A DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

Integrating gait sensor data with other multimodal datasets

to predict PD outcomes

Speaker: Enrico Glaab, University of Luxembourg
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Project overview & goals ‘:‘ DIGIPD

Validating DIGltal biomarkers for better
personalized treatment of Parkinson’s Disease

Digital data
— Interpretable / prediction Goal \
N 1Y Machine Learning rediction &0als

(1) Diagnosis: PD vs. Control

Omics data
Metabolomics
RNAseq

Clinical data

(e.g. freezing of gait)
fil - /

(2) Severity: Motor scores

(3) Comorbidities &
non-motor outcomes

Compare & combine
data and models

(4) Gait impairments
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Main dataset

* Type of data: eGalT (embedded Gait analysis using Intelligent Technologies)

* Sample sizes: 301 subjects (205 PD patients + 96 controls)
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Raw sensor data + standard feature extraction

Tasks:
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Validating DIGltal biomarkers for better
personalized treatment of Parkinson’s Disease

Extracted features:
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A DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

PD vs. Control classification (gait features)

Digital data
LuxPARK

Predict diagnosis

Compute Mean and Stddev

f extr features over PD
of extracted features ove ° °

Control
the steps for a patient

—>

Cross-validated predictive performance:

Control PD Control

. . Clinical

Models Linear RBF SVM Random Gradu.ent Adaboost covariates
SVM Forest Boosting

(mean)

1°'Z°J°C'CV 0.701 0.784 0.794 0.798 0.783 0.63

e | (0.15) | (0.08) | (0.04) | (0.06) | (0.05) | (0.11)

UK Parkinson’s Disease Society Brain Bank diagnostic criteria: 76% specificity (Berg et al., 2013)
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PD vs. Control classification — Most predictive features

High

Feature value

RGP o o °
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0«, SHAP value (impact on model output)
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Timestamp, foot and toe-
clearance, and stride length

related features most predictive

Left stride

| Right step ~

Initiation of Swing Phase

!

Toe-off Angle (°)
(ToA)

~-Swing Phase-------=--=vesx-
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PD vs. Control classification (raw signal data) £ DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

Digital data
LuxPARK

Predict diagnosis

Extracting information-

theoretic, signal processing gD .Control

and time series features

——>

Control PD Control

Cross-validated predictive performance:

Linear Random Gradient Clinical
Models RBF SVM ) Adaboost | Logistic | covariates
SVM Forest Boosting (mean)

10foldcv | 0.881 | 0.870 | 0.878 | 0.852 | 0.859 |0.882| 0.63
AUC 1 (0.04) | (0.03) | (0.05) | (0.06) | (0.05) |(0.04)| (0.11)

mean(std)
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Prediction of UPDRS 3 score (digital surrogate biomarker)

Most predictive features:

A DIGIPD

Validating DIGltal biomarkers for better
personalized treatment of Parkinson’s Disease

High
Predicted vs. Real UPDRS3 score (scaled)
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Cross-validation results (raw data): g e 8 ¥
R
®
Linear RBF Random Neural Ada- . IR
Models SVR SVR Forest GBoost Network boost | Nidse OLS 0.01 ¢ . . | | |
0.0 0.5 1.0 1.5 2.0 2.5
cv-10: | 0.381 | 0.307| 0.37 0.349 0.421 | 0.364 | 0.442 | 0.433
mea‘:istd) (0.16) [ (0.20) | (0.10) (0.14) (0.16) | (0.12) | (0.15) | (0.15) Real UPDRS3 score (scaled)
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Freezing of gait prediction
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predictive)

< Prediction using gait-specific

features (more interpretable &

o

10
True values

Freezing of Gait questionnaire
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R?=0.38
p=4.37e-06

series features

< Prediction using raw / time
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Quality of life (PDQ39) — Mobility sub-score prediction
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similar predictivity)

< Prediction using gait-specific

features (more interpretable and
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< Prediction using time series
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Prediction of akinetic-rigid vs. other phenotypes A DIGIPD

Most predictive features (gait-specific):

Validating DIGltal biomarkers for better
personalized treatment of Parkinson’s Disease

