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ABSTRACT The emergence of Multiple-Input Multiple-Output (MIMO) millimeter-wave (mmWave) radar
sensors has prompted interest in indoor sensing applications, including human detection, vital signs mon-
itoring, and real-time tracking in crowded environments. These sensors, equipped with multiple antenna
elements, offer high angular resolution, often referred to as imaging radars for their capability to detect
high-resolution point clouds. Employing radar systems with high-angular resolution in occlusion-prone
scenarios often results in sparse signal returns in range profiles. In extreme cases, only one target return
may be observed, as the resolution grid size becomes significantly smaller than the targets, causing portions
of the targets to consistently occupy the full area of a test cell. Leveraging this structure, we propose two
detectors to enhance the detection of non-occluded targets in such scenarios, thereby providing accurate
high-resolution point clouds. The first method employs multiple hypothesis testing over each range profile
where the range cells within are considered mutually occluding. The second is formulated based on binary
hypothesis testing for each cell, considering the distribution of the signal in the other cells within the same
range profile. Numerical analysis demonstrates the superior performance of the latter method over both the
classic detection and the former method, especially in low Signal-to-Noise Ratio (SNR) scenarios. Our
work showcases the potential of occlusion-informed detection in imaging radars to improve the detection
probability of non-occluded targets and reduce false alarms in challenging indoor environments.

INDEX TERMS Millimeter-wave radar, MIMO sensors, occlusion-informed, detection, indoor sensing,

hypothesis testing.

I. INTRODUCTION

Over the past few years, there has been a surge of interest
in mmWave MIMO radar sensors, especially for their appli-
cations in indoor sensing. These applications include tasks
such as human detection and activity recognition, monitoring
vital signs, fall detection, and real-time tracking of multiple
individuals simultaneously, as demonstrated in [1], [2], [3],
and [4], respectively. Advancements in mmWave sensor man-
ufacturing technology have made such tasks possible. This
development has led to the production of affordable single-
chip radar sensors incorporating a large number of antenna
elements, facilitating high angular resolution and resulting in
the emergence of a category of imaging radars (see, for exam-
ple, [5], [6]). Moreover, the optimization of various MIMO

waveforms has enabled the attainment of enhanced angular
performance which is an essential feature for many of the
aforementioned tasks. Examples of different proposed MIMO
waveforms are presented in [7], [8], [9], [10].

When monitoring human targets in indoor environments,
the detection performance, preferably of the full body, holds
paramount importance for various applications. However, in
typical crowded indoor settings, the likelihood of occluding
human targets or substantial portions of their bodies is quite
high, posing a significant challenge for achieving satisfactory
performance across all these applications [11], [12], [13],
[14].

In the realm of automotive perception, occlusion reme-
dies involve multi-modal fusion, where occlusion scenarios
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are modeled by combining radar measurements with other
sensors like stereo cameras, as seen in [15], or LIDAR, as
demonstrated in [16]. On the other hand, within indoor appli-
cations, several studies have proposed distributed radar sensor
architectures that enhance detection capabilities of occluded
targets significantly through the exploitation of spatial diver-
sity [17], [18], [19], [20].

While distributed sensors are essential to detect occluded
targets, further measures can be taken to combat occlusion. In
the context of tracking multiple individuals with distributed
sensors, occlusion events concerning one sensor can lead to
the division of a single track into multiple tracks. A solution,
proposed in [21], [22], involves overcoming this issue by fus-
ing track information instead of detection points in the fusion
center. On another note, to better account for the capture of the
Doppler falling signatures, while limiting occlusion events,
the authors in [23] analyzed different sensor placements and
showed that wall-mounting of distributed sensors at a low
level is favorable to optimize the extraction of both range and
micro-Doppler information necessary to detect falling events.
While the placement of sensors to minimize occlusion is also
considered by the authors in [11], their proposed gait recogni-
tion classifier is adjusted to make decisions based on features
expected to be least affected by the occlusion. Similarly,
in [12], the authors employed an architecture featuring sep-
arate transmitting and receiving antennas for vital sign moni-
toring. Using this bi-static setup, they determined the angular
and distance separation of multiple targets to minimize mutual
occlusion, resulting in effective vital sign monitoring with the
transmission of a single beam or steered multiple beams.

The studies mentioned above effectively tackle detection
limitations arising from occlusion and propose methods to
generate high-resolution detection point clouds. However, to
the best of the authors’ knowledge, no study explicitly lever-
ages the structure of individual range profile signals under oc-
clusion in the hypothesis testing formulation of the detection
problem. This structure is inherently sparse—particularly when
utilizing high-angular resolution systems—and incorporating it
could significantly enhance the detection capabilities of non-
occluded targets, as occlusion would be evident across each
angular bin of the test grid. A significant body of literature ex-
ists on exploiting scene sparsity in radar image reconstruction
(see, for example, [24], [25], [26], [27], [28], [29], [30], [31]),
which is often motivated by the typical low number of targets
in the scene in addition to the properties of electromagnetic
backscattering, including occlusion phenomenon [24], [26].
However, these methods rely on compressive sensing theory
and involve solving inverse problems which usually require
hyperparameter tuning and lead to iterative algorithms that
are computationally and time expensive, rendering them un-
suitable for real-time applications in many cases [32].

In this paper, we demonstrate that leveraging the sparse
structure in a hypothesis testing-based formulation provides
a statistical detector that enhances the detection performance
for non-occluded targets observed by a single sensor, result-
ing in accurate high-resolution point clouds. This improved
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detection at the sensor level would aggregate across a network
of sensors, leading to an overall enhancement in detection at
a low computational cost. We capitalize on the phenomenon
that in a sensing system susceptible to occlusion, conducting
detection over a dense angular grid yields limited return re-
sponses across multiple range cells within the same angular
bin. Consequently, we design detectors to enhance the proba-
bility of detection versus false alarms for fully observed target
areas. These detectors assume complete occupancy of an an-
gular resolution cell, implying full occlusion of any potential
object behind the occupied cell within each range profile. This
assumption can be justified considering system parameters, as
will be demonstrated in Section II.

