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A B S T R A C T
The integration of artificial intelligence (AI) into mobile applications has significantly transformed
various domains, enhancing user experiences and providing personalized services through advanced
machine learning (ML) and deep learning (DL) technologies. AI-driven mobile apps typically refer
to applications that leverage ML/DL technologies to perform key tasks such as image recognition
and natural language processing. Despite existing research exploring how mobile apps exploit AI
techniques, they have the following main limitations: 1) Most existing studies focus on DL-based
apps, with limited research on ML-based apps. 2) Existing research typically focuses on investigating
the apps and the technologies utilized in the apps, lacking user-level analysis. 3) The number of apps
studied is limited, with only 1,000 to 2,000 ML/DL apps identified after filtering. To fill the gap, in
this paper, we conducted the most extensive empirical study on AI applications, exploring on-device
ML apps, on-device DL apps, and AI service-supported (cloud-based) apps. Our study encompasses
56,682 real-world AI applications, focusing on three crucial perspectives: 1) Application analysis,
where we analyze the popularity of AI apps and investigate the update states of AI apps; 2) Framework
and model analysis, where we analyze AI framework usage and AI model protection; 3) User
analysis, where we examine user privacy protection and user review attitudes. Our study has strong
implications for AI app developers, users, and AI R&D. On one hand, our findings highlight the
growing trend of AI integration in mobile applications, demonstrating the widespread adoption of
various AI frameworks and models. On the other hand, our findings emphasize the need for robust
model protection to enhance app security. Additionally, our study highlights the importance of user
privacy and presents user attitudes towards the AI technologies utilized in current AI apps. We provide
our AI app dataset (currently the most extensive AI app dataset) as an open-source resource for future
research on AI technologies utilized in mobile applications.

1. Introduction
The advent of artificial intelligence (AI) has revolu-

tionized numerous fields, with mobile applications being
a significant beneficiary. AI-driven mobile apps leverage
machine learning algorithms, natural language processing,
and computer vision to enhance user experiences, improve
functionalities, and provide personalized services. These
advancements are particularly evident in areas such as rec-
ommender systems (Lu, Wu, Mao, Wang and Zhang (2015);
Wang, Wang and Yeung (2015)) handwriting recognition
(Pham, Bluche, Kermorvant and Louradour (2014)) and face
detection (Hjelmås and Low (2001); Dospinescu and Popa
(2016)).

From the perspective of the underlying technology, AI
applications can be broadly categorized into two main cat-
egories: machine learning-based apps (Sun, Sun, Lu and
Mislove (2021)) and deep learning-based apps (Xu, Liu, Liu,
Lin, Liu and Liu (2019)). Machine learning apps rely on
traditional machine learning algorithms (e.g., decision trees
(Rokach and Maimon (2005)), clustering algorithms (Xu
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and Tian (2015)), and logistic regression (LaValley (2008)))
to achieve the apps’ functionality. For example, in the field
of healthcare, logistic regression can be used for diabetes
prediction (Joshi and Dhakal (2021)).

Deep learning apps leverage deep learning techniques
to perform various tasks, such as image recognition (Jones
(2020)), speech recognition (Matarneh, Maksymova, Lyashenko
and Belova (2017)), and natural language processing (Locke,
Bashall, Al-Adely, Moore, Wilson and Kitchen (2021)).
For instance, Google Lens (Bilyk, Shapovalov, Shapovalov,
Megalinska, Zhadan, Andruszkiewicz, Dołhańczuk-Śródka
and Antonenko (2020)) is a prevalent deep learning mobile
app that uses image recognition technology to identify
objects, landmarks, and text in photos. Users can point their
phone’s camera at an object, and Google Lens can provide
information about what they see, such as identifying the type
of flower or offering detailed information about a landmark.

From the perspective of deployment methods, AI apps
can be categorized into two groups: on-cloud inference
and on-device inference (Xu et al. (2019)). In cloud-based
inference, mobile devices connect to cloud servers via the
network and transmit data to the servers. ML/DL mod-
els operating on the servers carry out inferences on the
data and send the results back to mobile devices. Cloud-
based inference benefits from robust computing capabilities
and flexibility, making it suitable for dealing with intricate
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models and large data volumes. Nonetheless, it relies on
network connectivity, which can lead to latency and data
privacy concerns. In contrast, on-device inference enables
ML/DL models to run directly on the mobile device. On-
device inference offers low latency and offline capabilities,
ensuring immediate responses and better data privacy pro-
tection. However, the drawback is that mobile devices have
limited computing resources, posing challenges in handling
complex models.

In the literature (Xu et al. (2019); Sun et al. (2021)),
some studies have focused on investigating the deployment
of ML/DL on mobile devices. Xu et al. (2019) present the
first empirical study on how real-world Android apps exploit
DL techniques. Their research focuses on three aspects: the
characteristics of DL apps, what they use DL for, and what
their DL models are. Sun et al. (2021) present the first
empirical study of ML model protection on mobile devices.
This study explored the extent of model protection usage in
apps, the robustness of existing model protection techniques,
and the potential impacts of stolen models.

Although their research is valuable and in-depth, there
are the following limitations in the scope of their study.
• The majority of existing studies (Xu et al. (2019); Sun

et al. (2021)) concentrated on DL-based apps, with a lack
of research on classical ML-based apps. While existing
studies (Sun et al. (2021)) explored model protection in
ML apps, their focus has primarily been on the protection
aspect without delving into the specific characteristics of
ML apps or examining the utilization of ML technologies.

• Existing studies mainly focused on investigating the apps
and the technologies utilized in the apps, lacking analysis
at the user level. However, user reviews play a vital role
in improving AI applications. Moreover, protecting user
privacy in AI apps is crucial for maintaining user trust
and ensuring compliance with data protection regulations.
Existing studies lack such an analysis from the user’s
perspective.

• The number of apps studied in existing research is limited.
Typically, the range of apps investigated in existing stud-
ies is between 10,000 to 50,000. Researchers then filter
out the ML/DL apps. Finally, the number of ML/DL apps
obtained from this process ranges from 1,000 to 2,000.
To fill this gap, we conducted the most extensive empiri-

cal study on AI applications, comprehensively exploring on-
device machine learning (ML) apps, on-device deep learning
(DL) apps, and AI service-supported apps (also referred
to as cloud-based apps). Our study encompasses 56,682
real-world AI applications. To this end, we designed an
automated AI app identification tool named AI Discrimi-
nator. On the server, AI Discriminator runs concurrently
on 96 threads for approximately 1440 hours (two months),
extracting 56,682 real-world AI applications from a pool
of 7,259,232 mobile apps in the AndroZoo large-scale ap-
plication repository (Allix, Bissyandé, Klein and Le Traon

(2016)). The number of AI apps we collected is currently the
largest AI app dataset.

Specifically, our research focuses on three main per-
spectives: 1) Application analysis, which includes AI app
popularity analysis and AI app update status analysis. 2)
Framework and model analysis, which includes AI frame-
work usage analysis and AI model protection analysis. 3)
User analysis, which includes user privacy protection anal-
ysis and user review analysis. Below, we provide a detailed
explanation of each aspect of our empirical analysis.
❶ AI app popularity analysis (Application analysis) From

the perspective of app popularity analysis, we investigate
the following four aspects: 1) The annual development
volume of AI apps Understanding the annual develop-
ment volume of AI apps can provide insight into the
growth and adoption rate of AI technologies, contributing
to identifying trends in AI investment. 2) The popular
markets for AI apps Identifying the popular markets
for AI apps allows developers to understand where AI
technology is being most widely adopted and integrated,
providing insights into market entry strategies and invest-
ment decisions. 3) The prevalent categories of AI apps
in the industry Studying the prevalent types of AI apps
in the industry highlights which categories of AI apps are
most commonly developed and used. This information
can inform developers and companies about the most
in-demand AI functionalities, helping them align their
development efforts with industry needs. 4) The popular
categories of AI apps in the market Understanding the
popular categories of AI apps in the market provides a
detailed view of consumer preferences. It helps identify
which types of AI applications are gaining traction among
users, providing developers insights for better-targeted
product development and marketing strategies.

❷ AI app update status analysis (Application analysis)
Our research on AI app update status is divided into
three aspects: 1) The update frequency of AI apps
Analyzing the update frequency of AI apps reveals how
often these apps are maintained and improved. Regular
updates can indicate a positive approach to enhancing app
performance. 2) The correlation between AI app up-
dates and AI model updates Investigating the correlation
between AI app updates and AI model updates helps to
understand the efficiency of developers in adopting new
AI technologies. 3) The correlation between AI app
updates and AI framework updates. Investigating the
correlation between AI app updates and AI framework
updates helps identify the dependency of apps on the latest
frameworks. Understanding this relationship can guide
developers in choosing suitable frameworks.

❸ AI framework usage analysis (Framework and model
analysis) The research on AI frameworks is mainly di-
vided into three aspects: 1) The popularity of different
AI frameworks Understanding which AI frameworks
are popular can help developers choose suitable frame-
work among the many available options. 2) The usage
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of single-framework and multi-framework AI frame-
works Analyzing the usage patterns of single-framework
and multi-framework AI systems can helps to under-
stand different development strategies. This analysis can
guide developers in choosing the most effective approach.
3) The mainstream AI frameworks Understanding the
popularity of mainstream AI frameworks in recent years
can provide insights into the popularity trends of AI
frameworks, specifically which AI frameworks are gradu-
ally being phased out and which ones are on the rise. De-
velopers can refer to the popularity of these frameworks
when selecting AI frameworks.

❹ AI model protection analysis (Framework and model
analysis) The analysis of AI model protection is con-
ducted from two aspects: 1) Open-source model us-
age conditions Open-source models can potentially pose
higher security risks. Investigating the use of open-source
models in AI apps can shed light on the state of AI
model protection. 2) AI model encryption conditions
Examining model encryption conditions is crucial for
understanding to what extent on-device AI models are
protected from unauthorized access.

❺ User privacy protection analysis (User analysis) We
investigate the state of user privacy protection in pub-
lished AI apps. Protecting user privacy in AI apps is
crucial to maintaining user trust. Analyzing the state of
user privacy protection can help identify potential security
vulnerabilities where improvements are needed.

