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Abstract 

The human gut microbiome, which includes a diverse array of microorganisms such as 

bacteria, archaea, and viruses, plays a crucial role in maintaining overall health and 

influencing disease outcomes. This microbiome integrates environmental, genetic, and 

immune signals to support various physiological functions, including digestion, immune 

regulation, and detoxification. Dysregulation of the gut microbiome has been implicated in 

several diseases, including Parkinson’s Disease (PD). Although PD is not traditionally 

associated with gut disorders, emerging evidence links microbial imbalances in the gut to 

disease onset and progression. This connection is supported by the observation that PD-

related protein aggregations and gastrointestinal symptoms often precede motor 

symptoms. In PD, there is an elevated abundance of pro-inflammatory bacteria and a 

reduction in beneficial bacterial species. Furthermore, an increased presence of 

methanogenic archaea, particularly Methanobrevibacter smithii, has been observed, 

indicating a potential involvement in the gut-related symptoms frequently associated with 

PD. These findings underscore the importance of the gut-brain axis and highlight the need 

for further research into how gut microbiota may contribute to neurodegenerative diseases 

like PD. 

This thesis investigates the role of the gut microbiome in PD through a range of 

computational and analytical methods. The primary objective of this work is to elucidate the 

complex interactions between microbial functions and PD using advanced meta-omics and 

network-based techniques. A key finding of this research is the alteration in microbial 

structure and function associated with PD, particularly the elevated levels of β-glutamate 

linked to specific microbial genera. This study identifies glutamate metabolism as a central 

process within the PD-associated microbiome, highlighting disruptions that correlate with 

decreased transcript abundances in chemotaxis and flagellar assembly among PD-related 

taxa. The reduction in flagellin transcription by certain bacteria in PD indicates intricate 

interactions between microbial changes and host immune responses. Further analysis 

utilizing Weighted Gene Co-Expression Network Analysis (WGCNA) revealed significant 

differences in co-expression patterns in PD. Notably, modules of co-expressed genes in 

healthy controls (HC) demonstrated greater functional diversity, while PD was characterized 

by reduced gene diversity and specific metabolic alterations, including glycerolipid 

metabolism, peptidoglycan biosynthesis, lipoic acid metabolism, and valine degradation. 

The network-based approach confirmed significant enrichment in flagellar assembly among 

HC, alongside the identification of secondary bile acid biosynthesis as an enriched process. 
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Additionally, our study revealed significant alterations in bacterial microcompartments 

(BMCs) within certain commensal bacteria, exhibiting a strong correlation with flagellar 

assembly genes, further underscoring their interconnected roles in PD. To our knowledge, 

this work is the first to establish a link between BMCs and flagellar assembly in the context 

of PD, revealing essential microbiome functions that are disrupted in this disease. These 

findings offer valuable insights into the microbial mechanisms contributing to PD 

pathogenesis and lay the groundwork for future experimental validation. 

The study also explored the role of intestinal archaea, particularly Methanobrevibacter 

smithii, in PD. This archaeon, known for its involvement in gastrointestinal disorders, was 

found to have significant interactions with gut microbiome functions, with implications for 

gastrointestinal symptoms commonly seen in PD. Advanced protein structure prediction 

identified gut-specific archaeal proteins potentially involved in defense mechanisms, 

virulence, adhesion, and the degradation of toxic substances. Preliminary evidence also 

suggested interdomain horizontal gene transfer between Clostridia species and M. smithii, 

based on structure-based protein annotation. 

In conclusion, this thesis underscores the significant role of the gut microbiome in the 

pathogenesis of PD. Through comprehensive computational and analytical methods, the 

research highlights critical alterations in microbial structure and function, particularly in 

glutamate metabolism and microbial diversity. The study also brings to light the involvement 

of intestinal archaea, such as Methanobrevibacter smithii, in microbiome function. These 

insights pave the way for future research aimed at understanding the gut-brain axis and 

developing microbiome-based interventions for neurodegenerative diseases like PD. 
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Aims and Objectives 

This study aims to advance the field of microbiome research by deepening the 

understanding of microbial ecology and the interactions between human-associated 

microbiota and health. The following key objectives guided this research: 

1. To utilize an integrated multi-omics approach to elucidate the functional activities 

and alterations of the gut microbiome in Parkinson’s disease (PD) and its prodromal 

stage idiopathic rapid-eye-movement sleep behavior disorder (iRBD), by identifying 

and characterizing differential metabolite levels, gene expression patterns, and 

microbial functions between PD individuals, iRBD individuals, and healthy controls. 

2. To investigate the dysregulation of microbial co-expression networks in PD, with the 

goal of identifying key regulatory mechanisms and altered biological processes that 

contribute to PD pathogenesis. 

3. To advance the functional annotation of archaeal proteins, by utilizing advanced 

computational and structural methodologies to uncover their roles in the human gut 

microbiome and their potential implications for gut-related disorders. 
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Materials and Methods 

Materials and Methods relevant for Paper 1 and Paper 2 

The studies titled “Integrated Multi-omics Highlights Alterations of Gut Microbiome 

Functions in Prodromal and Idiopathic Parkinson’s Disease” and “Microbiome Expression 

Network is Dysregulated in Parkinson’s Disease Individuals” were conducted using the 

same cohort of patients and healthy individuals. This section will outline the primary 

methods and techniques employed in these investigations. For a comprehensive 

understanding, readers are encouraged to refer to the manuscripts available in the “Results 

and Discussion of Publications” chapter. 

Cohort description 

All subjects provided informed written consent, and the sample analysis was approved by 

the Comité National d’Ethique de Recherche of Luxembourg. The Kassel cohort involved a 

prospective, biannual follow-up study of PD patients at the Paracelsus-Elena Klinik, 

Germany, with fecal samples collected during a 4-year follow-up visit. The Marburg cohort 

recruited patients with polysomnography-confirmed idiopathic rapid-eye-movement sleep 

behavior disorder from the Department of Neurology, Philipps-University, Germany. Fecal 

samples were collected, flash-frozen, and stored at –80 °C. The initial set of samples 

included 50 PD patients, 30 idiopathic rapid-eye-movement sleep behavior disorder 

patients, and 50 healthy control  subjects. However, some samples were excluded due to 

clinical reasons such as adjusted diagnoses, logistical issues, and the use of microbiome-

altering medications like metformin, antidepressants, statins, and proton pump inhibitors. 

Additionally, samples were excluded due to missing values in metabolomics or a low 

number of identified analytes in metaproteomics. These exclusions led to the final sample 

numbers for various analyses: 49 HC, 27 iRBD, and 46 PD for metagenomics and 

metatranscriptomics; 42 HC, 22 iRBD, and 40 PD for metaproteomics; and 49 HC, 27 iRBD, 

and 41 PD for meta-metabolomics. 

Sequencing data processing and analysis 

Sequencing data utilized in the studies “Integrated Multi-omics Highlights Alterations of Gut 

Microbiome Functions in Prodromal and Idiopathic PD” and “The gut microbiome gene 

expression network is dysregulated in individuals with Parkinson’s disease” were obtained 

from fecal samples of PD patients, iRBD patients, and HC. Metagenomic (MG) data was 
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employed to investigate the functional potential and structure of microbial communities in 

these samples. Additionally, metatranscriptomic (MT) data was used to analyze gene 

expression, providing insights into microbial community function. 

MG and MT data were processed and hybrid-assembled using the Integrated Meta-omic 

Pipeline (IMP) (https://git-r3lab.uni.lu/IMP/imp3, commit 

8c1bd6fa443d064511909c9eede20703f45e6c69) (Narayanasamy et al., 2016). This 

pipeline encompasses several steps, including the trimming and quality filtering of reads, 

the exclusion of rRNA sequences from the MT data, and the elimination of human reads by 

mapping against the human genome (hg38). The pre-processed MG and MT reads were 

then assembled through the IMP-based iterative hybrid-assembly pipeline utilizing 

MEGAHIT (version 1.0.3) (D. Li et al., 2015). Post-assembly, structural features such as 

open-reading frames (ORFs) were predicted and annotated using a modified version of 

Prokka (Seemann, 2014), followed by functional annotation with Mantis (Queirós et al., 

2021). Quantification of these structural features at both MG and MT levels was performed 

using featureCounts (Liao et al., 2014). Taxonomic annotation of reads and contigs was 

conducted using Kraken2 (Wood et al., 2019) with the GTDB (release 207) database 

(http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release207/kraken2) and a confidence 

threshold of 0.5. Additionally, taxon abundances were estimated using mOTUs (version 

2.5.1) (Milanese et al., 2019). These mOTU abundances were utilized to create abundance 

matrices for each taxonomic rank (phylum, class, order, family, genus, and species) by 

aggregating taxon marker read counts at the respective levels. 

Metabolic network construction 

In the study “Integrated Multi-omics Highlights Alterations of Gut Microbiome Functions in 

Prodromal and Idiopathic PD” we utilized metabolic network-based approach to highlight 

the importance of metabolites and related genes in the microbial metabolism. We 

reconstructed metabolic networks as previously described in the study by (Roume et al., 

2015). The metabolic network analysis was performed by linking KEGG Orthology (KO) 

identifiers with corresponding ChEBI IDs and visualized using the NetworkX package 

(version 3.3) (Hagberg et al., 2008). In this network, nodes represented KEGG KOs, while 

edges corresponded to the associated metabolites. Such compounds as water, energy 

transporters and cofactors were removed, to only consider main compounds of a given 

reaction. The analysis focused on genes present in at least 50% of the samples. Gene 

expression effect size was quantified by normalizing gene expression, calculated as the 
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ratio of MT  gene expression to MG gene abundance as follows: !"#"	%&	"'()"**+,#!"#"	%!	-./#0-#1". To 

construct metabolite-specific networks, KEGG KOs associated with specific metabolites in 

KEGG were used. Subnetworks specific to glutamate, thymine, glycerol, serine, alanine, 

and glucuronate were extracted by searching for the given metabolite in the list of 

metabolites associated with KEGG KOs. The network topology metric ‘betweenness 

centrality’ was employed to highlight the significance of each metabolite in microbial 

metabolism. 

Co-expression network construction 

In our study “The gut microbiome gene expression network is dysregulated in individuals 

with Parkinson’s disease” we attempted to decipher complex interactions within the human 

gut microbiome using the Weighted Gene Co-Expression Network Analysis (WGCNA) 

approach (Wan et al., 2018; B. Zhang & Horvath, 2005). This analysis was entirely 

unsupervised, with no prior filtering based on differential expression or function. Using this 

method, we were able to find correlation patterns of genes across a large set of PD and HC 

samples, and modules of co-expressed genes as well as their correlation with external traits 

such as disease state.  

Co-expression patterns were analysed using the pyWGCNA package implemented in 

Python (Rezaie et al., 2023). Of the 8334 genes, 4879 genes were included in this analysis, 

only genes present in at least 50% of samples were kept. Gene abundance normalized 

expression as described previously was used as gene values. WGCNA function was run on 

power transformed data with sklearn.preprocessing.PowerTransformer() (https://scikit-

learn.org/stable/api/sklearn.preprocessing.html) with the following parameters: minimum 

module size minModuleSize=20, dissimilarity threshold MEDissThres=0.18, 

networkType=’signed’.  

Materials and Methods relevant for Paper 3 

Our study, titled “Functional Prediction of Proteins from the Human Gut Archaeome,” 

extends the understanding of microbiome functions by specifically focusing on intestinal 

archaea. To achieve this, we utilized publicly available metagenomic data from the 

Genomes from Earth’s Microbiomes (GEM) catalog (Nayfach et al., 2020) and the Unified 

Human Gastrointestinal Genome (UHGG) collection (Almeida et al., 2020), as well as 

bacterial metagenome-assembled genomes (MAGs) from the UHGG collection. Figure 1 

((Novikova et al., 2024)) depicts the workflow employed in this study, detailing the 
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integration and application of sequence and structure annotation methods for the functional 

annotation of archaeal proteins.  

Archaeal protein functional annotation 

In our study “Functional Prediction of Proteins from the Human Gut Archaeome” we utilized 

protein annotation based on both sequences and structures of proteins in question. 

Sequence annotation was performed with KEGG orthologs (KOs) using Mantis (1.5.4) 

(Queirós et al., 2021). We employed trRosetta (TR) (Du et al., 2021) and AlphaFold (AF) 

(Jumper et al., 2021) for structure prediction, annotating each predicted structure 

separately. TR-based models used high-identity and high-coverage templates, while AF 

models were annotated via the ProFunc (PF) web server (Laskowski et al., 2005). Only 

highly certain matches were used for functional assignments. DeepFri was used as an 

auxiliary tool to verify or refute annotations (Gligorijević et al., 2021).  
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Synopsis: The Human Microbiome in PD 

State of the Art, PD and Microbiome 

Microbiome of the Human Gut and Its Importance in PD 

The human gut microbiome, consisting of commensal, symbiotic, and pathogenic 

microorganisms such as bacteria, archaea, microeukaryotes, and viruses, has emerged as 

a significant contributor to various diseases. The gastrointestinal tract, which contains the 

largest microbial biomass, encodes a genetic repertoire vastly exceeding that of human 

genes (Miyauchi et al., 2022). Thus, the gut microbiome acts as a central hub, integrating 

environmental inputs with genetic and immune signals to influence host physiology. 

In a healthy state, the gut microbiome performs vital functions, including digesting dietary 

components, synthesizing vitamins, regulating the immune system, outcompeting 

pathogens, detoxifying harmful substances, and supporting intestinal function. These 

interconnected functions contribute to overall human metabolism, with microbial 

metabolites playing essential roles in immunomodulation (Fig. 1). The gut microbiome also 

interacts with other body systems through the circulatory, immune, endocrine, and nervous 

systems. The functional repertoire of the gut microbiome results in the production of diverse 

biomolecules that stimulate the host’s immune system (Wilmes et al., 2022). 
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Figure 1. Microbiome-derived molecules that trigger inflammatory processes. In diseases 

with inflammatory signatures, the balance between cytotoxic and anti-inflammatory, pro-

healing immune activation is dysregulated, reflecting microbial dysbiosis. Adapted from 

Wilmes et al., 2022. 

Systematic studies of the gut microbiome-derived biomolecular complex have highlighted 

the uniqueness of extracellular biomolecular fractions (DNA, RNA, peptides, and 

metabolites) in terms of their taxonomic and functional affiliations within and between 

individuals (De Saedeleer et al., 2021). These microbiome-derived molecules are detected 

by epithelial, innate immune, and dendritic cells, which connect to adaptive immunity. Due 

to their continuous exposure to microbial molecules in the gut, epithelial and immune cells 

have adapted to tolerate beneficial microbiota while still protecting against harmful 

pathogens. Additionally, the gut microbiome modulates host responses to microbial 

molecules to stabilize its niche by stimulating antimicrobial peptide production and 

regulating mucosal homeostasis (Blander et al., 2017). 

Microbial dysbiosis likely leads to differential enrichments in microbiome-derived molecules, 

either as a cause or consequence of disrupted microbiome-immune system interactions 
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(Fig. 1). Functional differences in the microbiome may more clearly distinguish healthy from 

diseased individuals than taxonomic changes alone (Heintz-Buschart & Wilmes, 2018). Our 

understanding of how variations in microbial taxa abundance affect diseases is still quite 

limited. This lack of knowledge hampers our ability to identify the crucial roles these 

microbes play in maintaining human health. Furthermore, we need to explore how changes 

in the microbiome’s composition and function might lead to the onset and progression of 

diseases over a person’s lifetime (Wilmes et al., 2022). 

Parkinson’s disease (PD) is not traditionally associated with the gut, yet studies reveal 

significant changes in microbial taxonomy in PD patients (Heintz-Buschart et al., 2018; 

Romano et al., 2021). PD is linked to the gut through several mechanisms. The primary 

pathogenic characteristics of PD include the progressive degradation of specific neurons in 

brain areas like the substantia nigra. Furthermore, aggregations of the protein !-synuclein 

(!-Syn), a hallmark of PD, have been observed in both the central and peripheral nervous 

systems, suggesting a potential origin in the gut (Heintz-Buschart et al., 2018). 

Epidemiological studies indicate a decreased risk of PD following complete truncal 

vagotomy, implicating the vagus nerve in the disease’s progression from the gut to the brain 

(Heintz-Buschart et al., 2018; Sampson et al., 2016). Additionally, inflammation and 

increased permeability of the colonic mucosal lining are common in PD, creating an 

environment that promotes !-Syn aggregation and disease progression, which is influenced 

by the gut microbiome (Clairembault et al., 2015; Schwiertz et al., 2018). Studies have 

identified over 100 taxa with differing abundances between PD patients and controls, with 

some linking specific taxa to disease severity (Romano et al., 2021).  

Therefore, studies on PD underscore the significant role of the gut microbiome and its 

functions in diseases not traditionally linked to the gut. This underscores the need to 

consider the microbiome’s impact on human physiology alongside environmental, genetic, 

and immune factors.  

Immuno-modulation of PD by Microbiome: Modern Approach to PD Etiology 

In general, the gut microbiota comprises a complex and diverse community of bacteria, 
archaea, fungi, and viruses, which together maintain physiological homeostasis and 

influence various body functions. In PD, significant alterations in the gut microbiota 

composition have been observed, often characterized by a decrease in beneficial bacteria 

and an increase in potentially harmful bacteria (Keshavarzian et al., 2015; Scheperjans et 
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al., 2015). These alterations are not only biomarkers but also likely contributors to disease 

pathogenesis. 

Recent research into PD has expanded beyond traditional neurocentric views, increasingly 

highlighting the role of gut microbiota and their metabolic products. These microbial 

metabolites and molecules play pivotal roles in the gut-brain axis, influencing neurological 

processes and potentially contributing to the pathogenesis of neurodegenerative diseases 

like PD. This section explores key molecular and cellular factors that are relevant in the 

context of the microbiome and PD, focusing on short-chain fatty acids (SCFAs), 

lipopolysaccharides (LPS), neurotransmitters, bile acids (BAs), and flagella. 

Short-chain fatty acids 

In PD, the production of SCFAs is often disrupted, reflecting broader alterations in gut 

microbiota composition. Studies have consistently shown that individuals with PD exhibit a 

reduction in SCFA-producing bacteria, such as those from the genera Prevotella, 

Roseburia, and Faecalibacterium (Keshavarzian et al., 2015). This decrease is important 

because SCFAs contribute to the maintenance of the intestinal barrier, which in turn 

prevents translocation of bacteria and their endotoxins, such as lipopolysaccharides, into 

the bloodstream. The translocation of these substances can trigger systemic inflammation 

and potentially exacerbate neuroinflammation, thereby promoting PD progression. 

SCFAs play a crucial role in the regulation of the host's immune system, the maintenance 

of intestinal barrier integrity, and the modulation of energy metabolism. SCFAs exert their 

influence on multiple physiological systems, including gut barrier function, the vagus nerve, 

the enteric nervous system, immune function, and the integrity of the blood-brain barrier 

(Aho et al., 2021; Dalile et al., 2019; Liddle, 2018; Silva et al., 2020). Beyond their role as 

immune modulators, certain SCFAs, such as propionate and butyrate, have demonstrated 

the ability to inhibit neuroinflammation by suppressing cytokine storms and viral 

pathogenesis (Majumdar et al., 2023; McCarville et al., 2020). This anti-inflammatory action 

is particularly relevant in the context of PD, where neuroinflammation is a key pathological 

feature. Specifically, butyrate has been shown to reduce the permeability of the blood-brain 

barrier, mitigate microbial activation, and alleviate depressive symptoms that are commonly 

associated with PD (Xie et al., 2022).  

By reducing systemic and neural inflammation, SCFAs like butyrate could potentially slow 

the progression of neurodegeneration in PD (Cryan & Dinan, 2012). Recent research has 

also explored the therapeutic potential of SCFAs in PD (J. Liu et al., 2024). Experimental 
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models of PD have shown that supplementation with SCFAs or SCFA-producing probiotics 

can restore gut microbial balance and reduce neuroinflammation (Macfarlane et al., 2008)  

Acetate, the most abundant SCFA, is vital for maintaining energy balance and is involved 

in lipid metabolism and appetite regulation. It also serves as a substrate for the synthesis 

of other SCFAs, such as butyrate. Propionate, though less abundant, is crucial for hepatic 

gluconeogenesis and has immunomodulatory effects, particularly in promoting the 

generation of regulatory T cells, which are important for maintaining immune homeostasis. 

Additionally, propionate plays a significant role in neuroprotection by ameliorating motor 

deficits and dopaminergic neuronal loss in PD models, primarily through its interaction with 

the FFAR3 receptor in the enteric nervous system, which modulates gut microbiota and 

reduces neuroinflammation (Hou et al., 2021). Butyrate, well-known for its anti-inflammatory 

properties, supports gut health by serving as the primary energy source for colonocytes and 

by maintaining intestinal barrier integrity. It also inhibits histone deacetylases (HDACs), 

reducing inflammation and oxidative stress, which are all key factors in neurodegenerative 

diseases like PD (S. Wu et al., 2012). 

Valerate, isobutyrate, and isovalerate, although less abundant than other SCFAs , play 

crucial roles in gut microbial ecology and host metabolism (J. Liu et al., 2024). Valerate has 

been shown to enhance gut barrier function and protect dopaminergic neurons (Jayaraj et 

al., 2020; Y. Li et al., 2020), contributing to overall gut health and brain function. Isobutyrate 

is produced through the fermentation of branched-chain amino acids (BCAAs) like valine in 

the colon. It has been shown to stimulate colonic sodium absorption, which is crucial for 

maintaining fluid and electrolyte balance in the gut (Rios-Covian et al., 2020). Additionally, 

isobutyrate contributes to the overall health of the gut microbiota by promoting the growth 

of beneficial bacteria (Peterson et al., 2022). Isovalerate is branched-chain saturated fatty 

acid (BCFA) derived from the fermentation of BCAAs, specifically leucine. It has been 

associated with the regulation of glucose and lipid metabolism, suggesting a role in 

maintaining metabolic health (Rios-Covian et al., 2020). High levels of isovalerate in feces 

have also been linked to human depression and elevated cortisol levels, indicating its 

potential impact on mental health. Furthermore, isovalerate, along with other BCFAs, has 

been found to increase the relative abundance of B vitamin-producing bacteria, which are 

essential for various metabolic functions (Peterson et al., 2022). 

In conclusion, the disruption of SCFA production and balance in PD underscores the critical 

role of gut microbiota in maintaining intestinal barrier integrity and regulating systemic 

inflammation. The reduction in SCFA-producing bacteria in PD patients highlights the 
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importance of these metabolites in preventing neuroinflammation and supporting overall gut 

health. SCFAs such as acetate, propionate, and butyrate, along with less abundant BCFAs 

like valerate, isobutyrate, and isovalerate, play multifaceted roles in immune regulation, 

energy metabolism, and neuroprotection. Their therapeutic potential in restoring gut 

microbial balance and reducing neuroinflammation offers promising avenues for managing 

PD and enhancing overall neurological health. 

Lipopolysaccharides 

Lipopolysaccharides (LPS), components of the outer membrane of Gram-negative bacteria, 
play a crucial role in the immune response, eliciting potent inflammatory reactions by 

activating the innate immune system. In the context of PD, elevated levels of LPS-binding 

protein (LBP) have been correlated with an increased risk of developing the disease, 

suggesting that endotoxemia, characterized by the presence of LPS in the bloodstream, 

may contribute to PD pathogenesis, particularly through neuroinflammatory mechanisms 

(Y. Zhao et al., 2023). 

Disruptions in gut microbiota composition have been linked to increased intestinal 

permeability, commonly referred to as a “leaky gut,” which allows bacterial products like 

LPS to enter the bloodstream and potentially reach the brain (X. Zhang et al., 2023). This 

compromised intestinal barrier is a critical factor in PD development. The increased 

permeability permits not only LPS but also other harmful substances and pathogens to 

translocate from the gut into the bloodstream, triggering systemic inflammation (Q. Li et al., 

2023). This systemic inflammation exacerbates neuroinflammatory processes in the brain, 

significantly contributing to the progression of PD. 

Once LPS enters the bloodstream, it can activate microglia, the resident immune cells in 

the brain, leading to chronic neuroinflammation (Y. Zhao et al., 2023). Additionally, the 

transmission of inflammatory signals from the gut to the brain via the vagus nerve amplifies 

neuroinflammation and neuronal damage. Chronic microglial activation results in the 

release of pro-inflammatory cytokines and reactive oxygen species, further exacerbating 

neuronal damage and accelerating the neurodegenerative process (Muzio et al., 2021; 

Woodburn et al., 2021). 

In summary, LPS and disruptions in gut microbiota significantly contribute to PD through 

mechanisms involving neuroinflammation. Elevated LPS levels, coupled to a compromised 

intestinal barrier, allow harmful substances to enter the bloodstream and may culminate in 
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systemic inflammation. This inflammation, in turn, activates microglia in the brain, leading 

to chronic neuroinflammation and the degeneration of dopaminergic neurons. 

Bile acids 

Bile acids (BAs) are another significant class of microbiome-derived metabolites that have 
been increasingly associated with PD. These compounds, synthesized initially by the host 

in the liver from cholesterol, play a crucial role in the digestion and absorption of dietary 

fats. Upon their release into the gut, primary bile acids are subjected to further metabolism 

by the gut microbiota, transforming them into secondary bile acids with distinct biochemical 

properties (Ridlon et al., 2006). This microbial transformation is not merely a digestive 

process; it profoundly influences the gut's immunological landscape and systemic health. 

Emerging research has highlighted that secondary bile acids possess a range of cytotoxic 

and immunomodulatory activities, which can impact the progression of neurodegenerative 

diseases such as PD. For instance, alterations in the composition of gut microbiota in PD 

patients may lead to an imbalance in bile acid metabolism, which in turn can contribute to 

the disease's pathology through mechanisms such as inflammation and cellular stress 

(Hurley et al., 2022; Li et al., 2021). Studies have observed changes in bile acid profiles in 

the plasma, serum, and stool samples of individuals with PD, suggesting that these 

metabolites might serve as biomarkers for disease progression and severity (Figura et al., 

2018; Hertel et al., 2019; Hirayama et al., 2016; P. Li et al., 2021b; Vascellari et al., 2020). 

The immunomodulatory capacities of secondary bile acids are of particular interest, as they 

can interact with various receptors in the gut and other tissues, influencing immune 

responses and potentially exacerbating or mitigating neuroinflammation (Wahlström et al., 

2016). Understanding the precise role of bile acids in PD not only offers insights into the 

gut-brain axis's involvement in the disease but also opens up potential avenues for 

therapeutic intervention aimed at modulating bile acid metabolism and its downstream 

effects. 

Flagella 

Flagella, the whip-like appendages that facilitate bacterial motility, are highly immunogenic. 

Flagellin, the protein constituting flagella, is a potent antigen and pro-inflammatory agent in 

pathogens (Gram et al., 2021; F. Qian et al., 2015; Tran et al., 2019). These structures can 

elicit robust immune responses, thereby influencing the gut-brain axis. In mammalian hosts, 

flagellar motility enables bacteria to evade clearance mechanisms, access epithelial cells, 

and reach nutrient-rich niches. This mobility is associated with pathogenic activities such as 
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epithelial invasion, translocation across epithelial barriers, and biofilm formation, which 

disrupt homeostasis and reduce host reproductive fitness (Akahoshi & Bevins, 2022). 

Bacterial movement driven by flagella is directed by chemotaxis, allowing bacteria to move 

toward beneficial chemical gradients and away from harmful ones (Colin et al., 2021). 

Flagella and flagellin are involved in inflammatory responses by inducing pro-inflammatory 

cytokines such as IL-8 and TNF-! (Cruz-Córdova et al., 2012). Through the activation of 

Toll-like receptor 5 (TLR5), flagella can also trigger the MAPK and NF-κB signaling 

pathways, leading to further cytokine production (Batah et al., 2017). Conversely, flagella 

can stimulate the production of anti-inflammatory cytokines like IL-10, which helps modulate 

immune responses and maintain gut homeostasis (Cruz-Córdova et al., 2012). Flagellin has 

also demonstrated potential in anti-tumor and radioprotective therapies (Sfondrini et al., 

2006; Vijay-Kumar et al., 2008). Also, metagenomic analyses have reported a decrease in 

flagellar assembly genes in PD patients (Boktor et al., 2023). The dual role of flagella in 

both pro- and anti-inflammatory responses underscores their complex involvement in PD, 

making them crucial for understanding the disease’s etiology. 

Parkinson’s Disease Pathogenesis 

PD is a progressively debilitating neurodegenerative disorder that primarily impairs the 

motor system, leading to a spectrum of clinical manifestations that severely affect an 

individual's quality of life. The hallmark motor symptoms of PD include involuntary or 

uncontrollable movements such as tremors, muscle rigidity, bradykinesia (slowness of 

movement), and postural instability, which collectively contribute to significant difficulties in 

balance, coordination, and overall motor function. These motor deficits typically emerge 

insidiously and tend to exacerbate as the disease advances, eventually culminating in 

profound impairments that hinder an individual’s ability to walk, speak, and execute routine 

daily activities (Jankovic, 2008; Sveinbjornsdottir, 2016). In addition to these well-

documented motor symptoms, PD is increasingly recognized for its wide array of non-motor 

symptoms, which often manifest long before the onset of motor impairments (Adams-Carr 

et al., 2016; Blesa et al., 2021). These non-motor symptoms encompass a broad spectrum 

of cognitive, psychiatric, and autonomic disturbances, including sleep disorders, 

depression, constipation, anxiety, cognitive decline, memory impairment, and pervasive 

fatigue (Roos et al., 2022). The early appearance of these non-motor symptoms –  often 

preceding the motor symptoms by a decade or more – suggests that PD pathology may 

begin long before the clinical diagnosis is made, and that these symptoms are critical in 

understanding the full impact of the disease on patients' lives. The recognition of non-motor 
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symptoms as integral components of PD has profound implications for early diagnosis, 

patient management, and the development of therapeutic strategies aimed at mitigating the 

overall burden of the disease (Jankovic, 2008; Sveinbjornsdottir, 2016). 

