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Abstract— The ability to autonomously assemble structures
is crucial for the development of future space infrastructure.
However, the unpredictable conditions of space pose significant
challenges for robotic systems, necessitating the development of
advanced learning techniques to enable autonomous assembly.
In this study, we present a novel approach for learning au-
tonomous peg-in-hole assembly in the context of space robotics.
Our focus is on enhancing the generalization and adaptability of
autonomous systems through deep reinforcement learning. By
integrating procedural generation and domain randomization,
we train agents in a highly parallelized simulation environment
across a spectrum of diverse scenarios with the aim of acquiring
a robust policy. The proposed approach is evaluated using
three distinct reinforcement learning algorithms to investigate
the trade-offs among various paradigms. We demonstrate the
adaptability of our agents to novel scenarios and assembly se-
quences while emphasizing the potential of leveraging advanced
simulation techniques for robot learning in space. Our findings
set the stage for future advancements in intelligent robotic
systems capable of supporting ambitious space missions and
infrastructure development beyond Earth. The source code is
available at https://github.com/AndrejOrsula/drl_omni_peg.

I. INTRODUCTION

The evolving field of space robotics is a critical component
for the future of space exploration, where systems capable of
autonomously executing complex tasks with minimal human
intervention are becoming increasingly essential. Robotic
assembly and servicing stand out as key elements for the
development and maintenance of infrastructure in space.
These capabilities are of particular interest for planetary
missions that strive to establish a sustainable human presence
on other celestial bodies through initiatives like NASA’s
Artemis program [1]. Furthermore, advancements in this
domain will also shape the future of in-space assembly to
facilitate the construction of large-scale orbital structures [2]
and support in-orbit servicing activities such as refuelling [3].

The peg-in-hole task is a fundamental manipulation skill
for robots performing assembly and servicing. In space, this
task is vital for the construction of modular structures as
well as the repair and maintenance of satellites to extend
their operational life through the replacement of faulty
components or restoration of structural issues. The task is
characterized by its complex contact-rich interactions that
necessitate precise and robust control strategies to ensure
successful completion. Traditional control methods, which
often rely on detailed contact model analysis, are capable
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Fig. 1. Our approach leverages procedural generation and domain random-
ization in a highly parallelized simulation environment to train agents that
can generalize across a wide range of peg-in-hole assembly scenarios.

of efficiently handling well-defined scenarios but struggle
to generalize across a wide range of conditions [4]. This
limitation can be particularly apparent in space due to
the unpredictable and highly variable conditions that might
include part and material inconsistencies caused by post-
launch damage, thermal expansion and long-term exposure
to the harsh conditions of space. Therefore, the capacity to
generalize and adapt to novel scenarios becomes crucial for
autonomous robotic systems operating in these environments.
Reinforcement learning (RL) offers a promising approach
to these challenges by providing a formal framework to
optimize policies for sequential decision-making problems.
In particular, deep RL has shown remarkable success in
learning diverse tasks from high-dimensional sensory inputs
and adapting to previously unseen scenarios. These qualities
have also made RL attractive for tackling complex contact-
rich manipulation tasks, including peg-in-hole assembly [5].
However, the deployment of RL in real-world robotic appli-
cations remains challenging, especially in space where the
limited accessibility to physical systems restricts the training
and validation of RL agents on the actual hardware. As a con-
sequence, the reliance on realistic simulation environments
has become increasingly evident, with the aim of narrowing
the sim-to-real gap. Nonetheless, the generalization of RL
agents to novel scenarios is still a topic of active research.
This work introduces an approach for learning autonomous
peg-in-hole assembly with an emphasis on improving the
ability to generalize across different scenarios. Our contribu-
tion is based on leveraging procedural generation to create a
diverse set of peg-in-hole modules, each providing a unique
scenario for comprehensive training of the agents. These
modules are incorporated into a highly parallelized simula-
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tion environment, enabling agents to efficiently collect a wide
range of experience across a broad spectrum of assembly
scenarios. Furthermore, domain randomization techniques
are applied within the simulation environment to enhance
the robustness and generalization of the agents. With this
framework, we train and evaluate agents using three distinct
RL algorithms to explore the benefits of different learning
paradigms on contact-rich manipulation tasks: model-free
on-policy PPO, model-free off-policy SAC, and model-based
DreamerV3. Additionally, we investigate the impact of tem-
poral dependencies on the successful learning of the peg-in-
hole assembly task. The study concludes by demonstrating
the adaptability of the trained agents to a novel assembly
sequence, highlighting the potential of our approach.

