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Abstract—Although the security testing of Web systems can be
automated by generating crafted inputs, solutions to automate the
test oracle, i.e., vulnerability detection, remain difficult to apply
in practice. Specifically, though previous work has demonstrated
the potential of metamorphic testing—security failures can be
determined by metamorphic relations that turn valid inputs into
malicious inputs—metamorphic relations are typically executed
on a large set of inputs, which is time-consuming and thus makes
metamorphic testing impractical.

We propose AIM, an approach that automatically selects
inputs to reduce testing costs while preserving vulnerability
detection capabilities. AIM includes a clustering-based black-
box approach, to identify similar inputs based on their security
properties. It also relies on a novel genetic algorithm to efficiently
select diverse inputs while minimizing their total cost. Further,
it contains a problem-reduction component to reduce the search
space and speed up the minimization process. We evaluated the
effectiveness of AIM on two well-known Web systems, Jenkins
and Joomla, with documented vulnerabilities. We compared
AIM’s results with four baselines involving standard search
approaches. Overall, AIM reduced metamorphic testing time by
84% for Jenkins and 82% for Joomla, while preserving the same
level of vulnerability detection. Furthermore, AIM significantly
outperformed all the considered baselines regarding vulnerability
coverage.

Index Terms—System Security Testing, Metamorphic Testing,
Test Suite Minimization, Many-Objective Search

I. INTRODUCTION

Web systems, from social media platforms to e-commerce
and banking systems, are a backbone of our society: they
manage data that is at the heart of our social and business
activities (e.g., public pictures, bank transactions), and, as
such, should be protected. To verify that Web systems are
secure, engineers perform security testing, which consists of
verifying that the software adheres to its security properties
(e.g., confidentiality, availability, and integrity). Such testing is
typically performed by simulating malicious users interacting
with the system under test [1], [2].

At a high-level, security testing does not differ from other
software testing activities: it consists of providing inputs to
the software under test and verifying that the software outputs
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are correct, based on specifications. For such a verification, a
test oracle [3] is required, i.e., a mechanism for determining
whether a test case has passed or failed. When test cases are
manually derived, test oracles are defined by engineers and
they generally consist of expressions comparing an observed
output with the expected output, determined from software
specifications. In security testing, when a software output
differs from the expected one, then a software vulnerability
(i.e., a fault affecting the security properties of the software)
has been discovered.

Deriving test oracles for the software under test (SUT) is
called the oracle problem [4], which entails distinguishing
correct from incorrect outputs for all potential inputs. Except
for the verification of basic reliability properties—ensuring
that the software provides a timely output and does not crash—
the problem is not tractable without additional executable
specifications (e.g., method post-conditions or detailed system
models), which, unfortunately, are often unavailable. Further,
since software vulnerabilities tend to be subtle, it is necessary
to exercise each software interface with a large number of
inputs (e.g., providing all the possible code injection strings
to a Web form). When a large number of test inputs are
needed, even in the presence of automated means to generate
them (e.g., catalogs of code injection strings), testing becomes
impractical if we lack solutions to automatically derive test
oracles.

Metamorphic testing was proposed to alleviate the oracle
problem [5] by testing not the input-output behavior of the
system, but by comparing the outputs of multiple test exe-
cutions [5], [6]. It relies on metamorphic relations (MRs),
which are specifications expressing how to derive a follow-
up input from a source input and relations between the
corresponding outputs. Such an approach has shown to be
useful for security testing, also referred to as metamorphic
security testing (MST) [6], [7]. MST consists in relying on
MRs to modify source inputs to obtain follow-up inputs that
mimic attacks and verify that known output properties captured
by these MRs hold (e.g., if the follow-up input differs from the
source input in some way, then the output shall be different).
For instance, one may verify if URLs can be accessed by users
who should not reach them through their user interface, thus
enabling the detection of authorization vulnerabilities.

MST has been successfully applied to testing Web inter-
faces [6], [7] in an approach called MST-wi [6]; in such
context, source inputs are sequences of interactions with a
Web system and can be easily derived using a Web crawler.
For example, a source input may consist of two actions: per-
forming a login and then requesting a specific URL appearing
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in the returned Web page. MST-wi integrates a catalog of 76
MRs enabling the identification of 101 vulnerability types.

The performance and scalability of metamorphic testing nat-
urally depends on the number of source inputs to be processed.
In the case of MST-wi, we demonstrated that scalability can be
achieved through parallelism; however, such solution may not
fit all development contexts (e.g., not all companies have an
infrastructure enabling parallel execution of the software under
test and its test cases). Further, even when parallelization is
possible, a reduction of the test execution time may provide
tangible benefits, including earlier vulnerability detection. In
general, what is required is an approach to minimize the
number of source inputs to be used during testing.

In this work, we address the problem of minimizing source
inputs used by MRs to make metamorphic testing more scal-
able, with a focus on Web systems, though many aspects are
reusable to other domains. We propose the Automated Input
Minimizer (AIM) approach, which aims at minimizing a set of
source inputs (hereafter, the initial input set), while preserving
the capability of MRs to detect security vulnerabilities. More
in detail, this work includes the following contributions:

• We propose AIM, an approach to minimize input sets
for metamorphic testing while retaining inputs able to
detect vulnerabilities. Note that many steps of AIM are
not specific to Web systems while others would need to
be tailored to other domains (e.g., desktop applications,
embedded systems). This approach includes the following
novel components:

– An extension of the MST-wi framework to retrieve
output data and extract cost information about MRs
without executing them.

– A black-box approach leveraging clustering algo-
rithms to partition the initial input set based on
security-related characteristics in order to keep a
small number of representative inputs.

– MOCCO (Many-Objective Coverage and Cost Op-
timizer), a novel genetic algorithm specifically de-
signed to fit our problem and which is able to
efficiently select diverse inputs while minimizing
their total cost.

– IMPRO (Input set Minimization Problem Reduction
Operator), an approach to reduce the search space
to its minimal extent, and then divide it in smaller,
easier to minimize, independent parts.

• We provide a prototype framework for AIM [8], integrat-
ing the above components and automating the process of
input set minimization for Web systems.

• We report on an extensive empirical evaluation (about 800
hours of computation) aimed at assessing the effective-
ness of AIM in terms of vulnerability detection and per-
formance, considering 18 different AIM configurations
and 5 search algorithms (including MOCCO) for security
testing, on the Jenkins and Joomla systems, which are
the most used Web-based frameworks for development
automation and context management.

• We also provide a proof of the correctness of the AIM ap-
proach in a separate appendix provided as supplementary

material.
This paper is structured as follows. We introduce back-

ground information necessary to state our problem and detail
our approach (Section II). We define the problem of mini-
mizing the initial input set while retaining inputs capable of
detecting distinct software vulnerabilities (Section III). We
present an overview of AIM (Section IV) and then detail
our core technical solutions (Sections V to IX). We report
on a large-scale empirical evaluation of AIM (Section X) and
address the threats to the validity of the results (Section XI).
We discuss and contrast related work (Section XII) and draw
conclusions (Section XIII).

II. BACKGROUND

In this section, we present the concepts required to define
our approach. We first provide a background on Metamorphic
Testing (MT, § II-A), then we briefly describe MST-wi, our
previous work on the application of MT to security (§ II-B).
Next, we briefly describe three clustering algorithms: K-means
(§ II-D1), DBSCAN (§ II-D2), and HDBSCAN (§ II-D3).
Finally, we introduce optimization problems (§ II-E).

A. Metamorphic Testing

In contrast to common testing practice, which compares for
each input of the system the actual output against the expected
output, MT examines the relationships between outputs ob-
tained from multiple test executions.

MT is based on Metamorphic Relations (MRs), which are
necessary properties of the SUT (system under test) in relation
to multiple inputs and their expected outputs [9]. The test
result, either pass or failure, is determined by validating the
outputs of various executions against the MR.

Formally, let S be the SUT. In the context of MT, inputs in
the domain of S are called source inputs. Moreover, we call
source output and we denote S(x) the output obtained from
a source input x. An MR is the combination of:

• A transformation function θ, taking values in source
inputs and generating new inputs called follow-up inputs.
For each source input x, we call follow-up output the
output S(θ(x)) of the follow-up input θ(x).

• An output relation R between source outputs and follow-
up outputs.

The MR is executed with a source input x when the follow-
up input θ(x) is generated, then the SUT is executed on both
inputs to obtain outputs S(x) and S(θ(x)), and finally the
relation R(S(x), S(θ(x))) is checked. If this relation holds,
then the MR is satisfied, otherwise it is violated.

For instance, consider a system implementing the cosine
function. It might not be feasible to verify the cos(x) results
for all possible values of x, except for special values of x,
e.g., cos(0) = 1 or cos(π2 ) = 0. However, the cosine function
satisfies that, for each input x, cos(π− x) = − cos(x). Based
on this property, we can define an MR, where the source inputs
are the possible angle values of x, the follow-up inputs are
y = π − x, and the expected relation between source and
follow-up outputs is cos(y) = − cos(x). The SUT is executed
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1 MR CWE_668 {
2 {
3 var sep = "/";
4 for (var par=0; par < 4; par++){
5 for (Action action : Input(1).actions()){
6 var pos = action.getPosition();
7 var newUrl = action.urlPath+sep+RandomFilePath();
8 IMPLIES(
9 !isAdmin(action.user) &&

10 afterLogin(action) &&
11 CREATE(Input(2), Input(1)) &&
12 Input(2).actions().get(pos).setUrl(newUrl) &&
13 notTried(action.getUser(), newUrl)
14 ,
15 TRUE(
16 Output(Input(2),pos).noFile() ||
17 userCanRetrieveContent(action.getUser(), Output(Input(2),pos).file()) ||
18 different(Output(Input(1),pos), Output(Input(2),pos)))
19 );//end-IMPLIES
20 }//end-for
21 sep=sep+"../";
22 }//end-for
23 }//end-MR
24 }//end-package

Fig. 1. MR for CWE 668: Exposure of resource to wrong sphere [12]

twice per source input, respectively with an angle x and an
angle y = π − x. The outputs of both executions are then
validated against the output relation. If this relation is violated,
then the SUT is faulty.

B. Metamorphic Security Testing

In previous work, we automated MT in the security domain
by introducing a tool named MST-wi [6]. MST-wi enables
software engineers to define MRs that capture the security
properties of Web systems. MST-wi includes a data collection
framework that crawls the Web system under test to automati-
cally derive source inputs. Each source input is a sequence of
interactions of the legitimate user with the Web system. More-
over, MST-wi includes a Domain Specific Language (DSL)
to support writing MRs for security testing. Finally, MST-
wi provides a testing framework that automatically performs
security testing based on the defined MRs and the input data.

In MST, follow-up inputs are generated by modifying
source inputs, simulating actions an attacker might take
to identify vulnerabilities in the SUT. These modifications
can be done using 55 Web-specific functions enabling
engineers to define complex security properties, e.g.,
cannotReachThroughGUI, isSupervisorOf, and
isError. MRs capture security properties that hold when
the SUT behaves in a safe way. If an MR, for any given source
input, gets violated, then MST-wi detects a vulnerability in
the SUT. In that case, we say that the MR exercised the
vulnerability in the SUT. MST-wi includes a catalog of 76
MRs, inspired by OWASP guidelines [10] and vulnerability
descriptions in the CWE database [11], capturing a large
variety of security properties for Web systems.

We describe in Figure 1 an MR written for CWE 668,
which concerns unintended access rights [12]. This MR
verifies that a file path passed in a URL should never enable
a user to access data that is not already provided by the user

interface. The first for loop iterates multiple times (Line 4)
to cover different system paths, e.g., / and /../../. The
second for loop iterates over all the actions of a source
input (Line 5). Each action in the sequence is identified by its
position, i.e., the first action in a sequence has position 0. The
position of the current action is stored (Line 6) to be used to
generate the corresponding follow-up action. A new URL is
defined by concatenating the URL of the current action and
a randomly selected system file path, e.g., config.xml,
(Line 7). For instance, if the URL of the current action
is http://www.hostname.com, the new URL can be
http://www.hostname.com/../../config.xml.
The MR first checks if the user who is performing the action
is admin (Line 9), since an admin has direct access to the
system file path, and hence will not exercise a vulnerability.
Then, the MR checks that the action is performed after a
login (Line 10), to ensure this action requires authentication.
Then, the MR generates a follow-up input, named Input(2),
by copying the current sequence of actions Input(1) (Line 11)
and setting the URL of the current action to the new URL
(Line 12). To speed up the process, the MR verifies that the
current user has not tried the same URL before (Line 13).
The SUT is vulnerable if all the following conditions are
violated: 1) the follow-up input does not access a file at the
new URL, or 2) it accesses a file, but the user has the right
to access it, or 3) the source and follow-up inputs obtain
different outputs, as the follow-up input tries to access a
system file without access rights, while the source input is
accessing the originally crawled URL.

This MR tests the initial set of source inputs, with different
URLs and users, and transforms each one several times
with different system file paths, leading to a combinatorial
explosion. The more executed actions, the longer the execution
time. The provided MR, with an input set of 160 source
inputs on Jenkins, executed more than 200,000 follow-up
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Fig. 2. Linear regression between the number of executed actions and the
execution time of a metamorphic relation. Each input is represented by a green
dot, while the blue line depicts the linear regression model.

inputs in 17,694 minutes (about 12 days) on a professional
desktop PCs (Dell G7 7500, RAM 16Gb, Intel(R) Core(TM)
i9-10885H CPU @ 2.40GHz). Even when parallelization is
possible, a reduction of the test execution time may provide
tangible benefits, including earlier vulnerability detection. This
warrants an approach to minimize the initial set of source
inputs, based on the cost of each input.

However, knowing the execution time of each source input
would require to execute them on the considered MRs, hence
defeating the purpose of input set minimization. To avoid
executing MRs but relying on the number of actions executed
by an MR as a surrogate metric for execution time to guide
the minimization technique, we computed the Spearman’s
correlation coefficients between execution time and number of
actions exercised by the MRs tested in a previous study [6]. It
led to significant correlations (i.e., coefficients of correlation
above 0.5 and p-value p below 0.05), thus confirming the
feasibility of relying on the number of actions as a surrogate
metric for execution time.

The example in Figure 2 depicts a typical linear correlation
between the execution time of an MR and the number of
executed actions. It uses randomly selected source inputs and
an MR written for CWE 863. Each point represents the execu-
tion time (x-axis) and the number of executed actions (y-axis)
for a given input. The linear regression is represented by the
blue line and the corresponding coefficient of determination is
97.8%, indicating a strong linear correlation.

C. Test Suite Minimization

Test suites are prone to redundant test cases that, if not re-
moved, can lead to a massive waste of time and resources [13],
thus warranting systematic and automated strategies to elim-
inate redundant test cases, that are referred to as test suite
minimization.

While test suite minimization techniques are very di-
verse [13], most of them are white-box approaches aiming at

minimizing the size of the test suite while maximizing code
coverage. For instance, several test minimization approaches
used greedy heuristics to select test cases based on their code
coverage [14], [15]. Black-box approaches include the FAST-
R family of scalable approaches that leverages a representation
of test source code (or command line inputs) in a vector-space
model [16] and the ATM approach that is based on the abstract
syntax tree of test source code [17]. Both use similarity metrics
to cluster and then select test cases.

In the context of Web systems, both the system source code
and test code are not available to determine similarity between
source inputs, warranting a different black-box approach able
to cluster and select source inputs for these systems. Moreover,
to make MST scalable, MR execution time should be min-
imized while preserving vulnerability detection, warranting
an approach that minimizes the number of executed actions
(§ II-B) while covering all the input clusters.

D. Clustering

Within the clustering steps in Section VI, we rely on
three well-known clustering algorithms: K-means (§ II-D1),
DBSCAN (§ II-D2), and HDBSCAN (§ II-D3).

1) K-means: K-means is a clustering algorithm which takes
as input a set of data points and an integer k. K-means
aims to assign data points to k clusters by maximizing the
similarity between individual data points within each cluster
and the center of the cluster, called centroid. The centroids are
randomly initialized, then iteratively refined until a fixpoint is
reached [18].

2) DBSCAN: DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) is an algorithm that defines
clusters using local density estimation. This algorithm takes as
input a dataset and two configuration parameters: the distance
threshold ϵ and the minimum number of neighbors n.

The distance threshold ϵ is used to determine the ϵ-
neighborhood of each data point, i.e., the set of data points
that are at most ϵ distant from it. There are three different
types of data points in DBSCAN, based on the number of
neighbors in the ϵ-neighborhood of a data point:

Core If a data point has a number of neighbors above n,
it is then considered a core point.

BorderIf a data point has a number of neighbors below n,
but has a core point in its neighborhood, it is then
considered a border point.

Noise Any data point which is neither a core point nor a
border point is considered noise.

A cluster consists of the set of core points and border
points that can be reached through their ϵ-neighborhoods
[19]. DBSCAN uses a single global ϵ value to determine
the clusters. But, if the clusters have varying densities, this
could lead to suboptimal partitioning of the data. HDBSCAN
addresses this problem and we describe next.

3) HDBSCAN: HDBSCAN (Hierarchical Density-Based
Spatial Clustering of Applications with Noise) is an extension
of DBSCAN (§ II-D2). As opposed to DBSCAN, HDBSCAN
relies on different distance thresholds ϵ for each cluster, thus
obtaining clusters of varying densities.
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HDBSCAN first builds a hierarchy of clusters, based on
various ϵ values selected in decreasing order. Then, based on
such a hierarchy, HDBSCAN selects as final clusters the most
persistent ones, where cluster persistence represents how long
a cluster remains the same without splitting when decreasing
the value of ϵ. In HDBSCAN, one has only to specify
one parameter, which is the minimum number of individuals
required to form a cluster, denoted by n [20]. Clusters with
less than n individuals are considered noise and ignored.

E. Many Objective Optimization

Engineers are often faced with problems requiring to fulfill
multiple objectives at the same time, called multi-objective
problems. For instance, multi-objective search algorithms were
used in test suite minimization approaches to balance cost,
effectiveness, and other objectives [21], [22]. Multi-objective
problems with at least (three or) four objectives are informally
known as many-objective problems [23]. In both kind of
problems, one needs a solution which is a good trade-off
between the objectives. Hence, we first introduce the Pareto
front of a decision space (§ II-E1). Then, we describe genetic
algorithms able to solve many-objective problems (§ II-E2).

1) Pareto Front: Multi- and many-objective problems can
be stated as minimizing several objective functions while
taking values in a given decision space. The goal of multi-
objective optimization is to approximate the Pareto Front in
the objective space [23].

Formally, if D is the decision space and f1(.), . . . , fn(.) are
n objective functions defined on D, then the fitness vector of a
decision vector x ∈ D is [f1(x), . . . , fn(x)], hereafter denoted
F (x). Moreover, a decision vector x1 Pareto-dominates a
decision vector x2 (hereafter denoted x1≻x2) if 1) for each
1 ≤ i ≤ n, we have fi(x1) ≤ fi(x2), and 2) there exists
1 ≤ i ≤ n such that fi(x1) < fi(x2). If there exists
no decision vector x1 such that x1≻x2, we say that the
decision vector x2 is non-dominated. The Pareto front of D
is the set {F (x2) | x2 ∈ D and ∀x1 ∈ D : x1 ⊁x2} of the
fitness vectors of the non-dominated decision vectors. Finally,
a multi/many-objective problem consists in:

minimize
x∈D

F (x) = [f1(x), . . . , fn(x)]

where the minimize notation means that we want to find or at
least approximate the non-dominated decision vectors, hence
the ones having a fitness vector in the Pareto front [23].

2) Solving Many-Objective Problems: Multi-objective al-
gorithms like NSGA-II [24] or SPEA2 [25], [26] are not ef-
fective in solving many-objective problems [27], [28] because
of the following challenges:

1) The proportion of non-dominated solutions becomes
exponentially large with an increased number of ob-
jectives. This reduces the chances of the search being
stuck at a local optimum and may lead to a better
convergence rate [23], but also slows down the search
process considerably [27].

2) With an increased number of objectives, diversity op-
erators (e.g., based on crowding distance or clustering)
become computationally expensive [27].

3) If only a handful of solutions are to be found in a large-
dimensional space, solutions are likely to be widely dis-
tant from each other. Hence, two distant parent solutions
are likely to produce offspring solutions that are distant
from them. In this situation, recombination operations
may be inefficient and require crossover restriction or
other schemes [27].

To tackle these challenges, several many-objective al-
gorithms have been successfully applied within the soft-
ware engineering community, like NSGA-III [27], [29] and
MOSA [28].

NSGA-III [27], [29] is based on NSGA-II [24] and ad-
dresses these challenges by assuming a set of supplied or
predefined reference points. Diversity (challenge 2) is ensured
by starting the search in parallel from each of the reference
points, assuming that largely spread starting points would lead
to exploring all relevant parts of the Pareto front. For each
parallel search, parents share the same starting point, so they
are assumed to be close enough so that recombination oper-
ations (challenge 3) are more meaningful. Finally, instead of
considering all solutions in the Pareto front, NSGA-III focuses
on individuals which are the closest to the largest number of
reference points. That way, NSGA-III considers only a small
proportion of the Pareto front (addressing challenge 1).

Another many-objective algorithm, MOSA [28], does not
aim to identify a single individual achieving a trade-off be-
tween objectives but a set of individuals, each satisfying one
of the objectives. Such characteristic makes MOSA adequate
for many software testing problems where it is sufficient
to identify one test case (i.e., an individual) for each test
objective (e.g., covering a specific branch or violating a safety
requirement). To deal with challenge 1, MOSA relies on a
preference criterion amongst individuals in the Pareto front,
by focusing on 1) extreme individuals (i.e., test cases having
one or more objective scores equal to zero), and 2) in case of
tie, the shortest test cases. These best extreme individuals are
stored in an archive during the search, and the archive obtained
at the last generation is the final solution. Challenges 2 and 3
are addressed by focusing the search, on each generation, on
the objectives not yet covered by individuals in the archive.

III. PROBLEM DEFINITION

As the time required to execute a set of considered MRs
may be large (§ II-B), we aim to minimize the set of source
inputs (hereafter, input set) to be used when applying MST to
a Web system, given a set of MRs. In our context, each input
is a sequence of actions used to communicate with the Web
system and each action leads to a different Web page.

To ensure that a minimized input set can exercise the same
vulnerabilities as the original one, intuitively, we should ensure
that they belong to the same input blocks. Indeed, in software
testing, after identifying an important characteristic to consider
for the inputs, one can partition the input space in blocks,
i.e., pairwise disjoint sets of inputs, such that inputs in the
same block exercise the SUT in a similar way [30]. As the
manual identification of relevant input blocks for a large
system is extremely costly, we rely on clustering for that
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purpose (Section VI). Since an input is a sequence of actions,
it can exercise several input blocks. In the rest of the paper,
we rely on the notion of input coverage, indicating the input
blocks an input belongs to.

A. Assumptions and Goals

We assume we know, for each input in the initial input set,
1) its cost and 2) its coverage.

1) Because we want to make MST scalable, the cost
cost(in) of an input in corresponds to the execution time
required to verify if the considered MRs are satisfied with this
input. Because we aim to reduce this execution time without
having to execute the MRs, as it would defeat the purpose of
input set minimization, we use the number nbActions(mr , in)
of actions to be executed by an MR mr using input in as a
surrogate metric for its execution time (see § II-B). We thus
define the cost of an input as follows:

cost(in)
def
=

∑

mr∈MRs

nbActions(mr , in)

When cost(in) = 0, input in was not exercised by any MR
due to the preconditions in these MRs. Hence, in is not
useful for MST and can be removed without loss from the
initial input set. Finally, the total cost of an input set I is
cost(I )

def
=
∑

in∈I cost(in).
2) To minimize the cost of metamorphic testing, we remove

unnecessary inputs from the initial input set, but we want to
preserve all the inputs able to exercise distinct vulnerabilities.
Hence, we consider, for each initial input in , its coverage
Cover(in). In our study, Cover(in) is the set of input blocks
the input in belongs to, and we determine these input blocks
in Section VI using double-clustering. For now, we assume
that the coverage of an input is known. The total coverage of
an input set I is Cover(I )

def
=∪in∈ICover(in).

We can now state our goals. We want to obtain a subset
Ifinal ⊆ Iinit of the initial input set such that 1) Ifinal does not
reduce total input coverage, i.e., Cover(Ifinal) = Cover(Iinit)
and 2) Ifinal has minimal cost, i.e., cost(Ifinal) = min{cost(I )
| I ⊆ Iinit ∧ Cover(I ) = Cover(Iinit)}. Note that a solution
Ifinal may not be necessarily unique.

B. A Many-Objective Problem

To minimize the initial input set, we focus on the selection
of inputs that belong to the same input blocks as the initial
input set. A potential solution to our problem is an input set
I ⊆ Iinit . Obtaining a solution I able to reach full input cover-
age is straightforward since, for each block bl , one can simply
select an input in Inputs(bl)

def
={in ∈ Iinit | bl ∈ Cover(in)}.