PD, while having the potential to impact any individual, demonstrates a notable 

epidemiological trend with a higher incidence observed in males compared to females (Cerri 

et al., 2019). Despite extensive research, the precise reasons underlying this sex disparity 

remain elusive, though hormonal, genetic, and environmental factors are often 

hypothesized as influencing factors (Savica et al., 2016). Age emerges as a significant risk 

factor for PD, with epidemiological data indicating that more than 1% of the population aged 

60 and above is afflicted by the condition. However, it is crucial to note that a subset of PD 

cases, estimated between 5% and 10%, manifests before the age of 50. These early-onset 

cases are frequently attributed to genetic variants, underscoring the role of hereditary 

factors in disease etiology (Funayama et al., 2022; Kolicheski et al., 2022; Pitz et al., 2024). 

Nevertheless, the majority of PD cases occur sporadically, with only 10% of patients having 

causative genetic variants. Consequently, the remaining cases are classified as idiopathic 

PD (Tredici & Braak, 2013). 

Despite this genetic predisposition, the pattern of inheritance in many cases remains 

unclear, suggesting a complex interplay between genetic susceptibility and other factors. In 

addition to genetic predisposition, environmental factors have been increasingly recognized 

as significant contributors to the onset and progression of PD. Epidemiological surveys have 

consistently shown that individuals residing in rural areas, particularly those engaged in 

agricultural work, exhibit a higher relative risk of developing PD compared to their urban 

counterparts (Corsini et al., 1985; Ngo et al., 2024; Perrin et al., 2021; Pouchieu et al., 2018; 

Seidler et al., 1996). This heightened risk is strongly suspected to be associated with chronic 

exposure to pesticides and herbicides, environmental toxins that have been linked to 

neurodegenerative processes. Such findings underscore the multifactorial nature of PD, 

where both genetic and environmental factors converge to influence disease pathogenesis 

(Kline et al., 2021; Tsalenchuk et al., 2023; Yuan et al., 2022). 

Recent advancements in molecular genetics have underscored the intricate interplay 

between genetic predispositions, aging, and environmental exposures in the pathogenesis 

of PD. These studies illuminate how specific genetic variants, when combined with the 

natural aging process and environmental factors such as toxin exposure, can significantly 

increase the risk of developing PD. Among these contributing factors, an emerging and 

compelling body of research has highlighted the critical role of gut microbiome dysbiosis in 
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both the onset and progression of PD (Miyauchi et al., 2022; Nie & Ge, 2023; K. Zhang et 

al., 2022).  This dysbiosis, or imbalance in the gut microbiota, has been increasingly 

recognized as a key player in PD pathogenesis, suggesting that the disease is not merely 

confined to the central nervous system (CNS) but also involves significant peripheral 

mechanisms. The gut-brain axis, a sophisticated and bidirectional communication network 

that links the gastrointestinal tract and the CNS, is central to this evolving understanding. 

This axis enables the gut microbiome to influence brain function and behavior, while also 

allowing the brain to affect gastrointestinal processes. Emerging evidence suggests that 

disruptions of the gut-brain communication pathway, often mediated by microbiome 

alterations, can contribute to the neuroinflammatory and neurodegenerative processes 

characteristic of PD (Boertien et al., 2022; Cryan & Dinan, 2012; Hashish & Salama, 2023; 

Z. Li et al., 2023). This growing recognition of the gut-brain axis in PD represents a paradigm 

shift, broadening the scope of PD research and treatment from a disorder traditionally 

viewed as being limited to the CNS to one that involves systemic interactions, particularly 

those involving the gastrointestinal tract. By considering the gut microbiome and its 

influence on the CNS, researchers and clinicians are beginning to appreciate the 

multifaceted nature of PD, which may pave the way for novel therapeutic strategies 

targeting not just the brain, but also the gut and its microbial inhabitants. This holistic 

approach could potentially offer new avenues for early intervention and a more 

comprehensive management of the disease, ultimately improving patient outcomes. 

PD Etiology, Pre-clinical, Prodromal and Clinical stages 

To frame the discussion of PD etiology in a broader context, it's important to start by 

addressing the concept of prodromal stages in the disease's progression. One of 

characteristic features of PD is the aggregation of !-synuclein, a protein that abnormally 

accumulates and forms Lewy bodies in the nervous system (Cheng et al., 2023). The 

pathological process begins years before the onset of motor symptoms, during what is 

known as the prodromal phase (Fig. 2). During this phase, aggregation of misfolded !-

synuclein, which is thought to play a major role in nigral dopaminergic neuronal loss, often 

starts in the enteric nervous system (ENS), part of the peripheral nervous system located 

in the gastrointestinal tract (Beach et al., 2016; Fricova et al., 2020; W. Liu et al., 2022; 

Mahbub et al., 2024; Mu et al., 2015; Ortiz de Ora et al., 2024; Wakabayashi et al., 1990). 

This early involvement of the ENS is crucial, as it suggests that the pathological process of 

PD may begin in the gut and then spread to the central nervous system via the vagus nerve 

(Braak et al., 2003). The presence of !-synuclein in the ENS can lead to various 
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gastrointestinal symptoms, such as constipation, which are common in the prodromal stage 

of PD (Warnecke et al., 2022). As the disease progresses, !-synuclein pathology spreads 

to other parts of the nervous system, including the brainstem and the olfactory bulb, leading 

to non-motor symptoms such as olfactory dysfunction and sleep disturbances (Dodet et al., 

2024; Gu et al., 2024). 

One of the most notable non-motor symptoms that often occurs during the prodromal stage 

is rapid eye movement (REM) sleep behavior disorder. Isolated REM sleep behavior 

disorder (iRBD) is a parasomnia characterized by the loss of normal muscle atonia during 

REM sleep, which leads to the physical enactment of dreams. Typically, during REM sleep, 

the body is in a state of muscle paralysis – a mechanism that prevents individuals from 

acting out their dreams. However, iRBD is characterized by the loss of normal muscle atonia 

during REM sleep, leading to the enactment of vivid and often violent dreams. The clinical 

significance of iRBD extends far beyond its impact on sleep quality. Over the past few 

decades, a substantial body of evidence has emerged demonstrating that iRBD is not 

merely an isolated sleep disorder but is predictive of future neurodegenerative diseases, 

particularly synucleinopathies such as PD (Figorilli et al., 2023; Shrestha et al., 2021). 

Among these, PD is the most common disorder associated with iRBD, with longitudinal 

studies showing that a significant proportion of patients with iRBВ – ranging from 40% to 

80% – develop PD within ten years from the initial iRBD diagnosis (Galbiati et al., 2019; 

Iranzo et al., 2014; Postuma et al., 2009, 2015). 
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Figure 2. Progression of clinical symptoms from the initial prodromal phase to the confirmed 

diagnosis of PD. Adapted from Ravenhill et al., 2023. 

This prodromal phase, characterized by neurodegeneration without overt motor symptoms, 

is crucial for identifying potential disease-modifying interventions. Isolated REM sleep 

behavior disorder is a key prodromal marker for PD and other synucleinopathies, indicating 

an underlying neurodegenerative process that may lead to the full development of PD. As 

the disease advances, three major pathological features emerge: the progressive loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) (Mamelak, 2018), the 

formation of Lewy bodies composed primarily of aggregated !-synuclein (Tanei et al., 2021; 

Wakabayashi et al., 1990), and pervasive neuroinflammation (Muzio et al., 2021; Sampson 

et al., 2016). The loss of dopaminergic neurons results in a significant reduction in 

dopamine, a neurotransmitter essential for motor function regulation, leading to the classical 

motor symptoms of PD, such as bradykinesia, tremor, and rigidity. Lewy bodies, abnormal 

intracellular inclusions primarily consisting of aggregated !-synuclein, are a pathological 

hallmark of PD. The exact role of !-synuclein in PD, its genetic links, and its contribution to 

neurodegeneration remain active areas of research, with ongoing studies aiming to clarify 

how these aggregates contribute to the disease's progression (Braak et al., 2003; Spillantini 

& Goedert, 2018).  

Dopamine and Glutamate Metabolism Dysregulation 

Impaired dopamine metabolism is a critical aspect of PD pathogenesis, contributing 

significantly to the neurodegenerative processes observed in this disorder. (Masato et al., 

2019; Scheffer et al., 2021) The dysregulation of dopamine homeostasis in PD leads to the 
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accumulation of toxic metabolites, particularly 3,4-dihydroxyphenylacetaldehyde (DOPAL) 

(Mattammal et al., 1995). DOPAL is a highly reactive aldehyde that can modify functional 

protein residues, leading to oxidative stress and neuronal cell death (Bisaglia et al., 2014). 

Furthermore, DOPAL interacts with α-synuclein, and this interaction promotes the 

oligomerization and aggregation of α-synuclein, further impairing neuronal function and 

survival (Masato et al., 2019; Mor et al., 2017, 2019). This metabolite is especially 

detrimental to dopaminergic neurons in the substantia nigra (Masato et al., 2019). The 

interplay between dopamine metabolism abnormalities and mitochondrial defects are also 

relevant to PD (Xu & Yang, 2022). The catabolism of dopamine involves mitochondrial 

processes that produce reactive oxygen species (ROS). Under physiological conditions, the 

rate of dopamine oxidation is slow, and the cellular antioxidant machinery can manage the 

formation of reactive products. However, in PD, the increased oxidative stress overwhelms 

these protective mechanisms, leading to mitochondrial damage and further impairing 

cellular energy metabolism (Xu & Yang, 2022). This interplay between dopamine 

metabolism and mitochondrial dysfunction creates a vicious cycle that exacerbates 

neuronal degeneration in PD. 

While PD has traditionally been conceptualized as a disorder primarily driven by 

dopaminergic deficits, it is now increasingly recognized that disturbances in glutamatergic 

neurotransmission also play a critical role in the disease’s progression. Research has 

shown that alterations in glutamate signaling are not merely secondary consequences but 

are integral to the pathological cascade that exacerbates neurodegeneration in PD (Blandini 

et al., 1996) (Fig. 3). In PD, the regulation of glutamate release and receptor activity is 

significantly impacted by the loss of dopamine. Dopamine typically inhibits the release of 

glutamate in certain brain regions. However, in PD, the degeneration of dopaminergic 

neurons in the substantia nigra and the resulting depletion of dopamine cause an 

overactivity of glutamate in the basal ganglia, which is neurotoxic (Blandini, 2010; J. Wang 

et al., 2020). 

Glutamate, a pivotal neurotransmitter within the central nervous system, plays a significant 

role in the onset and progression of PD. As the primary excitatory neurotransmitter in the 

mammalian brain, glutamate is integral to many essential functions and metabolic 

processes. The precise regulation of excitatory and inhibitory neuronal activity is vital for 

maintaining normal brain function, and disruptions in this balance can have profound 

pathological consequences. Excessive activation of glutamate receptors, particularly in 

nigrostriatal neurons, may induce neuronal death through a mechanism known as 

glutamate-induced excitotoxicity (Bergman et al., 1994). This pathological condition arises 
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when there is an excessive release of glutamate from presynaptic terminals or a failure in 

the reuptake mechanisms, resulting in an abnormal accumulation of extracellular glutamate 

(Lin et al., 2012). 

Elevated extracellular glutamate levels lead to the hyperactivation of NMDA receptors, 

which are permeable to calcium ions, culminating in calcium overload within the neurons. 

This calcium overload triggers excitotoxic damage, a process characterized by the 

activation of deleterious enzymatic pathways, the generation of toxic free radicals, and the 

disruption of cellular energy production. Such excitotoxicity is further aggravated by the 

activity of microglia and astrocytes, which, under pathological conditions, release additional 

glutamate, thereby exacerbating neuronal injury (Wetherington et al., 2008). The sustained 

elevation of intracellular calcium levels, driven by this glutamate surge, activates enzymes 

that further damage cellular structures, leading to oxidative stress and, ultimately, cell death. 

Beyond the receptor-mediated excitotoxicity, elevated glutamate levels can also provoke 

oxidative stress through non-receptor-mediated mechanisms, contributing to what is termed 

oxidative glutamate toxicity (Shirlee Tan et al., 2001). 

Figure 3. Mechanisms of glutamate toxicity in PD. Dysregulation of synaptic glutamate 

levels can result in excitotoxicity, where excessive glutamate accumulation leads to 

neurotoxicity and ultimately cell atrophy or death. 
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Previous studies have implicated glutamate excitotoxicity as a contributing factor in the 

degeneration of dopaminergic neurons, a hallmark of PD (Meredith et al., 2009). Clinical 

investigations have revealed subtle alterations in glutamate levels within the brains of PD 

patients, indicative of enhanced glutamate neurotransmission (Gröger et al., 2014; 

O’Gorman Tuura et al., 2018; Weingarten et al., 2015). While the exact causal relationship 

between these alterations in glutamate-related pathways and neurodegeneration in PD 

remains to be fully elucidated, it is clear that both inflammation and glutamate-induced 

excitotoxicity are central to the pathophysiology of PD. The resultant dopamine deficit linked 

to increased neurotoxicity of glutamate further exacerbates this pathological cycle, 

establishing a self-perpetuating loop that accelerates the neurodegenerative process,  (dos-

Santos-Pereira et al., 2018; J. Wang et al., 2020). 

In the gastrointestinal tract, glutamate originates from several key sources: it is ingested 

through the diet, produced by the gut microbiota, and synthesized endogenously by gut 

epithelial cells (Reeds et al., 2000). This versatile neurotransmitter plays a pivotal role in 

various gastrointestinal functions, including the regulation of gut motility and secretion, as 

well as the maintenance of the intestinal barrier's integrity. These functions are mediated 

through interactions with specific glutamate receptors, such as NMDA and AMPA receptors, 

which are distributed along the gut lining (Hamnett et al., 2024). The influence of the gut 

microbiota on glutamate levels and metabolism is profound, with certain bacterial species 

actively participating in the synthesis and conversion of glutamate into other bioactive 

compounds, such as gamma-aminobutyric acid (GABA) and short-chain fatty acids (SCFAs) 

(Strandwitz, 2018). This microbial activity is essential not only for maintaining gut health but 

also for the proper functioning of the gut-brain axis – a sophisticated, bidirectional 

communication network that integrates gut physiology with central nervous system 

processes. Glutamate signaling within the gut has significant implications for brain function, 

primarily via peripheral neural pathways and the vagus nerve, which conveys signals 

directly between the gut and the brain. Additionally, glutamate or its metabolites may cross 

the blood-brain barrier through humoral pathways, subsequently modulating 

neurotransmission within the central nervous system (Baj et al., 2019). The delicate balance 

of glutamate within the gut, and its broader impact on brain health, highlights the importance 

of the gut-brain axis in the pathogenesis of PD. Disruptions in this balance, whether due to 

microbial dysbiosis or other factors, may contribute to the progression of PD, emphasizing 

the critical role of gut-derived glutamate in the disease's underlying mechanisms. 

Glutamate, a key amino acid in neurotransmission, exists as two enantiomers: L-glutamate 

and D-glutamate. L-glutamate is a versatile amino acid that provides the umami taste in 
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foods and serves as a key player in metabolism and neurotransmission (Yamaguchi, 1991). 

It is crucial for amino acid and carbohydrate metabolism, impacting various cells like 

intestinal, liver, muscle, and immune cells (Kondoh et al., 2009). As the main excitatory 

neurotransmitter in the brain, it is vital for learning and memory (Meldrum, 2000). L-

glutamate receptors are found in gut epithelial cells, which, when stimulated, activate vagal 

afferent nerve fibers and influence brain regions such as the cerebral cortex, basal ganglia, 

limbic system, and hypothalamus (Kondoh & Torii, 2008; M. T. Liu et al., 1997; Tsurugizawa 

et al., 2008). Therefore, L-glutamate has importance in both dietary and physiological 

functions. D-glutamate is less common and primarily found in the peptidoglycan cell wall of 

bacteria and certain fermented foods (Cava et al., 2011; Marcone et al., 2019). Unlike L-

glutamate, D-glutamate is not commonly involved in human metabolic processes or 

neurotransmission, and its role in neurocognitive function remains unclear (Marcone et al., 

2019). Another molecule related to L- and D-glutamate is β-glutamate. Although β-

glutamate is structurally distinct from L- and D-glutamate due to the position of its amino 

group, it shares the fundamental glutamate backbone with the other two forms. Given the 

established implications of glutamate excitotoxicity in the pathogenesis of PD, the study of 

β-glutamate emerges as a particularly promising avenue of research. β-glutamate, which 

has been identified for its role as an osmolyte in archaea and its involvement in specific 

enzymatic reactions, presents several intriguing possibilities for enhancing our 

understanding of gut-brain interactions and neurodegenerative diseases. Its function as a 

substrate for glutamine synthetase, although with reduced efficiency compared to other 

substrates, underscores its biochemical versatility and potential implications for metabolic 

processes (Robinson et al., 2001a). Additionally, its established role in maintaining cellular 

integrity under conditions of osmotic stress highlights its importance in microbial metabolism 

and gut function (Robertson et al., 1990a). 

Microbiome Links to PD: From Theory to Evidence 

In the context of PD, the concept of the gut-brain axis offers a crucial physiological 

framework for understanding how gut microbiota might influence neurological health. This 

axis facilitates communication between the gut and brain through various pathways, 

including neural, endocrine, and immune routes. Gut microbes can modulate brain function 

and behavior by affecting immune responses, neurotransmitter production, and metabolism, 

all of which have implications for neurodegenerative conditions such as PD.  

The involvement of the gut microbiome in PD is further supported by the Braak hypothesis, 

which posits that PD pathology might originate in the gut before spreading to the brain via 
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the vagus nerve (Braak et al., 2003; Morais et al., 2020; Schmit et al., 2023). One proposed 

mechanism involves the bacterial amyloid protein curli, which can enhance the misfolding 

and aggregation of !-synuclein in the gut. Curli, produced by certain gut bacteria, can cross-

seed with !-synuclein, promoting its aggregation into pathogenic forms (Chen et al., 2016; 

C. Wang et al., n.d.). This misfolded !-synuclein can then propagate in a prion-like manner, 

traveling from the gut to the brain via the vagus nerve, contributing to the neurodegenerative 

processes observed in PD. This hypothesis is bolstered by clinical observations that 

gastrointestinal symptoms, such as constipation, often precede the onset of motor 

symptoms in PD by several years. These early non-motor symptoms suggest that 

alterations in the gut microbiome could serve as potential early biomarkers for PD, thus 

shifting the focus of research from solely the brain to include peripheral systems like the 

gastrointestinal tract. 

A growing number of clinical studies have provided compelling evidence linking gut 

microbiome alterations to PD (Heintz-Buschart & Wilmes, 2018; Z. Li et al., 2023; X. Zhang 

et al., 2023). These studies consistently reveal patterns of dysbiosis in PD patients, with 

specific microbial taxa either increased or decreased in abundance compared to healthy 

controls. One of the most frequently reported findings is the increase in the family 

Verrucomicrobiaceae, particularly the genus Akkermansia, in PD patients. Several studies 

have documented elevated levels of Akkermansia muciniphila in individuals with PD, 

suggesting that this bacterium may play a significant role in the disease's pathology  

(Barichella et al., 2019; Bedarf et al., 2017; Heintz-Buschart et al., 2018). The increase in 

Akkermansia might reflect a compensatory response to the maintenance of gut barrier 

integrity, which is often compromised in PD, potentially leading to an enhanced permeability 

of the gut lining and subsequent systemic inflammation. Moreover, other microbial families 

such as Lactobacillaceae and Enterobacteriaceae have also been reported to be increased 

in PD. These taxa are known for their roles in immune modulation and have been implicated 

in inflammatory processes that may exacerbate neurodegeneration in PD (Barichella et al., 

2019; Scheperjans et al., 2015; Tan et al., 2021). 

Conversely, a consistent decrease in the family Prevotellaceae, especially the genus 

Prevotella, has been observed in multiple studies (Aho et al., 2019; Bedarf et al., 2017). 

Prevotella species are involved in the production of SCFAs, which have neuroprotective 

effects. The reduction in Prevotellaceae suggests a disruption in SCFA production, 

potentially contributing to the neurodegenerative processes observed in PD. Additionally, 

genera such as Roseburia and Faecalibacterium, which are crucial producers of the SCFA 

butyrate – a compound with well-documented anti-inflammatory properties – have also been 
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found to be decreased in PD patients (Aho et al., 2019; Cirstea et al., 2020). This decrease 

may be associated with the heightened inflammatory state that characterizes PD, further 

underscoring the potential link between gut dysbiosis and the progression of the disease. 

Studies reveal that while there may not be significant differences in alpha-diversity – an 

indicator of the variety of microbial species within an individual – between PD patients and 

healthy controls, there is often a trend towards reduced alpha-diversity in PD, suggesting a 

potential loss of microbial richness and complexity (Y. Qian et al., 2018, 2020; K. Zhang et 

al., 2022). This reduction in diversity could imply a diminished resilience of the gut 

microbiome, making it more susceptible to imbalances and potentially contributing to 

disease progression. In terms of beta diversity, which measures the differences in microbial 

communities between individuals, several studies have reported significant differences 

between PD patients and healthy controls. These findings indicate that PD is associated 

with a distinct microbial composition, further supporting the notion that gut dysbiosis plays 

a role in the disease (W. Li et al., 2017; Scheperjans et al., 2015; Wallen et al., 2022). 

The consistent alterations in specific microbial taxa, such as the increase in pro-

inflammatory bacteria like Akkermansia and Enterobacteriaceae, and the decrease in 

beneficial, SCFA-producing bacteria such as Prevotella, Roseburia, and Faecalibacterium, 

underscore the potential role of the gut microbiome in fostering a pro-inflammatory 

environment that may contribute to the pathogenesis of PD. These microbial changes 

suggest that the gut microbiome could be a crucial factor in the development and 

progression of PD, potentially offering new avenues for early diagnosis and therapeutic 

interventions. 

In addition to bacteria, the gut microbiome encompasses archaea, which have been 

reported to exhibit higher abundances in patients with PD. Notably, methanogenic archaea, 

such as Methanobrevibacter smithii, have been identified in increased numbers within the 

gut microbiota of individuals with PD (Cem Duru et al., 2024; Romano et al., 2021; Wallen 

et al., 2022b; F. Zhang et al., 2020). These methanogens are integral to methane 

production, a process that can influence gut motility and is associated with gastrointestinal 

symptoms frequently observed in PD, such as constipation (Sharma et al., 2020). Among 

the various methanogenic phylotypes, M. smithii is particularly significant, contributing to 

over 90% of methane production. The abundance and proportion of M. smithii in stool 

samples correlate strongly with the amount of breath methane in patients with irritable bowel 

syndrome (IBS) (Ghoshal et al., 2016; G. Kim et al., 2012). 
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The emerging evidence linking the gut microbiome to PD highlights the significant role that 

the gut-brain axis plays in neurodegeneration. The consistent patterns of microbial 

alterations observed in PD patients across multiple studies point to gut dysbiosis as a 

contributing factor to the disease’s progression, possibly through mechanisms involving 

neuroinflammation, immune modulation, the disruption of SCFA production, and the role of 

bacterial amyloid protein curli in promoting the misfolding and aggregation of !-synuclein. 

As research continues to explore these connections, it becomes increasingly clear that 

understanding the gut microbiome's role in PD could lead to the development of 

microbiome-based biomarkers for early detection and novel therapeutic strategies aimed at 

modulating gut health to slow or prevent disease progression. 

Meta-omics for Microbiome Research 

The study of the microbiome has evolved significantly over the past few decades, driven by 

advancements in sequencing technologies and computational methods. Initially, 

microbiome research relied heavily on culture-based techniques, which were limited by the 

inability to grow many microbial species in the laboratory. The advent of metagenomics in 

the early 2000s marked a pivotal shift, allowing researchers to analyze microbial 

communities directly from environmental samples without the need for culturing (X. Zhang 

et al., 2019). This breakthrough enabled the identification and characterization of a vast 

array of previously unrecognized microbial species. 

Meta-omics, encompassing metagenomics, metatranscriptomics, metaproteomics, and 

metabolomics, represents a comprehensive approach to studying the microbiome. This 

integrative methodology allows for a holistic understanding of microbial communities and 

their functional roles within various ecosystems, including the human gut. Leveraging 

multiple omics technologies allows to elucidate the complex interactions between microbes 

and their hosts, providing insights into health and disease states. 

Recent advancements in meta-omics have significantly enhanced our ability to study 

microbial communities in a detailed and integrative manner. Meta-omics combines various 

omics approaches to provide a comprehensive view of the microbiome, encompassing 

genetic, transcriptomic, proteomic, and metabolomic data (T. Ma et al., 2019; L. Wang et 

al., 2022). 

This integrative approach has been pivotal in uncovering the complex interactions between 

microbes and their hosts, particularly in the context of human health and disease. Meta-
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omics has in particular been instrumental in identifying biomarkers for disease diagnosis 

and monitoring, as well as understanding the functional roles of microbial communities in 

different environments (T. Ma et al., 2019). By integrating meta-omics with other advanced 

technologies, researchers can achieve a more nuanced understanding of microbial 

ecosystems, ultimately leading to better diagnostic tools and therapeutic strategies. 

Recent advances in MG have significantly enhanced our understanding of microbial 

communities (Lema et al., 2023; L. Zhang et al., 2021). These technologies enable rapid 

and detailed analysis of microbial diversity, community structure, genetic relationships, and 

functional potential. Metagenomics has been instrumental in identifying novel and 

uncultivable microorganisms, providing insights into microbial interactions and their roles in 

various environments. For instance, functional metagenomics allows for the screening of 

new bioactive substances and functional genes from microbial communities (L. Zhang et 

al., 2021). Despite these advancements, challenges remain, such as the inability to 

determine gene expression levels and the dynamic responses of microbial communities to 

environmental changes (Lema et al., 2023). By integrating MG with other omics 

approaches, such as MT, researchers can gain a more holistic understanding of microbial 

ecosystems, bridging the gap between genetic potential and actual functional activity. 

To address these challenges, MT analyzes RNA transcripts in a sample, providing a 

dynamic view of gene expression within the microbiome. This approach identifies which 

microbial genes are actively transcribed under specific conditions, offering insights into the 

functional state of the microbial community. RNA sequencing (RNAseq) is employed to 

capture expressed transcripts within a microbiome at a particular time, allowing for a 

detailed view of active microbial members. Applications of metatranscriptomics include 

characterizing active microbes in a community, uncovering novel microbial interactions, 

detecting regulatory antisense RNA, and monitoring gene expression to elucidate the 

relationship between viruses and their hosts (Bao et al., 2015; Bashiardes et al., 2016; Bikel 

et al., 2015; Moniruzzaman et al., 2017). 

Metaproteomics (MP) extends the analysis of microbial communities by examining their 

protein expression, thereby providing detailed functional information about the dynamic 

interactions between hosts and their microbiota. Proteins, as the functional molecules 

executing the biological activities encoded by genes, offer insights into the actual functional 

output of the microbiome. Consequently, metaproteomics has emerged as a crucial 

complementary approach to metagenomics, focusing on the large-scale characterization of 

proteins from environmental microbiota, such as those found in the human gut (Van Den 
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Bossche et al., 2021). This approach underscores the importance of integrating multiple 

omics techniques to capture the full spectrum of microbial activity, thereby providing a more 

comprehensive understanding of microbial functions and their impact on host health. 

Metabolomics (MB), the study of small molecules and metabolites produced by microbial 

communities, provides insights into the biochemical interactions between microbes and 

their hosts. It is a key technology for detecting and identifying small molecules produced by 

the human microbiota and understanding their functional roles. By examining the complete 

set of metabolites produced by microbial communities, metabolomics reflects their 

metabolic activity and interaction with the host. This approach helps identify microbiome-

derived metabolites that may serve as biomarkers or modulators of disease(David et al., 

2014; Hanash et al., 2011; Lanpher et al., 2006). In PD studies, metabolomics can reveal 

alterations in key metabolites, such as short-chain fatty acids and bile acids, elucidating 

their roles in disease mechanisms and overall host health (Morrison & Preston, 2016; 

Zacharias et al., 2022). 

The integration of these meta-omics approaches, as demonstrated in studies of the human 

gut microbiome, allows for a more comprehensive understanding of the microbial 

ecosystem. For example, in a study of familial type 1 diabetes, researchers employed 

metagenomic, metatranscriptomic, and metaproteomic analyses to investigate the gut 

microbiota’s taxonomic and functional attributes (Heintz-Buschart et al., 2016). The study 

demonstrated that gastrointestinal microbiome community structures are consistent across 

all omic levels, with each level showing individuality and family specificity. This work 

highlights the need for integrated multi-omic analyses to understand host-microbe 

interactions in health and disease. Moreover, meta-omics has been instrumental in 

advancing our understanding of drug-microbiome interactions. Recent studies have shown 

that the gut microbiome can influence drug metabolism, efficacy, and toxicity (Kolli et al., 

2023; Wuyts et al., 2023; Q. Zhao et al., 2023). By integrating meta-omics data, researchers 

can identify microbial genes and pathways involved in drug metabolism, paving the way for 

personalized medicine approaches that consider an individual's microbiome structure and 

function. 