II. RELATED WORK

Autonomous robotic assembly, characterized by its re-
quirements for precision, robustness and adaptability, poses
considerable challenges across both terrestrial and extrater-
restrial applications. The peg-in-hole task, in particular, has
been a focal point for research in this domain and has been
explored through various control strategies and learning-
based approaches.

Historically, the field has leaned towards classical strate-
gies based on identifying contact states through model recog-
nition and subsequent use of compliant control with pre-
programmed trajectories, such as spiral search, to guide the
peg into the hole [6], [7]. However, these strategies usually
assume near-perfect alignment between the peg and its hole
before the insertion can begin, requiring either extensive pre-
calibration or additional alignment procedures [8]. Further-
more, many existing methods cannot handle certain condi-
tions, notably holes that are not perpendicular to their mount-
ing surfaces. Although these methods have shown success in
well-defined scenarios and provide explicit safety guarantees,
they often struggle to adapt to novel scenarios [4], such
as the unpredictable conditions of space environments. This
limitation has motivated the exploration of learning-based
approaches to address these challenges.

As a step towards more versatile approaches, learning
from demonstration has been successfully applied to several
robotic assembly tasks, including the peg-in-hole assembly.
This approach enables robots to learn complex manipulation
skills by observing and interpreting human demonstrations.
Techniques leveraging Gaussian-based regression models [9],
[10] have shown promise in mimicking the compliant be-
haviours of human experts. However, the effectiveness of
these methods is bounded by the quantity and diversity of
the provided demonstrations, constraining their ability to
generalize to novel scenarios not present in the training
data. This limitation motivated the exploration of methods
combining imitation learning to acquire an initial policy
and RL for further refinement [11], [12]. Although these
methods have demonstrated robust behaviour without explicit
programming, their generalization capabilities might still be
restricted to a small set of peg-in-hole scenarios due to
potential biases present in the demonstration data.

Recent advancements in RL have marked a significant shift
in the paradigm for learning contact-rich manipulation tasks.
Most research efforts have focused on applying deep RL to
robotic assembly, while other tasks, such as door opening and
folding of deformable fabrics, have also been explored [5].
The peg-in-hole assembly task is among the most commonly
researched applications of RL in contact-rich manipulation,
with various innovative methods being proposed to address
the challenges of this task. The use of model-free RL
algorithms is predominant in the literature [13], [14], [15],
[16], driven by the challenges of accurately modelling the
complex interaction dynamics. Precise modelling of inter-
actions between the peg and hole can be crucial, as even a
slight misalignment of the peg can lead to significant friction
and impact the success of the task. Although less common,
the adoption of model-based RL strategies has demonstrated
the potential to enhance sample efficiency through the use of
learned dynamics models [17], [18], [19]. Recurrent policies
have also been explored to handle the temporal dependencies
of assembly tasks [13], [16], especially those utilizing Long
Short-Term Memory networks [20].

Sensory input, included as part of the observation space,
plays a crucial role in the learning process. Wrist-mounted
force-torque sensors have been widely adopted due to their
ability to provide important feedback during contact-rich
manipulation tasks such as peg-in-hole assembly [13], [14],
[17], [18], [19]. They enable robots to adjust their actions
in real-time to successfully guide the peg into the hole,
although both parts must already be in contact for useful
data to be obtained. Vision-based perception has also been
explored to provide estimates of the relative pose between
the peg and the hole [16]; however, most approaches em-
ploy visual perception only for initial rough alignment due
to the challenges posed by the complex interactions [18],
[19]. Similarly, the selection of control strategies has been
diverse but has predominantly focused on hybrid position-
force control [13], [14] and admittance control [17]. As
many robotic manipulators are not inherently compliant and
offer only position and velocity control interfaces, position
control in the form of end-effector displacement has also
been explored [16], [19]. Our approach takes a different
perspective by focusing on velocity control in the Cartesian
space without relying on force-torque sensors. This facilitates
generalization across a wide range of actuation mechanisms
while alleviating the need for specific sensor technologies.