The hard part of our problem is to determine a combination
of inputs able to reach full input coverage at a minimal cost.
Hence, we have to consider an input set as a whole and not
focus on individual inputs.

This is similar to the whole suite approach [31] targeting
white-box testing. They use as objective the total number of
covered branches. But, in our context, counting the number of
uncovered blocks would consider as equivalent input sets that
miss the same number of blocks, without taking into account

that it may be easier to cover some blocks than others (e.g.,
some blocks may be covered by many inputs, but some only by
a few) or that a block may be covered by inputs with different
costs. Thus, to obtain a combination of inputs that minimizes
cost while preserving input coverage, we have to investigate
how input sets cover each input block.

Hence, we are interested in covering each input block as
an individual objective, in a way similar to the coverage of
each code branch for white-box testing [28]. Because the total
number of blocks to be covered is typically large (≥ 4),
we deal with a many-objective problem [23]. This can be an
advantage, because a many-objective reformulation of complex
problems can reduce the probability of being trapped in local
optima and may lead to a better convergence rate [28]. But
this raises several challenges (§ II-E2) that we tackle while
presenting our search algorithm (Section VIII).

C. Objective Functions

To provide effective guidance to a search algorithm, we need
to quantify when an input set is closer to the objective of
covering a particular block bl than another input set. In other
words, if I1 and I2 are two input sets which do not cover bl
but have the same cost, we need to determine which one is
more desirable to achieve the goals introduced in § III-A by
defining appropriate objective functions.

In general, adding an input to an input set would not
only cover bl , but would also likely cover other blocks, that
would then be covered by several inputs, thus introducing
the possibility to remove some of them without affecting
coverage. To track of how a given block bl is covered by
inputs from a given input set I , we introduce the concept
of superposition as superpos(bl , I )

def
= |Inputs(bl) ∩ I |. For

instance, if superpos(bl , I ) = 1, then there is only one
input in I covering bl . In that case, this input is necessary
to maintain the coverage of I . More generally, with the
redundancy metric, we quantify how much an input in is
necessary to ensure the coverage of an input set I it belongs to:
redundancy(in, I )

def
=min{superpos(bl , I ) | bl ∈ Cover(in)}

−1. The −1 is used to normalize the redundancy met-
ric so that its range starts at 0. If redundancy(in, I ) =
0, we say that in is necessary in I , otherwise we
say that in is redundant. In the following, we denote
Redundant(I )

def
={in ∈ I | redundancy(in, I ) > 0} the set of

the redundant inputs in I .
To focus on the least costly input sets during the search

(Section VIII), we quantify the gain obtained by removing
redundant inputs. If I contains a redundant input in , then we
call removal step a transition from I to I \ {in}. Otherwise,
we say that I is already reduced. Unfortunately, given two
redundant inputs in1 and in2, removing in1 may render in2

necessary. Hence, when considering potential removal steps
(e.g., removing either in1 or in2), one has to consider the
order of these steps. We represent a valid order of removal
steps by a sequence of inputs [in1, . . . , inn] to be removed
from I such that, for each 0 ≤ i < n, ini+1 is redundant
in I \ {in1, . . . , ini}. We denote ValidOrders(I ) the set of
valid orders of removal steps in I . Removing redundant inputs
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in1, . . . , inn leads to a reduction of cost cost(in1) + · · · +
cost(inn). For each input set I , we consider the maximal
gain from valid orders of removal steps:

gain(I )
def
=max

{ ∑
1≤i≤n

cost(ini)
∣∣∣ [in1, . . . , inn] ∈ ValidOrders(I )

}

To reduce the cost of computing this gain, we prove in
the separate appendix (Theorem 1) that, to determine which
orders of removal steps are valid, we can remove inputs in
any arbitrary order, without having to resort to backtracking
to previous inputs. Moreover, in our approach, we need to
compute the gain only in situations when the number of
redundant inputs is small (Section VIII), thus exhaustively
computing the gain is tractable.

Adding an input in1 ∈ Inputs(bl) to I would lead to a gain
but would also result in additional cost, hence warranting we
consider the benefit-cost balance gain(I ∪ {in1})−cost(in1)
to evaluate how efficiently bl is covered by in1. More gen-
erally, we define the potential of I to efficiently cover bl as
the maximum benefit-cost balance obtained by adding inputs
in1 in covering bl . But, as an input in1 may be necessary
to cover bl while leading to no or not enough removal steps,
gain(I ∪ {in1}) − cost(in1) may be negative. To facilitate
normalization, we need the potential to return a non-negative
value, thus we shift all the benefit-cost balances for a given
objective bl by adding a dedicated term. As the potential is
a maximum, the worst case of gain(I ∪ {in2}) − cost(in2)
is when gain(I ∪ {in2}) = 0 and cost(in2) is the minimal
cost amongst the inputs able to cover bl . Hence, we obtain the
following definition for the potential of I in covering bl :

potential(I , bl)
def
=max{gain(I ∪ {in1})− cost(in1)

| in1 ∈ Inputs(bl)}
+min{cost(in2) | in2 ∈ Inputs(bl)}

We thus use the potential to define the objective function
associated with an objective bl .

To normalize our metrics, we rely on the normalization
function ω(x)

def
= x

x+1 , which is used to reduce a range of values
from [0,∞) to [0, 1) while preserving the ordering. When used
during a search, it is less prone to precision errors and more
likely to drive faster convergence towards an adequate solution
than alternatives [32]. We use it to normalize the cost between
0 and 1 and the smaller is the normalized cost, the better
a solution is. For coverage, since a high potential is more
desirable, we use its complement 1

x+1 = 1− ω(x) to reverse
the order, so that the more potential an input set has, the lower
its coverage objective function is. We thus define the objective
function corresponding to a block bl i as:

fbli(I )
def
=

{
0 if bl i ∈ Cover(I )

1
potential(I ,bli)+1 otherwise

The lower this value, the better. If bl i is covered, then
fbli(I ) = 0, otherwise fbli(I ) > 0. As expected, input sets
that cover the objective are better than input sets that do not,
and if two input sets do not cover the objective, then the
normalized potential is used to break the tie.

D. Solutions to Our Problem

Each element in the decision space is an input set I ⊆ Iinit ,
which is associated with a fitness vector:

F (I )
def
=[ω(cost(I )), fbl1(I ), . . . , fbln(I )]

where Cover(Iinit) = {bl1, . . . , bln} denotes the n input
blocks to be covered by input sets I ⊆ Iinit .

Hence, we can define the Pareto front formed by the non-
dominated solutions in our decision space (§ II-E1) and we
formulate our problem definition as a many-objective opti-
mization problem:

minimize
I⊆Iinit

F (I )

where the minimize notation means that we want to find or at
least approximate the non-dominated decision vectors having
a fitness vector on the Pareto front [23]. Because we want full
input coverage (§ III-A), the ultimate goal is a non-dominated
solution Ifinal such that:

F (Ifinal) = [ω(costmin), 0, . . . , 0]

where costmin is the cost of the cheapest subset of Iinit with
full input coverage.

IV. OVERVIEW OF THE APPROACH

As stated in our problem definition (Section III), we aim
to reduce the cost of MST (§ II-B) by minimizing an initial
input set without removing inputs that are required to exercise
distinct security vulnerabilities. To do so, we need to tackle
the following sub-problems (§ III-D):

1) For each initial input, we need to determine its cost
without executing the considered MRs.

2) For each initial input, we need to determine its coverage.
In the context of metamorphic testing for Web systems,
we consider input blocks based on system outputs and
input parameters.

3) Amongst all potential input sets I ⊆ Iinit , we search for
a non-dominated solution Ifinal that preserves coverage
while minimizing cost.

The Automated Input Minimizer (AIM) approach relies on
analyzing the output and cost corresponding to each input.
AIM obtains such information through a new feature added to
the MST-wi toolset to execute each input on the system and
retrieve the content of the corresponding Web pages. Obtaining
the outputs of the system is very inexpensive compared to
executing the considered MRs. Moreover, to address our first
sub-problem, we also updated MST-wi to retrieve the cost of
an input without executing the considered MRs. We rely on
a surrogate metric (§ II-B), linearly correlated with execution
time, which is inexpensive to collect (§ V-A).

In Step 1 (Pre-processing), AIM pre-processes the initial
input set and the output information, by extracting relevant
textual content from each returned Web page (§ V-B).

To address the second sub-problem, AIM relies on a double-
clustering approach (Section VI), which is implemented by
Step 2 (Output Clustering) and Step 3 (Action Clustering). For
both steps, AIM relies on state-of-the-art clustering algorithms,
which require to select hyper-parameter values (§ VI-A).
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Fig. 3. Activity diagram of the Automated Input Minimizer (AIM) approach.

Output clustering (§ VI-B) is performed on the pre-processed
outputs, each generated cluster corresponding to an output
class. Then, for each output class identified by the Output
Clustering Step, Action clustering (§ VI-C) first determines the
actions whose output belongs to the considered output class,
then partitions these actions based on action parameters such
as URL, username, and password, obtaining action subclasses.
On the completion of Step 3, AIM has mapped each input to
a set of action subclasses, used for measuring input coverage
as per our problem definition (§ III-A).

To preserve diversity in our input set, and especially to retain
inputs that are necessary to exercise vulnerabilities, we require
the minimized input set generated by AIM to cover the same
action subclasses as the initial input set. That way, we increase
the chances that the minimized input set contains at least one
input able to exercise each vulnerability detectable with the
initial input set.

Using cost and coverage information, AIM can address
the last sub-problem. Since the size of the search space
exponentially grows with the number of initial inputs, the
solution cannot be obtained by exhaustive search. Actually,
our problem is analogous to the knapsack problem [33], which
is NP-hard, and is thus unlikely to be solved by deterministic
algorithms. Therefore, AIM relies on meta-heuristic search to
find a solution (Step 5) after reducing the search space (Step
4).

In Step 4, since the search space might be large, AIM first
reduces the search space to the maximal extent possible (Sec-
tion VII) before resorting to meta-heuristic search. Precisely,
it relies on the Input set Minimization Problem Reduction
Operator (IMPRO) component for problem reduction, which
determines the necessary inputs, removes inputs that cannot

be part of the solution, and partition the remaining inputs into
input set components that can be independently minimized.

In Step 5, AIM applies a genetic algorithm (Section VIII)
to minimize each component. Because existing algorithms
did not entirely fit our needs, we explain why we introduce
MOCCO (Many-Objective Coverage and Cost Optimizer), a
novel genetic algorithm which converges towards a solution
covering the objectives at a minimal cost, obtaining a mini-
mized input set component.

Finally, after the genetic search is completed for each
component, in Step 6 (Post-processing), AIM generates the
minimized input set by combining the necessary inputs iden-
tified by IMPRO and the inputs from the MOCCO minimized
components (Section IX).

Note that, even though in our study we focus on Web sys-
tems, steps 4 (IMPRO), 5 (MOCCO), and 6 (post-processing),
which form the core of our solution, are generic and can be
applied to any system. Moreover, step 1 (pre-processing) and
steps 2 and 3 (double-clustering) can be tailored to apply
AIM to other domains (e.g., desktop applications, embedded
systems). And though we relied on MST-wi to collect our data,
AIM does not depend on a particular data collector, and using
or implementing another data collector would enable the use
of our approach in other contexts.

V. STEP 1: DATA COLLECTION AND PRE-PROCESSING

In Step 1, AIM determines the cost of each initial input
(§ V-A) and extract meaningful textual content from the Web
pages obtained with the initial inputs (§ V-B).

A. Input Cost
The cost of a source input is the number of actions executed

by source and follow-up inputs for the considered MRs
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(§ III-A). Note that counting the number of actions to be
executed is inexpensive compared to executing them on the
SUT, then checking for the verdict of the output relation.
For instance, counting the number of actions for eleven MRs
with Jenkins’ initial input set (Section X) took less than five
minutes, while executing the MRs took days.

B. Output Representation
Since, in this study, we focus on Web systems, the outputs

of the SUT are Web pages. Fortunately, collecting these
pages using a crawler and extracting their textual content is
inexpensive compared to executing MRs. Hence, we can use
system outputs to determine relevant input blocks (Section III).

We focus on textual content extracted from the Web pages
returned by the Web system under test. We remove from the
textual content of each Web page all the data that is shared
among many Web pages and thus cannot characterize a specific
page, like system version, date, or (when present) the menu
of the Web page. Moreover, to focus on the meaning of the
Web page, we consider the remaining textual content not as a
string of characters but as a sequence of words. Also, following
standard practice in natural language processing, we apply a
stemming algorithm to consider distinct words with the same
stem as equivalent, for instance the singular and plural forms
of the same word. Finally, we remove stopwords, numbers,
and special characters, in order to focus on essential textual
information.

VI. STEPS 2 AND 3: DOUBLE CLUSTERING

To reduce the cost of MST, we want to minimize an initial
input set while preserving, for each vulnerability affecting
the SUT, at least one input able to exercise it; of course, in
practice, such vulnerabilities are not known in advance but
should be discovered by MST. Hence, we have to determine
in which cases two inputs are distinct enough so that both
should be kept in the minimized input set, and in which cases
some inputs are redundant with the ones we already selected
and thus can be removed. To determine which inputs are
similar and which significantly differ, we rely on clustering
algorithms. Precisely, we rely on the K-means, DBSCAN, and
HDBSCAN algorithms to cluster our data points. Each of them
has a set of hyper-parameters to be set and we first detail how
these hyper-parameters are obtained using Silhouette analysis
(§ VI-A).

Since, for practical reasons, we want to avoid making
assumptions regarding the nature of the Web system under
test (e.g., programming language or underlying middleware),
we propose a black-box approach relying on input and output
information to determine which inputs we have to keep or
remove. In the context of a Web system, each input is a
sequence of actions, each action enables a user to access a Web
page (using a POST or GET request method), and each output
is a Web page. After gathering output and action information,
we perform double-clustering on our data points, i.e., two
clustering steps performed in sequence:

1) Output clustering (§ VI-B) uses the outputs of the Web
system under test, i.e., textual data obtained by pre-
processing content from Web pages (§ V-B). We define

an output distance (§ VI-B1) to quantify similarity be-
tween these outputs, which is then used to run Silhouette
analysis and clustering algorithms to partition outputs
into output classes (§ VI-B2).

2) Action clustering (§ VI-C) then determines input cover-
age. First, AIM collects in the same action set actions
leading to outputs in the same output class (§ VI-C1).
Then, AIM refines each action set by partitioning the
actions it contains using action parameters. To do so, it
first uses the request method (§ VI-C2) to split action
sets into parts. Then, we define an action distance
(§ VI-C3) based on the URL (§ VI-C4) and other param-
eters (§ VI-C5) of the considered actions. Finally, AIM
relies on Silhouette analysis and clustering algorithms to
partition each part of an action set into action subclasses
(§ VI-C6), defining our input blocks (§ III-A).

Note that double-clustering should not be confused with
biclustering [34], [35], since the latter simultaneously clusters
two distinct aspects (features and samples) of the data, while
the former clusters only one aspect (actions, in our case, that
can be seen as features) but in two consecutive steps (action
outputs, then action parameters), the second refining the first
one.

A. Hyper-parameters Selection
In this study, we rely on the common K-means [18],

DBSCAN [19], and HDBSCAN [20] clustering algorithms
(§ II-D) to determine output classes (§ VI-B) and action
subclasses (§ VI-C). These clustering algorithms require a few
hyper-parameters to be set. One needs to select for K-means
the number of clusters k, for DBSCAN the distance threshold ϵ
and the minimum number of neighbors n, and for HDBSCAN
the minimum number n of individuals required to form a
cluster.

To select the best values for these hyper-parameters, we
rely on Silhouette analysis. Though the Silhouette score is a
common metric used to determine optimal values for hyper-
parameters [36], [37], it is obtained from the average Silhou-
ette score of the considered data points. Thus, for instance,
clusters with all data points having a medium Silhouette
score cannot be distinguished from clusters where some data
points have a very large Silhouette score while others have a
very small one. Hence, having a large Silhouette score does
not guarantee that all the data points are well-matched to
their cluster. To quantify the variability in the distribution
of Silhouette scores, we use Gini index, a common measure
of statistical dispersion. If the Gini index is close to 0, then
Silhouette scores are almost equal. Conversely, if it is close to
1, then the variability in Silhouette score across data points is
large.

Hence, for our Silhouette analysis, we consider two ob-
jectives: (average) Silhouette score and the Gini index of
the Silhouette scores. The selection of hyper-parameters is
therefore a multi-objective problem with two objectives. We
rely on the common NSGA-II evolutionary algorithm [24] to
solve this problem and approximate the Pareto front regarding
both Silhouette score and Gini index. Then, we select the item
in the Pareto front that has the highest Silhouette score.
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B. Step 2: Output Clustering

Output clustering consists in defining an output distance
(§ VI-B1) to quantify dissimilarities between Web system
outputs, and then to partition the outputs to obtain output
classes (§ VI-B2).

A user communicates with a Web system using actions.
Hence, an input for a Web system is a sequence of actions
(e.g., login, access to a Web page, logout). As the same action
may occur several times in an input in , a given occurrence
of an action is identified by its position i in the input and
denoted action(in, i). Outputs of a Web system are textual
data obtained by pre-processing the content from Web pages
(§ V-B). The accessed Web page depends not only on the
considered action, but also on the previous ones; for instance
if the user has logged into the system. Hence, we denote by
output(in, i) the output of the action at position i in in .

1) Output distance: In this study, we use system outputs
(i.e., Web pages) to characterize system states. Hence, two ac-
tions that do not lead to the same output should be considered
distinct because they bring the system into different states.
More generally, dissimilarity between outputs is quantified
using an output distance. Since we deal with textual data,
we consider both Levenshtein and bag distances. Levenshtein
distance is usually a good representation of the difference
between two textual contents [38], [39]. However, computing
the minimal number of edits between two strings can be costly,
since the complexity of the Levenshtein distance between two
strings is O(len(s1)× len(s2)), where len(.) is the length of
the string [40]. Thus, we consider the bag distance [41] as an
alternative to the Levenshtein distance, because its complexity
is only O(len(s1) + len(s2)) [42]. But it does not take into
account the order of words and is thus less precise than
Levenshtein distance.

2) Output Classes: We partition the textual content we ob-
tained from Web pages (§ V-B) using the K-means, DBSCAN,
and HDBSCAN clustering algorithms, setting the hyper-
parameters using Silhouette analysis (§ VI-A), and deter-
mining similarities between outputs using the chosen output
distance. We call output classes the obtained clusters and
we denote by OutputClass(in, i) the unique output class
output(in, i) belongs to.

C. Step 3: Action Clustering

Exercising all the Web pages is not sufficient to discover
all the vulnerabilities; indeed, vulnerabilities might be
detected through specific combinations of parameter
values associated to an action (e.g., values belonging to
a submitted form). Precisely, actions on a Web system
can differ with respect to a number of parameters that
include the URL (allowing the action to perform a request
to a Web server), the method of sending a request to
the server (like GET or POST), URL parameters (e.g.,
http://myDomain.com/myPage?urlParameter1=
value1&urlParameter2=value2), and entries in
form inputs (i.e., textarea, textbox, options in select items,
datalists).

Based on the obtained output classes, action clustering
first determines action sets (§ VI-C1). Then, action clustering
refines each action set by partitioning the actions it contains
using actions parameters. First, we give priority to the method
used to send a request to the server, so we split each action
set using the request method (§ VI-C2). Then, to quantify the
dissimilarity between two actions, we define an action distance
(§ VI-C3) based on URL (§ VI-C4) and other parameters
(§ VI-C5). That way, action clustering refines each action set
into action subclasses (§ VI-C6).

1) Action Sets: Based on the obtained output classes
(§ VI-B2), AIM determines action sets such that actions
leading to outputs in the same output class outCl are in the
same action set:

ActionSet(outCl)
def
={act | ∃in, i : action(in, i) = act
∧ OutputClass(in, i) = outCl}

Note that, because an action can have different outputs
depending on the considered input, it is possible for an action
to belong to several actions sets, corresponding to several
output classes.

2) Request Partition: Each action uses either a POST or
GET method to send an HTTP request to the server. Actions
(such as login) that send the parameters to the server in the
message body use the POST method, while actions that send
the parameters through the URL use the GET method. As
this difference is meaningful for distinguishing different action
types, we split each action set into two parts: the actions using
a POST method and those using a GET method.

3) Action Distance: After request partition (§ VI-C2), we
consider one part of an action set at a time and we refine
it using an action distance quantifying dissimilarity between
actions based on remaining parameters (e.g., URL or form
entries). In the context of a Web system, each Web content
is identified by its URL, so we give more importance to this
parameter. We denote url(act i) the URL of action act i. For
the sake of clarity, we call in the rest of the section residual
parameters the parameters of an action which are not its re-
quest method nor its URL and we denote res(act i) the residual
parameters of action act i. Since we give more importance to
the URL, we represent the distance between two actions by a
real value, where the integral part corresponds to the distance
between their respective URLs and the decimal part to the
distance between their respective residual parameters:

actionDist(act1, act2)
def
= urlDist(url(act1), url(act2))
+ paramDist(res(act1), res(act2))

where the URL distance urlDist(., .) is defined in § VI-C4 and
returns an integer, and the parameter distance paramDist(., .)
is defined in § VI-C5 and returns a real number between 0
and 1.

4) URL distance: A URL is represented as a sequence of
at least two words, separated by ‘://’ between the first and
second word, then by ‘/’ between any other words. The length
of a URL url is its number of words, denoted len(url). Given
two URLs, url1 and url2, their lowest common ancestor is the
longest prefix they have in common, denoted LCA(url1, url2).
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Fig. 4. The URL distance between http://hostname/login and
http://hostname/job/try1/lastBuild is 1 + 3 = 4.

We define the distance between two URLs as the total number
of words separating them from their lowest common ancestor:

urlDist(url1, url2)
def
=len(url1) + len(url2)
− 2× len(LCA(url1, url2))

We provide an example in Figure 4.
5) Parameter Distance: To quantify the dissimilarity be-

tween residual parameters, we first independently quantify the
dissimilarity between pairs of parameters of the same type.
Since, in our context, we exercise vulnerabilities by only using
string or numerical values, we ignore parameter values of other
types such as byte arrays (e.g., an image uploaded to the SUT).
In other contexts, new parameter distance functions suited to
other input types may be required. For strings, we use the
Levenshtein distance [38], [39], whereas for numerical values
we consider the absolute value of their difference [43]:

paramValDist(v1, v2)
def
=




LevenshteinDist(v1, v2) if type(v1) = str = type(v2)
|v1 − v2| if type(v1) = int = type(v2)
undefined otherwise

Since we have parameters of different types, we normal-
ize the parameter distance using the normalization function
ω(x) = x

x+1 (§ III-C). Then, we add these normalized
distances together, and normalize the sum to obtain a result
between 0 and 1. We compute the parameter distance in case
of matching parameters, i.e., the number of parameters is the
same and the corresponding parameters have the same type.
Otherwise, we assume the largest distance possible, which is 1
due to the normalization. This is the only case where the value
1 is reached, as distance lies otherwise in [0 1[, as expected
for a decimal part (§ VI-C3):

paramDist(resids1, resids2)
def
=




ω(
∑

0≤i<len(resids1)

ω(paramValDist(resids
[i]
1 , resids

[i]
2 )))

if resids1 and resids2 have matching parameters
1 otherwise

where resids1 = res(act1), resids2 = res(act2), and
resids [i] is the i-th element of resids .

For instance, we consider two actions act1 and act2
having matching parameters with the values in Table I
for page number, username, and password. The dis-

TABLE I
VALUES FOR THE EXAMPLE OF PARAMETER DISTANCE

Page Number Username Password
resids1 10 “John” “qwerty”
resids2 42 “Johnny” “qwertyuiop”

tance for the page number is paramValDist(10, 42) =
32, normalized into 32

32+1 ≈ 0.97. For the user-
name, it is paramValDist(“John”, “Johnny”) = 2, nor-
malized into 2

2+1 ≈ 0.66. For the password, it is
paramValDist(“qwerty”, “qwertyuiop”) = 4, normalized
into 4

4+1 = 0.80. Thus, the parameter distance is
paramDist(resids1, resids2) ≈ 0.97+0.66+0.80

0.97+0.66+0.80+1 ≈ 0.71.
6) Action Subclasses: We partition both parts of each action

set (§ VI-C2) using the K-means, DBSCAN, or HDBSCAN
clustering algorithms, setting the hyper-parameters using
our Silhouette analysis (§ VI-A), and quantifying action
dissimilarity using our action distance (§ VI-C3), obtain-
ing clusters we call action subclasses. We denote by
ActionSubclass(act , actSet) the unique action subclass bl
from the action set actSet such that act ∈ bl . For the sake
of simplicity, we denote Subclass(in, i) the action subclass
corresponding to the i-th action in input in:

Subclass(in, i)
def
=ActionSubclass(action(in, i),
ActionSet(OutputClass(in, i))

Finally, in our study, the objectives covered by an input are:

Cover(in)
def
={Subclass(in, i) | 1 ≤ i ≤ len(in)}

VII. STEP 4: PROBLEM REDUCTION

The search space for our problem (§ III-D) consists of all
the subsets of the initial input set, which leads to 2m potential
solutions, where m is the number of initial inputs.