The study of the human microbiome through meta-omics has revolutionized our 

understanding of the complex microbial ecosystems residing within us. Meta-omics 

encompasses a suite of high-throughput techniques that collectively analyze the genetic 

material, transcripts, proteins, and metabolites of microbial communities. This 

comprehensive approach allows researchers to capture the full breadth of microbial 
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diversity and function, providing insights into how these communities interact with their host 

and influence health and disease. By integrating data from metagenomics, 

metatranscriptomics, metaproteomics, and metabolomics, scientists can construct detailed 

models of microbial ecosystems, elucidating the roles of specific microbes and their 

metabolic pathways in various physiological processes. This holistic perspective is crucial 

for understanding the dynamic nature of the microbiome and its impact on human health. 

In conclusion, meta-omics provides a powerful framework for microbiome research, 

enabling the simultaneous analysis of microbial composition, gene expression, protein 

function, and metabolic activity. By integrating these diverse datasets, researchers can gain 

a deeper understanding of the microbiome’s role in health and disease, paving the way for 

novel therapeutic strategies and personalized medicine. 

Biological Networks 

Biological networks provide a powerful and systematic framework for understanding the 

intricate interactions and functional relationships within microbial communities and various 

biological systems. By integrating diverse omics data with interactome data, including 

protein-protein interactions and gene-gene associations, network biology uncovers complex 

patterns that are often hidden in traditional, linear analyses. The application of network 

approaches has become indispensable across nearly all domains of science, particularly in 

the life sciences, where capturing the inherent complexity of biological systems is crucial 

(Bray, 2003; Koonin et al., 2002; Wall et al., 2004). These networks function at multiple 

spatial scales, from molecular interactions within cells to ecosystem-level interactions (Fang 

et al., 2020; Luck et al., 2020). In particular, on a broader ecological scale, networks that 

represent interactions between species within ecosystems have provided essential insights 

into keystone species and their roles in conservation efforts (Bascompte, 2010; Roume et 

al., 2015). Within cells, biological processes are intricately regulated at multiple levels, 

involving complex networks of transcriptional, post-transcriptional, and post-translational 

events. The network approach allows researchers to move beyond gene-centric analyses 

and adopt a more holistic, systems-oriented examination of biological data. This shift 

emphasizes the interactions and relationships between biological entities – such as genes, 

proteins, and metabolites – offering a more comprehensive understanding of how these 

elements coordinate to drive overall cellular functions (Barabási & Oltvai, 2004).  

Traditional genome-wide omics studies generate lists of genes or their products that exhibit 

significant alterations under specific conditions. However, focusing solely on individual 
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genes or proteins in complex systems, such as environmental samples, can lead to the 

oversight of broader, unexpected relationships between genes or even entire pathways. In 

contrast, network biology recognizes that biological processes are not predominantly 

governed by isolated proteins or linear pathways but are controlled by intricate networks of 

molecular interactions at the system level (Gardy et al., 2009). Furthermore, network 

medicine theory expands on this concept by suggesting that disease-associated traits arise 

not from isolated single gene genetic variants, but from disruptions within the broader 

network context of genes (Charitou et al., 2022; Kennedy et al., 2020). Therefore, not all 

disease-related phenotypes are caused by genetic variants in single genes functioning 

independently, but instead stem from disturbances in the complex network of gene 

interactions . Understanding the connections, nodes, and patterns within these networks is 

crucial for understanding the broader context of gene function and the manifestation of 

complex phenotypes in both health and disease. 

A network-based approach is a highly effective complement to traditional functional 

annotation methods, such as enrichment analyses. Techniques like gene set enrichment 

analysis (GSEA), which ranks gene sets based on factors like differential expression, rely 

heavily on well-annotated gene sets. While these methods are useful, they can miss 

important connections between functionally related genes, especially when gene sets share 

few overlapping genes but are involved in similar pathways or represent different 

subcomponents of the same biological process. Moreover, the sensitivity of these analyses 

is often constrained by the size of the gene set. In contrast, network-based methods model 

interactions between genes, proteins, and molecules rather than treating them as isolated 

entities. They capture relationships that enrichment analyses might overlook by linking well-

annotated and poorly annotated elements, thus integrating diverse biological mechanisms. 

Examples include the use of protein-protein interaction data to predict protein functions 

based on the annotations of interacting partners (Deng et al., 2004), the application of 

pathway enrichment analysis with networks (L. Liu et al., 2017), and the prediction of protein 

functions via network-derived clusters (Song & Singh, 2009). Additionally, proximity-based 

methods in gene networks can reveal associations between gene sets and biological 

functions (Glaab et al., 2012). By incorporating expression data with cellular network 

information, like protein-protein and protein-DNA interactions, we can reveal the regulatory 

mechanisms behind these changes (Cline et al., 2007). Network analyses provide a broader 

and less biased view of genes and proteins, avoiding the overemphasis on well-

characterized pathways. This approach allows for a more comprehensive understanding of 

biological systems by highlighting novel and significant components that might be 
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overlooked in traditional studies (Charitou et al., 2016). Therefore, networks are particularly 

valuable for predicting the functions of uncharacterized genes or proteins based on their 

interactions with known entities, aiding in the annotation of newly discovered or poorly 

understood components . 

Types of Biological Networks 

There are several distinct types of biological networks, each representing different aspects 

of cellular processes: protein-protein interaction networks, genetic interaction networks, 

regulatory networks, signaling networks, and metabolic networks. Despite their focus on 

different cellular functions, these networks share common organizational and functional 

principles. Protein-protein interaction  networks illustrate the physical interactions between 

proteins, highlighting the collaborative nature of proteins in executing cellular functions. 

These networks are essentially representations of how proteins interact with one another 

within the cellular environment, encompassing all the proteins and their interactions 

(Vazquez, 2010). Through the study of protein-protein interaction networks, researchers can 

explore specific protein interactions, protein complexes, and signaling cascades. Genetic 

interaction networks describe the relationships between genes, particularly how the 

modification of one gene can influence the expression or function of another gene (Boucher 

& Jenna, 2013). Genetic interaction networks indicate that two genes have a functional 

relationship, which may manifest through their involvement in the same biological processes 

or pathways, or through compensatory mechanisms with functions that may not be 

immediately apparent. Gene regulatory networks focus on the interactions between 

transcription factors and their target genes, shedding light on the mechanisms that regulate 

gene expression. These networks integrate multiple elements of gene regulation, including 

transcription factors, splicing factors, long non-coding RNAs, microRNAs, and metabolites 

(Badia-i-Mompel et al., 2023). Cell signaling networks map out the pathways through which 

cells communicate and respond to external stimuli. These networks involve a series of 

molecular interactions that relay signals from the cell membrane to the nucleus, 

orchestrating cellular responses to environmental changes (Azeloglu & Iyengar, 2015). 

Metabolic networks are complex systems that outline the biochemical reactions occurring 

within a cell (Nikoloski et al., 2008). They illustrate the interconnectedness and regulation 

of various metabolic pathways, providing insights into cellular metabolism and its 

implications for health and disease. These networks encompass all reactions an organism 

can perform, the metabolites involved as substrates and products, and the genes encoding 

the enzymes that facilitate these reactions (Chalancon et al., 2013). 
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In the study of biological systems, large-scale networks such as networks inferred from 

gene expression data offer significant advantages over analyzing individual biological 

entities in isolation. Gene co-expression networks, for example, represent gene-gene 

interactions as undirected graphs, where nodes denote genes and edges reflect the 

strength of their co-expression. Within this framework, weighted gene co-expression 

network analysis (WGCNA) emerged as a key method in systems biology. WGCNA is 

instrumental in constructing these networks, identifying gene modules, and determining 

central hub genes (Chang et al., 2010; Wan et al., 2018; B. Zhang & Horvath, 2005). 

WGCNA enhances the understanding of gene interactions, highlights key regulatory genes, 

and aids in predicting the functions of previously unknown genes. This method provides a 

deeper insight into gene expression networks, complementing the broader biological 

networks discussed above. The distinct advantage of WGCNA lies in its ability to convert 

gene expression data or other omics data such as proteomic (J. X. Wu et al., 2023), 

metabolomic (Pei et al., 2017), 16S rRNA amplicon sequencing data (Jameson et al., 2023) 

into co-expression modules, thereby facilitating the exploration of signaling networks 

potentially associated with phenotypic traits of interest (Langfelder & Horvath, 2008). 

Networks Topology and Metrics 

Numerous mathematical and computational approaches have been developed to analyze 

large networks to identify features of interest. In the realm of biological networks, these 

analytical approaches are essential for uncovering the underlying architecture and 

identifying key elements that govern complex biological processes. The intricate web of 

interactions within these networks can be difficult to decipher, but by applying network 

analysis techniques, it is possible to pinpoint critical nodes and pathways that play 

significant roles in the functionality and stability of these biological systems. 

One of the most powerful and widely used methods in this context is centrality analysis, 

which provides valuable insights into the importance of individual nodes within a given 

network (Bloch et al., 2023). Given that our analyses involve microbiome data, it’s crucial 

to consider the topological features of ecological networks. These networks quantify the 

structure of ecological interactions, consisting of nodes (representing entities like genes or 

species) and edges (representing interactions or relationships between these entities). In 

our specific study, “The gut microbiome gene expression network is dysregulated in 

individuals with Parkinson’s disease” we use KEGG KOs as nodes and co-expression ratios 

between genes as edges. To characterize the system at the level of individual nodes or 

edges, we employ various network centrality metrics. These metrics help us understand the 
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importance and influence of each node or edge within the network, drawing on established 

network centrality metrics (Bonacich, 1987; Costa et al., 2019; Lau et al., 2017; Wasserman 

& Faust, 1994). 

Centrality analysis stands out as a crucial tool for investigating complex biological networks. 

It helps to identify key elements in biological processes (Koschützki & Schreiber, 2008). The 

most common centrality measures used in biological network analysis are degree centrality, 

closeness centrality, and betweenness centrality. Studies have shown that the mean 

centrality values for these measures are significantly higher for essential proteins compared 

to nonessential proteins (Hahn & Kern, 2005). In addition to these centrality measures, other 

metrics such as clustering coefficient, connectivity, and eigenvector centrality provide 

further insights into network topology and function. These metrics allow for a more nuanced 

analysis of how nodes interact, the formation of modules, and the overall flow of information 

within the network, thereby enriching our understanding of biological systems . 

Degree centrality evaluates the importance of a node based on its number of connections 

(Ashtiani et al., 2018; Jeong et al., 2001a). It is one of the most widely used metrics and 

has been linked to various dynamic processes in diseases (Checco et al., n.d.; Opsahl et 

al., 2010). Although it provides insight into a node's connectivity, it can miss important 

aspects of network architecture, such as nodes that bridge different parts of the network but 

have a low degree of connections (Bloch et al., 2023). 

Closeness centrality measures the average length of the shortest paths from a node to all 

other nodes, indicating how centrally located a node is within a network (Evans & Chen, 

2022). It is used to assess how effectively information flows from one node to others and to 

identify ideal starting points for information propagation. This measure has been utilized to 

pinpoint important metabolites in genome-based, large-scale metabolic networks (Ashtiani 

et al., 2018). It has been found that the centrality measure is the most effective measures 

in terms of locating the network’s essential genes (Plaimas et al., 2010). 

Betweenness centrality quantifies the proportion of shortest paths passing through a node, 

reflecting its role in communication flow within the network (Barthélemy, 2004). In protein 

interaction networks, high betweenness indicates a protein's potential to facilitate 

communication among various proteins (Bima et al., 2022). Nodes that bridge gaps 

between clusters tend to have high betweenness centrality, highlighting their importance in 

network structure and function (Ravasz et al., 2002). Hub genes are nodes with a high 

degree of connectivity within a network, often playing critical roles in maintaining the 
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structure and function of biological systems. These genes are typically involved in key 

regulatory processes and are essential for the stability of the network. 

Clustering coefficient is a measure that quantifies the extent to which nodes in a network 

tend to cluster together. In a biological context, it indicates the likelihood that a gene’s 

neighbors are also connected to each other, forming tightly knit groups or modules. A high 

clustering coefficient suggests that the network has a modular structure, whereby genes 

within the same module are more likely to be involved in related biological processes. This 

is particularly relevant in gene co-expression networks, where genes within a highly 

clustered module might share similar functions or be co-regulated (Watts & Strogatz, 1998). 

The clustering coefficient has been shown to be associated with network robustness and 

the ability to withstand perturbations, which is crucial in maintaining biological function under 

varying conditions (Pavlopoulos et al., 2011). 

Connectivity in network analysis refers to the degree of interaction or linkage among nodes 

within the network. In gene co-expression networks, connectivity is often used to identify 

hub genes – genes with a high number of connections to other genes. These hub genes 

are generally considered to be critical regulators of biological processes, as they can 

influence the expression and activity of many other genes (B. Zhang & Horvath, 2005).  

Although these genes may not be vital in higher organisms, knock-out experiments in yeast 

have demonstrated that hub genes are crucial for survival (Carlson et al., 2006; Jeong et 

al., 2001). A high connectivity in a gene network often correlates with essentiality, meaning 

that the genes with the most connections are more likely to be crucial for the survival or 

proper functioning of the organism (Jeong et al., 2001). Moreover, changes in the 

connectivity of certain nodes can signal shifts in network dynamics, which may be 

associated with disease states or other biological changes (Nikoloski et al., 2010). 

Theoretical and empirical analyses have shown that intramodular connectivity, focusing on 

connections within specific gene modules in co-expression networks, is a valuable metric 

for identifying key genes (Fuller et al., 2011). This concept has been validated in various 

studies, including those on brain cancer and inflammatory responses (Gargalovic et al., 

2006; Horvath et al., 2006), underscoring the importance of hub genes in understanding 

complex biological processes. 

Eigenvector centrality is a measure that extends the concept of degree centrality by not only 

considering the number of connections a node has but also the importance of the nodes it 

is connected to. This measure assigns relative scores to all nodes in the network based on 

the principle that connections to highly connected nodes contribute more to the score of the 
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node being evaluated (Bonacich, 1987). In biological networks, eigenvector centrality can 

identify influential genes that, while perhaps not the most connected, are linked to other 

highly influential genes, thus playing a pivotal role in the overall network structure. This 

metric is particularly useful in identifying nodes that are central to the flow of information or 

regulation across the network (Golbeck, 2013). 

Numerous mathematical and computational approaches have been developed to analyze 

large biological networks, uncovering their underlying architecture and identifying key 

elements that govern complex biological processes. Centrality analysis, including degree, 

closeness, and betweenness centrality, is a powerful method for pinpointing critical nodes 

and pathways within these networks. These measures help identify essential proteins and 

their roles in maintaining network stability. Additionally, metrics such as clustering 

coefficient, connectivity, and eigenvector centrality provide further insights into network 

topology, revealing modular structures, hub genes, and influential nodes. Together, these 

analytical techniques offer a comprehensive understanding of biological systems, aiding in 

the exploration of network dynamics and their implications for diseases like PD. 
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Results and Discussion of Publications 
Paper 1: Integrated Multi-omics Highlights Alterations of Gut Microbiome 
Functions in Prodromal and Idiopathic Parkinson’s Disease 

Contribution 

• As the shared first author of the paper, I participated in data preparation, 

bioinformatical and statistical analysis, data interpretation, visualization of results, 

and manuscript writing. In addition to preparing and curating all MG and MT data for 

the results, my specific contribution focuses on the metabolic network analysis. This 

includes the result section “Metabolites and metabolites-related genes associated 

with PD are central to microbiome metabolism” and the corresponding discussion. 

• Responsible for the creation of visual elements of the manuscript, including figures 

2G, 3D,E,F, 4, extended figures 2, 4: 

o Fig. 2G; 3D,E,F; 4; Ext. Fig. 2, 4 – handled the preparation and curation of 

MG and MT data for figure generation. Prepared tables with specific data for 

each plot to visualize the results. Participated in discussions and 

adjustments of results related to the aforementioned figures. 

o Fig. 5 – prepared and curated MG and MT data for the construction of the 

whole-community network, and mapped KEGG KOs to ChEBI identifiers for 

network construction. Visualized the network, highlighting key interactions 

between KEGG KOs corresponding to selected metabolites. Calculated and 

visualized network topology metrics for subnetworks associated with these 

metabolites. 
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Overview of the study 

In our study “Integrated multi-omics highlights alterations of gut microbiome functions in 

prodromal and idiopathic Parkinson’s Disease” we delve into the intricate relationship 

between the gut microbiome and PD by employing an integrated multi-omics approach, 

which includes both meta-metabolomic and metagenomic analyses. The primary objective 

was to explore the functional ramifications of the distinct gut microbiome compositions 

observed in individuals with PD, those in the prodromal phase of the disease (specifically, 

iRBD), and HC. The research is particularly significant as it seeks to bridge the gap in 

understanding how alterations in the gut microbiome may contribute to the pathogenesis 

and progression of PD. 

In the initial phase of the study, meta-metabolomic analyses were conducted to identify 

metabolites that exhibited differential abundance in individuals with PD or iRBD when 

compared to healthy controls. This analysis revealed 11 metabolites with significant 

differences in abundance, among which β-glutamate emerged as a particularly noteworthy 

compound. The levels of β-glutamate were markedly elevated in both PD and iRBD 

individuals, and this elevation was strongly correlated with the transcriptional activity of 

specific bacterial genera, including Akkermansia, Methanobrevibacter, and Clostridium. 

These findings suggest a potential link between gut microbial activity and disruptions in 

glutamate metabolism, which may play a critical role in the neurodegenerative processes 

underlying PD. 

This study further explored the transcriptional activities associated with these metabolic 

changes. It was observed that transcripts related to glutamate metabolism were significantly 

linked to a decrease in the expression of genes involved in flagellar assembly and 

chemotaxis – biological processes essential for microbial motility and immune system 

interaction. This reduction in gene expression was particularly pronounced in PD patients, 

indicating that the dysregulation of these pathways may contribute to the altered immune 

responses and gut-brain communication observed in PD. 

Interestingly, while no significant differences in overall metagenomic diversity were detected 

between PD and iRBD, the study highlighted substantial variations in the transcriptional 

activity of specific microbial taxa. Genera including Roseburia, Blautia, and Eubacterium, 

which are generally reduced in abundance in PD, exhibited altered gene expression 

profiles. These changes in microbial activity were further linked to increased levels of 

metabolites including β-glutamate, isovalerate, and isobutyrate – compounds previously 
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associated with disease severity and progression in PD. The findings emphasize the 

potential impact of these metabolites not only on gut health but also on the central nervous 

system, suggesting a broader role for microbial metabolism in influencing pathways 

involved in neurodegenerative diseases. 

In addition to examining glutamate metabolism, the study also investigated the role of bile 

acids in PD. Bile acids are known to have wide-ranging effects on the immune system, 

metabolism, and CNS function. Our study found that specific bile acids, such as 

chenodeoxycholic acid (CDCA) and glycocholic acid (GCA), were decreased in individuals 

with PD and iRBD, respectively. This reduction in bile acid levels was accompanied by 

decreased expression of bile acid-related transcripts in PD patients, highlighting a potential 

disruption in bile acid metabolism that could contribute to disease progression. Given the 

immunomodulatory properties of bile acids, these findings suggest that alterations in bile 

acid metabolism may play a role in the pathogenesis of PD by influencing immune 

responses and gut-brain interactions. 

The study’s results underscore the importance of focusing on the functional aspects of the 

gut microbiome rather than merely analyzing its taxonomic composition. By integrating 

multi-omics data, the researchers were able to gain a more comprehensive understanding 

of the specific microbial activities and metabolic pathways that are disrupted in PD. The 

findings suggest that the future of microbiome research in the context of neurodegenerative 

diseases like PD may lie in identifying ways to modulate specific microbial functions, with 

the goal of improving our understanding of disease mechanisms and developing targeted 

interventions. 

In conclusion, this study highlights the complex interplay between the gut microbiome, 

metabolic processes, and neurodegeneration in PD. The identification of β-glutamate and 

other metabolites as central players in this interaction, along with the altered transcriptional 

activities of key microbial taxa, provides new insights into the potential mechanisms driving 

PD. These findings pave the way for further research aimed at unraveling the microbiome-

driven factors that contribute to the onset and progression of neurodegenerative diseases, 

with the ultimate goal of identifying novel therapeutic strategies. 
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Abstract 29 

Individuals with Parkinson’s disease (PD) exhibit differences in their gut microbiomes’ 30 

composition compared to healthy controls (HC). The functional consequences of these 31 

differences remain unclear. Here we use an integrated multi-omics approach to resolve the 32 

functional activities of the gut microbiome in prodromal PD (idiopathic REM sleep behavior 33 

disorder, iRBD) and PD compared to HC. Meta-metabolomic analyses identified 11 34 

metabolites that were differentially abundant in PD or iRBD. Based on the robustness of these 35 

discriminant features, they guided our subsequent comparisons. Amongst the identified 36 

metabolites, β-glutamate was significantly increased in individuals with PD or iRBD, and 37 

correlated with the transcriptional activities of Akkermansia, Methanobrevibacter and 38 

Clostridium genera. We specifically identified differences in transcripts related to glutamate 39 

metabolism that in turn are linked to decreased transcript abundances in chemotaxis and 40 

flagellar assembly expressed by specific taxa in PD. Our integrated multi-omics data highlights 41 

multifactorial alterations of structure and function in PD with disrupted functions implicated 42 

in disease pathways.  43 
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Introduction 44 

Parkinson’s disease (PD), a neurodegenerative disease impacting movement due to 45 

dopaminergic neuron loss, is the second most prevalent neurodegenerative disease1. 46 

Individuals with PD are often characterized by an increase in gut permeability, inflammation 47 

and constipation which, together, suggest a link between the gut microbiome and PD etiology2–48 

4. This potential link is supported by numerous studies reporting differences in the gut 49 

microbiome structure of individuals with PD compared to healthy individuals5–11. These 50 

findings have been further confirmed by recent meta-analyses12,13. Together, the studies 51 

highlight a decreased abundance for the genera Roseburia, Blautia, Butyricoccus and 52 

Faecalibacterium in PD while Methanobrevibacter, Akkermansia, Lactobacillus, 53 

Bifidobacterium and Hungatella, are typically enriched5–13. Similar changes in idiopathic REM 54 

sleep behavior disorder (iRBD), a prodromal stage of PD14, have been reported7,10. Moreover, 55 

the taxa decreased in PD are known producers of short-chain fatty acids (SCFAs), which 56 

correspondingly have also been found to be decreased in concentration in fecal samples of PD 57 

individuals6,15,16. 58 

In addition to SCFAs, several microbiome-derived metabolites such as bile acids (BAs), 59 

glycine and glutamate have been associated with PD, either in plasma, serum17,18 or stool19–21. 60 

BAs are produced by the host and metabolized by the gut microbiome into secondary bile acids 61 

with different cytotoxic capacities but also immunomodulatory capacities22,23. Glutamate is the 62 

major excitatory neurotransmitter and exerts toxic activity on neuronal cells24. Its levels in 63 

serum and cerebrospinal fluid have been reported as either increased25,26, not different27, or 64 

decreased28, but decreased in the gut in PD compared to healthy controls (HC)29.  65 

Altogether, alterations of the gut microbiome are linked to PD, but less is known about iRBD 66 

or other prodromal stages of the disease. Moreover, most of the associations between PD and 67 
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the gut microbiome are based on taxonomic and metabolomic analyses. The resulting data, 68 

although insightful, lacks functional and systemic information that could better capture the 69 

complex crosstalk between the gut microbiome and the host in the context of PD. To obtain 70 

such information, we performed an integrated multi-omics study on a cross-sectional cohort 71 

comprised of individuals with iRBD and PD alongside HC. Metagenomics (MG), 72 

metatranscriptomics (MT), metaproteomics (MP) and meta-metabolomics (MM) were used to 73 

characterize taxonomic (taxMG, taxMT, taxMP) and functional (funMG, funMT, funMP, MM) 74 

differences between HC, iRBD and PD gut microbiomes. We identified substantial differences 75 

in gut microbiome functions and metabolites between the groups, including an increase in β-76 

glutamate levels in PD that were related to a dysregulation of glutamate-related gene 77 

expression. Alterations in glutamate-related genes were linked with chemotaxis and flagellar 78 

assembly pathways, for which we identified strong and distinct taxonomic differences in 79 

transcription between PD and HC. Collectively, our data highlight the importance of multi-80 

omics approaches for the identification of microbiome-mediated effects on neurological, and 81 

more broadly, complex human diseases involving host-microbiome interactions. 82 

  83 
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Results 84 

Study cohort. 85 

Our initial set of subjects consisted of 50 individuals with PD, diagnosed according to United 86 

Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) clinical diagnostic criteria30, 87 

and 30 people with polysomnography-confirmed iRBD as well as 50 healthy control (HC) 88 

subjects. The data from 4 PD and 3 iRBD as well as 1 HC were subsequently excluded (see 89 

Methods), leading to a final data set of 46 PD, 27 iRBD and 49 HCs. The subjects in the three 90 

groups were of similar age but had slightly different gender distributions, with males 91 

overrepresented in the iRBD and PD groups (Table 1, Fisher test, p =  0.004), as is typical for 92 

these conditions31,32. Constipation, a prevalent non-motor symptom of PD33, was also more 93 

common in the iRBD and PD groups compared to HC (Fisher test, p < 0.001). 94 

Microbiome function is altered in PD. 95 

Alpha diversity comparisons revealed no statistically significant differences between the three 96 

groups when considering taxMG, taxMT, funMG, taxMP and MM (Fig. 2A, Wilcoxon test, p 97 

> 0.05). However, funMT and funMP showed a statistically significant increase in alpha 98 

diversity in PD compared to HC and iRBD compared to PD, respectively (Fig. 2A, Wilcoxon 99 

test, p < 0.05). We then analyzed beta diversity for all omics layers. TaxMG, funMG and taxMP 100 

revealed no statistically significant differences between the three groups (Extended fig. 1 A, B 101 

and D, PERMANOVA, p= 0.2, 0.8 and 0.35, respectively), while taxMT, funMT, funMP and 102 

MM showed a statistically significant separation of the groups, especially for funMT (Fig. 2B 103 

and C, Extended fig. 1 C, PERMANOVA p = 0.001, 0.001, 0.005 and p = 0.008, respectively). 104 

Permutation analysis revealed that funMT, funMP and MM resulted in the best separation of 105 

the three groups while taxMG, funMG and taxMP exhibited the lowest separation capacity 106 
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(Extended fig. 1D, PERMANOVA R² of 0.043, 0.041, 0.038, 0.018, 0.014 and 0.017, 107 

respectively). Pairwise comparisons using PERMANOVA demonstrated that most differences 108 

were found between either HC and PD or HC and iRBD, with only funMP and funMT showing 109 

statistically significant differences between PD and iRBD (Fig. 2E). Based on these 110 

differences, we next assessed how the confounding factors sex, age and constipation may 111 

impact beta diversity. Sex and constipation were found to have a significant association with 112 

beta diversity for taxMT and funMT, while age was associated with taxMG (Fig. 2F). 113 

Importantly, MM and funMP were not found to be associated with any confounders (Fig. 2F).  114 

We next looked at differential abundances on taxonomic layers to highlight the compositional 115 

differences between the groups. No significant differences were found in taxMG at the genus 116 

and species levels between any of the three groups (Fig. 2G and Extended fig. 2C, q > 0.05, 117 

SIAMCAT). For taxMT, SIAMCAT highlighted an increase in Alistipes obesi and 118 

Ruthenibacterium lactatiformans in iRBD vs HC, Roseburia incertae sedis, Blautia 119 

massiliensis, B. obeum and Clostridium sp. were decreased in PD vs HC and no significant 120 

differences were found between PD and iRBD (Fig. 2G, q < 0.05, q < 0.05 and q > 0.05, 121 

respectively). We identified the genus Eubacterium as being decreased in PD compared to HC 122 

in taxMT (Extended fig. 2C, q < 0.05, SIAMCAT). The ALDEx2 algorithm highlighted only 123 

Roseburia incertae sedis to be depleted in PD after FDR correction (Extended fig. 2B).  124 

Subsequently, we investigated overall differences in gene abundances and expressions of the 125 

microbial genes linked to the observed differences in metabolites using the KEGG database. 126 

We observed no statistically significant differences in gene abundances between HC vs PD or 127 

HC vs iRBD (funMG, Extended fig. 4A and B, q > 0.05). Gene expression highlighted one 128 

transcript upregulated in HC vs iRBD, but 145 transcripts downregulated in HC vs PD (funMT, 129 

Extended fig. 4C and D, q < 0.05 and q > 0.05, respectively). No genes or transcripts were 130 
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significantly higher in iRBD or PD compared to HC (Extended fig. 4A-D, q > 0.05). Finally, 131 

we found no statistically significant differences in gene or transcript abundances between PD 132 

and iRBD (data not shown).  133 

Altered metabolome of PD patients is linked to microbial abundance and 134 

activity. 135 

Considering that MM is associated with PD and iRBD but not with confounders, we chose MM 136 

as a robust guide for further statistical comparisons. In addition, MM can be considered as one 137 

of the final outputs of microbial activity and an important driver of microbial effects on the 138 

host. For this purpose, we removed unidentified compounds from the statistical testing, because 139 

we cannot associate microbial genes with them. Our analyses revealed 11 statistically 140 

significantly different compounds between the groups, including alanine, β-glutamate, serine, 141 

and glycerol (Fig. 3A, q < 0.05). We found a significant increase in isovalerate, isobutyrate and 142 

valerate in PD patients (Fig. 3A, q < 0.05) but no differences for butyrate, acetate, formate, 143 

propionate or total SCFAs (data not shown). Primary bile acids glycocholic and 144 

chenodeoxycholic acids were decreased in PD and in iRBD and PD, respectively (Fig. 3A, q < 145 