Despite notable progress, the generalization of RL agents
to novel peg-in-hole scenarios remains an open challenge.
Current research predominantly focuses on a small number
of pegs that are mostly cylindrical and are often restricted to
a tabletop setting with constrained degrees of freedom. Some
studies have revolved around specific cases, exemplified
by the simultaneous insertion of multiple pegs [15] and
deformable holes [17]. However, despite efforts to evaluate
generalization capabilities, such as the insertion of USB and
LAN connectors [14], the research in this area is limited
and has encountered reduced success rates. This situation
signifies the need for approaches that can improve the



generalization capabilities of RL agents. In pursuit of this
goal, our work seeks to contribute to the field by exploring
the potential of improving the generalization capabilities
of RL agents performing peg-in-hole assembly through the
use of procedural generation and domain randomization
techniques [21]. By diversifying the training experience, we
aim to take the first steps towards RL agents that can succeed
in a broader spectrum of peg-in-hole assembly scenarios and
contribute to the development of more adaptable autonomous
robotic systems.

III. PROBLEM STATEMENT

The task of peg-in-hole assembly embodies a fundamental
challenge in autonomous robotics, especially within the
demanding and unpredictable conditions of space environ-
ments. In this domain, it is essential for operations such
as modular assembly of orbital structures and maintenance
of infrastructure. Therefore, the development of autonomous
systems capable of performing peg-in-hole assembly tasks
with a high degree of generalization and robustness is crucial
for the success of future missions. The peg-in-hole task
generally involves the insertion of a peg into a corresponding
hole that is slightly larger than the peg itself, with an
accommodating clearance margin. The complexity of this
process can be affected by several factors, including the
peg’s shape and size, the hole’s orientation, and the material
properties of the mating surfaces, all while requiring precise
alignment and insertion.

In this investigation, we predominantly consider pegs with
arbitrary convex geometry to cover a wide range of realistic
scenarios. The bottom and top of the pegs are assumed to
be flat and normal to the peg’s axis. Each peg has exactly
one corresponding hole, which is also assumed to have a
flat bottom that is normal to the axis of the hole. The
orientation of the hole is not necessarily perpendicular to
its mounting surface, which increases the complexity of the
task by forcing the peg to be inserted at varying angles for
successful assembly. The peg and hole are assumed to be
rigid, and the task is defined with a specific focus on a
radial clearance of 1.0 mm between the peg and the hole.
The magnitude of this clearance is selected based on the
envisioned use-case of in-orbit modular assembly, where
such margin would be necessary to accommodate variances
from environmental factors like thermal expansion and po-
tential manufacturing processes, including in-orbit additive
manufacturing. This consideration is vital for ensuring the
feasibility and reliability of autonomous assembly operations
in the challenging environment of space. Lastly, the edges
of pegs and holes are assumed to be sharp, without any
chamfers, fillets, or other mechanical design features that
would otherwise ease the insertion process.

To limit the complexity of the task and focus on the
core challenges of the peg-in-hole assembly without the
influence of additional factors, we constrain our analysis
to simulations and avoid detailed control and perception
mechanisms. Instead, we focus on direct control of the
peg’s trajectory within Cartesian space. This methodological

choice facilitates adaptability to different platforms across a
broad spectrum of actuation mechanisms and the application
of established control techniques capable of following a
trajectory. Similarly, we only consider the explicit knowledge
of the relative pose between the peg and the hole without
the use of any additional sensory information about contact
forces or dimensions of the peg. Upon deployment, the
relative pose could be estimated through the use of vision-
based perception, but the approach would not necessitate
the use of other specific sensor technologies. This decision
is motivated not only by the desire to reduce the potential
sources of uncertainties but also to ensure the general appli-
cability of the approach across a wide range of platforms.
Nevertheless, to simulate the inherent uncertainties in the
perception and control systems encountered in real-world
scenarios, we introduce noise to both the observed state and
the executed control commands. This noise is modelled to
reflect a normal distribution, with a standard deviation set
at 0.5 mm for position and 1.0° for orientation, reflecting
the precision levels achievable with modern vision-based
systems designed for proximity operations.