For this reason, AIM integrates a problem reduction step,
implemented by the Input set Minimization Problem Reduc-
tion Operator (IMPRO) component, to minimize the search
space before solving the search problem in the next step
(Section VIII). We apply the following techniques to reduce
the size of the search space:

• Determining redundancy: Necessary inputs (§ III-C) must
be part of the solution, hence one can only investigate
redundant inputs (§ VII-C). Moreover, one can restrict
the search by removing the objectives already covered by
necessary inputs. Finally, if a redundant input does not
cover any of the remaining objectives, it will not con-
tribute to the final coverage, and hence can be removed.

• Removing duplicates: Several inputs may have the same
cost and coverage. In this case, we consider them as
duplicates (§ VII-D). Thus, we keep only one and we
remove the others.

• Removing locally-dominated inputs: For each input, if
there exists other inputs that cover the same objectives
at a same or lower cost, then the considered input is
locally-dominated by the other inputs (§ VII-E) and is
removed.

• Dividing the problem: We consider two inputs covering
a common objective as being connected. Using this



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH 2024 12

relation, we partition the search space into connected
components that can be independently solved (§ VII-F),
thus reducing the number of objectives and inputs to
investigate at a time.

Before detailing these techniques, we first explain in which
order there are applied (§ VII-A).

A. Order of Reduction Techniques

We want to perform first the least expensive reduction
techniques, to sequentially reduce the cost of the following
more expensive techniques. Determining redundancy requires
O(m× c) steps, removing duplicates requires O(m2) steps,
and removing locally-dominated inputs requires O(m× 2n)
steps, where m is the number of inputs, c is the maxi-
mal number of objectives covered by an input, and n is
the maximal number of neighbors for an input (i.e., the
number of other inputs that cover an objective shared with
the considered input). In our study, we assume c < m.
Hence, we first determine redundancy, then remove duplicates,
and remove locally-dominated inputs. Dividing the problem
requires exploring neighbors and comparing non-visited inputs
with visited ones, so it is potentially the most costly of these
reduction techniques; hence, it is performed at the end.

After determining redundancy, the removal of already cov-
ered objectives may lead to new inputs being duplicates or
locally-dominated. Moreover, the removal of duplicates or
locally-dominated inputs may lead to changes in redundancy,
making some previously redundant inputs necessary. Hence,
these reduction techniques should be iteratively applied, until
a stable output is reached. Such output can be detected by
checking if inputs were removed during an iteration.

Therefore, the order is as follows. We first initialize vari-
ables (§ VII-B). Then we repeat, until no input is removed,
the following steps: determine redundancy (§ VII-C), remove
duplicates (§ VII-D), and remove locally-dominated inputs
(§ VII-E). Finally, we divide the problem into sub-problems
(§ VII-F).

B. Initializing Variables

During problem reduction, we consider three variables:
Inecess , the set of the inputs that has to be part of the
final solution, Isearch , the remaining inputs to be investigated,
and Coverageobj , the objectives that remain to be covered
by subsets of Isearch . Inecess is initially empty. Isearch is
initialized as the initial input set. Coverageobj is initialized
as the coverage of the initial input set (§ VI-C6 and § III-A).

C. Determining Redundancy

This technique is presented in Algorithm 1. Each time it is
repeated, the redundancy of the remaining inputs is computed
(Line 2). Among them, inputs which are necessary (§ III-C)
in Isearch (Line 3) for the objectives in Coverageobj have
to be included in the final solution (Line 4), otherwise some
objectives will not be covered. Then, the objectives already
covered by the necessary inputs are removed (Line 5). Hence,
in the following, we only consider, for each remaining input

Algorithm 1 Redundancy determination technique.
1: procedure REDUNDANCY(Inecess , Isearch ,Coverageobj )
2: Iredund ← Redundant(Isearch)
3: I newnecess ← Isearch \ Iredund
4: Inecess ← Inecess ∪ I newnecess

5: Coverageobj ← Coverageobj \ Cover(I newnecess)
6: Isearch ← {in ∈ Iredund | Cover(in)∩Coverageobj ̸=

∅}
7: return Inecess , Isearch ,Coverageobj

in ∈ Isearch , their coverage regarding the remaining objec-
tives, i.e., Cover(in) ∩ Coverageobj , instead of Cover(in).

Finally, some redundant inputs may cover only objectives
that are already covered by necessary inputs. In that case,
they cannot be part of the final solution because they would
contribute to the cost but not to the coverage of the objectives.
Hence, we restrict without loss the search space for our
problem by considering only redundant inputs that can cover
the remaining objectives (Line 6).

D. Removing Duplicates

In the many-objective problem described in § III-C, inputs
are characterized by their coverage (§ VI-C6) and their cost
(§ III-A). Hence, two inputs with the same coverage and cost
are considered duplicates. In that case, IMPRO selects one and
remove the other.

E. Removing Locally-dominated Inputs

For a given input in ∈ Isearch , if the same coverage can
be achieved by one or several other input(s) for at most the
same cost, then in is not required for the solution. Formally,
we say that the input in ∈ Isearch is locally dominated by the
subset S ⊆ Isearch , denoted in ⊑ S, if in ̸∈ S, Cover(in) ⊆
Cover(S), and cost(in) ≥ cost(S). In order to simplify the
problem, inputs that are locally dominated should be removed
from the remaining inputs Isearch .

Removing a redundant input in (§ III-C) can only affect
the redundancy of the inputs in I that cover objectives in
Cover(in). Hence, we consider two inputs as being connected
if they cover at least one common objective. Formally, we say
that two inputs in1 and in2 overlap, denoted by in1 ⊓ in2,
if Cover(in1) ∩ Cover(in2) ̸= ∅. The name of the local
dominance relation comes from the fact proved in the separate
appendix (Proposition 3) that, to determine if an input is
locally-dominated, one has only to check amongst its neigh-
bors for the overlapping relation instead of amongst all the
remaining inputs, thus making this step tractable.

One concern is that removing a locally-dominated input
could alter the local dominance of other inputs. Fortunately,
this is not the case for local dominance. We prove in the sep-
arate appendix (Theorem 2) that, for every locally-dominated
input in ∈ Isearch , there always exists a subset S ⊆ Isearch
of not locally-dominated inputs such that in ⊑ S. Hence, the
locally dominated inputs can be removed in any order without
reducing coverage or preventing cost reduction, both being
ensured by non locally-dominated inputs. Therefore, IMPRO
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bl1 bl2 bl3 bl4 bl5 bl6 bl7
in1 ✓ ✓
in2 ✓ ✓
in3 ✓ ✓
in4 ✓ ✓
in5 ✓ ✓

in1

in2

in3 in5

in4

Fig. 5. Inputs covering one objective in common (left) are connected in the corresponding overlapping graph (right).

keeps in the search space only the remaining inputs that are
not locally-dominated:

Isearch ← {in ∈ Isearch | ∀S ⊆ Isearch : in ̸⊑ S}

F. Dividing the Problem

After removing as many inputs as possible, we leverage the
overlapping relation (§ VII-E) to partition the remaining inputs
into connected components, in a divide-and-conquer approach.
We denote G⊓(I ) the overlapping graph of the input set I ,
i.e., the undirected graph such that vertices are inputs in I and
edges correspond to the overlapping relation ⊓, and Comps(I )
the set of the connected components of G⊓(I ).

For instance, in Figure 5, we represent on the left the input
blocks covered by each input in the search space and the
corresponding overlapping graph on the right. The connected
components of the graph are {in1, in2, in3} and {in4, in5}.

Such connected components are important because we
prove in the separate appendix (Proposition 8) that inputs
in a connected component can be removed without altering
the redundancy of inputs in other connected components.
Similarly, we prove in the separate appendix (Theorem 3)
that the gain, i.e., the maximal cost reduction from removing
redundant inputs (§ III-C), can be independently computed
on each connected component, i.e., for each input set I ,
gain(I ) =

∑
C∈Comps(I ) gain(C ).

Hence, instead of searching a solution on Isearch to solve our
initial problem (§ III-D), we use a divide-and-conquer strategy
to split the problem into more manageable sub-problems that
can be independently solved on each connected component
C ∈ Comps(Isearch).

We denote Coverageobj (C )
def
=Coverageobj ∩ Cover(C )

the remaining objectives to be covered by inputs in C and
we formulate the sub-problem on the connected component
similarly to the initial problem:

minimize
I⊆C

FC (I )
def
=[ω(cost(I )), fbl1(I ), . . . , fbln(I )]

where Coverageobj (C ) = {bl1, . . . , bln} and the minimize
notation is detailed in § II-E1. We denote IC a non-
dominated solution with full coverage, such that FC (IC ) =
[ω(costmin), 0, . . . , 0].

VIII. STEP 5: GENETIC SEARCH

Our initial goal of obtaining a subset Ifinal ⊆ Iinit with total
input coverage at minimal cost (§ III-A) can be expressed
as a weighted set cover problem. Given a universe U , a

set S = {S1, S2, . . .} of subsets Si ⊆ U , and a weight
function mapping each subset Si to a positive real number,
the weighted set cover problem consists in finding a subset
T ⊆ S such that subsets Si in T cover U at a minimal
cumulative cost. To express our initial goal as a weighted
set cover problem, we consider as universe the input blocks
U = Cover(Iinit) to cover, as subsets of the universe the
input blocks Cover(in) covered by each input in ∈ Iinit ,
and as weight of a subset Cover(in) the cost cost(in) of
the corresponding input. A solution to this set cover problem
is a set of subsets T = {Cover(in1), . . . ,Cover(inn)},
providing a minimized input set {in1, . . . , inn}, given that
each subset Cover(in) can be uniquely mapped to its initial
input in . This is the case for each connected component
C , since IMPRO removed duplicates (§ VII-D) and locally-
dominated inputs (§ VII-E). While the set cover problem is
NP-hard [44], it admits a very efficient [45] polynomial time
approximation using a greedy algorithm, as well as various
techniques to find approximate solutions to an ILP formulation
of the problem [46]. Unfortunately, the set cover problem
considers only the total coverage and the cumulative cost of
solutions, not input blocks as individual objectives (§ III-B)
as in the formulation of our many-objective problem (§ III-D)
or sub-problem (§ VII-F). Hence, an algorithm solving the set
cover problem may not take into account relevant information
about how each input block is covered. Indeed, some blocks
may be more difficult to cover and should thus receive
priority. Further, an input selected by the greedy algorithm,
because it covers many blocks at small cost, may be less
optimal than several inputs covering more blocks at slightly
larger cost. For instance, if Cover(in1) = {bl1, bl2} with
cost(in1) = 2, Cover(in2) = {bl1, bl3} with cost(in2) = 3,
and Cover(in3) = {bl2, bl4} with cost(in3) = 3, the greedy
algorithm selects in1 because it is locally optimal, then in2

and in3 to cover respectively bl3 and bl4, at a total cost of
8. However, selecting only in2 and in3 leads to full coverage
but at a lower cost of 6. In this example, the greedy algorithm
selects in1 covering blocks bl1 and bl2, which are easier
to cover because each block can be covered by two inputs,
while blocks bl3 and bl4 can only be covered by one input.
Therefore, it is unlikely for a polynomial time approximation
of the set cover problem to find, in general, the best solution
to our many-objective problem.

Alternatively, obtaining an optimal solution IC to our sub-
problem on a connected component C is similar to solving the
knapsack problem, which is also NP-hard [33]. To be more
precise, our problem is equivalent to the 0-1 knapsack prob-
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lem, which consists in selecting a subset of items to maximize
a total value, while satisfying a weight capacity. Since we
consider a many-objective problem (§ III-B), we must address
the multidimensional variant of the 0-1 knapsack problem,
where each item has many “weights”, one per considered
objective. In our case, we minimize the total cost instead of
maximizing total value and ensure the coverage of each action
objective instead of making sure that each weight capacity is
not exceeded. Furthermore, the 0-1 multidimensional knapsack
problem is harder than the initial knapsack problem as it does
not admit a fully polynomial time approximation scheme [47],
hence the need for a meta-heuristic.

For our approach to scale, we adopt a genetic algorithm
because it is known to find good approximations in reasonable
execution time [28] and has been widely used in software
testing. An input set I ⊆ C can thus be seen as a chromosome,
where each gene corresponds to an input in ∈ C , the gene
value being 1 if in ∈ I and 0 otherwise. Though several many-
objective algorithms have been successfully applied within
the software engineering community, like NSGA-III [27], [29]
and MOSA [28] (§ II-E2), these algorithms do no entirely fit
our needs (§ VIII-A). Hence, we propose MOCCO (Many-
Objective Coverage and Cost Optimizer), a novel genetic
algorithm based on two populations and summarized in Algo-
rithm 2. We first explain how these populations are initialized
(§ VIII-B). Then, for each generation, MOCCO performs the
following standard steps: selection of the parents (§ VIII-C),
crossover of the parents to produce an offspring (§ VIII-D),
mutation of the offspring (§ VIII-E), and update of the pop-
ulations (§ VIII-F) to obtain the next generation. The process
continues until a termination criterion is met (§ VIII-G). Then,
we detail how MOCCO determines the solution IC to each
sub-problem.

A. Motivation for a Novel Genetic Algorithm

While our problem is similar to the multidimensional 0-1
knapsack problem, it is not exactly equivalent, since standard
solutions to the multidimensional knapsack problem have to
ensure that, for each “weight type”, the total weight of the
items in the knapsack is below weight capacity, while we
want to ensure that, for each objective, at least one input in the
minimized input set covers it. Hence, standard solutions based
on genetic search are not applicable in our case, and we focus
on genetic algorithms able to solve many-objective problems
in the context of test case generation or minimization. We
have explained earlier (§ II-E2) the challenges raised by many-
objective problems and how the NSGA-III [27], [29] and
MOSA [28] genetic algorithms tackle such challenges.

NSGA-III has the advantage of letting users choose the parts
of the Pareto front they are interested in, by providing refer-
ence points. Otherwise, it relies on a systematic approach to
place points on a normalized hyperplane. While this approach
is useful in general, we are interested only in solutions that are
close to a utopia point [0, 0, . . . , 0] (§ III-C) covering every
objective at no cost. Hence, we do not care about diversity
over the Pareto front, and we want to explore a very specific
region of the search space. Moreover, apart from the starting

Algorithm 2 MOCCO overview.
1: procedure MOCCO(C , nsize , ngens , timebudget )
2: timestart ← getTime()
3: Roofers ← initRoofers(C , nsize)
4: Misers ← ∅
5: n← 1
6: stillTime ← True
7: while n ≤ ngens ∧ stillTime do
8: n← n+ 1
9: I1, I2 ← selectParents(Roofers,Misers)

10: I3, I4 ← crossover(I1, I2)
11: for I ∈ {I3, I4} do
12: I ← mutate(I )
13: I ← reduce(I )
14: if getTime()− timestart > timebudget then
15: stillTime ← False
16: break
17: if I ∈ Roofers ∪Misers then
18: continue
19: if Cover(I ) = Coverageobj (C ) then
20: Roofers ← updRoofers(Roofers, I )
21: else
22: Misers ← updMisers(Misers, I )

23: IC ← selectSolution(Roofers)
24: return IC

points, the main use of the reference points in NSGA-III is
to determine, after the first nondomination fronts are obtained
from NSGA-II [24], the individuals to be selected from the last
considered front, so that the population reaches a predefined
number of individuals. This is not a problem we face because
we know there is only one point (or several points, but at the
same coordinates) in the Pareto front that would satisfy our
constraint of full coverage at minimal cost. Hence, we do not
use the Pareto front as a set of solutions, even if we intend
to use individuals in the Pareto front as intermediate steps to
reach relevant solutions.

Regarding MOSA [28], trade-offs obtained from approxi-
mating the Pareto front are only used for maintaining diversity
during the search, which is similar to what we intend to
do. But, as opposed to the use case tackled by MOSA, in
our case determining inputs covering a given objective is
straightforward. Indeed, for each objective, we can easily
determine inputs that are able to cover it (§ III-B). Hence,
individuals ensuring the coverage of the objectives are easy
to obtain, while the hard part of our problem is to determine
a combination of inputs able to cover all the objectives at a
minimal cost. Hence, even if MOSA may find a reasonable
solution, because it focuses on inputs individually covering an
objective and not on their collective coverage and cost, it is
unlikely to find the best solution.

Hence, we propose a novel genetic algorithm, named
MOCCO. We take inspiration from MOSA [28] by considering
two populations: 1) a population of solutions (like MOSA’s
archive), called the roofers because they cover all the objec-
tives (§ VI-C6), and 2) a population of individuals on the
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Pareto front (§ III-D), called the misers because they minimize
the cost, while not covering all objectives. Like NSGA-III and
MOSA, MOCCO has to tackle challenges raised by many-
objective problems (§ II-E2).

To address challenge 1, we take inspiration from the whole
suite approach [31] which counts covered branches as a single
objective, by defining the exposure as the sum of the coverage
objective functions (§ III-C):

exposure(I )
def
=

∑

bli∈Coverageobj (C )

fbli(I )

Since fbli(.) is zero when the objective bl i is covered, the
larger the exposure, the smaller the input set coverage. As
described in § III-B, we do not use the exposure as objective
because we want to distinguish between input blocks. But we
use it as a weight when randomly selecting a parent amongst
the misers (§ VIII-C), so that the further away a miser is from
complete coverage, the less likely it is to be selected. That
way, we aim to benefit from the large number of dimensions
to avoid getting stuck in a local optimum and to have a better
convergence rate [23], while still focusing the search on the
region of interest.

Since we want to deeply explore this particular region,
we do not need to preserve diversity over the whole Pareto
front. Therefore, we do not use diversity operators, avoiding
challenge 2.

Finally, we address challenge 3 by 1) restricting the recom-
bination operations and 2) tailoring them to our problem, as
follows:

1) A crossover between roofers can only happen during
the first generations, when no miser is present in the
population. After the first miser is generated, crossover
(§ VIII-D) is allowed only between a roofer and a miser.
Hence, the roofer parent provides full coverage while the
miser parent provides almost full coverage at low cost.
Moreover, because of how the objective functions are
computed (§ III-C), the not-yet-covered objectives are
likely to be covered in an efficient way. That way, we
hope to increase our chances of obtaining offspring with
both large coverage and low cost.

2) Not only our recombination strategy is designed to be
computationally efficient (by minimizing the number of
introduced redundancies), but we exploit our knowledge
of input coverage to determine a meaningful crossover
between parents, with inputs from one parent for one
half of the objectives and inputs from the other parent
for the other half.

B. Population Initialization

During the search, because we need diversity to explore
the search space, we consider a population (with size nsize ≥
2) of the least costly individuals generated so far that satisfy
full coverage. We call roofers such individuals, by analogy
with covering a roof, and we denote Roofers(n) the roofer
population at generation n.

But focusing only on the roofers would prevent us to exploit
the least expensive solutions obtained in the Pareto front

Algorithm 3 Roofer population initialization.
1: procedure INITROOFERS(C , nsize )
2: Roofers ← ∅
3: while |Roofers| < nsize do
4: I ← ∅
5: while Cover(I ) ̸= Coverageobj (C ) do
6: bl ← select(Coverageobj (C ) \ Cover(I ),Punif)
7: in ← select(Inputs(bl),Pinit)
8: I ← I ∪ {in}
9: I ← reduce(I )

10: if I ̸∈ Roofers then
11: Roofers ← Roofers ∪ {I }
12: return Roofers

while trying to minimize the connected component (§ VII-F).
Instead, inputs that do not cover all the objectives, and will
thus not be retained for the final solution, but are efficient
at minimizing cost, are thus useful as intermediary steps
towards finding an efficient solution. Hence, we maintain
a second population, formed by individuals that are non-
dominated so far and minimize cost while not covering all
the objectives. We call misers such individuals, because they
focus on cost reduction more than objective coverage, and we
denote Misers(n) the miser population at generation n.

The reason for maintaining two distinct populations is to
restrict the crossover strategy (§ VIII-D) so that (in most cases)
one parent is a roofer and one parent is a miser. Since misers
prioritize cost over coverage, a crossover with a miser tends
to reduce cost. Because roofers prioritize coverage over cost,
a crossover with a roofer tends to increase coverage. Hence,
with such a strategy, we intend to converge towards a solution
minimizing cost and maximizing coverage.

For both populations, we want to ensure that the individuals
are reduced (§ III-C), i.e., they contain no redundant inputs.
Hence, during the initialization and updates of these popula-
tions, we ensure that removal steps are performed. Because,
as detailed in the following, the number of redundant inputs
obtained for each generation is small, the optimal order of
removal steps can be exhaustively computed. We denote by
reduce(I ) the input set I after these removal steps. This limits
the exploration space, since non-reduced input sets are likely
to have a large cost and hence to be far away for the utopia
point of full coverage at no cost we intend to focus on.

The miser population is initially empty, i.e., Misers(0)
def
=∅,

as misers are generated during the search through mutations
(§ VIII-F). We detail in Algorithm 3 how the roofer population
Roofers(0) is initialized, where select(X,P) randomly select
one element in X using distribution P, Punif denotes the uni-
form distribution, and Pinit denotes the following distribution:

Pinit(in1)
def
=

1
1+occurrence(in1)∑

in2∈Inputs(bl)

1
1+occurrence(in2)

where occurrence(in) denotes the number of times the input
in was selected in the roofer population so far. This distribu-
tion ensures that inputs that were not selected so far are more
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likely to be selected, so that the initial roofer population can
be more diverse. Note that computing reduce(I ) is tractable
since adding a new input can only affect the redundancy of
inputs that overlap with it (§ VII-E).

C. Parents Selection

For each generation n, parents are selected as follows. If
Misers(n) ̸= ∅, then one parent is selected from the miser
population and one from the roofer population. Otherwise,
two distinct parents are selected from the roofer population.
A parent I1 ∈ Misers(n) is randomly selected from the miser
population using the following distribution:

Pmisers(I1)
def
=

1
exposure(I1)∑

I2∈Misers(n)

1
exposure(I2)

where the exposure is defined in § VIII-A. The purpose of this
distribution is to ensure that input sets with large coverage or at
least large potential (§ III-C) are more likely to be selected. A
parent I1 ∈ Roofers(n) is randomly selected from the roofer
population using the following distribution:

Proofers(I1)
def
=

1
cost(I1)∑

I2∈Roofers(n)

1
cost(I2)

The purpose of this distribution is to ensure that less costly
input sets are more likely to be selected.

D. Parents Crossover

After selecting two distinct parents I1 and I2, we detail how
they are used to generate the offspring I3 and I4. Our crossover
strategy exploits the fact that, for each objective bl to cover, it
is easy to infer inputs in Inputs(bl) able to cover bl (§ III-B).
For each crossover, we randomly split the objectives in two
halves O1 and O2 such that O1 ∪O2 = Coverageobj (C ) and
O1 ∩ O2 = ∅. We consider here a balanced split, to prevent
cases where one parent massively contributes to offspring
coverage.

Then, we use this split to define the crossover: inputs in the
connected component C are split between S1

def
= Inputs(O1),

the ones covering the first half of the objectives, and
S2

def
= Inputs(O2), the ones covering the second half. Note that

some inputs may cover objectives both in O1 and O2, so we
call the edge of the split the intersection S1 ∩S2. Because we
assume both parents are reduced, this means that redundant
inputs can only happen at the edge of the split. The genetic
material of both parents I1 and I2 is then split in two parts:
inputs in S1 and inputs in S2, as follows:

I1 = (I1 ∩ S1) ∪ (I1 ∩ S2)
I2 = (I2 ∩ S1) ∪ (I2 ∩ S2)

Then, these parts are swapped to generated the offspring,
as follows:

I3
def
=(I1 ∩ S1) ∪ (I2 ∩ S2)

I4
def
=(I2 ∩ S1) ∪ (I1 ∩ S2)

For illustration purpose we consider in Figure 6 a small
connected component C = {in1, in2, in3, in4, in5} and the

→+ ,

in1

in3 in3

in4

in2

in5

in1

in3

in5

in2

in3

in4

Fig. 6. Crossover Example

following split for the inputs: Inputs(O1) = {in1, in2, in3}
and Inputs(O2) = {in3, in4, in5}. The edge of the split
is Inputs(O1) ∩ Inputs(O2) = {in3}. The offspring of
parents I1 = {in1, in3, in4} and I2 = {in2, in5} is I3 =
{in1, in3, in5} and I4 = {in2, in3, in4}.