❻ User review analysis (User analysis) We investigate
users’ attitudes toward AI techniques in AI apps. Under-
standing users’ attitudes toward AI techniques can help
developers identify current issues that users perceive in AI
apps and create AI apps that better meet user expectations
and preferences.
Based on the experimental results of the above empirical

analysis, we obtained a total of 23 key findings, which
can be found in Section 4.3 to Section 6.2. Among these
findings, Findings 1 to 10 belong to application analysis
(cf. Section 4.3 and Section 4.4). Findings 11 to 18 be-
long to framework and model analysis (cf. Section 5.1 and
Section 5.2). Finding 19 to 23 belong to user analysis (cf.
Section 6.1 and Section 6.2).

In summary, our contributions are as follows:
• Collection of a large-Scale AI App Dataset for Re-

search We design AI Discriminator, an automated AI ap-
plication identification tool, which successfully identified
56,682 AI apps out of 7,259,232 mobile apps from the
AndroZoo large-scale repository. We provide this AI app
database for further research on AI apps.

• Application Analysis We conduct an empirical analysis
of the collected 56,682 AI apps from the perspective
of application popularity and update status, providing
insights into the prevalence of AI apps across different

markets and categories, as well as their update frequency.
This can help understand trends in AI app development
and maintenance practices, guiding future AI investment
and development strategies.

• Framework and Model Analysis We conduct an empiri-
cal analysis on the collected AI apps from the perspective
of frameworks and models. We analyzed the usage of
different AI frameworks, including single-framework and
multi-framework approaches, and examined the state of
AI model protection. This can provide insights to devel-
opers in selecting effective AI frameworks, as well as
revealing potential issues in current model protection.

• User Analysis We conducted analysis on the collected
AI apps from the perspective of users. We investigated
the state of user privacy protection in AI apps and ana-
lyzed user reviews to understand user attitudes toward AI
techniques applied in AI apps. This can provide valuable
insights for developers to understand the current issues
perceived by users and to create AI apps that better meet
user expectations and preferences.
The remainder of the paper is organized as follows. Sec-

tion 2 introduces the background knowledge of AI models
and frameworks as well as deploying mobile ML/DL. Sec-
tion 3 presents an overview of our empirical study. Section 4
shows the objective, experimental design, experimental re-
sults, and findings of our Application Analysis on AI apps.
Additionally, this section also demonstrates the specific op-
eration process of our designed AI app identification tool, AI
Discriminator. Section 5 presents the Framework and Model
Analysis. Section 6 presents the User Analysis. Section 7
discusses the challenges and opportunities of deploying AI
technologies to mobile applications. Section 8 presents the
related existing work and research. Section 9 concludes this
paper.

2. Background
2.1. AI models and frameworks

Artificial Intelligence (AI) (Gamble (2020); Li, Hua,
Wang, Chen and Liu (2021); Li, Dang, Ma, Klein, Traon
and Bissyandé (2023); Dang, Li, Papadakis, Klein, Bis-
syandé and Le Traon (2023)) has become a cornerstone in
the development of mobile applications, enabling enhanced
functionality, user experience, and efficiency. AI models,
including machine learning (ML) (Sun et al. (2021); Dang,
Li, Papadakis, Klein, Bissyandeé and Le Traon (2024b))
and deep learning (DL) (Huang, Hu and Chen (2021); Li,
Dang, Pian, Habib, Klein and Bissyandé (2024); Dang, Li,
Ma, Guo, Hu, Papadakis, Cordy and Traon (2024a)), are
the foundational technologies driving the operation of apps.
These models allow mobile applications to perform complex
tasks such as image recognition (Jones (2020)), speech pro-
cessing (Zhao, Wu and Chen (2017)), and face recognition
(Amos, Ludwiczuk, Satyanarayanan et al. (2016)) with high
accuracy and speed.
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Figure 1: Overview of our explorative study.

The development and deployment of AI-driven mobile
apps heavily rely on robust AI frameworks that facilitate the
integration and implementation of AI techniques. Prevalent
AI frameworks such as TensorFlow (Abadi, Barham, Chen,
Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard et al.
(2016)), PyTorch (Paszke, Gross, Massa, Lerer, Bradbury,
Chanan, Killeen, Lin, Gimelshein, Antiga et al. (2019)),
and Keras (keras (2023)) provide developers with the tools
necessary to build, train, and optimize AI models. These
frameworks offer pre-built modules, extensive libraries, and
flexible APIs that simplify the complex processes involved
in AI development, allowing researchers to concentrate on
algorithmic design rather than low-level programming, thus
reducing time and labor costs.

In the context of mobile applications, specialized frame-
works like TensorFlow Lite (David, Duke, Jain, Janapa Reddi,
Jeffries, Li, Kreeger, Nappier, Natraj, Wang et al. (2021))
and Core ML (Thakkar and Thakkar (2019)) are designed
to optimize AI models for mobile environments. These
frameworks ensure that AI models can run efficiently on
the limited computational resources available on mobile
devices. TensorFlow Lite, for instance, leverages techniques
like model quantization and hardware acceleration to enable
resource-efficient execution of AI algorithms on mobile
devices. Similarly, Core ML is tailored specifically for iOS
devices, harnessing the power of Apple’s hardware and
software integration to provide high-performance and low-
latency inference for AI-driven tasks.

Moreover, in recent years, some companies introduced
pre-trained models accompanied by accessible APIs, facil-
itating remote access to AI services (e.g., Google AI (AI
(2023d)), Baidu NLP (NLP (2023)), and Amazon AI (AI
(2023b))). Consequently, developers can utilize mobile AI
services without necessitating expertise in AI frameworks
and model design. These AI services provide ready-to-use
functionalities such as image analysis and natural language
processing, allowing developers to integrate advanced AI
features into their apps with minimal effort.

Despite the rapid development of AI techniques, there is
a growing concern regarding its environmental impact( Ali
(2023)). The energy consumption and carbon emissions
associated with AI data centers can be substantial, posing a
significant challenge to sustainability efforts. In response to

these concerns, the concept of Green AI has emerged, which
emphasizes the integration of economic and environmental
sustainability into AI systems (Ali (2023)). Green AI aims
to leverage machine learning to accelerate the transition
to a circular economy, where products and materials are
reused and recycled efficiently. The potential applications of
Green AI include intelligent production planning, predictive
maintenance and reuse marketplaces (Kindylidi and Cabral
(2021)).
2.2. Deploying mobile ML/DL

Towards enabling deep learning (DL) on mobile de-
vices, model inference can be broadly classified into two
categories: cloud-based inference and on-device inference
(Chen, Yao, Lou, Cao, Liu, Wang and Liu (2021)). In cloud-
based inference, mobile devices connect to cloud servers
over the network and send the data to the servers. ML/DL
models running on the servers perform inference on the data
and return the results to the mobile devices. The cloud-based
approach can leverage the powerful computational resources
of cloud servers to accelerate the inference process. How-
ever, cloud-based inference also has some disadvantages: 1)
Privacy Risks: Data needs to be transmitted to the cloud,
which can pose privacy leakage risks. 2) Network Depen-
dence: It requires a stable network connection. Network
latency and bandwidth limitations can affect the inference
speed. 3) Cost: Using cloud services can incur additional
outsourcing costs.

On the other hand, on-device inference allows for the
execution of ML/DL models directly on the mobile device,
eliminating the need to send data to remote servers. On-
device inference offers several advantages: 1) Privacy Pro-
tection: Since data is processed locally on the device, it
mitigates the risk of data leakage, enhancing user privacy.
2) Reduced Latency: Without the need to transmit data
over networks, on-device inference can significantly reduce
latency, providing faster response times, which are crucial
for real-time applications. 3) Independence from Network
Connectivity: On-device inference does not rely on internet
connectivity; thus, it is not limited by network conditions and
bandwidth. 4) Cost Efficiency: On-device inference can be
more cost effective as it avoids the recurring costs associated
with data transmission and cloud computing services.
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Figure 2: Pipeline of AI app Identification.

Despite these benefits, on-device inference also poses
its own challenges. These include limited computational
resources compared to cloud servers, which can restrict the
complexity of the models that can be deployed. Additionally,
the energy consumption required for local processing can be
high, impacting the device’s battery life.

In the literature, several studies have explored deploying
deep learning on mobile devices. Xu et al. (2019) inves-
tigated how smartphone applications utilize deep learning
techniques through the analysis of over 16,500 popular An-
droid apps, aiming to identify and characterize apps that
integrate deep learning, understand their purposes, and scru-
tinize the deep learning models they employ. This research
offers insights into current practices and potential optimiza-
tion areas in mobile deep learning applications.

3. Analysis Overview
This paper aims to analyze AI-based applications from

three perspectives: application analysis (cf. Section ??),
model and framework analysis (cf. Section 5), and user
analysis (cf. Section 6). To this end, we design an automated
AI app extraction tool, called AI Discriminator, to recognize
AI apps from the AndroZoo application database (Allix
et al. (2016)), successfully collecting 56,682 AI apps from
7,259,232 Android apps.

The workflow of our study is presented in Figure 1. In
the initial step, we extract AI apps from Androo using the
AI Discriminator. Then, we build a crawler tool to collect
important information about these AI apps from the appli-
cation market. This information includes category, installs,
user reviews, etc., for subsequent analysis. Specifically, our
analysis focuses on the following three aspects:
• Application analysis: We study the extracted AI apps

from the application level, including an analysis of the
popularity of AI apps (RQ1) and an analysis of the update
condition of AI apps (RQ2).

• Model and framework analysis: We analyze the internal
techniques of AI apps, including the usage of AI frame-
works (RQ3) and the model protection conditions of AI
apps (RQ4).

• User analysis: We analyze AI apps from the user per-
spective, including privacy protection for users of AI apps
(RQ5) and an analysis of user reviews (RQ6).
We discuss more details of the AI Discriminator in

Section 4.1.