Accordingly, leveraging the sparse structure of range pro-
files, we introduce two detectors based on distinct formula-
tions of hypothesis testing. The first approach utilizes multiple
hypothesis testing, framing the detection problem to closely
match the full occlusion scenario. This involves deciding that
the presence of a target will be only in one cell of each range
profile. On the other hand, the second approach is constructed
using binary hypothesis testing. Here, the alternative and null
hypotheses for each cell are established with consideration
for the likelihood of the signal in the remaining cells within
the same group of mutually occluding cells. For each of these
formulations, we derive both Maximum A Posteriori (MAP)
and Maximum Likelihood (ML) detectors. The MAP detector
assumes prior knowledge of the probability model and values
associated with targets’ presence in different cells and utilizes
this information in decision-making. On the other hand, the
ML detector lacks such knowledge and assumes equal proba-
bilities of targets arriving in the group of mutually occluding
cells. While the multiple hypothesis formulation represents
the straightforward, intuitive method, the binary formulation
exhibits superior performance, as will be demonstrated in
our numerical simulations. The contributions of this work are
summarized as follows:

1) Identification and modeling of range profile structure
under occlusion, utilizing probabilistic models of target
presence within the detection grid cells.

2) Development of corresponding detectors using hypoth-
esis testing, accommodating both the knowledge of the
generating probabilistic models and the lack thereof.

3) Performance evaluation of the proposed detectors,
demonstrated through Receiver Operating Character-
istics (ROC) curves obtained numerically via Monte
Carlo simulations. These simulations are based on sig-
nal generation according to the defined models and the
detectors are evaluated versus model parameters, SNR
values, and the number of cells in a range profile.

4) Evaluation of the proposed detectors on scenario-based
simulated data, where a realistic indoor scenario is mod-
eled in 3D, and the radar signal is generated using
ray-tracing simulations.

Notations: Throughout the paper, lowercase bold font is

used to denote vectors. Iy represents the identity matrix of
size N x N, and Oy is a vector of all zeros of size N x 1. The
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FIGURE 1. 2D Range-Azimuth grid map illustrating the sparsity of range profiles relative to targets’ size in an occlusion-prone sensing environment. Two
targets in the scene, with one occluding part of the other, are observed by two sensors with different angular resolutions, depicted by the corresponding
angular grid sizes. Left: Sensor with low angular resolution (36, ) relative to targets’ size. Right: Sensor with high angular resolution (56, = 0.5 §6;)

relative to targets’ size.

superscripts ()7 and (.) denote, respectively, the transpose
and the complex conjugate transpose of a vector or a matrix.
The operators |.|, ®, N, and dez(.) are used for the absolute
value operator, Kronecker product, the real part of a complex
value, and the matrix determinant, respectively. With p(x), we
denote the probability density function of an observation x
from a random variable X, where the random variable sub-
script is omitted for simplicity. We define the set of natural
numbers from 1 to N as {N} ={1,2, ..., N}. Accordingly,
a vector with subscript {N}, e.g., X(y}, denotes the stacked
vectors [x], x, ..., x{]7. To shorten equations, we contract
the exponential component of a Gaussian probability density

function (PDF) for a random vector x with a mean g and vari-

2

e (x—
ance o~ using the notation e 2 (X, ft) = exp(%).

Il. SYSTEM MODEL

In this section, we begin by demonstrating the sparsity of
the range profile in high-resolution radars affected by occlu-
sion phenomena. Next, we present the signal model and the
probability of receiving backscattered returns from targets in
different cells of a range profile, based on the probability of
target presence in these cells.

A. OCCLUSIONS OVER RANGE PROFILES

As mentioned in the introduction, we leverage the phe-
nomenon that in a high-angular resolution sensing system
prone to occlusion, a target may fully occupy an angular
resolution cell, occluding any object behind in the same range
profile. Under this assumption, the processed radar signal over
a dense angular grid should contain few returns across mul-
tiple range cells within the same angular bin. This behavior
can be anticipated with knowledge of system parameters such
as angular resolution relative to target size and transmission
frequency. Fig. 1 presents a schematic illustrating the rela-
tionship between system parameters and the sparsity of range
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profiles in sensing under occlusion. The figure depicts a 2D
elevation cut of a range-angle detection grid map from two
sensors. The sensor on the right is assumed to have double
the number of antenna elements, resulting in half the angular
resolution compared to the sensor on the left. Both sensors
observe the same scene and operate at the same frequency, in-
dicating that the transmitted waves from both possess identical
scattering/penetration characteristics. As a result, the occlu-
sion in the scene will be consistent for both sensors. However,
due to the higher angular resolution of the sensor on the right,
detection tests are conducted on a finer grid. Consequently, the
associated returns over a specific range profile are expected to
be more sparse since targets are dispersed over more angular
bins. The figure highlights the angular bins containing targets
under each system, with their ideal range profiles depicted
below the corresponding grid map.

The sparsity of range profiles arises from both the occlusion
phenomenon and the size of the angular grid relative to the
target size. If occlusion does not occur, all targets will induce
a response in the range profile of each angular bin. Similarly,
if the sensor’s angular resolution does not permit detection
cells significantly smaller than the target size, a single range
profile would contain multiple responses from targets over
a wider angle range, even if parts are occluded. Ultimately,
when using an imaging radar, angular bins are anticipated to
be fully occupied by a portion of the target at the respective
location, leading to sparse range profiles, as they consist of a
group of mutually occluding cells.