IV. LEARNING AUTONOMOUS PEG-IN-HOLE ASSEMBLY

To address the challenges of autonomous peg-in-hole
assembly, we adopt a learning-based approach that lever-
ages diverse training scenarios to enhance the generalization
capabilities of RL agents. Central to our methodology is
the procedural generation of assembly modules, which is
combined with a highly parallelized simulation environment
and domain randomization techniques to provide a rich
source of experience for the agents. This section outlines
its key components, including the task formulation, proce-
dural generation of assembly modules, and the simulation
environment.

A. Task Formulation

Our approach to autonomous peg-in-hole assembly can be
formulated as a partially observable Markov decision process
(POMDP) that encapsulates the sequential decision-making
nature of the task. Partial observability arises from the agent’s
limited knowledge of the current state, particularly about
the contact forces as well as the shape, dimensions, and
material properties of the peg and hole. The objective of
the agent is to learn an optimal policy that maximizes the
expected cumulative reward over time, thereby achieving a
successful peg insertion. Formulating the task is thus critical
for applying RL, as it clearly defines the interactions between
the agent and its environment through observations, actions,
and a reward function.

Observation Space: The observations provided to the
agent capture the spatial state of the peg-in-hole assem-
bly. Specifically, the observation space is structured around
two key transformations visualized in Fig. 2; one from
the bottom of the peg to the hole entrance T, ... and
another from the bottom of the peg to the bottom of the
hole TP . The frame at the hole entrance is oriented

bottom*
with respect to the normal vector of the hole’s mounting



surface, while the frame at the bottom of the hole is oriented
based on the normal vector of the hole’s bottom surface.
The translation for each transformation is represented as
relative x, y, and z coordinates, whereas the orientation is
encoded using a 6D representation [22] derived from the
first two columns of the rotation matrix. Each transformation
contributes nine values, with three values for translation and
six for orientation, resulting in a combined 18-dimensional
observation vector.

peg
Tentrance ‘

.
pes

peg
N X entrance
transformations that capture the spatial state of the assembly.

Fig. 2.
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The observation space of our agents is defined by the T

Action Space: The actions that the agent can select
to interact with the environment are designed to provide
direct control over the peg’s movement, enabling precise
manoeuvres required for successful assembly. The action
space comprises a continuous six-dimensional vector, split
evenly between the target linear and angular velocities of
the peg in Cartesian space. The linear velocities are aligned
with the z, y, and z axes, while the angular velocities
control the peg’s rotation about these axes, with the central
point of rotation at the bottom of the peg. All actions are
clipped to the range of [—1.0,1.0] and mapped to their real-
world equivalents, with linear velocities scaled to a maximum
of 25.0 cm/s and angular velocities to a maximum of 90.0°/s.
This scheme allows for a comprehensive range of movement
and orientation adjustments, giving the agent the flexibility
to develop sophisticated strategies for peg insertion.

Reward Function: We incentivize the agent’s learning
process through a dense reward function that provides con-
tinuous feedback on the agent’s actions. It integrates the
positional and angular distance based on the transformation
from the bottom of the peg to the bottom of the hole They, .
The positional component of the reward is determined by
the Euclidean distance between these two frames, and the
orientation component is calculated as the norm of the

difference between the current and the target rotation matrix
of the peg that would align the peg correctly with the
hole. The reward function assigns a weight of 0.8 to the
positional component and 0.2 to the orientation component
to emphasize the prioritization of bringing the peg close to
the hole before fine-tuning its orientation for insertion.

The computation of the reward is relative to the initial
pose of the peg at the start of each episode, where a positive
reward is granted for actions that reduce the distance up to a
maximum cumulative reward of 1.0. Similarly, a negative
reward is returned for actions that increase the distance.
Furthermore, a fixed negative reward of —1.0 is granted
in cases where the peg moves below the hole’s mounting
surface in order to prevent the agent from attempting to insert
the peg from the incorrect side. The episode is terminated
in both events when the peg is successfully inserted into
the hole or when the peg moves below the hole’s mounting
surface. This reward function plays an important role in
guiding the RL agent’s learning process towards successful
peg insertion.