4. Applications Analysis
4.1. Methodology: finding AI apps

We propose AI Discriminator to automatically extract
AI apps from the AndroZoo application repository (Allix
et al. (2016)). In the following, we provide a detailed de-
scription of how AI Discriminator works and its accuracy in
identifying AI apps (including precision, recall, etc.).
4.1.1. Workflow of AI Discriminator

The input for the AI Discriminator is the SHA-256
hashes (256-bit Secure Hash Algorithm) of apps in An-
droZoo. The output is the SHA-256 hashes of the AI apps
(apps supported by AI techniques). Here, SHA-256 (256-
bit Secure Hash Algorithm) is a hash function used for
application encryption. AndroZoo employs it to record a
unique ID for each collected app. The overall pipeline of
AI Discriminator can be divided into three main steps, as
illustrated in Figure 2:
❶ Decompilation of APK In the first step, the AI Discrim-

inator retrieves the APK associated with a given app.
It then uses APKTool (APKTool (2023)) to unzip the
package and collect its internal files.

❷ Building an AI Keyword Dictionary AI Discriminator
constructs an AI keyword dictionary that includes on-
device ML, on-device DL, and AI service keywords.
These keywords are collected based on the literature and
open-source GitHub codes. Some examples of these key-
words are presented in Table 1. In the following, we
describe in detail how we constructed the AI keyword
dictionary. Specifically, the construction of the dictionary
follows the four steps below:
– Collecting AI Keywords from Academic Papers. In

the first step, we collected AI keywords from the exist-
ing research ( Xu et al. (2019); Sun et al. (2021)) and
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their open-source repositories. These keywords have
been proven effective for identifying DL/ML-based
apps.

– Collecting AI Keywords from Source Code. Next, we
analyzed the source code of each AI framework and
manually collected AI-related keywords. These key-
words encompass both algorithm package keywords
and model-saving format keywords. To collect the
model-saving format keyword, we carefully reviewed
the algorithm documentation of each AI framework to
identify relevant keywords. For instance, the Tensor-
Flow Lite framework ( David et al. (2021)) generally
saves models in the ".tflite" format. As a result, we
added ".tflite" as a keyword in our AI keyword dictio-
nary.

– Excluding non-AI Keywords. Since some non-AI
terms can also contain simple AI keywords (e.g., LSTM
and CNN), the presence of these keywords can reduce
the accuracy of the AI Discriminator in identifying
AI apps. Therefore, we excluded such terms from the
keyword dictionary.

– Validation and Optimization. We first evaluate the
collected AI keywords on a small dataset. We applied
all the collected AI keywords to filter out AI apps and
manually checked whether they were truly AI apps. If
we found any apps that were incorrectly filtered as AI
apps, we identified the keywords that led to the mis-
classification and removed these non-AI terms from the
AI keyword dictionary to optimize Al Discriminator’s
accuracy.

❸ Keyword Matching In this step, AI Discriminator per-
forms keyword matching using the code search tool Ag
(Searcher (2023)), which is a fast and efficient code search
tool designed specifically for searching large codebases.
For the file packages extracted from all apps, we ap-
ply the Ag tool to scan for AI-related keywords that
we collected from the previous steps. If any file in an
app contains one of the keywords from the pre-defined
dictionary, this app is identified as an AI application,
and its SHA-256 hash and keyword information will be
recorded. For example, if the file of an app contains key-
words like “org.tensorflow.lite”, “libtensorflowlite.so",
and “N5EigenForTFLite", this app is considered using
the TensorFlow Lite framework. Additionally, in terms of
the OpenCV framework, since not all OpenCV packages
use AI algorithms, with some packages mainly used for
image processing, we utilize the keyword "org.opencv.ml"
to identify the use of AI algorithms in OpenCV. This
keyword is specifically used to identify apps supported
by AI-related packages in OpenCV.

4.1.2. Evaluation of AI Discriminator
To validate the accuracy of the AI Discriminator in

identifying AI apps, in other words, to verify whether the
AI keywords in the Discriminator’s keyword dictionary are

truly effective, we used five widely adopted statistical met-
rics for evaluation: False Positive Rate, False Negative Rate,
Precision, Recall, and Accuracy. Among these, 1) False
Positive Rate reflects the proportion of all non-AI apps that
were incorrectly identified as AI apps. 2) False Negative
Rate reflects the proportion of all AI apps that were incor-
rectly identified as non-AI apps. 3) Precision measures the
proportion of true AI apps among all the apps identified
as AI apps. 4) Recall measures the proportion of true AI
apps that were correctly identified. 5) Accuracy reflects the
overall correctness of the AI Discriminator in identifying AI
apps.

The evaluation methodology is derived from the existing
work (Sun et al. (2021)). Specifically, we manually collected
and verified 450 apps, including 225 non-AI apps and 225
AI apps, as samples to evaluate the AI Discriminator. These
apps were collected from existing literature sources (Xu et al.
(2019); Sun et al. (2021)). The rationale behind employ-
ing a sampling approach for evaluation is that determining
whether apps belong to the AI or non-AI category, namely
establishing the ground truth of each app, requires manual
labeling. Manually labeling all the apps can result in substan-
tial time and labor costs. To tackle this challenge, we draw
inspiration from the evaluation methodology employed in a
previous study conducted by Sun et al. (2021), wherein they
evaluated their developed app identification tool by sampling
438 apps. In line with this approach, we employ a similar
sampling methodology for assessing the AI Discriminator
based on 450 apps.

We conducted the evaluation on these 450 labeled ap-
plications. Through calculations, we obtained that the AI
Discriminator’s precision is 100%, the recall is 0.84, and the
accuracy is 0.92. The specific calculations are as follows.

Note that in the calculations below, True Positives (TP)
refers to the number of correctly predicted positive instances.
True Negatives (TN) refers to the number of correctly pre-
dicted negative instances. False Positives (FP) refers to the
number of instances that were incorrectly predicted as posi-
tive when they were actually negative. False Negatives (FN)
refers to the number of instances that were incorrectly pre-
dicted as negative when they were actually positive. ’#apps’
refers to the total number of sampled apps.
• False Positive Rate AI Discriminator detected a total of

188 AI apps, and 0 app belong to non-AI apps. Therefore,
the False Positive Rate is:

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

= 0
0 + 225

= 0 (1)

• False Negative Rate Out of the 225 AI apps, 37 were not
identified by AI Discriminator. Therefore, the FNR is:

FNR = 𝐹𝑁
𝑇𝑃 + 𝐹𝑁

= 37
188 + 37

= 0.16 (2)

• Precision AI Discriminator detected a total of 188 AI
apps, and all of these 188 apps indeed belonged to the AI

Li et al.: Preprint submitted to Elsevier Page 6 of 23



An Empirical Study of AI Techniques in Mobile Applications

Table 1
AI Frameworks given AI Keyword Dictionary

AI Frameworks Categories AI Frameworks Platform Model Format

DL Frameworks

Traditional Deep Learning Frameworks

Tensorflow (Abadi et al. (2016)) Andorid, iOS .pb, .pbtxt
PyTorch (Paszke et al. (2019)) Andorid, iOS .pt, .ptl
MxNet (Paszke et al. (2019)) Andorid, iOS .params
Caffe (Caffe (2023)) Andorid, iOS .caffemodel, .prototxt
Caffe2 (Caffe2 (2023)) Andorid, iOS .pb
Chainer (Chainer (2023)) / .chainermodel
DeepLearning4j (DeepLearning4J (2023)) Andorid .zip
CNTK (CNTK (2023)) / .cntk, .model
Neuroph (Framework (2023)) / .model, .nnet

Lite Deep Learning Frameworks

TF Lite (David et al. (2021)) Andorid, iOS .tflite, .lite
NCNN (NCNN (2023)) Andorid, iOS .params
Paddle Lite (Lite (2023)) Andorid, iOS .jar, .so, etc
MACE (MACE (2023)) Andorid .pb, .yml
FeatherCNN (FeatherCNN (2023)) Andorid, iOS .feathermodel
SNPE (SNPE (2023)) Andorid /
CNNDroid (CNNdroid (2023)) Andorid .model
TVM (TVM (2023)) / libtvm_rumtime.so, etc

Computer Vision Frameworks OpenCV (OpenCV (2023)) Andorid, iOS TesnorFlow, Caffe, etc
Baidu OCR (OCR (2023)) / /

ML Frameworks Classical Machine Learning Frameworks

Xgboost-predictor (ML) / /
Sklearn-porter (ML, Java) (Morawiec (2021)) Andorid /
WEKA (ML, Java) (WEKA (2023)) / .model
Shogun (ML, C++) (Shogun (2023)) / model.prof
MALLET (ML, Java) (MALLET (2023)) / .mallet, .classifier, etc
Rapid Miner (ML Java) (Miner (2023)) / .model
Datumbox (ML Java) (Datumbox (2023)) / .model
MLPACK (MLPACK (2023)) / /

AI Service
General Cloud AI Frameworks

Google AI (AI (2023d)) / /
Amazon AI (AI (2023b)) / /
Alexa AI (AI (2023a)) / /
Azure AI (AI (2023c)) / /

Natural Language Processing Frameworks Baidu NLP (NLP (2023)) / /
Baidu Synthesizer (synthesizer (2023)) / /

app category. Therefore, the precision of AI Discriminator
is:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

= 188
188 + 0

= 100% (3)

• Recall Out of the 225 AI apps, 188 were successfully
identified. Therefore, the recall of AI Discriminator is:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

= 188
188 + 37

= 0.84 (4)

• Accuracy Among the 450 apps, 413 apps were correctly
classified. Therefore, the accuracy of AI Discriminator is:

Accuracy = 𝑇𝑃 + 𝑇𝑁
#𝑎𝑝𝑝𝑠

= 188 + 225
450

= 0.92 (5)

The evaluation above shows that out of the 225 AI apps,
37 went undetected. The main reason is that some specific
keywords were not added to the keyword dictionary of the
AI Discriminator to ensure that all apps identified as AI
apps are indeed AI apps. For instance, ’.prototxt’ files are
typically associated with deep learning and machine learn-
ing frameworks. However, files with the ’.prototxt’ format
can also serve other purposes, not just AI technology, such
as configuration or parameter files for software. To prevent
the AI Discriminator from falsely predicting non-AI apps as
AI apps, we filtered out such keywords. Consequently, this
resulted in some specific AI apps being undetected.