E. Offspring Mutation

Each gene of an offspring I corresponds to an input in ∈ C ,
the gene value being 1 if in ∈ I and 0 otherwise. A mutation
happens when this gene value is changed, hence mutation
randomly adds or removes one input from an offspring.

The crossover (at the edge of the split) and mutation (when
an input is added) steps may result in inputs being redundant in
the offspring. Since redundancies in the connected component
were already reduced by IMPRO (§ VII-F) and changes in
redundancy could happen only amongst neighbors (for the
overlapping relation) of the changed inputs (§ VII-E), we only
expect a few redundant inputs. Therefore, removal steps can
be exhaustively computed to replace each offspring I by its
reduced counterpart reduce(I ) (§ VIII-B).

F. Population Update

We detail how the offspring is used to obtain the popula-
tions Roofers(n+ 1) and Misers(n+ 1) at generation n+1.

First, we discard any offspring that is a duplicate of an
individual already present in either Roofers(n) or Misers(n).
Indeed, the duplication of individuals would only result in
altering their weight for being selected as parents (thus, the
intended procedure), reducing roofer diversity, and increasing
the number of miser comparisons (as detailed below).

If a remaining offspring I1 covers all the objectives in
Coverageobj (C ), then it is a candidate for the roofer pop-
ulation. Otherwise, it is a candidate for the miser population.

For each candidate I1 for the roofer population,
MOCCO computes its cost. If cost(I1) ≤ max
{cost(I ) | I ∈ Roofers(n)}, then it selects the most
costly roofer I2 (or, in case of a tie, one of the most costly
roofers), removes I2 from the population, and adds I1.
Otherwise, I1 is rejected. Note that we chose ≤ instead of
< for the above cost criterion because, in case of a tie, we
prefer to evolve the population instead of maintaining the
status quo, to increase the odds of exploring new regions of
the search space.

For each candidate I1 to the miser population, we compute
its fitness vector FC (I1) (§ VII-F). Then, for each I2 ∈
Misers(n) we compare FC (I1) and FC (I2). If I2≻ I1 in
the sense of Pareto-dominance (§ II-E1), then we stop the
process and I1 is rejected. If I1≻ I2, then I2 is removed from
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Misers(n). That way, we ensure that the miser population
contains only non-dominated individuals. After completing the
comparisons, if the process was not stopped, then I1 itself is
non-dominated, so it is added to the miser population. In that
case, FC (I1) is stored for future comparisons.

Properties satisfied by roofers and misers are detailed in the
separate appendix (Theorems 4 and 5).

G. Termination

MOCCO repeats the process until it reaches a fixed number
of generations or exhausts a given time budget. Then, amongst
the least costly roofers (several may have the same cost), it
randomly selects one individual IC as solution to our sub-
problem (§ VII-F). IC covers all the objectives and, amongst
the input sets covering those objectives, IC has the smallest
cost encountered during the search.

IX. STEP 6: DATA POST-PROCESSING

The set Inecess was initially empty (§ VII-B) and then
accumulated necessary inputs each time redundancy was de-
termined (§ VII-C). After removing inputs and reducing the
objectives to be covered accordingly (Section VII), IMPRO
obtained a set Isearch of remaining inputs and objectives. Then,
IMPRO divided the remaining problem into sub-problems
(§ VII-F), one for each connected component C . Finally,
for each connected component C , the corresponding sub-
problem was solved using MOCCO (Section VIII), obtaining
the corresponding minimized component IC . At the end of the
search, AIM merges inputs from each minimized component
IC with the necessary inputs Inecess to obtain a minimized
input set Ifinal as solution to our initial problem (§ III-D):

Ifinal
def
= Inecess ∪

⋃

C∈Comps(Isearch)

IC

X. EMPIRICAL EVALUATION

In this section, we report our results on the assessment
of our approach with two Web systems. We investigate the
following Research Questions (RQs):

RQ1 What is the vulnerability detection effectiveness
of AIM, compared to alternatives? This research
question aims to determine if and to what extent
AIM reduces the effectiveness of MST by comparing
the vulnerabilities detected between the initial and
the minimized input sets. Also, we further compare
the vulnerability detection rate of AIM with simpler
alternative approaches.

RQ2 What is the input set minimization effectiveness
of AIM, compared to alternatives? This research
question aims to analyze the magnitude of minimiza-
tion in terms of the number of inputs, cost (§ III-A
and V-A), and execution time for the considered
MRs, both for AIM and alternative approaches.

RQ3 What is the input set minimization effectiveness of
MOCCO, compared to alternatives? This research
question aims to determine the particular contribution

of the novel MOCCO genetic algorithm in minimiz-
ing cost while preserving vulnerability detection, by
comparing it to alternative approaches for different
time budgets.

A. Experiment Design

1) Subjects of the Study: To assess our approach with MRs
and input sets that successfully detect real-world vulnerabili-
ties, we rely on the same input sets and settings as MST-wi [6].

The targeted Web systems under test are Jenkins [48] and
Joomla [49]. Jenkins is a leading open source automation
server while Joomla is a content management system (CMS)
that relies on the MySQL RDBMS and the Apache HTTP
server. We chose these Web systems because of their plug-in
architecture and Web interface with advanced features (such
as Javascript-based login and AJAX interfaces), which makes
Jenkins and Joomla good representatives of modern Web
systems.

Further, these systems present differences in their output
interface and input types that, since inputs and outputs are key
drivers for our approach, contribute to improve the generaliz-
ability of our results. Concerning outputs, Joomla is a CMS
where Web pages tend to contain a large amount of static
text that differ in every page, while Jenkins provides mainly
structured content that may continuously change (e.g., seconds
from the last execution of a Jenkins task). The input interfaces
of Jenkins are mainly short forms and buttons whereas the
inputs interfaces of Joomla often include long text areas and
several selection interfaces (e.g., for tags annotation).

The selected versions of Jenkins and Joomla—2.121.1 and
3.8.7, respectively—are affected by known vulnerabilities that
can be triggered from the Web interface; we describe them in
§ X-A2.

The input set provided in the MST-wi’s replication package
has been collected by running Crawljax with, respectively,
four users for Jenkins and six users for Joomla having dif-
ferent roles, e.g., admin. For each role, Crawljax has been
executed for a maximum of 300 minutes, to prevent the crawler
from running indefinitely, thereby avoiding excessive resource
consumption. Further, to exercise features not reached by
Crawljax, a few additional Selenium [50]-based test scripts
(four for Jenkins and one for Joomla) have been added to the
input set. In total, we have 160 initial inputs for Jenkins and
148 for Joomla, which are all associated to a unique identifier.

Since MOCCO assumes redundancy in the input set to be
already reduced by IMPRO (e.g., to ensure the reduction step
after mutation is tractable), we do not consider the initial
input sets for RQ3 but their reduced versions. Thus, we
run the double-clustering (Section VI) and problem reduction
(Section VII) steps to obtain a set of necessary inputs and
several connected components. Then, the input set for RQ3 is
the union of these necessary inputs and connected components,
called a reduced input set. We repeat this process several times
(to reduce the impact of randomness), thus obtaining several
reduced input sets.

Finally, since we know necessary inputs should be part of
the solution and minimization can be performed independently
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TABLE II
JENKINS VULNERABILITIES.

CVE Description Vulnerability Type Input Identifiers
CVE-2018-
1000406
[52]

In the file name parameter of a Job configuration, users
with Job / Configure permissions can specify a relative
path escaping the base directory. Such path can be used
to upload a file on the Jenkins host, resulting in an
arbitrary file write vulnerability.

CWE 22 160

CVE-2018-
1000409
[53]

A session fixation vulnerability prevents Jenkins from
invalidating the existing session and creating a new one
when a user signed up for a new user account.

CWE 384 112, 113, 114

CVE-2018-
1999003
[54]

Jenkins does not perform a permission check for URLs
handling cancellation of queued builds, allowing users
with Overall / Read permission to cancel queued builds.

CWE 280, CWE 863 116, 157

CVE-2018-
1999004
[55]

Jenkins does not perform a permission check for the
URL that initiates agent launches, allowing users with
Overall / Read permission to initiate agent launches.

CWE 863, CWE 285 2, 116

CVE-2018-
1999006
[56]

A exposure of sensitive information vulnerability al-
lows attackers to determine the date and time when a
plugin was last extracted.

CWE 200, CWE 668 33, 55, 57, 61, 62, 63, 64, 75, 107, 108, 110, 135, 136, 156, 160

CVE-2018-
1999046
[57]

Users with Overall / Read permission are able to access
the URL serving agent logs on the UI due to a lack of
permission checks.

CWE 200 2, 116

CVE-2020-
2162 [58]

Jenkins does not set Content-Security-Policy headers
for files uploaded as file parameters to a build, resulting
in a stored XSS vulnerability.

CWE 79 1, 18, 19, 23, 26, 75, 156, 158

Password
aging
problem in
Jenkins

Jenkins does not integrate any mechanism for managing
password aging; consequently, users aren’t incentivized
to update passwords periodically.

CWE 262 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23,
24, 25, 26, 27, 28, 30, 32, 110, 33, 34, 35, 38, 39, 41, 42, 43, 44, 45,
46, 47, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73, 74, 75, 104, 108, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 133, 134, 143, 145, 146, 159, 160

Weak
password in
Jenkins

Jenkins does not require users to have strong pass-
words, which makes it easier for attackers to compro-
mise user accounts.

CWE 521 112, 113, 114

TABLE III
JOOMLA VULNERABILITIES.

CVE Description Vulnerability Type Input Identifiers
CVE-2018-
11327 [59]

Inadequate checks allow users to see the names of
tags that were either unpublished or published with
restricted view permission.

CWE 200 37 with 22, 23, 24, 25, 50

CVE-2018-
17857 [60]

Inadequate checks on the tag search fields can lead to
an access level violation.

CWE 863 1 with 22, 23, 24, 25

Password
aging
problem in
Joomla

Joomla does not integrate any mechanism for managing
password aging; consequently, users aren’t incentivized
to update passwords periodically.

CWE 262 2, 3, 5, 6, 7, 8, 11, 12, 15, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30,
66, 110, 144, 146

on each connected component (Section VII), we can exhaus-
tively search the best order of removal steps for each connected
component, in order to determine the optimal solution for each
reduced input set. Thus, we can compare the solutions obtained
by different search algorithms for different time budgets to
this optimal solution. Note that this approach is tractable for
the considered connected components only because they are
small, but it is intractable for larger input sets, e.g., the initial
or reduced input sets.

2) Security Vulnerabilities: The replication package for
MST-wi [51] includes 76 metamorphic relations (MRs). These
MRs can identify nine vulnerabilities in Jenkins and three
vulnerabilities in Joomla using the initial input set, as detailed
in Tables II and III, respectively.

For both tables, the first column contains, when available,
the CVE identifiers of the considered vulnerabilities. The pass-
word aging problem (for both Jenkins and Joomla) and weak
password (for Jenkins) are vulnerabilities that were identified
during the MST-wi study [6] and therefore do not have CVE
identifiers. The second column provides a short description
of the vulnerabilities. The third column reports the CWE

ID for each vulnerability. We present two CWE IDs (e.g.,
CWE 863 and 280) in cases where the CVE report denotes
a general vulnerability type (e.g., CWE 863 for incorrect
authorization [54]), though a more precise identification (e.g.,
CWE 280 concerning improper handling of privileges that may
result in incorrect authorization) could be applied. Since the
12 considered vulnerabilities are associated to nine different
CWE IDs and each vulnerability has a unique CWE ID, we
can conclude that the selected subjects cover a diverse set of
vulnerability types, thus further improving the generalizability
of our results.

The last column in Tables II and III lists identifiers for inputs
which were able to trigger the vulnerability using one of the
corresponding MRs. For instance, one can detect vulnerability
CVE-2018-1999046 in Jenkins by running the MR written
for CWE 200 with inputs 2 or 116. For the first two Joomla
vulnerabilities, two inputs need to be present at the same time
in the input set in order to trigger the vulnerability because, as
opposed to most MRs, the corresponding MRs requires two
source inputs to generate follow-up inputs. For instance, to
detect vulnerability CVE-2018-17857 in Joomla, one needs
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input 1 and at least one input amongst inputs 22, 23, 24, or
25.

3) AIM configurations: AIM can be configured in different
ways to obtain a minimized input set from an initial input set.
Such a configuration consists in a choice of distance function
and algorithm for output clustering (§ VI-B), and a choice of
algorithm for action clustering (§ VI-C).

For the sake of conciseness, in Tables V to XI, we denote
each configuration by three letters, where L and B respectively
denote the Levenshtein and Bag distances, and K, D, and H
respectively denote the K-means, DBSCAN, and HDBSCAN
clustering algorithms. For instance, BDH denotes that Bag
distance and DBSCAN were used for output clustering, and
then HDBSCAN for action clustering. These notations are
summarized in Table IV.

AIM performs Silhouette analysis (§ VI-A) to determine the
hyper-parameters required for these clustering algorithms. We
considered the same ranges of values for the hyper-parameters
in both output clustering (§ VI-B) and action clustering steps
(§ VI-C). For K-means, we select the range [1, 70] for the
number of clusters k. In the case of DBSCAN, the range for
the distance threshold ϵ is [2, 10] for Jenkins and [3, 15] for
Joomla. The range is larger for Joomla because Joomla has a
larger number of Web pages than Jenkins. Finally, the range
for the minimum number of neighbors n is [1, 5] for both
systems. For HDBSCAN, the range for the minimum number
n of individuals required to form a cluster is [2, 8] for both
systems.

We also determine the hyper-parameters for the genetic
search (Section VIII). Related work on whole test suite genera-
tion successfully relied on a population of 80 individuals [31].
Since we reduced the problem (Section VII) before applying
MOCCO independently to each connected component, which
includes fewer inputs than the whole test suite generation [31],
we experimented with a lower population size of 20 indi-
viduals. Additionally, for RQ1 and RQ2, we set the number
of generations for the genetic algorithm to 100, similar to
the value considered in previous work [31]. However, for
RQ3, to compare the minimized input sets obtained by search
algorithms with different time budgets, we use a maximum
time budget of 600 seconds as the termination criterion for
MOCCO, consistent with MOSA’s study [28], while recording
the intermediate results over time.

4) Baselines: For RQ1 and RQ2, we identify the following
baselines against which to compare AIM configurations.

A 2016 survey reported that 57% of metamorphic testing
(MT) work used Random Testing (RT) to generate source
inputs [5] and, in 2021, 84% of the publications related to MT
adopted traditional or improved RT methods to generate source
inputs [61]. In the context of test suite minimization, random
search is a straightforward baseline against which to compare
AIM that is commonly used [21], [22]. This baseline consists
in randomly selecting a given number of inputs from the initial
input set. This number is determined based on AIM runs.
Each AIM run is performed using 18 different configurations
(§ X-A3), each leading to a different minimized input set. So,
for a fair comparison, we configure random search to select n
inputs from the initial input, where n is the size of the largest

TABLE IV
AIM CONFIGURATIONS AND BASELINES FOR RQ1 AND RQ2.

Output clustering Action clustering
Distance Algorithm Algorithm

AIM configurations

LKK Levenshtein K-means K-means
LKD Levenshtein K-means DBSCAN
LKH Levenshtein K-means HDBSCAN
LDK Levenshtein DBSCAN K-means
LDD Levenshtein DBSCAN DBSCAN
LDH Levenshtein DBSCAN HDBSCAN
LHK Levenshtein HDBSCAN K-means
LHD Levenshtein HDBSCAN DBSCAN
LHH Levenshtein HDBSCAN HDBSCAN
BKK Bag K-means K-means
BKD Bag K-means DBSCAN
BKH Bag K-means HDBSCAN
BDK Bag DBSCAN K-means
BDD Bag DBSCAN DBSCAN
BDH Bag DBSCAN HDBSCAN
BHK Bag HDBSCAN K-means
BHD Bag HDBSCAN DBSCAN
BHH Bag HDBSCAN HDBSCAN

Baselines

R × Random
AK × K-means
AD × DBSCAN
AH × HDBSCAN

input set produced by the 18 AIM configurations. We repeat
this process, for each AIM run, to obtain the same number of
input sets for random search as for AIM.

Moreover, Adaptive Random Testing (ART) was proposed
to enhance the performance of RT. It is based on the intuition
that inputs close to each other are more likely to have similar
failure behaviors than inputs further away from each other.
Thus, ART generates inputs widely spread across the input
domain, in order to find failure with fewer inputs than RT [62].
ART is also commonly used in the context of test suite
minimization [16], [38]. It is similar to our action clustering
step (§ VI-C), since it is based on partitioning the input
space and generating new inputs in blocks that are not already
covered [61].

To perform ART, we need to group inputs based on the
similarity between their actions. So, we use AIM to perform
action clustering directly on the initial input set instead of
output classes. Then, for each cluster, we randomly select one
input that covers it. Finally, we group the selected inputs to
obtain an input set for the ART baseline. This algorithm will
stop when we have selected one input from each cluster, and
thus, it is not limited by a time budget. Again, we repeat this
process for each AIM run. Since we considered the K-means,
DBSCAN, and HDBSCAN clustering algorithms, there are
three variants of this baseline.

In Tables V to XI, R denotes the random search baseline
while AK, AD, and AH denote the ART baselines, using re-
spectively the K-means, DBSCAN, and HDBSCAN clustering
algorithms. These notations are summarized in Table IV.

RQ3 aims at determining the contribution of the MOCCO
genetic algorithm to input set minimization and comparing
it with alternative approaches. We consider random search, a
greedy algorithm for the set cover problem (Section VIII), as
well as MOSA and NSGA-III (§ II-E2), which are well-known
many-objective search algorithms [63]–[66].

We use random search to provide insights on how difficult
the problem is and to help assess if search algorithms are
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necessary to solve it. Random search starts with an empty
input set and, for each iteration, randomly selects one input
from the reduced input set (§ X-A1). This process continues
until all the objectives are covered.

The greedy algorithm for the set cover problem [46] is one
of the best-possible polynomial time approximation algorithm
for this problem, with a tight bound on the cost of the solution
for the unweighted variant of the problem [45], matching
theoretical bounds [67], and that can be efficiently adapted
to the weighted variant [46]. Since the weighted set cover
problem is close to our problem (Section VIII), we adapt this
greedy algorithm to obtain a minimized input set from the
reduced input set. The minimized input set is initially empty.
For each iteration, the input with the best cost effectiveness is
selected, where the cost effectiveness of input in is computed
as |Cover(in)∩Uncovered|

cost(in) . Recall that Cover(in) and cost(in)
are defined in § III-A, and Uncovered denotes the set of the
objectives not yet covered by selected inputs. This process
continues until all the objectives are covered.

The initial population for both MOSA and NSGA-III is the
reduced input set. For the other parameters, such as population
size, mutation rate, and (for NSGA-III) the number of refer-
ence points (§ II-E), we use the default values recommended in
the original studies [27]–[29]. More precisely, the population
size for MOSA is set to 50, while it is automatically computed
for NSGA-III based on the number of reference points. We
set the crossover rate to 1 for both MOSA and NSGA-III, the
same as MOCCO. Finally, we use the same objective functions
and mutation operator for both MOSA and NSGA-III, as
in MOCCO. Finally, for MOCCO and all baselines, we use
the same termination criterion as in MOSA’s study [28],
allocating a maximal time budget of 600 seconds for all search
algorithms, while recording intermediate results to determine
the minimized input sets for smaller time budgets.

5) Evaluation Metrics: To reduce the impact of randomness
in our experiment, each configuration and baseline was run 50
times on each system, obtaining one minimized input set for
each run. Moreover, for the sake of performance analysis, we
also recorded the execution time required by AIM to generate
minimized input sets. The purpose of the metrics we use for
RQ1 and RQ2 is to determine the “best” configuration to
run AIM on a given system. But one cannot know, before
experimenting with the target system, which configuration
would be the “best” for this system. Based on the results from
Jenkins and Joomla (see § X-A1), we determine the overall
“best” configuration, to be recommended as default for a new
system.

For RQ1, we consider the vulnerabilities described in Ta-
ble II for Jenkins and in Table III for Joomla. We manually
investigated the results of the initial input sets to identify
the inputs capable of detecting vulnerabilities in the systems
under test, so that we can map inputs to vulnerabilities. For
each system, we consider that a vulnerability is detected by a
minimized input set if it contains at least one input or pair of
inputs able to trigger this vulnerability. For the first two Joomla
vulnerabilities requiring pairs of inputs, the vulnerability is
detected if both inputs are present in the input set. Hence, for
each configuration or baseline, our metric is the vulnerability

detection rate (VDR), i.e., the total number of vulnerabilities
detected by the minimized input sets obtained for the 50 runs,
divided by the total number of vulnerabilities detected by the
corresponding initial input sets. If VDR is 100%, then we
say the configuration or baseline leads to full vulnerability
coverage. The overall “best” configuration for Jenkins and
Joomla, regarding vulnerability detection, should have a large
VDR for both systems, ideally 100%. For each system, we
reject configurations and baselines which do not lead to full
vulnerability coverage, and then compare the remaining ones
to answer RQ2.

RQ2 aims at evaluating the effectiveness of AIM in mini-
mizing the initial input set. Our goal is to identify the AIM
configuration generating minimized input sets leading to the
minimal execution time for the 76 considered MRs, across
the two case studies, and reporting on the execution time
saved, compared to executing MST-wi on the full input set.
But, to have a fair comparison between MRs execution time
obtained respectively with the initial and minimized input
sets, we have to take into account the AIM execution time
required to minimize the initial input set. Thus, the input
set minimization effectiveness is quantified as the sum of
AIM execution time to obtain the minimized input set plus
MRs execution time with the minimized input set, divided
by that of the initial input set. However, since MR execution
time is usually large, we cannot collect the time required to
execute our 76 MRs on all the input sets generated by all
AIM configurations. We estimate it would take thousands of
hours for the 1800 runs, resulting from 18 configurations × 50
repetitions × 2 case study subjects. For this reason, we rely on
three additional metrics, that can be inferred without executing
MRs, to identify the “best” configuration. Then, we report
on the input set minimization effectiveness obtained by such
configuration. Further, to keep the experiment within feasible
computation resources, amongst the 50 minimized input sets
of the best configuration, we select one with a median cost
(§ III-A and V-A), to be representative of the 50 runs.

To determine the “best” AIM configuration, we consider
the size of the generated input set (i.e., the number of inputs
in it), its cost (§ III-A and V-A), and the time required
by the configuration to generate results. Input set size is
a direct measure of effectiveness, while cost is an indirect
measure, specific to our approach, that is linearly correlated
with MR execution time (§ II-B). For these three metrics (size,
cost, AIM execution time), we compare, for each system, the
AIM configurations and baselines leading to full vulnerability
coverage. More precisely, for each metric, we denote by Mi

the value of the metric obtained for the ith approach (AIM
configurations or baseline); the 50 runs of approach i leading
to a sample containing 50 data points.

To compare two samples for M1 and M2, we perform
a Mann-Whitney-Wilcoxon test, which is recommended to
assess differences in stochastic order for software engineering
data analysis [68]. This is a non-parametric test of the null
hypothesis that P(M1 > M2) = P(M1 < M2), i.e., M1 and
M2 are stochastically equal [69]. Hence, from M1 and M2

samples, we obtain the p-value p indicating how likely is the
observation of these samples, assuming that M1 and M2 are
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stochastically equal. If p ≤ 0.05, we consider it is unlikely
that M1 and M2 are stochastically equal.

To assess practical significance, we also consider a metric
for effect size. An equivalent reformulation of the null hy-
pothesis is P(M1 > M2) + 0.5 × P(M1 = M2) = 0.5, which
can be estimated by counting in the samples the number
of times a value for M1 is larger than a value for M2

(ties counting for 0.5), then by dividing by the number of
comparisons. That way, we obtain the Vargha and Delaney’s
A12 metric [69] which, for the sake of conciseness, we simply
denote A in Tables VI to XI. A is considered to be a robust
metric for representing effect size in the context of non-
parametric methods [70]. A ranges from 0 to 1, where A = 0
indicates that P(M1 < M2) = 1, A = 0.5 indicates that
P(M1 > M2) = P(M1 < M2), and A = 1 indicates that
P(M1 > M2) = 1.

RQ3 aims at determining the contribution of MOCCO
to input set minimization and comparing it with alternative
approaches. We use the results of the double-clustering and
problem reductions steps to obtain reduced input sets (§ X-A1)
from the 50 runs of the “best” configuration. For each reduced
input set, each considered algorithm (MOCCO or a baseline)
is executed to obtain the corresponding minimized input set.
Then, the minimized input sets are checked to determine if
the algorithms lead to full vulnerability coverage for this run,
and their cost (§ III-A and V-A) is recorded. Again, we denote
by Mi the cost for the ith approach. The 50 runs of approach
i yield a sample containing 50 data points. As opposed to
RQ2, where any run from a configuration/baseline can be
compared to any run of another configuration/baseline, we
want to compare the cost of the nth minimized input set for
an algorithm to the cost of the nth minimized input set of
another algorithm, since they are both obtained from the same
nth reduced input set. Hence, to compare two samples for M1

and M2, we perform a Wilcoxon signed-rank test, which is a
non-parametric paired test [68], with a level of significance of
0.05.

