for ethanolamine and 1,2-propanediol-
utilization, an important energy source for bacteria and are typically associated with the
survival of specific pathogenic bacteria (Ravcheev & Thiele, 2014; Tsoy et al., 2009), as they
confer a growth advantage by utilizing abundantly present 1,2-propanediol and ethanolamine
(EA) (Dank et al., 2021; Vance, 2018). However, it has been recently described that a wide
range of commensals are also expressing these genes (Asija et al., 2021; Jallet et al., 2024;
Q. Li et al.,, 2024; Reichardt et al., 2014). We find that the expression of these genes is
decreased in PD compared to HC, especially in genera such as Blautia and Anaerobutyricum
but increased in Flavonifractor plautii, a bacterium that we previously highlighted as
associated to PD (Villette et al., 2024, submitted). Indeed, F. plautii and Flavonifractor genus,
showed increased expression of flagellar assembly in PD. Interestingly, we found strong
correlations between the expression of BMCs genes and flagellar assembly genes.
Additionally, exposure to EA enhances L. brevis’s cellular aggregation and adhesion,
potentially improving its probiotic efficacy via the prevention of pathogen attachment. Also,
non-pathogenic E. coli isolates were also described to use EA as energy source to enhance
growth, modulate gene expression, and outgrow pathogenic E.coli strains (Moreira de
Gouveia et al., 2023; Rowley et al., 2018). So, our finding of loss of eut and pdu expression
in genera such Blautia and Anaerobutyricum, suggest that these commensals might be
losing access to the nutrients necessary to express these genes and therefore decrease their

expression of flagella.

We demonstrate a decreased gene expression diversity in genes associated to PD but no

differences in overall functional redundancy. Nonetheless, we show here that most of genes
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overexpressed in PD are linked with a decrease in the diversity of taxa expressing these
functions. Interestingly, this was even more present in genes that we defined as hub genes
(using the second approach), headlining the loss of keystone genes expression in PD. In HC
associated genes, we noticed an opposite relationship, increased expression was linked with
increased gene expression diversity. We here show that the gut microbiome dysbiosis is
indeed linked with a disruption of keystone functions in PD but also a disruption of diversity of
functionality. We couldn’t measure resilience and stability of PD gut microbiome, these
measures being time dependent, but we strongly suppose that a general loss of gene
expression diversity will result or is secondary to a decreased resilience and stability as

hypothesized before (Ilves & Carpenter, 2007; Loreau & Behera, 1999).
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Material and methods

Patient cohorts and sampling

Kassel Cohort

The DeNoPa cohort represents a prospective, biannual follow-up study of (initially de novo)
Parkinson’s disease (PD) patients at the Paracelsus-Elena Klinik, Kassel, Germany. Fecal
samples from PD patients (46) and healthy controls (29) were collected during the 4-year
follow-up visit for the cohort. Details on inclusion and exclusion criteria and ancillary
investigations have been published previously (Mollenhauer et al., 2013, 2016). Subjects
with idiopathic rapid-eye-movement sleep behavior disorder (iRBD, 13) were recruited at the
same clinic, diagnosed according to consensus criteria of the International RBD study group
(Schenck et al., 2013) using video-assisted polysomnography, and were included only if they
showed no signs of a neurodegenerative disorder. DeNoPa subjects were required to have a
4-week antibiotic free interval before fecal sample collection. As additional control subjects,
we collected fecal samples from (20) neurologically healthy subjects living in the same
household as the DeNoPa participants. Samples of de novo PD patients from a cross-
sectional cohort at the same clinic were included if subjects were recently diagnosed, drug-
naive and met United Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) clinical
diagnostic criteria (Hughes et al., 1992). All subjects except household HC were interviewed
and examined by an expert in movement disorders. The study conformed to the Declaration
of Helsinki and was approved by the ethics committee of the Physician’s Board Hessen,
Germany (FF 89/2008). The DeNoPa trial is registered at the German Register for Clinical

trials (DRKS00000540).

Marburg Cohort

We also added samples from 14 patients with polysomnography-confirmed iRBD which were
recruited from the outpatient clinic of the Department of Neurology, Philipps-University,
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Marburg, Germany, between November 2015 and November 2016. iRBD was diagnosed
according to the guidelines of the American Academy of Sleep Medicine (AASM ICSD-3)
(Sateia, 2014). A detailed medical history was recorded, and a complete neurological
examination performed to verify the subjects’ suitability. Inclusion criteria were age above 18
years, no dopamimetic therapy, and no diagnosis of PD, MSA, DLB or PSP. Exclusion
criteria were smoking, antibiotic therapy in the last 24 months, history of other neurological
diseases or disorders of the gastrointestinal tract. Non-motor and autonomic symptoms were
evaluated with the SCOPA-AUT (Visser et al., 2004) and PD-NMS (Chaudhuri et al., 2007)
questionnaires. Motor function was evaluated with the UPDRS (Fahn et al., 1987).
Additionally, patients were asked to complete the RBD-Sleep questionnaire (Stiasny-Kolster
et al., 2007). The study conformed to the Declaration of Helsinki and was approved by the
ethics committee of the Medical Faculty of the Philipps-University, Marburg, Germany

(46/14).
Consent

All subjects from both cohorts provided informed written consent, and the sample analysis
was approved by the Comité National d’Ethique de Recherche of Luxembourg (reference

no.: 140174_ND).

Fecal sample collection

Fecal samples were collected at the clinics via a stool specimen collector (MedAuxil) and
collection tubes (Sarstedt), as previously described (Heintz-Buschart et al., 2018). Samples
were immediately flash-frozen on dry ice after collection. Samples were subsequently stored

at —80 °C and shipped on dry ice.

Sample exclusions

The initial set of samples consisted of 50 PD and 50 healthy control subjects (HC). Three PD

and two iRBD cases were subsequently excluded for clinical reasons (adjusted diagnosis),
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one iRBD and one PD subject for logistical reasons, and one control due to a combination of
microbiome-altering medications (metformin, antidepressants, statins, and proton pump
inhibitors). Additional samples were excluded due to missing values (metabolomics) or a low
amount of identified analytes (metaproteomics), leading to the final numbers of samples 46

for individuals with PD and 49 for HC.

Metagenomic and metatranscriptomic sequencing

Extractions from fecal samples were performed according to a previously published protocol
(Roume et al., 2012) conducted on a customized robotic system (Tecan Freedom EVO 200).
After extraction, DNA and RNA were purified prior the sequencing analysis by using the
following commercial kits respectively: Zymo DNA Clean&Concentrator-5 (D4014) and Zymo
RNA Clean&Concentrator-5 (R1014). RNA quality was assessed and quantified with an
Agilent 2100 Bioanalyser (Agilent Technologies) and the Agilent RNA 6000 Nano kit, and
genomic DNA and RNA fractions with a NanoDrop Spectrophotometer 1000 (Thermo
Scientific) as well as commercial kits from Qubit (Qubit ds DNA BR Assay kit, Q32850; Qubit
RNA BR Assay kit, Q10210). All DNA samples were subjected to random shotgun
sequencing. Following DNA isolation, 200-300 ng of DNA was sheared using a Bioruptor
NGS (Diagenode) with 30s ON and 30s OFF for 20 cycles. Sequencing libraries were
prepared using the TruSeq Nano DNA library preparation kit (lllumina) following the
manufacturer’s protocol, with 350 bp average insert size. For MT, 1 ug of isolated RNA was
rRNA-depleted using the RiboZero kit (lllumina, MRZB12424). Library preparation was
performed using the TruSeq Stranded mRNA library preparation kit (lllumina) following the
manufacturer’s protocol, apart from omitting the initial steps for mRNA pull down. MG and
MT analyses, the qualities of the libraries were checked using a Bioanalyzer (Agilent) and
quantified using Qubit (Invitrogen). Libraries were sequenced on an lllumina NextSeq500

instrument with 2x150 bp read length
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Bioinformatics and statistical analyses

Sequencing data processing and analysis

For all samples, MG and MT sequencing data were processed and hybrid-assembled using
the Integrated Meta-omic Pipeline (IMP) (Narayanasamy et al., 2016) (https:/git-
r3lab.uni.lu/IMP/imp3, commit 8c1bd6fa443d064511909c9eede20703f45e6c69). Data

was quality trimmed, adapter sequences were removed, MT rRNA reads were removed by
mapping against SILVA 138.1 (Quast et al., 2013) and human reads were removed from MT
and MG after mapping against the human genome (hg38) and transcriptome (RefSeq 212).
Pre-processed MG and MT reads were co-assembled using the IMP-based iterative hybrid-
assembly pipeline using MEGAHIT 1.0.3 (D. Li et al., 2015). After assembly, the prediction
and annotation of genomic features such as open-reading frames (ORFs) and non-coding
genes was performed using a modified version of Prokka (Seemann, 2014) and followed by
functional annotation of those using Mantis (Queirds et al., 2021). Genomic features were
quantified on MG and MT level using featureCounts (Liao et al., 2014) from the final dff file.
Taxonomic annotation of reads and contigs was performed using Kraken2 (Wood et al.,
2019) with a GTDB release207 database
(http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release207/kraken2) and a 0.5 confidence
threshold. Additionally, taxon abundances were estimated using mOTUs 2.5.1 (Milanese et
al.,, 2019). The mOTU abundances were used to generate abundance matrices for each
taxonomic rank (phylum, class, order, family, genus and species) by summing up taxon

marker read counts at the respective levels.

