
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

On-chip replication — Look what the others did
INÊS PINTO GOUVEIA1, RAFAL GRACZYK2, MARCUS VÖLP2(Member, IEEE), PAULO
ESTEVES-VERISSIMO1 (Member, IEEE)
1RC3 Center, CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia (e-mail: author@kaust.edu.sa)
2Interdisciplinary Center for Security, Reliability and Trust, University of Luxembourg, Esch-sur-Alzette, Luxembourg (e-mail: author@uni.lu)

Corresponding author: Inês Pinto Gouveia (e-mail: ines.pintogouveia@kaust.edu.sa).

This work was supported by the Fonds National de la Recherche (FNR) [C18/IS/12686210/HyLIT].

ABSTRACT As resilience challenges evolve, namely in safety- and security-critical environments, the
demand for cost-efficient, automated and unattended fault and intrusion tolerance (FIT) grows. However,
current on-chip solutions typically target only accidental faults and rely on some form of application-specific
redundancy, a single-point-of-failure (SPoF) management software layer or synchrony-reliant protocols.
Plus, they are often performance heavy and costly for the emerging tightly-coupled systems in terms of area
and power consumption. In this paper, we investigate novel ways to apply high-performance FIT by using
replication of a lightweight agreement protocol, iBFT , executed with the aid of hardware trusted-trustworthy
memory tag accelerators, to avoid misuse of critical operations and SPoFs. We introduce an FPGA-
based implementation of iBFT under two fault models, evaluate their performance, area usage, and power
consumption on a Zynq ZC702 FPGA and compare it with other state-of-the-art protocols. Additionally, we
implement and evaluate a software-based emulation of a potential microcode implementation.

INDEX TERMS Fault and intrusion tolerance, hardware, resilience, systems architecture.

I. INTRODUCTION
Many application scenarios, including some that are dis-
tributed in nature, cannot tolerate individual nodes failing,
or worse, falling into the hands of adversaries. Consider for
example a swarm of drones, autonomously-driving vehicles
or satellite constellations. Full compromise and hence adver-
sarial control of an individual system already grants hackers
and cyber-terrorists the ability to mount cyber-kinetic attacks
and the means to cause damage to the environment in which
they act. A mission may still be accomplished despite the
failure of one unit, but the very same failure can lead, e.g.,
the affected drone to clash into the others or any other ele-
ment of the surrounding area. In other environments, humans
operate in close proximity to such (cyber-physical) systems,
which turns safety into a key requirement, in particular during
security incidents.

In many of the above scenarios, it is often not enough to
stop the digital control system of compromised individuals.
For example, the built up inertia of a vehicle often already
suffices to serve the adversaries’ purpose, namely to cause
damage. In such settings, each individual systemmust be able
to tolerate intrusions [1] and fail operationally to constrain
adversaries in their attempt to gain full control, until it can
finally be recovered to a state at least as secure as its initial one
or stopped safely, even if under a degradedmode of operation.

Existing on-chip fault and intrusion tolerance (FIT) so-
lutions protecting individual systems or system nodes, tend
to be application- [2]–[4] or OS-specific [5]–[8] and target
only accidental faults; rely on a low-level management soft-
ware layer or hardware components that become a single
point of failure [9]–[13]; be based on synchrony-bound proto-
cols [14]; have a considerably large reliable computing base
(RCB) [15]; or have high complexity [16]–[22], leading to
a non-negligible statistical fault footprint [23]. Additionally,
traditional replicated/redundant FIT designs, common in the
realm of distributed systems, tend to be costly not only finan-
cially, but also in regards to performance and SWaP (space,
weight and power) metrics if implemented on multiproces-
sor systems-on-chip (MPSoCs) or any other sort of tightly-
coupled environment.

In this work, we investigate a novel mechanism for con-
structing highly-efficient on-chip FIT solutions out of in-
dependently failing cores, chiplets or sockets integrated in
a single board computer such as an MPSoC [24]–[26]. We
highlight the design constraints for independent failure, intro-
duce an FPGA-based tagged-memory accelerator for creating
write-once memory as an abstraction, and argue why such
memories are trusted-trustworthy components. In addition,
we discuss how tagged memory can help prevent a common
issue in traditional FIT consensus protocols — equivocation,

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

i.e., the possibility of displaying inconsistent information at
different points in time to distinct readers—without resorting
to using costly cryptographic operations. Finally, we discuss
and implement both a hardware FPGA-based version of our
solution and a software-based emulation of a possible mi-
crocode implementation.

Our solution, albeit inspired by the classical FIT proto-
cols from distributed systems, takes advantage of the tight-
coupling of cores to provide high-performance and to min-
imize the safety/performance trade-off. Additionally, it is
designed to not rely on any software layer that can potentially
become a single point of failure. Instead, we aim at reducing
the reliable computing base (RCB) [27] as much as possible,
while balancing it with performance goals. We demonstrate
the use of write-once (wo) tagged memories in a novel agree-
ment protocol, called iBFT , and illustrate how a system can
safely execute critical operations (e.g., privilege escalation,
access to critical memory regions or I/O devices) that use low-
level software layers such as a microkernel or hypervisor.

In this solution, low-level management software, which,
if compromised can grant an attacker access over the whole
platform and potentially infect all other parts of the system
(e.g.,), is replicated across different available cores and each
replica votes, in read-shared wo memory, whether to execute
an operation, similarly to the idea behind dual- and triple-
modular redundancy. In particular, our work is heavily in-
spired by [28], presenting different trade-offs in terms of RCB
size, simplicity, overhead, voting, cacheability and memory
restrictions.

A. COMPROMISE OF LOW-LEVEL SOFTWARE
Numerous vulnerabilities have been reported in real-time
operating systems’ (RTOSs) source code, namely in IoT
devices (e.g., CWE-119, CWE-120, CWE-126, CWE-134,
CWE-398, CWE-561, CWE-563) [29]. Vulnerability analy-
sis of virtualized environments and hypervisor security have
shown the various ways these can be attacked [1], [30]–[33],
with works such as [34], [35] discussing privilege escalation
attacks in hypervisors for full compromise.

Such evidence deems a low-cost and easily verifiable solu-
tion necessary.

II. CHALLENGES
Redundancy is often useful to build resilience against benign
or arbitrary faults [36]–[39]. It can come in the form of DMR,
TMR, or generally in configurations where n >= f + 1
replicas detect and n >= 2f + 1 replicas mask the behavior
of faulty replicas which, in the case of cyber attacks, can
be arbitrary, i.e., Byzantine. Redundancy can also come in
the form of validating executions at a fine-granularity, e.g.,
by executing programs in lock-step or TMR and comparing
the results of every instruction; or by comparing progress at
a coarser scale with the increased benefit that replicas can
diverge in between comparison points [40], which improves
fault independence. The redundancy and performance costs,
however, need tomatch the intended platform, in this case, on-

chip platforms. This means cryptographic operations, tradi-
tionally used for ensuring transferable authentication in FIT,
become prohibitively high in terms of performance metrics.
Furthermore, power consumption should be close to the cost
of handling no replication.
Considering the on-chip environment, communication be-

tween replicas presents itself as a crucial point in keeping
performance costs low. The performance of shared-memory
operations (246 cycles for 256 byte and 2331 cycles for 4096
byte transfers, measured with x86’s rep; movsq rep;
cmpsq instructions on an AMD Ryzen 7 3700X 8-Core
CPU, 2 threads per core, running at 2.2GHz) as well as their
suitability for tightly-coupled systems, encourages consensus
to be performed by means of shared memory instead of some
form of message passing, like IPC.
Furthermore, in order to obtain performance as optimal

as possible, reaping benefit of the tight coupling of replicas,
one must minimize reads and writes, meaning replicas should
be able to just read a memory region whenever they desire,
without having to request that information and wait for it to
arrive.
A final consideration is that of equivocation, i.e., the pos-

sibility of changing shared memory contents and, thus, pre-
senting different contents at different points in time in the
protocol, leading replicas to read different information. This
is a problem orthogonal to that of authentication and imper-
sonation. To deal with such issues we use write-once tagged
memory to prevent replicas from changing their consensus
decisions, which we explain in Section V. For the sake of flow
and clarity, we shall explain the details of equivocation later
in Section XIII-E.

III. CONCEPT
iBFT implements fault tolerance through light-weight con-
sensus on critical operations executed by low-level software
(e.g., privilege escalation, access to critical memory regions,
handling of CPS I/O device), requiring n = 2f +1 replicas to
tolerate up to f faults of an arbitrary kind without requiring a
trusted kernel. The fault threshold f is application-dependent
and can be decided by the designer/developer. As other FIT
algorithms, iBFT ’s aim is to reach agreement on the order of
client operations to execute. In the context of iBFT , clients are
replicas of low-level software, e.g., an hypervisor, wanting to
execute a critical operation that, if performed single handed
by a malicious replica, could lead an attacker to gain control
over the platform. In essence, iBFT is an accelerated form of
on-chip consensus that takes advantage of the low overhead of
operations like memcpy and memcmp to achieve an efficient
form of fault and intrusion tolerance.
In a summed up manner, when a critical operation needs

to be executed it triggers a system call. However, instead of
being immediately executed, the low-level software instead
must write the request for execution as a proposal. Replicas
must achieve agreement on whether to execute the operation,
based on a majority decision. Since some can be compro-
mised and, thus, faulty, a lightweight consensus protocol,

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

iBFT , must handle the agreement to guarantee only benign
requests are executed.

Due to performance goals, instead of message exchange
for communicating votes and agreement progress, replicas
shall leverage shared local memories hardened with write-
once tags (further discussed in Section V) for communicating
with other replicas.