Std..Max..Toe.Clearance..cm. | 0.627
ot Heel Ste Angle. deg. | 0508 Cross-validation results (gait-specific features):
Std..Stride.Time..s. | 0.458 [ ]
St Stance-Time.s. | 0436 5 Models | GBM | SVM | ROTF | XGB | DEEP RF | GAUSS
Std..Turning.Angle..deg. | 0.353 0
s e i ' 10:3?5 0.562 | 0.505 | 0.565 | 0.63 | 0.641 | 0.583 | 0.491
SRRy ST : ety | (0-24) | (0.18) | (0.2) | (0.14) | (022) | (0.2) | (0.16)
Std..Swing.Time..s. | 0.177 °
Mean..Max..Foot.Clearance..cm. | 0.157
Mean..Swing.Time..s. | 0.133 [ ]
Mean. Max. Lateral Excursion..cm. | 0.130 Cross-validation results (time series features):
Std..Swing.Time.... | 0.106
Mean..Max..Sensor.Lift..cm. | 0.093 ] . Models GBM SVM ROTF XGB DEEP RF GAUSS
Mean..Stance.Time.... | 0.084 ' P ‘DS 10-folds
Std..Stride.Length..cm. | 0.058 o ‘—?, AUC 048 0491 0498 0538 0.671 0518 0441
>
A i : meany | 017 ] (021) | (0.2) | (0.22) | (0.22) | (0.2) | (0.19)
ean..Stance.Time..s. | 0. ©
Mean..Stance.T 0.000 ' $
Mean..Max..Toe.Clearance..cm. | 0.000
Mean..Time.Stamp..s. | 0.000 A . . e . R .
S - b ¢ - galt-SpeCIfIC attributes in most cases superior
Mean..Gait.Speed..m.s. | 0.000 '
E 0 1
SHAP value (impact on model output)
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Prediction of gait disorder occurrence in PD

Most predictive features (gait-specific):

Std..Swing.Time..s.
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Prediction of cognitive decline (MoCA, follow-up visit)

Most predictive features:
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Cross-validation results (raw data): R .
Clinical &
Models GBM SVM ROTF XGB DEEP RF GAUSS | covariates o
I I T I
(mean) 15 20 25 30
10:3?5 0.614 | 0.595 | 0.643 | 0.629 | 0.631 | 0.642 | 0.617 | 0.608 Real MoCA score
meanista) | (0:15) | (0.14) | (0.13) | (0.17) | (0.15) | (0.08) |(0.19) | (0.14)
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Prediction of comorbidities using eGalT data (follow-up visit) gf DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

Analysis: Prediction of further disease-associated outcomes in PD
(Algorithm: XGBoost, 10-fold CV)

AUC statistics:

Outcome Min. (1st Qu. Mean 3rd Qu. |[Max. [Clinical |Metabolomics

Cognitive decline (MoCA) 0.400 0.491 0.629| 0.759 0.867| 0.608 0.648

Impulse control disorders (QUIP)|0.192] 0.519| 0.642 0.817/1.000| 0.604 0.563| | Median AUCs

Depression (BDI) 0.357| 0.500 0.575| 0.651/0.750, 0.596 0.526) | between 53% to
Hallucinations 0.333| 0.444 0.536] 0.573/0.833 0.536 0.578 | 64%, depending
Dyskinesias 0.282| 0.427 0.557 0.646/0.962 0.573 0.669 | On the outcome
Apathy (Starkstein scale) 0.375| 0.481 0.574| 0.634 0.850| 0.546 0.593

Quality of life (PDQ-39) 0.375| 0.542 0.593| 0.673 0.729] 0.559 0.574
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Summary & Outlook ﬂ“ DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

B Summary:
Significant performances for PD vs. Control and motor severity prediction

Promising initial results for predicting gait impairments and some comorbidities

@ Outlook / Future Follow-Up:
Test alternative feature definitions for improved interpretability / predictivity
Collect comparable data across distinct cohorts / populations for cross-study validation

Expand to other digital data types (Smartwatch sensors, Fitbit, etc.)
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Thank you!

Cyril Brzenczek

(Machine learning analysis)

Sophie Lebars

(Omics analysis)

Quentin Klopfenstein
(Machine learning analysis)

Rebecca Ting Jiin Loo
(Machine learning analysis)
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