Similarly, Fig. 2 illustrates the same concept in an indoor
scenario involving human targets, where detection is con-
ducted over a 3D detection grid map. The figure highlights one
range profile consisting of mutually occluding cells situated
on the same azimuth and elevation angle. The presence of
a target (or a portion thereof) in one of these cells closer to
the sensor would obstruct targets that may exist in any other
cell within the same group. In such instances, the reception of
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FIGURE 2. 3D Demonstration of a full occlusion scenario over a range profile in an indoor environment observed with a mmWave sensor featuring high
angular resolution. Left: Layout of the scene with the detection grid showing the sensor’s view and highlighted group of mutually occluding cells. Middle:
Corresponding radar cube. Right: Expected and actual signal returns in the group of highlighted cells.

echoes of the transmitted wave from potential targets in those
cells is physically impeded. This is the scenario we consider
in this paper and refer to as “full occlusion” throughout the

paper.

B. SIGNAL MODEL

We consider a mmWave MIMO radar sensor having N, and
N, transmitting and receiving antenna elements, respectively.
Assume that ry = [xg, ys, zs]" denotes the absolute position of
the sensor, where x, y, and z represent the absolute Cartesian
coordinates. In this case, a target with absolute position r; =
[xz, s, 7] will have a relative distance R,, azimuth 6;, and
elevation ¢; with respect to the sensor. Following appropriate
range processing (either through fast Fourier transform (FFT)
or matched filter), the target processed signal at the range cell—
specifically the Cell Under Test (CUT)—corresponding to R;
can be expressed as:

X, = oS0, ) +we CNiaNeax1, (D

2 .
Here, oy = ‘/% represents the amplitude of the

reflected signal, encompassing path loss and target Radar
Cross Section (RCS), where X denotes the transmitted signal’s
wavelength, py, is the transmit power, G, and G,, denote
the transmit and receive antenna gains, and o; is the RCS of
the target at the CUT. Additionally, w denotes the receiver
thermal noise, assumed to be a complex Gaussian noise w ~
CN(0, 021). Moreover, the signal steering vector is,

w
s, ) = a6, ) @ b6, Pr), ()
where the spatial transmit and receive steering vectors are
defined respectively as
oK (0.9
o JK 0.9

L GRS
LG

b0, ¢) = | :

o /K" (0.9)r5 N,

a0, ¢) =

eIk (0.9)rs N,
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and k@@, ¢) = 2T”[cose cos ¢, sinfcos¢, sing]” is the
wave-number vector with A being the wavelength of the trans-
mitted wave, 6 and ¢ are the azimuth and elevation angles,
respectively, and ry ,,, and r ,, are the locations of the radar
transmit and receive antenna elements, respectively.

Since our focus is on designing a detector for scenarios in-
volving full occlusion, it is crucial to model the probability of
signal returns at each cell under such conditions. These proba-
bilities can be derived by establishing a probability model for
the presence of targets in each cell. Consequently, we outline
the essential probability components required for the subse-
quent formulation of the problem. We assume each range
profile encompasses a group of N mutually occluding cells.
We denote P as the probability of the presence of a target at
the k' cell, wherek =1, ..., N, representing the target space
probability. Accordingly, the probability of having no target
present at any of the N cells is given by

N

P0=]_[(1—Pk). (3)

k=1

Under the full occlusion assumption over a range profile,
among the potential targets in the group of N cells, only one
return will be reflected to the radar sensor. As a result, we can
express the signal space probabilities of receiving returns at a
specific cell based on the probabilities in the target space. Let
pr denote the probability of receiving a return from a target
located at the k™ cell, then

po =Py
p1 =P
. (€]

o =PI (—P)

where pg represents the probability of having no return in any
of the cells, and ZkN=0 pr = 1. Another useful probability in
subsequent calculations is the probability of having a signal
return from the k" cell given that a certain n'™ cell, especially
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the CUT, has no target return. Denoting this probability as
Pk/ii» WE can compute it using Bayes’ theorem

Pii/k Pk
Pii

P = &)

Since pz = 1 — py, and by occlusion assumption pz/x = 1,
the probabilities of having a signal return at the k" cell given
that a certain ™ cell has no return is given by

Prjn = . Vkone(NLk#n. (©6)

Pk
]_pn

The aforementioned probabilities in the signal space will
be incorporated into the design of the detectors and the evalu-
ation of their performance in the next sections.

I1Il. OCCLUSION-INFORMED DETECTOR DESIGN

In this section, we will present two formulations of the detec-
tion problem under the assumption of full occlusion across a
group of cells. First, we will frame the problem as a multiple-
hypothesis testing scenario, in line with our assumption that
a single target return is expected in all cells. Second, we will
approach the problem as a binary hypothesis testing situation
at the CUT, taking into account the signal distribution in the
other cells. In both cases, we will develop the MAP and
ML detectors. The MAP detector assumes that knowledge
of the probability model and values is available and utilizes
this information for detection. In contrast, the ML detector
lacks such knowledge and assumes equal probabilities of
events [33].

A. MULTIPLE HYPOTHESIS TESTING DESIGN

Casting the problem as an M-ary detection problem is sup-
posed to be a closer match under the assumption of full
occlusion where we expect a single echo return in one of
N cells in the range profile. Accordingly, we consider M =
N + 1 hypotheses over the entire group of cells modeled as

Hi : Xvy = Uy +Wvy Yk e {N} 7

where x{yy is the stacked vector of all the processed signals at
the group of N cells, wyy is a stacked vector of the noise, and
It 1s a vector of size LN x 1 defined as

me= [0 ...sl...071" Vie(N)

where L = Ny, N,,. The construction of pu; in (8) for k % 0
ensures that it contains zero elements everywhere except for
elements with indices in the range of [L(k — 1) 4 1, Lk] that
are populated by s;, where s, = s, and s is the normalized
steering vector towards the k™ cell. Please note that we have
dropped the dependence on 6; and ¢. This is due to our
assumption that the group of mutually occluding cells lies at
the same azimuth and elevation angle.