Fig. 1 gives a general overview of an iBFT -supporting
architecture. Shown are the abstract containment domains
(tiles), including a core and a (shared) write-once (wo) tagged
memory whose write ports are exclusively connected to this
core. Other cores should be connected through the Network-
on-Chip (NoC), or other adopted bus system, only to the
read ports of this memory so that they cannot modify their
contents. Since each replica receives restricted write access
(rw∗) to its wo memory (t-mem in Fig. 1) and read-only
access to the wo memories of other replicas1, each buffer
can be written by exactly one replica. Thus, we have im-
plicit writer authentication, although this authentication is not
transferable.

w* r

core core core core

t-mem

r

s1 s2 s3 s4

reset

w* r

t-mem

w* r

t-mem

w* r

t-mem

r r r

Tiles: containment domain for hardware faults

NoC

FIGURE 1. iBFT architecture overview.

IV. SYSTEM AND THREAT MODEL
Before diving into iBFT protocol details and write-once
tagged memories let us further elaborate on iBFT ’s system
and fault model, as well as its synchrony-related properties.

A. SYSTEM MODEL
iBFT is built for scenarios where a number of tightly-coupled
nodes operate in consensus, i.e., vote to reach agreement on
a critical operation to execute. We consider hosted as well as
bare-metal implementations, e.g., with replicas executing in
a single chip on the cores of a multi- or many-core system.
In the remainder of this paper, we shall primarily refer to a
bare-metal execution of iBFT . For bare-metal configurations,
we consider tightly-coupled systems to be comprised of suf-
ficiently many cores (as is often the case with MPSoCs) to
execute all n replicas N = {s0, . . . , sn−1} concurrently, such
that n = 2f + 1. We follow a model with architectural hy-
bridization [41], where trusted-trustworthy components and
other parts of the RCB [27] follow a distinct fault model.

1Write access is restricted in the sense of allowing values to be written
exactly once in between resets

B. SYNCHRONY

Tightly-coupled systems naturally tend to higher degrees of
synchrony, but are also susceptible to time-domain attacks,
e.g., overheating cores to throttle neighboring ones or denial-
of-service attacks in the network-on-chip [42], which makes
perfect synchrony assumptions brittle. We therefore assume
only partial synchrony [43], i.e., bounded execution and trans-
mission times during ’good’ periods, which we assume occur
frequently and last long enough to make progress.

C. FAULT MODEL

We tolerate up to f arbitrary faults at hardware or software-
level, as long as the physical effects of faults remain confined
to the core or the data it produces, including bitflips in local
state, wrong computations, among others.

Cores may fail arbitrarily, even at hardware level, but not in
a way where such a hardware failure brings down other cores,
e.g., no power glitches that bring down neighboring cores and
also no faults in the power distribution and clock networks,
which are often shared and span large areas of the chip.
Of course, conventional multi- and manycore designs retain
the possibility of common mode failures in central hardware
components like the clock or power distribution network,
which must be addressed differently. Resilient clocks [44]
mitigate some of these common-mode faults and the recent
trend towards interconnected chiplets further improves the
physical decoupling of tiles and, therefore, the possibilities
for fault containment. Plus, core diversity has become easier
with (1) the use of FPGAs, which can create soft cores using
off-the-shelf IPs from different vendors or from open-source
implementations like RISC-V, (2) dynamic reconfiguration
of FPGA partitions through, e.g., Xilinx’s Dynamic Function
Exchange (DFX), and (3) the emergence of chiplets and their
possibility of assembling diverse IPs in a single platform.

Implementations of the trusted-trustworthy component,
write-once taggedmemory (wo for short), may follow distinct
fault models of which we consider two flavors, orthogonal to
the question of which parts of the hardware to trust:

• Write-once memory implementations that do not fail.
• Write-once memory implementations that can fail, but

only by crashing and in a detectable manner.

For the former, we assume these memories to eventually
complete read and write operations and to report the last value
written. Moreover, they prevent overwriting values that have
been tagged (explanation in Section V). In this setting, no
further progress guarantees can be conveyed once a write-
once memory crashes. Our second trust model considers such
crashes. We aim to continue guaranteeing progress unless
more than a total of f replicas become faulty or their mem-
ories crash. We further assume these memories crash only in
a detectable manner. As long as memory value errors build
up slowly, the combination of ECCs, memory scrubbing, IPs
like Xilinx’s Soft Error Mitigation (SEM) core and deliberate

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

crashing2 (once ECC detects more errors than can be cor-
rected) ensures safety despite crashes. Also notice that we
only bound the total number of faults, not distinguishing repli-
cas with a crashed write-once memory from compromised
replicas. This aspect will become important for the safety
of our approach, since with c write-once memories crashed,
we will assume that the remaining system has to cope only
with up to f − c compromised replicas. One added benefit
of this fault model is that intrusion detection systems may
deliberately crash a write-once memory to silence a suspected
faulty replica.

V. WRITE-ONCE MEMORY
To deal with the possibility of replicas changing their shared
memory contents at will, we need a means to prevent over-
writing protocol information once a decision has been made.
As such, we introduce write-once (wo) tagged memory, a
trusted-trustworthy memory abstraction, which leaves reads
unconstrained, but prevents successfully written values from
being overwritten until the location holding this value is
reset (see Section IX). Reset, being a critical operation itself,
equally requires voting and agreement from a majority of
replicas.

The concept of tagged memory, first introduced in [45]
stores values as unions of data and type, making it dependent
on the type which operations can be executed on the data.
Similarly, we shall use two types of data for wo tagged
memory:

• Write-once tri-state bitfields - tags, whose bits can be
set, but not cleared until reset. Bits are split into agree-
ment and error bits, forming together the tri-state. Set-
ting an agreement bit, prevents the corresponding error
bit to be set and vice versa.

• Fixed-size character strings - requests, for requests,
which cannot be overwritten once the string is marked
’ready’ (e.g., by setting a bit in a corresponding write-
once bitfield).

VI. IBFT PROTOCOL
In iBFT , a leader replica encodes client requests in a char-
acter string, stores it in its wo memory buffer and marks
it as ’ready’. Reading this buffer and observing this status,
peers detect this proposal and know from its status that the
proposing replica can no longer change what is suggested,
which prevents equivocation. Therefore, because follower
replicas read the same location as the leader, the leader cannot
lie inconsistently about the client or its request. Note, it is
still possible for a leader to make up a request. Followers
express their agreement/disagreement in a similar manner by
setting the corresponding bits in a write-once bitfield, which
prevents equivocation during this protocol step as well (i.e.,

2The main reason a write-once memory would crash itself is when its
correction ability for memory faults is exhausted. Deliberate crashing is
an additional mechanism, which requires consensus among replicas and is
applied only after a replica revealed itself as Byzantine, which cannot be
known initially.

a replica indicating agreement toward one of its peers and
disagreement to others).
Fig. 2 shows the basic setup of shared memory buffers

between the server replicas and local clients. Each client ci
has a request buffer (req) mapped writable to its address
space and read-only to the address space of all other replicas.
Conversely, service replicas (s1, s2, s3 for f = 1 and n = 3)
use per-client writable reply buffers, which are mapped read-
only into the client address space.

rw

ro
ro
ro

ci

re
pl

y
re

q.

ro
rw

ro
rw

ro
rw

ro ro ro ro roro

s1 s2 s3

leader
s1

s2
……

ci seq m

P, C, A

status flags

n = 3 ; f = 1

rw
*

rw
*

rw
*

P = Prepare (n)
C = Commit (n)
A = Accept – ready to execute - (1)
PE, CE, AE = Error form of each (tri-state) flag – mismatch or timeout

…

FIGURE 2. Setup and permissions of shared and memory buffers and
internal structure of the protocol buffers in wo memory.

The wo memories are organized in slots. Each slot is com-
prised of one wo character string, used by the leading replica
to record the client request m to execute, a client sequence
number seq and the identifier ci of the client, and of n wo
bitfields (tri-state status flags) for each replica used to store
status information and to express agreement. As shown in
Fig. 2 there are n prepare (P), n commit (C) and one accept
(A) flags, which can also take the form of PE , CE and AE ,
respectively, to indicate errors (e.g., mismatch). The tagged-
memory device ensures that thewo string is sensitive to thewo
bitfield of the leader and ensures that no further modification
of the string are possible once a bit is set in the bitfield.
P flags denote a resemblance to the prepare phase in

PBFT [46], MinBFT [47] and other BFT protocols and serve
the purpose of making sure replicas compared the leader’s
proposal with the client request. C flags correspond to the
commit phase and ensure at least f +1 replicas prepared. A is
set to mark the request ready to execute, i.e., after seeing f +1
C flags. The error form of each flag (PE ,CE andAE) denote a
mismatch or timeout in each phase of the protocol and trigger
error handling, being then also used to skip requests.AE is the
final tri-state value of A and ensures the A flag is no longer
modifiable in case of error, preventing faulty replicas from
tricking others into executing requests.

In iBFT only the software replicas running the protocol (on
different cores) and the write-once memories are replicated3,
as redundancy of other components is not mandated by the
protocol. However, communication between the cores and
all write-once memories and reset devices is needed, but,
since NoCs are now a common means of having all-to-all

3Replication of the reset device is also possible and, in fact, recommended.

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 client ci:
2 ci.req.m := m
3 ci.req.seq := ci.req.seq + 1
4 wait for f + 1 matching replies in ci.reply[k]
5 from different replicas sk

FIGURE 3. Client Code

communication between cores and certain peripherals like
memories, this is not an issue.

Let us then describe the behaviour of all involved parties in
each phase of the protocol.