Co-expression network construction

The Python package WGCNA (PyWGCNA, version 2.0.4) was used to construct a co-
expression network of genes expressed in the microbiome of PD patients and HC according
to the WGCNA procedure (Rezaie et al., 2023). As input to PyYWGCNA, we used MG-
normalized MT expression of KEGG orthologs (KO) (MT/MG ratio) in PD and HC samples
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(Roume et al., 2015). MG-normalized expression of KOs was power transformed using
PowerTransformer from Sklearn.preprocessing (https://scikit-

learn.org/stable/api/sklearn.preprocessing.html). The WGCNA function was run with the

following parameters: minimum module size minModuleSize=20, dissimilarity threshold
MEDissThres=0.18, networkType="signed’. Gene modules were identified using hierarchical

clustering and the dynamic tree-cut function.

Diversity measures

To describe module diversity, functional redundancy and gene expression diversity, we used
the Shannon index with different settings. We defined module diversity by the number and
evenness of gene expression within a module, we summed normalized MT expression for
each gene and used Shannon index from the vegan R package (2.6.6.1) (Oksanen et al.,
2016). We then defined gene diversity by the richness and evenness of taxa expressing a
given gene, also using the Shannon index. Functional redundancy was calculated using the

R package SYNCSA (1.3.4) using the function rao.diversity() (Debastiani & Pillar, 2012).
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Figure 1. Schematic overview the data analysis workflow for identifying
and analyzing co-expressed gene modules using WGCNA.

Initially, metagenomic (MG) and metatranscriptomic (MT) counts per gene were converted
into values representing the normalized gene expression MT/MG ratio. A co-expression gene
network was then constructed based on a dataset of 4879 genes derived from both PD and
HC individuals. This network revealed 17 distinct gene modules. Among these, we selected
modules significantly associated with either PD or HC. Further analyses focused on
correlations between module genes and specific metabolites, diversity analysis, hub genes
within these key modules, gene set enrichment analysis, aiming to uncover the biological

relevance of these modules in relation to the disease.
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413 Figure 2. WGCNA reveals module association with disease.

414  A. Module trait relationship heatmap with correlation and p-values for each module. Modules
415  are sorted based on the correlation value. The top panel represents the number of genes
416  belonging to each module. B. Network topology analysis for the modules grouped by trait
417  association. A Kruskal and Wallis test was conducted according to the trait association to
418 compare modules based on their associations or not to one of the two groups. C. Correlation

419  between module diversity and other topology features.
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Figure 3. KEGG pathway analysis shows enrichment in HC modules but

not in PD modules.

A. Count of genes with undescribed pathways or not belonging to any KEGG pathway. B.

Gene Set Enrichment Analysis. Dots are only significant enrichment (p < 0.05), colored by -

log10(p-value). Asterix represent significant enrichment after FDR correction (q < 0.05).
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Figure 4. Hub genes are mainly associated with HC individuals.

A. Bar plot showing the count of hub genes selected based on top 100 connected genes (left
panel) and 10 % top connected genes per module (right panel). B. Dot plot representing
counts of pathways per module for the hub genes. The size of the dots represents the
proportion of a given pathway within a module. C and D. Volcano plots of differential
expression of genes for the hub genes selected with the top 100 connected genes in the
network (C.) and top 10% connected per modules (D.), considering only modules
significantly associated to one of the groups. Dots are colorized by disease category and

shaped on the level of significance, triangular shape for p < 0.05 and round colored shape for
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g < 0.05. G and H. Boxplots representing gene normalized expression resolved at the
species level for the BMC shell proteins (G.) and BMCs catabolism/anabolism (F.). All tests

are Wilcoxon tests with p values before correction.
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441  Figure 5. Bacterial microcompartments are correlated with flagella
442  expression.

443  A. Bar plot counting the number of positive correlations before and after FDR correction for
444  normalized expression and MT tpms when taking all taxa expressing the BMCs genes and
445 flagella genes (upper panel) and relevant taxa from figure 4 (lower panel). All tests are
446  spearman correlation. B. Correlation plots including selected taxa, both for normalized
447  expression and MT tpms, considering only hub genes from the 10% per modules approach.
448 Tests are spearman correlation and all correlation are significant after FDR correction (q <

449  0.05).

450
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452  Figure 6. Gene diversity is decreased in PD individuals.

453  A. Boxplot representing functional redundancy for each sample according to disease status.
454  B. Boxplot representing gene expression diversity according to disease status. Gene
455  diversity is here defined by Shannon index of species expressing a given gene, the TPM are
456 summed at the disease status level. C. Boxplot representing gene expression diversity
457  grouped by hub genes belonging or not. Differential abundance versus differential diversity
458 for a given gene for non-Hub genes (D.) and Hub genes (E.). Y axis represents log2-fold
459  change of normalized expression and X axis the log 2-fold change of Gene diversity. Dots
460 are labelled and colored for genes with p-value < 0.05. F. Stacked bar plot representing the
461  count of genes with increase or decrease gene diversity for Hub and non-Hub genes. Genes
462  are segregated into PD or HC group according to the sign of DEG and faceted according to

463 DEG significance.

464
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Supplemental figure 1. Additional topology metrics from WGCNA.

A. Boxplots representing betweenness, closeness and eigenvector centrality. Kruskal and
Wallis test. B. Correlation between topology metrics and module diversity. All tests are

spearman correlation.
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Count of pathway per module for the hub genes. The size of the dots represents the

proportion of a given pathway within a module.
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Supplemental figure 3. Bacterial microcompartments genes correlate

with flagella assembly genes.

Heatmaps representing spearman correlation coefficients between genes involved in BMCs

formation, catabolism or anabolism and genes involved in flagellar assembly. A. Heatmap

correlation tests for selected bacteria using normalized expression. B. Heatmap correlation

tests for selected bacteria using MT tpms.
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Data availability

The datasets generated by this study are available in the following repositories:
metagenomic and metatranscriptomic data at the NCBI BioProject collection with the ID

PRJNA782492 (http://www.ncbi.nim.nih.gov/bioproject/782492), metaproteomic data at

the Proteomics Identifications (PRIDE) database with accession number PXD031457

(https://www.ebi.ac.uk/pride/archive/projects/PXD031457), and metabolomic data at

MetaboLights with ID MTBLS5092 (https://www.ebi.ac.uk/metabolights/MTBLS5092).

Due to privacy restrictions, clinical and demographic data are available on request from the

corresponding author.

Code availability

The IMP pipeline, which was used for analysis of metagenomic and metatranscriptomic data,

is available at https://gitlab.lcsb.uni.lu/IMP/imp3. The R and python code used for

statistical analyses and visualizations is available at https://gitlab.lcsb.uni.lu/ESB/[TBA].
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Overview of the study

In our study titled “Functional Prediction of Proteins from the Human Gut Archaeome”, we
undertake a comprehensive exploration of the underrepresented domain of archaea within
the human gut microbiome. By employing advanced computational and structural
methodologies, this research delineates the functional capacities of archaeal proteins,
thereby providing a nuanced understanding of their roles within the gut ecosystem. This
study addresses a critical domain in microbiome research, specifically the functional
annotation of archaeal proteins, which has remained elusive due to the limited availability

of homologous sequences in extant databases.

The human gastrointestinal tract harbors a diverse array of microbial communities, including
a significant presence of archaea. Among these, Methanobrevibacter smithii emerges as a
highly active and clinically relevant methanogenic archaeon, implicated in various
gastrointestinal disorders such as inflammatory bowel disease and obesity. Our study
presents an integrated approach to enhance the annotation of M. smithii proteins by
leveraging advanced protein structure prediction and annotation tools, including
AlphaFold2, trRosetta, ProFunc, and DeepFri.

In this research, we utilized an extensive dataset of archaeal proteins, from which a subset
was identified as exclusive to the human gut. This dataset was further analyzed alongside
bacterial proteins to discern unique archaeal proteins and archaeal-bacterial homologs. The
study’s methodology involved predicting and characterizing the functional domains and
structures of unique and homologous archaeal protein clusters associated with the human
gut and M. smithii. This approach facilitated the refinement of existing sequence similarity-

based annotations through the integration of predicted structural data.

One of the notable findings of this study was the identification of gut-specific archaeal
proteins potentially involved in defense mechanisms, virulence, adhesion, and the
degradation of toxic substances. The study also uncovered potential glycosyltransferases
that could be linked to N-linked and O-glycosylation processes. Additionally, preliminary
evidence suggested interdomain horizontal gene transfer between Clostridia species and

M. smithii, including sporulation Stage V proteins AE and AD.

The implications of these findings may broaden the understanding of archaeal biology,
particularly concerning M. smithii. The study underscores the importance of considering
both sequence and structure for accurate protein function prediction. By integrating

advanced computational tools, the research aims to provide a more comprehensive
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annotation of archaeal proteins, which is crucial for elucidating their roles in the human gut

microbiome.

Furthermore, the study highlights the evolutionary significance of archaea within the human
gut. Historically, archaea were primarily associated with extreme environments; however,
their presence and functional roles in more moderate environments, such as the human
gut, have garnered increasing attention. The ability of archaea to thrive in diverse
environments and resist various chemical stresses is partly attributed to their unique cell
envelope structures. In natural ecosystems, archaea perform distinctive biogeochemical

functions, such as methanogenesis, anaerobic methane oxidation, and ammonia oxidation.