To assess practical significance, we also consider a metric
for effect size. Metrics for this test are often defined in terms of
the positive-rank sum R+ and the negative-rank sum R− [71],
[72]. Similarly to the Vargha and Delaney’s A12 metric [69]
we used for the Mann-Whitney-Wilcoxon test to answer RQ2,
we use for RQ3 the effect size E

def
= R+

R++R− , so that E ranges
from 0 to 1, where E = 0 indicates that M1 < M2 in every
case and E = 1 indicates that M1 > M2 in every case.

B. Empirical Results

We first describe the system configurations used to obtain
our results (§ X-B1). To answer RQ1, we report the VDR
associated with the obtained minimized input sets (§ X-B2).
Then, we describe the effectiveness of the input set reduction
of the whole AIM approach to answer RQ2 (§ X-B3) and of
the MOCCO component to answer RQ3 (§ X-B4).

1) System Configurations: We performed all the experi-
ments on a system with the following configurations: a virtual
machine installed on professional desktop PCs (Dell G7 7500,
RAM 16Gb, Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz)

TABLE V
COVERAGE OF THE JENKINS AND JOOMLA VULNERABILITIES AFTER 50

RUNS OF EACH CONFIGURATION AND BASELINE.

Vulnerability System Under Test
Coverage Jenkins Joomla

Configurations Nb of detected VDR Nb of detected VDRor baselines vulnerabilities vulnerabilities
LKK 450 100.0% 146 97.3%
LKD 371 82.4% 50 33.3%
LKH 379 84.2% 150 100.0%
LDK 450 100.0% 150 100.0%
LDD 400 88.9% 50 33.3%
LDH 400 88.9% 50 33.3%
LHK 450 100.0% 100 66.7%
LHD 403 89.6% 100 66.7%
LHH 447 99.3% 100 66.7%
BKK 450 100.0% 133 88.7%
BKD 403 89.6% 50 33.3%
BKH 410 91.1% 150 100.0%
BDK 450 100.0% 150 100.0%
BDD 338 75.1% 50 33.3%
BDH 450 100.0% 50 33.3%
BHK 450 100.0% 100 66.7%
BHD 404 89.8% 100 66.7%
BHH 428 95.1% 100 66.7%

R 339 75.3% 74 49.3%
AK 447 99.3% 125 83.3%
AD 77 17.1% 22 14.7%
AH 350 77.8% 68 45.3%

and terminal access to a shared remote server with Intel(R)
Xeon(R) Gold 6234 CPU (3.30GHz) and 8 CPU cores.

2) RQ1 - Detected Vulnerabilities: Results are presented
in Table V. Configurations and baselines that lead to full
vulnerability coverage for both systems are in green, in yellow
if they lead to full vulnerability coverage for one system, and
in red if they never lead to full vulnerability coverage. As
shown in Table II and Table III, there are 9 vulnerabilities in
Jenkins and 3 vulnerabilities in Joomla. Each AIM configura-
tion is executed 50 times to reduce the effect of randomness
in our experiments. We consider an AIM configuration to
achieve full vulnerability coverage on Jenkins if it achieves
9∗50 = 450 vulnerability detections across all runs. Similarly,
full vulnerability coverage on Joomla across all runs is reached
if the configuration achieves 3 ∗ 50 = 150 vulnerability
detections. The execution time of the AIM configurations
ranges from 15 to 24 minutes on Jenkins and from 25 to 47
minutes on Joomla. We conclude that such variation across
configurations is not significant compared to the time required
to execute MRs.

First, note that the choice of distance function for output
clustering does not have a significant impact on vulner-
ability coverage. Indeed, apart from LDH and BDH, the
results using the Levenshtein or Bag distances are fairly similar
(e.g., both LKK and BKK discover 450 vulnerabilities in
Jenkins) and seem to only depend on the choice of clustering
algorithms. This indicates that the order of words in a Web
page is not a relevant distinction when performing clustering
for vulnerability coverage. Considering now LDH and BDH,
taking into account the order of words can even be detrimental,
since they perform equally poorly for Joomla but they differ
for Jenkins, where only BDH leads to full vulnerability
coverage.

Second, the choice of clustering algorithm for action
clustering seems to be the main factor determining vulner-
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ability coverage. Configurations using DBSCAN as algorithm
for the action clustering step never lead to full vulnerability
coverage for any system. This indicates that this clustering
algorithm poorly fits the data in the input space. This is
confirmed by the results obtained for the AD baseline, which
only uses DBSCAN on the input space and performs the
worst (amongst baselines and AIM configurations) regard-
ing vulnerability coverage. After investigation, the minimized
input sets acquired for AD are much smaller compared to
those obtained for the other baseline methods. These results
cannot be explained by the hyper-parameter as we employed a
large range of values (§ X-A3). We conjecture that DBSCAN
merges together many action clusters even when the URLs
involved in these actions are distinct.

On the other hand, configurations using K-means for the
action clustering step always lead to full vulnerability
coverage for Jenkins and lead to the largest vulnerabil-
ity coverage for Joomla. This is confirmed by the results
obtained for the AK baseline, which only uses K-means on
the input space and performs the best (amongst baselines)
regarding vulnerability coverage. Indeed, even if this config-
uration does not lead to full vulnerability coverage, it is very
close. In fact, even if it tends to perform worse than AIM
configurations that use K-means for action clustering, it tends
to perform better than AIM configurations that do not use
K-means for action clustering. The success of K-means in
achieving better vulnerability coverage on these datasets can
be attributed to its ability to handle well-separated clusters.
In our case, these clusters are well-separated because of the
distinct URLs occurring in the datasets.

Finally, no baseline reached full vulnerability coverage.
On top of the already mentioned AK and AD baselines, AH
performed similarly to random testing (R), indicating that the
effect of the HDBSCAN algorithm for action clustering is neu-
tral. The only AIM configuration that performed worse than
random testing is BDD, combining DBSCAN (as mentioned
before, the worst clustering algorithm regarding vulnerability
detection) for both output and action clustering with Bag dis-
tance. Only LDK and BDK lead to full vulnerability coverage
for both Jenkins and Joomla, and hence are our candidate
“best” configurations in terms of VDR. The combination of
DBSCAN and K-means was very effective on our dataset since
DBSCAN was able to identify dense regions of outputs and
K-means allowed for further refinement, forming well-defined
action clusters based on URLs.

3) RQ2 - Input Set Reduction Effectiveness: To answer
RQ2 on the effectiveness of minimization, we compare the
input set reduction of baselines and configurations for both
Jenkins and Joomla. Amongst them, only the LKK, LDK,
LHK, BKK, BDK, BDH, and BHK configurations lead to
full vulnerability coverage for Jenkins. Their input set sizes
are compared in Table VI, their costs in Table VII, and their
AIM execution time in Table VIII. Similarly, only the LKH,
LDK, BKH, and BDK configurations lead to full vulnerability
coverage for Joomla. Their input set sizes are compared in
Table IX, their costs in Table X, and their AIM execution time
in Table XI. Configurations with full vulnerability coverage for
both Jenkins and Joomla (i.e., LDK and BDK) are in bold.

In these six tables, configurations in each row are compared
with configurations in each column. p denotes the statistical
significance and A the effect size (§ X-A5). When p > 0.05,
we consider the metric values obtained from the two con-
figurations not to be significantly different, and hence the
cell is left white. Otherwise, the cell is colored, either in
green or red. Since we consider input set size and cost and
AIM execution time, the smaller the values the better. Thus,
green (resp. red) indicates that the configuration in the row is
better (resp. worse) than the configuration in the column. The
intensity of the color is proportional to the effect size. More
precisely, the intensity is |δ|, where δ = 2 × A − 1 is Cliff’s
delta [70]. |δ| is a number between 0 and 1, where 0 indicates
the smallest intensity (the lightest color) and 1 indicates the
largest intensity (the darkest color).

For Jenkins, among the candidate best configurations (i.e.,
LDK and BDK), BDK performed significantly better than
LDK for input set size and cost, and even if the difference
is smaller for AIM execution time, the effect size is also in
favor of BDK. As for the other configurations, Table VI on
input set sizes and Table VII on input set costs consistently
indicate that BDH is the best configuration while LDK is the
worst configuration. The other configurations seem equivalent
in terms of size. Regarding cost, LKK tends to be the second
to last configuration, the other configurations being equivalent.
Regarding AIM execution time in Table VIII, the results
are more nuanced, BDH is again the best configuration, but
this time LKK is the worst configuration instead of LDK.
BDH is the only configuration that reached full vulnerability
coverage for Jenkins without using the K-means clustering
algorithm and it performs significantly better than the other
configurations, especially the ones involving K-means for both
output and action clustering steps. This indicates, without
surprise, that the K-means algorithm takes more resources to
be executed. BDH did not lead to full vulnerability coverage
for Joomla, so we do not consider it as a candidate for “best”
configuration.

For Joomla, BDK performed significantly better than
LDK for the considered metrics. As for the other configu-
rations, Table IX for input set sizes and Table X for input set
costs provide identical results, indicating that LKH and BKH
dominate the others while being equivalent. Moreover, BDK
dominates LDK, which is the worst configuration. The results
are almost identical for AIM execution time in Table XI,
with the small difference that LKH performs slightly better
than BKH. However, LKH and BKH did not lead to full
vulnerability coverage for Jenkins, as opposed to BDK and
LDK.

Since we obtained similar results for both Jenkins and
Joomla, we consider BDK to be the “best” AIM configura-
tion. This is not surprising since Bag distance is less costly to
compute than Levenshtein distance (§ VI-B) and we already
observed that the order of words in a Web page does not
appear to be a relevant distinction for vulnerability coverage
(§ X-B2).

As mentioned in § X-B2, no baseline leads to full vulnera-
bility coverage. AD fared poorly and AH performed similarly
to random testing R, but AK was much better, with 99.3%
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TABLE VI
COMPARISON OF JENKINS INPUT SET SIZES FOR CONFIGURATIONS WITH FULL VULNERABILITY COVERAGE.

sizes LKK LDK LHK BKK BDK BDH BHK

LKK p 5.4e−15 5.1e−1 4.2e−1 8.8e−1 3.1e−20 7.2e−1
A 0.05 0.54 0.55 0.49 1.0 0.48

LDK p 5.4e−15 1.8e−17 1.4e−15 1.8e−14 3.2e−20 3.8e−14
A 0.95 0.99 0.96 0.94 1.0 0.94

LHK p 5.1e−1 1.8e−17 9.8e−1 3.4e−1 3.0e−20 1.6e−1
A 0.46 0.01 0.5 0.44 1.0 0.42

BKK p 4.2e−1 1.4e−15 9.8e−1 4.1e−1 3.2e−20 2.1e−1
A 0.45 0.04 0.5 0.45 1.0 0.43

BDK p 8.8e−1 1.8e−14 3.4e−1 4.1e−1 3.2e−20 6.9e−1
A 0.51 0.06 0.56 0.55 1.0 0.48

BDH p 3.1e−20 3.2e−20 3.0e−20 3.2e−20 3.2e−20 3.2e−20
A 0.0 0.0 0.0 0.0 0.0 0.0

BHK p 7.2e−1 3.8e−14 1.6e−1 2.1e−1 6.9e−1 3.2e−20
A 0.52 0.06 0.58 0.57 0.52 1.0

TABLE VII
COMPARISON OF JENKINS INPUT SET COSTS FOR CONFIGURATIONS WITH FULL VULNERABILITY COVERAGE.

costs LKK LDK LHK BKK BDK BDH BHK

LKK p 2.5e−16 5.9e−5 1.5e−2 4.4e−3 4.1e−18 5.4e−3
A 0.02 0.73 0.64 0.67 1.0 0.66

LDK p 2.5e−16 7.0e−18 9.5e−18 7.0e−18 4.1e−18 7.0e−18
A 0.98 1.0 1.0 1.0 1.0 1.0

LHK p 5.9e−5 7.0e−18 1.0e−1 2.4e−1 4.1e−18 1.4e−1
A 0.27 0.0 0.41 0.43 1.0 0.41

BKK p 1.5e−2 9.5e−18 1.0e−1 5.8e−1 4.1e−18 6.1e−1
A 0.36 0.0 0.59 0.53 1.0 0.53

BDK p 4.4e−3 7.0e−18 2.4e−1 5.8e−1 4.1e−18 8.2e−1
A 0.33 0.0 0.57 0.47 1.0 0.49

BDH p 4.1e−18 4.1e−18 4.1e−18 4.1e−18 4.1e−18 4.1e−18
A 0.0 0.0 0.0 0.0 0.0 0.0

BHK p 5.4e−3 7.0e−18 1.4e−1 6.1e−1 8.2e−1 4.1e−18
A 0.34 0.0 0.59 0.47 0.51 1.0

TABLE VIII
COMPARISON OF JENKINS AIM EXECUTION TIMES FOR CONFIGURATIONS WITH FULL VULNERABILITY COVERAGE.

times LKK LDK LHK BKK BDK BDH BHK

LKK p 1.5e−6 1.0e−11 2.0e−2 3.8e−5 3.1e−18 1.3e−9
A 0.78 0.89 0.63 0.74 1.0 0.85

LDK p 1.5e−6 1.2e−5 3.9e−3 5.4e−1 2.6e−18 1.1e−3
A 0.22 0.75 0.33 0.54 1.0 0.69

LHK p 1.0e−11 1.2e−5 1.7e−9 1.4e−3 3.2e−17 8.7e−1
A 0.11 0.25 0.15 0.32 0.98 0.49

BKK p 2.0e−2 3.9e−3 1.7e−9 8.0e−3 3.0e−18 6.7e−7
A 0.37 0.67 0.85 0.65 1.0 0.79

BDK p 3.8e−5 5.4e−1 1.4e−3 8.0e−3 1.5e−17 1.1e−2
A 0.26 0.46 0.68 0.35 0.99 0.65

BDH p 3.1e−18 2.6e−18 3.2e−17 3.0e−18 1.5e−17 6.3e−16
A 0.0 0.0 0.02 0.0 0.01 0.04

BHK p 1.3e−9 1.1e−3 8.7e−1 6.7e−7 1.1e−2 6.3e−16
A 0.15 0.31 0.51 0.21 0.35 0.96

TABLE IX
COMPARISON OF JOOMLA INPUT SET SIZES FOR CONFIGURATIONS WITH

FULL VULNERABILITY COVERAGE.

sizes LKH LDK BKH BDK

LKH p 4.8e−15 1.3e−1 2.9e−16
A 0.06 0.42 0.06

LDK p 4.8e−15 1.1e−14 4.5e−16
A 0.94 0.94 0.94

BKH p 1.3e−1 1.1e−14 7.4e−16
A 0.58 0.06 0.06

BDK p 2.9e−16 4.5e−16 7.4e−16
A 0.94 0.06 0.94

VDR for Jenkins and 83.3% for Joomla. But even if AK
had reached full vulnerability coverage for both systems, it
would be at a disadvantage compared to AIM configurations.
Indeed, over 50 Jenkins runs, the average input set size for

TABLE X
COMPARISON OF JOOMLA INPUT SET COSTS FOR CONFIGURATIONS WITH

FULL VULNERABILITY COVERAGE.

costs LKH LDK BKH BDK

LKH p 1.3e−14 6.9e−1 3.5e−15
A 0.06 0.48 0.05

LDK p 1.3e−14 1.3e−14 7.0e−15
A 0.94 0.94 0.94

BKH p 6.9e−1 1.3e−14 3.6e−15
A 0.52 0.06 0.05

BDK p 3.5e−15 7.0e−15 3.6e−15
A 0.95 0.06 0.95

AK was 94.92 inputs, while it ranges from 38 inputs (40%
of AK) for BDH to 74.8 inputs (79%) for LDK. The average
input set cost for AK was 193,698.94 actions, while it ranges
from 70,500.76 actions (36%) for BDH to 152,373.54 actions
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TABLE XI
COMPARISON OF JOOMLA AIM EXECUTION TIMES FOR CONFIGURATIONS

WITH FULL VULNERABILITY COVERAGE.

times LKH LDK BKH BDK

LKH p 2.5e−18 3.6e−3 1.2e−18
A 0.0 0.33 0.0

LDK p 2.5e−18 2.8e−18 1.5e−18
A 1.0 1.0 1.0

BKH p 3.6e−3 2.8e−18 1.3e−18
A 0.67 0.0 0.0

BDK p 1.2e−18 1.5e−18 1.3e−18
A 1.0 0.0 1.0

TABLE XII
COMPARISON OF MRS EXECUTION TIME BEFORE AND AFTER INPUT SET

MINIMIZATION. THE PERCENTAGE OF REDUCTION IS ONE MINUS THE
RATIO BETWEEN TOTAL EXECUTION TIME AFTER MINIMIZATION AND

MRS EXECUTION TIME BEFORE MINIMIZATION.

Execution time (minutes) Jenkins Joomla
MRs with initial input set 38,307 20,703
MRs with minimized input set 6119 3675
+ AIM execution time 22 22
= Total execution time 6141 3697
Percentage of Reduction 84% 82%

(79%) for LDK. Over 50 Joomla runs, the average input set
size for AK was 70 inputs, while it ranges from 36.02 inputs
(51%) for LKH to 41.46 inputs (59%) for LDK. The average
input set cost for AK was 2,312,784.58 actions, while it ranges
from 580,705.24 actions (25%) for LKH to 872,352.72 actions
(38%) for LDK. In short, all AIM configurations with full
vulnerability coverage outperformed the best baseline AK,
which highlights the relevance of our approach in reducing the
cost of testing.

Finally, in Table XII, we present the results of executing
the MRs using both the initial input set and the minimized
input set derived from the best configuration (BDK). In total,
by applying AIM, we reduced the execution time of all 76
MRs from 38,307 minutes to 6119 minutes for Jenkins and
from 20,703 minutes to 3675 minutes for Joomla, using the
minimized input set with median cost. Moreover, executing
AIM to obtain this minimized input set required 22 minutes
for both systems. Hence, we have a total execution time of
6141 minutes for Jenkins and 3697 minutes for Joomla. As a
result, the ratio of the total execution time for the minimized
input sets divided by the execution time for the initial input sets
is 16.03% for Jenkins and 17.85% for Joomla. In other words,
AIM reduced the execution time by about 84% for Jenkins
and more than 82% for Joomla. This large reduction in
execution time demonstrates the effectiveness of our approach
in reducing the cost of metamorphic security testing.

4) RQ3 - Comparison of Search Algorithms: To answer
RQ3, we consider the 50 reduced input sets obtained from the
best AIM configuration, namely BDK, and we compare the
cost of the minimized input sets obtained by MOCCO and
baselines. The cost of the 50 minimized input sets obtained
for each genetic algorithm is represented using box plots
in Figures 7 and 8 for Jenkins and Joomla, respectively.
The results are presented for different time budgets, ranging
from 0.2 to 600 seconds, by which time greedy and Many-
Objective Coverage and Cost Optimizer have converged. For

TABLE XIII
COMPARISON OF GENETIC ALGORITHMS FOR JENKINS (600 S).

costs Random Greedy MOCCO MOSA NSGA-III

Random p 1.8e−15 1.8e−15 1.8e−15 1.8e−15
E 1.0 1.0 1.0 1.0

Greedy p 1.8e−15 1.1e−9 1.8e−15 1.8e−15
E 0.0 0.99 0.0 0.0

MOCCO p 1.8e−15 1.1e−9 1.8e−15 1.8e−15
E 0.0 0.01 0.0 0.0

MOSA p 1.8e−15 1.8e−15 1.8e−15 1.8e−15
E 0.0 1.0 1.0 1.0

NSGA-III p 1.8e−15 1.8e−15 1.8e−15 1.8e−15
E 0.0 1.0 1.0 0.0

both Jenkins and Joomla, random search, greedy algorithm,
and MOSA quickly converge. Random search and MOSA
converge toward sub-optimal solutions, which is expected
since random search is unlikely to determine the best order of
removal steps by chance, and MOSA minimizes the cost for
each individual objective instead of considering the collective
coverage of the selected inputs. The greedy algorithm finds a
good approximation for all runs on both systems. It finds
the optimal solution for most runs (41 out of 50 runs) on
Joomla but for only a few runs (6 out of 50 runs) on Jenkins,
likely because Jenkins reduced input sets are larger than those
of Joomla. MOCCO finds the optimal solution (§ X-A1)
for all 50 runs in 1 second for Jenkins and 0.7 seconds
for Joomla, which is expected since MOCCO is designed
to solve this many-objective problem (§ VIII-A). NSGA-III
slowly converges for both systems. NSGA-III does not find
the optimal solution within the 600-second time budget
for Jenkins, but does so in 600 seconds for Joomla. This
is also expected since NSGA-III explores the entire Pareto
front while MOCCO focuses on the region of interest, i.e,
around the utopia point of full coverage at no cost. NSGA-III
is the only baseline that finds the optimal solution for all runs
and within the time budget, but only for one system, while
MOCCO consistently finds the optimal solution in nearly
three orders of magnitude faster.

Furthermore, we conducted statistical tests reported in Ta-
ble XIII for Jenkins and Tables XIV and XV for Joomla. Since
NSGA-III achieves the same result as MOCCO within 600
seconds on Joomla, we also report their results at 400 seconds
for a more comprehensive comparison. In these three tables,
algorithms in each row are compared with algorithms in each
column. p denotes the statistical significance and E the effect
size (§ X-A5). As for RQ2, when p > 0.05, we consider the
costs obtained from the two algorithms not to be significantly
different, and hence the cell is left white. Otherwise, the cell
is colored, either in green or red. Since we consider input set
cost, the smaller the values the better. Thus, green (resp. red)
indicates that the algorithm in the row is better (resp. worse)
than the algorithm in the column. Finally, as for RQ2, the
intensity of the color is computed with |2× E − 1|.

The results for Jenkins with a time budget of 600 seconds
are detailed in Table XIII. The small p-values and effect
sizes observed in the MOCCO row indicates that MOCCO
obtained minimized input sets with significantly smaller
costs than all the alternative approaches. Moreover, the
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Fig. 7. Jenkins: Cost of the minimized input sets using Random Search, Greedy Algorithm, MOCCO, MOSA, and NSGA-III under different time budgets
for 50 runs of BDK.

TABLE XIV
COMPARISON OF GENETIC ALGORITHMS FOR JOOMLA (400 S).

costs Random Greedy MOCCO MOSA NSGA-III

Random p 1.8e−15 1.8e−15 1.8e−15 4.7e−10
E 1.0 1.0 1.0 1.0

Greedy p 1.8e−15 3.2e−2 1.8e−15 1.3e−5
E 0.0 0.66 0.0 0.15

MOCCO p 1.8e−15 3.2e−2 1.8e−15 9.4e−7
E 0.0 0.34 0.0 0.11

MOSA p 1.8e−15 1.8e−15 1.8e−15 1.8e−5
E 0.0 1.0 1.0 0.84

NSGA-III p 4.7e−10 1.3e−5 9.4e−7 1.8e−5
E 0.0 0.85 0.89 0.16

TABLE XV
COMPARISON OF GENETIC ALGORITHMS FOR JOOMLA (600 S).

costs Random Greedy MOCCO MOSA NSGA-III

Random p 1.8e−15 1.8e−15 1.8e−15 1.8e−15
E 1.0 1.0 1.0 1.0

Greedy p 1.8e−15 3.2e−2 1.8e−15 3.2e−2
E 0.0 0.66 0.0 0.66

MOCCO p 1.8e−15 3.2e−2 1.8e−15 1.0
E 0.0 0.34 0.0 0.5

MOSA p 1.8e−15 1.8e−15 1.8e−15 1.8e−15
E 0.0 1.0 1.0 1.0

NSGA-III p 1.8e−15 3.2e−2 1.0 1.8e−15
E 0.0 0.34 0.5 0.0

effect size for all baselines but the greedy algorithm is 0,
indicating that the minimized input sets obtained by MOCCO
consistently have smaller costs across all 50 runs. For the
greedy algorithm, the effect size is 0.01 because it performs
as well as MOCCO for a few runs (6 out of 50 runs). For

Joomla, the results with a time budget of 400 and 600 seconds
are respectively detailed in Tables XIV and XV. For all time
budgets, the small p-values and the effect sizes of 0 indicate
that MOCCO performed better than random search and
MOSA in all 50 runs, but the results are more nuanced for
the greedy algorithm and NSGA-III. For all time budgets, p-
values indicate that MOCCO performed significantly better
than the greedy algorithm. The latter managed to find the
optimal solution for most runs (41 out of 50 runs), yielding
an effect size of 0.34, which is still in favor of MOCCO.
We conjecture this is because the greedy algorithm does not
consider input block as individual objectives and hence, as
opposed to MOCCO, does not take into account relevant
information when selecting inputs (§ III-B). For a 400-second
time budget, the p-value indicates that MOCCO performed
significantly better than NSGA-III, but NSGA-III managed
to find the optimal solution for some runs, hence the effect
size of 0.11, which is still in favor of MOCCO. For a 600-
second time budget, the p-value is 1.0 and the effect size is
0.5, indicating that both approaches find the same results for
all 50 runs, i.e., the optimal solutions. We conjecture that
NSGA-III manages to achieve the same results as MOCCO
for Joomla but not Jenkins because the former’s reduced input
set has fewer redundant inputs to be removed compared to
Jenkins, making the problem computationally simpler. Since
MOCCO was the only search algorithm able to consistently
find the optimal solution for Jenkins for every time budget
and since, for Joomla, MOCCO finds the optimal solution
almost three orders of magnitude faster than the only baseline,
i.e., NSGA-III, that manages to obtain the same results, we
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Fig. 8. Joomla: Cost of the minimized input sets using Random Search, Greedy Algorithm, MOCCO, MOSA, and NSGA-III under different time budgets
for 50 runs of BDK.

conclude that MOCCO outperforms all baselines when
accounting for both minimized input set cost and execution
time.