By considering the signal space probabilities defined in
(4), the optimum decision rule which minimizes the average
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error probability is the one that decides that x(y; is generated
according to Hy if px p(Xnvy | Hi) = mjax{,oj p(xvyIH )} [33].

Recalling the Gaussian PDF notation e_2(x, i), the hy-
potheses formulation in (7) leads to the following likelihood:

P (xny [ He) = Ceq2 (Xinys 1) )

where ¢ = 1/(w"Ndet(6211y)). This likelihood can be sim-
plified based on the signal model (1) as

p(xpvy | He)
Ceq2 (X{N}, 0, (v—1))
{eq2 (xgy Ov—1))
mrcHw 1 H
X exp <M) for k € {N}

o5

fork =0
(10)

Accordingly, the optimum M-ary MAP detector under full
occlusion formulation is the following

Decide Hy if [ " = max{T}4%} v j € ({N}, 0}
J
where

MAP
T

= pj P(xm|H)) /eoz (i) OLv-n) - (11)

The test (11) assumes the knowledge of the mean of signals
S; = as where is s is the known steering vector and « is the
target’s RCS, often unknown. In this context, the correspond-
ing Generalized Likelihood Ratio Test (GLRT) detector is
used wherein &; is estimated for each cell through Maximum
Likelihood Estimation (MLE) of the likelihood functions un-
der each hypothesis ;. The estimation results in &; = sfx j
leading to §; = sf'x ;s and a corresponding GLRT detector
F?/[AP =pj exp(lstj|2/Uv2V) forj=1,...,N.

The ML equivalent detector is obtained by assuming equal
probabilities of signal returns at all cells, namely, p; =
pi Vj,i € {N}, j #i. This simply translates to the following
decision rule

Decide H; if I} = max{T'}'"} ¥V j € {{N}, 0}
J

where

ryLz{ ! g=10 (12)

exp (|SHXj|2/Uv2V) Jj € {N}.

Note that in both (11) and (12), the noise power av% is
assumed to be known, which is typically estimated using
secondary cells in practice. Moreover, from (12), it is evident
that the resulting ML detector is equivalent to implementing
a classic square law detector on the signal after angle match
filtering at each cell. It then decides on the target presence at
the cell with the maximum value of the test among all the cells
related to the same range profile. Consequently, to maintain a
certain probability of false alarms, the maximum value of the
tests can be then compared against a threshold to decide either
target presence in the corresponding cell or Hy.
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Moreover, while these detectors can enhance the detection
performance under the full occlusion model, deciding strictly
for a single hypothesis over the entire group of cells inherently
imposes an upper bound on the probability of detection less
than unity regardless of the probability of false alarms that
can be tolerated. This is because a wrong decision here does
not mean only a false alarm, but also a missed detection. The
upper bound on the probability of detection of the ML version
(12) is derived analytically in Appendix A and given by (27).
From now on, we will refer to these detectors as the MAX
detectors.

B. BINARY HYPOTHESIS TESTING DESIGN

In this section, we approach the detector design problem
through binary hypothesis testing, where tests are formulated
for each cell by considering the distribution of the processed
signal across all the N cells within the same range profile.
First, let us start by defining the simple binary hypothesis
without occlusion modeling for an arbitrary cell k. The range
processed signal under Ho and H; can be expressed as:

Hi o Xp = oS + Wy
1
{ Ho : X = Wi (13)
This formulation leads to the classical GLRT detector:
5" xi |2> [
exp ( Z . (14)
ox )

Now, we formulate the signal model under both hypotheses
given the assumption of full occlusion across the range profile
containing N cells. To account for signals from cells other
than the CUT, we introduce a su%oerscnpt n indicating the
index of the CUT. Specifically, H ") and 7—[ represent the
alternative and null hypotheses, respectlvely, When the n™ cell
is the CUT. Thus, the detection problem under occlusion can
be framed as testing the following hypotheses:

’Hi”) Xy =Sy + W, X =W)

Xp =W, Xp = W)

(OR)

(Xp =W, Xk =W, X; =5;+ W)
for j € (N} \ n, Vk € {N}\ {n, j}

Vke{N}\n
Vke {N}\n

’H(()") :

15)

The formulation above indicates that under the alternative
hypothesis, the CUT contains a signal due to the presence
of a target at that cell, while all the other N — 1 cells will
only contain noise. Conversely, under the null hypothesis, the
CUT contains only noise, while all the other cells may also
contain only noise, or at most one of them may contain a
target obstructing the signal of potential targets in other cells,
including the CUT.

To derive the detector based on the above formulation, we
need to express the likelihoods under each of the hypotheses.
Let x5 represent the stacked measurements of the signal
related to all cells other than the CUT, where {N} := {N} \ n,
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and the size of this set is N — 1. Therefore, the likelihood
under the alternative hypothesis can be formulated as follows:

() -

where wy, is the stacked vector of all (N — 1) vectors model-
ing the noise at the cells other than CUT distributed as wy, ~

CN(0, GV%IL(N,U). Consequently, (16) can be expressed as

(Xn =S, +Ww, X(yy = W{N}) s (16)

P (xalH”) = eg (urs) - e (xyzys Ouv-n)) (17

where ¢ = 1/(xNdet (621n)).
Similarly, the likelihood under the null hypothesis can be
expressed as:

(xnl’H(")) =p (xn =w, [X{N} =w (OR)
Xy = #1+w(OR)...