In conclusion, the study’s integrated approach to protein annotation, combining sequence
and structure information, represents a significant contribution to the field of microbial
genomics. The findings aim to enhance the understanding of the role of M. smithii in the
human gut and pave the way for future research into the functional dynamics of archaeal
proteins. This comprehensive annotation framework can be applied to other microbial
communities, thereby contributing to a broader understanding of microbial ecology and

evolution.
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Abstract

The human gastrointestinal tract contains diverse microbial communities, including archaea. Among them, Methanobrevibacter smithii
represents a highly active and clinically relevant methanogenic archaeon, being involved in gastrointestinal disorders, such as
inflammatory bowel disease and obesity. Herein, we present an integrated approach using sequence and structure information to
improve the annotation of M. smithii proteins using advanced protein structure prediction and annotation tools, such as AlphaFold2,
trRosetta, ProFunc, and DeepFri. Of an initial set of 873 481 archaeal proteins, we found 707 754 proteins exclusively present in the human
gut. Having analysed archaeal proteins together with 87 282 994 bacterial proteins, we identified unique archaeal proteins and archaeal-
bacterial homologs. We then predicted and characterized functional domains and structures of 73 unique and homologous archaeal
protein clusters linked the human gut and M. smithii. We refined annotations based on the predicted structures, extending existing
sequence similarity-based annotations. We identified gut-specific archaeal proteins that may be involved in defense mechanisms,
virulence, adhesion, and the degradation of toxic substances. Interestingly, we identified potential glycosyltransferases that could be
associated with N-linked and O-glycosylation. Additionally, we found preliminary evidence for interdomain horizontal gene transfer
between Clostridia species and M. smithii, which includes sporulation Stage V proteins AE and AD. Our study broadens the understanding
of archaeal biology, particularly M. smithii, and highlights the importance of considering both sequence and structure for the prediction
of protein function.

Keywords: protein structure, archaea, methanogens, gut microbiome

Introduction

In 1977, Woese and Fox, and colleagues discovered the kingdom
of Archaebacteria, later renamed Archaea, revealing a new branch
in the tree of life [1-4]. The discovery of the Asgard superphy-
lum and its close relationship with the eukaryotic branch sup-
ports the notion of an archaeal origin for eukaryotes, yet ongoing
debates continue regarding whether the archaeal ancestor of
eukaryotes belongs within the Asgard superphylum or represents
a sister group to all other archaea [5, 6]. Historically, archaea
were associated with extreme environments but have since been
recognized for their general importance and prevalence [7, 8].
Their ability to thrive in extreme environments and to resist
chemicals is attributed, in part, to their unique cell envelope
structures. In nature, archaea perform distinctive biogeochemical
functions, such as methanogenesis, anaerobic methane oxidation,
and ammonia oxidation [9, 10]. By employing diverse ecological
strategies for energy production, archaea can inhabit a wide
variety of environments [11]. Archaea are also host-associated,
such as on plants, in human and animal gastrointestinal tracts
[12, 13], on human skin [14, 15], in respiratory airways [16], and in

the oral cavity [17]. Based on recent estimates, archaea comprise
up to 10% of the human gut microbiota [18].

Methanobrevibacter smithii, a ubiquitous and active methanogen
in the human gut microbiome, has remarkable clinical relevance
and is relatively well annotated [19]. It plays an important role
in the degradation of complex carbohydrates, leading to the pro-
duction of methane, which has significant physiological effects
on human physiology. Imbalances in the population of M. smithii
have been implicated as factors contributing to gastrointestinal
disorders such as inflammatory bowel disease (IBD) [20, 21] and
obesity [22-24]. Given the prevalence of M. smithii in the gut,
further research aimed at M. smithii is key to understanding
their role in disease. Archaeal proteins, including those of M.
smithii, play a crucial role in adapting to diverse environments
and showcase their unique biology. The knowledge about diverse
archaea, including novel species, in the human gut microbiome
has expanded, underscoring their significance [25]. Some host-
associated taxa, like Methanomassilicoccales, have potential benefi-
cial effects on human health [26], while others like Methanosphaera
stadtmanae have been linked to proinflammatory immune pro-
cesses [27]. Given the current interest in the role of archaea in
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human health and disease, understanding the archaeal proteome
is crucial for understanding the functional potential of archaea.

Studying archaeal proteins presents challenges both in
experimental and computational aspects. Previous research has
highlighted the potential for biotechnological applications in
various archaeal genera [28]. However, genetic toolboxes for tar-
geted genomic modifications are currently limited to mesophilic
Methanococcus and Methanosarcina genera [29]. Although alter-
native methods like mass spectrometry-based searches exist,
difficulties arise from inaccurate predictions of protein coding
sequences (CDSs) due to limited knowledge of ribosomal binding
sites and promoter consensus sequences [30]. Another unresolved
challenge lies in the isolation and cultivation of archaea
under laboratory conditions, although recent progress has been
made [31, 32]. To overcome these challenges, metagenomic
sequencing has emerged as a promising approach to study
archaea and their ecological relationships. Metagenomics has
enhanced our understanding of the archaeal branches within
the tree of life [31-33], whereby assembled sequences allow
prediction of protein CDSs and their functional characterization
in silico. However, metagenome-assembled genomes (MAGs)
face challenges in functional assignment due to incomplete
sequences and difficulties in predicting and annotating open-
reading frames (ORFs) [34, 35]. Sequence-based protein function
annotation, commonly used but limited in cases of distant
protein homologies, proves to be not particularly effective [36].
Moreover, the databases containing information about archaeal
proteins and functions are not consistently updated, creating a
2-fold challenge in the sequence-based annotation of archaeal
proteins. On one hand, Makarova et al. [37] report that archaeal
ribosomal proteins L45 and L47, experimentally identified in 2011
[38], and pre-rRNA processing and ribosome biogenesis proteins
of the NOL1/NOP2/fmu family, characterized in 1998 [39], were
not added to annotation pipelines by 2019 and were labelled as
“hypothetical.” On the other hand, sequence similarity-based
approaches fail to capture relationships between highly divergent
proteins when aligned with a known database protein [40-42].
Archaea, the least characterized domain of life, suffer from
incorrect protein annotations due to insufficient experimental
data and outdated databases [43]. Furthermore, the study by
Makarova et al. indicates that a substantial proportion of genes
within archaeal genomes (30%-80%) have not been thoroughly
characterized, leading to their classification as archaeal “dark
matter” [37]. Poorly annotated proteins limit our study of
microbial functionality and their roles in biological processes.
However, protein structure prediction represents an alternative
strategy addressing the gap in sequence-function annotation
[44]. Tt complements sequence-based approaches, particularly
when annotations are limited or conflicting across databases, by
utilizing the conservation of tertiary structure to infer functional
roles [45, 46]. Advanced computational techniques, such as
AlphaFold2 (AF) [47] and trRosetta (TR) [48], offer accurate
predictions of 3D structures, providing valuable functional
insights.

Here, we present an integrated in silico approach to enhance
protein functional characterization and improve accuracy of
protein annotations in archaeon M. smithii. Having compared
archaeal gut-specific proteins to bacterial gut proteins, we
found 73 unique and homologous archaeal protein clusters. Our
approach incorporates advanced protein structure prediction and
annotation tools, such as AlphaFold2 (AF), trRosetta (TR), ProFunc
(PF), and DeepFri (DF), into a comprehensive workflow. We predict
and characterize the functional domains and structures of 73
gut-specific archaeal protein clusters. The predicted functions

are linked to the adaptation to changing environments, survival,
and nutritional capabilities of M. smithii within the human
gut microbiome. We additionally identified sporulation-related
archaeal proteins, presumably horizontally transferred to archaea
from Clostridium species.

Materials and methods
Selection of gut-specific archaeal proteins

To select specific proteins of gut-associated archaea, we utilized
archaeal MAGs obtained from the Genomes from Earth’s Micro-
biomes (GEM) catalog [49] and the Unified Human Gastrointesti-
nal Genome (UHGG) collection [50], along with bacterial MAGs
from the UHGG collection (accessed in November 2020). Genomes
were extracted based on available metadata and filtered by tax-
onomy to specifically target archaea.

Gene prediction was performed using Prodigal (V2.6.3) [51] on
the archaeal and bacterial MAGs from the UHGG collection, while
CDSs from the GEM catalog were downloaded from the provided
source (https://portal.nersc.gov/GEM). Archaeal and bacterial pro-
teins were further separately clustered using MMseqs2 (MM2)
(v12.113e3-2) [52, 53] (Fig. 1) with the following parameters: —cov-
mode 0 -min-seq-id 0.9 -c 0.9.

To identify unique functions of gut-associated archaea, we
selected proteins specific to the human gut and encoded by
gut-associated archaea. MAGs were selected based on available
metadata indicating their sampling location. First, we included
protein clusters containing at least one protein from a MAG
sampled in the human gut. We then excluded protein clusters
that had proteins from MAGs sampled in other environments. The
final selection included protein clusters where all proteins were
encoded by MAGs sampled exclusively from the human gut.

From the selected gut-specific protein clusters, only those
with complete KEGG annotations were included. Fully annotated
archaeal and bacterial MM2 clusters were additionally clustered
together with Sourmash (v4.0.0) [54, 55]. Archaeal protein clusters
were categorized into two groups: those sharing KEGG Orthology
identifiers (KOs) with bacterial proteins (prefix h) and those with
unique KOs (prefix u) (Fig. 1).