0.05). Glutamate was not differentially abundant between the three groups (data not shown). 146 

To unravel the effect of confounding factors, we measured the variance explained by each 147 

factor on the compounds’ abundances. Diagnosis explained more variance than constipation or 148 

sex (Fig. 3B, diagnosis: mean= 4.18% ; median = 3.33%, sex: mean = 2.08%, median = 1.3% 149 

;  constipation: mean = 3.7%, median = 2.68%). We found only malic acid as being 150 

significantly associated with sex and no compound to be associated with constipation 151 

(Extended fig. 3A and B, q < 0.05, q > 0.05). Based on the PERMANOVA results and variance 152 

analysis, the differences observed in MM were most strongly associated with the disease status 153 

and, importantly, not with the confounding factors. 154 



 8 

We next checked correlations between metabolite abundances and microbial abundances 155 

alongside activities. Metabolite abundances were linked to microbial abundances for taxMG 156 

and taxMT. TaxMG exhibited fewer significant correlations with the abundances of 157 

metabolites compared to taxMT, except for the genera Akkermansia and Methanobrevibacter, 158 

which showed the same associations to metabolites in taxMT (Extended fig. 3B, Spearman test, 159 

q < 0.001). Additional correlations seen in taxMT included positive correlations with β-160 

glutamate, isovalerate, and isobutyrate with Akkermansia and Clostridium alongside 161 

Methanobrevibacter, and negative correlations with Faecalibacterium (Fig. 3C, Spearman test, 162 

q < 0.05). In addition, Roseburia and Eubacterium were positively correlated with glycerol 163 

(Fig. 3C, Spearman test, q < 0.05). Interestingly, Akkermansia, Clostridium and 164 

Methanobrevibacter were positively correlated with compounds increased in PD while 165 

Roseburia, Faecalibacterium and Eubacterium were negatively correlated, highlighting groups 166 

of bacteria being linked with either individuals with PD and iRBD or HC (Fig. 3C).  167 

Expression of genes linked to glutamate and flagella is dysregulated in the 168 

PD gut microbiome, but not in iRBD. 169 

To reinforce the results of the differential analysis, we acquired all the orthologs related to the 170 

metabolites which were statistically significant between the three groups. More specifically, 171 

we used regular expression matching to retrieve all orthologous genes that are linked to the 172 

above-mentioned metabolites in KEGG. Because the KEGG database only has one metabolite 173 

entry annotated as β-glutamate, we selected all glutamate-related genes instead (linked to both 174 

L- and D-glutamate). We found no statistically significant differences in gene abundances after 175 

correction between any of the three groups (funMG, Fig. 3D and Extended fig. 3D, q > 0.05, 176 

Wilcoxon test). However, we did find a decrease in transcripts in PD for the three known 177 

glutamate synthase genes (funMT, GLT1:K00264, GLU:K00284 and gltB:K00265, Fig. 3D, 178 
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Wilcoxon test, q = 0.004, q = 0.004 and p = 0.006, respectively) alongside a decrease in cheB 179 

in PD (K03412, protein-glutamate methylesterase/glutaminase, Fig. 3D, q < 0.01, Wilcoxon 180 

test). Furthermore, we found an increase in cofE, mainly found in Archaea and involved in 181 

methanogenesis (K12234, coenzyme F420-0:L-glutamate ligase, q < 0.05, Wilcoxon test). In 182 

addition, we found a decrease in BA-related transcripts in PD while transcripts related to serine 183 

and isovalerate were increased in PD (Fig. 3D, q < 0.05). HC vs iRBD comparisons revealed 184 

significant differences in alanine-related transcripts but not for the other metabolites (Extended 185 

fig. 3D, q < 0.05). β-glutamate abundance was negatively correlated with the transcripts of the 186 

three glutamate synthases and carbamoyl-phosphate synthases, but positively correlated with 187 

methyl aspartate mutase, methylamine-glutamate N-methyltransferase and glutaminase 188 

(Extended fig. 5C, Spearman correlation test, q < 0.01).  189 

Since cheB is part of the chemotaxis gene family, we further inspected the chemotaxis and 190 

flagellar assembly pathways (two pathways with overlap in orthologs) to assess the microbial 191 

capacity for motility. We found no statistically significant differences in gene abundances 192 

(funMG) for either flagellar assembly or chemotaxis pathways between the three different 193 

groups (data not shown, q > 0.05). In contrast however, based on funMT, the chemotaxis 194 

pathway (14/26 transcripts downregulated, 0/26 transcripts up-regulated, Fig. 3E, q < 0.05) and 195 

the flagellar assembly pathway (30/46 transcripts downregulated, 1/46 transcripts up-regulated 196 

in PD, Fig. 3E, q < 0.05) were strongly downregulated in PD but not in iRBD vs HC (data not 197 

shown). Moreover, eight transcripts showed a decrease in alpha diversity for chemotaxis and 198 

flagellin assembly pathways (Fig. 3E, p < 0.01).  Finally, we observed a decrease in alpha 199 

diversity for GLU, flagellar assembly transcripts (fliJ, fliQ and fliC) and cheD in PD compared 200 

to the other groups (Fig. 3F, q < 0.05, Dunn test) while dltD and aaaT were elevated in iRBD 201 

(Fig. 3F, Dunn test, p < 0.05).  202 
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Flagellin and chemotaxis are differentially expressed depending on 203 

taxonomy and disease status. 204 

We next assessed the taxa expressing flagellar assembly and chemotaxis pathway genes. 205 

Interestingly, flagella and chemotaxis genes were expressed differentially according to disease 206 

and taxonomy. More specifically, we identified different clusters of taxa expressing flagella 207 

and chemotaxis genes. The first cluster was composed of microbes expressing these genes 208 

principally in PD, including Ruminiclostridium, Enterocloster, Dysosmobacter and Butyvibrio. 209 

A second cluster was composed of microbes expressing these genes principally in HC, 210 

including Roseburia, Agathobacter and Eubacterium (Fig. 4). Strikingly, we found that the 211 

third cluster is composed of taxa expressing flagellin or chemotaxis genes only in PD, including 212 

Escherichia, Cellulosilyticum, Citrobacter or Eisenbergiella; a fourth cluster was composed 213 

only of taxa expressing in HC including Flavonifractor, Succinivibrio, Eisenbergiella or CAG-214 

603 (Fig. 4). We subsequently investigated the expression levels of genes of the extracellular 215 

parts of flagella in the cluster wherein Roseburia and most Lachnospiraceae were located 216 

(Cluster 2). Overall, we found a decrease in flagellin (fliC), filament cap (fliD, fliS) and hook-217 

filament junction genes (flgK, flgL) in PD for Roseburia, CAG-115 and Agathobacter 218 

(Extended fig. 6, p < 0.05, Wilcoxon test). 219 

Metabolites and metabolites-related genes associated with PD are central to 220 

microbiome metabolism. 221 

To quantify the importance of glutamate derivatives and related genes in microbial metabolism, 222 

we next reconstructed microbiome-wide metabolic networks as previously described34 . We 223 

mapped genes related to the compounds identified earlier as significantly different between the 224 

different groups. The metabolic network highlighted glutamate-related genes as compact and 225 

placed in the middle of the network while glycerol was more scattered across the network (Fig. 226 
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5A).  Strikingly, glutamate-related genes formed a subnetwork central to the overall network 227 

with a betweenness centrality measure (BC) of 93.0 compared to 0.0009 for the whole 228 

community (Fig. 5B). Crucially, L-glutamate was the most central non-cofactor metabolite in 229 

the network and 2-oxoglutarate (L-glutamate derivative) was the second most central 230 

metabolite (Fig. 5C). Considering this, it is apparent that glutamate and glutamate-related genes 231 

are central to microbiome metabolism and that modifications in the levels of these metabolites 232 

or transcripts reflect profound modifications of microbial metabolism. 233 

Multi-Omics Factor Analysis validates β-glutamate and flagella links with 234 

PD. 235 

To validate our findings, we used an unsupervised method with the Multi‐Omics Factor 236 

Analysis (MOFA). The resulting MOFA model included 10 factors (F1-10 hereafter) whereby 237 

F1 showed a strong association with disease status (p < 0.05, ANOVA, Fig. 6A). A complete 238 

description of the MOFA model is provided in the Extended information. We found that F1 239 

mainly explained the variance of funMT, taxMT, and MM (17.6%, 9.6%, and 5.7%, 240 

respectively, Extended fig. 6A-B) and showed separation of HC and PD, but not iRBD versus 241 

other groups (p < 0.05, ANOVA, Fig. 6B). Specifically, the microbiome of PD was 242 

characterized by the joint increase in abundance of M. smithii, archaeal proteins and genes 243 

(based on MP and MG data), A. muciniphila (based on taxMT data), β-glutamate, isovalerate, 244 

isobutyrate, hexadecanoic, and hyocholic acids, whereas the abundance of R. hominis (taxMG 245 

data), flagellin (funMT), GCA and glycerol were decreased in PD (Fig. 6C). Overall, the 246 

MOFA results are strongly consistent with the per omic layer analysis and validate these 247 

findings.  248 
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Discussion 249 

Here we investigate the links between the gut microbiome and PD using an integrated multi-250 

omics approach based on standardized sample collection and extraction. We include 251 

individuals with iRBD as a prodrome of PD to compare early and later stages of the disease 252 

but do not find statistically significant differences between iRBD and PD, especially in 253 

comparison to the more pronounced differences found between HC and PD. Previous studies 254 

have shown differences in the different early stages of PD, but these studies were performed 255 

using 16S rRNA gene amplicon data7,10. In contrast to the amplicon-based results, no 256 

differentiation between iRBD and PD are found using metagenomic data5. More specifically, 257 

and contrary to previous findings5 including our own work7, we do not find significant 258 

differences between HC and PD individuals in the metagenome with respect to alpha or beta 259 

diversity. However, we show differences in transcriptional activity for Roseburia, Blautia and 260 

Eubacterium which are known to be decreased in PD5,6,8–13. Moreover, we find several genera, 261 

including Akkermansia, Methanobrevibacter and Clostridium, correlating positively with the 262 

abundance of compounds increased in PD such as β-glutamate, isovalerate or isobutyrate, while 263 

other genera are inversely correlated with these compounds (Faecalibacterium, Blautia, 264 

Eubacterium and Roseburia). Collectively, these findings are in line with findings associating 265 

those genera with PD5,6,8–13.  266 

We identify metabolites that are associated with PD, amongst which BAs, alanine, serine and 267 

β-glutamate highlighted linked differences in gene expression. The BA chenodeoxycholic acid 268 

(CDCA) is decreased in PD and iRBD whereas glycocholic acid (GCA) is decreased only in 269 

iRBD. We also detect a decrease in transcripts related to BA in PD but not iRBD. BAs have a 270 

wide spectrum of effects on the immune system22,23, metabolism35, hormones36 and also on the 271 

CNS37. GCA has been found to be increased in the CNS of PD and associated with disease 272 
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duration37, stressing the importance of analyzing BAs in PD and prodromal stages of PD. In 273 

contrast with previous studies6,15, we do not find a decrease in butyrate, propionate, acetate or 274 

overall levels of SCFAs. However, we find an increase in isovalerate, isobutyrate and valerate 275 

as described previously15. Previous studies have highlighted the correlation of fecal 276 

concentrations of isobutyrate and isovalerate with PD severity38 and concentrations of valerate 277 

with disease duration39. There currently is an apparent lack of knowledge regarding isobutyrate 278 

or isovalerate with respect to host-microbiome interactions and very few related genes 279 

annotated in the KEGG database hindering interpretations concerning potential links between 280 

these metabolites and PD. 281 

β-glutamate and glutamate-related genes are of particular interest in the context of PD because 282 

of the reported toxic effects of L-glutamate on neurons24 and because of its association with 283 

microbial activity. In addition, glutamate levels have been reported to be increased in PD 284 

individuals’ blood sera17,18. β-glutamate has strikingly only one reaction described in the 285 

KEGG database, in contrast, L-glutamate has 213 reactions and 54 pathways, while D-286 

glutamate has 12 reactions and 2 pathways. We find that glutamate and glutamate-related genes 287 

are central to microbial metabolism, which underpins the notion that the highlighted differences 288 

reflect a pronounced impact on gut microbiome function. Of note, glutamate likely has local 289 

effects on enteric neurons with subsequent influences on the CNS40. Although we show 290 

significant differences in β-glutamate and glutamate-related genes in the stool of PD patients, 291 

we detect no significant differences in the glutamate levels (both enantiomers) between the 292 

three groups. We highlight significant differences in β-glutamate for which we currently cannot 293 

evaluate the effects on the ENS and CNS. Overall, based on our results, microbiome-driven 294 

glutamate metabolism and its impact on the glutamatergic system must be comprehensively 295 

studied in the future to disentangle its link with PD. 296 
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Glutamate-related genes are further involved in chemotaxis and flagellar assembly pathways, 297 

highlighting a modification of the latter genes’ expression with a majority being decreased in 298 

PD individuals but not in iRBD. A decrease in flagellar assembly gene abundances has been 299 

previously reported in a metagenomic analyses of PD9. We do not see significant differences 300 

in the linked gene abundances, but their expression levels are significantly different, 301 

highlighting altered regulation of transcription in PD compared to HC. Flagellar assembly and 302 

chemotaxis genes are also differentially expressed by specific microbes; the genera Escherichia 303 

and Cellulosilyticum for instance are expressing flagellar assembly genes only in the context 304 

of PD without being statistically differentially abundant.  305 

Flagellin is a known immunogenic molecule, a potent pro-inflammatory compound in 306 

pathogens41–43 and is thus targeted by secretory IgA44. However, flagellin in commensals, 307 

especially in the Lachnospiraceae family, has been shown to be either ‘silently recognised’45 308 

or elicit anti-inflammatory effects46–48. Amongst the Lachnospiraceae family, the genus 309 

Roseburia shows a decrease in the transcription of flagellin in the gut microbiome of PD. This 310 

in turn may be linked to immune system dysregulation and exert indirect effect on the CNS, 311 

particularly in microglia as shown in a previous study using a murine model of PD49. Previous 312 

studies have shown an increased inflammatory state in PD, with increased pro-inflammatory 313 

circulating immune cells50, cytokines51, and activated microglia52. In addition, microglia may 314 

be activated by α-synuclein via NLRP3 following TLR2 (lipopolysaccharide (LPS) sensing) 315 

and TLR5 (flagellin sensing) activation53. Therefore, the activation or inhibition of TLRs by 316 

distinct flagellins may modulate microglia activation by competing with α-synuclein and affect 317 

PD progression. Bacterial antigens such as flagellin are usually regarded as inflammatory 318 

agents that elicit a strong immune response. Our findings, which reveal elevated expression of 319 

flagellin in HC, suggest the need for a re-evaluation of the impact of common antigens on the 320 

immune system. The gut microbiome produces a wide range of immune-modulating 321 
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compounds, the impact of which must be re-evaluated through detailed in vivo and ex vivo 322 

studies. 323 

Overall, our work clearly highlights the importance of studying microbiome functions rather 324 

than restricting microbiome analyses to taxonomic structure. Specifically, the combination of 325 

MT and MM provides clear insight into the activity of specific microbial taxa in relation to 326 

disease. In our present work, MT reveals that disease association is not solely determined by 327 

gene expression levels; the diversity of microbes capable of expressing a specific function and 328 

the specific taxa expressing those functions are also of immediate interest and relevance. The 329 

future of microbiome research might lie in understanding how we can modulate, re-activate or 330 

shut down specific microbial functions in vivo in order to improve knowledge and later improve 331 

or functionally tailor microbiome interventions.   332 



 16 

Methods 333 

Patient cohorts and sampling 334 

All subjects from both cohorts provided informed written consent, and the sample analysis was 335 

approved by the Comité National d’Ethique de Recherche of Luxembourg (reference no.: 336 

140174_ND). 337 

Kassel Cohort 338 

The DeNoPa cohort represents a prospective, biannual follow-up study of (initially de novo) 339 

Parkinson’s disease (PD) patients at the Paracelsus-Elena Klinik, Kassel, Germany. Fecal 340 

samples from PD patients (46) and healthy controls (29) were collected during the 4-year 341 

follow-up visit for the cohort. Details on inclusion and exclusion criteria and ancillary 342 

investigations have been published previously54,55. Subjects with idiopathic rapid-eye-343 

movement sleep behaviour disorder (iRBD, 13) were recruited at the same clinic, diagnosed 344 

according to consensus criteria of the International RBD study group56 using video-assisted 345 

polysomnography, and were included only if they showed no signs of a neurodegenerative 346 

disorder. DeNoPa subjects were required to have a 4-week antibiotic free interval before fecal 347 

sample collection. As additional control subjects, we collected fecal samples from (20) 348 

neurologically healthy subjects living in the same household as the DeNoPa participants. 349 

Samples of de novo PD patients from a cross-sectional cohort at the same clinic were included 350 

if subjects were recently diagnosed, drug-naïve and met United Kingdom Parkinson’s Disease 351 

Society Brain Bank (UKPDSBB) clinical diagnostic criteria30. All subjects except household 352 

HC were interviewed and examined by an expert in movement disorders. The study conformed 353 

to the Declaration of Helsinki and was approved by the ethics committee of the Physician’s 354 

Board Hessen, Germany (FF 89/2008). The DeNoPa trial is registered at the German Register 355 

for Clinical trials (DRKS00000540). 356 
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Marburg Cohort 357 

We also added samples from 14 patients with polysomnography-confirmed iRBD which were 358 

recruited from the outpatient clinic of the Department of Neurology, Philipps-University, 359 

Marburg, Germany, between November 2015 and November 2016. iRBD was diagnosed 360 

according to the guidelines of the American Academy of Sleep Medicine (AASM ICSD-3)57. 361 

A detailed medical history was recorded, and a complete neurological examination performed 362 

to verify the subjects’ suitability. Inclusion criteria were age above 18 years, no dopamimetic 363 

therapy, and no diagnosis of PD, MSA, DLB or PSP. Exclusion criteria were smoking, 364 

antibiotic therapy in the last 24 months, history of other neurological diseases or disorders of 365 

the gastrointestinal tract. Non-motor and autonomic symptoms were evaluated with the 366 

SCOPA-AUT58 and PD-NMS59 questionnaires. Motor function was evaluated with the 367 

UPDRS60. Additionally, patients were asked to complete the RBD-Sleep questionnaire61. The 368 

study conformed to the Declaration of Helsinki and was approved by the ethics committee of 369 

the Medical Faculty of the Philipps-University, Marburg, Germany (46/14). 370 

Fecal sample collection 371 

Fecal samples were collected at the clinics via a stool specimen collector (MedAuxil) and 372 

collection tubes (Sarstedt), as previously described7. Samples were immediately flash-frozen 373 

on dry ice after collection. Samples were subsequently stored at –80 °C and shipped on dry ice.  374 

Sample exclusions 375 

The initial set of samples consisted of 50 PD, 30 iRBD and 50 healthy control subjects (HC). 376 

Three PD and two iRBD cases were subsequently excluded for clinical reasons (adjusted 377 

diagnosis), one iRBD and one PD subject for logistical reasons, and one control due to a 378 

combination of microbiome-altering medications (metformin, antidepressants, statins, and 379 

proton pump inhibitors). Additional samples were excluded due to missing values 380 

(metabolomics) or a low amount of identified analytes (metaproteomics), leading to the final 381 

numbers of samples summarized below: 382 
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- Metagenomics (MG) & metatranscriptomics (MT): 49 HC, 27 iRBD, 46 PD 383 

- Metaproteomics (MP): 42 HC, 22 iRBD, 40 PD 384 

- Meta-metabolomics: 49 HC, 27 iRBD, 41 PD 385 

Metagenomic and metatranscriptomic sequencing 386 

Extractions from fecal samples were performed according to a previously published protocol62, 387 

conducted on a customized robotic system (Tecan Freedom EVO 200). After extraction, DNA 388 

and RNA were purified prior the sequencing analysis by using the following commercial kits 389 

respectively: Zymo DNA Clean&Concentrator-5 (D4014) and Zymo RNA 390 

Clean&Concentrator-5 (R1014). RNA quality was assessed and quantified with an Agilent 391 

2100 Bioanalyser (Agilent Technologies) and the Agilent RNA 6000 Nano kit, and genomic 392 

DNA and RNA fractions with a NanoDrop Spectrophotometer 1000 (Thermo Scientific) as 393 

well as commercial kits from Qubit (Qubit ds DNA BR Assay kit, Q32850; Qubit RNA BR 394 

Assay kit, Q10210). All DNA samples were subjected to random shotgun sequencing. 395 

Following DNA isolation, 200-300 ng of DNA was sheared using a Bioruptor NGS 396 

(Diagenode) with 30s ON and 30s OFF for 20 cycles. Sequencing libraries were prepared using 397 

the TruSeq Nano DNA library preparation kit (Illumina) following the manufacturer’s 398 

protocol, with 350 bp average insert size. For MT, 1 µg of isolated RNA was rRNA-depleted 399 

using the RiboZero kit (Illumina, MRZB12424). Library preparation was performed using the 400 

TruSeq Stranded mRNA library preparation kit (Illumina) following the manufacturer’s 401 

protocol, apart from omitting the initial steps for mRNA pull down. MG and MT analyses, the 402 

qualities of the libraries were checked using a Bioanalyzer (Agilent) and quantified using Qubit 403 

(Invitrogen). Libraries were sequenced on an Illumina NextSeq500 instrument with 2x150 bp 404 

read length. 405 

Metaproteomics 406 

20 µL protein extract were processed using the paramagnetic bead approach with SP3 407 

carboxylate coated beads63,64. Briefly, the protein samples were reduced with 2µL 25 mM DTT 408 

in 20 mM ammonium bicarbonate (Sigma-Aldrich) for 1 h at 60°C. Subsequently, 4 μL 100 409 
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mM iodoacetamide (Merck) in 20 mM ammonium bicarbonate was added and incubated for 410 

30 min at 37°C in the dark. Next, 5 μL of 10% formic acid was added as well as 70 μL 100% 411 

acetonitrile (ACN) to reach a final organic content higher than 50% (v/v). 2 μL SP3 beads per 412 

sample were washed with water three times with subsequent addition of the sample. After 413 

protein binding to the beads, the supernatant was discarded. The beads were washed twice with 414 

200 μL 70% (v/v) ethanol, and once with 200 µL ACN. The protein lysates were proteolytically 415 

cleaved using trypsin (1:50) over night at 37 °C. Since trypsin is added in aqueous solution to 416 

the samples, the proteins are not bound to the beads during enzymatic cleavage. ACN was 417 

added to each sample to reach a final organic content higher than 95% (v/v). After peptide 418 

binding to the beads, the samples were washed with pure ACN on the magnetic rack. Finally, 419 

the peptides were eluted in two steps. First, with 200 μL 87% ACN (v/v) containing 10 mM 420 

ammonium formate (pH 10), and next with two times adding 50 μL water containing 2 % (v/v) 421 

DMSO and combination of the two aqueous supernatants. Thus, two fractions of peptides were 422 

generated, which were evaporated and re-dissolved in water containing 0.1 % formic acid (20 423 

µL) and analyzed on a Q Exactive HF instrument (Thermo Fisher Scientific) equipped with a 424 

TriVersa NanoMate source (Advion) in LC chip coupling mode. Peptide lysates were injected 425 

on a trapping column (Acclaim PepMap 100 C18, 3 μm, nanoViper, 75 μm x 2 cm, Thermo 426 

Fisher Scientific) with 5 μL/min by using 98% water/2% ACN 0.5% trifluoroacetic acid, and 427 

separated on an analytical column (Acclaim PepMap 100 C18, 3 μm, nanoViper, 75 μm x 25 428 

cm, Thermo Fisher Scientific) with a flow rate of 300 nL/min. Mobile phase was 0.1% formic 429 

acid in water (A) and 80 % ACN/0.08 % formic acid in water (B). Full MS spectra (350–1,550 430 

m/z) were acquired in the Orbitrap at a resolution of 120,000 with automatic gain control (AGC) 431 

target value of 3×106 ions. 432 
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Meta-metabolomics 433 

Untargeted GC-MS as well as targeted measurements  (SCFA GC-MS/MS and bile acids LC-434 

MS/MS) from fecal samples were performed according to a previously published protocol65. 435 

All GC-MS chromatograms were processed using MetaboliteDetector, v3.22019070466 while 436 

LC-MS chromatogram were acquired with Thermo Xcalibur software (version 4.1.31.9) and 437 

analyzed with TaceFinder (Version 4.1). Compounds were initially annotated by retention time 438 

and mass spectrum using an in-house mass spectral library. Internal standards were added at 439 

the same concentration to every medium sample to correct for uncontrolled sample losses and 440 

analyte degradation during metabolite extraction. The data was normalized by using the 441 

response ratio of the integrated peak area of the analyte and the integrated peak area of the 442 

internal standard. 443 

Bioinformatics and statistical analysis 444 

Sequencing data processing and analysis 445 

For all samples, MG and MT sequencing data were processed and hybrid-assembled using the 446 

Integrated Meta-omic Pipeline (IMP)67  (https://git-r3lab.uni.lu/IMP/imp3, commit 447 

8c1bd6fa443d064511909c9eede20703f45e6c69). It includes steps for the trimming and quality 448 

filtering of the reads, the filtering of rRNA from the MT data, and the removal of human reads 449 

after mapping against the human genome (hg38). Pre-processed MG and MT reads were 450 

assembled using the IMP-based iterative hybrid-assembly pipeline using MEGAHIT68 1.0.3. 451 

After assembly, the prediction and annotation of structural features such as open-reading 452 

frames (ORFs) was performed using a modified version of Prokka69 and followed by functional 453 

annotation of those using Mantis70. Structural features were quantified on MG and MT level 454 

using featureCounts71. Taxonomic annotation of reads and contigs was performed using 455 

Kraken272 with a GTDB release207 database 456 

(http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release207/kraken2) and a 0.5 confidence 457 

https://git-r3lab.uni.lu/IMP/imp3
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threshold. Additionally, taxon abundances were estimated using mOTUs 2.5.173. The mOTU 458 

abundances were used to generate abundance matrices for each taxonomic rank (phylum, class, 459 

order, family, genus and species) by summing up taxon marker read counts at the respective 460 

levels. 461 

Metaproteomics prediction and annotation 462 

For each sample, the predicted proteins were concatenated with a cRAP database of 463 

contaminants and the human UniProtKB Reference Proteome prior to the MP search. In 464 

addition, reversed sequences of all protein entries were added to the databases for the 465 

estimation of false discovery rates. The search was performed using Sipros v1.174 as search 466 

engine with the following parameters: trypsin was used as the digestion enzyme and a 467 

maximum of two missed cleavages was allowed. The tolerance levels for matching to the 468 

database were 1 Da for MS1 and 0.01 Da for MS2. Peptides with large errors for parent ions 469 

were later filtered out by setting the Filter Mass Tolerance Parent Ion parameter to 0.05 Da. 470 

Carbamidomethylation of cysteine residues was set as a fixed modification and oxidation of 471 

methionines was allowed as a variable modification. Peptides with length between 7 and 60 472 

amino acids, with a charge state composed between +2 and +4 and a maximum missed 473 

cleavages of 3 were considered for identification. The results from all identifications were 474 

filtered by Sipros using at least one unique peptide per protein and peptide false discovery rate 475 

(FDR) was dynamically set to achieve a 1% of protein FDR. 476 

Data analysis was performed on all samples with at least 2000 proteins identified. A summary 477 

matrix of all selected samples consisting of the KO annotations from the integrated MG and 478 

MT analysis and the spectral count from the MP identification was then generated and used for 479 

statistical analysis. 480 

 481 
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Dimensionality reduction and ordination 482 

Beta diversity for MG and MT was assessed using the Bray-Curtis dissimilarity and subjected 483 

to a Non-Metric MultiDimensionnal Scaling (NMDS) for both the taxonomic and functional 484 

levels, using the metaMDS() function from the vegan package (2.6.2). Principal Component 485 

Analysis (PCA) was performed for MP and MM using the rda() function in the vegan package 486 

(2.6.4). PERMANOVA was used to assess statistical differences between groups using the 487 

Bray-Curtis dissimilarity and conducted in the vegan R package with the adonis2() function. 488 

Differential abundance analysis and correlations 489 

Differential abundance was done in two different approaches. The first approach consisted in 490 

using SIAMCAT75 and ALDEx276 algorithm to find all the taxa and genes differentially 491 

expressed between groups without prior assumption. We used two different algorithms to have 492 

a sensitive algorithm (SIAMCAT, less prone to have false negative) and a more conservative 493 

one (ALDEx2, less prone to have false positive). The second approach consisted in using the 494 

MM significant compounds to drive the analysis on the functional level for MG and MT. 495 

Therefore, differential abundance tests and multiple correlation tests were conducted with a 496 

classical approach. We used Mann-Whitney or Kruskal-Wallis followed by a Dunn test 497 

(depending on the number of groups) and Spearman correlation tests. We applied FDR 498 

correction using the Benjamini & Hochberg method77. We depicted both FDR corrected as q-499 

values and non-FDR corrected p-values to represent most of the differences found in our 500 

datasets. All statistical tests were done using the rstatix package (0.7.2). 501 

Variance analysis 502 

Variance analysis was used to assess the importance of each clinical factor on MM. To verify 503 

the covariance of factors and to assess which factors explained the most variance in our 504 

datasets, we computed the total variance for each clinical factor (removing the NAs for each 505 
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factor) and the variance explained by each group within a clinical factor. Explained variance 506 

was calculated as follows: 𝑣𝑎𝑟. 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 1−𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒.𝑔𝑟𝑜𝑢𝑝
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒.𝑡𝑜𝑡𝑎𝑙