4.2. Experimental Environment
We ran experiments on a high-performance computer

cluster. Each cluster node runs a 2.6 GHz Intel Xeon Gold
6132 CPU with an NVIDIA Tesla V100 16G SXM2 GPU.
For the data visualization, we conducted corresponding ex-
periments on a MacBook Pro laptop with Mac OS Big Sur
11.6, Intel Core i9 CPU, and 64 GB RAM.
4.3. RQ1: Popularity analysis of published AI

Apps
4.3.1. Objectives

By analyzing the popularity of AI apps, such as iden-
tifying which categories of AI apps are more popular, de-
velopers can better understand market demands, thereby im-
proving product development and deciding in which areas to
invest. In this research question, we analyzed the popularity
of AI apps through 4 sub-questions:
• RQ-1.1 Has the released ratio of AI apps increased rapidly

in recent years?
• RQ-1.2 In which markets are AI apps mainly released?
• RQ-1.3 Which AI app categories do the top providers

prefer?
• RQ-1.4 Which categories of AI apps are more prevalent

in the market?
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4.3.2. Experimental Methodology
First, we utilize AI Discriminator (cf. Section 4.1) to

extract AI apps from the AndroZoo application database
(Allix et al. (2016)). Next, we analyze these AI apps using
the following methodology.
• Experiment RQ-1.1 (AI app released ratio) To calcu-

late the proportion of AI apps among all apps published
each year, we record the total number of apps published
and the number of AI apps published each year, and use
Formula 6 for calculation:

Ratio =
# AI apps𝑦

# published apps𝑦 (6)

where 𝑦 refers to the specific year. #AI apps refers to the
number AI apps published in the year 𝑦. #published apps
refers to the number of all the apps published in the year
𝑦.

• Experiment RQ-1.2 (AI app market distribution) To
investigate the distribution of AI apps across different
markets, we first obtained information from AndroZoo
about which market each AI app belongs to. Then, we
calculated the number of AI apps released by each market.

• Experiment RQ-1.3 (App provider’s preference for AI
apps) To investigate which categories AI apps providers
are more focused on, we crawl the provider information
for all the collected AI apps from the application market.
The crawled information includes the app provider each
app belongs to, categories, number of downloads, ratings,
etc. We then calculate the number of AI apps developed
by each app provider and identify the top ten providers
based on the number of AI apps developed. Additionally,
we analyze and report the category information of AI apps
developed by each of these top ten providers.

• Experiment RQ-1.4 (Market’s preference for AI apps)
To investigate the popularity of different AI app cate-
gories in the market, we use a crawler tool to collect
metadata for each app, including its category, number of
installs, and rating. We then calculate the total number of
apps, average number of installs, and average rating for
each category.
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Figure 3: Ratio of AI apps developed in each year.

4.3.3. Results
Figure 3 presents the experimental results of RQ-1.1,

showing the proportion of AI apps among the apps released
each year. The X-axis exhibits the years, and the Y-axis
presents the percentage of AI apps. From Figure 3, we see
that from 2010 to 2018, the proportion of AI app develop-
ment grew relatively slowly, while it rose sharply from 2018
to 2021. The experimental results indicate that from 2018,
incorporating AI technology into applications has become a
growing trend in mobile app development.
Finding 1: Since 2018, incorporating AI technology into
applications has become a growing trend in mobile app
development.

Figure 4 presents the experimental results for RQ-1.2,
showcasing the market distributions for AI app releases. The
X-axis displays the names of the markets, and the Y-axis
indicates the number of AI apps released by each market.
We see that Google Play has the highest number of AI apps
published, with a total of 50,268 AI applications, which
is 12 times more than the second highest, Anzhi, which
released 4,079 AI apps. Following Anzhi are AppChina,
VirusSharing, and PlayingDrones, which released 1,544,
849, and 645 AI apps, respectively.
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Figure 4: Number of AI apps in each market.

Finding 2: Currently, the market with the highest number
of AI app releases is Google Play, significantly surpassing
other markets. Other markets that have released over 1000
AI apps include Anzhi and AppChina.

Table 2 presents the experimental results of RQ-1.3,
showing the main categories of AI apps developed by the
top-10 AI app providers. From left to right, the columns are
the provider name, the number of AI apps each provider
developed, and the main categories of these apps. We see
that the top-10 AI app providers developed more AI apps
in the Food & Drink, Business, and Education categories.
Specifically, 60% of the companies published AI apps in
Food & Drink, 50% released Business-oriented AI apps, and
40% published Education-oriented AI apps.
Finding 3: Top-10 AI app providers developed more AI
apps in the Food & Drink, Business, and Education cate-
gories.
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Table 2
Top 10 Providers of AI apps

Provider name (Top 10) Number of AI app Category

Delivery Direto by Kekanto 353 Food & Drink, Business, Shopping

CloudFaces 129
Food & Drink, Business, Education,
Beauty, Social, Entertainment, Travel & Local,
Medical, Sports, Health & Fitness

Tom McLeod Software 102 Productivity

Laboratory X 96 Food & Drink, Lifestyle

Klass Apps, Inc. 87 Education, Entertainment

Core-apps 85 Books & Reference

Tara Blooms Private Ltd 85

Food & Drink, Business, Education,
Finance, Beauty, Travel & Local,
Lifestyle, Shopping, Medical,
Auto & Vehicles, Events

Tiffin Tom Ltd 75 Food & Drink

InnoShop Co 70
Food & Drink, Business, Education,
Entertainment, Beauty, Shopping

Via Transportation Inc. 70 Business, Maps & Navigation, Travel & Local,

The experimental results of RQ-1.4 are presented in
Table 3, which shows the popularity of AI apps across
different categories. In Table 3, we present the number of
AI apps in each category, their proportions (the ratio of AI
apps to all apps), average installations, and average scores.
Based on the analysis of Table 3, we obtained the following
findings (i.e., finding 4 to finding 7):

In Table 3, the column "Ratio" refers to the proportion
of AI apps to all apps within each category. The data in the
table is sorted in descending order based on this ratio. We
see that the financial field has the highest proportion of AI
apps, accounting for 7.28%. Other categories with a high
proportion of AI apps are Photography, Productivity, Auto &
Vehicles, Food & Drink, Libraries & Demo, and Parenting,
accounting for 4.75%, 3.80%, 3.68%, 3.27%, 3.13%, and
3.11%, respectively.
Finding 4: The financial field has the highest proportion
of AI apps, followed by Photography, Productivity, Auto &
Vehicles, Food & Drink, Libraries & Demo, and Parenting.

In Table 3, the column "Count" demonstrates the number
of published AI apps in each category. We see that the cat-
egories Finance and Business released the highest number
of AI apps, with 2845 and 2398 apps, respectively. This is
followed by Education, Productivity, and Tools, with 1920,
1752, and 1322 AI apps released, respectively. In contrast,
some areas have relatively few AI apps released, including
Dating, Racing, Role-Playing, and Strategy games.
Finding 5: The categories Finance and Business released
the highest number of AI apps, followed by Education and
Tools.

In Table 3, the column "Avg Installs" demonstrates the
average installs of AI apps in each category. We see that
AI apps in the Strategy Games category have the highest
number of installs, with 5,557,578 installs on average. This
is followed by the Racing and Productivity categories, with
3,500,191 and 2,969,649 installs, respectively.
Finding 6: AI apps in the Strategy Games category have
the highest number of installs, followed by the Racing and
Productivity categories.

Table 3
Categories of AI apps

Category Ratio Count Avg Installs Avg Score

Finance 7.28% 2845 143337 4.1
Photography 4.75% 807 1639865 3.7
Productivity 3.80% 1752 2969649 3.8
Auto & Vehicles 3.68% 374 18443 3.6
Food & Drink 3.27% 1322 53698 4.0
Libraries & Demo 3.13% 84 7535 3.6
Parenting 3.11% 62 57605 3.6
Business 3.01% 2398 19958 3.8
Beauty 2.88% 174 35702 3.7
Shopping 2.54% 1102 264894 4.0
Medical 2.39% 426 9105 3.7
Events 2.38% 158 739 4.7
Communication 2.34% 512 2011779 3.7
House & Home 2.20% 173 12817 3.6
Tools 2.13% 1710 219064 3.6
Travel & Local 2.13% 764 38989 3.8
Art & Design 2.05% 185 20539 3.4
Social 1.83% 165 78650 3.7
Health & Fitness 1.79% 865 26313 3.6
Lifestyle 1.68% 985 50755 3.6
Maps & Navigation 1.63% 237 163105 3.7
Entertainment 1.63% 970 48776 3.5
Sports 1.58% 389 11748 3.7
Video Players & Editors 1.34% 85 2128589 3.7
Education 1.30% 1920 20266 3.8
Comics 1.28% 10 1476 4.4
Weather 0.98% 39 13449 4.0
News & Magazines 0.95% 211 8531 4.3
Books & Reference 0.52% 299 10549 4.1
Music & Audio 0.28% 161 36611 4.1
Dating 0.22% 1 50 0.0
Personalization 0.21% 79 2717519 3.8

Game

Trivia 0.43% 27 1546 3.7
Word 0.33% 17 765 2.9
Strategy 0.22% 9 5557578 2.9
Card 0.99% 39 44559 3.8
Music 0.64% 25 82 1.0
Board 0.63% 34 8130 4.1
Casual 0.26% 72 36145 3.7
Puzzle 0.21% 61 97574 4.1
Role Playing 0.20% 7 1436601 4.2
Simulation 0.17% 19 326916 3.6
Adventure 0.16% 16 64839 4.0
Action 0.15% 16 641959 3.9
Racing 0.10% 6 3500191 4.4
Arcade 0.09% 27 1872319 3.2

In Table 3, the column "Avg Score" shows the average
score of AI apps in different categories, ranging from 0 to
5. We see that the categories with the highest average scores
are Racing Games and Comics, both obtaining a score of 4.4.
Additionally, 91.3% of the categories have an average score
above 3.0, and 87.0% of the categories have an average score
above 3.5.
Finding 7: AI apps in the Racing Games and Comics
categories have the highest average scores. 91.3% of the
categories have an average score above 3.0, and 87.0% of
the categories have an average score above 3.5.