Protein function annotation

Archaeal and bacterial proteins were annotated with KEGG
orthologs (KOs) using Mantis (1.5.4) [56] (Fig. 1). AF [47, 57]
and TR [48] were used as structure prediction tools. For each
tool, the predicted protein structure was then annotated
separately. The TR-based model was annotated using templates
with the highest identity and coverage features. TR used a
template for prediction if it met the criteria of confidence
>0.6, E-value <0.001, and coverage >0.3. The protein model
generated by AF was submitted to the PF [58] web server for
structure-based annotation. “Sequence search vs existing PDB
entries” and 3D functional template searches sections from the
PF report were used for structure-based protein annotation.
Structure matches were selected according to the reported
highest possible likelihood of being correct as follows: certain
matches (E-value < 10-6), probable matches (10-6 < E-value <0.01),
possible matches (0.01 <E-value<0.1), and long shots (0.1<E-
value < 10.0). Only certain matches were used for the functional
assignment. DeepFri [59] was used as an auxiliary tool, providing
broad and general descriptions to verify or refute suggestions
from AF and/or TR. DeepFri predictions with a certainty
score > 0.7 were considered. Our combined approach integrates
multiple methods to enhance the resolution of functional
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and bacterial sourmash clusters; (B) funnels illustrating the protein count at each stage of protein selection; MM2, MMseqgs2 clusters; SCs, sourmash

clusters.

Table 1. Relationships between PF likelihood and TR TM-scores.

PF likelihood PF E-value TR significance score TR TM-score
Certain match <107 Very high >0.7
Probable match <0.01 High >0.5
Possible match <0.1 Medium >0.4
Long shot <10 Low >0.3

annotation, particularly for challenges faced by traditional
methods.

When TR- and AF-based annotations provided consistent
results, the consensus was used as the final annotation of the
protein function. However, when the reports gave different results,
we prioritized the result with highest confidence. For instance,
when the confidence of the model predicted by TR was very high
and template matches were provided, and AF-based PF reported
a match with a lower confidence (anything but certain match),
the template hit by TR was used as the primary source for
the annotation. The relationship between PF likelihood and TR
template modeling scores (TM-scores) generated in our analysis
is shown in Table 1. Similarly, any protein with a TR template
match was considered as more reliable than an annotation
with the “long shot” likelihood. In cases where there were no
3D functional hits, TR annotation was given priority. In cases
when PF and TR provided annotations with the same level
of significance/likelihood, the protein structure with highest
coverage and identity was chosen. Here, we define coverage as
coverage feature in TR and the ratio % as in PF,
and for identity, we take identity as in TR and percentage sequence
identity as in PF.

The appropriateness of an annotation was determined based
on the extent to which the assigned function of a protein was
found to be directly relevant to archaea and supported by relevant
literature. Any other annotations were classified as incorrect. Fol-
lowing this initial step, sensitivity was calculated as sensitivity =

Nthﬁl&q* specificity as specificity = ququs[ , positive likelihood ratio
___sensitivity : : : : _ l—sensitivity
as PIR = Tospecficty negative likelihood ratio as NLR = ~pecicty”

where Ny and Ng, are the numbers of correct sequence- and
structure-based annotations, respectively.

Protein relative occurrence calculation

Relative occurrence or frequency of protein functions in the
groups of unique and homologous proteins was calculated. The
measure was calculated as the ratio of the number of proteins
with a specific KO to the total number of proteins of bacterial or
archaeal proteins. For example, the relative occurrence of unique
archaeal proteins annotated as K20411 (sourmash Cluster 1) is
% % 10°%, where Ny is the amount of proteins annotated with
K20411 and Nyyq is the total number of archaeal proteins. The
reason for using a constant factor of 10° in the equation is to
scale the values and generate numbers better suited for graphical
representation.

Gene expression analysis

To comprehensively assess the expression of archaeal proteins
in the context of human health and disease, gene expression
was verified using a dataset, which we previously published, by
mapping metatranscriptomic reads of fecal samples of healthy
individuals and patients with Type 1 diabetes mellitus (T1DM) [60]
to nucleotide sequences of genes of interest using bwa mem [61].
Mapping files were processed with SAMtools (v1.6) [62]. Mosdepth
(v0.3.3) [63] was used to calculate mean read coverage per gene
of interest.

Horizontal gene transfer analysis

To assess the stability of gene structures in M. smithii genomes,
we conducted a horizontal gene transfer (HGT) analysis using
metaCHIP (v1.10.12) [64] on all M. smithii MAGs available in the
included datasets. One Methanobrevibacter_A oralis MAG derived
from UHGG were also included for the comparison of the number
of HGT events.
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Gene synteny analysis

pyGenomeViz (v0.3.2) [65] was used to build gene synteny for
all archaeal genes of interest. Gene coordinates predicted with
Prodigal were used as an input. An interval of 10 kb up- and
downstream of the gene of interest was selected from the protein
predictions. KEGG KOs were allocated based on the sequence-
based annotations generated using Mantis [56]. Here, we exclu-
sively focused on M. smithii, as our analysis revealed that all
the gut-specific proteins encoded by gut-associated archaea were
encoded by M. smithii, and thus, this taxon was considered rep-
resentative for our analyses. The M. smithii-type strain DSM 861
was used to assess the presence of genes from flanking regions of
specific genes in an archaeal culture.

Phylogenetic analysis

To build phylogenetic trees for selective sourmash clusters,
additional similar sequences were added from Uniprot [66]
using BLAST (v2.0.15.153) [67] with default parameters on
the consensus sequences representing sourmash clusters of
interest, namely h9 and h20. Furthermore, Uniprot sequences
and sourmash cluster sequences were used to build trees.
Multiple sequence alignments were built using MAFFT (v7)
[68] and trimmed with BMGE (v1.12) [69] using BLOSUMO9S
similarity matrix and the default cut-off 0.5. Maximum likelihood
phylogenetic trees were built with IQ-TREE (v1.6.12) [70] and
visualized using the R library ggtree (v3.6.2) [71].

Results and discussion

Our study aimed to analyze the gut-specific proteins encoded
by M. smithii in the human gastrointestinal tract. As we
focused on identifying archaeal unique proteins and archaeal-
bacterial homologs, we analysed gut-specific archaeal and gut
bacterial proteins together. Having compared the two subsets
based on their sequence-based annotation, we categorized
archaeal gut-specific proteins into two groups: unique and
homologous proteins. To annotate them, we used KEGG KOs due
to their consistent functional annotations across organisms and
widespread usage. For structure-based functional assignment, we
utilized a combination of structure prediction and annotation
tools (Fig. 1), leveraging the higher prediction accuracy of
AlphaFold2 and the rapid and accurate de novo predictions
obtained via TR. Our central goal is to enhance the accuracy
and reliability of protein structure predictions through the
integration of these two approaches. Utilizing representative
sequences of unique and homologous proteins, AF produced
protein structures, and subsequent functional annotations were
accomplished by integrating PF and DeepFRI. TR was employed
to predict structures of uniqgue and homologous proteins showing
detectable homologous matches in the Protein Data Bank, which
were subsequently used for further structure annotation.

It is important to note that our methodology includes semi-
manual tools, making it most suitable for a limited number of
select proteins. The primary design intent of our workflow was to
facilitate the further refinement of functions for specific proteins
of interest. Although alternative tools such as ESMFold [72] or
EMBER3D (73] are available and hold promise for augmenting
the potential of the described pipeline, our approach remains
specialized and well-suited for in-depth protein analysis.

Enhancing annotations of proteins encoded by
M. smithii

To explore the uncharted functional space of M. smithii, we first
selected gut-specific proteins of gut-associated archaea. We

collected the encoded proteins of a total of 1190 archaeal and
285835 bacterial MAGs, resulting in 873481 archaeal proteins
and 87282994 bacterial proteins (Fig. 1). We focused on proteins
associated with archaea of the human gut microbiome, which
represented 37% (707754 proteins) of all predicted archaeal
proteins. These proteins were grouped into 61123 MM?2 clusters
for archaea (>2 proteins per cluster) and 1967480 MM2 clusters
for bacteria (>10 proteins per cluster). By retaining fully annotated
protein clusters, we obtained 55117 archaeal MM2 clusters and
1481580 bacterial MM2 clusters. Using our proposed functional
prediction strategy (Fig. 1A), we analyzed the gut-associated
archaeal proteins alongside bacterial proteins, resulting in 45
homologous sourmash clusters, i.e. shared between archaea
and bacteria, and 28 unique sourmash clusters, i.e. composed
exclusively of archaeal proteins. The bacterial data served as a
reference to distinguish unique proteins encoded and transcribed
by archaea, as well as archaeal proteins with homologs to
bacterial ORFs. A summary of the annotations as well as
comparison of annotations by structure-based tools is provided
in Supplementary Tables 1-3.

