
Chapter 11

The FEniCS Project on AWS Graviton32

M. Habera and J. S. Hale3

Abstract ARM architecture central processing units are increasingly prevalent in4

high performance computers due to their energy e!ciency, scalability and cost-5

e”ectiveness. The overall goal of this study is to evaluate the suitability of ARM-6

based cloud computing instances for executing finite element computations. Specif-7

ically, we show performance results executing the FEniCS Project finite element8

software on Amazon Web Services (AWS) c7g and c7gn instances with Graviton39

processors. These processors support ARMv8.4-A instruction set with Scalable Vec-10

tor Extensions (SVE) for Single Instruction Multiple Data operations and the Elastic11

Fabric Adaptor for communications between instances. Both clang 18 and GCC12

13 compilers successfully generated optimized code using SVE instructions which13

ensures that users can achieve optimized performance without extensive manual14

tuning. Testing a distributed memory parallel DOLFINx Poisson solver with up15

to 512 Message Passing Interface processes, we found that the performance and16

scalability of the AWS instances are comparable to a dedicated AMD EPYC Rome17

cluster installed at the University of Luxembourg. These findings demonstrate that18

ARM-based cloud computing instances, exemplified by AWS Graviton3, can be19

competitive for distributed memory parallel finite element analysis.20

Introduction21

The FEniCS Project (Alnæs et al., 2015; Baratta et al., 2023b) has been used to write22

finite element solvers for problems arising in fields that involve the solution of partial23
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di”erential equations (PDEs), including mathematics, biology, physics, engineering,24

geophysics and mechanics.25

Exploring ARM-based processors and cloud computing instances for executing FEn-26

iCS Project-based solvers is worthwhile due to ARMs potential advantages in cost-27

e”ectiveness, energy e!ciency and scalability with respect to x86-64-based ma-28

chines Simakov et al. (2023); Suárez et al. (2024). Examples of adoption of ARM29

in the HPC space include the Isambard project (Isambard 3, NVIDIA Grace, (BCS,30

2025)), Mont-Blanc project (Phase 3, Cavium Thunder X2, (Rajovic et al., 2016)),31

Fugaku supercomputer (Fujitsu A64FX, (Fujitsu, 2024)) and Astra supercomputer32

(Cavium Thunder X2, (Sandia, 2018)). The publically available cloud services with33

ARM instances include Amazon Web Services (AWS) (Graviton3 CPU based on34

Neoverse V1 and Graviton4 CPU with Neoverse V2), Google Cloud (Axion CPU35

based on Neoverse V2, (Google, 2025)) and Microsoft Azure (Azure Cobalt 10036

based on Neoverse N2, (Microsoft, 2024)).37

AWS Graviton3-based instances aim to provide cost e”ective compute resources for38

scientific computing and machine-learning applications by including both Scalable39

Vector Extension (SVE) instructions for Single Instruction Multiple Data (SIMD)40

parallelism and the Elastic Fabric Adaptor (EFA) interconnect for high-bandwidth41

low-latency communication between instances. This makes the AWS cloud o”ering42

particularly appealing for executing scientific computing codes, like the FEniCS43

Project.44

A key technology in the FEniCS Project is the use of automatic code genera-45

tion (compilation). The user expresses their finite element problem in the Unified46

Form Language (UFL) (Alnæs et al., 2014) and then the FEniCSx Form Compiler47

(FFCx) (Kirby and Logg, 2006) compiles the UFL description of the problem into a48

low-level C kernel for computing the cell-local finite element tensor.49

One aspect of good performance of a compute-bound kernel is ensuring the assembly50

code of the compiled kernel contains calls to Single Instruction Multiple Data51

(SIMD) operations. SIMD operations can apply the same operation to multiple data52

items in a single CPU clock cycle. For a recent overview of SIMD programming53

strategies see e.g. (Rocke, 2023). The current strategy of FFCx with respect to54