. 507 

Microbiome-wide metabolic network analysis 508 

The microbiome-wide metabolic network analysis was conducted by establishing an 509 

association between KEGG KOs and corresponding ChEBI IDs. The networks were visualized 510 

utilizing the NetworkX package (release 3.3)78. In this network, the nodes were represented by 511 

KEGG KOs, while the edges were denoted by the corresponding metabolites (either products 512 

or reactants)34. The analysis was restricted to genes that were present in a minimum of 50% of 513 

the samples. To construct metabolite-specific networks, we used KEGG KOs which have either 514 

a reactant or product in KEGG. Glutamate-, thymine-, glycerol-, serine-, alanine- and 515 

glucuronate-specific subnetworks were composed of 146, 9, 66, 43, 70, 18 genes, respectively. 516 

The network topology metric ‘Betweenness centrality’ was used to underscore the importance 517 

of a metabolite in microbiome-wide metabolism34.  518 

Integrated multi-omics analysis using MOFA2 519 

Integrative analysis for the seven omics layers was conducted with the Multi-Omics Factor 520 

Analysis (MOFA) 2 R package (version 1.10.0)79. Before the analysis, data were preprocessed 521 

as follows: (I) funMG, funMT, funMP, taxMG, taxMT, and taxMP data were filtered based on 522 

the number of non-zero features, a feature was kept if it was present in at least in 25% of 523 

samples in each group (PD, HC, iRBD) or at least in 75% in any of the groups; (II) funMG, 524 

funMT, taxMG, and taxMT count data were separately residualized in a linear model to remove 525 

variance explained by differences in sequencing depth; (III) funMP and taxMP data were 526 

residualized by the sum of protein counts per sample and information on the number of high-527 

quality proteins recovered per sample; (IV) regression residuals were cubic-root transformed 528 

to account for heteroscedasticity; (V) MM data were transformed using a centered log-ratio 529 
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transformation. Each dataset was then additionally filtered to retain the features with the largest 530 

variance for the subsequent analysis. For funMG and funMT, we included features with 531 

variances equal to or larger than 90% feature variance for a dataset, for the other datasets we 532 

included features with variance equal to or larger than the median feature variance for a given 533 

dataset. In the results, the feature size for omics layers was as follows: 759 for funMG, 657 for 534 

funMT, 410 for funMP, 109 for taxMG, 71 for taxMT, 115 for taxMP, and 34 for MM. MOFA 535 

analysis was run on scaled omics data with fifteen initial factors. All factors that explained less 536 

than 2% of the variance were excluded from the model. The remaining factors were tested for 537 

differential abundance between the groups studied using the linear regression followed by 538 

ANOVA type II controlling the participants’ sex, age, and recruitment cohort.  539 

  540 
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Data availability 541 

The datasets generated by this study are available in the following repositories: metagenomic 542 

and metatranscriptomic data at the NCBI BioProject collection with the ID PRJNA782492 543 

(http://www.ncbi.nlm.nih.gov/bioproject/782492), metaproteomic data at the Proteomics 544 

Identifications (PRIDE) database with accession number PXD031457 545 

(https://www.ebi.ac.uk/pride/archive/projects/PXD031457), and metabolomic data at 546 

MetaboLights with ID MTBLS5092 (https://www.ebi.ac.uk/metabolights/MTBLS5092). Due 547 

to privacy restrictions, clinical and demographic data are available on request from the 548 

corresponding author. 549 

Code availability 550 

The IMP pipeline, which was used for analysis of metagenomic and metatranscriptomic data, 551 

is available at https://gitlab.lcsb.uni.lu/IMP/imp3. The R and python code used for statistical 552 

analyses and visualizations is available at https://gitlab.lcsb.uni.lu/ESB/[TBA]. 553 
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Figure 1. Schematic representation of the analytical workflow. Metagenomic (MG), metatranscriptomic (MT),
metaproteomic (MP) and meta-metabolomic (MM) data were generated for each sample. Pre-processed MG and MT reads
were sample-wise assembled using the iterative hybrid assembly pipeline of the Integrated Meta-omics Pipeline (IMP).
After assembly, taxonomic annotation was performed at the read and contig levels, followed by gene prediction and
functional annotation on the assembled contigs. Expressed proteins (MP) were identified using the predicted genes from
the MG/MT hybrid assembly. For these three omics levels, we generated taxonomic and functional profiles that are
referred to as taxMG, taxMT and taxMP for the taxonomic level, and funMG, funMT and funMP for the functional level,
respectively. Community-based networks were reconstructed from gene annotations. Finally, the meta-metabolome (MM)
was integrated with the other omics data at the network level. The integrated multi-omics analysis was performed with the
available clinical metadata.



Figure 2. Microbiome structure is altered in PD and iRBD vs HC. A. Shannon index for different omics between
Healthy Controls (HC), idiopathic REM sleep behaviour disorder (iRBD) and Parkinson’s Disease (PD). P-values are based
on pairwise Mann-Whitney tests. Non-metric Multidimensional Scaling (NMDS) based on Bray-Curtis dissimilarity for
taxonomic annotation of metatranscriptomic (taxMT) (B) and functional metatranscriptomic (funMT) data (C). D. Principal
Component Analysis (PCA) for meta-metabolomic (MM) data based on untargeted, targeted SCFA and targeted bile acids
abundance. All three quantifications have been sum-normalised before any merging. PCA was then computed on the merged
matrix. All tests are based on PERMANOVA with 1000 permutations. E. Pairwise PERMANOVA between groups for each
omics. F. PERMANOVA analysis for “Age”, “Sex” and “Constipation” for each omics. Size of rectangle is based on –
log10(p-value) and colour on R² value. G. Differential abundance analysis using SIAMCAT for taxMG and taxMT. Values
are pseudo fold changes for pairwise comparison between groups and size is based on –log10(p-value). Shape is based on
significance before and after FDR correction.



Figure 3 Altered metabolome is linked with microbial activity and transcripts. A. Metabolite relative abundances for
significant compounds. Metabolomic data from untargeted meta-metabolomics, targeted SCFA and targeted bile acids were
combined after normalization by sum for each. Dunn test, FDR corrected. B. Variance for each metabolite associated to the
clinical factors “Diagnosis”, “Sex” and “Constipation”. C. Spearman correlation between taxMT at the genus level with
significant metabolites. All p-values are FDR corrected. Genera are selected based on differential abundance or relevance in
the literature. D. Absolute log2 fold change between HC and PD for funMG and funMT associated to significant
compounds. Dots are scaled by the –log10(p-value), colorized and shaped according to p-value significance before (triangle
shape) and after FDR correction (round shape). E. Chemotaxis and flagellin assembly pathway genes expression and
Shannon index fold change between HC and PD group. Dots are colorized and shaped according to p-value significance
before (triangle shape) and after FDR correction (round shape). Wilcoxon test, FDR corrected. F. Shannon index for
significantly different expressed genes found in pairwise differential analysis in Fig. 2D and Extended fig. 2A. Shannon
index was calculated for each KO for funMG and funMT. Only genes significantly different after FDR correction on a
Kruskal-Wallis test are plotted. P-values are calculated using Dunn post hoc test.



Figure 4. Flagellar assembly and chemotaxis gene expressions according to taxonomy. Top 50 genera expressing
flagellar assembly and/or chemotaxis related genes are depicted by the mean of transcripts per million per disease status.
Values are depicted for each genus and genes on the left panel and the sum of all genes per genus on the right panel with a
square root transformation. Genera are clustered based on the log2FC(HC/PD) for each genes using a Canberra distance and
hclust() using “ward.D2”method.



Figure 5. Metabolic network of whole community interactions. A. Metabolic network of whole community interactions,
with KEGG KOs represented as nodes and associated metabolites as edges. Node sizes reflect MT/MG ratio of normalized
read counts for each KO. Highlighted is the overlap between glutamate-, thymine-, glycerol-, serine-, alanine- and
glucuronate-associated subnetworks mapped on the whole community network. B. Betweenness Centrality calculated for the
key metabolites highlighted in the whole-community network based on genes as nodes. C. The network was inverted to
calculate Betweenness centrality for metabolites, here metabolites are nodes and genes are edges.



Figure 6 MOFA analysis validates the findings of per omics layer analyses. A. Associations of MOFA factors with the
diagnosis and confounders, the colour of rectangles represents partial R² values, significant associations (FDR-adjusted p-
value < 0.05) marked with an asterisk. B. Abundance of the Factor 1 in studied groups. C. Min-max scaled weights of top
10 features per omics layer contributing to Factor 1. The sign of the weight indicates the direction of the effect, the
abundance of features with positive weights is positively associated with the Factor 1 level, and the abundance of features
with negative weights is negatively associated with the Factor 1 level.



Extended figure 1. Beta diversity analysis of remaining omics. NMDS analysis of A. metagenomic taxonomic
composition, B. metagenomic functions and C. meta-proteomic taxonomic composition, using a Bray-Curtis dissimilarity
matrix. D. PCA analysis of metaproteomic functions. E. PERMANOVA analysis for the three groups and all omics. Colour
represents R² values and size is –log10(p-value). All PERMANOVA analysis were run using 1000 permutations using a
Bray-Curtis dissimilarity matrix.



Extended figure 2. A. Differential abundance analysis at the genus level using SIAMCAT algorithm. B. Differential
abundance analysis using ALDEx2 algorithm at the species level. Values are pseudo fold changes for HC/PD and size
is based on –log10(p-value). Shape is referring to level of significance, triangular shape for p-value significance
before and round shape for p-values < 0.05 after FDR correction.



Extended figure 3. A. Percentage of variance explained for each metabolite for “Sex” and “Diagnosis”. B. Percentage of
variance explained for each metabolite for “Constipation” and “Diagnosis”. Metabolites are including untargeted meta-
metabolomics, targeted SCFA and targeted bile acids, normalized by sum before merging and variance quantification. C.
Spearman correlation between metabolites and taxMG. P-values are FDR corrected. D. Absolute log2 fold change
between HC and iRBD for funMG and funMT associated to significant compounds. Dots are scaled by the –log10(p-
value), colorized and shaped according to p-value significance before (triangle shape) and after FDR correction (round
shape).



Extended figure 4. A to D. ALDEx2 differential abundance analysis on funMG for HC vs PD (A.) and HC vs iRBD
(B.); funMT for HC vs PD (C.) and HC vs iRBD (D.). All genes and transcripts are colorized and shaped according to
p-value significance before (triangle shape) and after FDR correction (round shape) E. Spearman correlation between
beta-glutamate relative abundance and funMG-funMT KEGG orthologs related to glutamate species. Only genes with at
least one significant correlation are plotted. All p-values are FDR corrected.



Extended figure 5. Flagellar assembly transcripts encoding for extracellular component of the flagella for
the genus present in Cluster 2. All tests are Wilcoxon tests.



Extended figure 6. Multiomics variance explained by MOFA factors. A. Variance explained by the MOFA factors
across different omics layers, total. B. Variance explained by the MOFA factors across different omics layers, splitted
by factors.



Table 1

1 For categorical variables other than sex, values given as “no / yes / not available”; for
continuous variables, values given as mean ± standard deviation.
2 Categorical variables: Fisher’s exact test (missing data excluded); continuous
variables: one-way ANOVA.

Ctrl = control subject, PD = Parkinson's disease patient, iRBD = patient with idiopathic
REM sleep behaviour disorder, PPI = proton pump inhibitor, PD-NMS = Non-Motor
Symptoms questionnaire, UPDRS = Unified Parkinson’s Disease Rating Scale, Scopa-
AUT = Scales for Outcomes in Parkinson’s Disease - Autonomic Dysfunction.

Variable1 Ctrl iRBD PD p-value2

n 49 27 46

Sex (f / m) 26 / 23 4 / 23 19 / 27 0.004
Constipation 26 / 3 / 20 13 / 14 / 0 21 / 22 / 3 <0.001
Smoking 28 / 1 / 20 12 / 1 / 14 34 / 2 / 10 0.821
Diabetes 24 / 5 / 20 25 / 2 / 0 43 / 3 / 0 0.328
Metformin medication 27 / 2 / 20 25 / 2 / 0 42 / 2 / 2 0.878

Antidepressant medication 26 / 3 / 20 23 / 4 / 0 43 / 1 / 2 0.115

Statin medication 27 / 2 / 20 22 / 5 / 0 39 / 5 / 2 0.416
PPI medication 27 / 2 / 20 13 / 1 / 13 37 / 7 / 2 0.534

Levodopa medication 13 / 1 / 13 12 / 32 / 2 <0.001

Agonist medication 13 / 1 / 13 18 / 26 / 2 <0.001

Entacapone medication 27 / 0 / 0 39 / 5 / 2 0.056

Age at sampling (years) 68.1 ± 6.15 65.96 ± 7.83 65.8 ± 9.85 0.327

Disease duration (months) 76.37 ± 56.3 63.46 ± 42.52 0.271

PD-NMS sum 4.52 ± 3.05 8.31 ± 3.53 7.83 ± 3.65 <0.001
UPDRS I-III sum 3.31 ± 4.26 6.08 ± 4.94 31.47 ± 17 <0.001
Scopa-AUT sum 8.76 ± 6.35 10.17 ± 4.91 13.09 ± 6.21 0.018

Sniffin Sticks Identification 12.03 ± 2.03 7.19 ± 3.88 6.67 ± 3.88 <0.001

Hoehn and Yahr stage 0 ± 0 0 ± 0 2.01 ± 0.77 <0.001
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Extended information 779 

Multi-omics data overview 780 

Using our previously developed methodological framework84,85, we performed a systematic 781 

multi-omic analysis of DNA, RNA, protein, and metabolite fractions isolated from flash-frozen 782 

fecal samples. We used MG, MT, MP and MM data to find biomarkers associated with the PD 783 

phenotype (Fig. 1). We generated a mean of 7.5 (std 1.7) Gbps and 7.5 (std 1.4) Gbps of 784 

sequencing data for MG and MT, respectively. After trimming and filtering, we retained a 785 

mean of 6.8 (std 1.7) Gbps and 3.2 (std 1.3) Gbps for MG and MT, respectively. The mean 786 

assembly size was 0.4 (std 0.1) Gbps, with on average 5.9x105 (std 1.7x105) genes predicted. 787 

Finally, protein databases contained a mean of 7.2x105 (std 1.8x105) proteins, an average of 788 

4.1x104 (std 0.6x104) MS spectra per sample were acquired, and a mean of 3.4x103 (std 789 

1.7x103) proteins were identified.  790 

MOFA model description 791 

MOFA is an unsupervised machine learning approach for the integration of multi-omics data 792 

sets79. It allows for the identification of highly informative features across multiple omics. It 793 

has previously been used in the study of the gut microbiome in several diseases, giving critical 794 

insights into the link between the gut microbiome, health, and disease81–83. The biggest 795 

proportion of variance was explained by funMG and funMT, followed by the taxMT and 796 

funMP datasets (Extended fig. Aa). F1-2 incorporated most of the variance related to the 797 

funMT and taxMT, whereas funMG and taxMG variance was predominantly covered by F3-798 

F5 (Extended fig. 8B). The funMP variance was explained mostly by F6, and MM variance 799 

was explained by F1 and F6. MOFA factors were tested in a linear model followed by ANOVA 800 

with disease status, as well as confounders including patients’ sex, age, and recruitment cohort. 801 
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Among the MOFA factors, F1 showed an association with the disease status, whereas F4 and 802 

F9 were associated with patients’ sex and recruitment cohort, respectively (Fig. 4A). 803 
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co-expression network construction and analysis, as well as hub gene inference and 

analysis. 
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trait association analysis, calculated network topology metrics for co-

expressed gene modules. 
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co-expressed gene module. 

o Fig. 4 – conducted hub gene analysis and prepared data tables for 

corresponding visualizations (A, B, C); prepared and curated data for 

statistical analysis (D, E) and taxonomy association of hub genes involved 

in bacterial microcompartments (G, H). 

o Fig. 6 –  conducted hub gene analysis and prepared data tables for 

corresponding visualizations. 
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Overview of the study 

In our study, titled "Microbiome Expression Network is Dysregulated in Parkinson’s Disease 

Individuals," we aimed to further elucidate the connections between the gut microbiome and 

PD. Traditional bioinformatics and biostatistical methods often fall short in capturing the 

complexity of microbiome-host interactions. To address this limitation, we employed 

Weighted Gene Co-expression Network Analysis to investigate microbial co-expression 

patterns in individuals with PD. This approach revealed dysregulation in microbial networks, 

offering novel insights into how microbial factors contribute to the pathogenesis of this 

neurodegenerative disorder. By using co-expression networks, our study identifies key 

regulatory mechanisms in PD, uncovering altered biological processes beyond mere 

differential gene expression. 

The human gut microbiome consists of a diverse array of microbial genes that play crucial 

roles in maintaining host health. In this study, we constructed a signed co-expression 

network of the gut microbiome from both HC and PD individuals using WGCNA. This 

network included 4,789 genes from an initial set of 11,876, based on the ratio between 

metatranscriptomic and metagenomic reads. We identified 17 modules, 4 of which were 

significantly associated with HC and 5 with PD. We hypothesize that the 8 modules not 

associated with disease status represent stable, core functions critical for preserving 

microbial network integrity in both health and disease. 

Following the identification of gene modules, we conducted an in-depth analysis of the co-

expression network's topological properties. We calculated key metrics such as centrality 

measures (degree, betweenness, and eigenvector centrality) and the clustering coefficient 

for each module to assess their structural roles within the network. Additionally, microbial 

diversity within each module was measured using the Shannon index to explore the 

relationship between gene co-expression and taxonomic diversity. Although no significant 

differences in overall network topology were observed between modules associated with 

HC, PD, or unassociated modules, some unassociated modules exhibited higher centrality 

and clustering values despite their smaller size. Notably, the diversity of taxa expression 

within a module was positively correlated with connectivity and size but negatively 

correlated with betweenness and eigenvector centrality. These findings reveal complex 

interactions between microbial diversity and network centrality, offering new insights into 

the gut microbiome's structural and functional organization in both health and disease. 
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We also performed gene set enrichment analysis to investigate the pathway composition of 

the modules. Although relatively few significantly enriched pathways were identified – since 

approximately 43% of gene orthologs within modules were not annotated to any KEGG 

pathway – some notable enrichments were observed. Specifically, modules associated with 

HC showed significant enrichment for flagellar assembly and secondary bile acid 

biosynthesis, while a module unassociated with either HC or disease exhibited significant 

enrichment for biofilm formation. Although not statistically significant after correction, we 

also observed enrichment in pathways related to glycerolipid metabolism, peptidoglycan 

biosynthesis, lipoic acid metabolism, and valine degradation in modules associated with 

PD. 

We identified and analyzed hub genes within the network, defining them as the top 100 

most connected genes. Most of these hub genes were found in HC and non-associated 

modules, with many involved in energy production (oxidative phosphorylation, 

glycolysis/gluconeogenesis) and transporter activity (ABC transporters). From the 

perspective of functional redundancy, we observed no differences between HC and PD 

individuals but, we observed greater overall diversity in gene diversity for genes within HC 

associated modules. Genes were categorized into those with increased expression linked 

to higher bacterial diversity and those associated with lower diversity. Notably, genes 

involved in flagellar assembly were significantly upregulated in HC and associated with 

higher microbial diversity. In contrast, 37% of genes significantly upregulated in PD 

exhibited reduced diversity, compared to 22% in HC. This trend was more pronounced 

among hub genes, with 75% of hub genes upregulated in PD showing decreased diversity. 

In this paper, we emphasize the role of flagellar assembly genes as hub genes within the 

microbial network, underscoring the significance of this pathway for the gut microbiome. 

Additionally, we discovered a notable association between genes involved in bacterial 

microcompartment (BMC) formation – an essential mechanism for detoxification and energy 

production in microbes, – modules associated with HC and flagellar assembly.  

In conclusion, this study used WGCNA to investigate the gut microbiome's role in PD. Gene 

modules associated with HC showed greater functional diversity and significant enrichment 

in flagellar assembly and secondary bile acid biosynthesis, whereas biofilm formation was 

enriched in modules unassociated with disease status. In contrast, genes upregulated in 

PD exhibited reduced microbial diversity, particularly among hub genes, where 75% showed 

decreased diversity. The enrichment and upregulation of flagellar assembly genes, and their 

association with higher microbial diversity in HC and bacterial microcompartment-

associated genes, align with findings from our previous study, "Integrated Multi-Omics 
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Highlights Alterations of Gut Microbiome Functions in Prodromal and Idiopathic PD.". This 

dysregulation of microbial co-expression patterns suggests altered biological processes in 

PD, which may contribute to disease pathogenesis. The upregulation of citrate lyase genes 

in PD indicates a possible link to intestinal inflammation. Although not statistically significant 

after correction, pathways related to glycerolipid metabolism, peptidoglycan biosynthesis, 

lipoic acid metabolism, and valine degradation were observed in PD modules, highlighting 

potential metabolic changes. These findings suggest that modulating microbial functions 

could be a promising therapeutic approach to address inflammation and slow disease 

progression in PD. 
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Abstract 13 

In this work, we employed WGCNA on data from an integrated multi-omics study involving a 14 

cross-sectional cohort of PD patients and healthy controls (HC). Our integrated multi-omics 15 

analysis, incorporating metagenomics (MG) and metatranscriptomics (MT), allowed us to 16 

identify significant shifts in gene co-expression patterns associated with PD. Key findings 17 

include the observation that the PD-linked gene network exhibits decreased gene diversity 18 

compared to HC. In contrast, HC gene modules were more central, highly connected, and 19 

enriched in functions such as flagellar assembly and secondary bile acid biosynthesis. 20 

Furthermore, hub gene analysis revealed that most hub genes, which play crucial roles in 21 

microbiome network stability, belonged to the HC-linked network, and particularly were 22 

involved in processes related to microcompartment assembly and flagellin. We found that 23 

genera including Blautia and Anaerobutyricum were the main contributors to 24 

microcompartment assembly genes significantly decreased in PD. Interestingly, PD-25 

associated gene expression was linked to reduced alpha-diversity, suggesting that increased 26 

gene expression in PD corresponds to a less diverse microbial ecosystem. Conversely, in 27 

HC, higher expression was associated with greater diversity. These findings reinforce the 28 

concept of microbial dysbiosis in PD and reveal a disruption of gut metabolic function at both 29 

functional and taxonomic levels, potentially contributing to the progression of the disease. 30 

Crucially, our work highlights critical microbiome-wide taxonomic and functional gene 31 

expression network features which would need to be restored in future rewilding efforts 32 

directed at the gut microbiome in PD. 33 

 34 

 35 

  36 
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Introduction 37 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder, primarily 38 

caused by the loss of dopaminergic neurons and the formation of Lewy bodies in the brain. 39 

PD is characterized by both motor and non-motor symptoms, with non-motor symptoms such 40 

as dysphagia, constipation, and bloating being linked to the gastrointestinal tract. Notably, 41 

idiopathic constipation, a common symptom of PD, often precedes motor symptoms by over 42 

a decade (Fasano et al., 2015), supporting the hypothesis that the disease can originate in 43 

the gut (Braak et al., 2003). Intestinal dysbiosis has been documented in PD (Cryan et al., 44 

2020; Keshavarzian et al., 2015), and evidence suggests that the gut might initiate or worsen 45 

the development of PD (Bhattarai et al., 2021; Hirayama & Ohno, 2021; Qian et al., 2018). 46 

These changes in gut microbiota composition can compromise gut permeability and the 47 

integrity of the intestinal barrier, affecting gastrointestinal epithelial cells, the immune system, 48 

and the enteric nervous system (Stolfi et al., 2022; Weiss & Hennet, 2017a). Moreover, a 49 

dysbiotic gut is characterized by decreased microbial richness and diversity (Weiss & 50 

Hennet, 2017b). In the last decade, multiple studies have found evidence for dysbiosis in the 51 

gut microbiome of individuals with PD characterized by shifts in bacterial and archaeal taxa 52 

including Methanobrevibacter, Akkermansia and Roseburia (Boertien et al., 2019; Romano et 53 

al., 2021; Toh et al., 2022). In addition, we recently showed a decrease in flagellar assembly 54 

and chemotaxis transcripts, along with differences in the metabolome in PD gut microbiome 55 

(Villette et al., 2024, submitted). 56 

Traditional bioinformatic and biostatistics methods frequently fall short of capturing the full 57 

complexity of microbiome-host interactions. Indeed, differential expression analysis or multi-58 

variate approaches doesn’t capture the importance of functions within a complex ecosystem 59 

such as the gut microbiome. Disease-associated phenotypes are believed to result from 60 

disruptions across the entire network rather than from single, isolated gene mutations 61 

(Barabási et al., 2010). Gene co-expression networks have been widely used to discover 62 
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functional gene clusters and pathways associated with various disease phenotypes (Cai et 63 

al., 2023; Meng & Mei, 2019). Therefore, we explored the relationship between the 64 

microbiome gene abundance normalized gene expression and the host through a network-65 

based approach. This effort aimed to inspect how molecular interactions within the gene 66 

network are dysregulated, providing a deeper understanding of the complex phenotypes 67 

associated with diseases such as PD. Weighted Gene Co-Expression Network Analysis (D 68 

module generally consists of genes that are involved in similar functional processes (Galán-69 

Vásquez & Perez-Rueda, 2019). Centrality analysis is a powerful tool for identifying 70 

significant elements within a network, particularly in biological networks (Brandes & Erlebach, 71 

2005; Koschützki & Schreiber, 2008). While various centrality metrics are available to 72 

characterize networks, it is advised to consider multiple measures to gain a comprehensive 73 

understanding of biological networks (Koschützki & Schreiber, 2004; Wuchty & Stadler, 74 

2003). Such an approach ensures a more nuanced and accurate exploration of the network’s 75 

key players.  76 

In this work, we employ WGCNA based on the ratio of MT to MG reads for individuals with 77 

PD and HC. We found modules associated with both disease groups. Amongst the modules, 78 

we find significant enrichment in flagellar assembly and secondary bile acid biosynthesis 79 

pathways. In addition, we find that most of the identified hub genes belong to HC associated 80 

modules and especially in module M2. Interestingly, within this module we identify genes 81 

involved in bacterial microcompartment formation and catabolism, most of these genes had 82 

decreased expression in individuals with PD especially in the context of commensals such as 83 

Blautia obeum and Anaerobutyricum hallii. Finally, we show that the majority of genes with 84 

increased expression in individuals with PD is associated with a decrease in gene diversity, 85 

especially for hub genes. This highlights another side of microbiome dysbiosis. 86 

  87 
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Results 88 

Microbial co-expression network is linked with disease 89 

status. 90 

We constructed a network representation of the gut microbiome including samples from both 91 

HC (n=49) and PD individuals (n=46) using WGCNA (Langfelder and Horvath, 2008). From 92 

an original set of 11 876 microbial genes, we inferred a signed co-expression network of 4 93 

789 genes after WGCNA trimming and processing. For the multi-omics co-expression 94 

analysis, we used abundance-normalized gene expression using the ratio of MT and MG 95 

transcripts per million (Figure 1) (Roume et al., 2015). The co-expression network revealed 96 

17 modules, four significantly associated with HC (M13, M2, M11 and M17, p < 0.05), five 97 

significantly associated with PD (M3, M6, M7, M8 and M15, p ≤ 0.05) and eight neither 98 

significantly associated with HC nor PD (Figure 2A).  99 

We next looked at topological features of the network and calculated the diversity of genes 100 

found within each module using the Shannon index, coined module diversity. Modules M2 101 

and M4 showed the highest mean connectivity, highest intramodular connectivity and highest 102 

module diversity despite their large size (Figure 2B and Supplemental fig. 1). M1 had the 103 

lowest clustering coefficient, degree centrality, eigenvector centrality and closeness 104 

centrality, which led us to believe that M1 was a module with only genes not clustering with 105 

the rest of the modules (Figure 2B and Supplemental fig. 1). M6 exhibited high values of 106 

betweenness and eigenvector centrality but low connectivity (Figure 2B and Supplemental 107 

fig. 1A). When analysing the modules based on the trait association, we found no statistically 108 

significant differences in topological measures but important variation between modules, 109 

irrespective of trait association (Kruskal and Wallis test, p > 0.05, Figure 2B and 110 

Supplemental fig. 1A). However, M1 being a clear outlier for clustering coefficient degree and 111 

closeness centrality, we removed it to re-compare modules based on trait association and 112 



6 
 

found a significantly higher degree and closeness centrality (Kruskal and Wallis, p = 0.023 113 

and p = 0.013, data not shown). Finally, we noticed the correlation between module diversity 114 

and the different topology metrics such as sum of connectivity and intramodular connectivity 115 

(R2 > 0.8, p < 0.001, Figure 2C) while eigenvector and betweenness centrality were 116 

anticorrelated with module diversity (R < -0.8, p < 0.001, Figure 2C). Overall, we found 117 

interesting anti-correlation between connectivity measures and closeness/betweenness 118 

centrality while clustering coefficient was correlated to degree/eigenvector centrality 119 

(Supplemental fig. 1C).  120 

Modules associated with HC showed enrichment in 121 

flagellar assembly and secondary bile acid biosynthesis. 122 

We next proceeded with gene set enrichment analysis (GSEA) to obtain insights into the 123 

pathway composition of the modules. Based on KEGG KO annotations, we found that on 124 

average 43.7% (min: 26%, max: 59%, Figure 3A) of genes within modules did not belong to 125 

any KEGG pathway. Modules comprised on average 28.5 different pathways ranging from 10 126 