B. Procedural Generation of Assembly Modules

The procedural generation of assembly modules is a key
component of our approach in providing a diverse set of
training scenarios that expose the RL agents to a wide range
of different experiences. This diversity is crucial for enhanc-
ing the generalization capabilities of the agents, preparing
them for the unpredictable conditions of space environments.
Analogous to our previous approach for generating procedu-
ral lunar terrains and rocks [23], we employ Blender [24]
with its Geometry Nodes feature to create pipelines that
enable the dynamic creation of a nearly infinite variety of
peg-in-hole modules, each with unique configurations of pegs
and corresponding holes.

The pipelines are based on the systematic creation and
transformation of mesh geometry through parametric op-
erations, allowing for the generation of a wide range of
peg and hole geometries. The initial shape of each peg is
determined by its horizontal cross-section, which can range
from a simple polygon to a circle, depending on the number
of specified vertices. This cross-section is configurable both
in its circumradius and aspect ratio along any axis while
maintaining convexity across all variations. The 2D cross-
sections are extruded to form 3D pegs with a configurable
height, where some pegs can be tapered down by downscal-
ing the cross-section towards their bottom, further enhancing
the diversity of the pegs. The holes are derived from their
corresponding peg geometries on top of a 15x15 cm flat
square module with a configurable depth of each hole. The
reconfigurability also extends to the 2D position and 3D
orientation of the holes, with the latter necessitating the
peg to be inserted at a potentially non-perpendicular angle
relative to the module’s surface. Likewise, the clearance
between the peg and the hole is adjustable, which we fixate
to 1.0 mm as per Section III.

Rather than manually specifying all the parameters for
each generated peg-in-hole module pair, we randomize the



generation process to create a broad spectrum of peg-in-hole
modules. Each parameter is sampled from a uniform distri-
bution within a specified range, ensuring that the generated
modules exhibit a variety of characteristics within the defined
constraints. The configuration selected during our experimen-
tal evaluation is detailed in Table I, with samples of the
corresponding procedurally generated peg-in-hole modules
shown in Fig. 3. The resulting pegs and holes, with their
randomized characteristics, contribute to a robust training
environment that fosters the generalization capabilities of
our agents. Moreover, the design of these modules facilitates
their direct translation into physical models through additive
manufacturing, exemplified by 3D printing.

TABLE I
THE PARAMETER CONFIGURATION FOR THE PROCEDURAL
GENERATION OF DIVERSE PEG-IN-HOLE MODULES

Parameter Range

Peg cross-section vertices 75%3 -8
25% 32

Peg cross-section circumradius 1.0-3.0cm
Peg cross-section aspect ratio 0.25-1.0
Peg height 2.5 -15.0 cm
Peg tapering 0.0 — 25.0%
Hole depth (fraction of peg height) 40.0 — 80.0%
Hole orientation —15.0 - 15.0°
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Fig. 3. Ten samples of the procedurally generated peg-in-hole modules,
illustrating the diversity of the peg and hole geometries.

C. Simulation Environment

Our simulation environment is built on top of NVIDIA
Omniverse [25] to provide a scalable and realistic platform
for training and evaluating RL agents. This selection is moti-
vated by its high-fidelity physics engine that supports Signed
Distance Field collision checking [26], which provides stable
and accurate simulations of contact-rich interactions found in
the peg-in-hole assembly tasks. Furthermore, the capability
to simulate a vast array of assembly scenarios in parallel is
instrumental for the agents to efficiently collect a wide range
of experiences to enhance their generalization capabilities.
The environment is shown in Fig. 1, with several peg-in-
hole modules being simulated in parallel.

The simulation environment is populated with a config-
urable number of unique procedurally generated peg-in-hole
modules, where each module is treated as an independent
environment worker. The agents interact with these modules
through the observations and actions defined in Section I'V-A.
At the same time, the environment provides the correspond-
ing rewards and terminates the episodes based on the defined