Xm) = py +W]). (18)
where p, is as defined in (8). The likelihood in (18) is the joint
probability density function of the vector x,, given it contains
noise only and the stacked vector x5, modeled as a Gaussian
mixture of signals with the different means u; weighted by
the probabilities of signal returns at the k' cell defined in (6).
Consequently, (18) can be written as:

P (xulH”) = tegy (% 00) - 5" pun et (g ) - (19
k=0
k#n

Using the likelihoods obtained in (16), and (18), we derive
the detector which is characterized by testing the likelihood
ratio A of the signal in the CUT given the signals of all other
N cells against a threshold 7 as follows:

P (x I’H,(")) H;” ) 0

Ay |xg5)) = ————%
(Xn|7'[(n)) (n)

By plugging (17) and (18) into (20), the ratio test

A (X, |X;y,) becomes

€52 (Xu, Sn) - €52 (X{N}, O v—1))

N
€52 (Xp, 0L) - ZEO Pr/i €0z (X))
n

A(Xn|X{N}) =

€52 (Xn. Sn) - €52 (x(7y Ov—1))

B €52 (Xn,8n) - €52 (X{m, 0Lv—1))

29 {s x,, ) —sts
exp (—‘{ . )::ZV} . ")

QR(sHx; ) —sH )
|::00/ﬁ + 2%1 Pk /ii €XP <W>:|
n

X

w
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20s, Xn}—S,, S
ex p(—‘ v ) ")

20 (st x ) —st
[Pom + 01 Pk eXp <—( L f,kz} E Sk))}
k#n w
(21

Accordingly, this test is the optimum MAP test given that
we know the probabilities oy and «,. Assuming the for-
mer are known, the latter can be estimated through MLE as
discussed in the previous section. By substituting the MLE
estimate in (21), the attained detector (20) is

MAP eXp(ls :;nl ) Hy
A (Xn|X{1V}) = st x; |2 2
posi + Zk 1 Pk/5 EXP ( - ) HYY

(22)

Note that in (22), we have assumed that the noise power Uv%

is known, which is typically estimated using secondary cells
in practice. The selection of cells suitable for noise estimation
can be further explored in an extended version of this work.

The corresponding ML detector can be obtained by assum-
ing equal probabilities of return at all cells, with oz Vk €
{N}, and is given by:

exp(ls X[ ) H
A X)) = = Hy 2 %)'7
N [1 + Zk 1exp<|s 4l )} Hy'
(23)

Accordingly, the resulting tests in (22) and (23) suggest
that the optimal detectors under the full occlusion assumption
correspond to the classic test performed at the CUT (13),
normalized by a weighted sum of the tests from other cells
within the same range profile.

The detectors derived in Sections III-A and III-B are specif-
ically designed for scenarios involving full occlusion. Unlike
a classical detector that considers only the signal in the CUT,
the proposed detectors also account for signals in other cells
across the entire range profile containing the CUT. This incurs
slightly more computational complexity. Assuming a constant
complexity for the exponential and squared law operators,
the classical detector performs O(N) comparisons against a
threshold for N cells. In contrast, the Max-ML detector (12)
performs a max operation and one comparison, resulting in
O(N + 1) complexity. The Binary-ML detector (23) involves
N additions for each cell plus one comparison and one di-
vision, leading to a complexity of O(N? + 2). This increase
in complexity is justified by the significantly higher detection
performance in full occlusion scenarios, as will be shown in
the numerical analysis.

IV. NUMERICAL ANALYSIS
In this section, we evaluate the performance of the proposed
detectors on two fronts. Firstly, we model the signal after the
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angle processing block as input to the detector, employing
the full occlusion model presented earlier. We demonstrate
the performance of the derived detectors through ROC curves
and compare them with the classic detector. Secondly, we
simulate a real indoor scenario observed with a Frequency
Modulated Continuous Wave (FMCW) system operating in
the mmWave band. This system is equipped with multiple
transmitting and receiving antennas operating in a Time Divi-
sion Multiplexing (TDM) scheme, thereby realizing a MIMO
radar system. Unlike the model-based case, scenario-based
simulations consider the complete standard signal processing
chain, starting from the reflected signal and concluding with
the detection stage. We then compare the output of the detec-
tors accordingly.

A. MODEL-BASED ROC ASSESSMENT

Here, we evaluate the proposed detectors by numerical anal-
ysis using Monte Carlo simulations. We demonstrate the
performance of these proposed detectors through ROC curves.
The detectors are implemented on a set of N test cells, as-
sumed to mutually occlude under a full occlusion scenario.
Given this assumption, signal returns are generated so that in
each realization, only one out of the N cells contains a target
return. The presence or absence of a return at each cell follows
a particular signal space probability model, derived from the
assumed probability model in the target space, as described in
(4). Throughout the various Monte Carlo realizations, two sets
of signals are generated to represent the null and alternative
hypotheses at a predefined CUT. Subsequently, the different
detectors are applied, and ROC curves are constructed by sort-
ing the test output relative to each hypothesis and calculating
the corresponding probability of false alarm and probability
of detection.

To illustrate the signal generation process based on a
specific probability model, Fig. 3 presents an example of
probabilities in the target space P (a) and signal space pj
(b) at each cell, along with the corresponding events of signal
returns under the null and alternative hypotheses in (c) and
(d), respectively. For enhanced visualization, consider this as
a simplified example, with a limited number of Monte Carlo
runs (Kyc = 10°) and a small range profile size of N = 32
cells. In this particular example, the probability model for
target presence follows a linearly increasing pattern, with the
lowest probability assigned to the cell closest to the sensor and
the highest to the farthest cell, set at 0.25. Additionally, CUT
is arbitrarily selected as cell index n = 23, indicated by a cross
in (a) and (b), and outlined by a red rectangle in (c) and (d).

As shown in the figure, the chosen probability model in
the target space leads to a higher probability of returns in the
signal space for cells located in the middle. In our analysis,
we considered two probability models additionally: one with
an equal probability of target presence at all cells and another
with a linearly decreasing model where the closest cell has the
highest probability of target presence. Under each probability
model, ranges of the maximum probability of the target’s
presence in a cell are evaluated.
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We evaluate the performance of the MAP and ML detectors
derived according to binary and multiple hypothesis testing,
presented in (11), (12), (22), and (23). All our subsequent
simulations entail Kyc = 108 Monte Carlo runs for robust
assessment. Comparisons are made against the classic de-
tector (14). Fig. 4 showcases this assessment when a fixed
SNR of 10 dB is maintained at the CUT, and for a range
profile size of N = 128. The columns represent different
probability models—equal probabilities, linearly increasing,
and decreasing probabilities—while rows denote varying max-
imum probabilities of target presence in a cell (P )max = (0.1,
0.5, and 0.9) from top to bottom. From the figure, several key
observations emerge:

e Detectors derived from binary hypothesis formulation
under full occlusion consistently outperform the classic
detector.