All archaeal proteins from the abovementioned sourmash
clusters were classified as M. smithii. We thus sought to extend
our knowledge of M. smithii by exploring functions that could have
implications for human health and disease. The investigation of
the relative occurrence of identified proteins and their associated
processes revealed distinct types of functions in unique and
homologous protein clusters (Fig.2). The most frequently
identified functions in the unique sourmash clusters were
related to adaptation to changing environments and protection
mechanisms, e.g. defense against foreign DNA and oxidative
stress, while processes such as RNA and DNA regulation, energy
metabolism, and cell wall integrity and maintenance were less
represented (Supplementary Table 4). Homologous sourmash
clusters showed frequent functions related to adaptation,
various protection mechanisms, energy metabolism, and cell
structural integrity (Supplementary Table 5). Analysis of fecal
metatranscriptomic data confirmed the transcription of the
majority of encoded genes, with some unique and homologous
genes exhibiting higher expression levels (Fig. 2). Two unique and
19 homologous sourmash clusters with relatively high expression
levels were identified, including genes associated with adaptation
to changing environments, defense against foreign DNA and
oxidative stress, DNA/RNA regulation, and energy metabolism,
while the rest were unannotated (Fig. 2).

Our analysis demonstrated disparity in annotations between
sequence- and structure-based approaches. Notably, 46% (13 out
of 28) and 31% (14 out of 45) of the unique and homologous sour-
mash clusters, respectively, lacked structure-based annotations,
suggesting a reliance on sequence information for their functional
annotation thus far. Literature searches suggest that the KEGG
annotations may not provide reasonable or meaningful functional
assignments for most of these unannotated proteins. For instance,
a protein annotated as mitochondrial import receptor subunit TOM40
by KEGG is predicted to be a putative intimin/invasin-like protein
based on its structure, which is more relevant in the context
of archaeal biology than being a eukaryotic protein involved in
mitochondrial protein import. Similarly, a protein annotated as
Endophilin-A, a eukaryotic protein involved in membrane curva-
ture, shows structural similarity to PilC, a Type IVa pilus subunit
of a prokaryotic adhesion filament. Although the presence of
eukaryotic proteins in archaea is not surprising from an evolu-
tionary perspective, the assignment of a protein toits evolutionary
homolog from a different kingdom may not provide precise func-
tional assignment of protein function. Moreover, examining the
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Figure 2. Relative metagenomic occurrence and average metatranscriptomic read coverage of proteins in the (A) unique and (B) homologous groups of
clusters with archaeal proteins; MG, metagenomics; MT, metatranscriptomics.

sequence identities between protein clusters annotated through
sequence-based methods and the corresponding sequences in
UniProt, it is evident that the majority of proteins lack any dis-
cernible similarity with those in UniProt. Furthermore, for those
instances where some degree of sequence identity is observed,
they do not surpass 70% for archaea-specific, unique and 49% for
homologous protein clusters (Supplementary Tables 6 and 7).

In general, the agreement between the sequence- and
structure-based methods was limited, with 4% (1 out of 28) and
25% (11 out of 45) of the unique and homologous proteins showing
consistent annotations, respectively (Supplementary Tables 4-
5 and 8). The rest of the proteins exhibited disparity between
sequence- and structure-based annotations, which was assessed
by comparing their reported functions. For example, unique sour-
mash cluster u24 yielded different annotations using EGGNOG,
KEGG, and Pfam databases, which we used to potentially resolve
disparities in the annotations (Supplementary Table 4). However, a
consensus structure-based annotation identified it as polypeptide
N-acetylgalactosaminyltransferase, providing additional annotation
beyond sequence analysis. Similarly, the homologous protein
clusters h15-h18 had the same functional assignments as novo-
biocin biosynthesis protein NouC using KEGG, but structure-based

annotation revealed further distinctions: h16 and hl8 were
classified as members of the LytR-Cps2A-Psr protein family, h15 was
annotated as 78 kDa glucose-regulated protein, and h17 remained
unannotated (Supplementary Table 5). The incorporation of struc-
tural information in protein annotation enables the distinction
between closely related sequences, offering additional insights
into protein function, which highlights the crucial role of struc-
tural data in understanding protein functionality. In addition, the
observed disparity between sequence and structure-based anno-
tations, coupled with low sequence identities between sequence-
based annotations and corresponding UniProt sequences, under-
scores the complementarity of structure-based methods to the
abovementioned approach for protein function annotation.

We further identified glycosyltransferases responsible for N-
and O-linked glycosylation from clusters hl-h6 as prevalent
archaeal gut-specific proteins. These proteins may contribute
to the viability and adaptability of archaeal cells in the gut.
For instance, the most prevalent unique archaeal glycosyl-
transferase is 4-amino-4-deoxy-1-arabinose (L-Ara4N) transferase,
which is essential for the protection from environmental stress,
symbiosis, virulence, and resistance against antimicrobial activity
[74, 75]. Moreover, one of the six glycosyltransferases is a
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Figure 3. Schematic proposal highlighting proteins specific to gut-associated archaea with described functions: ul, Type II restriction endonuclease BgllI;
u2, intimin/invasin-like protein with a Ig-like domain; u3, intimin/invasin-like protein; u4, Unr protein; u22, Type I restriction-modification EcoKI enzyme, specificity
subunit; u24, polypeptide N-acetylgalactosaminyltransferase; h1, 4-amino-4-deoxy-L-arabinose transferase or related glycosyltransferases of PMT family; h2,3,4,6,
dolichyl-phosphate-mannose-protein mannosyltransferase 1; h5, dolichyl-diphosphooligosaccharide—protein glycosyltransferase subunit STT3B; h7, Propanediol
utilization protein pduA; h11, phosphoenolpyruvate-dependent PTS system, IIA component; h28, transthyretin-like protein; h31, 2-AEP aminotransferase.

dolichyl-diphosphooligosaccharide—protein glycosyltransferase subunit
STT3B (h5), which functions as an accessory protein in N-
glycosylation and provides its maximal efficiency [76]. Archaeal
N-glycosylation is known to play an important role in the viability
and adaptivity of archaeal cells to external conditions such as
high salinity [77], elevated temperatures [78], and an acidic envi-
ronment [79] while also maintaining the structural integrity of
cells [80, 81]. Four out of the six identified glycosyltransferases are
dolichyl-phosphate-mannose-protein mannosyltransferases 1 (POMT1),
which are responsible for O-linked glycosylation of proteins in
eukaryotes. Another O-glycosylation-associated protein, polypep-
tide N-acetylgalactosaminyltransferase, was found in the subset of
unique archaeal proteins (u24). M. smithii has been found to
decorate its cellular surface with sugar residues mimicking those
present in the glycan landscape of the intestinal environment
[82]. The presence of human mucus- and epithelial cell surface-
associated glycans in M. smithii, along with the coding potential
for enzymes involved in O-linked glycosylation in archaeal gut
species, suggests that M. smithii cells might have the capability
to emulate the surfaces of eukaryotic cells in the intestinal
mucus. Beyond their structural role in proteins, O-glycans can
also act as regulators of protein interactions, influencing both
interprotein and cell-to-cell communication processes involved
in cell trafficking and environmental recognition [83].

Further findings suggest that 2-aminoethylphosphonate-pyruvate
(2-AEP) aminotransferase, transthyretin-like protein and phosphoenol-
pyruvate-dependent sugar phosphotransferase system system encoded
by M. smithii contribute to energy metabolism. 2-AEP is an enzyme
commonly found in bacteria and is known to play a critical
role in phosphonate degradation, which serves as an important

source and production pathway for methane [84]. Additionally,
cold-shock domains of Unr protein potentially provide M. smithii
with adaptation strategies through stress-induced control of
gene expression [85]. Furthermore, the predicted involvement of
proteins such as the specificity subunit of Type I restriction—
modification EcoKI enzyme [86] and Type II restriction endonuclease
Bglll [87] suggests their potential role in host defense strategies
employed by M. smithii to protect themselves in the gut environ-
ment. Additionally, it is conceivable that archaeal proteins may
play a role in protecting against toxicity from other organisms in
the gut using propanediol utilization protein pduA [88-90], as well as
acquiring genes of bacterial origin through HGT. If this is the case,
the presence of adhesin-like proteins in archaea could potentially
enable them to form symbiotic relationships with bacterial
neighbors with diverse metabolic potentials [91]. Figure 3 provides
a schematic representation emphasizing specific proteins
identified in this study, which could potentially play a significant
role in the functional dynamics of archaea within the human
intestine. A more detailed description of all identified M. smithii
proteins is provided in Supplementary Materials.