4.4. RQ2: Update status of published AI apps
4.4.1. Objectives

We aim to investigate the updates of AI apps, including
the update frequency of AI apps, the correlation between app
updates and embedded model updates, and the correlation
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between app updates and framework updates. Analyzing
the update frequency of AI apps can reveal how often AI
apps are maintained. Investigating the correlation between
AI app updates and AI model updates can contribute to
understanding the efficiency of developers in adopting new
AI technologies. Understanding this relationship between AI
app updates and AI framework updates can guide developers
in selecting suitable frameworks. Specifically, we analyzed
the updates of AI apps through three sub-questions:
• RQ-2.1 How fast are the apps on the market updated?
• RQ-2.2 To what extent do AI app updates accompany AI

model updates?
• RQ-2.3 Which AI framework transitions typically occur

when AI apps are updated?
4.4.2. Experimental Methodology

We conduct the following three experiments to answer
the sub-questions.
• Experiment RQ-2.1 (AI app update frequency) To

investigate the update frequency of the collected AI apps,
we obtained the update information for each AI app from
AndroZoo. In AndroZoo, applications under the same
package name are different versions of the original app.
We leveraged these package names to find out how many
times each AI app has been updated.

• Experiment RQ-2.2 (The correlation between app up-
dates and model updates) First, based on RQ-2.1, for
each AI app, we identified its previous historical version
apps. For each AI app and its historical versions, we
downloaded the related application APKs from AndroZoo
and decompiled them to obtain the internal files. We
designed a program that can automatically extract the
embedded models of each app and apply a hash function
to calculate hash values for the extracted models. By
comparing the hash values of the models in the original
AI apps with those in their historical versions, we can
determine whether the models have been updated.

• Experiment RQ-2.3 (The correlation between app up-
dates and framework updates.) Similarly, based on RQ-
2.1, for each AI app, we identified its previous historical
version apps. Then, we fed each AI app and its historical
versions into AI Discriminator to obtain their applied AI
frameworks and observed the changes in AI frameworks
when the AI apps were updated.

4.4.3. Results
Figure 5 presents the experimental results of RQ-2.1,

showcasing the update frequency of the collected AI apps.
The 𝑛 represents the number of updates. We separate all
the collected AI apps into five groups based on the number
of updates and present the proportion of AI apps in each
category. In Figure 5, we see that the majority of AI apps
(80.3%) updated no more than 5 times. 10.3% of AI apps are

updated between 5 to 10 times. Only 4.3% of AI apps are
updated more than 20 times.
Finding 8: The majority of AI apps (80.3%) updated 0-5
times.

Number of AI apps' versions
1 n < 5 (80.3%)
5 n < 10 (10.3%)
10 n < 15 (3.5%)
15 n < 20 (1.6%)
n 20 (4.3%)

Figure 5: Distribution of historical version of AI apps.

In response to RQ-2.2, we performed data analysis. Out
of the 23,466 AI apps collected, 4,818 AI apps were updated,
of which 2,225 had their AI models updated. Therefore,
based on Formula 7, the proportion of model updates among
the updated AI apps is 46.18%.

Ratio =
#model updates
#AI app updates = 2225

4818
= 46.18% (7)

where #model updates refer to the number of updated AI
apps whose models were also updated. #AI app updates refer
to the number of updated AI apps.
Finding 9: Among all the updated AI apps, the proportion
of AI apps whose models were also updated is 46.18%.
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Figure 6: AI Frameworks change when AI apps are updated.

The experimental results of RQ-2.3 are presented in
Figure 6, which demonstrates the updates of AI frameworks
when AI apps are updated. The X-axis refers to the AI frame-
work after updates, and the Y-axis represents the frame-
works before updates. The numbers in the grid indicate the
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number of transitions from the Y-axis framework to the X-
axis framework, with darker colors indicating more frequent
transitions. In Figure 6, we see that the top two most frequent
framework transitions are TensorFlow → TFLite and TFLite
→ TensorFlow. Additionally, two other frequently occurring
transitions are Google AI → TFLite and TFLite → Google
AI.
Finding 10: The most frequent framework transitions are
TensorFlow → TFLite, TFLite → TensorFlow, Google AI
→ TFLite and TFLite → Google AI.

5. Framework and Model Analysis
5.1. RQ3: Framework popularity analysis of

published AI apps
5.1.1. Objectives

AI frameworks are utilized to build and deploy AI mod-
els (Abadi et al. (2016)). Some popular AI frameworks
include TensorFlow, PyTorch, etc. In this research question,
we investigate the popularity of different AI frameworks,
the prevalence of single-framework and multi-framework AI
applications, and the popularity trends of mainstream AI
frameworks in recent years. We present our motivation for
investigating these three aspects as follows.

Understanding which AI frameworks are popular can
help developers select more suitable frameworks among the
many available AI frameworks. Investigating the usage con-
dition of single-framework and multi-framework AI systems
can help understand the prevalence of different development
strategies. Understanding the popularity of mainstream AI
frameworks can provide insights into the popularity trends
of AI frameworks, specifically which AI frameworks are
gradually being phased out and which ones are on the rise.
Specifically, we analyzed AI frameworks based on three sub-
questions:
• RQ-3.1 How do on-device ML, on-device DL, and AI

service apps differ in terms of usage and size?
• RQ-3.2 What is the proportion and prevalence of AI apps

using single and multiple AI frameworks?
• RQ-3.3 Among the mainstream AI frameworks, which

frameworks have been the most popular in recent years?
5.1.2. Experimental methodology

We conducted the following three experiments to answer
the sub-questions above.
• Experiment RQ-3.1 (Analysis on on-device ML, on-

device DL, and AI service apps in terms of usage and
size) Existing AI frameworks can be broadly divided into
three categories: on-device ML apps, on-device DL apps,
and AI service apps. On-device ML apps refer to AI
apps that perform inference using classical ML models
deployed on mobile devices. On-device DL apps use
DL models deployed on mobile devices for inference.
AI service apps use cloud-based ML/DL services for

inference. Here, we analyze these three types of AI apps
from the following perspectives: application quantity and
application size. 1) We calculated the number of AI apps
in each category and the proportion of AI apps within each
category. 2) We obtained the size information for each AI
app and analyzed the size distribution of AI apps within
each category. Moreover, we further categorized the AI
frameworks and model format into six main categories,
namely: 1) Traditional Deep Learning Frameworks, 2)
Lite Deep Learning Frameworks, 3) Classical Machine
Learning Frameworks, 4) Computer Vision Frameworks,
5) General Cloud AI Frameworks, and 6) Natural Lan-
guage Processing Frameworks. In Table 1, we present the
category to which each framework/model format belongs.
In the following, we introduce each category and provide
corresponding examples.
– Traditional Deep Learning Frameworks are typi-

cally used for training and deploying deep neural net-
works. Typical examples include TensorFlow and Py-
Torch.

– Lite Deep Learning Frameworks are mainly used for
deploying deep learning models on mobile devices.
They are typically lightweight and can run efficiently
on hardware with limited computational power. Typical
examples include TensorFlow Lite and NCNN.

– Classical Machine Learning Frameworks are mainly
used for implementing traditional machine learning
algorithms, such as decision trees, Support Vector Ma-
chines (SVMs), k-nearest Neighbors (KNN), etc. Typi-
cal frameworks include Sklearn-porter and WEKA.

– Computer Vision Frameworks are specifically de-
signed for image processing and computer vision tasks.
OpenCV is a commonly used computer vision frame-
work.

– General Cloud AI Frameworks are provided by cloud
service providers and are designed to leverage the pow-
erful computational capabilities and large-scale data
processing capabilities of cloud computing for training
and deploying AI models. Typical examples include
Google AI Platform, Amazon AI, and Microsoft Azure
AI.

– Natural Language Processing Frameworks focus on
processing and analyzing natural language data, in-
cluding tasks like semantic analysis. Typical examples
include Baidu NLP.

• Experiment RQ-3.2 (Single-framework and multi-
framework AI apps) We investigate the usage of single
and multiple frameworks in AI apps. Single-framework
AI apps refer to AI apps that use only one AI frame-
work, while multi-framework AI apps use two or more
frameworks. In RQ2.3 (cf. Section 4.4), we have obtained
the framework information for each AI app. Based on
this information, we ranked the frameworks/framework
combinations according to their popularity and identified
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the top 10 most prevalent frameworks/framework combi-
nations.

• Experiment RQ-3.3 (Mainstream AI frameworks) We
investigated the popularity of 16 mainstream frameworks
in recent years. We counted the usage frequency of the
mainstream AI frameworks for each time period.

5.1.3. Results

DL (76.2%)
ML (0.5%)
AI Service (23.4%)

Figure 7: Ratio of AI apps in DL, ML and AI Service.

Traditional Deep Learning Frameworks (16.7%)
Lite Deep Learning Frameworks (42.1%)
Computer Vision Frameworks (17.4%)
Classical Machine Learning Frameworks (0.5%)
General Cloud AI Frameworks (18.7%)
Natural Language Processing Frameworks (4.7%)

Figure 8: Ratio of AI apps across different framework cate-
gories.
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Figure 9: AI app size in DL, ML and AI Service

The experimental results of RQ-3.1 are presented in
Figure 7, Figure 8, and Figure 9. Figure 7 presents the
proportions of the three types of AI apps: on-device ML, on-
device DL, and AI service. From Figure 9, we see that on-
device DL apps have the highest proportion (76.2%). Next
are AI service-based apps, accounting for 23.4%. Finally, on-
device ML apps have the lowest proportion, accounting for
only 0.5%.

Figure 8 presents a more detailed breakdown of the
collected AI apps. As shown in the figure, Lite Deep Learn-
ing Frameworks have the highest proportion, accounting for
42.1%. General Cloud AI Frameworks rank second, account-
ing for 18.7% of the collected AI apps. Next are Computer
Vision Frameworks and Traditional Deep Learning Frame-
works, which account for 17.4% and 16.7%, respectively. To
conclude, Lite Deep Learning Frameworks, General Cloud
AI Frameworks, Computer Vision Frameworks, and Tradi-
tional Deep Learning Frameworks are the frameworks with
the highest proportions among the collected AI apps.
Finding 11: AI apps supported by on-device DL techniques
accounted for the highest proportion. Lite Deep Learning
Frameworks, General Cloud AI Frameworks, Computer Vi-
sion Frameworks, and Traditional Deep Learning Frame-
works are the frameworks with the highest proportions
among the collected AI apps.