A. CLIENTS
Clients ci store requests in their request buffer (Line 1 in
Figure 3) and coordinate with the server replicas by setting the
client sequence number4 ci.req .seq to a value larger than the
previously processed requests. After executing the request,
the replicas si will reply with this sequence number to indi-
cate that they have completed this request. In particular, this
ensures that servers will not confuse requests that remain in
the client’s request buffer as new, since these requests will
have a client sequence number ci.req .seq that is smaller than
or equal to the client sequence number of requests that the
server has already processed (Line 11 in Figure 4).

B. NORMAL PHASE
iBFT draws inspiration from [48] and implements a rotating
leader scheme, while recording proposals and agreement sta-
tus in wo memory. We start by discussing the iBFT pseudo
code for error-free cases (shown in Figure 4), before we
consider error handling and the code in Figure 5. We have
marked in both figures the introspection operations poll5,
copy and compare in green. Lines marked with ’*’ are
required only to cope with crashing wo memories.

Replicas take turns as leaders for a configurable number of
slots_per_leader (Line 9). As long as unused slots are
available, leaders insert pending client requests6 from ci.req
in the next free slot x they control7, copying the message m,
the client sequence number seq and the client number ci into
their buffer buf l [x] (Lines 10–16) and marking it as complete
by setting their P flag (Line 17), which in turn instructs wo
memory to prevent further writes to this character string.

Followers maintain a timeout for pending client requests
to avoid indefinite waiting for a faulty leader not proposing

4We shall use standard C notation for accessing arrays and structures,
but allow whole structure copy and compare. For example, buf l [x].P[l] in
Line 17 in Figure 4 refers to slot x in the buffer of replica l, accessing the
P flag array in the message data structure at position l. That is, we set the P
flag of replica sl in this replica’s buffer at the current request slot x.

5The operation poll refers to repeated polling until the target is found.
6iBFT supports multiple clients. The leader, when searching for new client

requests, polls different clients, for instance in a round-robin fashion.
7In Figure 4, buffer_length refers to the number of slots and not the size

of the slot.

pending requests8. To find out when the leader has proposed,
they poll the P flag of the leader sl in the leader’s buffer (i.e.,
buf l [x].P[l]), possibly using sleep/wake techniques to limit
contention and to reduce energy consumption (Line 22).
Finding P[l] set, followers know that the proposed request

can no longer be changed by the leader. They therefore copy
the leader proposal to their buffer (Line 25) and compare
it against the proposal made by the client (Line 27). Upon
match, they indicate their agreement, by setting the leader’s
P flag P[l] in their buffer (i.e., buf k [x].P[l]) (Line 28), other-
wise, in case of mismatch (or timeout), they set this flag as
PE (remember flags are tri-state).
Lacking transferable authentication, replicas cannot distin-

guish whether (1) the leader is faulty and made up a request,
(2) the client is faulty and tricked the leader into proposing
a wrong message9, or (3) both client and leader are faulty.
Leaders therefore copy the request into their wo memory and
followers copy the leader request into their wo memories to
prepare for the case when the womemory of the leader might
crash. Followers si compare the leader proposal against the
client request and confirm this by setting P[i]
After that, leader and followers alike wait for f +1 replicas

sj to set their P flag P[j] (Lines 32–36), after which they set
their C flag (Line 37) (or CE in case of timeout) and wait
until f + 1 replicas have done the same before they consider
the request as ready to execute, by setting the A flag (Line 43).
In particular, they confirm before setting P-flags that remote
copies match their copy as received from the leader.
Waiting for f + 1 C-flags set in f + 1 replicas ensures for

the case when c ≤ f wo memories crash that f − 1 replicas
confirmed the copies in the f −c+1 remaining womemories
of replicas that participated in this operation. This third round
is not required when no further guarantees are given upon wo
memory crash.
Ready requests are executed by the code (Lines 45–48)

once previous slots are executed (or skipped as a result of
error handling). Replicas reply by writing both the response
and the client sequence number to the reply buffer, which is
mapped read-only to the client (Lines 50–51). The consensual
reply resets the client buffer10.
First marking slots by comparing proposals and by setting

P flags accordingly, but then delaying execution until all
previous slots are executed or skipped, allows for some out-
of-order processing without sacrificing linearizability.
We shall return in Section VIII, to checkpoints and the reset

operation required to clear the buffer when wrapping around
and discuss now how iBFT handles errors.

8In a bare metal implementation, both the leader and its followers have
no other means than polling to learn about new requests, cycling through all
clients in the process. Naturally, this can be quite inefficient as the number
of local clients grows. For this reason, we recommend complementing sleep-
/wait techniques with some way of informing about the source, triggering
the wake up. Hosted setups provide this source information with the replica-
invoking inter-process communication.

9Theword "wrong" here relates to equivocation, i.e., making other replicas
believe the leader is in the wrongwhen, in fact, the client changed the request.

10Multiple buffers can be used for each client to amortize reset costs.

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

6 server replica sk:
7 /* round 1 */
8 /* next free slot: x */
9 let l = x div slots_per_leader mod n
10 if (sk = sl) /* leader */
11 if x < buffer_length
12 search new client requests
13 on new request req from ci:
14 buf l [x].req.c := ci
15 buf l [x].req.seq := ci.req.seq
16 buf l [x].req.m := ci.req.m
17 set buf l [x].P[l]
18 x := x + 1
19 else /* follower */
20 on new client requests (e.g., req from cj):
21 set timeout (cj)
22 poll buf l [x].P[l]
23 on buf l [x].P[l] is set:
24 /* found proposal from leader */
25 * copy buf l [x] to buf k [x]
26 let ci = buf k [x].req.ci
27 if compare buf l [x].req = ci.req
28 set buf k [x].P[l]
29 x := x + 1
30 /* round 2: both */
31 for each slot y < x not ready to execute:
32 poll buf j[y].P[j] of other replicas sj
33 on buf j[y].P[j] is set:
34 * if buf k [y].P[l] and compare buf j[y] = buf k [y]
35 set buf k [y].P[j]
36 on f + 1 P-flags are set:
37 * set buf k [y].C[k]
38 * /* round 3 */
39 * poll buf j[y].C[j] of other replicas sj
40 * on C[j] and f + 1 P-flags set in buf j[y]:
41 * set buf k [y].C[j]
42 * on f + 1 C-flags are set in f + 1 replicas
43 buf k [y].A[k] /*mark y as ready to execute*/
44 /* consensus reached */
45 for each slot y < x:
46 if all slots z < y are executed or skipped
47 and ready to execute(y)
48 result := execute buf k [y].req.m
49 /* reply to client */
50 ci.reply[k].m := result
51 ci.reply[k].seq := buf k [y].req.seq
52 /* wrap around */
53 if all slots y < x are executed
54 and x = buffer_length
55 compute checkpoint C
56 store C in write-once memory and set P flag
57 if f + 1 matching checkpoints are written
58 reset flags, buffers
59 and the previous checkpoint; x := 0

FIGURE 4. Normal Phase, Checkpoint and Buffer Reset

VII. ERROR HANDLING
Once healthy replicas time out they no longer modify their ac-
ceptance flags. Instead, they set the error flags corresponding
to all acceptance flags (AE flags) not yet set in all slots y that
have been proposed, but not yet completed, including in all
slots for which the current leader is responsible. We denote
the latter by [x]. The wo memory detects if the A-flag or its
corresponding error flag AE is set in f + 1 replicas and will
trigger the equivalent of the operation from Line 63 in all wo-
memories to ensure replicas can no longer change flags after
the majority timed out. Replicas will not engage into actually

60 /* replica sk */
61 on timeout or error:
62 for each slot y ≤ [x]
63 set all E bits for unset agreement bits(*)
64 poll buf j[y] of other replicas sj
65 * let c be the number of \emph{wo} memories
66 * that have crashed
67 wait until either f + 1− c replicas have pre-
68 pared the request or f + 1− c have reached
69 an error state with ≥ f + 1 E-flags set
70 in the former case
71 * identify request m such that m matches
72 * the request in the buffers of ≥ f + 1− c
73 * replicas that have prepared this request
74 execute request // (ln. 46-51)
75 otherwise skip the slot by setting buf j[y].AE

FIGURE 5. Error handling

processing this timeout before either f + 1− c replicas have
prepared the request or f +1− c reached an error state where
the tri-state nature of flags prevent them from preparing it
later. Here, c is the number ofwomemories that have crashed.
Similar to MinBFT, we define as necessary condition for a

replicas to have prepared a request that it has set f +1 of its P-
flags, which resembles iBFT ’s notion of having received f +1
preparemessages. However, we consider a replica as prepared
only if it either completed executing the request (i.e., if it has
f + 1 C − flags and the A-flag set as well, respectively only
the A-flag for the no-crash case), or if it has timed out and
set all error flags for the agreement flags that remained unset
and if in this state it has set at least f + 1 P-flags. If replicas
set a P-flag, the trusted wo memory implementation prevents
them to also set the E-flag. It is important to require replicas
to have timed out before considering them to be prepared in
a state less advanced than all flags set that are required for
execution since replicas need to independently reach the same
conclusion whether or not a request should be processed.
Replicas execute those requests for which they find that

f + 1 − c replicas having prepared this request (Lines 70–
74). They skip executing this slot if f + 1 − c replicas have
reached an error state from which they cannot later prepare it
(Line 75). Since the leader’s womemory might have crashed,
this request may reside as a copy in another replica’s buffer.
Lines 71–72 identify this request.