(M6) to 42 pathways (M1) (Supplemental fig. 2). We identified an enrichment in flagellar 127 

assembly in M13 and secondary bile acid biosynthesis in M11 for modules associated with 128 

HC, an enrichment in biofilm formation for M16 (no association) and no statistically significant 129 

enrichment in PD-associated modules (Figure 3, q < 0.05, q < 0.05 and q > 0.05, 130 

respectively, GSEA). Although not statistically significant after correction, we noticed 131 

enrichments in the following transformation within modules associated with PD: glycerolipid 132 

metabolism (M3), peptidoglycan biosynthesis (M15), lipoic acid metabolism and valine 133 

degradation (M7) (Figure 3B, p < 0.01). We also noticed the presence of beta-lactam 134 

resistance genes (oppA, oppB, oppC, oppD and oppF) and quorum sensing genes in PD-135 

associated module M6 (Supplemental fig. 1). In addition, methane metabolism genes were 136 

present in the PD-associated modules M6 and M8 (Supplemental fig. 1). 137 
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Hub genes are restricted to HC-associated modules 138 

We next defined hub genes to appreciate the key functions of the microbial co-expression 139 

network. We first selected the top 100 genes with highest connectivity from all modules 140 

associated with HC and PD, excluding genes from modules not associated with either of the 141 

groups. Out of the 100 genes, 95 were from HC-associated modules and 5 with PD 142 

associated modules (Figure 4A). To access more genes from PD-associated modules, we 143 

selected 10% of the top connected genes from each modules retrieving 125 for HC and 108 144 

for PD (Figure 4A). For the top 100 genes most genes belonged to module M2 (85%) the rest 145 

belonging to M13 and M3 (Figure 4B). Hub genes associated with HC were mainly involved 146 

in energy production (oxydative phosphorylation, glycolysis/gluconeogenesis), transporter 147 

activity (ABC transporters), nucleotide metabolism (pyrimidine and purine metabolism), 148 

saccharide metabolism (pentose and glucuronate interconversions, starch and sucrose 149 

metabolism) and microbial motility (flagellar assembly and two-component system) (Figure 150 

4C). With the 10% per module approach, we noticed the presence of two glutamate 151 

synthases (GLT1 and gltB) in the module M11 labelled as members of the alanine, aspartate 152 

and glutamate metabolism (Figure 4C). 153 

Amongst the hub genes, we found a significant increase in their expression in HC including 154 

flagellar assembly (flgB, fliQ, fliS, flgE, fliK, flgL, fliD, fliP, p < 0.05, Figure 4D). We also found 155 

a significant increased expression for citrate lyase genes in individuals with PD (citD, citC 156 

and citF, p < 0.05, q > 0.05, Figure 4D). We noticed that members of bacterial 157 

microcompartments (BMCs) catabolism and metabolism (eut and pdu operons) genes were 158 

significantly increased in HC (eutM, pduE, eutK, q < 0.05, DeSeq2, Figure 4D and E). These 159 

genes are known to form BMCs in the cytoplasm, and we further investigated the taxa 160 

responsible for these differential expressions. We firstly noticed the disparity in orthologs 161 

annotation between the pdu and eut operons, these annotations were dependent on the 162 

taxonomy, with most of shell proteins annotated as members of the eut operon, while 163 

catabolism/anabolism genes were annotated as members of the pdu operon. We manually 164 
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grouped the genes according to their described functions in the literature (Supplemental 165 

table 1). Interestingly, the two genera expressing the most ethanolamine and 166 

propanediol/propionaldehyde genes were Blautia and Anaerobutyricum. Resolving the gene 167 

expression at the species level revealed a significant decrease in expression for these genes 168 

in PD, including in Blautia obeum, Blautia massiliensis, CAG-41 spp. and Anaerobutyricum 169 

hallii (p < 0.05, Wilcoxon test, Figure 4G and H). Of note, this decrease was also observed at 170 

the genus level (data not shown). Interestingly, we found an increase in Flavonifractor plautii 171 

expression of BMCs genes encoding for BMC-H and pduQ in PD (Figure 4G and H, p < 0.05, 172 

Wilcoxon test). 173 

Bacterial microcompartment genes are correlated with 174 

flagellar expression. 175 

We next wanted to investigate the links between bacterial microcompartments (BMCs) genes 176 

and the flagellar expression. In this manner, we tested the correlation between these genes 177 

using both normalized expression and MT TPM. In addition, we also tested the correlations 178 

for all the genes from all taxa or selected taxa based that were of particular interest (see 179 

material and methods for details). We found strong correlations between levels of BMCs 180 

gene expression and flagella assembly genes (Figure 5A and Supplemental fig. 3A-B). 181 

Indeed, we noticed significant correlations for 223 and 1 tests when using normalized 182 

expression (Figure 5A, p < 0.05, q < 0.05, respectively); 635 and 370 tests when using MT 183 

tpms (Figure 5A, p < 0.05, q < 0.05, respectively). In addition, correlations using only 184 

expression from selected taxa resulted in even more significant correlations both for 185 

normalized expression (Figure 5A, 500 genes with p < 0.05, 94 genes with q < 0.05, 186 

respectively) (Figure 5A, 569 genes with p < 0.05, 496 genes q < 0.05, respectively). Next, 187 

we checked specifically hub genes correlations, we found significant correlations between all 188 

the hub genes from BMCs and flagellar assembly genes both for normalized expression and 189 

MT tpms (Figure 5 B, q < 0.05, Spearman correlation test). 190 
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Genes enriched in Parkinson’s disease show lower gene 191 

diversity 192 

After noticing interesting modifications in the co-expression network and the lack of hub 193 

genes in PD associated modules, we decided to investigate functional redundancy and the 194 

gene expression diversity (GED) to appreciate the taxonomic differences of gene expression. 195 

In this context, GED refers to the diversity of taxa expressing a specific gene, while functional 196 

redundancy denotes the measure of taxonomic and functional diversity present within a 197 

sample (Tian et al., 2020). The following analyses will differentiate between genes found in 198 

module association to either one of the conditions (trait association, Figure 5A-C) and genes 199 

with differential expression showing an increase or decrease in PD (Figure 5D-F). We did not 200 

observe a difference in functional redundancy between HC and PD individuals (Figure 5A, p 201 

> 0.05, Wilcoxon test). Interestingly, we found no significant differences for overall GED for 202 

non-Hub genes but a significantly lower GED for hub genes in PD (Figure 5B, Wilcoxon test, 203 

p > 0.05 and p < 0.01, respectively). We also noticed hub genes had higher GED than non-204 

hub genes (Figure 5C, Wilcoxon test, p < 0.001). We then compared the differential 205 

expression and functional diversity of a given gene. We found that gene expression was 206 

linked to either an increase of GED (more microbes expressing a given gene) or a loss of 207 

GED (less microbes expressing a given gene) (Figure 5D and E).  208 

We were able to categorize genes into two groups: those with increased expression linked to 209 

a higher GED, and those with increased expression linked to a lower GED. We finally looked 210 

at the proportion of genes within the two above-mentioned categories. We found that a 211 

significantly higher proportion of genes with decrease GED in PD compared to HC for both 212 

hub genes and non-hub genes that had significantly different expression (p = 0.016 and p = 213 

0.002, Fisher exact test and Chi square test, respectively, Figure 5F). Noteworthy, we 214 

noticed the same link for genes (hub and non-hub) that had were not significantly different in 215 

expression (Figure 5F). Interestingly, hub genes with significant increased expression in PD 216 
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had a higher ratio of decreased GED than non-hub genes (57% and 43%, respectively, 217 

Figure 5F). 218 

  219 
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Discussion 220 

Previously, we demonstrated significant differences in the gut microbiome of individuals with 221 

PD (Villette et al., 2024, submitted). In the present study, we employed a network approach 222 

to assess the microbiome-wide impacts of these changes. Our goal was to uncover key 223 

differences in microbial metabolism between PD individuals and HC. We identified strong 224 

associations between co-expression network modules and disease status, with four modules 225 

linked to HC and five to PD. Additionally, we found eight modules that were not associated 226 

with either HC or PD. Except for module M1, that was mainly a module with genes not 227 

clustering with other genes, we found higher values of degree and closeness centrality for 228 

these modules compared to the trait associated modules. Given their overall high centrality 229 

and the lack of trait association, these modules may represent stable, core functions that 230 

uphold the integrity of microbial networks in both health and disease. 231 

Hub genes are important to highlight key functions associated with PD (Calabrese et al., 232 

2012; Farber, 2010; Horvath et al., 2006; Langfelder et al., 2013; Torkamani & Schork, 2009; 233 

Zhang & Horvath, 2005). Therefore, identifying hub genes is a highly effective strategy for 234 

uncovering genes that contribute to complex diseases such as PD. Using this approach we 235 

first decided to select the top 100 connected genes from modules associated with either HC 236 

or PD, which led to 95% of the genes being associated with HC. To get more insight on the 237 

PD most connected genes we selected the top 10% most connected genes per module. With 238 

this approach we uncovered citrate lyase genes being increased in PD, however, we did not 239 

manage to link these genes to other functions or to resolve the taxonomic expression of 240 

these genes. To our knowledge, there is no record of citrate lyase genes being associated 241 

with disease in humans. Interestingly, 13 genes from the flagellar assembly pathway are hub 242 

genes when using the top 10% approach and 9 when using the top 100 connected approach, 243 

showing once more the importance of this pathway in the microbial network, especially in the 244 

context of PD. Finally, the high number of hub genes from HC-associated modules is 245 
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noteworthy, as it indicates that there is an imbalance in the expression of key functions in the 246 

gut microbiome of PD. Hub genes attributed to the HC associated modules are sought to be 247 

key regulators of the microbial network. 248 

Focusing on M2, a module associated with HC, comprises the most connected genes and 249 

especially genes from pdu and eut operons, two operons forming bacterial 250 

microcompartments. These operons are responsible for ethanolamine and 1,2-propanediol-251 

utilization, an important energy source for bacteria and are typically associated with the 252 

survival of specific pathogenic bacteria (Ravcheev & Thiele, 2014; Tsoy et al., 2009), as they 253 

confer a growth advantage by utilizing abundantly present 1,2-propanediol and ethanolamine 254 

(EA) (Dank et al., 2021; Vance, 2018). However, it has been recently described that a wide 255 

range of commensals are also expressing these genes (Asija et al., 2021; Jallet et al., 2024; 256 

Q. Li et al., 2024; Reichardt et al., 2014). We find that the expression of these genes is 257 

decreased in PD compared to HC, especially in genera such as Blautia and Anaerobutyricum 258 

but increased in Flavonifractor plautii, a bacterium that we previously highlighted as 259 

associated to PD (Villette et al., 2024, submitted). Indeed, F. plautii and Flavonifractor genus, 260 

showed increased expression of flagellar assembly in PD. Interestingly, we found strong 261 

correlations between the expression of BMCs genes and flagellar assembly genes. 262 

Additionally, exposure to EA enhances L. brevis’s cellular aggregation and adhesion, 263 

potentially improving its probiotic efficacy via the prevention of pathogen attachment. Also, 264 

non-pathogenic E. coli isolates were also described to use EA as energy source to enhance 265 

growth, modulate gene expression, and outgrow pathogenic E.coli strains (Moreira de 266 

Gouveia et al., 2023; Rowley et al., 2018). So, our finding of loss of eut and pdu expression 267 

in genera such Blautia and Anaerobutyricum, suggest that these commensals might be 268 

losing access to the nutrients necessary to express these genes and therefore decrease their 269 

expression of flagella. 270 

We demonstrate a decreased gene expression diversity in genes associated to PD but no 271 

differences in overall functional redundancy. Nonetheless, we show here that most of genes 272 
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overexpressed in PD are linked with a decrease in the diversity of taxa expressing these 273 

functions. Interestingly, this was even more present in genes that we defined as hub genes 274 

(using the second approach), headlining the loss of keystone genes expression in PD. In HC 275 

associated genes, we noticed an opposite relationship, increased expression was linked with 276 

increased gene expression diversity. We here show that the gut microbiome dysbiosis is 277 

indeed linked with a disruption of keystone functions in PD but also a disruption of diversity of 278 

functionality. We couldn’t measure resilience and stability of PD gut microbiome, these 279 

measures being time dependent, but we strongly suppose that a general loss of gene 280 

expression diversity will result or is secondary to a decreased resilience and stability as 281 

hypothesized before (Ives & Carpenter, 2007; Loreau & Behera, 1999).  282 

  283 



14 
 

Material and methods 284 

Patient cohorts and sampling 285 

Kassel Cohort 286 

The DeNoPa cohort represents a prospective, biannual follow-up study of (initially de novo) 287 

Parkinson’s disease (PD) patients at the Paracelsus-Elena Klinik, Kassel, Germany. Fecal 288 

samples from PD patients (46) and healthy controls (29) were collected during the 4-year 289 

follow-up visit for the cohort. Details on inclusion and exclusion criteria and ancillary 290 

investigations have been published previously (Mollenhauer et al., 2013, 2016). Subjects 291 

with idiopathic rapid-eye-movement sleep behavior disorder (iRBD, 13) were recruited at the 292 

same clinic, diagnosed according to consensus criteria of the International RBD study group 293 

(Schenck et al., 2013) using video-assisted polysomnography, and were included only if they 294 

showed no signs of a neurodegenerative disorder. DeNoPa subjects were required to have a 295 

4-week antibiotic free interval before fecal sample collection. As additional control subjects, 296 

we collected fecal samples from (20) neurologically healthy subjects living in the same 297 

household as the DeNoPa participants. Samples of de novo PD patients from a cross-298 

sectional cohort at the same clinic were included if subjects were recently diagnosed, drug-299 

naïve and met United Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) clinical 300 

diagnostic criteria (Hughes et al., 1992). All subjects except household HC were interviewed 301 

and examined by an expert in movement disorders. The study conformed to the Declaration 302 

of Helsinki and was approved by the ethics committee of the Physician’s Board Hessen, 303 

Germany (FF 89/2008). The DeNoPa trial is registered at the German Register for Clinical 304 

trials (DRKS00000540). 305 

Marburg Cohort 306 

We also added samples from 14 patients with polysomnography-confirmed iRBD which were 307 

recruited from the outpatient clinic of the Department of Neurology, Philipps-University, 308 
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Marburg, Germany, between November 2015 and November 2016. iRBD was diagnosed 309 

according to the guidelines of the American Academy of Sleep Medicine (AASM ICSD-3) 310 

(Sateia, 2014). A detailed medical history was recorded, and a complete neurological 311 

examination performed to verify the subjects’ suitability. Inclusion criteria were age above 18 312 

years, no dopamimetic therapy, and no diagnosis of PD, MSA, DLB or PSP. Exclusion 313 

criteria were smoking, antibiotic therapy in the last 24 months, history of other neurological 314 

diseases or disorders of the gastrointestinal tract. Non-motor and autonomic symptoms were 315 

evaluated with the SCOPA-AUT (Visser et al., 2004) and PD-NMS (Chaudhuri et al., 2007) 316 

questionnaires. Motor function was evaluated with the UPDRS (Fahn et al., 1987). 317 

Additionally, patients were asked to complete the RBD-Sleep questionnaire (Stiasny-Kolster 318 

et al., 2007). The study conformed to the Declaration of Helsinki and was approved by the 319 

ethics committee of the Medical Faculty of the Philipps-University, Marburg, Germany 320 

(46/14). 321 

Consent 322 

All subjects from both cohorts provided informed written consent, and the sample analysis 323 

was approved by the Comité National d’Ethique de Recherche of Luxembourg (reference 324 

no.: 140174_ND). 325 

Fecal sample collection 326 

Fecal samples were collected at the clinics via a stool specimen collector (MedAuxil) and 327 

collection tubes (Sarstedt), as previously described (Heintz-Buschart et al., 2018). Samples 328 

were immediately flash-frozen on dry ice after collection. Samples were subsequently stored 329 

at –80 °C and shipped on dry ice.  330 

Sample exclusions 331 

The initial set of samples consisted of 50 PD and 50 healthy control subjects (HC). Three PD 332 

and two iRBD cases were subsequently excluded for clinical reasons (adjusted diagnosis), 333 
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one iRBD and one PD subject for logistical reasons, and one control due to a combination of 334 

microbiome-altering medications (metformin, antidepressants, statins, and proton pump 335 

inhibitors). Additional samples were excluded due to missing values (metabolomics) or a low 336 

amount of identified analytes (metaproteomics), leading to the final numbers of samples 46 337 

for individuals with PD and 49 for HC. 338 

Metagenomic and metatranscriptomic sequencing 339 

Extractions from fecal samples were performed according to a previously published protocol 340 

(Roume et al., 2012) conducted on a customized robotic system (Tecan Freedom EVO 200). 341 

After extraction, DNA and RNA were purified prior the sequencing analysis by using the 342 

following commercial kits respectively: Zymo DNA Clean&Concentrator-5 (D4014) and Zymo 343 

RNA Clean&Concentrator-5 (R1014). RNA quality was assessed and quantified with an 344 

Agilent 2100 Bioanalyser (Agilent Technologies) and the Agilent RNA 6000 Nano kit, and 345 

genomic DNA and RNA fractions with a NanoDrop Spectrophotometer 1000 (Thermo 346 

Scientific) as well as commercial kits from Qubit (Qubit ds DNA BR Assay kit, Q32850; Qubit 347 

RNA BR Assay kit, Q10210). All DNA samples were subjected to random shotgun 348 

sequencing. Following DNA isolation, 200-300 ng of DNA was sheared using a Bioruptor 349 

NGS (Diagenode) with 30s ON and 30s OFF for 20 cycles. Sequencing libraries were 350 

prepared using the TruSeq Nano DNA library preparation kit (Illumina) following the 351 

manufacturer’s protocol, with 350 bp average insert size. For MT, 1 µg of isolated RNA was 352 

rRNA-depleted using the RiboZero kit (Illumina, MRZB12424). Library preparation was 353 

performed using the TruSeq Stranded mRNA library preparation kit (Illumina) following the 354 

manufacturer’s protocol, apart from omitting the initial steps for mRNA pull down. MG and 355 

MT analyses, the qualities of the libraries were checked using a Bioanalyzer (Agilent) and 356 

quantified using Qubit (Invitrogen). Libraries were sequenced on an Illumina NextSeq500 357 

instrument with 2x150 bp read length 358 
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Bioinformatics and statistical analyses 359 

Sequencing data processing and analysis 360 

For all samples, MG and MT sequencing data were processed and hybrid-assembled using 361 

the Integrated Meta-omic Pipeline (IMP) (Narayanasamy et al., 2016) (https://git-362 

r3lab.uni.lu/IMP/imp3, commit 8c1bd6fa443d064511909c9eede20703f45e6c69). Data 363 

was quality trimmed, adapter sequences were removed, MT rRNA reads were removed by 364 

mapping against SILVA 138.1 (Quast et al., 2013) and human reads were removed from MT 365 

and MG after mapping against the human genome (hg38) and transcriptome (RefSeq 212). 366 

Pre-processed MG and MT reads were co-assembled using the IMP-based iterative hybrid-367 

assembly pipeline using MEGAHIT 1.0.3 (D. Li et al., 2015). After assembly, the prediction 368 

and annotation of genomic features such as open-reading frames (ORFs) and non-coding 369 

genes was performed using a modified version of Prokka (Seemann, 2014) and followed by 370 

functional annotation of those using Mantis (Queirós et al., 2021). Genomic features were 371 

quantified on MG and MT level using featureCounts (Liao et al., 2014) from the final gff file. 372 

Taxonomic annotation of reads and contigs was performed using Kraken2 (Wood et al., 373 

2019) with a GTDB release207 database 374 

(http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release207/kraken2) and a 0.5 confidence 375 

threshold. Additionally, taxon abundances were estimated using mOTUs 2.5.1 (Milanese et 376 

al., 2019). The mOTU abundances were used to generate abundance matrices for each 377 

taxonomic rank (phylum, class, order, family, genus and species) by summing up taxon 378 

marker read counts at the respective levels. 379 

Co-expression network construction 380 

The Python package WGCNA (PyWGCNA, version 2.0.4) was used to construct a co-381 

expression network of genes expressed in the microbiome of PD patients and HC according 382 

to the WGCNA procedure (Rezaie et al., 2023). As input to PyWGCNA, we used MG-383 

normalized MT expression of KEGG orthologs (KO) (MT/MG ratio) in PD and HC samples 384 
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(Roume et al., 2015). MG-normalized expression of KOs was power transformed using 385 

PowerTransformer from sklearn.preprocessing (https://scikit-386 

learn.org/stable/api/sklearn.preprocessing.html). The WGCNA function was run with the 387 

following parameters: minimum module size minModuleSize=20, dissimilarity threshold 388 

MEDissThres=0.18, networkType=’signed’. Gene modules were identified using hierarchical 389 

clustering and the dynamic tree-cut function.  390 

Diversity measures 391 

To describe module diversity, functional redundancy and gene expression diversity, we used 392 

the Shannon index with different settings. We defined module diversity by the number and 393 

evenness of gene expression within a module, we summed normalized MT expression for 394 

each gene and used Shannon index from the vegan R package (2.6.6.1) (Oksanen et al., 395 

2016). We then defined gene diversity by the richness and evenness of taxa expressing a 396 

given gene, also using the Shannon index. Functional redundancy was calculated using the 397 

R package SYNCSA (1.3.4) using the function rao.diversity() (Debastiani & Pillar, 2012). 398 

  399 
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Figure legends 400 

 401 

Figure 1. Schematic overview the data analysis workflow for identifying 402 

and analyzing co-expressed gene modules using WGCNA. 403 

Initially, metagenomic (MG) and metatranscriptomic (MT) counts per gene were converted 404 

into values representing the normalized gene expression MT/MG ratio. A co-expression gene 405 

network was then constructed based on a dataset of 4879 genes derived from both PD and 406 

HC individuals. This network revealed 17 distinct gene modules. Among these, we selected 407 

modules significantly associated with either PD or HC. Further analyses focused on 408 

correlations between module genes and specific metabolites, diversity analysis, hub genes 409 

within these key modules, gene set enrichment analysis, aiming to uncover the biological 410 

relevance of these modules in relation to the disease. 411 
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412 
Figure 2. WGCNA reveals module association with disease.  413 

A. Module trait relationship heatmap with correlation and p-values for each module. Modules 414 

are sorted based on the correlation value. The top panel represents the number of genes 415 

belonging to each module. B. Network topology analysis for the modules grouped by trait 416 

association. A Kruskal and Wallis test was conducted according to the trait association to 417 

compare modules based on their associations or not to one of the two groups. C. Correlation 418 

between module diversity and other topology features. 419 
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 420 

Figure 3. KEGG pathway analysis shows enrichment in HC modules but 421 

not in PD modules.  422 

A. Count of genes with undescribed pathways or not belonging to any KEGG pathway. B. 423 

Gene Set Enrichment Analysis. Dots are only significant enrichment (p < 0.05), colored by -424 

log10(p-value). Asterix represent significant enrichment after FDR correction (q < 0.05). 425 
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426 
Figure 4. Hub genes are mainly associated with HC individuals. 427 

A. Bar plot showing the count of hub genes selected based on top 100 connected genes (left 428 

panel) and 10 % top connected genes per module (right panel). B. Dot plot representing 429 

counts of pathways per module for the hub genes. The size of the dots represents the 430 

proportion of a given pathway within a module. C and D. Volcano plots of differential 431 

expression of genes for the hub genes selected with the top 100 connected genes in the 432 

network (C.) and top 10% connected per modules (D.), considering only modules 433 

significantly associated to one of the groups. Dots are colorized by disease category and 434 

shaped on the level of significance, triangular shape for p < 0.05 and round colored shape for 435 
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q < 0.05. G and H. Boxplots representing gene normalized expression resolved at the 436 

species level for the BMC shell proteins (G.) and BMCs catabolism/anabolism (F.). All tests 437 

are Wilcoxon tests with p values before correction.  438 

  439 
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 440 

Figure 5. Bacterial microcompartments are correlated with flagella 441 

expression. 442 

A. Bar plot counting the number of positive correlations before and after FDR correction for 443 

normalized expression and MT tpms when taking all taxa expressing the BMCs genes and 444 

flagella genes (upper panel) and relevant taxa from figure 4 (lower panel). All tests are 445 

spearman correlation. B.  Correlation plots including selected taxa, both for normalized 446 

expression and MT tpms, considering only hub genes from the 10% per modules approach. 447 

Tests are spearman correlation and all correlation are significant after FDR correction (q < 448 

0.05). 449 

 450 
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Figure 6. Gene diversity is decreased in PD individuals. 452 

A. Boxplot representing functional redundancy for each sample according to disease status. 453 

B. Boxplot representing gene expression diversity according to disease status. Gene 454 

diversity is here defined by Shannon index of species expressing a given gene, the TPM are 455 

summed at the disease status level. C. Boxplot representing gene expression diversity 456 

grouped by hub genes belonging or not. Differential abundance versus differential diversity 457 

for a given gene for non-Hub genes (D.) and Hub genes (E.). Y axis represents log2-fold 458 

change of normalized expression and X axis the log 2-fold change of Gene diversity. Dots 459 

are labelled and colored for genes with p-value < 0.05.  F. Stacked bar plot representing the 460 

count of genes with increase or decrease gene diversity for Hub and non-Hub genes. Genes 461 

are segregated into PD or HC group according to the sign of DEG and faceted according to 462 

DEG significance.  463 

  464 
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 465 
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Supplemental figure 1. Additional topology metrics from WGCNA.  466 

A. Boxplots representing betweenness, closeness and eigenvector centrality. Kruskal and 467 

Wallis test. B. Correlation between topology metrics and module diversity. All tests are 468 

spearman correlation. 469 

 470 

471 
Supplemental figure 2. KEGG pathway for each module.  472 

Count of pathway per module for the hub genes. The size of the dots represents the 473 

proportion of a given pathway within a module. 474 

  475 
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Supplemental figure 3. Bacterial microcompartments genes correlate 476 

with flagella assembly genes. 477 

Heatmaps representing spearman correlation coefficients between genes involved in BMCs 478 

formation, catabolism or anabolism and genes involved in flagellar assembly. A. Heatmap 479 

correlation tests for selected bacteria using normalized expression. B. Heatmap correlation 480 

tests for selected bacteria using MT tpms. 481 

 482 

  483 
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Data availability 484 

The datasets generated by this study are available in the following repositories: 485 

metagenomic and metatranscriptomic data at the NCBI BioProject collection with the ID 486 

PRJNA782492 (http://www.ncbi.nlm.nih.gov/bioproject/782492), metaproteomic data at 487 

the Proteomics Identifications (PRIDE) database with accession number PXD031457 488 

(https://www.ebi.ac.uk/pride/archive/projects/PXD031457), and metabolomic data at 489 

MetaboLights with ID MTBLS5092 (https://www.ebi.ac.uk/metabolights/MTBLS5092). 490 

Due to privacy restrictions, clinical and demographic data are available on request from the 491 

corresponding author. 492 

Code availability 493 

The IMP pipeline, which was used for analysis of metagenomic and metatranscriptomic data, 494 

is available at https://gitlab.lcsb.uni.lu/IMP/imp3. The R and python code used for 495 

statistical analyses and visualizations is available at https://gitlab.lcsb.uni.lu/ESB/[TBA]. 496 
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Overview of the study 

In our study titled “Functional Prediction of Proteins from the Human Gut Archaeome”, we 

undertake a comprehensive exploration of the underrepresented domain of archaea within 

the human gut microbiome. By employing advanced computational and structural 

methodologies, this research delineates the functional capacities of archaeal proteins, 

thereby providing a nuanced understanding of their roles within the gut ecosystem. This 

study addresses a critical domain in microbiome research, specifically the functional 

annotation of archaeal proteins, which has remained elusive due to the limited availability 

of homologous sequences in extant databases. 

The human gastrointestinal tract harbors a diverse array of microbial communities, including 

a significant presence of archaea. Among these, Methanobrevibacter smithii emerges as a 

highly active and clinically relevant methanogenic archaeon, implicated in various 

gastrointestinal disorders such as inflammatory bowel disease and obesity. Our study 

presents an integrated approach to enhance the annotation of M. smithii proteins by 

leveraging advanced protein structure prediction and annotation tools, including 

AlphaFold2, trRosetta, ProFunc, and DeepFri. 

In this research, we utilized an extensive dataset of archaeal proteins, from which a subset 

was identified as exclusive to the human gut. This dataset was further analyzed alongside 

bacterial proteins to discern unique archaeal proteins and archaeal-bacterial homologs. The 

study’s methodology involved predicting and characterizing the functional domains and 

structures of unique and homologous archaeal protein clusters associated with the human 

gut and M. smithii. This approach facilitated the refinement of existing sequence similarity-

based annotations through the integration of predicted structural data. 

One of the notable findings of this study was the identification of gut-specific archaeal 

proteins potentially involved in defense mechanisms, virulence, adhesion, and the 

degradation of toxic substances. The study also uncovered potential glycosyltransferases 

that could be linked to N-linked and O-glycosylation processes. Additionally, preliminary 

evidence suggested interdomain horizontal gene transfer between Clostridia species and 

M. smithii, including sporulation Stage V proteins AE and AD. 

The implications of these findings may broaden the understanding of archaeal biology, 

particularly concerning M. smithii. The study underscores the importance of considering 

both sequence and structure for accurate protein function prediction. By integrating 

advanced computational tools, the research aims to provide a more comprehensive 
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annotation of archaeal proteins, which is crucial for elucidating their roles in the human gut 

microbiome. 