Characterization of select proteins and gene
structures in M. smithii genomes

To elucidate the level of conservation among the identified genes
recovered in our analyses, we assessed the level of genomic
conservation within genomes of two strains of M. smithii, two
strains of Ca. Methanobrevibacter intestini and the related species
Methanobrevibacter_A oralis as a reference. Ca. M. intestini has
been recently classified as an independent species within the
M. smithii clade. We analysed HGT events and evaluated gene
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Figure 4. Gene synteny for sporulation stage V genes AE and AD from their respective sourmash clusters (A) h9 and (B) h20; gene expression of target
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transferase).

structure stability. Using 1022 available MAGs, we noted an
increase in HGT events between 319 genomes of two M. smithii
strains: Methanobrevibacter_A smithii and GCF_000016525.1 (based
on GTDB classification) (Supplementary Fig. 1). Specifically,
2.6% of the MAGs (n=27) exhibited HGT events involving the
transfer of ~10+3 genes to other MAGs. Intriguingly, MAGs
exhibiting HGT events were sampled in diverse geographical
locations such as Austria, France, the UK, and the USA. Our results
suggest that the propensity of these MAGs to exchange genomic
segments may be attributed to similarities in their respective
local environments [92], including dietary and lifestyle factors
of the individuals. Thus, it is plausible that exposure to similar
diets or stresses may have influenced the evolution of these
MAGs via HGT along comparable trajectories. Conversely, the low
occurrence of HGT events among the majority (97.4%) of available
M. smithii genomes indicates their overall genomic conservation
and stability. This could be explained by the fact that these MAGs
were sampled from individuals living under similar dietary and
lifestyle conditions. Importantly, our findings support the concept
of genomic stability in M. smithii, as we observed a high degree of
conservation in the flanking regions of the genes of interest across
various M. smithii genomes. Through synteny analyses, we found
compelling evidence of conserved synteny for genes encoded in
M. smithii genomes (https://doi.org/10.5281/zenodo.8024791).
Among the proteins specific for gut-associated archaea,
we identified Stage V sporulation proteins AE (spoVAE) and AD
(spoVAD) (h9 and h20). Using BLAST searches, we extracted
250 bacterial protein sequences for SpoVAE and SpoVAD from
Uniprot, including 12 spoVAE and 38 spoVAD proteins from
environmental samples and the rest from isolate bacterial
genomes belonging to the Firmicutes phylum. Phylogenetic trees
demonstrated that proteins from h9 and h20 are phylogenetically
and compositionally distinct from other sequences and form
separate branches (Supplementary Figs 2 and 3). Gene synteny
analyses revealed that sporulation genes are grouped in operons
(K06405, K06406, and K06407; Fig.4). Moreover, the flanking
regions around sporulation genes include genes with key archaeal

as well as methanogenic functions. In addition, the flanking
regions of both spoVAE and spoVAD genes are also encoded in the
M. smithii isolate DSM 861 genome (Fig. 5). This particular isolate
served as the representative strain for our research. Furthermore,
to further validate the representativeness of DSM 861, we also
computed the average nucleotide identity (ANI) between the type
strain DSM 861 and two other available strains, DSM 2374 and
DSM 2375. The ANI calculations yielded estimates of 98.3 between
M. smithii strains DSM 861 and DSM 2374, and 98.2 between
DSM 861 and DSM 2375, respectively. However, in contrast to
our MAGs, the isolate’s genome did not encode the spoVAE and
spoVAD genes. To assess whether spoVAE and spoVAD genes were
acquired by M. smithii via HGT, we performed synteny analysis of
bacterial sequences obtained from our human gut dataset that
shared similarities with the archaeal sequences in clusters h9
and h20. This analysis revealed that in the bacterial genomes
found in the human intestine, the flanking regions of spoVAE and
spoVAD genes include genes mediating and facilitating HGT, such
as a site-specific DNA recombinase (K06400) encoded upstream
from spoVAE and Type IV pilus assembly proteins (K02662, K02664)
encoded downstream from spoVAD (Supplementary Figs 4 and 5).
Genes originating from clusters h9 and h20 are found within
bacterial genomes of Firmicutes phylum members, specifically
Clostridium sp. CAG-302 and CAG-269, which highlights their
association with known bacterial taxa in the gut and indicates
HGT between these distantly related taxa.

Although sporulation has been primarily observed in spore-
forming bacteria and not in archaea, it is known that non-
sporulating bacterial species also encode sporulation genes. In
these bacterial taxa, the genes likely encode regulatory proteins
involved in peptidoglycan (PPG) turnover, thereby playing a role
in cell division and/or development [93, 94]. Archaea lack PPG
but methanogenic archaea, including Methanobrevibacter species,
use pseudopeptidoglycan (pseudo-PPG) instead, which functions
similarly to PPG in a bacterial cell and results in Gram-positive
staining certain structural similarities between methanogens and
bacteria described above leave open the question of whether
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Figure 5. Genomic context of the archaeal flanking regions up- and downstream of the (A) spoVAE and (B) spoVAD gene clusters in the M. smithii strain

DSM 861.

sporulation proteins could play a similar role in pseudo-PPG
turnover in methanogenic archaea, analogous to their function in
non-sporulating bacteria. The identification of these genes holds
significant interest, especially in light of the work by Nelson
Sathi et al, suggesting that methanogens frequently acquire
functionally active genes through horizontal transfer from
bacteria. Comprehensive experimental analysis is required to
determine their specific functions, but these findings present an

exciting opportunity for further exploration. Phylogenetic analysis
of spoVAE and spoVAD has demonstrated that sequences from the
abovementioned clusters are compositionally homogeneous but
phylogenetically distant from other known similar sequences
in Uniprot and therefore might be unique to the human gut
environment. Moreover, archaeal and bacterial sequences from
sourmash clusters h9 and h20 branch out together, which
suggests that sporulation genes encoded in archaea might be
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the result of HGT from bacteria to archaea. This study provides
evidence that archaeal genomes exhibit clustered sporulation
genes surrounded by genes linked to archaea-specific functions
like pyrimidine, thiamine, and methane metabolism. Moreover,
genes in flanking regions up- and downstream of spoVAE and
SpoVAD genes are indeed encoded in the representative M.
smithii isolate DSM 861. The study’s intended scope did not
include experimental investigations in the wet-lab, such as the
application of a protocol using antibiotics, to confirm M. smithii’s
sporulation capability [95, 96]. Such work represents a logical
extension of our reported in silico results but goes beyond the
scope of the present study. As bacteria encoding similar spoVAE
and spoVAD proteins and bacterial sequences from clusters h9
and h20 belong to various species of the Clostridium genus, HGT
probably occurred in the direction from the abovementioned
species to M. smithii. Moreover, Ruaud, Esquivel-Elizondo, de la
Cuesta-Zuluaga et al. have provided evidence of a syntrophic
relationship between Firmicutes bacteria and M. smithii. The
co-occurrence of these microorganisms is likely facilitated by
physical and metabolic interactions. In addition to this, genes h9
and h20 as well as their surrounding genes are expressed by the
archaeal genomes sampled from human fecal samples.

Conclusion

Our study aimed to uncover the potential functions of archaeal
proteins, particularly those encoded by M. smithii, in the human
gut. Sequence similarity-based methods, while effective for
highly similar proteins (>70%-80% identity), may not accurately
represent the functions of archaeal proteins due to the lack
of experimental validation. More specifically, publicly available
databases have limited experimentally validated archaeal
sequences compared to bacterial and eukaryotic proteins
(~7000000 archaeal, ~166000000 bacterial, and~ 70000000
eukaryotic proteins, UniProtKB Jun 2023) making sequence-based
protein annotations applicable to only a subset of archaeal
proteins. In contrast, recent deep learning-based methods enable
protein structure prediction and annotation without relying
on high sequence similarity, allowing for functional similarity
beyond close sequence matches. We used structural methods
to improve the annotation of archaeal proteins, gaining better
insights into their functions compared to traditional sequence-
based methods. This approach allowed us to refine some existing
annotations and discover new functions for others, giving us valu-
able insights into the roles of archaeal genes in the human gut.
Our findings focus on the characterization of human-associated
and gut-specific proteins identified in M. smithii, a metabolically
proficient and clinically relevant methanogenic archaeon known
to be linked to gastrointestinal disorders, including IBD and
obesity. In upcoming research, the primary focus should be on
improving the accuracy of determining translation initiation
and termination sites through the integration of additional
specialized tools [97, 98], as this holds significant promise for
enhancing structural predictions. Furthermore, the refinement of
our computational efforts with experimental approaches holds
the key to elucidating the predicted protein structures and their
corresponding functions.
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Supp. Figure 1. Heatmaps demonstrating the intensity of HGT events between M.
smithii genomes. A, HGT between taxonomic groups named as follows: A -
Methanobrevibacter A smithii, B - Methanobrevibacter A smithii_A (Ca.
Methanobreviabcter intestini), C - Methanobrevibacter A oralis, E -
GCF_000016525.1 (M. smithii), F - GCF_002252585.1 (Ca. Methanobreviabcter
intestini); B, HGT events between individual genomes of same groups. The legend
depicts the frequency of HGT events among the genomes of A, taxonomic groups

and B, individual genomes.
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Supp. Figure 4. Gene synteny of homologous bacterial sequences obtained from
the human gut dataset that share similarities with the archaeal sequences from
cluster h9 encoding stage V sporulation protein AE (spoVAE).
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Supp. Figure 5. Gene synteny of homologous bacterial sequences obtained from
the human gut dataset that share similarities with the archaeal sequences from
cluster h20 encoding stage V sporulation protein AD (spoVAD).



Conclusions and Perspectives

This chapter presents the overall conclusions drawn from the extensive research reached
throughout this doctoral thesis. The work presented herein offers a comprehensive
exploration of the intricate role played by the human gut microbiome in the pathophysiology
of PD. By employing a robust combination of meta-omics approaches, network-based
analyses, and advanced computational tools, this thesis has elucidated the multifaceted
interactions between the gut microbiome and PD. The findings emphasize the critical
importance of gut microbial imbalances in the context of PD, particularly through disruptions
in microbial metabolism and reduced functional diversity. This research not only deepens
our understanding of the gut-brain axis but also opens avenues for potential therapeutic
interventions aimed at restoring microbial balance as a strategy for mitigating the effects of
PD.