VIII. CHECKPOINTS AND RESET
Once all slots are used up, replicas have to reset the buffer
before they can proceed. Without such a reset, slots, which
now have flags set, would not be writable due to wo memory
preventing overwrites. However, there are three inherent race
conditions when resetting buffers:

1) A faulty replica may prematurely agree to reset the wo
memories before the checkpoint is stable;

2) A replica may vote to reset a buffer that has just been
reset; and

3) A lagging, but otherwise healthy, replica may resume in
a slot after the other replicas have reset all wo memo-

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ries. In this case a faulty replica may exploit the lagging
replica to replay an old request that the lagging replica
was about to handle.

We avoid the first by requiring healthy replicas to first
agree on a checkpoint and wait for this checkpoint to stabilize
before agreeing to reset the wo memories. Checkpoints are
written to write-once memory as well, using double buffering
to always have a valid checkpoint in place. Checkpoints
include a version number to denote which of the buffers holds
the most recent checkpoint. Like for requests, wo memory
prevents modification of completed checkpoints by setting a
correspondingPflag (Line 57). Once a healthy replica detects
f + 1 matching checkpoints, it agrees to reset the buffers in
all replicas, including the now old checkpoint.

The second race is in fact an instance of the first since,
without further precautions, agreeing to reset after the reset
already happened translates into prematurely agreeing to the
reset in the next round. We shall use the same mechanism
to prevent the second and third race condition: We use one
additional flag RF in the bitfields to denote that a reset has
just happened. RF is checked when writing wo memory or
when setting flags to prevent any modification of the tag-
based womemory device due to ongoing operations. Instead,
these operations will fail, leaving the device in the state after
reset, which allows the replica to recover from this situation.
Moreover, RF is checked when agreeing to reset womemory.
The agreement is ignored when RF is set.
In consequence of the above, after each wo memory write

or set flag operation and after reset in Line 57, the replica
checks whether the device has just undergone reset and reacts
to this by clearing all RF flags, loading the most recent
checkpoints and resuming from this checkpoint and an empty
buffer. We have omitted these checks from the pseudo code
for better readability. RF flags are the only flags that can be
reset by the writing replica, but only by this one. As indicated
above, themost recent checkpoint is the one that received f+1
agreement and that has the higher version number of the two
checkpoint slots.

IX. RESET
Obviously, replicas consume wo memory space over time as
they use it to handle requests. Therefore, once the available
buffer space is used up, replicas have to reset wo memory
to clear all tags before they can resume processing requests.
We shall align this reset with the writing of a checkpoint
and store the latter as well in wo memory. Double buffering
alternates between checkpoint buffers and ensures that the
latest checkpoint always remains intact.

Single handed or premature reset would allow replicas to
equivocate, by resetting and overwriting a field after another
replica has introspected it. We therefore make reset a consen-
sus operation and require f + 1 replicas to agree before tags
are cleared. The fact that a reset has just happened is recorded
by setting reset flags RF , which are checked together with
the remaining bits of the bitfield, but which can be cleared
by the replica to continue writing to the device. We shall

return to the necessity to synchronize checkpoints and resets
in Section VIII.
Several implementations of the above reset functionality

are conceivable. For example, replicas could enter a trusted
execution environment (TEE), e.g., enclaves, and implement
reset by waiting for f + 1 replicas to enter their TEE before
clearing wo bitfields and strings through normal writes or
through a dedicated interface. Obviously, the permission to
perform these operations must be restricted to the TEE.
Alternatively, reset could be implemented as a second de-

vice, similarly to write-once memories, collecting the inten-
tion to reset in a bitfield with one bit per replica. The device
resets all wo memories (clearing bits and making strings
writable again), as described above, after f +1 replicas agree
by setting their reset bit. Naturally, reset must as well be
part of the RCB. We have implemented this option for our
evaluation, due to the high costs of entering and leaving TEEs.
It is of course possible to implement a reset device per

core, capable of only resetting this core’s write-once memory
instead of a general one, to avoid a single point of failure.

X. TRUSTED COPY
iBFT allows reaching consensus on an operation, but does not
perform this operation by itself. However, to act in a consen-
sual manner, state must be updated, including configurations
and privileges, as described in Gouveia et al. [28]. In the
following, we introduce a mechanism, which complements
iBFT to safely reconfigure privileges and update critical data
through a trusted copy operation.
iBFT reaches consensus out of place, that is in the write-

once memories and not in the place where the platform ex-
pects the data (e.g., in the processor’s page tables or page-
table base register). To update these locations, we introduce
trusted copy as an operation to transfer data from write-
once memories to such a location, but only if (1) all replicas
have agreed on the operation, (2) if all previous operations
are applied or have been skipped since agreement was not
reached for them, and (3) only once (that is, once the data
is copied, no further copy operations are allowed for the slot
containing this data until wo memory is reset).
To perform the copy, we now interpret the message m in

a slot slightly differently and introduce an additional tag to
mark if data was already copied. Unlike the previous tags,
this tag is only writable by the copy operation and remains
set until reset. For trusted copy, we dividem into a destination
address, a size field and a data field with the semantics that
data of the mentioned size should be copied to the mentioned
destination. Replicas agree on this triplet and then leave it to
any replica to perform the copy, which will succeed under the
above mentioned conditions.
Figure 6 lists the simple pseudo code for this procedure.

After checking whether agreement has been reached (i.e., the
ready-to-execute flag is set by f + 1 replicas for a given
slot l) or whether the previous slot is ultimately skipped,
since no agreement is reached, the copy operation validates
that the previous slot is marked as executed. It then marks

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 TC tci, l:
2 if l is marked not executed
3 and l − 1 is marked executed
4 mark l as executed
5 if l marked ready to execute on f + 1
6 dest.[req.m.addr] := buf l [x].req.m.data

FIGURE 6. Trusted Copy Operation.

s1 s2 s3

n = 3 ; f = 1

… … …

Destination Address

Trusted Copy
Mechanism

Execute Execute

f + 1

FIGURE 7. Representation of the trusted copy mechanism, copying an
agreed-upon request to the designated destination address.

l as executed and if agreement has been reached copies the
data to the mentioned address. Note that this entire operation
must be executed atomically with regard to other trusted copy
operations, since otherwise faulty replicas could force out-of-
order updates. Hardware implementations can achieve that by
performing only one trusted copy operation at a time. Figure 7
illustrates the trusted copy mechanism, copying an agreed-
upon request to the designated destination address.

As with wo memory, the implementation of the trusted
copy is simple enough and can be trusted not to fail (sup-
ported for example through formal verification). It can further
be provided in a redundant manner to guarantee continued
operation in the case of a crash and the memory itself (plus
the memory controller) may as well have some form of redun-
dancy depending on the desired fault model. Recall that the
failure of awomemory simply means the associated replica is
now considered faulty. The trusted copy is not implemented
for each replica, but instead an instance that collects results.
Therefore, its level of redundancy is not dependent on the
value of n.

XI. IMPLEMENTATION DETAILS
To further clarify iBFT and wo tagged memory, we shall
describe in this Section the implementation details of the
latter in 1) the ZC702 FPGA board and 2) emulation version,
for our proof-of-concept.

We turn blocks of memory into wo tagged memory by
using sticky tags implemented as a hardware accelerator slave
device that ANDs the write enable signal of a memory con-
troller, with the devices tag verification, allowing writing tags
only if they are clear and allowing writes to memory only if
tags indicate to the iBFT protocol that agreement has been
reached.

We consider and evaluate two implementations of write-
once memory:

• 1. Using tagged memory hardware devices (imple-

…

s1

… … …

rw*

rw
clear?

s2 s3
n = 3; f = 1

data

rw* ro

noyes

cores:

tag device:

BRAM:
…

bits:

ro

FIGURE 8. Implementation of wo memory as a combination of an AXI
slave tag-mem device and a standard BRAM block.

mented on an FPGA for proof-of-concept);
• 2. Using an emulation of microcode-based atomic oper-

ations to conditionally set bits in bitfields or write parts
of the string, provided the string is not marked read.

A. HARDWARE-BASED
To evaluate the first variant, we have implemented wo mem-
ory as a combination of a standard per-replica block RAM
(BRAM) area to hold wo strings and an AXI Lite11 slave de-
vice for implementing wo bitfields (one per buffer), as shown
in Fig. 8. The slave device interposes writes and prevents
overwriting strings that are marked as ready by setting any
one of the bits in the corresponding bitfield. Moreover, it
prevents the replica from clearing bits by AND-ing updates
to the inverse of the bits that are already set (both error and
agreement bits), prior to OR-ing them to the stored value. We
denote this in the figures as restricted read/write permissions
(rw∗). Peer replicas obtain direct read-only access to the
bitfields and string buffers.
Write enabling writes in the memories is still done by the

regular memory controller, however, the enable signal isand-
ed (logic-wise, with no code) with an enable signal produced
by the tagged-memory accelerator upon receiving (from the
memory controller) the address that is to be written. This
hardware logic will evaluate the bitfields set for that address
and determine whether the write is allowed. If it is not, it
will output a write enable signal of 0, which and-ed with
the 1 from the memory controller will still prevent the write.
The write-once memory concept is not merely a block of
memory (e.g., BRAM), but a simple hardware abstraction that
contains memory space (e.g., BRAM) and an associated logic
for checking flags (tags) and storing them (t-mem in Fig. 1)
for an incoming address that will determine the write enable
output for writing on the memory block. Alternatively, the
tags could be implemented in a custom memory controller
itself.

11The Advanced eXtensible Interface (AXI), part of the ARM Advanced
Microcontroller Bus Architecture 3 (AXI3) and 4 (AXI4) specifications, is
a communication interface for on-chip communication. AXI interface IP
blocks are common in block designs for Xilinx FPGAs, such as the one we
use in our implementation (Zynq ZC702).