Furthermore, the study highlights the evolutionary significance of archaea within the human 

gut. Historically, archaea were primarily associated with extreme environments; however, 

their presence and functional roles in more moderate environments, such as the human 

gut, have garnered increasing attention. The ability of archaea to thrive in diverse 

environments and resist various chemical stresses is partly attributed to their unique cell 

envelope structures. In natural ecosystems, archaea perform distinctive biogeochemical 

functions, such as methanogenesis, anaerobic methane oxidation, and ammonia oxidation. 

In conclusion, the study’s integrated approach to protein annotation, combining sequence 

and structure information, represents a significant contribution to the field of microbial 

genomics. The findings aim to enhance the understanding of the role of M. smithii in the 

human gut and pave the way for future research into the functional dynamics of archaeal 

proteins. This comprehensive annotation framework can be applied to other microbial 

communities, thereby contributing to a broader understanding of microbial ecology and 

evolution. 
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Abstract 
The human gastrointestinal tract contains diverse microbial communities, including archaea. Among them, Methanobrevibacter smithii 
represents a highly active and clinically relevant methanogenic archaeon, being involved in gastrointestinal disorders, such as 
inflammatory bowel disease and obesity. Herein, we present an integrated approach using sequence and structure information to 
improve the annotation of M. smithii proteins using advanced protein structure prediction and annotation tools, such as AlphaFold2, 
trRosetta, ProFunc, and DeepFri. Of an initial set of 873 481 archaeal proteins, we found 707 754 proteins exclusively present in the human 
gut. Having analysed archaeal proteins together with 87 282 994 bacterial proteins, we identified unique archaeal proteins and archaeal– 
bacterial homologs. We then predicted and characterized functional domains and structures of 73 unique and homologous archaeal 
protein clusters linked the human gut and M. smithii. We refined annotations based on the predicted structures, extending existing 
sequence similarity-based annotations. We identified gut-specific archaeal proteins that may be involved in defense mechanisms, 
virulence, adhesion, and the degradation of toxic substances. Interestingly, we identified potential glycosyltransferases that could be 
associated with N-linked and O-glycosylation. Additionally, we found preliminary evidence for interdomain horizontal gene transfer 
between Clostridia species and M. smithii, which includes sporulation Stage V proteins AE and AD. Our study broadens the understanding 
of archaeal biology, particularly M. smithii, and highlights the importance of considering both sequence and structure for the prediction 
of protein function. 

Keywords: protein structure, archaea, methanogens, gut microbiome 

Introduction 
In 1977, Woese and Fox, and colleagues discovered the kingdom 
of Archaebacteria, later renamed Archaea, revealing a new branch 
in the tree of life [1-4]. The discovery of the Asgard superphy-
lum and its close relationship with the eukaryotic branch sup-
ports the notion of an archaeal origin for eukaryotes, yet ongoing 
debates continue regarding whether the archaeal ancestor of 
eukaryotes belongs within the Asgard superphylum or represents 
a sister group to all other archaea [5, 6]. Historically, archaea 
were associated with extreme environments but have since been 
recognized for their general importance and prevalence [7, 8]. 
Their ability to thrive in extreme environments and to resist 
chemicals is attributed, in part, to their unique cell envelope 
structures. In nature, archaea perform distinctive biogeochemical 
functions, such as methanogenesis, anaerobic methane oxidation, 
and ammonia oxidation [9, 10]. By employing diverse ecological 
strategies for energy production, archaea can inhabit a wide 
variety of environments [11]. Archaea are also host-associated, 
such as on plants, in human and animal gastrointestinal tracts 
[12, 13], on human skin [14, 15], in respiratory airways [16], and in 

the oral cavity [17]. Based on recent estimates, archaea comprise 
up to 10% of the human gut microbiota [18]. 

Methanobrevibacter smithii, a ubiquitous and active methanogen 
in the human gut microbiome, has remarkable clinical relevance 
and is relatively well annotated [19]. It plays an important role 
in the degradation of complex carbohydrates, leading to the pro-
duction of methane, which has significant physiological effects 
on human physiology. Imbalances in the population of M. smithii 
have been implicated as factors contributing to gastrointestinal 
disorders such as inflammatory bowel disease (IBD) [20, 21] and  
obesity [22-24]. Given the prevalence of M. smithii in the gut, 
further research aimed at M. smithii is key to understanding 
their role in disease. Archaeal proteins, including those of M. 
smithii, play a crucial role in adapting to diverse environments 
and showcase their unique biology. The knowledge about diverse 
archaea, including novel species, in the human gut microbiome 
has expanded, underscoring their significance [25]. Some host-
associated taxa, like Methanomassilicoccales, have potential benefi-
cial effects on human health [26], while others like Methanosphaera 
stadtmanae have been linked to proinflammatory immune pro-
cesses [27]. Given the current interest in the role of archaea in
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human health and disease, understanding the archaeal proteome 
is crucial for understanding the functional potential of archaea. 

Studying archaeal proteins presents challenges both in 
experimental and computational aspects. Previous research has 
highlighted the potential for biotechnological applications in 
various archaeal genera [28]. However, genetic toolboxes for tar-
geted genomic modifications are currently limited to mesophilic 
Methanococcus and Methanosarcina genera [29]. Although alter-
native methods like mass spectrometry-based searches exist, 
difficulties arise from inaccurate predictions of protein coding 
sequences (CDSs) due to limited knowledge of ribosomal binding 
sites and promoter consensus sequences [30]. Another unresolved 
challenge lies in the isolation and cultivation of archaea 
under laboratory conditions, although recent progress has been 
made [31, 32]. To overcome these challenges, metagenomic 
sequencing has emerged as a promising approach to study 
archaea and their ecological relationships. Metagenomics has 
enhanced our understanding of the archaeal branches within 
the tree of life [31-33], whereby assembled sequences allow 
prediction of protein CDSs and their functional characterization 
in silico. However, metagenome-assembled genomes (MAGs) 
face challenges in functional assignment due to incomplete 
sequences and difficulties in predicting and annotating open-
reading frames (ORFs) [34, 35]. Sequence-based protein function 
annotation, commonly used but limited in cases of distant 
protein homologies, proves to be not particularly effective [36]. 
Moreover, the databases containing information about archaeal 
proteins and functions are not consistently updated, creating a 
2-fold challenge in the sequence-based annotation of archaeal 
proteins. On one hand, Makarova et al. [37] report that  archaeal 
ribosomal proteins L45 and L47, experimentally identified in 2011 
[38], and pre-rRNA processing and ribosome biogenesis proteins 
of the NOL1/NOP2/fmu family, characterized in 1998 [39], were 
not added to annotation pipelines by 2019 and were labelled as 
“hypothetical.” On the other hand, sequence similarity–based 
approaches fail to capture relationships between highly divergent 
proteins when aligned with a known database protein [40-42]. 
Archaea, the least characterized domain of life, suffer from 
incorrect protein annotations due to insufficient experimental 
data and outdated databases [43]. Furthermore, the study by 
Makarova et al. indicates that a substantial proportion of genes 
within archaeal genomes (30%–80%) have not been thoroughly 
characterized, leading to their classification as archaeal “dark 
matter” [37]. Poorly annotated proteins limit our study of 
microbial functionality and their roles in biological processes. 
However, protein structure prediction represents an alternative 
strategy addressing the gap in sequence–function annotation 
[44]. It complements sequence-based approaches, particularly 
when annotations are limited or conflicting across databases, by 
utilizing the conservation of tertiary structure to infer functional 
roles [45, 46]. Advanced computational techniques, such as 
AlphaFold2 (AF) [47] and trRosetta (TR) [48], offer accurate 
predictions of 3D structures, providing valuable functional 
insights. 

Here, we present an integrated in silico approach to enhance 
protein functional characterization and improve accuracy of 
protein annotations in archaeon M. smithii. Having compared 
archaeal gut–specific proteins to bacterial gut proteins, we 
found 73 unique and homologous archaeal protein clusters. Our 
approach incorporates advanced protein structure prediction and 
annotation tools, such as AlphaFold2 (AF), trRosetta (TR), ProFunc 
(PF), and DeepFri (DF), into a comprehensive workflow. We predict 
and characterize the functional domains and structures of 73 
gut-specific archaeal protein clusters. The predicted functions 

are linked to the adaptation to changing environments, survival, 
and nutritional capabilities of M. smithii within the human 
gut microbiome. We additionally identified sporulation-related 
archaeal proteins, presumably horizontally transferred to archaea 
from Clostridium species. 

Materials and methods 
Selection of gut-specific archaeal proteins 
To select specific proteins of gut-associated archaea, we utilized 
archaeal MAGs obtained from the Genomes from Earth’s Micro-
biomes (GEM) catalog [49] and the Unified Human Gastrointesti-
nal Genome (UHGG) collection [50], along with bacterial MAGs 
from the UHGG collection (accessed in November 2020). Genomes 
were extracted based on available metadata and filtered by tax-
onomy to specifically target archaea. 

Gene prediction was performed using Prodigal (V2.6.3) [51] on  
the archaeal and bacterial MAGs from the UHGG collection, while 
CDSs from the GEM catalog were downloaded from the provided 
source (https://portal.nersc.gov/GEM). Archaeal and bacterial pro-
teins were further separately clustered using MMseqs2 (MM2) 
(v12.113e3-2) [52, 53] (Fig. 1) with the following parameters: –cov-
mode 0 –min-seq-id 0.9 -c 0.9. 

To identify unique functions of gut-associated archaea, we 
selected proteins specific to the human gut and encoded by 
gut-associated archaea. MAGs were selected based on available 
metadata indicating their sampling location. First, we included 
protein clusters containing at least one protein from a MAG 
sampled in the human gut. We then excluded protein clusters 
that had proteins from MAGs sampled in other environments. The 
final selection included protein clusters where all proteins were 
encoded by MAGs sampled exclusively from the human gut. 

From the selected gut-specific protein clusters, only those 
with complete KEGG annotations were included. Fully annotated 
archaeal and bacterial MM2 clusters were additionally clustered 
together with Sourmash (v4.0.0) [54, 55]. Archaeal protein clusters 
were categorized into two groups: those sharing KEGG Orthology 
identifiers (KOs) with bacterial proteins (prefix h) and those with 
unique KOs (prefix u) (Fig. 1). 

Protein function annotation 
Archaeal and bacterial proteins were annotated with KEGG 
orthologs (KOs) using Mantis (1.5.4) [56] (Fig. 1). AF [47, 57] 
and TR [48] were used as structure prediction tools. For each 
tool, the predicted protein structure was then annotated 
separately. The TR-based model was annotated using templates 
with the highest identity and coverage features. TR used a 
template for prediction if it met the criteria of confidence 
>0.6, E-value <0.001, and coverage >0.3. The protein model 
generated by AF was submitted to the PF [58] web server for 
structure-based annotation. “Sequence search vs existing PDB 
entries” and 3D functional template searches sections from the 
PF report were used for structure-based protein annotation. 
Structure matches were selected according to the reported 
highest possible likelihood of being correct as follows: certain 
matches (E-value < 10–6), probable matches (10–6 < E-value < 0.01), 
possible matches (0.01 < E-value < 0.1), and long shots (0.1 < E-
value < 10.0). Only certain matches were used for the functional 
assignment. DeepFri [59] was used as an auxiliary tool, providing 
broad and general descriptions to verify or refute suggestions 
from AF and/or TR. DeepFri predictions with a certainty 
score > 0.7 were considered. Our combined approach integrates 
multiple methods to enhance the resolution of functional
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Figure 1. (A) Flowchart demonstrating major steps of the analysis; the Venn diagram demonstrates the number of shared KOs assigned to archaeal 
and bacterial sourmash clusters; (B) funnels illustrating the protein count at each stage of protein selection; MM2, MMseqs2 clusters; SCs, sourmash 
clusters. 

Table 1. Relationships between PF likelihood and TR TM-scores. 

PF likelihood PF E-value TR significance score TR TM-score 

Certain match <10−6 Very high >0.7 
Probable match <0.01 High >0.5 
Possible match <0.1 Medium >0.4 
Long shot <10 Low >0.3 

annotation, particularly for challenges faced by traditional 
methods. 

When TR- and AF-based annotations provided consistent 
results, the consensus was used as the final annotation of the 
protein function. However, when the reports gave different results, 
we prioritized the result with highest confidence. For instance, 
when the confidence of the model predicted by TR was very high 
and template matches were provided, and AF-based PF reported 
a match with a lower confidence (anything but certain match), 
the template hit by TR was used as the primary source for 
the annotation. The relationship between PF likelihood and TR 
template modeling scores (TM-scores) generated in our analysis 
is shown in Table 1. Similarly, any protein with a TR template 
match was considered as more reliable than an annotation 
with the “long shot” likelihood. In cases where there were no 
3D functional hits, TR annotation was given priority. In cases 
when PF and TR provided annotations with the same level 
of significance/likelihood, the protein structure with highest 
coverage and identity was chosen. Here, we define coverage as 
coverage feature in TR and the ratio longest fitted segment 

query sequence length as in PF, 
and for identity, we take identity as in TR and percentage sequence 
identity as in PF. 

The appropriateness of an annotation was determined based 
on the extent to which the assigned function of a protein was 
found to be directly relevant to archaea and supported by relevant 
literature. Any other annotations were classified as incorrect. Fol-
lowing this initial step, sensitivity was calculated as sensitivity = 

Nstr 
Nstr+Nseq 

, specificity as specificity = Nseq 
Nseq+Nstr 

, positive likelihood ratio 

as PLR = sensitivity 
1−specificity , negative likelihood ratio as NLR = 1−sensitivity 

specificity , 
where Nseq and Nstr are the numbers of correct sequence- and 
structure-based annotations, respectively. 

Protein relative occurrence calculation 
Relative occurrence or frequency of protein functions in the 
groups of unique and homologous proteins was calculated. The 
measure was calculated as the ratio of the number of proteins 
with a specific KO to the total number of proteins of bacterial or 
archaeal proteins. For example, the relative occurrence of unique 
archaeal proteins annotated as K20411 (sourmash Cluster 1) is 
Nselect 
Ntotal 

∗ 106 , where  Nselect is the amount of proteins annotated with 
K20411 and Ntotal is the total number of archaeal proteins. The 
reason for using a constant factor of 106 in the equation is to 
scale the values and generate numbers better suited for graphical 
representation. 

Gene expression analysis 
To comprehensively assess the expression of archaeal proteins 
in the context of human health and disease, gene expression 
was verified using a dataset, which we previously published, by 
mapping metatranscriptomic reads of fecal samples of healthy 
individuals and patients with Type 1 diabetes mellitus (T1DM) [60] 
to nucleotide sequences of genes of interest using bwa mem [61]. 
Mapping files were processed with SAMtools (v1.6) [62]. Mosdepth 
(v0.3.3) [63] was used to calculate mean read coverage per gene 
of interest. 

Horizontal gene transfer analysis 
To assess the stability of gene structures in M. smithii genomes, 
we conducted a horizontal gene transfer (HGT) analysis using 
metaCHIP (v1.10.12) [64] on all  M. smithii MAGs available in the 
included datasets. One Methanobrevibacter_A oralis MAG derived 
from UHGG were also included for the comparison of the number 
of HGT events.
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Gene synteny analysis 
pyGenomeViz (v0.3.2) [65] was used to build gene synteny for 
all archaeal genes of interest. Gene coordinates predicted with 
Prodigal were used as an input. An interval of 10 kb up- and 
downstream of the gene of interest was selected from the protein 
predictions. KEGG KOs were allocated based on the sequence-
based annotations generated using Mantis [56]. Here, we exclu-
sively focused on M. smithii, as our analysis revealed that all 
the gut-specific proteins encoded by gut-associated archaea were 
encoded by M. smithii, and thus, this taxon was considered rep-
resentative for our analyses. The M. smithii–type strain DSM 861 
was used to assess the presence of genes from flanking regions of 
specific genes in an archaeal culture. 

Phylogenetic analysis 
To build phylogenetic trees for selective sourmash clusters, 
additional similar sequences were added from Uniprot [66] 
using BLAST (v2.0.15.153) [67] with default parameters on 
the consensus sequences representing sourmash clusters of 
interest, namely h9 and h20. Furthermore, Uniprot sequences 
and sourmash cluster sequences were used to build trees. 
Multiple sequence alignments were built using MAFFT (v7) 
[68] and trimmed with BMGE (v1.12) [69] using BLOSUM95 
similarity matrix and the default cut-off 0.5. Maximum likelihood 
phylogenetic trees were built with IQ-TREE (v1.6.12) [70] and  
visualized using the R library ggtree (v3.6.2) [71]. 

Results and discussion 
Our study aimed to analyze the gut-specific proteins encoded 
by M. smithii in the human gastrointestinal tract. As we 
focused on identifying archaeal unique proteins and archaeal– 
bacterial homologs, we analysed gut-specific archaeal and gut 
bacterial proteins together. Having compared the two subsets 
based on their sequence-based annotation, we categorized 
archaeal gut–specific proteins into two groups: unique and 
homologous proteins. To annotate them, we used KEGG KOs due 
to their consistent functional annotations across organisms and 
widespread usage. For structure-based functional assignment, we 
utilized a combination of structure prediction and annotation 
tools (Fig. 1), leveraging the higher prediction accuracy of 
AlphaFold2 and the rapid and accurate de novo predictions 
obtained via TR. Our central goal is to enhance the accuracy 
and reliability of protein structure predictions through the 
integration of these two approaches. Utilizing representative 
sequences of unique and homologous proteins, AF produced 
protein structures, and subsequent functional annotations were 
accomplished by integrating PF and DeepFRI. TR was employed 
to predict structures of unique and homologous proteins showing 
detectable homologous matches in the Protein Data Bank, which 
were subsequently used for further structure annotation. 

It is important to note that our methodology includes semi-
manual tools, making it most suitable for a limited number of 
select proteins. The primary design intent of our workflow was to 
facilitate the further refinement of functions for specific proteins 
of interest. Although alternative tools such as ESMFold [72] or  
EMBER3D [73] are available and hold promise for augmenting 
the potential of the described pipeline, our approach remains 
specialized and well-suited for in-depth protein analysis. 

Enhancing annotations of proteins encoded by 
M. smithii 
To explore the uncharted functional space of M. smithii, we  first  
selected gut-specific proteins of gut-associated archaea. We 

collected the encoded proteins of a total of 1190 archaeal and 
285 835 bacterial MAGs, resulting in 873 481 archaeal proteins 
and 87 282 994 bacterial proteins (Fig. 1). We focused on proteins 
associated with archaea of the human gut microbiome, which 
represented 37% (707 754 proteins) of all predicted archaeal 
proteins. These proteins were grouped into 61 123 MM2 clusters 
for archaea (≥2 proteins per cluster) and 1 967 480 MM2 clusters 
for bacteria (≥10 proteins per cluster). By retaining fully annotated 
protein clusters, we obtained 55 117 archaeal MM2 clusters and 
1 481 580 bacterial MM2 clusters. Using our proposed functional 
prediction strategy (Fig. 1A), we analyzed the gut-associated 
archaeal proteins alongside bacterial proteins, resulting in 45 
homologous sourmash clusters, i.e. shared between archaea 
and bacteria, and 28 unique sourmash clusters, i.e. composed 
exclusively of archaeal proteins. The bacterial data served as a 
reference to distinguish unique proteins encoded and transcribed 
by archaea, as well as archaeal proteins with homologs to 
bacterial ORFs. A summary of the annotations as well as 
comparison of annotations by structure-based tools is provided 
in Supplementary Tables 1–3. 

All archaeal proteins from the abovementioned sourmash 
clusters were classified as M. smithii. We thus sought to extend 
our knowledge of M. smithii by exploring functions that could have 
implications for human health and disease. The investigation of 
the relative occurrence of identified proteins and their associated 
processes revealed distinct types of functions in unique and 
homologous protein clusters (Fig. 2). The most frequently 
identified functions in the unique sourmash clusters were 
related to adaptation to changing environments and protection 
mechanisms, e.g. defense against foreign DNA and oxidative 
stress, while processes such as RNA and DNA regulation, energy 
metabolism, and cell wall integrity and maintenance were less 
represented (Supplementary Table 4). Homologous sourmash 
clusters showed frequent functions related to adaptation, 
various protection mechanisms, energy metabolism, and cell 
structural integrity (Supplementary Table 5). Analysis of fecal 
metatranscriptomic data confirmed the transcription of the 
majority of encoded genes, with some unique and homologous 
genes exhibiting higher expression levels (Fig. 2). Two unique and 
19 homologous sourmash clusters with relatively high expression 
levels were identified, including genes associated with adaptation 
to changing environments, defense against foreign DNA and 
oxidative stress, DNA/RNA regulation, and energy metabolism, 
while the rest were unannotated (Fig. 2). 

Our analysis demonstrated disparity in annotations between 
sequence- and structure-based approaches. Notably, 46% (13 out 
of 28) and 31% (14 out of 45) of the unique and homologous sour-
mash clusters, respectively, lacked structure-based annotations, 
suggesting a reliance on sequence information for their functional 
annotation thus far. Literature searches suggest that the KEGG 
annotations may not provide reasonable or meaningful functional 
assignments for most of these unannotated proteins. For instance, 
a protein annotated as mitochondrial import receptor subunit TOM40 
by KEGG is predicted to be a putative intimin/invasin-like protein 
based on its structure, which is more relevant in the context 
of archaeal biology than being a eukaryotic protein involved in 
mitochondrial protein import. Similarly, a protein annotated as 
Endophilin-A, a eukaryotic protein involved in membrane curva-
ture, shows structural similarity to PilC, a Type IVa pilus subunit 
of a prokaryotic adhesion filament. Although the presence of 
eukaryotic proteins in archaea is not surprising from an evolu-
tionary perspective, the assignment of a protein to its evolutionary 
homolog from a different kingdom may not provide precise func-
tional assignment of protein function. Moreover, examining the
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Figure 2. Relative metagenomic occurrence and average metatranscriptomic read coverage of proteins in the (A) unique and (B) homologous groups of 
clusters with archaeal proteins; MG, metagenomics; MT, metatranscriptomics. 

sequence identities between protein clusters annotated through 
sequence-based methods and the corresponding sequences in 
UniProt, it is evident that the majority of proteins lack any dis-
cernible similarity with those in UniProt. Furthermore, for those 
instances where some degree of sequence identity is observed, 
they do not surpass 70% for archaea-specific, unique and 49% for 
homologous protein clusters ( Supplementary Tables 6 and 7). 

In general, the agreement between the sequence- and 
structure-based methods was limited, with 4% (1 out of 28) and 
25% (11 out of 45) of the unique and homologous proteins showing 
consistent annotations, respectively (Supplementary Tables 4– 
5 and 8). The rest of the proteins exhibited disparity between 
sequence- and structure-based annotations, which was assessed 
by comparing their reported functions. For example, unique sour-
mash cluster u24 yielded different annotations using EGGNOG, 
KEGG, and Pfam databases, which we used to potentially resolve 
disparities in the annotations (Supplementary Table 4). However, a 
consensus structure-based annotation identified it as polypeptide 
N-acetylgalactosaminyltransferase, providing additional annotation 
beyond sequence analysis. Similarly, the homologous protein 
clusters h15–h18 had the same functional assignments as novo-
biocin biosynthesis protein NovC using KEGG, but structure-based 

annotation revealed further distinctions: h16 and h18 were 
classified as members of the LytR-Cps2A-Psr protein family, h15 was 
annotated as 78 kDa glucose-regulated protein, and  h17 remained 
unannotated (Supplementary Table 5). The incorporation of struc-
tural information in protein annotation enables the distinction 
between closely related sequences, offering additional insights 
into protein function, which highlights the crucial role of struc-
tural data in understanding protein functionality. In addition, the 
observed disparity between sequence and structure-based anno-
tations, coupled with low sequence identities between sequence-
based annotations and corresponding UniProt sequences, under-
scores the complementarity of structure-based methods to the 
abovementioned approach for protein function annotation. 

We further identified glycosyltransferases responsible for N-
and O-linked glycosylation from clusters h1–h6 as prevalent 
archaeal gut-specific proteins. These proteins may contribute 
to the viability and adaptability of archaeal cells in the gut. 
For instance, the most prevalent unique archaeal glycosyl-
transferase is 4-amino-4-deoxy-l-arabinose (L-Ara4N) transferase, 
which is essential for the protection from environmental stress, 
symbiosis, virulence, and resistance against antimicrobial activity 
[74, 75]. Moreover, one of the six glycosyltransferases is a
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Figure 3. Schematic proposal highlighting proteins specific to gut-associated archaea with described functions: u1, Type II restriction endonuclease BglII; 
u2, intimin/invasin-like protein with a Ig-like domain; u3, intimin/invasin-like protein; u4, Unr protein; u22, Type I restriction–modification EcoKI enzyme, specificity 
subunit; u24, polypeptide N-acetylgalactosaminyltransferase; h1, 4-amino-4-deoxy-l-arabinose transferase or related glycosyltransferases of PMT family; h2,3,4,6, 
dolichyl-phosphate-mannose–protein mannosyltransferase 1; h5, dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit STT3B; h7, Propanediol 
utilization protein pduA; h11, phosphoenolpyruvate-dependent PTS system, IIA component; h28, transthyretin-like protein; h31, 2-AEP aminotransferase. 

dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit 
STT3B (h5), which functions as an accessory protein in N-
glycosylation and provides its maximal efficiency [ 76]. Archaeal 
N-glycosylation is known to play an important role in the viability 
and adaptivity of archaeal cells to external conditions such as 
high salinity [77], elevated temperatures [78], and an acidic envi-
ronment [79] while also maintaining the structural integrity of 
cells [80, 81]. Four out of the six identified glycosyltransferases are 
dolichyl-phosphate-mannose–protein mannosyltransferases 1 (POMT1), 
which are responsible for O-linked glycosylation of proteins in 
eukaryotes. Another O-glycosylation–associated protein, polypep-
tide N-acetylgalactosaminyltransferase, was found in the subset of 
unique archaeal proteins (u24). M. smithii has been found to 
decorate its cellular surface with sugar residues mimicking those 
present in the glycan landscape of the intestinal environment 
[82]. The presence of human mucus– and epithelial cell surface– 
associated glycans in M. smithii, along with the coding potential 
for enzymes involved in O-linked glycosylation in archaeal gut 
species, suggests that M. smithii cells might have the capability 
to emulate the surfaces of eukaryotic cells in the intestinal 
mucus. Beyond their structural role in proteins, O-glycans can 
also act as regulators of protein interactions, influencing both 
interprotein and cell-to-cell communication processes involved 
in cell trafficking and environmental recognition [83]. 

Further findings suggest that 2-aminoethylphosphonate-pyruvate 
(2-AEP) aminotransferase, transthyretin-like protein and phosphoenol-
pyruvate-dependent sugar phosphotransferase system system encoded 
by M. smithii contribute to energy metabolism. 2-AEP is an enzyme 
commonly found in bacteria and is known to play a critical 
role in phosphonate degradation, which serves as an important 

source and production pathway for methane [84]. Additionally, 
cold-shock domains of Unr protein potentially provide M. smithii 
with adaptation strategies through stress-induced control of 
gene expression [85]. Furthermore, the predicted involvement of 
proteins such as the specificity subunit of Type I restriction– 
modification EcoKI enzyme [86] and  Type II restriction endonuclease 
BglII [87] suggests their potential role in host defense strategies 
employed by M. smithii to protect themselves in the gut environ-
ment. Additionally, it is conceivable that archaeal proteins may 
play a role in protecting against toxicity from other organisms in 
the gut using propanediol utilization protein pduA [88-90], as well as 
acquiring genes of bacterial origin through HGT. If this is the case, 
the presence of adhesin-like proteins in archaea could potentially 
enable them to form symbiotic relationships with bacterial 
neighbors with diverse metabolic potentials [91]. Figure 3 provides 
a schematic representation emphasizing specific proteins 
identified in this study, which could potentially play a significant 
role in the functional dynamics of archaea within the human 
intestine. A more detailed description of all identified M. smithii 
proteins is provided in Supplementary Materials. 

Characterization of select proteins and gene 
structures in M. smithii genomes 
To elucidate the level of conservation among the identified genes 
recovered in our analyses, we assessed the level of genomic 
conservation within genomes of two strains of M. smithii, two  
strains of Ca. Methanobrevibacter intestini and the related species 
Methanobrevibacter_A oralis as a reference. Ca. M. intestini has 
been recently classified as an independent species within the 
M. smithii clade. We analysed HGT events and evaluated gene
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Figure 4. Gene synteny for sporulation stage V genes AE and AD from their respective sourmash clusters (A) h9 and (B) h20; gene expression of target 
genes (spoVAE and spoVAD) as well as genes from flanking regions are demonstrated below each sequence and are colored correspondingly. Genes with 
key archaeal functions: (A) pyrimidine metabolism (K18678, phytol kinase), methane metabolism (K11781, 5-amino-6-(d-ribitylamino)uracil–l-tyrosine 
4-hydroxyphenyl transferase), and thiamine metabolism (K00878, hydroxyethylthiazole kinase; K00788, thiamine-phosphate pyrophosphorylase); (B) pyrimidine 
metabolism (K22026, nucleoside kinase; K18678, phytol kinase) and methane metabolism (K11781, 5-amino-6-(d-ribitylamino)uracil–l-tyrosine 4-hydroxyphenyl 
transferase). 

structure stability. Using 1022 available MAGs, we noted an 
increase in HGT events between 319 genomes of two M. smithii 
strains: Methanobrevibacter_A smithii and GCF_000016525.1 (based 
on GTDB classification) ( Supplementary Fig. 1). Specifically, 
2.6% of the MAGs (n = 27) exhibited HGT events involving the 
transfer of ∼10 ± 3 genes to other MAGs. Intriguingly, MAGs 
exhibiting HGT events were sampled in diverse geographical 
locations such as Austria, France, the UK, and the USA. Our results 
suggest that the propensity of these MAGs to exchange genomic 
segments may be attributed to similarities in their respective 
local environments [92], including dietary and lifestyle factors 
of the individuals. Thus, it is plausible that exposure to similar 
diets or stresses may have influenced the evolution of these 
MAGs via HGT along comparable trajectories. Conversely, the low 
occurrence of HGT events among the majority (97.4%) of available 
M. smithii genomes indicates their overall genomic conservation 
and stability. This could be explained by the fact that these MAGs 
were sampled from individuals living under similar dietary and 
lifestyle conditions. Importantly, our findings support the concept 
of genomic stability in M. smithii, as we observed a high degree of 
conservation in the flanking regions of the genes of interest across 
various M. smithii genomes. Through synteny analyses, we found 
compelling evidence of conserved synteny for genes encoded in 
M. smithii genomes (https://doi.org/10.5281/zenodo.8024791). 