The MAX detector shows superior detection capability
up to a certain probability of false alarm. However, its
performance saturates beyond this threshold due to the
non-linear maximum operator, particularly noticeable in
low SNR scenarios.

The performance of MAP detectors is scenario-
dependent and therefore would lack the constant false
alarm rate (CFAR) property.

MAP detectors demonstrate maximum performance im-
provement when closer cells have a higher probability
of target presence, suggesting a greater likelihood of
occlusion for more distant targets.

While the highest performance gain is provided by bi-
nary MAP detectors, the corresponding ML detector still
consistently outperforms the classic detector.

Building on the observations mentioned earlier, our subse-
quent analysis narrows down to the performance evaluation of
ML detectors, given their practical applicability. This analysis
seeks to assess their performance concerning the size of the
range profile N and the SNR levels.

In Fig. 5, we observe the performance of the detectors
across different numbers of mutually occluding cells,
specifically N = 16, 32, 64, and 128, assessed at SNR levels
of 8, 10, and 13 dB. The figure highlights that the detection
performance gain is significant with a lower number of
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occluding cells. Additionally, it demonstrates a decrease in the
upper-bound probability of detection for the MAX detector
as N increases, especially noticeable at low SNR levels.
However, at high SNR levels, the performance gain difference
diminishes, with gains of approximately 10% achieved at a
false alarm probability of 107° for an SNR level of 13 dB.

Likewise, Fig. 6 depicts the detector’s performance as SNR
varies across different values of N. It becomes evident that the
higher the SNR, the more significant the gain of ML detectors
compared to the classic one. Moreover, at high SNR values,
the MAX detector achieves a higher detection probability
bound, but this decreases significantly at low SNR levels,
rendering its use unfeasible.

B. SCENARIO-BASED SIMULATIONS

In the previous section, we evaluated detectors’ performance
based on a defined signal model and specific parameters such
as SNR, number of mutually occluding cells, and probabil-
ity of target presence at individual range cells. This section
presents a simulation of a dynamic indoor scenario where
multiple human objects move within the scene along predeter-
mined trajectories, resulting in various occlusions, including
self-occlusions and inter-object occlusions. We observe this
scenario using an FMCW radar sensor equipped with mul-
tiple antenna elements for both transmitting and receiving.
We generate the radar signal based on a ray-tracing algo-
rithm in tandem with the system parameters. Following this,
we process the received signal through a typical radar signal
processing chain. After range and angle processing, we ap-
ply the classic detector, the detector from (23) (abbreviated
as Occ-ML), and that from (12) (abbreviated as Max-ML),
and subsequently compare their performance. In the following
subsections, we will elaborate on the modeling of the scenario
and targets, the radar signal generation and processing, and fi-
nally, the evaluation of the proposed detectors against a classic
detector.

1) SCENARIO DESCRIPTION AND MODELLING

We consider a scenario where five human targets are walking
in an indoor environment along different trajectories. The
scenario is designed using 3D models of actual-size human
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objects animated in Blender software [34]. Spanning five
seconds at a frame rate of 20 frames/second, it results in a
total of 100 graphical frames. Each 3D model consists of a
high-resolution mesh of many constituent triangle batches,
resulting in an average triangle surface area of 0.001 m?.
These triangle batches serve as scattering surfaces, defined by
an origin vector and two side vectors. Consequently, we utilize
a ray-tracing algorithm to identify triangles that have a Line
of Sight (LOS) with respect to each transmitting/receiving
antenna pair and to quantify the reflected rays. The primary
objective of radar ray-tracing is to determine the ray paths
from the transmitter to the receiver antenna elements and
calculate their amplitude and distance, essential for the gen-
eration of the radar signal.
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Ray-casting is the fundamental operation employed in ray
tracing, involving the calculation of ray-triangle intersections.
When a ray intersects a triangle, an intersection point is
identified, leading to the generation of new rays for the next
bounce. Accordingly, ray tracing starts by assigning rays to
each transmit antenna element, calculating intersections with
the triangles (if any), and assigning new ray sources for each
of the intersection points. Subsequently, the new rays are
bounced back in some directions, and a new path is estab-
lished for the rays that have a LOS intersecting with the
receiving antenna.

Consequently, the algorithm outputs a set of rays for each
triangle with respect to each transmit and receive antenna pair.
The length of each ray represents the relative travel distance of
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the transmitted electromagnetic wave, reflecting off the target
and reaching the receiving antenna element. Meanwhile, the
amplitude of the scattered radar wave is determined by the
radar equation considering the RCS of the triangle and the cor-
responding path length to account for attenuation. Ideally, the
RCS calculation should account for the number of reflected
rays from each triangle, its surface orientation relative to the
transmit/receive element pair, and the Normalized RCS [35]
given the surface’s material. For simplicity, we modeled the
RCS of each triangle based on the relative aspect angles (az-
imuth and elevation) of its normal vector from the origin point,
modulating a maximum preset RCS value opax = 0.01 m?.
Fig. 7 shows a snapshot of a single time frame depicting the
human 3D models and the constituent triangle meshes in (b),
highlighting the origin points of the triangles with LOS with
respect to the antenna configuration of the sensor located at
the y — z plane with its center placed at coordinates (0, 0, 1)
(a), and a close-up to one of the human objects for enhanced
visualization in (c).
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TABLE 1. FMCW Radar System Parameters