Figure 9 shows the size distribution of three different
categories of AI apps. We see that on-device DL apps
have the highest median, approximately 27 MB. The size
distribution mainly ranges from 20 MB to 48 MB. AI service
apps have the second-highest median, around 23 MB, with a
main range of 10 MB∼40 MB. On-device ML apps have the
lowest median size, around 8 MB, with a main size range of
approximately 5 MB∼16 MB.
Finding 12: On-device DL apps have a relatively larger size
compared to AI service apps and on-device ML apps.

The experimental results of RQ-3.2 are presented in
Figure 10, which shows the usage of single framework and
multiple frameworks in the collected AI apps.

Figure 10(a) shows the proportion of collected AI apps
using one AI framework, two AI frameworks, and three
AI frameworks. We can see that AI apps using one AI
framework account for the largest proportion (75.2%). AI
apps using two frameworks account for the second largest
proportion, at 21.3%. AI apps using three frameworks ac-
count for the smallest proportion, at 3.3%.
Finding 13: Among all the collected AI apps, single-
framework AI apps account for the highest proportion.

Figure 10(b) exhibits which AI frameworks are more
popular among AI apps using a single framework. We can
see that AI apps using the AI framework TFLite account
for the highest proportion, at 41.5%. This is followed by
OpenCV, TensorFlow, and Google AI, making up 16.5%,
15.8%, and 12.9%, respectively.
Finding 14: Among AI apps using a single framework, apps
using the TFLite framework have the highest proportion, at
41.5%.

Figures 10(c) and Figure 10(d) show the prevalence
of different AI framework combinations. Specifically, Fig-
ure 10(c) displays the most popular two-framework combi-
nations, while Figure 10(d) shows the most popular three-
framework combinations. In Figure 10(c), we see that the
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(d) Ratio of AI apps using three framework

Figure 10: Distribution of AI apps using AI frameworks.

combination of TensorFlow & TFLite is the most popu-
lar. About 54.4% of the collected two-framework AI apps
use this combination. This is followed by Google AI &
TFLite and OpenCV & TensorFlow, accounting for 21.9%
and 15.7%, respectively. Regarding AI apps using three
frameworks, the combination of TensorFlow & Google AI
& TFLite is the most popular, accounting for 66.4%. This is
followed by OpenCV & TensorFlow & TFLite and OpenCV
& TensorFlow & Caffe, accounting for 14.7% and 10.7%,
respectively.
Finding 15: Among AI apps using two frameworks, apps
using the combination of TensorFlow & TFLite are the most
popular, accounting for 41.5%. Among AI apps using three
frameworks, apps using the combination of TensorFlow &
Google AI & TFLite are the most popular, accounting for
66.4%.

The experimental results of RQ-3.3 are demonstrated in
Figure 11, which presents the popularity of 16 different AI
frameworks from 2011 to 2021. The X-axis represents the
year, and the Y-axis represents the AI frameworks. In Fig-
ure 11, the size of the points indicates the usage frequency
of AI frameworks applied in each time slice by the newly
released AI apps. The larger the point, the more frequently
the framework was used in that year. From Figure 11, we
can see that OpenCV has the largest point areas, indicating
it has been consistently popular. On the other hand, TFLite
and Google AI have rapidly become prevalent since 2020.
Additionally, TensorFlow was consistently used between
2018 and 2021. The experimental results show that from the
perspective of usage frequency, OpenCV, TFLite, Google
AI, and TensorFlow are relatively popular compared to other
AI frameworks.
Finding 16: From the perspective of usage frequency, some
relatively more popular AI frameworks are OpenCV, TFLite,
Google AI, and TensorFlow.

5.2. RQ4: Model protection status of published AI
apps

5.2.1. Objectives
Sufficient model protection can prevent the core intel-

lectual properties of AI apps from being stolen by malicious
competitors. However, the boom in on-device AI apps in-
creases the likelihood of model leaks as models are deployed
directly on the client side (Deng, Chen, Meng, Zhang, Xu
and Cheng (2022)). In this research question, we investigate
the model protection condition in AI apps. We conducted
our study from two aspects: 1) We examined the use of open-
source models in AI apps, as open-source models potentially
pose higher security risks. 2) We investigated the encryption
level of models embedded in AI apps, as strong encryption
can significantly prevent AI app models from being stolen.

The motivation for investigating the above two issues is
twofold: 1) Open-source models can potentially pose secu-
rity risks. Investigating the use of open-source models in AI
apps can, to some extent, shed light on the state of AI model
protection. 2) Investigating model encryption conditions can
help understand to what extent on-device AI models are
protected. We summarize the above two considerations into
the following two sub-questions.
• RQ-4.1 To what extent do public AI apps use open-source

models to perform AI tasks?
• RQ-4.2 Are models embedded in published AI applica-

tions well-encrypted?
5.2.2. Experimental methodology

We conduct two corresponding experiments to answer
the above two sub-questions.
• Experiment for RQ-4.1 (Usage of open-source models

in public AI apps) We conducted experiments to cal-
culate the ratio of AI apps directly using some common
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Figure 11: The usage of AI framework each year.

open-source models among the collected AI apps. In the
first step, we collected 90 open-source mobile models
from the TFLite Hub (Hub (2023)), a repository that
provides reusable ML models and calculated their hashes.
TFLite was chosen as the source for open-source models
because it is one of the most widely used framework
codebases for deploying machine learning models on
mobile devices. In the second step, we calculated the
hashes of our collected 23,466 AI app models. For each
AI app model, we matched its hash with the collection
of open-source model hashes. If the hash of a model in
an AI app matched any of the hashes in the open-source
model collection, we considered that the AI app used
open-source models. Using this method, we calculated
the proportion of the AI apps that utilized common open-
source models.

• Experiment for RQ-4.2 (Model encryption status of AI
apps) To study the encryption status of collected AI app
models, we leverage the idea of the standard entropy test
(Sun et al. (2021)) to determine whether a given AI model
is encrypted. The standard entropy test assesses whether
an AI model is encrypted by calculating its entropy.
According to its principle, encrypted AI models typically
exhibit high entropy values. Following the existing study
(Sun et al. (2021)), we set the entropy threshold for
encryption at 7.99. If an AI model file’s entropy exceeds
this value, we consider the AI model encrypted.
Moreover, to prove the effectiveness of this approach,

we conducted the following evaluation: First, we applied the
standard entropy test approach with the threshold of 7.99
to obtain a set of AI models considered encrypted by this
method. We randomly selected 50 models from this set and
attempted to open them manually using the model viewer
Netron. We found that all the models considered encrypted
could not be opened. Next, we tried to use the official
API of these AI models to load these models. Generally,
unencrypted models can be successfully loaded. We also
found that none of the models could be opened. Through

Table 4
Example of public models renamed in AI apps

Public models Task Renamed models in AI apps

magenta-arbitrary-image-styli-
zation-v1-256-int8-transfer-1.tflite Image-style-transfer

art-photo-384.tflite,
transfer-model.tflite,
style-transfer-quantized-384.tflite,
style-transfer.tflite

lite-model-aiy-vision-cla-
ssifier-insects-V1-3.tflite Image-classification

insects-C.tflite,
aiy-classifier-natural-world-inse-
cts-V1-2-quantized-input-ui-
nt8-85018f9a4c0110bd69f70-
be107f7d2207124c301-model-with
-metadata.tflite

lite-model-ssd-mobil-
enet-v1-1-metadata-2.tflite Image Object Detection detect.tflite

these methods, we concluded that the standard entropy test
with a threshold of 7.99 is a reasonable and effective method
for verifying whether models are encrypted.
5.2.3. Results

The experimental results of RQ-4.1 are presented in
Table 4 and Table 5. Among the 23,466 AI app models col-
lected, we found that 175 apps utilize open-source models by
simply renaming them, accounting for 0.7%. Since malicious
attackers can easily obtain the input and output shapes of
the open-source models, directly using open-source models
exposes AI apps to security threats. Table 4 shows some
examples of directly renamed and used open-source AI
models. The table from left to right presents the model
name, model tasks, and company-provided renames. Table 5
presents ten prevalent published models used by providers.
From left to right, the table shows the model names, model
execution tasks, and providers using these models. We see
that the mainstream execution tasks of these models are
image classification and image object detection.
Finding 17: Among the collected AI apps, 175 utilized
open-source AI models. The mainstream execution tasks of
the ten prevalent open-source AI models are image classifi-
cation and image object detection.

The experimental results of RQ-4.2 are presented in
Figure 12, which shows the encryption status of the collected
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Table 5
Examples of public mobile models used in provider

public mobile models Task Providers

efficientnet-lite0-int8-2.tflite Image-classification
Shopping Deals & Specials,
edobo

efficientnet-lite4-int8-2.tflite Image Classification Dave Bennett

lite-model-aiy-vision-
classifier-birds-V1-3.tflite Image Classification

DSM Services,
Vanchel

lite-model-aiy-vision-
classifier-food-V1-1.tflite Image Classification AG Apps Co

mobilenet-v2-1.0-224-
1-metadata-1.tflite Image Classification Memorizer

lite-model-cropnet-classifier-
cassava-disease-V1-1.tflite Image Classification Solomon Nsumba

lite-model-object-detection-
mobile-object-labeler-v1-1.tflite Image Classification Glitter Technology Ventures LLC

lite-model-ssd-mobilenet-
v1-1-metadata-2.tflite Image Object Detection

A La Carte Media Inc.,
Apptastic Mobile,
Bridgewiz Engineering,
DistinctView,
Farid Ahmad Ahmadyar,
FavLabs,
LazyDroid,
MKK Games,
MLPJ DROID,
PlatineX TDC,
Polycents,
RajAppStudio,
SANE Tech,
Sifie Apps,
Sparkling India,
TeamLease EdTech Ltd.,
Yusuf Suhair

object-detection-mobile-object-
localizer-v1-1-default-1.tflite Image Object Detection

FRUCT,
Nexart TechnoSolutions Pvt Ltd

lite-model-cartoongan-int8-1.tflite Image Style Transfer
Dan Group, Dotsquares,
Pixel Force Pvt Ltd

AI app models. As mentioned in the experimental design
of RQ-4.2, we used the standard entropy test (Sun et al.
(2021)) to determine whether an AI model is encrypted. If an
AI model’s entropy exceeds 7.99, this model is considered
encrypted. In Figure 12, the Y-axis represents the entropy
value of a model, while the X-axis represents the index of
each AI model. All AI models are sorted by their entropy
values from left to right. From Figure 12, we can see that the
number of AI models with entropy values exceeding 7.99 is
small. After manual verification, we found that the number
of models considered to be encrypted is 520, accounting for
0.25%.
Finding 18: Among all the collected AI models, the number
of models considered to be encrypted is 520, accounting for
only 0.25%.
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Figure 12: Model entropy of AI apps.