Our study has uncovered key alterations in microbial functions and metabolic pathways
associated with PD and iRBD, including notable increases in B-glutamate levels and
significant changes in glutamate metabolism, as described in the section “Paper 1:
Integrated Multi-omics Highlights Alterations of Gut Microbiome Functions in Prodromal and
Idiopathic Parkinson’s Disease.” While the neurotoxic effects of L-glutamate on neurons are
well-documented (lovino et al., 2020), B-glutamate remains poorly understood, with only
one known enzymatic interaction described in current databases. We identified a central
role for glutamate derivatives within the gut microbiome of PD individuals (Paper 1, Fig. 3A,
C, D, Fig. 5). pB-glutamate and related glutamate genes are particularly relevant due to L-
glutamate's reported neurotoxicity and its association with microbial activity. However, the
precise links between B-glutamate, L-, and D-glutamate are not yet clear. We have not
identified any enzymatic interactions with B-glutamate in the gut microbiome, highlighting a
critical knowledge gap in its microbial and host interactions. Furthermore, data on the
kinetics and physiological effects of B-glutamate in the host are lacking, emphasizing the
need for more research to clarify its functional role in disease. Experimentally, further
investigation is necessary to determine B-glutamate's function and potential as a substrate
for other microbial enzymes. To date, B-glutamate has only been described as an osmolyte
in the Methanogenium and Methanococcus archaeal genera (Robertson et al., 1990) and
M. portucalensis (Robinson et al., 2001), and wasn’t detected as a product of M.smithii.
Additionally, there is a general lack of information about the activity of B-glutamate in M.
smithii, the most prevalent methanogenic archaeon in the human gut. Given our observation

of increased M. smithii expression correlating with elevated PD-related metabolites,
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understanding its role is particularly significant. To advance this research, both experimental
and in silico strategies could be instrumental. Computational approaches, such as using
AlphaFold 3 (Abramson et al., 2024) to predict protein interactions involving B-glutamate,
may offer valuable insights for experimental studies. Further work exploring interaction
patterns between B-glutamate and microbiome-derived metabolites could shed light on its

specific role in PD pathophysiology.

Besides altered levels of B-glutamate, we observed substantial differences in chemotaxis
and flagellar assembly pathways (Paper 1, Fig. 3D-F, Fig. 4; Paper 2 Fig. 3B, Fig. 4C-E,
Supp. Fig. 3), processes typically linked to pro-inflammatory responses (Gram et al., 2021;
F. Qian et al., 2015; Tran et al., 2019). These changes likely reflect the indirect influence of
the gut microbiome on the gut-brain axis through interactions with the immune system.
Notably, we demonstrated that these alterations occur not at the genomic level (Boktor et
al., 2023), as previously reported, but at the transcriptomic level, emphasizing the potential
regulatory impact of these pathways in PD. We additionally highlighted strong correlation
between flagellar assembly genes and genes involved in bacterial microcompartments
(Paper 2, Fig. 5). Based on the findings presented in the studies “Paper 1: Integrated Multi-
omics Highlights Alterations of Gut Microbiome Functions in Prodromal and ldiopathic
Parkinson’s Disease” and “Paper 2: Microbiome Expression Network is Dysregulated in
Parkinson’s Disease Individuals,” we hypothesize that certain bacterial taxa, such as
Anaerobutyricum and Blautia, exhibit a decreased expression of chemotaxis and flagella
genes, which is likely due to their inability to utilize ethanolamine and 1,2-propanediol as
energy sources. These compounds are crucial for the metabolic activities of these bacteria
(Engels et al., 2016; Trischler et al., 2023), and their absence may impair the bacteria’s
motility and chemotactic responses. The observed dysregulation in gene expression
suggests a significant shift in the metabolic capabilities of these bacterial communities,
potentially contributing to the pathophysiology of PD. However, it is important to note that
experimental validation of this hypothesis was beyond the scope of my current work.
Therefore, this intriguing finding warrants further experimental investigation to confirm and

elucidate the underlying mechanisms.

Interestingly, taxa encoding and expressing chemotaxis and flagellar assembly-related
genes, such as Roseburia, are commensals typically associated with either ‘silently
recognized’ (Clasen et al., 2023) or anti-inflammatory properties (Quan et al., 2018; Shen
et al., 2022; X. Wu et al., 2020). For example, we observed a decrease in Roseburia's
transcription of flagellin in the gut microbiome of PD patients (Paper 1, Fig. 4, Ext. Fig. 5),

further suggesting a complex interplay between microbial community shifts and host
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immune responses. Flagellins, in particular, could serve as immune-modulating compounds
affecting both microbiome composition and immune responses in PD. Additionally, our
analysis revealed significant alterations in BMCs, particularly in Blautia and
Anaerobutyricum genera, as described earlier. These microcompartments, besides being
crucial for energy catabolism, are commonly associated with the survival of specific
pathogenic bacteria (Dank et al., 2021; Vance, 2018), seem to confer a competitive
advantage to certain commensal bacteria within the PD microbiome, as demonstrated in
non-pathogenic species (Akouris et al., 2024; Moreira de Gouveia et al., 2023). This
mechanism may play a role in protecting against pathogenic invasions. The downregulation
of BMC-associated functions in PD, coupled with elevated glycerol levels in healthy controls
(Paper 1, Fig. 3A), further suggests that BMCs may have a protective role in gut
homeostasis. To our knowledge, our work is the first to demonstrate the involvement of
BMCs and flagellar assembly in the context of PD. Our findings highlight core microbiome
functions that are disrupted in disease, including chemotaxis, flagellar assembly and BMC
activity. These observations provide valuable insights into the microbial mechanisms
potentially contributing to PD pathogenesis and offer a foundation for further experimental
validation. In vitro experiments, such as gene knockouts or the use of advanced models like
HuMiX (Shah et al., 2016), which simulate human-microbe interactions, are essential to
confirming these microbiome-host interactions. Such approaches will help elucidate the
mechanistic links between microbial changes and PD symptoms, and ultimately, these

findings could inform the development of microbiome-targeted therapies for PD.

The findings on genes involved in chemotaxis and flagellar assembly in the gut microbiome
of PD patients suggest several promising translational applications that could contribute to
future therapeutic developments. First, the identification of anti-inflammatory flagellin
expression in commensal bacteria such as Roseburia presents an opportunity to explore
the therapeutic introduction of these bacteria or similar strains to manage PD-related
inflammation. Prior research has shown that anti-inflammatory bacterial components, such
as specific flagellins, can modulate immune responses (Quan et al., 2018; Shen et al.,
2022), suggesting that supplementation with these bacteria might reduce pro-inflammatory
signals in the gut-brain axis of PD patients. Such interventions could potentially take the
form of live biotherapeutics or engineered probiotic formulations designed to express anti-
inflammatory flagellin, potentially moderating gut and systemic inflammation, which has
been associated with neurodegenerative progression in PD. Probiotics can enhance the gut

microbiome by altering the intestinal environment and suppressing the growth of harmful
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bacteria, and this approach has been shown in application to the treatment of other gut-

associated disorders such as IBD (Praveschotinunt et al., 2019).

Additionally, since anti-inflammatory flagellin expression appears downregulated in PD,
therapeutic strategies could aim to reactivate these flagellins within the existing microbiome.
For instance, studies have indicated that dietary components or prebiotics can modulate
bacterial gene expression, including genes related to immune modulation (Burr et al., 2020;
Pérez-Cano, 2022). Future research could investigate whether specific dietary interventions
or small molecules could selectively enhance the expression of anti-inflammatory flagellins
in Roseburia and similar taxa. Such an approach would focus on functionally boosting the
patient’s own microbiota to reduce inflammation, thus supporting microbiome resilience and

restoring immune modulation within the gut-brain axis.

Furthermore, the role of BMCs in gut homeostasis, particularly in relation to genera such as
Blautia and Anaerobutyricum, points toward another potential avenue for translational
research. The observed downregulation of BMC-associated functions in PD, with higher
levels of BMC activity in the healthy group, suggests that enhancing BMC expression might
protect the gut microbiome from inflammatory and pathogenic shifts. Targeted approaches
to upregulate BMC-associated pathways in PD could involve dietary compounds or
prebiotics promoting BMC-expressing bacteria, aiming to protect the microbial ecosystem
and improve the host’s gut barrier function. Additionally, the use of bacterial strains with
modified BMC expression represents a promising approach to restoring gut homeostasis in
PD. Such engineered strains could potentially restore or enhance the activity of BMCs in
PD-affected gut ecosystems, providing a competitive advantage to beneficial bacteria and
supporting the gut barrier against inflammatory and pathogenic shifts. This aligns with
studies that explore how bacterial modifications can regulate immune responses and gut
environment stabilization, supporting the therapeutic potential of engineered probiotics for
gut-brain-related disorders (Paudel et al., 2023). Synthetic strains could be created to
express both BMC-related resilience and anti-inflammatory flagellin, potentially offering a
targeted live therapeutic intervention that reinforces gut health without altering the
microbiome’s broader composition. However, it is important to note that the use of
genetically modified organisms in human treatments remains controversial and faces
significant technical, regulatory, and ethical challenges, making human application currently

unlikely.

For verification of these approaches, advanced in vitro models, such as HuMiX, which

simulate human-microbe interactions, could provide valuable insights. Using HuMiX to
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model PD-specific conditions would allow detailed examination of microbiome-host
interactions, specifically focusing on flagellin or BMC modulation effects on inflammatory
pathways. Such models provide a preclinical validation framework, supporting the
development of targeted microbiome-based therapies that leverage anti-inflammatory and
structural-support functions of the microbiome. Overall, harnessing these microbial
functions therapeutically presents a promising translational opportunity to bridge findings
from this thesis into functional therapies that may influence PD management by targeting

inflammation and enhancing gut-brain communication.