Central Frequency (f¢) 70 (GHz)
Effective Sweeping Bandwidth (BW) | 1 (GHz)
Effective Chirp Duration (T¢prp) 5.124 (us)
ADC Sampling Frequency (fs) 2.5 (MHz)
Transmitter Power (p74,) 13 (dBm)
Receiver Noise Figure (F') 12 (dB)
Number of TX Elements (Np,) 121
Number of RX Elements (Ngy) 121

2) RADAR SIGNAL GENERATION

We employ an FMCW MIMO radar sensor operating in a
TDM fashion to observe the described scenario. The operating
parameters and sensor characteristics for generating the radar
signal are detailed in Table 1. As shown in Fig. 7(a), the sensor
comprises a 121-element transmitting planar array with an
inter-element spacing of 11A/2, and a 121-element planar
receiving array spaced at A/2. By assigning each element of
the transmitting array to transmit at different time slots, a
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resulting uniform planar virtual array is achieved leading to
an angular resolution of approximately 1.165° in both azimuth
and elevation. This low angular resolution promotes cell-level
occlusion, thereby encouraging the application of our derived
detector as it assumes that each resolution cell encompasses a
limited scattering area, resulting in one or few backscattered
echoes over a certain range profile.

Accordingly, we simulate the sampled received Intermedi-
ate Frequency (IF) signal (indexed by time samples n;) at each
receiving antenna (ngy ), resulting from a backscattered wave
due to the signal transmitted by the nry element, as follows:

Nrays
y(ng, nry, nRy) = Z A(pryx, dy, o)

r=1

lexp(—j2m (ung/ fs + fetng/ fs))

exp(k(Br, o) (Tnp, + g NI (24)

Here, N4y represents the total number of rays traced from
the transmitter element to the scene and back to the receiver el-
ement. A(.) denotes the amplitude of the scattered wave which
depends on the transmitted power pry, the two-way length
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of aray d,, and the associated triangle RCS o,. Additionally,
u = BW/T. denotes the slope of the chirp, while Tt =d,/c
is the associated time delay and c is the speed of light in
vacuum. Finally, k is the wave number defined in Section II,
0, and ¢, are the relative azimuth and elevation angles of the
normal vector of the surface associated with the traced ray
with respect to the sensor, respectively, and r,, and r,,
are the coordinate vectors of the transmitting and receiving
antenna elements, respectively.

Consequently, for each graphical frame, we have 121 x 121
channels, each having a Ny = Topirpfs = 128 time samples.
The simulated raw data is then organized in a 2D matrix, with
the time samples at the first dimension and the channel data
at the second dimension. Lastly, we add the thermal noise
to all the channels as a white Gaussian noise with power
Pnoise = (kg T BW F), where kp is Boltzmann constant, T
is the absolute room temperature, and F is the receiver noise
figure.

3) RADAR SIGNAL PROCESSING

To process the radar signal, we begin by acquiring the 2D
matrix of the raw signal at each frame. We then proceed with
a standard signal processing chain, involving range FFT and
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angle processing using steering vectors. Finally, the detection
performance of the three detectors needs to be compared.
Initially, we apply the range FFT on the first dimension of
the raw data matrix, choosing the grid size to be a power of
two that yields a size of half of the range resolution offered by
the system’s bandwidth.

Subsequently, angle processing is conducted over a Field
of View (FOV) of 160° on the azimuth dimension and 70°
in elevation. These FOVs were chosen to reduce computa-
tional complexity, considering the dimensions of the observed
scene. The number of angular bins in azimuth and elevation
is similarly set to achieve a grid step size that is half of the
angular resolution in both dimensions. Angle processed signal
is acquired by multiplying each channel by the corresponding
steering vector, as defined in (2), for all the angles within the
FOVs.

After angle processing, we apply the tests outlined in
Section IIl to each range profile, along with a classic
test simplified to a square-law detector. To determine the
threshold corresponding to the desired probability of false
alarms, we utilize Cell-Averaging (CA)-CFAR to estimate the
local noise level at each CUT from neighboring secondary
cells. Anticipating superior performance of the OCC-ML
detector based on ROC curves from the previous section,
we set a lower required probability of false alarms (PFA)
for the CFAR applied after this specific test. Fig. 8 shows
a snapshot of the detection output for the three detectors
at a specific time frame, illustrating the lower false alarm
rate set for the Occ-ML detector while demonstrating that
the correct detection points are nearly identical. A numerical
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TABLE 2. Radar Signal Processing and Detection Parameters

Number of Range FFT Bins 256
Number of Azimuth Bins 275
Number of Elevation Bins 121
CA-CFAR PFA (Classic/Max) Detector | 100
CA-CFAR PFA (OccML) Detector 10~7
CA-CFAR number of training cells 12
CA-CFAR number of guard cells 2

evaluation of the detection performance for the three detectors
is provided in the following subsection. The parameters used
for the different processing blocks are summarized in Table 2.

4) PERFORMANCE EVALUATION

To assess the performance of different implemented detectors,
we establish a ground truth grid for each frame. The ground
truth grid matches the size of the range-angle grid of the pro-
cessed signal and has entries of one at the cells that correspond
to the location of origin of triangles with LOS rays. Similarly,
we construct a grid for each detector, where the locations of
detected targets are also marked as one. Subsequently, perfor-
mance is evaluated by computing the detection rate (DR) and
false alarm rate (FR) using the following formulas:

TP
 TP+FN’

FP

DR R=———,
FP+TN

(25)

where TP, FN, FP, and TN represent the counts of true
positives, false negatives, false positives, and true negatives,
respectively. These values are calculated with respect to the
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obtained ground truth grid over 30 Monte Carlo runs of differ-
ent noise realizations. The values of DR and FR versus frame
are illustrated in Fig. 9.