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

B. SOFTWARE-BASED

This variant is a trivial microcode exercise by constrain-
ing the operations that can write the otherwise read-only
memory pages used for wo-memory. In fact, aside from this
enforcement, contemporary architectures, such a Intel x86,
can already emulate womemory in a performance-preserving
manner. Write-once bitfields are written exclusively by bit
set operations (e.g., a generalized lock; bts as in x86,
i.e., atomic bit test and set, but for tri-state flags). Write-once
character strings are written by atomic compare and swap,
where compare checks for a specific value reserved to denote
an empty buffer. Of course, full microcode access would
also allow for cache-lock protected multi-address conditional
writes, checking the bitfield and writing conditionally to the
bits being clear.

By restricting which operations can be executed on write-
once memory blocks (e.g., through a memory type or page
permission flag), it is possible to utilize standard mem-
ory subsystems for implementing wo memory. The wo
bitfields can be constrained to only allow atomic bit-set
operations (again, a generalized bit_test_and_set),
checking both error and agreement bits, and the wo
strings can be realized by reserving one value (e.g.,
exp = ∼ 0UL) to denote writable words, and by writ-
ing with atomic compare_exchange(dest, exp,
value). Cache locks are one common way to implement
atomic read-modify-write instructions in modern processor
architectures. More fine-grain control over these locks opens
further, more direct ways of implementing write-once seman-
tics. For example, one could make writes to strings condi-
tional to tags in the bitfield being clear. The above mecha-
nisms do not prevent caching write-once memory locations.
Aside from requiring atomic operations to write these loca-
tions, microcode-based implementations therefore incur no
extra overhead. However, the RCB of this variant necessarily
includes all hardware components that are required to execute
instructions atomically (i.e., all processors, caches and the
used fragment of the memory subsystem). Our hardware-
based variant further reduces the RCB.

XII. EVALUATION
iBFT ’s goal is efficient FIT for on-chip systems. As briefly
discussed in earlier sections, we envision MPSoCs, chiplets,
or a combination of both, enhanced with FPGA fabric for
custom, simple and easily-verifiable accelerators such as, in
this case, tagged memory.

As proof-of-concept of our solution we have implemented
the architecture depicted in Fig. 8 on a Xilinx Zync ZC702
FPGA configured with 3 MicroBlaze cores (running at
100MHz) and AXI busses to connect to the memory con-
troller and our tagged memory and reset devices. We run
iBFT on each of the MicroBlaze cores (in a final solution,
it could instead run on hard cores, as part of the MPSoC) and
measured its performance in an f = 1 setting. For this variant
(FPGA), we evaluated exclusively the setting f = 1 due to

FPGA resource constrains12. We have used an AXI Timer
and Interrupt Controller for time measurement and utilize the
Xilinx Vivado post-implementation reports for area usage and
power analysis.
Our measurements focus on two scenarios: i) agreement

with all replicas participating and ii) catch-upwith one replica
remaining unresponsive while the remaining replicas reach
agreement to then catch up with the progress they made.
Replicas do not write checkpoints or wrap around buffers in
this scenario. We evaluate both wo failure by crashing and
the case where no further guarantees are provided in case wo-
memory fails.
For the second variant, the emulation of microcode-based

womemorymodifieswo bitfields with atomic OR instructions
(lock; orq) andwo strings with atomic compare exchange
instructions (lock; cmpxchgq), which check for ∼ 0UL.
The implementation always writes the complete string buffer
for a single slot to prevent faulty replicas from appending
to shorter prefixes. Reads are through arbitrary instructions.
The emulation described above exhibits correct performance
characteristics, but does not prevent writes through other
instructions or unaligned writes with the above instructions.
This behaviour can be easily retrofitted through microcode
instructions. We evaluated performance on the cache-based
x86 emulation, with up to n = 2f + 1 = 13, to tolerate up to
f = 6 faults.

A. PERFORMANCE
1) Performance of Microcode Emulation
All figures plot the mean latency of request handling in cycles
as experienced by clients (i.e., the time between issuing a
request and receiving f + 1 matching responses) (y-axis),
for an increasing number of tolerated faults (x-axis). Cycles
can be converted into microseconds by dividing cycles by
the used frequency (100MHz). For instance, 1000000 cycles
corresponds to 10000 microseconds or 0.01 seconds.
Fig. 9 shows the time to agreement (Scenario 1), i.e.,

normal case execution, whereas Fi. 10 shows the two cases of
Scenario 2, that is, normal-case operation of n−1 replicas and
time for the late replica to catch up. The figures identify the
graph bars corresponding to the iBFT cache-based version of
wo memory on x86 in the situation where wo memories can
crash, side-by-side with the corresponding FPGA hardware
implementation (which we shall discuss next). These results
are as well compared with a sharedmemory-based implemen-
tation of MinBFT.
Catch up in MinBFT is implemented as the lagging replica

receiving the messages sent by the other replicas (by reading
their message buffers) and processing the request as usual.
As can be seen, iBFT is roughly 10 times faster than

MinBFT when reaching agreement (16, respectively if wo

12Note that we refer specifically to Zynq ZC702 resource constraints,
where we could only instantiate up to 4 MicroBlaze cores plus the cor-
responding tagged memory devices, block memories and AXI interfaces,
bringing the maximum possible f to 1 (n = 3). Other, modern FPGA boards
will allow for more replicas to coexist.

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT vs. MinBFT - Cache-Based x86 + HW Tagged Memory,
Normal Phase - Memories Can Crash

iBFT - x86
iBFT - HW
MinBFT - x86
MinBFT - HW

FIGURE 9. Latency of normal-case operation (in cycles), comparing
cache-based and the tag-mem variant of iBFT against MinBFT on the
same platform. wo memories can crash.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT Cache-Based x86 + HW Tagged Memory, with Catchup
- Memories Can Crash

iBFT - x86 - N
iBFT - x86 - C
iBFT - HW - N
iBFT - HW - C
MinBFT - x86 - N
MinBFT - x86 - C
MinBFT - HW - N
MinBFT - HW - C

FIGURE 10. Latency of normal case operation (N) with one late replica
and catch up (C) of this replica. wo memories can crash.

memories do not crash), whichwe attributemostly to the costs
of HMAC computation and validation, but in a significantly
smaller part also to the larger message sizes that origin from
having to transmit up to two HMACS (for commit). The
optimization of iBFT , which allows lagging replicas to catch
up to the progress of the leading ones, proved effective, by
requiring only 1019 cycles on average for f = 1 (324
respectively for the no-crash version), with a linear increase
for higher f .

We consider also a model wherewomemories do not crash.
Figs. 11 and 12 represent a comparison of both environments:
where memories can crash and where memories do not crash.

In an environment with no wo crashes, the reader may
notice a stabilization of the latency with the increasing num-
ber of replicas participating. The ratio of reads (to introspect
peers) versus writes (to update replicas’ own state) increases.
The cache coherence protocol executes these reads in parallel,
which leads to the smoother slope in the graph. Cross hyper-
thread13 pre-fetching further improves performance.

It is also relevant to mention latency numbers can slightly

13Cores can support hyper-threading, the implementation of which would
be assumed part of the RCB in our cache-based variant. In our second variant,
the core as a whole is considered the fault containment domain. That is, even
though the core may have multiple hardware threats, there can only be one
replica on this core.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT - x86 + HW - Normal Phase - Crash vs. No Crash

iBFT - x86 - Crash
iBFT - HW - Crash
iBFT - x86 - No Crash
iBFT - HW - No Crash

FIGURE 11. Comparing normal case iBFT when wo memories can crash
vs. when they are assumed not to not crash.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT - x86 + HW - Normal Phase + Catchup - Crash vs. No
Crash

iBFT - x86 - N - Crash
iBFT - x86 - C - Crash
iBFT - HW - N - Crash
iBFT - HW - C - Crash
iBFT - x86 - N - No Crash
iBFT - x86 - C - No Crash
iBFT - HW - N - No Crash
iBFT - HW - C - No Crash

FIGURE 12. Comparing normal case iBFT plus catch up when wo
memories can crash vs. when they are assumed not to not crash.

vary depending on which replicas are late. Since replicas can
proceed once they find f + 1 occurrences of the information
sought after, and since introspected replicas start sequentially
from the replica with the lowest ID to the one with the highest,
if there is no late replica in the first f + 1, latency will not
be affected by non-consecutive reads of late replicas’ state.
For the shown evaluation we let the late replica always be
the one with highest ID, meaning it does not interfere with
normal-case operation. Giving late replicas low IDs would
slightly increase latency by a few cycles corresponding to
introspecting the late replica.

2) Performance of FPGA Implementation
For the following discussion, let us notice that writing a tag-
mem device register (i.e., a word of 32 bits) in the shared
BRAM block requires 65 cycles. This corresponds roughly
to the time required to reach the shared cache (L3) on x86.
This translates into 99 cycles for setting flags and 106 cycles
for reading.
Like above, Figs. 9 and 10 show the performance for the

two scenarios (normal-case only and normal-case plus catch
up) for iBFT , and Figs. 11 and 12 represent the no-crash case.
As can be seen, the previous results from the emulation-

based wo memory implementation are confirmed. With a
factor of 23.24 (83.09 respectively if wo memories do not
crash), iBFT is, on average, almost one order of magnitude

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT - x86 + HW - Normal Phase - Memories Can Crash - 5% and
95% Percentiles

iBFT - x86
iBFT - HW

FIGURE 13. Mean values (bars) together with the 5% and 95% percentiles
for both versions of the wo memory in iBFT .