Nevertheless, the greedy algorithm finds approximations
that are relatively close to those of MOCCO. To determine
the significance of the difference in practice, we estimate
how this difference in cost translates into a difference in
execution time, based on our execution time results (§ X-B3).
For Jenkins, it took 6119 minutes to execute a minimized
input set of cost 119089 actions. Since the greedy algorithms
obtained minimized inputs sets with on average 611.74 more
actions and up to 1095 actions, this translates into a difference
of 31.43 minutes on average to execute the MRs, up to
56.3 minutes in the worst case. For Joomla, the minimized
input set of cost 582181 took 3675 minutes, hence given
the difference between the greedy algorithm and MOCCO of
949.32 actions on average with a maximum of 5274 actions,
this translates into a difference of 6 minutes on average, up
to 33.29 minutes in the worst case. However, relatively to the
total execution time, these differences may not have a practical
impact. Therefore, we conclude, from our case studies, that
the greedy algorithm, despite its limitations, is a good
alternative.

XI. THREATS TO VALIDITY

In this section, we discuss internal, conclusion, construct,
and external validity according to conventional practices [73].

A. Internal Validity
A potential internal threat concerns inadequate data pre-

processing, which may adversely impact our results. Indeed,

clustering relies on the computed similarity among the pre-
processed outputs and inputs. To address this potential con-
cern, we have conducted a manual investigation of the quality
of the clusters obtained without pre-processing. This led us
to remove, from the textual content extracted from each Web
page, all the content that was shared by many Web pages, like
system version, date, or (when present) the menu of the Web
page.

For RQ1 on vulnerability detection, one potential threat
we face is missing inputs that would be able to exercise
a vulnerability or incorrectly considering that an input is
able to exercise a vulnerability. To ensure our list of inputs
triggering vulnerabilities is complete, one author inspected all
the MST-wi execution logs to look for failures.

B. Conclusion Validity

For RQ2, we rely on a non-parametric test (i.e., Mann-
Whitney-Wilcoxon test) to evaluate the statistical and practical
significance of differences in results, computing p and Vargha
and Delaney’s A12 metric for effect size. Moreover, to deal
with the randomness inherent to search algorithms, all the
configurations and baselines were executed over 50 runs.

Randomness may also arise from (1) the workload of the
machines employed to conduct experiments, potentially slow-
ing down the performance of MST-wi, AIM, and the case study
subjects, and (2) the presence of other users interacting with
the software under test, which can impact both execution time
and system outputs. To address these concerns, we conducted
experiments in dedicated environments, ensuring that the study
subjects were exclusively utilized by AIM.
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C. Construct Validity

The constructs considered in our work are vulnerability
detection effectiveness and input set reduction effectiveness.
Vulnerability detection effectiveness is measured in terms of
vulnerability detection rate. Reduction effectiveness is mea-
sured in terms of MR execution time, size and cost of the
minimized input set, and AIM execution time for each con-
figuration. As it is expensive to execute all 18 configurations
on the MRs, we consider the size of the input set and its
cost to select the most efficient configuration. The cost of
the input set has been defined in § III-A and shown to be
linearly correlated with MR execution time, thus enabling us
to evaluate the efficiency of the results.

Finally, we executed the minimized input set obtained from
the best configuration on the MRs and compared the obtained
execution time, plus the AIM execution time required to
minimize the initial input set, with the MRs execution time
obtained with the initial input set. Execution time is a direct
measure, allowing us to evaluate whether, for systems akin to
our case study subjects, AIM should be adopted for making
vulnerability testing more efficient and scalable.

D. External Validity

One threat to the generalizability of our results stems from
the benchmark that we used. It includes 160 inputs for Jenkins
and 148 inputs for Joomla. Furthermore, we considered the list
of vulnerabilities in Jenkins and Joomla that were successfully
triggered with MST-wi. However, even if in this study we used
MST-wi to collect our data, the AIM approach does not depend
on a particular data collector, and using or implementing
another data collector would enable the use of our approach
with other frameworks. Moreover, even if we relied on pre-
viously obtained MRs to be sure they detect vulnerabilities
in the considered Web systems, AIM is a general approach
for metamorphic security testing which does not depend on
the considered MRs. Finally, in § X-A1, we highlighted that
the different input/output interfaces provided by Jenkins and
Joomla, along with the diverse types of vulnerabilities they
contain, is in support of the generalizability of our results.
Furthermore, the AIM approach can be generalized to other
Web systems, if the data collection and pre-processing com-
ponents are updated accordingly. Nevertheless, further studies
involving systems with known vulnerabilities are needed.

XII. RELATED WORK

MT enables the execution of a SUT with a potentially
infinite set of inputs thus being more effective than testing
techniques requiring the manual specification of either test
inputs or oracles. However, in MT, the manual definition of
metamorphic relations (MRs) is an expensive activity because
it requires that engineers first acquire enough information on
the subject under test and then analyze the testing problem
to identify MRs. For this reason, in the past, researchers
focused on both the definition of methodologies supporting
the identification of MRs [74], [75] and the development of
techniques for the automated generation of MRs, based on

meta-heuristic search [76], [77] and natural language process-
ing [78], and targeting query-based systems [79] and Cyber-
Physical Systems [77].

However, source inputs also impact the effectiveness and
performance of MT; indeed, MRs generate follow-up inputs
from source inputs and both are executed by the SUT.
Consequently, the research community has recently shown
increasing interest towards investigating the impact of source
inputs on MT. We summarize the most relevant works in
the following paragraphs. Note that all these studies focus
on general fault detection, while we focus on metamorphic
security testing for Web systems. However, our approach
could also be applied to fault detection while the approaches
below could also be applied to security testing. We therefore
compare these approaches without considering their difference
in application. However, we excluded from our survey those
approaches that study the effect of source and follow-up
inputs on the metamorphic testing of systems that largely
differ from ours (i.e., sequence alignment programs [80],
system validation [81], and deep neural networks [82]). In
the following paragraphs, we group the surveyed works into
three categories: input generation techniques, input selection
techniques, and feedback-directed metamorphic testing.

Input generation techniques for MT use white-box ap-
proaches based on knowledge of the source code (mainly,
for statement or branch coverage), while we use a black-box
approach based on input and output information (Section VI).
For instance, a study [83] leveraged the evolutionary search
approach EvoSuite [84] to evolve whole input sets in order
to obtain inputs that lead to more branch coverage or to
different results on the mutated and non-mutated versions
of the source code. Another example study [85] leveraged
symbolic execution to collect constraints of program branches
covered by execution paths, then solved these constraints to
generate the corresponding source inputs. Finally, the exe-
cution of the generated inputs on the SUT was prioritized
based on their contribution regarding uncovered statements.
In this case, both generation and prioritization phases were
white-box approaches based on branch coverage. Note that,
while our approach on input set minimization could be seen
as similar to input prioritization, both studies focused on
increasing coverage, while we focused on reducing cost while
maintaining full coverage.

Input selection techniques share the same objective of
our work (i.e., reducing the number of source inputs while
maximizing MT effectiveness). Because of its simplicity,
random testing (RT) is a common strategy for test suite
minimization [21], [22] that has been used in MT [61].
RT was enhanced with Adaptive Random Testing (ART), a
technique for obtaining source inputs spread across the input
domain with the aim of finding failures with fewer number
of inputs than RT. As input selection technique for MT, ART
outperforms RT in terms of fault detection [62], which (as in
the following studies) was evaluated using the F-measure, i.e.,
the number of inputs necessary to reveal the first failure. In
the AIM approach, our action clustering step (§ VI-C) bears
similarities with ART, since we partition inputs based on action
parameters which are relevant for our SUT. But, instead of
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assuming that close inputs lead to close outputs, we directly
used SUT outputs during our output clustering step (§ VI-B),
since they are inexpensive to obtain compared to executing
MRs. Finally, instead of only counting the number of inputs
as in the F-measure (or the size of the input set, in the context
of input generation), we considered the cost of each source
input as the number of executed actions as surrogate measure,
which is tailored to reducing MR execution time in the context
of Web systems. Instead of focusing only on distances between
source inputs as in ART, another study [61] also investigated
distances with follow-up inputs, which is an improvement
since usually there are more follow-up inputs than source
inputs. This led to the Metamorphic testing-based adaptive
random testing (MT-ART) technique, which performed better
than other ART algorithms regarding test effectiveness, test
efficiency, and test coverage (considering statement, block,
and branch coverage). Unfortunately, in the AIM approach, we
could not consider follow-up inputs to drive the input selection,
since executing MRs to generate these follow-up inputs would
defeat our purpose of reducing MR execution time.

Finally, while studies on MT usually focus either on the
identification of effective MRs or on input generation/selec-
tion, a recent study proposed feedback-directed metamorphic
testing (FDMT) [86] to determine the next test to perform
(both in terms of source input and MR), based on previous
test results. They proposed adaptive partition testing (APT)
to dynamically select source inputs, based on input categories
that lead to fault detection, and a diversity-oriented strategy for
MR selection (DOMR) to select an MR generating follow-
up inputs that are as different as possible from the already
obtained ones. While this approach is promising in general,
it is not adapted to our case, where we consider a fixed set
of MRs, MR selection being considered outside the scope of
this paper. Moreover, since we aim to reduce MR execution
time, we cannot execute them and use execution information
to guide source input or MR selection during testing. Finally,
in our problem definition (Section III), we do not consider
source inputs independently from each other, which is why
we reduced (Section VII) then minimized (Section VIII) the
cost of the input set as a whole.

XIII. CONCLUSION AND FUTURE WORK

As demonstrated in our previous work [6], metamorphic
testing alleviates the oracle problem for the automated security
testing of Web systems. However, metamorphic testing has
shown to be a time-consuming approach. Our approach (AIM)
aims to reduce the cost of metamorphic security testing by
minimizing the initial input set while preserving its capability
at exercising vulnerabilities. Our contributions include 1) a
clustering-based black box approach that identifies similar in-
puts based on their security properties, 2) IMPRO, an approach
to reduce the search space as much as possible, then divide it
into smaller independent parts, 3) MOCCO, a novel genetic
algorithm which is able to efficiently select diverse inputs
while minimizing their total cost, and 4) a testing framework
automatically performing input set minimization.

We considered 18 different configurations for AIM and we
evaluated our approach on two open-source Web systems,

Jenkins and Joomla, in terms of vulnerability detection rate
and magnitude of the input set reduction. Our empirical
results show that the best configuration for AIM is BDK: Bag
distance, DBSCAN to cluster the outputs, and K-means to
cluster the inputs. The results show that our approach can auto-
matically reduce MRs execution time by 84% for Jenkins and
82% for Joomla while preserving full vulnerability detection.
Across 50 runs, the BDK configuration consistently detected
all vulnerabilities in Jenkins and Joomla. We also compared
AIM with four baselines common in security testing. Notably,
none of the baselines reached full vulnerability coverage.
Among them, AK (ART baseline using K-means) emerged as
the closest to achieving full vulnerability coverage. All AIM
configurations with full vulnerability coverage outperformed
this baseline in terms of minimized input set size and cost,
demonstrating the effectiveness of our approach in reducing
the cost of metamorphic security testing.

Furthermore, we compared the effectiveness of MOCCO,
in terms of minimized input set cost and execution time,
with four other search algorithms. The results on Jenkins
showed that MOCCO obtained minimized input sets with
significantly lower costs than all the alternative approaches.
The only baseline that could find the optimal solutions on
Joomla was NSGA-III, though MOCCO did so almost three
orders of magnitude faster. Among the considered alternative
search algorithms, greedy was the only algorithm that con-
sistently found results close to those of MOCCO, on both
Jenkins and Joomla. Therefore, we conclude that MOCCO
outperforms all baselines in terms of minimized input set cost
and execution time, while the greedy algorithm, despite its
theoretical limitations, remains a viable alternative in practice.

As part of future work, we intend to develop a test case
prioritization technique that facilitates earlier vulnerability
detection by prioritizing the inputs in the minimized input set
that are most likely to detect vulnerabilities.
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APPENDIX

We prove in this appendix theoretical results mentioned in
the main paper and which demonstrates the correctness of
the AIM approach. This includes Theorem 1 (Appendix C),
presented in Section III-C on the objective functions, Propo-
sition 3 and Theorem 2 (Appendix D) presented in Section
VII-E on local dominance, Proposition 8 and Theorem 3 (Ap-
pendix E) presented in Section VII-F on dividing the problem,
and desirable properties of roofer (Theorem 4) and miser
(Theorem 5) populations (Appendix F) presented in Section
VIII-F on the MOCCO population update. Appendices A
and B present intermediate results.

A. Input Coverage and Cost

Lemma 1 (Non-Empty Coverage). For every input in , we
have Cover(in) ̸= ∅.

Proof. We consider only inputs containing at least one action
(§VI-B). Let act1 = action(in, 1) be the first action of in .
act1 has an output in outCl1 = OutputClass(in, 1) (§VI-
B).act1 is in the action set actSet1 = ActionSet(outCl1)
(§VI-C). After clustering of this action set, let bl1 =
Subclass(in, 1) = ActionSubclass(act1, actSet1) be the in-
put block of the action act1 executed in in (§VI-C). Therefore,
we have bl1 ∈ Cover(in).

Lemma 2 (Cost is Positive). For every input in , we have
cost(in) > 0. For every input set I , we have cost(I ) ≥ 0,
and cost(I ) = 0 if and only if I = ∅.

Proof. Since we removed inputs with no cost (§III-A), for
each input in , cost(in) > 0. The cost of an input set is the sum
of the cost of its inputs, hence cost(I ) ≥ 0. In particular, if
I = ∅, then cost(I ) = 0. Finally, because the cost is positive,
the only case where cost(I ) = 0 is when I = ∅.

B. Redundancy

In this section, we prove that our characterization of re-
dundancy is sound regarding the coverage of an input set
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(Proposition 1), then we introduce Lemma 4 which is useful
to prove Lemma 6 in Appendix C and Proposition 8 in
Appendix E.

First, if an input in is in the considered input set I , then its
redundancy is not negative. Indeed, there is always at least one
input in I that covers the input blocks covered by in , which
is in itself.

Lemma 3 (Redundancy is Non-negative). Let I be an input
set and in be an input. If in ∈ I , then redundancy(in, I ) ≥ 0.

Proof. Let in be an input in I . Let bl ∈ Cover(in) be any
block covered by in . Because bl ∈ Cover(in), we have
that in ∈ Inputs(bl) (§III-A). Moreover, in ∈ I , so in ∈
Inputs(bl) ∩ I , thus we have superpos(bl , I ) ≥ 1 (§III-C).
Therefore, for any bl ∈ Cover(in) we have superpos(bl , I ) ≥
1. So, min{superpos(bl , I ) | bl ∈ Cover(in)} ≥ 1. By
subtracting 1, we have redundancy(in, I ) ≥ 0 (§III-C).

We prove that our characterization of redundancy is sound
regarding the coverage of an input set. In other words, if an
input is redundant in an input set, then it can be removed
without reducing the coverage of the input set:

Proposition 1 (Redundancy Soundness). Let I ⊆ Iinit be
an input set and in ∈ I . If in ∈ Redundant(I ), then
Cover(I \ {in}) = Cover(I ).

Proof. Cover(I ) = Cover(I \ {in}) ∪ Cover(in) (§VI-C).
We assume that in is redundant in I . So, according to
Lemma 3, we have redundancy(in, I ) > 0 (§III-C). Thus,
for each bl ∈ Cover(in), we have that superpos(bl , I ) ≥ 2.
Hence, according to our definition of superposition (§III-C),
there are at least two inputs in1 and in2 in I which also
belong to Inputs(bl). Because we have bl ∈ Cover(in),
we have that in ∈ Inputs(bl) (§III-A). So, in is one of
these inputs. We assume this is the first one i.e., in1 =
in . Therefore, for each bl ∈ Cover(in), there exists an
input in2 ∈ Inputs(bl) ∩ I which is not in . We denote
in2 = inbl this input. For each bl ∈ Cover(in), we have
inbl ∈ Inputs(bl). So, we have bl ∈ Cover(inbl) (§III-A).
Moreover, inbl ∈ I and is not in , so is in I \{in}. Thus (§VI-
C) we have bl ∈ Cover(I \ {in}). Therefore, Cover(in) ⊆
Cover(I \ {in}). Finally, Cover(I ) = Cover(I \ {in}) ∪
Cover(in) = Cover(I \ {in}).

Finally, removing an input in an input set may update the
redundancy of other inputs:
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Lemma 4 (Removing an Input). Let I be an input set and
in2, in1 ∈ I be two inputs in this input set.

redundancy(in1, I )− 1 ≤ redundancy(in1, I \ {in2})
≤ redundancy(in1, I )

Proof. Let bl ∈ Cover(in1). We denote c1 = |Inputs(bl) ∩ I |
and c2 = |Inputs(bl) ∩ (I \ {in2})|. If in2 ∈ Inputs(bl) then
c2 = c1 − 1. Otherwise, c2 = c1. Therefore, for every bl ∈
Cover(in1) we have c1 − 1 ≤ c2 ≤ c1. This includes the
input blocks minimizing the cardinality in the definition of
redundancy (§III-C). Hence the result.

C. Valid Orders of Removal Steps

In this section, we first prove Lemma 5 that establishes
that orders of removal steps contain inputs without repetition.
Then, we introduce subsequences and prove Lemma 7, used
in the rest of the section and in proofs of Appendix E. Finally,
we prove Theorem 1 presented in §III-C.

Lemma 5 (Order without Repetition). Let I be an input set.
If [in1, . . . , inn] ∈ ValidOrders(I ), then in1, . . . , inn are
distinct.

Proof. The proof is done by induction on n.
If n = 0, then [in1, . . . , inn] = [ ] is empty, hence there are

no two identical inputs.
We now consider [in1, . . . , inn, inn+1] ∈ ValidOrders(I ).

By induction hypothesis, in1, . . . , inn are distinct. Ac-
cording to the definition of valid order of removal steps
(§III-C), we have [in1, . . . , inn, inn+1] only if inn+1 ∈
Redundant(I \ {in1, . . . , inn}).

Since Redundant(I ) = {in ∈ I | redundancy(in, I ) > 0},
we have inn+1 ∈ I \ {in1, . . . , inn}.

Therefore, inn+1 is distinct from the previous inputs
in1, . . . , inn. Hence the result, which concludes the induction
step.

Lemma 6 (Redundant Inputs After Reduction). Let I be an
input set. For each subset of inputs {in1, . . . , inn} ⊆ I , we
have Redundant(I \ {in1, . . . , inn}) ⊆ Redundant(I ).

Proof. The proof is done by induction on n.
If n = 0 then I \ {in1, . . . , inn} = I , hence the result.
Otherwise, we assume by induction that

Redundant(I \ {in1, . . . , inn}) ⊆ Redundant(I ).
According to Lemma 4, redundancies can only decrease

when performing a removal step. So, for every input in0 ∈
Redundant(I \ {in1, . . . , inn, inn+1}), we have:

0 < redundancy(in0, I \ {in1, . . . , inn, inn+1})
≤ redundancy(in0, I \ {in1, . . . , inn})

So, Redundant(I \ {in1, . . . , inn, inn+1}) ⊆
Redundant(I \ {in1, . . . , inn}) ⊆ Redundant(I ).

Since orders of removal steps contain inputs without rep-
etition (Lemma 5), the index index (in, ℓ) of an input in in
a removal order ℓ containing in is well defined. We leverage
this to define subsequences.

Definition 1 (Subsequences). Let [in1, . . . , inn]
and [in ′

1, . . . , in
′
m] be two orders of removal steps.

We say that [in ′
1, . . . , in

′
m] is a subsequence of

[in1, . . . , inn] if [in ′
1, . . . , in

′
m] can be obtained by

removing some elements of [in1, . . . , inn], i.e., if
{in ∈ [in ′

1, . . . , in
′
m]} ⊆ {in ∈ [in1, . . . , inn]} and,

for any two inputs ini, inj ∈ [in ′
1, . . . , in

′
m], if

index (ini, [in1, . . . , inn]) ≤ index (inj , [in1, . . . , inn]), then
index (ini, [in

′
1, . . . , in

′
m]) ≤ index (inj , [in

′
1, . . . , in

′
m]),

where index (in, ℓ) is the index of input in in ℓ.

Lemma 7. Let I be an input set and
[in1, . . . , inn], [in

′
1, . . . , in

′
m] be two orders of removal

steps in I . If [in1, . . . , inn] ∈ ValidOrders(I ) and
[in ′

1, . . . , in
′
m] is a subsequence of [in1, . . . , inn], then

[in ′
1, . . . , in

′
m] ∈ ValidOrders(I ).

Proof. The proof is done by induction on m.
If m = 0 then [in ′

1, . . . , in
′
m] = [ ] ∈ ValidOrders(I ).

Otherwise, we consider [in ′
1, . . . , in

′
m, in ′

m+1] and we as-
sume by induction that [in ′

1, . . . , in
′
m] ∈ ValidOrders(I ).

Because [in ′
1, . . . , in

′
m, in ′

m+1] is a subsequence of
[in1, . . . , inn], there exists an index i such that ini = in ′

m+1.
By definition of valid removal steps (§III-C), we have ini ∈
Redundant(I \ {in1, . . . , ini−1}).

Moreover, [in ′
1, . . . , in

′
m, in ′

m+1] is a subsequence
of [in1, . . . , ini], so we have {in ∈ [in ′

1, . . . , in
′
m]} ⊆

{in ∈ [in1, . . . , ini−1]}. Hence, according to Lemma 6
we have Redundant(I \ {in1, . . . , ini−1}) ⊆
Redundant(I \ {in ′

1, . . . , in
′
m}). Therefore, in ′

m+1 =
ini ∈ Redundant(I \ {in ′

1, . . . , in
′
m}).

[in ′
1, . . . , in

′
m] ∈ ValidOrders(I ) and in ′

m+1 ∈
Redundant(I \ {in ′

1, . . . , in
′
m}), so, according to our defi-

nition for valid orders of removal steps (§III-C), we have
[in ′

1, . . . , in
′
m, in ′

m+1] ∈ ValidOrders(I ).

Finally, we prove in Proposition 2 that inputs in a valid order
of removal steps can be rearranged in any different order and
the rearranged order of removal steps is also valid.

Lemma 8 (Transposition of a Valid Order). Let I be an input
set.

If [in1, . . . , ini, . . . , inj , . . . , inn] ∈ ValidOrders(I )
and 1 ≤ i < j ≤ n,

then [in1, . . . , inj , . . . , ini, . . . , inn] ∈ ValidOrders(I )

where ini and inj were exchanged and the other inputs are
left unchanged.

Proof. The proof is done in four steps.
1) [in1, . . . , ini−1, inj ] is a subsequence of

[in1, . . . , ini−1, ini, . . . , inj , . . . , inn] ∈ ValidOrders(I ).
So, according to Lemma 7, we have [in1, . . . , ini−1, inj ] ∈
ValidOrders(I ). Note that the first step even applies to the
case i = 1.