Our findings regarding Methanobrevibacter smithii, a methanogenic archaeon, underscore
several key insights. Although M. smithii is generally low in abundance within the gut
microbiome, studies report that its levels are higher in PD patients (Cem Duru et al., 2024;
Rosario et al.,, 2021). In this work, we demonstrated that M. smithii exhibits notable
transcriptional activity, correlating with significantly elevated metabolite levels in PD (Paper
1, Fig. 3C). In the section “Paper 3: Functional Prediction of Proteins from the Human Gut
Archaeome” we explored the functional capabilities of M. smithii within the gut through a
structure-based strategy, advancing our understanding of its roles in this environment. We
enhanced functional annotation and highlighted potentially impactful functions for M. smithii
in the gut (Paper 3, Fig. 3), with some proteins even corresponding to those described in
Paper 2. This study reinforces the considerable but underexplored potential of archaea,
which remain challenging to investigate experimentally and computationally due to their
unique biological characteristics. Developing experimental methods and workflows
specifically tailored to archaea is a promising avenue for future research initiated by this
thesis. Our findings, alongside studies reporting an increased abundance of M. smithii in
PD, reveal an intriguing signal at the transcriptomic level. Its correlation with metabolites
elevated in PD suggests that M. smithii may have a more significant role in gut-microbiome-
related pathologies than previously understood. Further investigation into M. smithii activity

in relation to PD could offer valuable insights.
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Figure 4. Diagram demonstrating the summary on key findings, clinical implications and
future directions of research.

This study has several limitations, primarily its reliance on MG and MT data as the main
sources of information. While MG captures microbial gene abundance and provides a static
overview, it only indicates the presence of organisms and their potential functional roles.
MT offers insights into gene activity of microbial communities under specific environmental
conditions. However, since transcription is an intermediate stage in gene expression,
incorporating synthesized protein data would enhance understanding of microbial
functionality. Proteomics enables identification and quantification of proteins, while MP
characterizes proteins actively expressed by a microbial community at a given time (Wilmes
& Bond, 2004). Including MP would deepen the analysis, complementing MG and MT data,
and provide insights into functionally active microbial members and their protein products,
which may serve as potential biomarkers linked to specific clinical conditions. Thus, MP is

emerging as a vital complement to MG and MT approaches, successfully applied in studies
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of Crohn’s disease (Erickson et al., 2012; Henry et al., 2022), inflammatory bowel disease
(Zhang et al., 2018) and cystic fibrosis (Hardouin et al., 2021).

Despite its potential, the application of MP is less widespread than that of MG and MT,
primarily due to a lack of standardized protocols for sample preparation, limited
bioinformatics tools, and challenges in detecting low-abundance proteins in complex
biological samples (Heyer et al., 2017; Zhang et al., 2018). Additionally, MP relies heavily
on reference databases derived from genomic and metagenomic data for accurate peptide
identification and pathway analysis (Lai et al., 2019). While advancements have been made,
MP is still in its developmental phase, hindered by the complexity of the gut microbiome
(Wilmes et al., 2015). Alongside computational challenges posed by vast data, experimental
obstacles exist (Glatter et al., 2015; Zhang et al., 2018). Identifying peptides from
homologous proteins can lead to redundant protein identifications, potentially skewing
analyses since homologous proteins may perform distinct functional roles across species.
Nonetheless, MP could identify proteins specifically dysregulated in PD patients, revealing
altered pathways and gene expression patterns. For instance, disruptions in flagellar
assembly pathways or microcompartment-associated genes could be validated by
measuring the abundance or activity of corresponding proteins, elucidating the mechanistic
link between microbial changes and PD symptoms, and providing stronger evidence for

targeted therapeutic interventions.

MP is valuable for identifying post-translational modifications (PTMs), which are crucial for
various bacterial processes, including protein synthesis, cell cycle regulation, biofilm
formation, virulence, and nitrogen metabolism (Christensen et al., 2019; Macek et al., 2019).
The enzymes responsible for PTMs vary significantly across bacterial species, and
environmental conditions heavily influence the extent of these modifications (Bastos et al.,
2017; Q. Ma et al., 2021). Consequently, modified proteins may display different functional
behaviors depending on their environment, highlighting MP's relevance in identifying
molecular agents linked to disease. Given that the human microbiome is significantly
affected by factors such as geography, diet, and medication, studying modified proteins can

improve our understanding of how protein activity adapts to these changes.

However, it is important to recognize that proteins encoded by orthologous genes do not
always retain equivalent functions, as some may have been repurposed for novel roles
(Kuraku & Ukena, 2021). Additionally, bacterial orthologs may exhibit distinct functional
roles and regulatory mechanisms depending on species and environmental contexts (Price

et al., 2007). Consequently, in silico predictions of gene or protein functions, while

165



informative, are not fully reliable without experimental validation. The validation process,
however, presents challenges. For instance, proteins may behave differently in isolated
systems compared to their natural environments, and microbial communities often undergo
compositional changes when removed from their natural habitat (Dantas et al., 2013). This
introduces variability into experimental outcomes and complicates efforts to draw accurate
conclusions about in vivo microbial activity. To overcome these limitations, engineered
microenvironments, such as "gut-on-a-chip" devices, offer a promising solution. These
platforms simulate both mono- and multi-environment conditions, enabling real-time and
continuous monitoring of gut microbiota interactions with human cells, tissues, and even
other organs (Kim et al., 2012; Lucchetti et al., 2021). By providing a closer approximation
to the in vivo conditions of the human gut, these systems help address the challenges
associated with studying microbial communities in simplified or artificial models. As a result,
they hold considerable potential for improving our understanding of microbial dynamics and

their contributions to health and disease.

Although bioinformatics tools have advanced significantly, they continue to have limitations
in fully elucidating the complexities of the human gut microbiome and its connections to
related diseases. Bioinformatics challenges in microbiome research stem from the
complexity and scale of data generated in omics studies. The vast diversity of microbial
communities and their dynamic interactions with host environments complicate data
processing and analysis, leading to issues with reproducibility and interpretation. This is not
unexpected, given that the human gut microbiota consists of over one thousand microbial
species, collectively containing approximately 150 times more genes than the entire human
genome (Lagier et al., 2016). Furthermore, it is estimated that around one hundred trillion
microbes inhabit the human body, contributing significantly to various biological processes
associated with health and disease (B. Wang et al., 2017). Additionally, integrating multi-
omics data poses significant computational challenges, as existing workflows often struggle
to manage the volume and variety of data. The absence of standardized protocols for data
collection and analysis further contributes to inconsistencies across studies, limiting the

ability to derive generalizable conclusions.

Nevertheless, integration of multi-omics techniques including MG, MT and MP offers
enhanced insights into the functional cellular and metabolic pathways that characterize
microbial ecosystems (X. Zhang et al., 2019). The research presented in this thesis further
underscores the invaluable contribution of multi-omics approaches in understanding human
health. This trend is not surprising, as the increasing accessibility of these techniques has

led to their more frequent application across a range of diseases, beyond just PD (Ali et al.,
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2023; Mills et al., 2022; Worby et al., 2022). Combining these techniques enhances
functional predictability and facilitates a more comprehensive conceptualization of the roles

within microbial ecosystems (Ferrocino et al., 2023).

On this topic, the results presented in section “Paper 1: Integrated Multi-omics Highlights
Alterations of Gut Microbiome Functions in Prodromal and Idiopathic Parkinson’s Disease”
reveal a notable discrepancy between microbial composition and activity, evidenced by the
absence of differences at the MG level alongside substantial variations at the MT level. This
indicates that while the structure of the gut microbiome remains stable between health and
disease states, the functional activity of these microbial communities is significantly altered.
And therefore, microbial functionality could be a more sensitive marker of disease status
than compositional changes alone. To substantiate this hypothesis, further research
incorporating dynamic scenarios is essential. Longitudinal analyses, such as time-series
studies assessing health and disease trajectories under various interventions — like dietary
changes and pharmacological treatments — could provide critical insights into how microbial
activity shifts in response to these influences. While acknowledging that such studies are
often resource-intensive and complex, their significance in enhancing our understanding of
disease pathophysiology, including PD, cannot be overstated. Additionally, findings from our
work “Paper 2: Microbiome Expression Network is Dysregulated in Parkinson’s Disease
Individuals” highlight that PD is characterized by decreased gene expression diversity, also
emphasizing the need for a comprehensive approach to observe systemic changes over
time. Conducting such experiments will deepen our understanding of the multifaceted
interactions within the gut microbiome and their implications for health and disease. By
continuously collecting data over time and integrating multi-omics approaches, the field can
advance our understanding of the intricate interplay between microbial functions, host
genetics, and environmental factors. This progress may pave the way for targeted

therapeutic strategies designed to restore microbial eubiosis in PD.

In the end, microbiome science is an exciting and rapidly growing field that is still finding its
footing. The technical advancements and bioinformatics developments showcased in this
work have fueled the remarkable growth of this emerging area of research. One of the most
intriguing strengths of microbiome research is its interdisciplinary nature. It's unrealistic for
anyone to be an expert in every method related to microbiome studies, so our greatest
strength comes from bringing together talented individuals from various disciplines. By
combining our knowledge and skills, we can work together to unlock the mysteries of the
microbiome. The future of microbiome science is filled with opportunities for preventing,

diagnosing, and treating complex human diseases. By striking a balance between optimism
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and realism, we can pave the way for meaningful advancements in how we approach health

and disease research.
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