6. User Analysis
6.1. RQ5: User privacy protection of published AI

apps
6.1.1. Objectives

Protecting user privacy in AI apps is crucial to maintain-
ing user trust. Failure to adequately protect user data can lead
to security breaches, misuse of personal information, and
reputational damage for providers. In this research question,
we investigate the state of user privacy protection in pub-
lished AI apps. Analyzing the state of user privacy protection
can contribute to identifying potential privacy protection
vulnerabilities where improvements are needed.

Specifically, we analyzed the state of user privacy pro-
tection in AI apps from the following perspectives:
• RQ-5.1 To what extent is user privacy protected in AI

apps?
• RQ-5.2 What are the main privacy concerns of users

regarding current AI apps?
6.1.2. Experimental methodology

We conducted the following two experiments to answer
the sub-questions above.
• Experiment RQ-5.1 (Analysis on user privacy protec-

tion) In the first step, we construct a privacy keyword list
containing common user privacy terms (e.g., name, email,
address, and birth). Then, we crawl the privacy policy data
of 6016 AI apps from the Google Play market and match
it with the pre-built privacy keyword list. If the crawl data
includes keywords from the privacy list, we consider that
the corresponding AI apps can access private data with
respect to these keywords.

• Experiment RQ-5.2 (User concerns on current AI
app privacy protection) First, we filtered privacy-related
comments using privacy-related keywords (such as “pri-
vacy”) from all the reviews of collected AI apps. Next, we
manually analyzed and summarized the collected privacy-
related user comments, aiming to identify the core con-
cerns users have about AI apps’ privacy protection. Based
on the manual analysis, we identified several core con-
cerns, which are: 1) Privacy infringement and data mis-
use; 2) Lack of transparency in privacy policies; 3) Third-
party data sharing; 4) Privacy protection features; 5) The
conflict between privacy and user experience. Finally, we
summarized and analyzed each of these concerns.

6.1.3. Results
Table 6 presents the experimental results for RQ5. It

shows the condition of user private data being accessed in
six different categories of AI apps. The column "Count"
indicates how many AI apps accessed this private content,
and "Ratio" represents the proportion of AI apps that ac-
cessed this content. From Table 6, we can see that the most
frequently accessed private attribute across all six categories
is the user’s name, indicating that this private attribute is the
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Table 6
Private data of AI apps accessing

Business Finance Education

privacy Count Ratio privacy Count Ratio privacy Count Ratio
name 492 0.60 name 410 0.52 name 333 0.61

address 421 0.51 account 314 0.39 address 292 0.53
email 405 0.50 location 311 0.39 email 250 0.45

location 363 0.44 email 305 0.38 location 201 0.36
image 335 0.41 address 303 0.38 image 195 0.35

account 302 0.37 image 287 0.36 account 138 0.25
country 211 0.26 phone number 166 0.21 video 104 0.19

phone number 203 0.25 credit card 114 0.14 credit card 96 0.17
video 196 0.24 country 112 0.14 phone number 88 0.16

interaction 151 0.18 video 110 0.13 device name 87 0.15
credit card 141 0.17 interaction 110 0.13 country 81 0.14

photo 131 0.16 birth 85 0.10 interaction 80 0.14
birth 123 0.15 audio 71 0.09 photo 57 0.10

device name 88 0.10 photo 48 0.06 gender 51 0.09
audio 84 0.10 gender 44 0.05 audio 40 0.07
gender 68 0.08 device name 28 0.03 birth 33 0.06

device ID 28 0.03 user ID 15 0.01 device ID 15 0.02
user ID 21 0.02 device ID 9 0.01 user ID 10 0.01

browsing history 15 0.01 browsing history 6 0.00 browsing history 6 0.01
serach history 6 0.00 search history 4 0.00 IMEI number 2 0.00
IMEI number 2 0.00 IMEI number 2 0.00 Android ID 2 0.00
Android ID 1 0.00 frequency of use 1 0.00 frequency of use 2 0.00

frequency of use 0 0.00 Android ID 0 0.00 search history 1 0.00

Productivity Tools Shopping

privacy Count Ratio privacy Count Ratio privacy Count Ratio
name 371 0.72 name 289 0.66 name 173 0.63

address 328 0.64 address 241 0.55 email 155 0.56
email 324 0.63 email 225 0.52 address 151 0.55

location 167 0.32 location 185 0.42 location 142 0.51
image 154 0.30 image 185 0.42 account 122 0.44

account 147 0.28 account 152 0.35 image 118 0.43
country 109 0.21 phone number 104 0.24 country 81 0.29

phone number 91 0.17 country 95 0.21 phone number 71 0.25
interaction 72 0.14 video 90 0.20 video 52 0.18

video 69 0.13 device name 74 0.17 interaction 47 0.17
photo 56 0.11 photo 71 0.16 credit card 47 0.17

device name 52 0.10 interaction 60 0.13 gender 32 0.11
credit card 47 0.09 audio 51 0.11 photo 32 0.11

audio 44 0.08 credit card 46 0.10 birth 29 0.10
gender 25 0.04 gender 28 0.06 device name 29 0.10
birth 22 0.04 device ID 26 0.06 audio 27 0.09

device ID 16 0.03 birth 19 0.04 device ID 20 0.07
browsing history 7 0.01 user ID 14 0.03 user ID 7 0.02

user ID 7 0.01 Android ID 8 0.01 search history 3 0.01
search history 4 0.00 IMEI number 6 0.01 browsing history 3 0.01
Android ID 2 0.00 frequency of use 6 0.01 IMEI number 1 0.00

IMEI number 1 0.00 browsing history 4 0.00 frequency of use 1 0.00
frequency of use 0 0.00 search history 2 0.00 Android ID 0 0.00

most commonly leaked to app providers. Other frequently
accessed private attributes include address, email, and loca-
tion. Across all six AI app categories, these private attributes
are ranked in the top five in terms of the number and ratio of
AI apps that accessed them. Moreover, we found that, for
different categories of AI apps, the private attributes that
are most easily leaked are similar (e.g., name, address, and
email).
Finding 19: The most frequently accessed private attributes
by the collected AI apps are name, address, email, and
location.

Table 7 presents the privacy issues highlighted in user
comments. The table categorizes these privacy issues into
five main categories, providing detailed descriptions along
with actual user comments as examples. Firstly, we see that
privacy invasion and data misuse are among the top con-
cerns. Users are worried about certain applications request-
ing excessive permissions that are unrelated to their core
functions or even accessing device resources without autho-
rization. This behavior makes users feel that their privacy is
being violated, particularly when sensitive permissions such
as camera and microphone access are accessed.

Secondly, users are worried about the lack of trans-
parency in privacy policies. Many users find that privacy
policies are difficult to access or understand, and they are

concerned that these policies may be changed without notifi-
cation. Another major concern for users is the issue of third-
party data sharing. Users complain that some applications
share their data with third parties without their explicit
consent. Lastly, the trade-off between privacy and user ex-
perience is another significant issue. Users report that some
applications. For example, users may be forced to accept
privacy terms in order to continue using the app, and this
compulsory approach has resulted in user dissatisfaction.
Finding 20: The main privacy-related concerns raised by
users include: privacy invasion and data misuse, lack of
transparency in privacy policies, third-party data sharing,
privacy protection features, and the balance between privacy
and user experience.

6.2. RQ6: Analysis of user reviews related to AI
technology

6.2.1. Objectives
User reviews are crucial for improving the AI techniques

used in AI apps and enhancing user satisfaction. They can
help identify potential issues with current AI techniques
utilized in AI apps, contributing to the overall quality and
reliability of the apps. In this research question, we in-
vestigate users’ attitudes toward AI techniques in AI apps.
Understanding users’ attitudes can help developers identify
current issues that users perceive in AI apps and create AI
apps that better meet user expectations.
6.2.2. Experimental methodology

In the first step, we conducted web crawling from the
Google Play application market to retrieve available reviews
associated with our collected AI apps. Since in our collected
dataset of AI apps, 88.7% of the AI apps belong to Google
Play, we chose Google Play as the primary source for col-
lecting reviews. In the second step, we constructed an AI-
relevant technical keyword dictionary to filter out reviews
that specifically focused on AI techniques. Based on the
filtering, we obtained a collection of technical reviews (i.e.,
reviews regarding AI techniques).

For the collected review data, we performed three types
of analyses: 1) Overall sentiment analysis, where we em-
ployed a Transformers-based model (Wolf, Debut, Sanh,
Chaumond, Delangue, Moi, Cistac, Rault, Louf, Funtowicz,
Davison, Shleifer, von Platen, Ma, Jernite, Plu, Xu, Scao,
Gugger, Drame, Lhoest and Rush (2020)) renowned for
its effectiveness in sentiment classification tasks, achiev-
ing an impressive accuracy rate of 91.3%. Each techni-
cal review was classified as either positive or negative by
the Transformers-based model. Moreover, we conducted a
deeper analysis of the reasons for the negative reviews. We
manually checked all the negative reviews and categorized
the reasons for the negativity. 2) Strengths and weaknesses
analysis, involving manual examination and summarization
of the identified technical reviews’ notable attributes and
limitations; 3) Categorized sentiment analysis, wherein we
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Table 7
Privacy concerns highlighted in user comments

Main Privacy Concerns Details User Comment Examples

Privacy Invasion & Data Misuse
Users are concerned about apps requesting
excessive permissions unrelated to their core functions,
and unauthorized access to device resources.

“To use video chat with a doctor,
I had to agree to invasive permissions like accessing my
camera, microphone, calendar, and more.”
“This app accessed my microphone in the background
even after I revoked permission. Who knows how long it’s been
recording me? Major invasion of privacy!”

Lack of Transparency in Privacy Policies
Privacy policies are hard to access or understand,
with changes made without user notification.