The figure shows that the detection rate of all three detectors
remains nearly equal across all frames, despite the OccML
detector being configured to achieve a lower false alarm rate
which is achieved consistently. This performance aligns with
the analytical analysis presented in Section IV-A. It is impor-
tant to highlight that the analytical model-based simulations
were conducted for specific SNR values, demonstrating vary-
ing performance at each value. In contrast, in this realistic
scenario-based simulation, each target has a different SNR
level that also changes over time, still, the OccML detector
exhibits superior performance. On the other hand, the Max
detector does not consistently improve detection performance
on average. This observation aligns with the findings from
the ROC curves presented in the model-based analysis. For
certain SNR values and ranges of PFA values, the MaxML de-
tector outperforms the classic detector, whereas for other SNR
values and PFA ranges, the opposite holds true. Additionally,
even though the assumption of a single echo per range profile
might not hold for all range profiles, on average, the proposed
OccML detector enhances detection performance.

V. CONCLUSION

In this paper, we introduced a novel approach to enhance the
detection capabilities of mmWave MIMO sensors with high
angular resolution capability, particularly in indoor environ-
ments. We achieve this by leveraging the sparsity of range
profiles under occlusion scenarios where, among multiple
targets that exist on a specific angular bin, the sensor only
receives the signal reflected from one target occluding all the
others. By utilizing this structure, we proposed two detection
methods based on two formulations: multiple hypothesis test-
ing and binary hypothesis testing to enhance the detection of
non-occluded targets under these scenarios.

Our numerical evaluations demonstrated that, for a low
required probability of false alarm, all the proposed meth-
ods outperformed a classic detector which does not account
for this sparse structure, providing a higher probability of
detection. However, at higher probabilities of false alarms,
especially in low SNR scenarios, detectors derived from mul-
tiple hypotheses exhibited an upper limit on the probability
of detection that could not be exceeded. In contrast, detec-
tors based on our binary hypothesis formulation significantly
outperformed the classic detector, especially when knowledge
of the probability model and target presence values in the
cells was available. While obtaining such knowledge is often
impractical and parameter-dependent, the ML binary detector,
while providing a slightly lower gain than its MAP counter-
part, consistently outperformed the classic detector under all
probability models. We further demonstrated the performance
of the proposed detectors on realistically simulated data for an
indoor scenario where the radar signal is generated using ray
tracing and the full standard signal processing chain is applied
to the received radar signal.
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Future works may include: formulating similar approaches
for occlusion scenarios where range profiles show lower spar-
sity due to targets partially occupying cells, devising methods
for sensors to recognize occlusion scenarios and transition
from being informed to being aware, and advancing fusion
techniques for detection across multiple sensors by integrating
insights from occlusion-informed/aware approaches.

APPENDIX A

DERIVATION OF THE UPPER BOUND ON P, OF MAX-ML
DETECTOR

The Max-ML detector decides Hy, if:

FII("[L = max{F?/[L} v j € {{N}, 0}.
j

Assuming the correct hypothesis is H,,, the maximum attain-
able Pp is:

Pp < Pr [T > TV j € (W) | H,]

< Pr[exp (|stm|2/av2V) > exp (|stj|2/aV%) | Hon]

where {N} := {N} \ m. For simplicity, consider a scalar sig-
nal at each cell (s = 1, x; € C'*1). The generalization to the
vector signal is straightforward since the resulting bound will
be expressed in terms of SNR and the inner product in the
vector case introduces a gain in the SNR equals to (N;x X Npy).
Accordingly, assuming equal probability of the M hypotheses,
the upper bound in this case is:

e PN ok
Pp < Prexp 5= ) >exp| =5 ). VJj€N} | Hn
aw Gw

|2 |x;12 o
< Pr ol Bl e >0,V je N}y Hn

where under H,,,:

Xm ~ CN (o, 02)
xj ~ CN (0, Ouzj)

Let us denote with Z, Y, and R the following random vari-
ables
Z = ll?/(04,/2)
Y = —max{|x;|*/(o3/2)},
R=Z+Y

j e}

Thus,
o0
Pp <Pr[Z4+Y >0]=Pr[R > 0] :/ pr(r)dr
0

The PDF of R is the convolution of the PDFs of Z and Y, given
by

1
pz(2) = 5 &XP (- e+ M) Ih(vAz), z>0

2

=2 Ve (3) (- (3))' 7 vo
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where I is the modified Bessel function of the first kind and
A = 2a2,/02, which is twice the SNR of the signal at the m™
cell. Accordingly, the pg(r) can be obtained as:

IS p:@py(r —2)dz r <0

[ p@py(r—2)dz r>0 (26)

pr(r) = {

Let I denote the indefinite integral form of the PDF, then

I = /pz(z)py(r —2)dz

N-—1 —(z+ 1)
J (7)o (5o
N-2
X exp (r%z) (l—exp(rgz)) dz

= w-D exp (r ; k) /exp(—z)lo(\/)»_z)dz

4

r—z\\"?
X (1 —exp <T>> dz

The term (1 — exp(% Y)YV=2 can be expanded using the bino-
mial theorem as
2 kr —k
)(—l)k exp <—r Z)
2
W=

ron(5) K
() (Yt en(5)

Consequently,
k=0

— 2
X /exp (#z) Iy(v/2z)dz

The integral has a known solution over 0 to oo [36]. Plugging
in the solution, we obtain pg(r) over its negative support:
) Nif N -
X
r P\ k

2 1 kr
)(— )" exp (?)
k=0

x/ exp(—z—%)lo(v?%)dz

0

N—1 — AN\ 2N -2 k
Y5 (v

k=0

2 A
X| ——=|exp| ——), r<o0
<k+2> (2(k+2))

Finally, the upper bound on Pp under the Max-ML detector is
given by

1

N -1
€

PrR(r)

00 0
P < f pr(dr =1 — / pr(rYdr
0 0

(N—1) “A\ = (N -2 2
o) 2 (M) (53)

k=0

<l-
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