SIMD is to ensure that its kernels are amenable to the compiler applying automatic55

vectorisation, a process that automatically converts a scalar program into a vectorised56

equivalent that uses SIMD operations.57

Consequently for users to achieve good performance when using FEniCSx on Gravi-58

ton3 it is important to verify that the latest compilers do automatically emit SVE59

and/or Neon SIMD instructions when compiling the generated C finite element60

kernels and that these kernels achieve reasonable runtime performance.61

In addition to SIMD parallelisation at the kernel level, DOLFINx, the finite ele-62

ment problem solving environment of the FEniCS Project, also supports distributed63

memory parallel assembly of global finite element data structures (sparse matrices64

and vectors) using the Message Passing Interface (MPI), for full details see Baratta65
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et al. (2023b). For user’s to run large-scale DOLFINx simulations on AWS it is66

necessary to verify that the EFA interconnect provides su!cient performance for67

parallel scalability.68

In summary, the contribution of this chapter is to examine both SIMD performance69

and multi-node parallel scaling of the FEniCS Project software on Amazon’s Gravi-70

ton3 based instances.71

Methodology and Results72

Systems73

AWS c7g and c7gn instances are compared to Aion computing instances available at74

the University of Luxembourg HPC facilities (Varrette et al., 2022). These instances75

have di”erent hardware configuration, see Table 1.1 for full details.76

The FEniCS Project components are written in a mixture of Python, modern-style77

C++20 and Standard C17. The Python interface is a wrapper around the core data78

structures and computationally intensive algorithms written in C and C++.79

Aion node AWS c7g instance

Processor 2 x (AMD Epyc ROME 7H12,
64 cores @ 2.6 GHz)

1 x (Graviton3,
64 cores @ 2.6 GHz)

Architecture x86 64, Zen 2 (AVX2) ARMv8.4-A, Neoverse V1 (SVE)

Memory
256 GB DDR4
3200 MT/s = 25.6 GB/s
8 NUMA nodes

128 GB DDR5
4800 MT/s = 38.4 GB/s
Unified Memory Access (no NUMA)

Total mem. bandwidth 2 x 200 GB/s 1 x 300 GB/s

Table 1.1: Configuration of the Aion nodes (University of Luxembourg HPC) and
AWS c7g (Amazon) instances. The c7gn instance used in the Poisson weak scaling
test has the same hardware as c7g with the addition of a 200 GB s→1 interconnect
between instances for MPI-based communication.

Memory bandwidth80

Low-order finite element methods are typically memory bandwidth constrained as81

the time taken to load and store data from main memory (e.g. the mesh geometry)82

dominates the time taken to perform the arithmetic operations to compute the fi-83
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nite element cell tensor. Understanding the memory bandwidth characteristics of a84

processor is therefore important for ensuring optimal performance.85

STREAM (McCalpin, 1995, 1991-2007) is the industry standard benchmark for mea-86

suring sustained memory bandwidth performance. They estimate memory bandwidth87

from memory intense operations (copy, scale, add) on large contiguous arrays.88

In Figure 1.1 results for the copy operation for single-node benchmark are shown.89

For the single-node benchmark 80 % of the theoretical peak memory bandwidth of90

400 GB s→1 for Aion and 300 GB s→1 for AWS c7g is reached. This is considered a91

reasonable outcome of the STREAM benchmark, (McCalpin, 2023). Bandwidth sat-92

uration is observed at around 20 % of the node utilisation. Both curves show di”erent93

characteristics of the saturation point due to di”erent memory access configuration.94

On the Aion instances there are 8 non-unified memory access (NUMA) nodes of 1695

cores each, while AWS c7g instances are setup with unified memory access.96

Fig. 1.1: Single-node STREAM benchmark. Theoretical peak bandwidth of each
system show as dashed line.