criteria to indicate success or failure. Our agents operate with
a common control frequency of 50 Hz while the physics
scene is updated at 200 Hz to maintain a high level of
fidelity in the simulation. The motion of each simulated peg
is maintained through a PD controller that tracks the target
velocities provided by the agents, ensuring that the pegs
move smoothly and responsively. The modules with holes
are static, and the effect of gravity on the pegs is disabled,
which mimics the conditions of a secure grasp by a robotic
manipulator mounted on the same rigid body as the module.
We model the peg-in-hole assembly task as an episodic
problem, with each episode terminated after a maximum
of 500 timesteps, equalling 10 s. This duration is selected
to ensure that the agents have sufficient time to complete
the assembly task while maintaining a balance between the
training efficiency and the computational cost of the simula-
tions. At the beginning of each episode, the pegs are spawned
at uniformly sampled random positions and orientations
within an area of 50x50 cm above their corresponding holes.
Similarly, the physical properties of the materials used in
each peg-in-hole module pair, such as friction and restitution
coefficients, are also randomized at the start of each episode.
This variability further challenges the agents via the process
of domain randomization, encouraging them to adapt their
strategies to different scenarios that mirror the diversity of
conditions they would encounter in the actual task.

V. EXPERIMENTAL RESULTS

The experimental evaluation focuses on assessing the
effectiveness of our approach for autonomous peg-in-hole
assembly, with a particular emphasis on the generalization
capabilities of RL agents across a spectrum of novel sce-
narios. This section outlines the evaluation methodology and
the key findings from our experiments.

A. Evaluated Reinforcement Learning Algorithms

We extend our evaluation to three distinct RL algorithms,
each representing a different approach within the spectrum
of RL methodologies.

Proximal Policy Optimization (PPO) [27] is a model-
free on-policy algorithm based on policy gradients optimized
through a clipped surrogate objective to ensure stable policy
updates. It has gained widespread adoption due to its robust
performance across various domains, including continuous
control in robotics.

Soft Actor-Critic (SAC) [28] is a model-free off-policy
algorithm that employs an actor-critic framework with en-
tropy regularization to encourage exploration. It has gained
significant attention due to its performance in continuous
action spaces.

DreamerV3 [29] is a model-based algorithm that concur-
rently learns a world model and employs this model’s latent
representation with a recurrent state to generate abstract
sequences that are then used to optimize actor and critic
networks. It has demonstrated a capacity for solving various
tasks in diverse domains, including robotic manipulation.



The rationale behind evaluating agents trained using these
three algorithms is to explore the spectrum of RL method-
ologies in the context of the peg-in-hole assembly task. By
comparing these approaches, we aim to uncover insights into
their respective strengths and weaknesses while also gaining
a better understanding of the task itself.

We also investigate the effect of temporal dependencies
on the learning process due to the POMDP nature of our
task formulation. To this end, we introduce two additional
variants of agents, namely PPO-STACK and SAC-STACK,
incorporating observation stacking [30] with a length of 10
to provide the agents with a history of observations that can
enable them to infer unobserved states, such as the geometry
and material properties of the peg and hole. DreamerV3
inherently incorporates a recurrent state in its world model
and thus does not require an additional variant to capture
temporal dependencies.

B. Training Process

We employ our simulation environment with 1024 parallel
workers and an equal number of unique peg-in-hole modules
to train all five variants of the RL agents. These workers are
synchronized to interact with the modules and collect expe-
rience in parallel, while a single learner processes updates
to the policy networks based on the collected experience.
The list of relevant non-default hyperparameters for each
algorithm used during the training is detailed in Table II.
All agents are trained for a total of 100 million steps,
which corresponds to approximately 23 days of simulated
experience. We integrate a simple curriculum strategy that
spans the first 50 million steps and linearly increases the
uniformly sampled range of initial positional and angular
distance of the peg from the hole entrance to facilitate the
learning process through simplified exploration, after which
full randomization of initial conditions is employed.