2) If j = i + 1, then one can go directly to the third step.
Otherwise, for each i < k < j, we denote:

Ii+1
def
= I \ {in1, . . . , ini−1}

Ik+1
def
= Ik \ {ink}

and, for the sake of conciseness, I ik = Ik \ {ini} and I jk =
Ik \ {inj}.
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We now prove by induction on i ≤ k ≤ j − 1 that:

[in1, . . . , ini−1, inj , ini+1, . . . , ink] ∈ ValidOrders(I )

For the initialization k = i, we have from the first step:

[in1, . . . , ini−1, inj ] ∈ ValidOrders(I )

We now assume by induction hypothesis on i ≤ k < j − 1
that:

[in1, . . . , ini−1, inj , ini+1, . . . , ink] ∈ ValidOrders(I )

We first prove, for each bl ∈ Cover(ink+1), that:
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣ > 1

According to Lemma 5, in1, . . . , ini, . . . , inj , . . . , inn are
distinct. We consider two cases.

a) We assume bl ∈ Cover(inj).
Because I ij = I \ {in1, . . . , ini−1, ini, ini+1, . . . , inj−1}

and I jk+1 = I \{in1, . . . , ini−1, ini+1, . . . , ink, inj}, we have
I ij∪{ink+1} ⊆ I jk+1∪{inj}. Thus, for each bl ∈ Cover(inj)∩
Cover(ink+1):

∣∣Inputs(bl) ∩ I ij
∣∣+ 1 ≤

∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣+ 1

Because [in1, . . . , ini, . . . , inj , . . . , inn] ∈
ValidOrders(I ), we have:

redundancy(inj , I
i
j ) > 0

So, for each bl ∈ Cover(inj), we have:
∣∣Inputs(bl) ∩ I ij

∣∣ > 1

Thus, for each bl ∈ Cover(inj) ∩ Cover(ink+1), we have:
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣ > 1

b) We assume bl /∈ Cover(inj).
For each bl ∈ Cover(ink+1)\ (Cover(ini) ∪ Cover(inj)),

we have:
∣∣Inputs(bl) ∩ I ik+1

∣∣ =
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣

Moreover, for each bl ∈ Cover(ini) \ Cover(inj), we have:
∣∣Inputs(bl) ∩ I ik+1

∣∣+ 1 =
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣

So, for each bl ∈ Cover(ink+1) \ Cover(inj), we have:
∣∣Inputs(bl) ∩ I ik+1

∣∣ ≤
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣

Because [in1, . . . , ini, . . . , inj , . . . , inn] ∈ ValidOrders(I ),
we have:

redundancy(ink+1, I
i
k+1) > 0

So, for each bl ∈ Cover(ink+1), we have:
∣∣Inputs(bl) ∩ I ik+1

∣∣ > 1

Thus, for each bl ∈ Cover(ink+1) \ Cover(inj), we have:
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣ > 1

So, we proved by case, for each bl ∈ Cover(ink+1), that:
∣∣∣Inputs(bl) ∩ I jk+1

∣∣∣ > 1

Thus, we have redundancy(ink+1, I
j
k+1) > 0.

Moreover, according to Lemma 5,
in1, . . . , ini, . . . , inj , . . . , inn are distinct, so ink+1 ∈ I jk+1.
Hence, ink+1 ∈ Redundant(I jk+1). By induction hypothesis,
we have:

[in1, . . . , ini−1, inj , ini+1, . . . , ink] ∈ ValidOrders(I )

So, according to the definition of valid removal steps (§III-
C):

[in1, . . . , ini−1, inj , ini+1, . . . , ink, ink+1] ∈ ValidOrders(I )

which concludes the induction step.
Therefore, we proved by induction:

[in1, . . . , ini−1, inj , ini+1, . . . , inj−1] ∈ ValidOrders(I )

3) We now prove that, for each bl ∈ Cover(ini), we have:
∣∣∣Inputs(bl) ∩ I jj

∣∣∣ > 1

where I ij and I jj are defined in step two. We consider two
cases.

a) We assume bl ∈ Cover(inj). Because I ij ∪ {ini} =

I jj ∪{inj}, for each bl ∈ Cover(ini)∩Cover(inj), we have:
∣∣Inputs(bl) ∩ I ij

∣∣+ 1 =
∣∣∣Inputs(bl) ∩ I jj

∣∣∣+ 1

Because [in1, . . . , ini, . . . , inj , . . . , inn] ∈
ValidOrders(I ), we have:

redundancy(inj , I
i
j ) > 0

So, for each bl ∈ Cover(inj), we have:
∣∣Inputs(bl) ∩ I ij

∣∣ > 1

Thus, for each bl ∈ Cover(ini) ∩ Cover(inj), we have:
∣∣∣Inputs(bl) ∩ I jj

∣∣∣ > 1

b) We assume bl /∈ Cover(inj). In that case, for each bl ∈
Cover(ini) \ Cover(inj), we have:

∣∣Inputs(bl) ∩ I ij
∣∣+ 1 =

∣∣∣Inputs(bl) ∩ I jj

∣∣∣
We consider two cases.
i) There exists i+1 ≤ k ≤ j−1 such that bl ∈ Cover(ink).

In that case, let kmax be the largest. So, we have:
(
Inputs(bl) ∩ I ij

)
∪ {inkmax

} = Inputs(bl) ∩ I ikmax

Hence:
∣∣Inputs(bl) ∩ I ij

∣∣+ 1 =
∣∣Inputs(bl) ∩ I ikmax

∣∣

Thus: ∣∣∣Inputs(bl) ∩ I jj

∣∣∣ =
∣∣Inputs(bl) ∩ I ikmax

∣∣

Because [in1, . . . , ini, . . . , inj , . . . , inn] ∈ ValidOrders(I ),
we have:

redundancy(inkmax
, I ikmax

) > 0
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So, because bl ∈ Cover(inkmax
), we have:

∣∣Inputs(bl) ∩ I ikmax

∣∣ > 1

Finally: ∣∣∣Inputs(bl) ∩ I jj

∣∣∣ > 1

ii) Otherwise, for each i + 1 ≤ k ≤ j − 1, we have bl /∈
Cover(ink). Note that this is also the case if j = i + 1. In
that case, we have:

(
Inputs(bl) ∩ I ij

)
∪ {ini} = Inputs(bl) ∩ Ii

where Ii = I \ {in1, . . . , ini−1}. So:
∣∣Inputs(bl) ∩ I ij

∣∣+ 1 = |Inputs(bl) ∩ Ii|

Thus: ∣∣∣Inputs(bl) ∩ I jj

∣∣∣ = |Inputs(bl) ∩ Ii|

Because [in1, . . . , ini, . . . , inj , . . . , inn] ∈ ValidOrders(I ),
we have:

redundancy(ini, Ii) > 0

So, because bl ∈ Cover(ini), we have:

|Inputs(bl) ∩ Ii| > 1

Finally: ∣∣∣Inputs(bl) ∩ I jj

∣∣∣ > 1

This concludes the proof by case for bl ∈ Cover(ini) \
Cover(inj). Therefore, we proved by case that, for each bl ∈
Cover(ini), we have:

∣∣∣Inputs(bl) ∩ I jj

∣∣∣ > 1

Thus, we have redundancy(ini, I
j
j ) > 0.

Moreover, according to Lemma 5,
in1, . . . , ini, . . . , inj , . . . , inn are distinct, so ini ∈ I jj .
Thus, ini ∈ Redundant(I jj ).

Finally, we have from the second step (or the first one, if
j = i+ 1):

[in1, . . . , ini−1, inj , ini+1, . . . , inj−1] ∈ ValidOrders(I )

Therefore, according to the definition of valid orders of
removal steps (§III-C):

[in1, . . . , ini−1, inj , ini+1, . . . , inj−1, ini] ∈ ValidOrders(I )

4) Finally, if j = n then the proof is complete. Otherwise,
we prove by induction on j ≤ k ≤ n that:

[in1, . . . , inj , . . . , ini, inj+1, . . . , ink] ∈ ValidOrders(I )

For the initialization k = j, we have from the third step:

[in1, . . . , inj , . . . , ini] ∈ ValidOrders(I )

We now assume by induction hypothesis on j ≤ k < n
that:

[in1, . . . , inj , . . . , ini, inj+1, . . . , ink] ∈ ValidOrders(I )

Because [in1, . . . , ini, . . . , inj , . . . , inn] ∈ ValidOrders(I ),
we have:

ink+1 ∈ Redundant(I \ {in1, . . . , ini, . . . , inj , . . . , ink})
Moreover, we have:

{in1, . . . , ini, . . . , inj , . . . , ink}
= {in1, . . . , inj , . . . , ini, . . . , ink}

So:

ink+1 ∈ Redundant(I \ {in1, . . . , inj , . . . , ini, . . . , ink})
Thus, according to the definition of valid orders of removal
steps (§III-C):

[in1, . . . , inj , . . . , ini, inj+1, . . . , ink, ink+1]
∈ ValidOrders(I )

which concludes the induction step.
Therefore, we proved by induction the lemma:

[in1, . . . , inj , . . . , ini, inj+1, . . . , inn] ∈ ValidOrders(I )

The issue with our definition of the gain (§III-C) is that,
to compute gain(I ) of an input set I , one has to try all the
possible order of removal steps to determine which ones are
valid. If I contains n inputs and we consider orders of 0 ≤
k ≤ n removal steps, there are n×· · ·× (n−k+1) = !n

!(n−k)
possibilities to investigate, which is usually large.

Thus, we present an optimization to reduce the cost of
computing the gain. First, we prove in Proposition 2 that,
while the order of inputs matters to determine if an order
of removal steps is valid, it does not matter anymore once
we know the order is valid. In other words, inputs in a valid
order of removal steps may be rearranged in any different
order, and the rearranged order of removal steps would be
valid. Formally, if [in1, . . . , inn] is a valid order of removal
steps, then [inσ(1), . . . , inσ(n)] is also a valid order, when σ
denotes a permutation of the n inputs, i.e., the same inputs
but (potentially) in a different order:

Proposition 2 (Permutation of a Valid Order). Let I be
an input set. If [in1, . . . , inn] ∈ ValidOrders(I ) and σ is
a permutation on n elements, then [inσ(1), . . . , inσ(n)] ∈
ValidOrders(I ).

Proof. Every permutation of a finite set can be expressed as
the product of transpositions [1] (p.60). Let m be the number
of such transpositions for σ. We prove the result by induction
on m.

If m = 0, then σ is the identity and we have by hypothesis:

[inσ(1), . . . , inσ(n)] ∈ ValidOrders(I )

If σ = τm+1◦τm◦· · ·◦τ1, then we denote σ′ = τm◦· · ·◦τ1.
By induction hypothesis, we have:

[inσ′(1), . . . , inσ′(n)] ∈ ValidOrders(I )

Then, by applying Lemma 8 to the transposition (ij) =
τm+1, we have:

[inτm+1◦σ′(1), . . . , inτm+1◦σ′(n)] ∈ ValidOrders(I )
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Finally, because σ = τm+1 ◦ σ′, we conclude the induction
step.

Since inputs in a valid order of removal steps are always
distinct (Lemma 5) and their order does not make a difference
(Proposition 2), such orders can simply be seen as sets even
if, in practice, for IMPRO and MOCCO, orders of removal
steps are implemented as lists. More precisely, two valid orders
of removal steps are equivalent if they correspond to the
same set of inputs. We leverage this property to reduce the
number of orders of removal steps to consider, e.g., since
[in1, in2] is equivalent to [in2, in1], we only have to check
that [in1, in2] is valid to know whether [in2, in1] is valid or
not. This means that, when inputs are provided in a given
order [in1, . . . , inn], these tools need only to check for valid
orders of removal steps in increasing order (hence without
backtracking on previous inputs), i.e., [ini1 , . . . , inim ], where
1 ≤ i1 < · · · < im ≤ n. We call canonical orders such
orders of removal steps. For instance, [in2, in4, in7] is in
canonical order, but [in4, in2, in7] is not. Thus, to save time
when checking the validity of orders of removal steps, we
consider only canonical orders.

Theorem 1 (Canonical Order). Let I = {in1, . . . , inn} be
an input set. There exists [ini1 , . . . , inim ] ∈ ValidOrders(I )
such that 1 ≤ i1 < · · · < im ≤ n and:

∑

1≤j≤m

cost(inij ) = gain(I )

Proof. Let [ini′1 , . . . , ini′m ] ∈ ValidOrders(I ) be a valid
order of removal steps with a maximal cumulative cost i.e.,
according to our definition of the gain (§III-C):

∑

1≤j≤m

cost(ini′j
) = gain(I )

If m = 0, then [ ] satisfies the theorem for a gain = 0.
Otherwise, we assume m > 0. According to Lemma 5,

[ini′1 , . . . , ini′m ] contains m distinct inputs. Let σ ∈ Sm be
the permutation such that:

[inσ(i′1)
, . . . , inσ(i′m)] = [ini1 , . . . , inim ]

with 1 ≤ i1 < · · · < im ≤ n.
According to Proposition 2, we have [ini1 , . . . , inim ] ∈

ValidOrders(I ).
Moreover, because a permutation of the elements of a sum

does not change the value of the sum, we have:
∑

1≤j≤m

cost(inij ) =
∑

1≤j≤m

cost(ini′j
) = gain(I )

Hence the theorem.

Theorem 1 allows us to focus on inputs in increasing
order, instead of exploring all possible input orders. Thus, this
optimization saves computation steps and makes computing
the gain more tractable. More precisely, since there are !k
ways of ordering k selected inputs, there are “only” !n

!k!(n−k)

remaining possibilities to investigate, instead of !n
!(n−k) .

D. Local Dominance

In this section we prove, as presented in §VII-E, that the
local dominance relation is local (Proposition 3), hence is
faithful to its name, and that non locally-dominated inputs,
as a whole, locally-dominate all the locally dominated inputs
(Theorem 2). We start by the locality property.

Proposition 3 (Local Dominance is Local). Let in1 ∈
Isearch be a remaining input and S ⊆ Isearch be a subset
of the remaining inputs. If in1 ⊑ S then in1 ⊑ S ∩
{in2 ∈ Isearch | in1 ⊓ in2}.
Proof. We assume in1 ⊑ S. So, by definition of local domi-
nance (§VII-E), we have in1 ̸∈ S, Cover(in1) ⊆ Cover(S),
and cost(in1) ≥ cost(S). First, because in1 ̸∈ S, we have
in1 ̸∈ S ∩ {in2 ∈ Isearch | in1 ⊓ in2}.

Moreover, for every in2 ∈ Isearch , if there is no overlap
between in1 and in2 then, according to the overlapping
relation (§VII-E), we have Cover(in1) ∩ Cover(in2) = ∅.
Thus:

Cover(in1) ∩ Cover(S ∩ {in2 ∈ Isearch | ¬in1 ⊓ in2}) = ∅

Hence, because Cover(in1) ⊆ Cover(S), we have:

Cover(in1)
= Cover(in1) ∩ Cover(S)
= Cover(in1) ∩ (Cover(S ∩ {in2 ∈ Isearch | in1 ⊓ in2})
∪ Cover(S ∩ {in2 ∈ Isearch | ¬in1 ⊓ in2}))

= (Cover(in1) ∩ Cover(S ∩ {in2 ∈ Isearch | in1 ⊓ in2}))
∪ (Cover(in1)
∩ Cover(S ∩ {in2 ∈ Isearch | ¬in1 ⊓ in2}))

= (Cover(in1) ∩ Cover(S ∩ {in2 ∈ Isearch | in1 ⊓ in2}))
So, Cover(in1) ⊆ Cover(S ∩ {in2 ∈ Isearch | in1 ⊓ in2}).

Finally, cost(S) ≥ cost(S ∩ {in2 ∈ Isearch | in1 ⊓ in2}).
Thus, because cost(in1) ≥ cost(S), we have cost(in1) ≥
cost(S ∩ {in2 ∈ Isearch | in1 ⊓ in2}).

Therefore, in1 ⊑ S ∩ {in2 ∈ Isearch | in1 ⊓ in2}.

We now prove that the local dominance relation is asymmet-
ric (Proposition 5). First, because an input always covers some
objectives, it can be locally dominated only by a non-empty
input subset.

Lemma 9 (Non-Empty Local Dominance). Let in ∈ Isearch
be an input and S ⊆ Isearch be a subset of the remaining
inputs. If in ⊑ S then S ̸= ∅.

Proof. The proof is done by contradiction. If S = ∅
then Cover(S) = ∅. Because in ⊑ S we have
Cover(in) ⊆ Cover(S). So, Cover(in) = ∅, which con-
tradicts Lemma 1.

Second, when two inputs locally dominates each other,
they are equivalent in the sense of the equivalence relation
from §VII-D (two inputs are equivalent if they have the
same coverage and cost), that we denote ≡ in the following.
But, because we removed duplicates in §VII-D, this case can
happen only if the inputs are the same, which is excluded by
the definition of local dominance (§VII-E).
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Lemma 10 (Local Dominance for Singletons is Asymmetric).
Let in1, in2 ∈ Isearch be two inputs. If in1 ⊑ {in2}, then
in2 ̸⊑ {in1}.
Proof. We assume by contradiction that in1 ⊑ {in2} and
in2 ⊑ {in1}.

Hence, we have: 1) Cover(in1) ⊆ Cover(in2) and
Cover(in2) ⊆ Cover(in1), so Cover(in1) = Cover(in2).
2) cost(in1) ≥ cost(in2) and cost(in2) ≥ cost(in1), so
cost(in1) = cost(in2). So, we have in1 ≡ in2.

Because we removed duplicates in §VII-D, we have in1 =
in2. So, in1 ⊑ {in1}, which contradicts in the definition
of local dominance (§VII-E) that an input cannot locally
dominates itself.

Note that this result is also useful to prove transitivity
(Proposition 7).

Third, because the cost of an input is positive, if an input is
locally dominated by several inputs, then they have a strictly
smaller cost.

Lemma 11 (Cost Hierarchy). Let in1 ∈ Isearch be an input
and S ⊆ Isearch be a subset of the remaining inputs. If in1 ⊑
S and |S| ≥ 2 then for every in2 ∈ S we have cost(in2) <
cost(in1).

Proof. Because in1 ⊑ S we have cost(in1) ≥ cost(S). So,
for every in2 ∈ S we have cost(in2) ≤ cost(in1). If |S| ≥ 2,
then the inequality is strict because, according to Lemma 2,
the cost is positive cost(in2) > 0.

Finally, we prove as expected that the local dominance
relation is asymmetric.

Proposition 4 (Local Dominance for Subsets is Asymmetric).
Let in1, in2 ∈ Isearch be two inputs and S1, S2 ⊆ Isearch be
two subsets of the remaining inputs. If in1 ⊑ S1, in2 ∈ S1,
and in2 ⊑ S2, then in1 ̸∈ S2.

Proof. The proof is made by contradiction. We assume in1 ∈
S2 and prove a contradiction in different cases for |S1| and
|S2|.
|S1| = 0 or |S2| = 0 are not possible, because this would

contradict Lemma 9.
If |S1| = 1 and |S2| = 1, then S1 = {in2} and S2 =

{in1}. Thus, in1 ⊑ {in2} and in2 ⊑ {in1}, which contradicts
Lemma 10.

If |S1| = 1 then S1 = {in2}. Because in1 ⊑ S1, we
have cost(in1) ≥ cost(in2). Moreover, because in2 ⊑ S2

and in1 ∈ S2, if |S2| ≥ 2 then according to Lemma 11 we
have cost(in1) < cost(in2), hence the contradiction.

Because in1 ⊑ S1 and in2 ∈ S1, if |S1| ≥ 2 then
according to Lemma 11 we have cost(in2) < cost(in1).
Because in2 ⊑ S2 and in1 ∈ S2, if |S2| ≥ 2 then according
to Lemma 11 we have cost(in1) < cost(in2). Hence the
contradiction cost(in1) < cost(in1).

Based on our definition of local dominance for subsets
(§VII-E), we introduce the corresponding definition for in-
puts, in order to state more easily Corollary 1, then prove
Theorem 2.

Definition 2 (Local Dominance). The input in1 ∈ Isearch
locally-dominates the input in2 ∈ Isearch , denoted in1 ↪→ in2,
if there exists a subset S ⊆ Isearch such that in1 ∈ S and
in2 ⊑ S.

Proposition 5 (Local Dominance for Inputs is Asymmetric).
The ↪→ relation is asymmetric i.e., for every in1, in2 ∈ Isearch ,
if in2 ↪→ in1, then in1 ̸↪→ in2.

Proof. If in2 ↪→ in1 then there exists S1 ⊆ Isearch such that
in2 ∈ S1 and in1 ⊑ S1. The proof is done by contradiction,
assuming in1 ↪→ in2. Hence, there exists S2 ⊆ Isearch such
that in1 ∈ S2 and in2 ⊑ S2 According to Proposition 4 we
have in1 ̸∈ S2, hence the contradiction.

We now prove that the local dominance relation is transitive
(Proposition 7).

Proposition 6 (Local Dominance for Subsets is Transitive).
Let in1, in2 ∈ Isearch be two inputs and S1, S2 ⊆ Isearch be
two subsets of the remaining inputs.

If in1 ⊑ S1, in2 ∈ S1, and in2 ⊑ S2, then in1 ⊑ (S1 \
{in2}) ∪ S2.

Proof. Because Cover(in1) ⊆ Cover(S1), in2 ∈ S1, and
Cover(in2) ⊆ Cover(S2), we have:

Cover(in1) ⊆ Cover(S1 \ {in2}) ∪ Cover(S2)
= Cover((S1 \ {in2}) ∪ S2)

Moreover, because cost(in1) ≥ cost(S1), in2 ∈ S1, and
cost(in2) ≥ cost(S2), we have:

cost(in1) ≥ cost(S1 \ {in2}) + cost(S2)
≥ cost((S1 \ {in2}) ∪ S2)

Finally, because in1 ⊑ S1 we have in1 ̸∈ S1. We prove
in1 ̸∈ (S1 \ {in2}) ∪ S2 by contradiction. If in1 ∈ (S1 \
{in2}) ∪ S2 then, because in1 ̸∈ S1, we have in1 ∈ S2. In
that case, we have

cost(in1)
≥ cost(S1 \ {in2}) + cost(S2)
= cost(S1 \ {in2}) + cost(S2 \ {in1}) + cost(in1)
≥ cost(in1)

Hence, by subtracting cost(in1), we have:

cost(S1 \ {in2}) + cost(S2 \ {in1}) = 0

Thus, according to Lemma 2, we have S1 = {in2} and
S2 = {in1}. Therefore in1 ⊑ {in2} and in2 ⊑ {in1}, which
contradicts Lemma 10.

Proposition 7 (Local Dominance for Inputs is Transitive). The
↪→ relation is transitive i.e., for every in1, in2, in3 ∈ Isearch ,
if in3 ↪→ in2 and in2 ↪→ in1, then in3 ↪→ in1.

Proof. If in3 ↪→ in2 and in2 ↪→ in1, then there exists
S1, S2 ⊆ Isearch such that in2 ∈ S1, in1 ⊑ S1, in3 ∈ S2,
and in2 ⊑ S2. According to Proposition 6, we have in1 ⊑
(S1\{in2})∪S2. Hence, because in3 ∈ S2 ⊆ (S1\{in2})∪S2

we have in3 ↪→ in1.

We finally prove that the local dominance relation is acyclic.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH 2024 7

Corollary 1 (Local Dominance is Acyclic). There exists no
cycle in1 ↪→ . . . ↪→ inn ↪→ in1 such that in1, . . . , inn ∈
Isearch .

Proof. The proof is done by contradiction, by assuming the
existence of such a cycle in1 ↪→ . . . ↪→ inn ↪→ in1.
According to Proposition 7, we have by transitivity that
in1 ↪→ in1. Then, according to Proposition 5, we have by
asymmetry in1 ̸↪→ in1. Hence the contradiction.

Finally, we use the transitivity (Proposition 7 and Proposi-
tion 6) and the acyclicity (Corollary 1) of the local-dominance
relation to prove that non locally-dominated inputs, as a whole,
locally-dominate all the locally dominated inputs.

Theorem 2 (Local Dominance Hierarchy). For every locally-
dominated input in ∈ Isearch , there exists a subset S ⊆ Isearch
of not locally-dominated inputs such that in ⊑ S.

Proof. For each input in0 ∈ Isearch we denote:

LocDoms(in0)
def
={in ∈ Isearch | in ↪→ in0}

the input set which locally dominate in0.
Let in0 ∈ Isearch be an input. We prove by induction on

LocDoms(in0) that either in0 is not locally dominated or
there exists a subset S ⊆ Isearch of not locally-dominated
inputs such that in0 ⊑ S.

For the initialization, we consider LocDoms(in0) = ∅. In
that case, in0 is not locally dominated.

For the induction step, we consider LocDoms(in0) ̸= ∅,
so in0 is a locally dominated input. Hence, there exists S0 ⊆
Isearch such that in0 ⊑ S0. We consider two cases.

Either every input in S0 is not locally dominated. In that
case S = S0 satisfies the inductive property.

Or there exists n ≥ 1 input in1, . . . , inn in S0 which are
locally dominated. The rest of the proof is done in two steps.

First, let 1 ≤ i ≤ n. We prove that LocDoms(ini) ⊂
LocDoms(in0), with a strict inclusion.

Because ini ∈ S0 and in0 ⊑ S0, we have ini ↪→ in0.
Hence, ini ∈ LocDoms(in0).