Finite element kernels97

In order to measure the performance of a standard FEniCS user finite element code98

we used the Local Finite Element Operator Benchmarks repository (Baratta et al.,99

2023a). The benchmark measures execution time for local finite element kernel100

generated by the FEniCS Form Compiler (FFCx) v0.9.0 (Kirby and Logg, 2006).101

We generate a matrix-free three-dimensional Laplace kernel representing a finite102

element discretisation of the action of Laplace operator 𝐿𝐿 𝑀 with spatially varying103

material property 𝑀(𝑁)104
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𝑂𝐿 = 𝐿𝐿 𝑀𝑃 𝑀 , 𝐿𝐿 𝑀 =
∫
𝑁
𝑀𝑄𝑂𝑃𝑄𝑂𝑄↑𝑃𝑅𝐿↑𝑄𝑅 𝑀 | det 𝑄 |d𝑁, (1.1)

where 𝑆 is a fixed reference tetrahedron, 𝑃 𝑀 ↓ R𝑄 is a fixed, prescribed vector, 𝑄 is105

a Jacobian transformation matrix and 𝑅 are finite element basis functions.106

The generated kernel calculates a double precision vector 𝑂𝐿 ↓ R𝑄, where 𝑇 = 4107

for first-order discretization (low-order) and 𝑇 = 165 for eight-order discretization108

(high-order). Low-order kernels are expected to be memory bandwidth limited,109

while high-order kernels have higher arithmetic intensity. In addition, the matrix-110

free (operator action) version requires fewer load and store operations in comparison111

to the assembly of a matrix, increasing the ratio of floating-point operations to112

memory loads and stores. Consequently for the high-order kernels there is the scope113

for significant performance increases if the compiler can automatically emit SIMD114

operations.115

Generated code structure116

Compiler (loop) SIMD auto-vectorisation is usually performed for inner-most loops117

with compile-time known bounds. The analysis of FFCx autogenerated code is118

required to understand the potential and missed optimisations.119

Code Listing 1.1: Abbreviated FFCx generated finite element kernel.
120

void kernel(double* restrict A, const double* restrict w, ...){121
// 1. Static arrays of basis functions and quadrature weights.122
// 2. Quadrature rule independent computations.123

124
for (int iq = 0; iq < NUM_QUAD_POINTS; ++iq) {125
// 3. Quadrature loop body.126
for (int ic = 0; ic < NUM_DOFS; ++ic){127
// 3.1 Coefficient evaluation.128
w1_d100 += w[4 + (ic)] * FE0_C0_D100_Q530[0][0][iq][ic];129
// ...130

}131
132

// 3.2 Scalar graph evaluation.133
double sv_530_0 = w1_d100 * sp_530_18;134
double sv_530_1 = w1_d010 * sp_530_22;135
// ...136

137
for (int i = 0; i < NUM_DOFS; ++i) {138
// 3.3 Tensor assignment loop.139
A[(i)] += fw0 * FE0_C0_D100_Q530[0][0][iq][i];140
// ...141

}142
}143

}144145

An abbreviated example of generated C code is shown in Code Listing 1.1. Firstly,146

there are arrays defining finite element basis functions at quadrature points. These147

require no arithmetic operations. Computations independent of the quadrature loop148

contain more intense arithmetic operations (e.g. determinant of the Jacobian), but149

are executed only once. Non-a!ne geometry would require evaluation of geometric150
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quantities at each quadrature point, which would increase the arithmetic intensity151

and yield more opportunities for vectorisation.152

The most performance critical part of the code is contained in the quadrature loop153

body. For the eight-order Laplace operator there is NUM_QUAD_POINTS = 214 and154

NUM_DOFS = 165. There are two inner-most loops: coe!cient evaluation and tensor155

assignment. Both contain a set of multiply-add operations which are candidates for156

automatic vectorisation via fused multiply-add operations in both SVE (Graviton3)157

and AVX2 (AMD EPYC).158

Experimental results159

For the finite element kernel benchmarks we compiled the kernels with LLVM/clang160