Tagged Memory Reset Device
wo/ AXI w/ AXI w / AXI

Slice LUTs 1970 2034 58
Slice Registers 2048 2204 145
F7 Mutexes 392 392 0
F8 Mutexes 94 94 0

TABLE 1. FPGA resources required by the tagged memory device (without
/ with AXI interface) and the reset device.

faster than shared-memory MinBFT and almost two orders
of magnitude faster in the no-crash version. However, the
percentiles are much closer to the average times (see Fig-
ure 13), which on one side is due to the higher determinism of
tightly-coupled memory accesses over coherent caches, with
frequent bounces when polling shared data for state changes.
However, it also indicates higher best case costs due to the
inability to cache state. Catch up remains relatively fast with
a 5927 cycle latency on average (1972 respectively for the
no-crash version).

iBFT ’s latency clearly demonstrates the benefit of con-
structing hybrid BFT-SMR protocols specifically for tightly
coupled systems. The value of introspection is confirmed, in
particular when replicas have to catch up to the progress of
their peers. Of course, we are naturally introducing overhead
in comparison to non-replicated operation, but with added
fault tolerance and resilience. Considering the costs of fully
replicating the whole system (e.g., ECU), iBFT offers a safety
advantage without greatly increasing replication costs.

B. COMPARISON WITH MINBFT

To further exemplify why simply implementing a SotA BFT
protocol on-chip can be too costly, we have created a shared
memory implementation of the seminal MinBFT [47] and
evaluated its performance in the same design setting as iBFT .

iBFT is, on average, almost one order of magnitude faster
than shared-memory MinBFT and almost two orders of mag-
nitude faster in the no-crash version.

Power (W)
1 Core design 1.602 W
3 Core design w/o tag and reset devices 1.748 W
3 Core design w/ tag and reset devices 1.760 W

TABLE 2. Total on-chip power in watts (W) of a baseline design with 1
core, iBFT architecture design with 3 cores but without the tag and reset
devices, and iBFT with the tag and reset devices.

C. AREA USAGE
Tab. 1 shows the FPGA resources of the (post-synthesis) im-
plementation of the tagged memory and reset devices. For the
tagged memory device we present two values, the resources
for tagged memory logic (i.e., the logic implementing the
flags and their write-once property) alone and for tagged
memory logic with AXI interface included. Since tagged
memory is implemented in our proof-of-concept as an AXI
bus slave, it requires logic to interface with this bus, thus
consuming further resources.
As expected, the hardware overhead, in terms of resources,

of tag-based wo memory is dominated by the resources re-
quired for the BRAM block itself. Costs for the tag-mem IP
are negligible.

D. POWER ANALYSIS
Tab. 2 shows the total on-chip power required by an imple-
mentation with and one without the tag and reset IPs. This
is the power analysis reported by Xilinx Vivado, based on
simulation and constraint files, with default settings, upon
implementation of the design.
The additional power consumption added by tagged mem-

ory is negligible, representing only a 0.2 W increase in rela-
tion to the whole FPGA design with the 3 MicroBlaze cores.
We compare also with a baseline design of only 1 core, to
show the increase in power consumption by using replication
is only of 0.146 W.
All designs include the core plus AXI interconnect, BRAM

controller, BRAM and PS Core. The PS core is not needed
for the protocol and is just used in the proof-of-concept for
interacting with the programmable logic (FPGA) and initial-
izing it. The core is, however, responsible for 96% of the total
predicted power consumption.

XIII. BACKGROUND
A. FAULT-TOLERANCE
Fault tolerance (i.e., constructing a system in such a way that
it retains the ability to sustain correct operation despite the
presence of faults) has been used for years, commonly in the
form of dual (DMR) or triple modular redundancy (TMR)
to replicate, e.g., critical control tasks. Modular redundancy
refers to the multiplication of system components, providing
redundancy should one fail. These ’cloned’ components usu-
ally work in parallel (often in lockstep) with the same state
so as to make sure at least one keeps operating and achieves
the correct result. However, the lack of flexibility limits the
extension to general systems, namely as it usually translates

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to replicating whole subsystems. Additionally, component
isolation and diversity is not always taken into consideration,
leading to fault propagation and common mode failures.

More complex solutions target low-level management soft-
ware, such as operating systems or hypervisors with the intent
of improving their fault resilience. However, typically they
protect applications [2]–[4] or specificOS subsystems [5]–[8]
and/or only from accidental faults [40], not malicious attacks
or arbitrary behaviour. Efforts for providing whole-OS fault
tolerance include [16]–[22]. Nevertheless, the complexity of
these recovery kernels is comparable to that of a small hyper-
visor. This complexity makes the likelihood of residual faults
or vulnerabilities non-negligible and turns this software layer
into a single point of failure.

Byzantine fault-tolerant state machine replication (BFT-
SMR) [46], [47], [49], [50], paired with rejuvenation [51],
[52] and diversification [53]–[58], although traditionally ap-
plied in client-server setups, is one combination of techniques
that bears the promise of automatic and unattended resilience
against both faults and intrusions also in on-chip scenarios.
However, while extensive FIT work has been done in the
traditional distributed systems realm, little effort has been
put into the emerging (multiprocessor) systems-on-chip (MP-
SoCs) or chiplet architectures that, having their own on-chip
network, are starting to resemble tightly-coupled, single-die
distributed systems, as pointed out in [28], [59] and [60].
Moreover, the costs of BFT-SMR solutions are prohibitive on
the latter due to the use of costly, yet necessary, cryptographic
operations for transferable authentication of a replica’s mes-
sages, and for the amount of messages exchanged. Both
hinder achieving high performance and increase power con-
sumption.

B. ARCHITECTURAL HYBRIDIZATION
Architectural hybridization [47], [49], [50], [61], [62] utilizes
the inclusion of trusted-trustworthy components, which fall
under a distinct fault model from the rest of the system
and which are considered more resilient. Examples include
MinBFT’s USIG [47] and CheapBFT’s CASH [62], both
implementing trusted counters, and A2M [63] and TrInc [64],
which provided a trusted message log or its hash. In the realm
of BFT, this allows reducing the number of required replicas
to safely reach agreement from n = 3f + 1 to n = 2f + 1,
where f is the fault threshold.

C. TIGHTLY-COUPLED SYSTEMS
FIT solutions have been designed for tightly-coupled systems
before. For example, replica coordination support was first
incorporated into a hypervisor in [65] and the crash-fault tol-
erant protocol Paxos [66] was implemented as a Linux kernel
module in [67]. Support for replication in microkernel-based
systems was achieved in [68] and [69] uses non-blocking
consensus to tolerate up to one crash fault. More recently, [40]
explored tightly-coupled redundant execution on replicated
hardware in the context of accidental faults.

In a different approach, [70] leverages RDMA in the crash
fault-tolerant system Mu to bring SMR performance down
to microsecond scale, and also for BFT [71]. Nevertheless,
Mu relies on changing RDMA write permissions to allow
the leader to directly write into follower logs, which involve
the OS (e.g., manipulating page tables) and could induce
significant costs (e.g., through TLB flushes).

D. FPGA SECURITY
Although our work targets systems-on-chip in general,
whether in the form of ASICs, chiplets, FPGAs or a hetero-
geneous combination them, it is relevant to discuss FPGA
security measures, namely given our proof of concept is
implemented in one. Multiple strategies have been proposed
and used regarding FPGA security which, in turn, have an
effect on the system’s safety as well as resilience. For in-
stance, encryption and authentication [72]–[74] have been
adopted to protect bitstreams against intellectual property
(IP) piracy [75], trojan insertion, data leaks, etc. Different
solutions for key storage and protection have also been pro-
posed, such as the use of physically unclonable functions
(PUFs) [76]. However, (i) these techniques mostly target the
protection of hardware, i.e., bitstreams and the keys used to
decrypt them, not the software running on cores; and (ii) even
such mechanism have been the target of attacks [77]–[80].

E. EQUIVOCATION
In classical distributed consensus protocols, replicas send
messages to each other through an Ethernet connection. Tak-
ing the example of PBFT [46], once a replica receives a
message from another with a certain sequence number, it
will ignore further messages from the same replica with the
same sequence number, forbidding the sending replica from
"changing its mind" about the request being voted upon.
Inside an MPSoC, however, and if data is written in memory,
replicas can simply read the votes of others. As such, one
must be cautious about an important detail: the time at which
a replica reads the memory where the proposals are stored.
Sadly, a key factor of FIT solutions — namely, authenti-

cation — when Byzantine behaviour is expected, becomes
problematic in the context of MPSoCs. All practical BFT
protocols rely on the presence of authentication and, thus,
cryptographic operations in order to ensure replicas do not
impersonate others or lie about their votes. PBFT, for in-
stance, relies on digital signatures, requiring that requests and
every message passed among replicas are authenticated with
the utilization of message authentication codes (MAC), the
keys of which are changed during recovery to avoid imper-
sonation if an attacker learns the MAC keys. In MinBFT [47],
for instance, the trusted-trustworthy device USIG is in charge
of signatures and provides two simple operations create
UI and verify UI. Every message generated by a USIG
is tagged with a certificate called UI (unique identifier), con-
taining an ID (the replica’s unique identifier), amonotonically
increasing counter value and a signed hash of the message;
and serves the purpose of uniquely identifying messages.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

These generated signatures are then verified in other replicas’
USIGs.

Cryptography costs, although perfectly acceptable in the
context of distributed systems and their BFT implementa-
tions, given their fair performance ratio considering Ethernet
message passing costs, would not be suitable in on-chip sce-
narios, since local transfer operations and cross-tile NoC bus
costs are in the microsecond to nanosecond domains.