TABLE I
SELECTED HYPERPARAMETERS FOR THE TRAINING OF AGENTS

Parameter PPO SAC DreamerV3
Architecture (all networks) — [512,512]  [512,512] [512,512]
Learning rate 3.1074 8-107° World: 1074 5

Actor-Critic: 3 -107°

Discount factor 0.997 0.997 0.997

Batch size 8192 4096 16, Length: 64
Horizon 128 N/A Imagination: 25
Entropy coefficient 3.10~4 3.10~4 3-10~4

Num. epochs / train ratio 8 8 8

Replay buffer size N/A 2-107 2-107

Replay buffer warm-up N/A 5-10° 5-10°

All variants of agents are trained from scratch with three
distinct pseudo-random seeds to ensure the statistical sig-
nificance of the results. The learning curves of the agents
during the training process are presented in Fig. 4, illustrating
the mean success rate of the agents over the course of their
training. It is evident that both SAC and DreamerV3 exhibit a
significantly faster convergence rate compared to PPO. Nei-
ther of the three PPO runs was able to achieve a successful
peg insertion, while only one of the three PPO-STACK runs
was able to explore the reward associated with successful

peg insertion and learn to exploit it at a steady rate. Instead,
all other PPO and PPO-STACK runs eventually converged
to a local minimum where they would approach and hover
over the hole entrance without attempting to insert the peg.
In contrast, both variants of SAC were able to achieve a
considerable success rate, with SAC-STACK showing a more
stable learning curve and a considerably higher success rate
compared to SAC. DreamerV3 also demonstrated its sample
efficiency by achieving a high success rate within the first
ten million steps and then steadily improving throughout the
rest of the training process.

PPO —PPO-STACK SAC SAC-STACK —— DreamerV3
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Fig. 4. Learning curves of agents during the training, depicting their mean
success rate with the shaded areas representing the standard deviation across
three random seeds. The data is sourced directly from the training rollouts
of agents, in which they follow their exploratory policies.

C. Evaluation on Novel Peg-in-Hole Modules

To evaluate the generalization capabilities of the trained
agents, we assess their performance on two distinct sets of
peg-in-hole modules. The first set consists of 1024 modules
that were used during the training phase, while the second set
consists of another 1024 peg-in-hole modules that are distinct
from those encountered during the training phase. For each
agent variant, we consider the final policy networks of all
three seeds and evaluate their performance over the course
of 10 attempts per module, resulting in a total of 30720
evaluated episodes for each agent variant on each set of
peg-in-hole modules. Similar to the training phase, noise is
applied to both the observations and actions of the agents to
simulate the inherent uncertainties in perception and control
systems. Furthermore, we also evaluate a random agent with
a uniform distribution of actions to serve as an indicator of
the inherent exploration challenges of the task.

TABLE III
SUCCESS RATE OF AGENTS DURING THE EVALUATION

Agent Training Set  Test Set
Random 0.00% 0.00%
PPO 0.00% 0.00%
PPO-STACK 20.52% 20.10%
SAC 68.53% 49.73%
SAC-STACK 82.97% 54.70%
DreamerV3 94.32% 93.94%




The success rates are summarized in Table III. With our
POMDP formulation and the inherent challenges of the peg-
in-hole task, PPO agents were unable to achieve successful
peg insertion in either of the evaluated sets. The PPO-STACK
variant, which incorporates observation stacking, was able
to achieve a modest success rate of 20.52% on the training
set, with a slightly worse performance on the test set. Both
SAC and SAC-STACK agents demonstrated a high success
rate of 68.53% and 82.97% on the training set, respectively.
However, their performance dropped significantly on the
test set, with the SAC-STACK variant achieving a higher
success rate of 54.70%. DreamerV3 agents achieved the
highest success rate of 94.32% on the training set, and their
performance remained high at 93.94% on the test set.

In addition to the success rates, we also analyze the
response time of the agents to provide further insights into
their efficiency. The distribution of the time until their
successful completion on the test set is visualized in Fig. 5.
DreamerV3 exhibits the fastest response with a median time
until successful completion of only 1.60 s, followed by SAC-
STACK with a median time of 2.22 s. This result signifies
that agents are capable of efficiently completing the task
without requiring any additional objectives or constraints.
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Fig. 5. Distribution of the time until successful completion of novel peg-in-
hole modules. The dashed lines represent the median time until completion.