18.1.3 and GCC 13.2.0. Full details are given in Table 1.2.161

Compiler Aion AWS c7g

Ofast, native, vectorized GCC 13.2.0
-Ofast
-march=znver2
-mtune=znver2

-Ofast
-mcpu=neoverse-v1

clang 18.1.3
-Ofast
-march=znver2
-mtune=znver2

-Ofast
-mcpu=neoverse-v1

Ofast, native, no vec. GCC 13.2.0

-Ofast
-march=znver2
-mtune=znver2
-fno-tree-vectorize

-Ofast
-mcpu=neoverse-v1
-fno-tree-vectorize

clang 18.1.3

-Ofast
-march=znver2
-mtune=znver2
-fno-slp-vectorize
-fno-vectorize

-Ofast
-mcpu=neoverse-v1
-fno-slp-vectorize
-fno-vectorize

O2, no vec. GCC 13.2.0 -O2
-fno-tree-vectorize

-O2
-fno-tree-vectorize

clang 18.1.3
-O2
-fno-slp-vectorize
-fno-vectorize

-O2
-fno-slp-vectorize
-fno-vectorize

Table 1.2: Compiler versions and compilation flags used for finite element kernel
benchmarks.

Results for kernel benchmarks are shown in Figure 1.2 and Figure 1.3. Low-order162

kernels (Figure 1.2) show no dependence on compiler vectorisation setup. On the163

other hand, AWS c7g shows 1.3x speed-up over Aion which we attribute to higher164

memory bandwidth for a single process.165
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High-order kernels (Figure 1.3), which are expected to benefit from SIMD operations,166

show a clear link between compiler settings and performance. Both clang and GCC167

auto-vectorisers perform well, producing a noticeable speed-up (>2x) in the most168

optimised setting. The vectorisation speed-up (>4x) is more significant with the169

Aion nodes.170

(a) clang 18.1.3. (b) GCC 13.2.0.

Fig. 1.2: Low-order Laplace operator action assembly.

(a) clang 18.1.3. (b) GCC 13.2.0.

Fig. 1.3: High-order Laplace operator action assembly.

Optimisation reports (-Rpass=loop-vectorize for clang,-fopt-info-vec-optimized171

for GCC) and the inspection of the generated assembly reveal that the low-order op-172

erator action the compiler optimisation level -Ofast makes constant folding more173

e”ective and pre-computes more operations at compile-time (e.g. partial sums of the174

static constant arrays) (Godbolt, 2024e).175
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On Graviton3, both GCC and clang generate SVE FMLA instructions (Arm, 2024)176

for both the coe!cient evaluation and tensor assignment loops (Godbolt, 2024b,a).177

FMLA, or Floating-point fused Multiply-Add, is a SIMD instruction that multiplies178

two vectors stored in SVE registers and adds the result to a third vector. The coe!cient179

evaluation loop with no interdependencies between iterations is a perfect example for180

compiler auto-vectorisation. Moreover, for coe!cients of higher order discretization,181

there is potential for exploiting wider SVE registers (up to 2048 bits).182

An assembly excerpt for the coe!cient evaluation is shown below.183

184
ld1d {z0.d}, p0/z, [x7, x0, lsl #3]185

ld1d {z25.d}, p0/z, [x3, x0, lsl #3]186

fmla z3.d, p0/m, z25.d, z0.d187

...188

faddv d1, p1, z1.d189190

As expected, there are two contiguous loads LD1D into two of the available SVE Z0-191

Z31 registers followed by a fused Multiply-Add instruction. The result is accumulated192

into an SVE register Z3 which is then horizontally summed outside of the vectorised193

loop (FADDV). Here P0 is a predicate register without any constraints on the available194

elements.195

On Aion, both GCC and clang vectorise both coe!cient evaluation and tensor196

assignment loops and rely on the VFMADD231PD instructions on the YMM registers,197

i.e. vectorisation width of 4 doubles (Godbolt, 2024c,d).198

Parallel scalability199

Results for the parallel scalability were produced using performance test codes for200

FEniCSx (Wells and Richardson, 2023) built against DOLFINx 0.6.0 and PETSc201

3.18 (Balay et al., 2023) with the Spack package manager setup to use GCC 12.2.0.202

We setup Spack to use a version of OpenMPI provided by AWS which includes203

the appropriate libfabric with native support for the EFA interconnect. Libfabric204

is a network communication library that abstracts networking technologies from205

fabric and hardware implementation, ensuring optimal data transfer across Amazon’s206

proprietary EFA interconnect.207

The Poisson equation solver benchmark consists of the following measured steps:208