Close to native communication latency therefore requires
abandoning cryptography and, with this, transferable authen-
tication [81]. It is, therefore, impossible to distinguish a sce-
nario where the sender of a message falsely sends (i.e., writes)
some information from one where the receiver (i.e., reader)
modifies it. Consensus without transferable authentication
was first investigated by Lamport in the oral messages (OM)
protocol [82], where an impossibility to diagnose errors, and
hence recover from situations where replicas could lie incon-
sistently to others (i.e., equivocate), was identified. In other
words, replicas lose the ability to prove the origin of messages
once this message leaves the originator’s state.

To circumvent this impossibility, we rely on architectural
hybridization [47], [49], [50], [61], [62], i.e., the introduction
of a trusted-trustworthy component, and present our tightly-
coupled BFT-SMR protocol — iBFT , with the aid of a write-
once tag trusted-trustworthy component that serves as the
means to avoid equivocation (see Section XIII-E).

XIV. CONCLUSIONS AND FUTURE WORK
This paper tackled the predominant issues in FIT for on-
chip systems, attempting to devise a solution that relies on
no single-point-of-failure software layer and no synchrony
reliant protocol, tolerates arbitrary faults and has accept-
able performance for tightly-coupled environments. We in-
troduced the FIT protocol iBFT , a BFT-SMR protocol design
with such a goal inmind.We showed how iBFT circumvents a
well known impossibility identified by Pearson et al. for BFT-
SMR protocols that cannot rely on transferable authentica-
tion, which is the case for tightly coupled BFT-SMRprotocols
if they want to remain close to the performance of the replica
connecting communication medium: the on-chip networks of
multi- and manycore systems and the shared memories they
connect. We introduced trusted-trustworthy hardware-based
components to establish the notion of write-once memory and
have shown that, with these components, Directions for future
work include applying dynamic reconfiguration to the tag
trusted devices and potentially the cores as well for systems
deployed entirely on Programmable Logic fabric.

REFERENCES
[1] Tyson T Brooks, Carlos Caicedo, and Joon S Park. Security vulnerability

analysis in virtualized computing environments. International Journal of
Intelligent Computing Research, 3(1/2):277–291, 2012.

[2] Alex Depoutovitch and Michael Stumm. Otherworld: Giving Applications
a Chance to Survive OS Kernel Crashes. In Proceedings of the 5th
European Conference on Computer Systems, EuroSys ’10, pages 181–194.
ACM, 2010.

[3] Cristiana Bolchini, Matteo Carminati, and Antonio Miele. Self-Adaptive
Fault Tolerance in Multi-/Many-Core Systems. J. Electron. Test.,
29(2):159–175, 2013.

[4] Dmitrii Kuvaiskii, Rasha Faqueh, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. HAFT: Hardware-assisted Fault Tolerance. In 11th
European Conference on Computer Systems (EuroSys), pages 1–17, 2016.

[5] Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Michael M.
Swift. Membrane: Operating System Support for Restartable File Systems.
Trans. Storage, 6(3):11:1–11:30, 2010.

[6] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and
Henry M. Levy. Recovering Device Drivers. ACM Trans. Comput. Syst.,
24(4):333–360, 2006.

[7] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. SafeDrive: Safe and
Recoverable Extensions Using Language-based Techniques. In Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, OSDI ’06, pages 4–4. USENIX Association,
2006.

[8] Kevin Elphinstone and Yanyan Shen. Increasing the trustworthiness of
commodity hardware through software. In 43rd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), 2013.

[9] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. NoHype:
Virtualized Cloud Infrastructure without the Virtualization. In 37th Inter-
national Symposium on Computer Architecture (ISCA’10), 2010.

[10] Roger M. Needham and Maurice V. Wilkes. Domains of Protection and
the Management of Processes. The Computer Journal, 17(2), 1974.

[11] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and
Gerhard Fettweis. M3: AHardware/Operating-System Co-Design to Tame
Heterogeneous Manycores. In Architectural Support for Programming
Languages and Operating Systems. ACM, 2016.

[12] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan
Teodosiu, and Anoop Gupta. Hive: Fault Containment for Shared-Memory
Multiprocessors. In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages 12–25. ACM, 1995.

[13] Nickolai Zeldovich, Hari Kannan,Michael Dalton, andChristos Kozyrakis.
Hardware Enforcement of Application Security Policies Using Tagged
Memory. In OSDI, volume 8, pages 225–240, 2008.

[14] Neeraj Gandhi, Edo Roth, Brian Sandler, Andreas Haeberlen, and Linh
Thi Xuan Phan. REBOUND: Defending Distributed Systems Against
Attacks with Bounded-Time Recovery. In Proceedings of the Sixteenth
European Conference on Computer Systems, pages 523–539, 2021.

[15] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann,
Robert Norton, and Michael Roe. The CHERI Capability Model: Revisit-
ing RISC in an Age of Risk. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, pages 457–468. IEEE
Press, 2014.

[16] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Construction of a Highly Dependable Operating System. In
Proceedings of the Sixth European Dependable Computing Conference,
EDCC ’06, pages 3–12. IEEE Computer Society, 2006.

[17] Ruslan Nikolaev and Godmar Back. VirtuOS: An Operating System
with Kernel Virtualization. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 116–132.
ACM, 2013.

[18] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Camp-
bell. CuriOS: Improving Reliability Through Operating System Structure.
In Proceedings of the 8th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’08, pages 59–72. USENIX Association,
2008.

[19] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. Recovery
Domains: An Organizing Principle for Recoverable Operating Systems. In
Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOSXIV, pages
49–60. ACM, 2009.

[20] KoustubhaBhat, DirkVogt, Erik van derKouwe, BenGras, Lionel Sambuc,
Andrew S. Tanenbaum, Herbert Bos, and Cristiano Giuffrida. OSIRIS: Ef-
ficient and Consistent Recovery of Compartmentalized Operating Systems.
In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 25–36, 2016.

[21] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, andMendel Rosenblum.
Cellular Disco: Resource Management Using Virtual Clusters on Shared-
Memory Multiprocessors. In Proceedings of the Seventeenth ACM Sympo-

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

sium on Operating Systems Principles, SOSP ’99, pages 154–169. ACM,
1999.

[22] David Gens. OS-Level Attacks and Defenses: From Software to Hardware-
Based Exploits, 2018.

[23] Martin Hoffmann, Christian Dietrich, and Daniel Lohmann. Failure by
Design: Influence of the RTOS Interface on Memory Fault Resilience. In
German Society of Informatics, editor, Proceedings of the 2nd GI Work-
shop on Software-Based Methods for Robust Embedded Systems (SOBRES
’13), 2013.

[24] William J Dally and Brian Towles. Route Packets, Not Wires: On-Chip
Interconnection Networks. In Proceedings of the 38th annual design
automation conference, pages 684–689, 2001.

[25] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. Multiprocessor
system-on-chip (MPSoC) technology. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(10):1701–1713, 2008.

[26] Geoffrey Blake, Ronald G Dreslinski, and Trevor Mudge. A survey of
multicore processors. IEEE Signal Processing Magazine, 26(6):26–37,
2009.

[27] Michael Engel and Björn Döbel. The reliable computing base: A paradigm
for software-based reliability. In Workshop on SOBRES, 2012.

[28] Inês Pinto Gouveia, Marcus Völp, and Paulo Esteves-Verissimo. Behind
the Last Line of Defense: Surviving SoC Faults and Intrusions. Computers
& Security, 123:102920, 2022.

[29] Abdullah Al-Boghdady, Khaled Wassif, and Mohammad El-Ramly. The
Presence, Trends, and Causes of Security Vulnerabilities in Operating
Systems of IoT’s Low-End Devices. Sensors, 21(7):2329, 2021.

[30] BP Prabahar and BE Edwin. Survey on virtual machine security. Interna-
tional Journal of Advanced Research in Computer Engineering Technology
(IJARCET), 1(8):115–121, 2012.

[31] Louis Turnbull and Jordan Shropshire. Breakpoints: An analysis of poten-
tial hypervisor attack vectors. In 2013 Proceedings of IEEE Southeastcon,
pages 1–6. IEEE, 2013.

[32] Ammarit Thongthua and Sudsanguan Ngamsuriyaroj. Assessment of
hypervisor vulnerabilities. In 2016 International conference on cloud
computing research and innovations (ICCCRI), pages 71–77. IEEE, 2016.

[33] Dina Zoughbi and Nitul Dutta. Hypervisor Vulnerabilities and Some
Defense Mechanisms, in Cloud Computing Environment. International
Journal of Innovative Technology and Exploring Engineering, 10:42–48,
2020.

[34] KA Scarfone. Guide to security for full virtualization technologies, volume
800. DIANE Publishing, 2011.

[35] Salman Iqbal, Miss Laiha Mat Kiah, Babak Dhaghighi, Muzammil Hus-
sain, Suleman Khan, Muhammad Khurram Khan, and Kim-Kwang Ray-
mond Choo. On cloud security attacks: A taxonomy and intrusion detection
and prevention as a service. Journal of Network and Computer Applica-
tions, 74:98–120, 2016.

[36] Ying C. Yeh. Triple-triple redundant 777 primary flight computer. In 1996
IEEE Aerospace Applications Conference. Proceedings, volume 1, pages
293–307. IEEE, 1998.

[37] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. Airbus fly-by-wire: A
total approach to dependability. In Building the Information Society, pages
191–212. Springer, 2004.

[38] Luigi Mancini. Modular redundancy in a message passing system. IEEE
transactions on software engineering, 1:79–86, 1986.

[39] Hermann Kopetz and Günther Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[40] Yanyan Shen, Gernot Heiser, and Kevin Elphinstone. Fault Tolerance
Through Redundant Execution on COTS Multicores: Exploring Trade-
Offs. In 2019 49th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 188–200. IEEE, 2019.