Among the proteins specific for gut-associated archaea, 
we identified Stage V sporulation proteins AE (spoVAE) and  AD 
(spoVAD) (h9 and h20). Using BLAST searches, we extracted 
250 bacterial protein sequences for SpoVAE and SpoVAD from 
Uniprot, including 12 spoVAE and 38 spoVAD proteins from 
environmental samples and the rest from isolate bacterial 
genomes belonging to the Firmicutes phylum. Phylogenetic trees 
demonstrated that proteins from h9 and h20 are phylogenetically 
and compositionally distinct from other sequences and form 
separate branches (Supplementary Figs 2 and 3). Gene synteny 
analyses revealed that sporulation genes are grouped in operons 
(K06405, K06406, and K06407; Fig. 4). Moreover, the flanking 
regions around sporulation genes include genes with key archaeal 

as well as methanogenic functions. In addition, the flanking 
regions of both spoVAE and spoVAD genes are also encoded in the 
M. smithii isolate DSM 861 genome (Fig. 5). This particular isolate 
served as the representative strain for our research. Furthermore, 
to further validate the representativeness of DSM 861, we also 
computed the average nucleotide identity (ANI) between the type 
strain DSM 861 and two other available strains, DSM 2374 and 
DSM 2375. The ANI calculations yielded estimates of 98.3 between 
M. smithii strains DSM 861 and DSM 2374, and 98.2 between 
DSM 861 and DSM 2375, respectively. However, in contrast to 
our MAGs, the isolate’s genome did not encode the spoVAE and 
spoVAD genes. To assess whether spoVAE and spoVAD genes were 
acquired by M. smithii via HGT, we performed synteny analysis of 
bacterial sequences obtained from our human gut dataset that 
shared similarities with the archaeal sequences in clusters h9 
and h20. This analysis revealed that in the bacterial genomes 
found in the human intestine, the flanking regions of spoVAE and 
spoVAD genes include genes mediating and facilitating HGT, such 
as a site-specific DNA recombinase (K06400) encoded upstream 
from spoVAE and Type IV pilus assembly proteins (K02662, K02664) 
encoded downstream from spoVAD (Supplementary Figs 4 and 5). 
Genes originating from clusters h9 and h20 are found within 
bacterial genomes of Firmicutes phylum members, specifically 
Clostridium sp. CAG-302 and CAG-269, which highlights their 
association with known bacterial taxa in the gut and indicates 
HGT between these distantly related taxa. 

Although sporulation has been primarily observed in spore-
forming bacteria and not in archaea, it is known that non-
sporulating bacterial species also encode sporulation genes. In 
these bacterial taxa, the genes likely encode regulatory proteins 
involved in peptidoglycan (PPG) turnover, thereby playing a role 
in cell division and/or development [93, 94]. Archaea lack PPG 
but methanogenic archaea, including Methanobrevibacter species, 
use pseudopeptidoglycan (pseudo-PPG) instead, which functions 
similarly to PPG in a bacterial cell and results in Gram-positive 
staining certain structural similarities between methanogens and 
bacteria described above leave open the question of whether
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Figure 5. Genomic context of the archaeal flanking regions up- and downstream of the (A) spoVAE and (B) spoVAD gene clusters in the M. smithii strain 
DSM 861. 

sporulation proteins could play a similar role in pseudo-PPG 
turnover in methanogenic archaea, analogous to their function in 
non-sporulating bacteria. The identification of these genes holds 
significant interest, especially in light of the work by Nelson 
Sathi et al., suggesting that methanogens frequently acquire 
functionally active genes through horizontal transfer from 
bacteria. Comprehensive experimental analysis is required to 
determine their specific functions, but these findings present an 

exciting opportunity for further exploration. Phylogenetic analysis 
of spoVAE and spoVAD has demonstrated that sequences from the 
abovementioned clusters are compositionally homogeneous but 
phylogenetically distant from other known similar sequences 
in Uniprot and therefore might be unique to the human gut 
environment. Moreover, archaeal and bacterial sequences from 
sourmash clusters h9 and h20 branch out together, which 
suggests that sporulation genes encoded in archaea might be 
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the result of HGT from bacteria to archaea. This study provides 
evidence that archaeal genomes exhibit clustered sporulation 
genes surrounded by genes linked to archaea-specific functions 
like pyrimidine, thiamine, and methane metabolism. Moreover, 
genes in flanking regions up- and downstream of spoVAE and 
spoVAD genes are indeed encoded in the representative M. 
smithii isolate DSM 861. The study’s intended scope did not 
include experimental investigations in the wet-lab, such as the 
application of a protocol using antibiotics, to confirm M. smithii’s 
sporulation capability [95, 96]. Such work represents a logical 
extension of our reported in silico results but goes beyond the 
scope of the present study. As bacteria encoding similar spoVAE 
and spoVAD proteins and bacterial sequences from clusters h9 
and h20 belong to various species of the Clostridium genus, HGT 
probably occurred in the direction from the abovementioned 
species to M. smithii. Moreover, Ruaud, Esquivel-Elizondo, de la 
Cuesta-Zuluaga et al. have provided evidence of a syntrophic 
relationship between Firmicutes bacteria and M. smithii. The  
co-occurrence of these microorganisms is likely facilitated by 
physical and metabolic interactions. In addition to this, genes h9 
and h20 as well as their surrounding genes are expressed by the 
archaeal genomes sampled from human fecal samples. 

Conclusion 
Our study aimed to uncover the potential functions of archaeal 
proteins, particularly those encoded by M. smithii, in the human 
gut. Sequence similarity–based methods, while effective for 
highly similar proteins (>70%–80% identity), may not accurately 
represent the functions of archaeal proteins due to the lack 
of experimental validation. More specifically, publicly available 
databases have limited experimentally validated archaeal 
sequences compared to bacterial and eukaryotic proteins 
(∼7 000 000 archaeal, ∼166 000 000 bacterial, and ∼ 70 000 000 
eukaryotic proteins, UniProtKB Jun 2023) making sequence-based 
protein annotations applicable to only a subset of archaeal 
proteins. In contrast, recent deep learning-based methods enable 
protein structure prediction and annotation without relying 
on high sequence similarity, allowing for functional similarity 
beyond close sequence matches. We used structural methods 
to improve the annotation of archaeal proteins, gaining better 
insights into their functions compared to traditional sequence-
based methods. This approach allowed us to refine some existing 
annotations and discover new functions for others, giving us valu-
able insights into the roles of archaeal genes in the human gut. 
Our findings focus on the characterization of human-associated 
and gut-specific proteins identified in M. smithii, a metabolically 
proficient and clinically relevant methanogenic archaeon known 
to be linked to gastrointestinal disorders, including IBD and 
obesity. In upcoming research, the primary focus should be on 
improving the accuracy of determining translation initiation 
and termination sites through the integration of additional 
specialized tools [97, 98], as this holds significant promise for 
enhancing structural predictions. Furthermore, the refinement of 
our computational efforts with experimental approaches holds 
the key to elucidating the predicted protein structures and their 
corresponding functions. 
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Supp. Figure 1. Heatmaps demonstrating the intensity of HGT events between M. 
smithii genomes. A, HGT between taxonomic groups named as follows: A - 
Methanobrevibacter_A smithii, B - Methanobrevibacter_A smithii_A (Ca. 
Methanobreviabcter intestini), C - Methanobrevibacter_A oralis, E - 
GCF_000016525.1 (M. smithii), F - GCF_002252585.1 (Ca. Methanobreviabcter 
intestini); B, HGT events between individual genomes of same groups. The legend 
depicts the frequency of HGT events among the genomes of A, taxonomic groups 
and B, individual genomes.  

Supp. Figure 2. Phylogenetic tree of stage V sporulation proteins AE from identified 
SC h9 and Uniprot. Bacterial and archaeal proteins from cluster h9 are depicted as 
GUT_bacteria and GUT_archaea in dark blue and pink, respectively.  
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Supp. Figure 3. Phylogenetic tree of stage V sporulation proteins AD from identified 
SC h20 and Uniprot. Bacterial and archaeal proteins from cluster h9 are depicted as 
GUT_bacteria and GUT_archaea in dark blue and pink, respectively.  

Supp. Figure 4. Gene synteny of homologous bacterial sequences obtained from 
the human gut dataset that share similarities with the archaeal sequences from 
cluster h9 encoding stage V sporulation protein AE (spoVAE).  

Supp. Figure 5. Gene synteny of homologous bacterial sequences obtained from 
the human gut dataset that share similarities with the archaeal sequences from 
cluster h20 encoding stage V sporulation protein AD (spoVAD).  
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Conclusions and Perspectives 

This chapter presents the overall conclusions drawn from the extensive research reached 

throughout this doctoral thesis. The work presented herein offers a comprehensive 

exploration of the intricate role played by the human gut microbiome in the pathophysiology 

of PD. By employing a robust combination of meta-omics approaches, network-based 

analyses, and advanced computational tools, this thesis has elucidated the multifaceted 

interactions between the gut microbiome and PD. The findings emphasize the critical 

importance of gut microbial imbalances in the context of PD, particularly through disruptions 

in microbial metabolism and reduced functional diversity. This research not only deepens 

our understanding of the gut-brain axis but also opens avenues for potential therapeutic 

interventions aimed at restoring microbial balance as a strategy for mitigating the effects of 

PD. 

Our study has uncovered key alterations in microbial functions and metabolic pathways 

associated with PD and iRBD, including notable increases in β-glutamate levels and 

significant changes in glutamate metabolism, as described in the section “Paper 1: 

Integrated Multi-omics Highlights Alterations of Gut Microbiome Functions in Prodromal and 

Idiopathic Parkinson’s Disease.” While the neurotoxic effects of L-glutamate on neurons are 

well-documented (Iovino et al., 2020), β-glutamate remains poorly understood, with only 

one known enzymatic interaction described in current databases. We identified a central 

role for glutamate derivatives within the gut microbiome of PD individuals (Paper 1, Fig. 3A, 

C, D, Fig. 5). β-glutamate and related glutamate genes are particularly relevant due to L-

glutamate's reported neurotoxicity and its association with microbial activity. However, the 

precise links between β-glutamate, L-, and D-glutamate are not yet clear. We have not 

identified any enzymatic interactions with β-glutamate in the gut microbiome, highlighting a 

critical knowledge gap in its microbial and host interactions. Furthermore, data on the 

kinetics and physiological effects of β-glutamate in the host are lacking, emphasizing the 

need for more research to clarify its functional role in disease. Experimentally, further 

investigation is necessary to determine β-glutamate's function and potential as a substrate 

for other microbial enzymes. To date, β-glutamate has only been described as an osmolyte 

in the Methanogenium and Methanococcus archaeal genera (Robertson et al., 1990) and 

M. portucalensis (Robinson et al., 2001), and wasn’t detected as a product of M.smithii. 

Additionally, there is a general lack of information about the activity of β-glutamate in M. 

smithii, the most prevalent methanogenic archaeon in the human gut. Given our observation 

of increased M. smithii expression correlating with elevated PD-related metabolites, 
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understanding its role is particularly significant. To advance this research, both experimental 

and in silico strategies could be instrumental. Computational approaches, such as using 

AlphaFold 3 (Abramson et al., 2024) to predict protein interactions involving β-glutamate, 

may offer valuable insights for experimental studies. Further work exploring interaction 

patterns between β-glutamate and microbiome-derived metabolites could shed light on its 

specific role in PD pathophysiology. 

Besides altered levels of β-glutamate, we observed substantial differences in chemotaxis 

and flagellar assembly pathways (Paper 1, Fig. 3D-F, Fig. 4; Paper 2 Fig. 3B, Fig. 4C-E, 

Supp. Fig. 3), processes typically linked to pro-inflammatory responses (Gram et al., 2021; 

F. Qian et al., 2015; Tran et al., 2019). These changes likely reflect the indirect influence of 

the gut microbiome on the gut-brain axis through interactions with the immune system. 

Notably, we demonstrated that these alterations occur not at the genomic level (Boktor et 

al., 2023), as previously reported, but at the transcriptomic level, emphasizing the potential 

regulatory impact of these pathways in PD. We additionally highlighted strong correlation 

between flagellar assembly genes and genes involved in bacterial microcompartments 

(Paper 2, Fig. 5). Based on the findings presented in the studies “Paper 1: Integrated Multi-

omics Highlights Alterations of Gut Microbiome Functions in Prodromal and Idiopathic 

Parkinson’s Disease” and “Paper 2: Microbiome Expression Network is Dysregulated in 

Parkinson’s Disease Individuals,” we hypothesize that certain bacterial taxa, such as 

Anaerobutyricum and Blautia, exhibit a decreased expression of chemotaxis and flagella 

genes, which is likely due to their inability to utilize ethanolamine and 1,2-propanediol as 

energy sources. These compounds are crucial for the metabolic activities of these bacteria 

(Engels et al., 2016; Trischler et al., 2023), and their absence may impair the bacteria’s 

motility and chemotactic responses. The observed dysregulation in gene expression 

suggests a significant shift in the metabolic capabilities of these bacterial communities, 

potentially contributing to the pathophysiology of PD. However, it is important to note that 

experimental validation of this hypothesis was beyond the scope of my current work. 

Therefore, this intriguing finding warrants further experimental investigation to confirm and 

elucidate the underlying mechanisms. 

Interestingly, taxa encoding and expressing chemotaxis and flagellar assembly-related 

genes, such as Roseburia, are commensals typically associated with either ‘silently 

recognized’ (Clasen et al., 2023) or anti-inflammatory properties (Quan et al., 2018; Shen 

et al., 2022; X. Wu et al., 2020). For example, we observed a decrease in Roseburia's 

transcription of flagellin in the gut microbiome of PD patients (Paper 1, Fig. 4, Ext. Fig. 5), 

further suggesting a complex interplay between microbial community shifts and host 
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immune responses. Flagellins, in particular, could serve as immune-modulating compounds 

affecting both microbiome composition and immune responses in PD. Additionally, our 

analysis revealed significant alterations in BMCs, particularly in Blautia and 

Anaerobutyricum genera, as described earlier. These microcompartments, besides being 

crucial for energy catabolism, are commonly associated with the survival of specific 

pathogenic bacteria (Dank et al., 2021; Vance, 2018), seem to confer a competitive 

advantage to certain commensal bacteria within the PD microbiome, as demonstrated in 

non-pathogenic species (Akouris et al., 2024; Moreira de Gouveia et al., 2023). This 

mechanism may play a role in protecting against pathogenic invasions. The downregulation 

of BMC-associated functions in PD, coupled with elevated glycerol levels in healthy controls 

(Paper 1, Fig. 3A), further suggests that BMCs may have a protective role in gut 

homeostasis. To our knowledge, our work is the first to demonstrate the involvement of 

BMCs and flagellar assembly in the context of PD. Our findings highlight core microbiome 

functions that are disrupted in disease, including chemotaxis, flagellar assembly and BMC 

activity. These observations provide valuable insights into the microbial mechanisms 

potentially contributing to PD pathogenesis and offer a foundation for further experimental 

validation. In vitro experiments, such as gene knockouts or the use of advanced models like 

HuMiX (Shah et al., 2016), which simulate human-microbe interactions, are essential to 

confirming these microbiome-host interactions. Such approaches will help elucidate the 

mechanistic links between microbial changes and PD symptoms, and ultimately, these 

findings could inform the development of microbiome-targeted therapies for PD. 

The findings on genes involved in chemotaxis and flagellar assembly in the gut microbiome 

of PD patients suggest several promising translational applications that could contribute to 

future therapeutic developments. First, the identification of anti-inflammatory flagellin 

expression in commensal bacteria such as Roseburia presents an opportunity to explore 

the therapeutic introduction of these bacteria or similar strains to manage PD-related 

inflammation. Prior research has shown that anti-inflammatory bacterial components, such 

as specific flagellins, can modulate immune responses (Quan et al., 2018; Shen et al., 

2022), suggesting that supplementation with these bacteria might reduce pro-inflammatory 

signals in the gut-brain axis of PD patients. Such interventions could potentially take the 

form of live biotherapeutics or engineered probiotic formulations designed to express anti-

inflammatory flagellin, potentially moderating gut and systemic inflammation, which has 

been associated with neurodegenerative progression in PD. Probiotics can enhance the gut 

microbiome by altering the intestinal environment and suppressing the growth of harmful 
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bacteria, and this approach has been shown in application to the treatment of other gut-

associated disorders such as IBD (Praveschotinunt et al., 2019).  

Additionally, since anti-inflammatory flagellin expression appears downregulated in PD, 

therapeutic strategies could aim to reactivate these flagellins within the existing microbiome. 

For instance, studies have indicated that dietary components or prebiotics can modulate 

bacterial gene expression, including genes related to immune modulation (Burr et al., 2020; 

Pérez-Cano, 2022). Future research could investigate whether specific dietary interventions 

or small molecules could selectively enhance the expression of anti-inflammatory flagellins 

in Roseburia and similar taxa. Such an approach would focus on functionally boosting the 

patient’s own microbiota to reduce inflammation, thus supporting microbiome resilience and 

restoring immune modulation within the gut-brain axis. 

Furthermore, the role of BMCs in gut homeostasis, particularly in relation to genera such as 

Blautia and Anaerobutyricum, points toward another potential avenue for translational 

research. The observed downregulation of BMC-associated functions in PD, with higher 

levels of BMC activity in the healthy group, suggests that enhancing BMC expression might 

protect the gut microbiome from inflammatory and pathogenic shifts. Targeted approaches 

to upregulate BMC-associated pathways in PD could involve dietary compounds or 

prebiotics promoting BMC-expressing bacteria, aiming to protect the microbial ecosystem 

and improve the host’s gut barrier function. Additionally, the use of bacterial strains with 

modified BMC expression represents a promising approach to restoring gut homeostasis in 

PD. Such engineered strains could potentially restore or enhance the activity of BMCs in 

PD-affected gut ecosystems, providing a competitive advantage to beneficial bacteria and 

supporting the gut barrier against inflammatory and pathogenic shifts. This aligns with 

studies that explore how bacterial modifications can regulate immune responses and gut 

environment stabilization, supporting the therapeutic potential of engineered probiotics for 

gut-brain-related disorders (Paudel et al., 2023). Synthetic strains could be created to 

express both BMC-related resilience and anti-inflammatory flagellin, potentially offering a 

targeted live therapeutic intervention that reinforces gut health without altering the 

microbiome’s broader composition. However, it is important to note that the use of 

genetically modified organisms in human treatments remains controversial and faces 

significant technical, regulatory, and ethical challenges, making human application currently 

unlikely. 

For verification of these approaches, advanced in vitro models, such as HuMiX, which 

simulate human-microbe interactions, could provide valuable insights. Using HuMiX to 
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model PD-specific conditions would allow detailed examination of microbiome-host 

interactions, specifically focusing on flagellin or BMC modulation effects on inflammatory 

pathways. Such models provide a preclinical validation framework, supporting the 

development of targeted microbiome-based therapies that leverage anti-inflammatory and 

structural-support functions of the microbiome. Overall, harnessing these microbial 

functions therapeutically presents a promising translational opportunity to bridge findings 

from this thesis into functional therapies that may influence PD management by targeting 

inflammation and enhancing gut-brain communication. 

Our findings regarding Methanobrevibacter smithii, a methanogenic archaeon, underscore 

several key insights. Although M. smithii is generally low in abundance within the gut 

microbiome, studies report that its levels are higher in PD patients (Cem Duru et al., 2024; 

Rosario et al., 2021). In this work, we demonstrated that M. smithii exhibits notable 

transcriptional activity, correlating with significantly elevated metabolite levels in PD (Paper 

1, Fig. 3C). In the section “Paper 3: Functional Prediction of Proteins from the Human Gut 

Archaeome” we explored the functional capabilities of M. smithii within the gut through a 

structure-based strategy, advancing our understanding of its roles in this environment. We 

enhanced functional annotation and highlighted potentially impactful functions for M. smithii 

in the gut (Paper 3, Fig. 3), with some proteins even corresponding to those described in 

Paper 2. This study reinforces the considerable but underexplored potential of archaea, 

which remain challenging to investigate experimentally and computationally due to their 

unique biological characteristics. Developing experimental methods and workflows 

specifically tailored to archaea is a promising avenue for future research initiated by this 

thesis. Our findings, alongside studies reporting an increased abundance of M. smithii in 

PD, reveal an intriguing signal at the transcriptomic level. Its correlation with metabolites 

elevated in PD suggests that M. smithii may have a more significant role in gut-microbiome-

related pathologies than previously understood. Further investigation into M. smithii activity 

in relation to PD could offer valuable insights. 
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Figure 4. Diagram demonstrating the summary on key findings, clinical implications and 

future directions of research. 

This study has several limitations, primarily its reliance on MG and MT data as the main 

sources of information. While MG captures microbial gene abundance and provides a static 

overview, it only indicates the presence of organisms and their potential functional roles. 

MT offers insights into gene activity of microbial communities under specific environmental 

conditions. However, since transcription is an intermediate stage in gene expression, 

incorporating synthesized protein data would enhance understanding of microbial 

functionality. Proteomics enables identification and quantification of proteins, while MP 

characterizes proteins actively expressed by a microbial community at a given time (Wilmes 

& Bond, 2004). Including MP would deepen the analysis, complementing MG and MT data, 

and provide insights into functionally active microbial members and their protein products, 

which may serve as potential biomarkers linked to specific clinical conditions. Thus, MP is 

emerging as a vital complement to MG and MT approaches, successfully applied in studies 
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of Crohn’s disease (Erickson et al., 2012; Henry et al., 2022), inflammatory bowel disease 

(Zhang et al., 2018) and cystic fibrosis (Hardouin et al., 2021). 

Despite its potential, the application of MP is less widespread than that of MG and MT, 

primarily due to a lack of standardized protocols for sample preparation, limited 

bioinformatics tools, and challenges in detecting low-abundance proteins in complex 

biological samples (Heyer et al., 2017; Zhang et al., 2018). Additionally, MP relies heavily 

on reference databases derived from genomic and metagenomic data for accurate peptide 

identification and pathway analysis (Lai et al., 2019). While advancements have been made, 

MP is still in its developmental phase, hindered by the complexity of the gut microbiome 

(Wilmes et al., 2015). Alongside computational challenges posed by vast data, experimental 

obstacles exist (Glatter et al., 2015; Zhang et al., 2018). Identifying peptides from 

homologous proteins can lead to redundant protein identifications, potentially skewing 

analyses since homologous proteins may perform distinct functional roles across species. 

Nonetheless, MP could identify proteins specifically dysregulated in PD patients, revealing 

altered pathways and gene expression patterns. For instance, disruptions in flagellar 

assembly pathways or microcompartment-associated genes could be validated by 

measuring the abundance or activity of corresponding proteins, elucidating the mechanistic 

link between microbial changes and PD symptoms, and providing stronger evidence for 

targeted therapeutic interventions. 

MP is valuable for identifying post-translational modifications (PTMs), which are crucial for 

various bacterial processes, including protein synthesis, cell cycle regulation, biofilm 

formation, virulence, and nitrogen metabolism (Christensen et al., 2019; Macek et al., 2019). 

The enzymes responsible for PTMs vary significantly across bacterial species, and 

environmental conditions heavily influence the extent of these modifications (Bastos et al., 

2017; Q. Ma et al., 2021). Consequently, modified proteins may display different functional 

behaviors depending on their environment, highlighting MP's relevance in identifying 

molecular agents linked to disease. Given that the human microbiome is significantly 

affected by factors such as geography, diet, and medication, studying modified proteins can 

improve our understanding of how protein activity adapts to these changes. 

However, it is important to recognize that proteins encoded by orthologous genes do not 

always retain equivalent functions, as some may have been repurposed for novel roles 

(Kuraku & Ukena, 2021). Additionally, bacterial orthologs may exhibit distinct functional 

roles and regulatory mechanisms depending on species and environmental contexts (Price 

et al., 2007). Consequently, in silico predictions of gene or protein functions, while 
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informative, are not fully reliable without experimental validation. The validation process, 

however, presents challenges. For instance, proteins may behave differently in isolated 

systems compared to their natural environments, and microbial communities often undergo 

compositional changes when removed from their natural habitat (Dantas et al., 2013). This 

introduces variability into experimental outcomes and complicates efforts to draw accurate 

conclusions about in vivo microbial activity. To overcome these limitations, engineered 

microenvironments, such as "gut-on-a-chip" devices, offer a promising solution. These 

platforms simulate both mono- and multi-environment conditions, enabling real-time and 

continuous monitoring of gut microbiota interactions with human cells, tissues, and even 

other organs (Kim et al., 2012; Lucchetti et al., 2021). By providing a closer approximation 

to the in vivo conditions of the human gut, these systems help address the challenges 

associated with studying microbial communities in simplified or artificial models. As a result, 

they hold considerable potential for improving our understanding of microbial dynamics and 

their contributions to health and disease. 

Although bioinformatics tools have advanced significantly, they continue to have limitations 

in fully elucidating the complexities of the human gut microbiome and its connections to 

related diseases. Bioinformatics challenges in microbiome research stem from the 

complexity and scale of data generated in omics studies. The vast diversity of microbial 

communities and their dynamic interactions with host environments complicate data 

processing and analysis, leading to issues with reproducibility and interpretation. This is not 

unexpected, given that the human gut microbiota consists of over one thousand microbial 

species, collectively containing approximately 150 times more genes than the entire human 

genome (Lagier et al., 2016). Furthermore, it is estimated that around one hundred trillion 

microbes inhabit the human body, contributing significantly to various biological processes 

associated with health and disease (B. Wang et al., 2017). Additionally, integrating multi-

omics data poses significant computational challenges, as existing workflows often struggle 

to manage the volume and variety of data. The absence of standardized protocols for data 

collection and analysis further contributes to inconsistencies across studies, limiting the 

ability to derive generalizable conclusions. 

Nevertheless, integration of multi-omics techniques including MG, MT and MP offers 

enhanced insights into the functional cellular and metabolic pathways that characterize 

microbial ecosystems (X. Zhang et al., 2019). The research presented in this thesis further 

underscores the invaluable contribution of multi-omics approaches in understanding human 

health. This trend is not surprising, as the increasing accessibility of these techniques has 

led to their more frequent application across a range of diseases, beyond just PD (Ali et al., 
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2023; Mills et al., 2022; Worby et al., 2022). Combining these techniques enhances 

functional predictability and facilitates a more comprehensive conceptualization of the roles 

within microbial ecosystems (Ferrocino et al., 2023). 

On this topic, the results presented in section “Paper 1: Integrated Multi-omics Highlights 

Alterations of Gut Microbiome Functions in Prodromal and Idiopathic Parkinson’s Disease” 

reveal a notable discrepancy between microbial composition and activity, evidenced by the 

absence of differences at the MG level alongside substantial variations at the MT level. This 

indicates that while the structure of the gut microbiome remains stable between health and 

disease states, the functional activity of these microbial communities is significantly altered. 

And therefore, microbial functionality could be a more sensitive marker of disease status 

than compositional changes alone. To substantiate this hypothesis, further research 

incorporating dynamic scenarios is essential. Longitudinal analyses, such as time-series 

studies assessing health and disease trajectories under various interventions – like dietary 

changes and pharmacological treatments – could provide critical insights into how microbial 

activity shifts in response to these influences. While acknowledging that such studies are 

often resource-intensive and complex, their significance in enhancing our understanding of 

disease pathophysiology, including PD, cannot be overstated. Additionally, findings from our 

work “Paper 2: Microbiome Expression Network is Dysregulated in Parkinson’s Disease 

Individuals” highlight that PD is characterized by decreased gene expression diversity, also 

emphasizing the need for a comprehensive approach to observe systemic changes over 

time. Conducting such experiments will deepen our understanding of the multifaceted 

interactions within the gut microbiome and their implications for health and disease. By 

continuously collecting data over time and integrating multi-omics approaches, the field can 

advance our understanding of the intricate interplay between microbial functions, host 

genetics, and environmental factors. This progress may pave the way for targeted 

therapeutic strategies designed to restore microbial eubiosis in PD. 

In the end, microbiome science is an exciting and rapidly growing field that is still finding its 

footing. The technical advancements and bioinformatics developments showcased in this 

work have fueled the remarkable growth of this emerging area of research. One of the most 

intriguing strengths of microbiome research is its interdisciplinary nature. It’s unrealistic for 

anyone to be an expert in every method related to microbiome studies, so our greatest 

strength comes from bringing together talented individuals from various disciplines. By 

combining our knowledge and skills, we can work together to unlock the mysteries of the 

microbiome. The future of microbiome science is filled with opportunities for preventing, 

diagnosing, and treating complex human diseases. By striking a balance between optimism 
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and realism, we can pave the way for meaningful advancements in how we approach health 

and disease research. 
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