1. Create mesh. Create a unit cube mesh and discretise using linear tetrahedral cells.209

Partition the mesh with Parmetis 4.0.3 partitioner (Karypis and Kumar, 1998)210

and distribute.211

2. Assemble matrix. Execute the local Poisson equation kernel over the mesh and212

assemble into a PETSc MATMPIAIJ (distributed compressed sparse row) matrix.213
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3. Solve linear system. Run Conjugate Gradient (CG) solver with a classical algebraic214

multigrid (BoomerAMG (Falgout and Yang, 2002)) preconditioner.215

Creating the mesh (including partitioning), assembling matrices and solving the216

resulting linear system are typically the most expensive steps in a finite element217

solve. They also contain significant parallel communication steps that can highlight218

issues in either the finite element solver, or the underlying MPI hardware/software219

stack, leading to poor parallel scaling. Weak scaling results (constant workload of220

approx. 5↔105 degrees-of-freedom per process) are shown in Figure 1.4. Both Aion221

and AWS c7gn show almost constant times for mesh creation (< 5% di”erence).222

Matrix assembly is expected to have ideal weak parallel scalability due to the cell-223

local nature of the assembly loop and negligible amount of MPI communication224

during matrix finalisation. Aion and AWS c7gn show small increase in time (10-15225

%) for 512 processes.226

The time for the solve step increases by 40 % for 512 processes on AWS c7gn and by227

27 % on Aion. However, the number of Krylov iterations of the preconditioned CG228

solver grows from 16 to 20 for 512 processes (25% increase) due to the ine!ciency229

of the algebraic multigrid preconditioner on an unstructured 3D mesh. Taking this230

into account, the time per iteration is almost constant on Aion (< 5%) and a small231

increase of 15 % on AWS c7gn is observed.232

Conclusions233

Benchmarks for memory bandwidth, local finite element kernels and parallel scala-234

bility of Poisson solver were executed on Aion nodes and on AWS c7g(n) instances.235

Memory bandwidth measured using STREAM MPI confirms higher memory trans-236

fer rate of AWS c7g(n), but a superior total bandwidth of 310 GB s→1 per Aion237

node.238

In terms of auto-vectorisation capabilities of GCC 13.2.0 and clang 18.1.3, both239

produced optimised instructions for the targeted microarchitectures (Zen 2 for Aion240

and Neoverse V1 for AWS c7g). This observation was confirmed with performance241

benchmarks based on local finite element kernels for the Laplace operator.242

The MPI-based distributed memory Poisson equation solver shows weak scaling243

with 15 % time per iteration increase for 512 processes on the c7gn-based cluster.244

Results for the in-house University of Luxembourg Aion system are slightly superior245

with almost constant (< 5% di”erence) time per iteration for 512 processes.246

Based on our results, we conclude that AWS Graviton3 instances are a viable alter-247

native for high-performance computing tasks using the FEniCS Project automated248

finite element solver. These instances are likely to be particularly interesting for users249



10 Habera and Hale

(a) Aion, 5 ↔ 105 degrees-of-freedom per process, 25 % utilisation
(32 processes per node).

(b) AWS c7gn, 5 ↔ 105 degrees-of-freedom per process, 50 % utilisa-
tion (32 processes per node).

Fig. 1.4: Weak parallel scalability of the DOLFINx Poisson equation solver on Aion
and AWS c7gn systems.

with infrequent or highly elastic large-scale computational demands Emeras et al.250

(2016).251

In future work we plan to work on other more complex problems (e.g. linear elastic-252

ity) and performance benchmarks of direct solvers. Additionally, the latest generation253

Graviton4 instances provide an improved Neoverse V2 instruction set, which has a254

smaller SVE vector length of 128 bits, (Arm, 2025), which warrants further investi-255

gation.256
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Supplementary material257

Raw data and plotting scripts are archived at (Habera and Hale, 2025).258
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