[41] Paulo Veríssimo. Uncertainty and predictability: Can they be reconciled?
In Future Directions in Distributed Computing: Research and Position
Papers, pages 108–113. Springer, 2003.

[42] Subodha Charles and Prabhat Mishra. A Survey of Network-on-Chip
Security Attacks and Countermeasures. ACMComputing Surveys (CSUR),
54(5):1–36, 2021.

[43] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), 35(2):288–
323, 1988.

[44] Ulrich Schmid and Andreas Steininger. Decentralised fault-tolerant clock
pulse generation in VLSI chips. TU Wien, 2010. Patent: US7791394B2.

[45] Edward A Feustel. The Rice research computer: a tagged architecture. In
Proceedings of the May 16-18, 1972, spring joint computer conference,
pages 369–377, 1971.

[46] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
Operating systems design and implementation (OsDI), volume 99, pages
173–186, 1999.

[47] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. Efficient Byzantine Fault-
Tolerance. IEEE Transactions on Computers, 62(1):16–30, 2013.

[48] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and
Lau Cheuk Lung. Spin one’s wheels? byzantine fault tolerance with a
spinning primary. In Proceedings of the 2009 28th IEEE International
Symposium on Reliable Distributed Systems, SRDS ’09, pages 135–144.
IEEE Computer Society, 2009.

[49] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. How to
tolerate half less one byzantine nodes in practical distributed systems.
In Reliable Distributed Systems, 2004. Proceedings of the 23rd IEEE
International Symposium on, pages 174–183. IEEE, 2004.

[50] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. BFT-TO:
Intrusion tolerance with less replicas. The Computer Journal, 56(6):693–
715, 2012.

[51] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems (TOCS),
20(4):398–461, 2002.

[52] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira
Neves, and Paulo Verissimo. Highly available intrusion-tolerant services
with proactive-reactive recovery. IEEE Transactions on Parallel and
Distributed Systems, 21(4):452–465, 2010.

[53] Byung-Gon Chun, Petros Maniatis, and Scott Shenker. Diverse replication
for single-machine byzantine-fault tolerance. In USENIX 2008 Annual
Technical Conference, ATC’08, pages 287–292. USENIX Association,
2008.

[54] Tom Roeder and Fred B Schneider. Proactive obfuscation. ACM Transac-
tions on Computer Systems (TOCS), 28(2):1–54, 2010.

[55] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael
Obelheiro. Os diversity for intrusion tolerance: Myth or reality? In
2011 IEEE/IFIP 41st International Conference on Dependable Systems &
Networks (DSN), pages 383–394. IEEE, 2011.

[56] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok:
Automated software diversity. In Proceedings of the 2014 IEEE Sympo-
sium on Security and Privacy, SP ’14, pages 276–291. IEEE Computer
Society, 2014.

[57] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael
Obelheiro. Analysis of operating system diversity for intrusion tolerance.
Software: Practice and Experience, 44(6):735–770, 2014.

[58] Miguel Garcia, Alysson Bessani, and Nuno Neves. Lazarus: Automatic
management of diversity in bft systems. In Proceedings of the 20th
International Middleware Conference, pages 241–254. ACM, 2019.

[59] Inês Pinto Gouveia. Architectural support for hypervisor-level intrusion
tolerance in mpsocs. 2022.

[60] Ali Shoker, Paulo Esteves Verissimo, and Marcus Völp. The path to
fault-and intrusion-resilient manycore systems on a chip. arXiv preprint
arXiv:2307.01783, 2023.

[61] Paulo E Verissimo. Travelling through wormholes: a new look at dis-
tributed systems models. ACM SIGACT News, 37(1):66–81, 2006.

[62] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and
Klaus Stengel. CheapBFT: Resource-efficient byzantine fault tolerance. In
Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 295–308. ACM, 2012.

[63] B. Chun, P. Maniatis S. Shenker, and J. Kubiatowicz. Attested append-only
memory: Making adversaries stick to their word. In 21st ACM Symposium
on Operating Systems Principles (SOSP), pages 189–204, 2007.

[64] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda.
TrInc: Small trusted hardware for large distributed systems. In NSDI,
volume 9, pages 1–14, 2009.

[65] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault
tolerance. In 15th ACM Symposium on Operating Systems Principles
(SOSP), pages 1–11, 1995.

[66] Leslie Lamport. The part-time parliament. Transactions on Computer
Systems, 16(2):133–169, 1998.

[67] Emanuele Giuseppe Esposito, Paulo Coelho, and Fernando Pedone. Kernel
paxos. In 37th Symposium on Reliable Distributed Systems (SRDS). IEEE,
2018.

[68] Björn Döbel. Operating system support for redundant multithreading,
2014.

14 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[69] Tudor David, Rachid Guerraoui, and Maysam Yabandeh. Consensus
inside. In Proceedings of the 15th International Middleware Conference,
Middleware ’14, pages 145–156. ACM, 2014.

[70] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J.
Marathe, Athanasios Xygkis, and Igor Zablotchi. Microsecond consensus
for microsecond applications. In 14th USENIX Symposium on Operating
Systems Design and Implementation, 2020.

[71] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, and Igor Zablotchi. The impact of rdma on agreement. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, pages 409–418. Association for Computing Ma-
chinery, 2019.

[72] Stephen M Trimberger. Method and apparatus for protecting proprietary
configuration data for programmable logic devices, 2003. US Patent
6,654,889.

[73] Stephen M Trimberger and Jason J Moore. Fpga security: Motivations,
features, and applications. Proceedings of the IEEE, 102(8):1248–1265,
2014.

[74] Ed Peterson. Developing tamper-resistant designs with ultrascale and
ultrascale+ fpgas. XAPP1098. Xilinx Corporation, 155:156, 2017.

[75] Adam Duncan, Fahim Rahman, Andrew Lukefahr, Farimah Farahmandi,
and Mark Tehranipoor. Fpga bitstream security: a day in the life. In 2019
IEEE International Test Conference (ITC), pages 1–10. IEEE, 2019.

[76] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls.
Physical unclonable functions and public-key crypto for fpga ip protec-
tion. In 2007 International Conference on Field Programmable Logic and
Applications, pages 189–195. IEEE, 2007.

[77] Maik Ender, Amir Moradi, and Christof Paar. The unpatchable silicon: A
full break of the bitstream encryption of Xilinx 7-series FPGAs. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1803–1819,
2020.

[78] Maik Ender, Gregor Leander, Amir Moradi, and Christof Paar. A cau-
tionary note on protecting Xilinx’s UltraScale+ bitstream encryption and
authentication engine. In 2022 IEEE 30th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 1–
9. IEEE, 2022.

[79] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas De-
vadas, and Jürgen Schmidhuber. Modeling attacks on physical unclonable
functions. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 237–249, 2010.

[80] Jonas Krautter, Dennis RE Gnad, and Mehdi B Tahoori. Fpgahammer:
Remote voltage fault attacks on shared fpgas, suitable for dfa on aes. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
44–68, 2018.

[81] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On
the (limited) power of non-equivocation. In Proceedings of the 2012 ACM
symposium on Principles of distributed computing, pages 301–308, 2012.

[82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

INÊS PINTO GOUVEIA Dr. Inês Gouveia is a
Postdoctoral Fellow at the King Abdullah Univer-
sity of Science and Technology (KAUST) working
on the application of dynamic hardware reconfig-
uration to resilient systems. She obtained her PhD
in 2022 at the University of Luxembourg, where
she specialized in hardware support for hypervisor-
level fault and intrusion tolerance. After her PhD
she worked as a Research Scientist at Intel Labs
Germany, looking into the design of a RISC-V

safety island. Her Bachelor’s and Master’s degrees where obtained at the
University of Lisbon, with a focus on non-intrusive runtime verification.

RAFAL GRACZYK Rafał Graczyk received BSc
(2005) and MSc (2009) in Electronics and Com-
puter Engineering and PhD (2017) in Electronics
from Warsaw University of Technology. He’s got
more than 15 years of experience in dependable
systems research and development, focusing on re-
silience and radiation effects in computer systems.
He’s been working in various roles in projects at
the Space Research Center of the Polish Academy
of Sciences, at the Interdisciplinary Center for Se-

curity, Reliability and Trust at University of Luxembourg and at companies
within the European space sector.

MARCUS VÖLP Prof. Dr.-Ing. Marcus Völp
heads the Critical and Extreme Computing Group
(CritiX) of the Interdisciplinary Center for Secu-
rity, Reliability and Trust at University of Luxem-
bourg. He received his PhD in 2011 from Technis-
che Universität Dresden, has been visiting scholar
at Carnegie Mellon University and was appointed
Associate Professor in 2020. His research interests
includemethods, tools and system architectures for
constructing resilient cyberphysical and embedded

systems, from small scale to large scale distributed systems. The goal is
to simultaneously tolerating accidental and intentionally malicious faults
(i.e., targeted attacks), while continuing to guarantee realtime, secure and
dependable behavior.

PAULO ESTEVES-VERISSIMO Paulo Esteves-
Veríssimo is a professor at KAUST University
(KSA) and Director of its Resilient Computing and
Cybersecurity Center (https://rc3.kaust.edu.sa/),
and research fellow of SnT at the Univ. of Lux-
embourg (UNILU). He is past Chair of IFIP WG
10.4 on Dependable Comp. and F/T. He is Fel-
low of IEEE and of ACM, and associate editor of
the IEEE TETC journal, author of over 200 peer-
refereed publications and co-author of 5 books.

He is currently interested in resilient computing, in areas like: SDNbased
infrastructures; autonomous vehicles; distributed control systems; digital
health and genomics; or blockchain and cryptocurrencies.

VOLUME 11, 2023 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3484013

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