D. Assembly Task Sequence

To further evaluate the applicability of our approach, we
demonstrate the generalization of the trained agents to a
novel simulated scenario that reflects the challenges of real-
world assembly tasks. As illustrated in Fig. 6, we consider a
modular assembly sequence consisting of a profile insertion
followed by a bolt insertion securing the profile in place,
which is representative of the type of assembly tasks that
will be encountered in space. In this demonstration, we
employ the best-performing DreamerV3 agent and further
challenge its adaptability by reducing the clearance between
the profile and its hole to 0.25 mm, which is 25% of the
clearance that the agent encountered during training. The
agent is able to successfully complete both steps of the
assembly task sequence despite the increased difficulty and
novel scenario. For the profile insertion part of the sequence,
the agent attains a success rate of 87.64% (n = 10240), with a

median time until successful completion of 3.81 s. This result
demonstrates the adaptability of the trained agents to novel
assembly tasks and highlights the potential of our approach
for addressing the challenges of space robotics.

e éo[é

Step 1: Profile insertion Step 2: Bolt insertion

Fig. 6. Successful demonstration of the adaptability of our agents to a
novel peg-in-hole assembly task. The task sequence consists of inserting a
profile into its corresponding hole, followed by a bolt securing it in place.

VI. DISCUSSION

The results of our experimental evaluation provide valu-
able insights into the advancements and challenges of robot
learning research within the context of autonomous robotic
assembly. Our findings highlight the significant contribution
of diverse training scenarios to the generalization capabilities
of RL agents, as well as the impact of algorithmic choices
on the learning process.

The evaluation of RL agents on novel peg-in-hole modules
has revealed a significant impact of the training methodology
on the generalization capabilities of agents. DreamerV3
achieved the highest success rate on both the training and
test sets, with only a 0.38% drop in performance when
exposed to novel scenarios. This result signifies the robust
generalization capabilities of DreamerV3 and the potential of
model-based RL in addressing the challenges of autonomous
robotic manipulation in space. On the other hand, PPO,
with its stable model-free on-policy learning process, failed
to systematically explore the state space and discover a
successful policy, highlighting the inherent challenges of the
task for this methodology.

The POMDP nature of the peg-in-hole assembly task
emphasizes the critical role of temporal dependencies in
the learning process. The enhanced performance of agents
with observation stacking highlights the importance of in-
corporating temporal context in the broader field of robot
learning in order to enhance the problem-solving capabilities
of intelligent agents. The incorporation of temporal depen-
dencies with even longer horizons can be facilitated through
recurrent policies or even world models with a recurrent
state, as demonstrated by DreamerV3. This approach could
further enhance the generalization capabilities of RL agents
and enable them to adapt to a wider range of novel scenarios.

Alongside the selection of a suitable RL algorithm, the
diversity of training scenarios is instrumental in enhancing
the generalization capabilities of RL agents. The utilization



of procedurally generated peg-in-hole modules contributed
to the significant performance of the trained agents in novel
scenarios. In particular, the transfer of a DreamerV3 agent to
a novel assembly task sequence of higher complexity resulted
in a mere 6.68% drop in success rate compared to the training
set. This sets a precedent for the potential of this approach in
addressing the challenges of space robotics, where agents are
required to adapt to a wide range of assembly tasks despite
the unpredictability of space.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced an approach for learning
autonomous peg-in-hole assembly with a focus on enhancing
the generalization capabilities of RL agents. The integration
of procedural generation and domain randomization in a
highly parallelized simulation environment has been instru-
mental in training agents capable of generalizing to a wide
range of novel scenarios. The comparative analysis of differ-
ent RL algorithms has provided insights into their trade-offs,
while the impact of temporal dependencies on the learning
process has been explored. Furthermore, the adaptability of
our agents was demonstrated on novel assembly sequences,
showcasing the potential of the approach for space robotics.

Looking forward, the integration of procedural generation
with RL holds promise for addressing the challenges of
robotics in the unpredictable domain of space. Future re-
search directions could explore the generation of procedural
modules for more complex assembly tasks and sequences.
Moreover, the adoption of this approach to other environ-
ments and the incorporation of visual observations could
enhance the overall task performance and contribute to the
development of more adaptable autonomous systems. Future
efforts should also explore the impact of procedural gener-
ation and domain randomization on the transfer of trained
agents to real-world assembly scenarios, with an emphasis
on the safety and robustness of the learned policies.

In conclusion, this work advances the understanding of the
generalization capabilities of RL agents in contact-rich ma-
nipulation tasks, with the potential to advance the assembly
and maintenance of in-space infrastructure to enable more
ambitious space missions and a sustainable human presence
beyond Earth.
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