Let in ∈ LocDoms(ini), so we have in ↪→ ini. So,
according to Proposition 7, we have by transitivity in ↪→
in0, thus in ∈ LocDoms(in0). Hence, LocDoms(ini) ⊆
LocDoms(in0).

According to Corollary 1, there is no cycle so ini ̸↪→ ini.
Hence, ini ̸∈ LocDoms(ini).

Finally, we have LocDoms(ini) ⊆ LocDoms(in0)
and ini ∈ LocDoms(in0) \ LocDoms(ini). Therefore
LocDoms(ini) ⊂ LocDoms(in0).

Because LocDoms(ini) ⊂ LocDoms(in0), we can apply
the induction hypothesis on ini, which is locally dominated.
Therefore, for each 1 ≤ i ≤ n, there exists a subset Si ⊆
Isearch of not locally-dominated inputs such that ini ⊑ Si.

Second, we use these Si to define by induction on 0 ≤ m <
n the following input sets:

I0 = S0

Im+1 = (Im \ {inm+1}) ∪ Sm+1

and we prove by induction on 0 ≤ m ≤ n that in0 ⊑ Im and
that either, m < n and inm+1, . . . , inn are the only locally

dominated inputs in Im, or m = n and Im contains no locally
dominated input.

For the initialization, we have I0 = S0 and the inductive
property is satisfied because in0 ⊑ S0 and in1, . . . , inn are
the only locally dominated inputs in S0.

For the induction step m+1 ≤ n, we assume that in0 ⊑ Im
and that inm+1, . . . , inn are the only locally dominated inputs
in Im.

Because Im+1 = (Im\{inm+1})∪Sm+1 and Sm+1 contains
no locally-dominated input, we have that either, m + 1 < n
and inm+2, . . . , inn are the only locally dominated inputs in
Im+1, or m+1 = n and Im+1 contains no locally-dominated
input.

Moreover, because in0 ⊑ Im, inm+1 ∈ Im, and inm+1 ⊑
Sm+1, then according to Proposition 6, we have in0 ⊑ (Im \
{inm+1}) ∪ Sm+1. Hence in0 ⊑ Im+1, which concludes the
induction step.

Therefore, in0 ⊑ In and In contains no locally-dominated
input. Thus, S = In satisfies the inductive property on
LocDoms(in0). Hence the claim for not locally-dominated
inputs.

E. Dividing the Problem

In this section, we prove that redundancy updates are
local (Lemma 12), that reductions on different connected
components can be performed independently (Proposition 8),
and finally that the gain can be independently computed on
each connected component (Theorem 3). The main purpose
of the section is to justify we can divide our problem into
subproblems (§VII-F). We start by the locality.

Lemma 12 (Redundancy Updates are Local). Let I be an
input set and let in1, in2 ∈ I .

If redundancy(in2, I \ {in1}) ̸= redundancy(in2, I ), then
in1 ⊓ in2.

Proof. The proof is done by contraposition. If in1 and in2

do not overlap, then Cover(in1) ∩ Cover(in2) = ∅. So,
for every bl ∈ Cover(in2), we have in1 ̸∈ Inputs(bl), and
thus Inputs(bl) ∩ (I \ {in1}) = Inputs(bl) ∩ I . Therefore,
redundancy(in2, I \ {in1}) = redundancy(in2, I ).

Then, we prove the independence of removal steps per-
formed on different components.

Lemma 13 (Independent Redundancies). Let I be an in-
put set. For each connected component C ∈ Comps(I ),
for each input in0 ∈ C , and for each order of re-
moval steps [in1, . . . , inn], if in1, . . . , inn ̸∈ C , then
redundancy(in0, I \ {in1, . . . , inn}) = redundancy(in0, I ).

Proof. Comps(I ) are the connected components for the
redundant inputs in I , hence they are disjoint. There-
fore, for each in0 ∈ C , because in1, . . . , inn ̸∈ C ,
we have that in0 do not overlap with any of the
in1, . . . , inn. Therefore, according to Lemma 12, we have
redundancy(in0, I ) = redundancy(in0, I \ {in1}) = · · · =
redundancy(in0, I \ {in1, . . . , inn}).
Proposition 8 (Independent Removal Steps).
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Let I be an input set and let C1, . . . ,Cc ∈ Comps(I )
denote c connected components. If, for each 0 ≤ i ≤ c, there
exists inputs ini

1, . . . , in
i
ni
∈ Ci such that [ini

1, . . . , in
i
ni
] ∈

ValidOrders(I ), then:

[in1
1, . . . , in

1
n1
] + · · ·+ [inc

1, . . . , in
c
nc
] ∈ ValidOrders(I )

where + denotes sequence concatenation.

Proof. The proof is done by induction on c.
If c = 0, then [in1

1, . . . , in
1
n1
]+ · · ·+[inc

1, . . . , in
c
nc
] = [ ] ∈

ValidOrders(I ).
We assume by induction that [in1

1, . . . , in
1
n1
] + · · · +

[inc
1, . . . , in

c
nc
] ∈ ValidOrders(I ).

We denote ℓ this order of removal steps
and for the sake of simplicity we also denote
S = {in1

1, . . . , in
1
n1
, . . . , inc

1, . . . , in
c
nc
}.

By induction, let Cc+1 ∈ Comps(I ) be another connected
component and let inc+1

1 , . . . , inc+1
nc+1

∈ Cc+1 such that
[inc+1

1 , . . . , inc+1
nc+1

] ∈ ValidOrders(I ).
We now prove that ℓ + [inc+1

1 , . . . , inc+1
nc+1

] ∈
ValidOrders(I ).

This is done by proving by induction on 0 ≤ j ≤ nc+1 that:

ℓ+ [inc+1
1 , . . . , inc+1

j ] ∈ ValidOrders(I )

and that, for each in0 ∈ Cc+1 \ Sj , we have:

redundancy(in0, I \ (S ∪ Sj)) = redundancy(in0, I \ Sj)

where Sj = {inc+1
1 , . . . , inc+1

j }.
If nc+1 = 0, then ℓ + [inc+1

1 , . . . , inc+1
nc+1

] = ℓ ∈
ValidOrders(I ). Moreover, because Cc+1 is disjoint with
C1, . . . ,Cc, according to Lemma 13, performing the ℓ removal
steps does not change the redundancies of inputs in Cc+1 i.e.,
for each in0 ∈ Cc+1, we have redundancy(in0, I \ S) =
redundancy(in0, I ).

We now assume by induction that ℓ+ [inc+1
1 , . . . , inc+1

j ] ∈
ValidOrders(I ) and for each in0 ∈ Cc+1 \ Sj , we have
redundancy(in0, I \ (S ∪ Sj)) = redundancy(in0, I \ Sj).

Because [inc+1
1 , . . . , inc+1

nc+1
] ∈ ValidOrders(I ), we have

inc+1
j+1 ∈ Redundant(I \ Sj). Moreover, inc+1

j+1 ∈ Cc+1 hence
inc+1

j+1 ̸∈ S. Therefore, using the induction hypothesis with
in0 = inc+1

j+1, we have inc+1
j+1 ∈ Redundant(I \ (S ∪ Sj)).

Therefore, according to our definition of valid removal steps
(§III-C), ℓ+ [inc+1

1 , . . . , inc+1
j+1] ∈ ValidOrders(I ).

We denote Sj+1 = Sj ∪ {inc+1
j+1}. Let in0 ∈ Cc+1 \ Sj+1.

To complete the induction step, we prove that:

redundancy(in0, I \ (S ∪ Sj+1))
= redundancy(in0, I \ Sj+1)

We remind that, for each input set X , we have:

redundancy(in0, X)
= min{|Inputs(bl) ∩X| | bl ∈ Cover(in0)} − 1

We denote as critical the objectives contributing to the redun-
dancy:

CritSubCls(in0, X)
def
=argmin{|Inputs(bl) ∩X| | bl ∈ Cover(in0)}

Because in0 ∈ Cc+1, we know that in0 does not overlap
with inputs in S so, for each bl ∈ Cover(in0), we have
Inputs(bl) ∩ (I \ S) = Inputs(bl) ∩ I . Thus, by removing
inputs of Sj from both sides, we have Inputs(bl)∩ (I \ (S ∪
Sj)) = Inputs(bl) ∩ (I \ Sj). Therefore:

CritSubCls(in0, I \ (S ∪ Sj)) = CritSubCls(in0, I \ Sj)

We consider two cases:
1) Either there exists bl ∈ CritSubCls(in0, I \ Sj) such

that inc+1
j+1 ∈ Inputs(bl). In that case:

|Inputs(bl) ∩ (I \ (S ∪ Sj+1))|
= |Inputs(bl) ∩ (I \ (S ∪ Sj))| − 1

|Inputs(bl) ∩ (I \ Sj+1)| = |Inputs(bl) ∩ (I \ Sj)| − 1

Because bl is critical and a redundancy can decrease at most
by 1 after a reduction (Lemma 4) so the cardinalities for other
objectives cannot decrease below the previous redundancy
minus one, we have:

redundancy(in0, I \ (S ∪ Sj+1))
= redundancy(in0, I \ (S ∪ Sj))− 1

redundancy(in0, I \ Sj+1) = redundancy(in0, I \ Sj)− 1

2) Or for each bl ∈ CritSubCls(in0, I \ Sj), we have
inc+1

j+1 ̸∈ Inputs(bl). In that case:

|Inputs(bl) ∩ (I \ (S ∪ Sj+1))|
= |Inputs(bl) ∩ (I \ (S ∪ Sj))|

|Inputs(bl) ∩ (I \ Sj+1)| = |Inputs(bl) ∩ (I \ Sj)|

Because bl is critical and a redundancy can decrease at most
by 1 after a reduction (Lemma 4) so the cardinalities for
non-critical objectives cannot decrease below the previous
redundancy we have:

redundancy(in0, I \ (S ∪ Sj+1))
= redundancy(in0, I \ (S ∪ Sj))

redundancy(in0, I \ Sj+1) = redundancy(in0, I \ Sj)

In both cases, by induction hypothesis
redundancy(in0, I \ (S ∪ Sj)) = redundancy(in0, I \ Sj),
hence we have redundancy(in0, I \ (S ∪ Sj+1)) =
redundancy(in0, I \ Sj+1).

This completes the induction on 0 ≤ j ≤ nc+1. In particu-
lar, we proved that ℓ+[inc+1

1 , . . . , inc+1
nc+1

] ∈ ValidOrders(I ),
which completes the induction on c, hence the result.

We now prove that the gain can be independently computed
on each connected component (Theorem 3). To do so, we have
to prove intermediate results, including Proposition 9.

Lemma 14 (Redundancy within a connected component).
Let I be an input set. For each connected component C ∈
Comps(I ), for each input in0 ∈ C , and for each order of
removal steps [in1, . . . , inn], if in1, . . . , inn ∈ C , then:

redundancy(in0,C \ {in1, . . . , inn})
= redundancy(in0, I \ {in1, . . . , inn})
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Proof. We remind that, for each input set X , we have:

redundancy(in0, X)
= min{|Inputs(bl) ∩X| | bl ∈ Cover(in0)} − 1

For the sake of simplicity, we denote XC = C \
{in1, . . . , inn} and XI = I \ {in1, . . . , inn}. Let in0 ∈ C
and bl ∈ Cover(in0).

Because C ∈ Comps(I ), we have C ⊆ I , hence XC ⊆
XI . So Inputs(bl) ∩ XC ⊆ Inputs(bl) ∩ XI . Moreover, for
each in ∈ Inputs(bl) ∩ XI we have bl ∈ Cover(in0) ∩
Cover(in), so in0 ⊓ in , and thus in ∈ XC .

Therefore, Inputs(bl) ∩XC = Inputs(bl) ∩XI .
Hence the result redundancy(in0, XC ) =

redundancy(in0, XI ).

Corollary 2 (Component Validity). Let I be an input set.
For each connected component C ∈ Comps(I ) and for
each order of removal steps [in1, . . . , inn], if [in1, . . . , inn] ∈
ValidOrders(C ), then [in1, . . . , inn] ∈ ValidOrders(I ).

Proof. The proof is done by induction on n.
For the initialization n = 0, we have [in1, . . . , inn] = [ ] ∈

ValidOrders(I ).
For the induction step, we consider [in1, . . . , inn, inn+1] ∈

ValidOrders(C ) and we assume by induction that
[in1, . . . , inn] ∈ ValidOrders(I ).

Because [in1, . . . , inn, inn+1] ∈ ValidOrders(C ), accord-
ing to our definition of redundant inputs and removal steps
(§III-C), we have in1, . . . , inn ∈ C . Hence, according to
Lemma 14, we have for each in0 ∈ C :

redundancy(in0,C \ {in1, . . . , inn})
= redundancy(in0, I \ {in1, . . . , inn})

Thus, because C ⊆ I , according to the definition of
redundancy (§III-C) we have:

Redundant(C \ {in1, . . . , inn})
⊆ Redundant(I \ {in1, . . . , inn})

Because [in1, . . . , inn, inn+1] ∈ ValidOrders(C ),
we have inn+1 ∈ Redundant(C \ {in1, . . . , inn})
by definition of removal steps (§III-C). Thus,
inn+1 ∈ Redundant(I \ {in1, . . . , inn}).

By induction hypothesis [in1, . . . , inn] ∈ ValidOrders(I ).
Therefore [in1, . . . , inn, inn+1] ∈ ValidOrders(I ), which

completes the induction step.

Proposition 9 (Reductions withing a connected component).
Let I be an input set. For each connected component C ∈
Comps(I ) and for each order of removal steps [in1, . . . , inn],
if [in1, . . . , inn] ∈ ValidOrders(I ) and in1, . . . , inn ∈ C ,
then [in1, . . . , inn] ∈ ValidOrders(C ).

Proof. The proof is done by induction on n.
If n = 0 then [in1, . . . , inn] = [ ] ∈ ValidOrders(C ).
Otherwise, we consider [in1, . . . , inn, inn+1] with

in1, . . . , inn, inn+1 ∈ C and we assume by induction that
[in1, . . . , inn] ∈ ValidOrders(C ).

We assume [in1, . . . , inn, inn+1] ∈ ValidOrders(I ), so
inn+1 ∈ Redundant(I \ {in1, . . . , inn}).

According to Lemma 14 applied to inputs in0 ∈ C \
{in1, . . . , inn} with redundancy > 0, we have:

Redundant(C \ {in1, . . . , inn})
= Redundant(I \ {in1, . . . , inn})

Hence, inn+1 ∈ Redundant(C \ {in1, . . . , inn}).
Thus, because [in1, . . . , inn] ∈ ValidOrders(C ), according

to our definition of valid removal steps (§III-C), we have the
result [in1, . . . , inn, inn+1] ∈ ValidOrders(C ).

Finally, we conclude the section by proving the claim
on Theorem 3, which is used to divide our problem into
subproblems (§VII-F).

Theorem 3 (Divide the Gain). For each input set I :

gain(I ) =
∑

C∈Comps(I )

gain(C )

Proof. Let [in1, . . . , inn] ∈ ValidOrders(I ) be a valid
order of removal steps such that its cumulative cost∑

1≤i≤n cost(ini) = gain(I ) is maximal (§III-C), and let
Comps(I ) = {C1, . . . ,Cc} denote the connected components,
without a particular order.

We denote [in1, . . . , inn]Cj
the largest sublist (Definition 1)

of [in1, . . . , inn] containing only inputs in the connected com-
ponent Cj . Because [in1, . . . , inn] ∈ ValidOrders(I ), accord-
ing to Lemma 7 we have [in1, . . . , inn]Cj

∈ ValidOrders(I )
as well. So, according to Proposition 8:

[in1, . . . , inn]C1
+ · · ·+ [in1, . . . , inn]Cc

∈ ValidOrders(I )

Because the connected components form a partition of the
redundant inputs, the cumulative cost of this order of removal
steps is the same as [in1, . . . , inn]:
∑

1≤j≤c

∑

in∈[in1,...,inn]Cj

cost(in) =
∑

1≤i≤n

cost(ini) = gain(I )

We now consider any connected component Cj1 and we
prove that:

∑

in∈[in1,...,inn]Cj1

cost(in) = gain(Cj1)

The proof is done in two steps.
First, note that because [in1, . . . , inn]Cj1

∈
ValidOrders(I ) and contains only inputs in Cj1 , according to
Proposition 9 we have [in1, . . . , inn]Cj1

∈ ValidOrders(Cj1)
as well.

Second, we prove by contradiction that [in1, . . . , inn]Cj1

has a maximal cumulative cost in Cj1 . We assume by con-
tradiction that there exists a valid order of removal steps
[in ′

1, . . . , in
′
n′ ] ∈ ValidOrders(Cj1) such that:

∑

in∈[in′
1,...,in

′
n′ ]

cost(in) >
∑

in∈[in1,...,inn]Cj1

cost(in)

Because [in ′
1, . . . , in

′
n′ ] ∈ ValidOrders(Cj1), according to

Corollary 2 we have [in ′
1, . . . , in

′
n′ ] ∈ ValidOrders(I ) as

well. So, according to Proposition 8, we have:

[in1, . . . , inn]C1
+ · · ·+ [in1, . . . , inn]Cj1−1
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+[in ′
1, . . . , in

′
n′ ] + [in1, . . . , inn]Cj1+1

+ . . .

+[in1, . . . , inn]Cc
∈ ValidOrders(I )

The cumulative cost of this valid order of removal steps is
thus larger than the cumulative cost of [in1, . . . , inn]C1

+· · ·+
[in1, . . . , inn]Cc :

∑

in∈[in′
1,...,in

′
n′ ]

cost(in) +
∑

1≤j≤c∧j ̸=j1

∑

in∈[in1,...,inn]Cj

cost(in)

>
∑

1≤j≤c

∑

in∈[in1,...,inn]Cj

cost(in) = gain(I )

which contradicts the maximality of gain(I ).
Hence, [in1, . . . , inn]Cj1

∈ ValidOrders(Cj1) has a maxi-
mal cumulative cost in Cj1 . So, according to the definition of
the gain (§III-C), we have for any connected component Cj1 :

∑

in∈[in1,...,inn]Cj1

cost(in) = gain(Cj1)

Therefore, we have the result:

gain(I ) =
∑

1≤j≤c

∑

in∈[in1,...,inn]Cj

cost(in) =
∑

1≤j≤c

gain(Cj)

F. Genetic Search

In this section, we prove desirable properties satisfied for
each generation by roofers (Theorem 4) and misers (Theo-
rem 5) during the genetic search (Section VIII). We start by
roofers.

Theorem 4 (Invariant of the Roofers). For every generation
n, we have:

|Roofers(n)| = nsize

min{cost(I ) | I ∈ Roofers(n)}
= min{cost(I ) | I ∈ ⋃

0≤m≤n

Roofers(m)}

and for every I ∈ Roofers(n), we have:
• I is reduced (in the sense of §III-C)
• Cover(I ) = Coverageobj (C )

Proof. There are nsize individuals in the initial roofer pop-
ulation (§VIII-B). Moreover, the procedure detailed above to
update the roofer population ensures that an offspring can only
take the place of an existing roofer. Hence, the number of
roofers does not change over generations.

In the initial population, a roofer I is always replaced
by its reduced counterpart reduce(I ) after adding an input
(§VIII-B). Moreover, after mutation (§VIII-E) each offspring
I is replaced by its reduced counterpart reduce(I ) before
determining if it is accepted in the roofer population or
rejected. Hence, for each generation, each roofer is reduced.

Roofers in the initial population are built so that they cover
all the objectives (§VIII-B). Moreover, in the above procedure,
an offspring can be added to the roofer population only if
it covers all the objectives. Hence, for each generation, each
roofer covers all the objectives.

Finally, in the above procedure one can remove an indi-
vidual from the roofer population only if a less or equally
costly roofer is found. Hence, the minimal cost amongst the
roofers can only remain the same or decrease over generations.
Therefore, the minimal cost in the last generation is the
minimal cost encountered so far during the search.

To ease the proof for misers (Theorem 5), we first prove in
Lemma 16 that a miser I0 can be removed between generation
n and generation n+ 1 only by a dominating miser I . Then,
we prove in Corollary 3 that being dominated is carried from
generation to generation.

Lemma 15 (Transitivity of Pareto Dominance). The ≻ rela-
tion (§II-E) is transitive i.e., for every input sets I1, I2, I3, if
I1≻ I2 and I2≻ I3, then I1≻ I3.

Proof. For each 0 ≤ i ≤ n, we have fi(I1) ≤ fi(I2) and
fi(I2) ≤ fi(I3), so fi(I1) ≤ fi(I3). Moreover, there exists
0 ≤ i1 ≤ n such that fi1(I1) < fi1(I2) ≤ fi1(I3) and there
exists 0 ≤ i2 ≤ n such that fi2(I1) ≤ fi2(I2) < fi2(I3).
i1 and i2 can be the same or distinct. In any case, we have
fi1(I1) < fi1(I3) and fi2(I1) < fi2(I3).

Lemma 16. For every generation n, if I0 ∈ Misers(n) \
Misers(n+ 1), then there exists I ∈ Misers(n+ 1) such that
I ≻ I0, where ≻ is the domination relation from (§II-E).

Proof. In the miser population update (§VIII-F), I0 can be
removed from the miser population only if there exists a
miser candidate I1 such that I1≻ I0. If I1 is accepted in the
population then I = I1 satisfies the lemma.

Otherwise, I1 is rejected only because there exists a miser
I2 such that I2≻ I1. Hence, according to Lemma 15, we have
by transitivity that I2≻ I0. Note that there is at most two
miser candidates per generation. If either I1 is the only miser
candidate or there exists a second miser candidate I3 which
does not dominate I2, then I2 is present in the next generation
and I = I2 satisfies the lemma.

Otherwise, there exists a second candidate I3 such that
I3≻ I2. Hence, according to Lemma 15, we have by tran-
sitivity that I3≻ I0. If I3 is accepted in the population then
I = I3 satisfies the lemma.

Otherwise, I3 is rejected only because there exists a miser
I4 such that I4≻ I3. Hence, according to Lemma 15, we have
by transitivity that I4≻ I0. Because there is at most two miser
candidates per generation, I4 cannot be removed by another
candidate. Therefore, I4 is present in the next generation and
I = I4 satisfies the lemma.

Corollary 3 (Dominance across Generations). For every gen-
eration n and for every I1 ∈ Misers(n), if there exists
0 ≤ m ≤ n and I2 ∈ Misers(m) such that I2≻ I1, then
there exists I3 ∈ Misers(n) such that I3≻ I1.

Proof. The proof is done by induction on n−m.
If I2 ∈ Misers(n) then I2 = I3 satisfies the corollary.
Otherwise, there exists a generation m < g ≤ n where

I2 was removed. In that case, according to Lemma 16, there
exists I3 ∈ Misers(g) such that I3≻ I2. Hence, according
to Lemma 15, we have by transitivity that I3≻ I1. Finally,
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because n−g < n−m, we have the result using the induction
hypothesis on I3.

We finally prove, as expected, the properties satisfied by
misers on each generation.

Theorem 5 (Invariant of the Misers). For every generation n,
for every I1 ∈ Misers(n), we have:

• I1 is reduced (in the sense of §III-C)
• Cover(I ) ⊂ Coverageobj (C ) (the inclusion is strict)
• There exists no I2 ∈

⋃
0≤m≤n

Misers(m) such that I2≻ I1.

Proof. The initial miser population is empty (§VIII-B), hence
the properties trivially hold.

After mutation (§VIII-E) each offspring I is replaced by
its reduced counterpart reduce(I ) before determining if it is
accepted in the miser population or rejected. Hence, for each
generation, each miser is reduced.

In the miser population update (§VIII-F), an offspring can
be a candidate to the miser population only if it does not cover
all the objectives.

Finally, the last property is proved for a miser I1 ∈
Misers(n). Let n′ be the first generation when I1 was ac-
cepted, so we have n′ ≤ n and I1 ∈ Misers(n′).

The proof is done by contradiction, assuming that there
existed a generation 0 ≤ m ≤ n and a miser I2 ∈ Misers(m)
such that I2≻ I1. Let m′ be the first generation when I2 was
accepted, so we have m′ ≤ m and I2 ∈ Misers(m′). We
consider two cases.

If m′ ≤ n′ then, according to Corollary 3, there exists
I3 ∈ Misers(n′) such that I3≻ I1. This contradicts the above
procedure, because if I1 was dominated it would not have been
accepted in Misers(n′).

If m′ > n′ then, because I2≻ I1, according to the above
procedure I1 is removed so I1 ̸∈ Misers(m′). But m′ ≤ m ≤
n and I1 ∈ Misers(n), so I1 was added between m′ and n.
Let g be the first generation when this occurred.

In that case we have I1 ∈ Misers(g), 0 ≤ m′ ≤ g, I2 ∈
Misers(m′), and I2≻ I1. So, according to Corollary 3, there
exists I3 ∈ Misers(g) such that I3≻ I1, which contradicts the
fact that I1 was accepted in Misers(g).
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