“If I can’t read their privacy agreements, I can’t use the app.”
“The privacy policy is not acceptable.
Because it might be changed without informing the users,
as it mentions in the roles of the application! ”

Third-Party Data Sharing
Apps shares data with third parties,
especially without explicit consent.

“App worked well. Until today when I was asked if would agree
to a third party privacy advertising policy. I chose option
’No thank you’ but instead of being allowed to proceed,
it merely removed the option I had chose
and would allow me to continue in app until I chose to agree.”
“This app collects WAY too much data than should be needed to
use the service, this app also collects it to use toward advertising.”

Privacy Protection Features
Some users appreciate apps that offer privacy
protection, like encrypted communication.

“This app actually respects your privacy.”
“Connect to people without disclosing privacy.”

Privacy vs. User Experience
Users report a trade-off between privacy protection
and user experience, with some apps limiting functionality
unless privacy terms are accepted.

“Now I’ve disabled the annoying adds I now have to agree to
a privacy policy every time I open the app??? Why can’t
it remember I have clicked accept?”
“Trying to sign up, but can’t get past ticking the
terms and conditions and privacy policy box. No option
to complete the action after ticking box.”

computed the ratio of positive and negative reviews for each
app category, facilitating further exploration.
6.2.3. Results

The experimental results for RQ6 are presented in Fig-
ure 13, Figure 14, Table 8, Table 9, and Figure 15. Figure 13
illustrates the proportion of positive and negative reviews
among all the collected technical reviews using a pie chart.
We can see that positive reviews account for 68.4% of the
total, while negative reviews constitute 31.6%. Based on the
experimental results, we find that for the techniques used
in AI apps, the proportion of positive reviews is higher
compared to negative reviews, indicating that users’ attitudes
towards the techniques in AI apps are relatively positive.

Figure 14 shows the main reasons causing negative re-
views (as mentioned above, 31.6% of reviews are negative).
Below, we explain each of these main reasons.
• Accuracy Issues refer to the AI applications making

inaccurate classifications, such as mistakenly identifying
a hamburger as a hot dog.

• Incomplete Functionality refers to the AI applications
lacking some expected functionality. For instance, in the
"Photography" category, a user mentioned that the face
grouping feature did not work properly.

• Crashes and Errors refer to instances where AI applica-
tions crash or generate error messages. For example, in the
"Libraries & Demo" category, a user mentioned, "When I
click the Recognition Test Button, the app stops working."

• Dependency on External Libraries refers to the applica-
tion needing certain external libraries to function properly.
For instance, in the "Video Players & Editors" category, a

user commented that the app required OpenCV Manager
to run, a library that was not available in the app store.

• Lack of Personality refers to the app’s lack of person-
alized features, failing to meet users’ needs for a person-
alized experience. For instance, in the "Education" cate-
gory, a user commented that while the app was powerful,
it lacked personalized elements during use.

• Key Features Missing refers to the AI application lacking
critical features compared to other similar apps. For exam-
ple, in the "Finance" category, a user mentioned that the
app lacked fingerprint authorization and NFC payment,
which led them to consider other apps.

• Slow Performance refers to the AI application running
slowly, affecting the user experience. For example, in the
"Libraries & Demo" category, a user mentioned that the
object detection speed of the app was not fast enough to
meet real-time requirements.

• Complex/Unfriendly Interface Issues refer to instances
where the AI app has a complicated or user-unfriendly
interface, making it difficult for users to operate. For
example, in the "Productivity" category, users reported
that the app’s interface did not refresh after deleting a file,
which made it challenging to use.
From Figure 14, we see that Accuracy Issues are the

leading cause of negative user reviews, accounting for 22.6%
of all negative feedback. Following this, Incomplete Func-
tionality accounts for 17.7%, which is the second most
significant cause. Crashes and Errors are the third major
problem, comprising 16.1% of the negative reviews. From
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the above analysis, we conclude that accuracy issues, incom-
plete functionality, and crashes and errors are the three main
sources of negative reviews.
Finding 21: AI app users’ attitudes towards the techniques
used in AI apps are relatively positive. Accuracy issues,
incomplete functionality, and crashes and errors are the three
main sources of negative reviews.

Table 9 presents summaries for some example technical
reviews across different AI app categories. We can see that,
73.7% of reviews are completely positive, without pointing
out any shortcomings. The remaining reviews are partly
negative, highlighting advantages but pointing out issues.
For example, for Travel & Local-oriented AI apps, users em-
phasize the limitations in translating US English to Hebrew.
Among the negative reviews, 75% focus on accuracy issues
(e.g., the prediction accuracy is insufficient), including in the
Casual, Dating, Entertainment, and Photography categories
of apps.
Finding 22: Among the negative reviews of AI technology
in AI apps, the most frequently reported issue by users is
accuracy issues (e.g., the prediction accuracy is insufficient).

Figure 15 depicts the proportion of positive and negative
technical reviews across different categories. Notably, in
more than half of the categories, the proportion of positive
exceeds that of negative reviews. For instance, in the cat-
egories of Maps & Navigation, Parenting, Education, and
Social, the ratio of positive reviews surpasses 90%. However,
certain categories exhibit a higher proportion of negative
reviews, such as Book & Reference, Entertainment, and
Casual.

Table 8 presents the causes of negative reviews across
categories with higher negative sentiments. We see that, in
the Entertainment category, users’ negative reviews mainly
focus on recognition accuracy issues, such as errors in object
recognition. For example, identifying a door as a refrigerator
or a desk as a microwave. In the Casual category, users’
negative reviews mainly focus on inaccuracies in image
classification, such as identifying a hamburger as a hot-
dog. Additionally, users suggested some functionality issues,
such as adding confidence measures for algorithms. In the
Health & Fitness category, users were concerned about
technical details, particularly regarding the machine learning
modules used.

The negative reviews of the Dating category were
mainly caused by algorithm accuracy and the lack of per-
sonalization. Negative feedback in the Lifestyle category
focused on the dependency on external components, such as
the requirement to install OpenCV Manager. In the Travel
& Local category, users mainly reported issues with voice
recognition and translation, especially between American
English and Hebrew. Lastly, negative reviews for Books &
Reference apps primarily focused on technical issues, such
as crashes or failures to start the app.

Finding 23: In more than half of the AI app categories, the
proportion of positive exceeds that of negative reviews.
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Figure 13: Sentiment analysis of technical reviews for AI apps:
Proportion of positive and negative reviews

Accuracy Issues (22.6%)
Incomplete Functionality (17.7%)
Crashes and Errors (16.1%)
Dependency on External Libraries (14.5%)
Lack of personality (9.7%)
Key Features Missing (8.1%)
Slow Performance (4.8%)
Complex/Unfriendly Interface Issues (1.6%)
Others (4.7%)

Figure 14: Analysis of causes for negative reviews of AI
applications
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Figure 15: Sentiment analysis results on AI technical reviews
across different categories

7. Discussion
7.1. Challenges and Opportunities

In this section, we discuss the challenges and opportuni-
ties of deploying AI technologies to mobile applications.
7.1.1. Challenges

In the following, we elaborate on the challenges of
deploying AI technologies to mobile applications from two
perspectives: on-device deployment and on-cloud deploy-
ment.
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Table 8
Causes of negative reviews across categories with higher negative sentiments

Category Issues Detailed Description Examples from Reviews

Entertainment Accuracy issues
Users mentioned poor object detection and recognition
accuracy, such as recognizing a door as a refrigerator or a desk
as a microwave, which obviously affects user experience.

"Recognizing a door as a refrigerator,
a desk as a microwave"

Casual
Misclassification,
Functionality issues

Users mentioned inaccurate image classification,
such as misclassifying a hamburger as a hotdog.
Users suggested adding confidence measures for algorithms
and using front-facing cameras, which would improve
the app’s practicality.

"Misclassifying a hamburger as a hotdog,
lack of front-facing camera support"

Health & Fitness Technical details
Users inquired about the specific machine learning modules used
but did not receive satisfactory answers,
indicating a lack of technical transparency.

"Questions about TensorFlow usage
not satisfactorily answered"

Dating
Algorithm accuracy,
Lack of personalization

Users doubted the accuracy of facial recognition and
suggested adding user verification for algorithm accuracy.
Users expected more personalized and interactive features.

"Facial recognition accuracy doubted,
lack of user verification"

Lifestyle
Dependency on
external components

Users mentioned the need to install OpenCV Manager,
which could be difficult to find or install in some cases,
leading to the app not functioning properly

"Difficulty finding or
installing OpenCV Manager"

Travel & Local
Voice recognition and
translation issues

Users reported that the app’s voice model had difficulty with
American English and produced inaccurate translations,
especially from English to Hebrew. They noted that
other similar voice assistants (like Google and Alexa)
did not have these issues.

"Poor recognition of American English,
inaccurate Hebrew translations"

Books & Reference Technical issues Some users reported crashes or failure to start,
such as inability to download necessary opencv packages. "Inability to download opencv packages"

Table 9
Summaries of technically-relevant reviews of AI apps

Category AI Review summary

Art & Design
Good application to create paintings from photos and
powerful application created using machine learning.

Books & Reference Very good scikit-learn documentation.
Business The scanning is good.
Casual Useful but not always accurate.

Dating
It would be better for machine learning if the
users could verify its accuracy.

Education
It covers all machine learning techniques and helps us
understand the basics of machine learning, which is excellent.

Entertainment
It is an interesting app to learn about machine learning,
but the accuracy is not good.

Health & Fitness
Which machine learning Module have you used
for your predictive analysis.

House & Home It contains object detection and is very excellent.
Libraries & Demo Great app, very helpful for exploring deep learning.
Lifestyle Wants to install OpenCV Manager.

Maps & Navigation
Use AI and deep learning to detect farm plots.
A very useful and light app.

Parenting
Use machine learning to detect explicit
images on Reddit or Google.

Photography Object detection is not very accurate, but it was fun.
Productivity Very good text recognition app.

Social
It can be used in various advanced scenes and balance modes,
such as using voice to invoke the camera.

Tools
Text Recognition is an exciting and fantastic application
with outstanding new features.

Travel & Local
Spanish translation is perfect but abysmal results
for translating US English to Hebrew.

One of the primary challenges in on-device AI deploy-
ment is the limitation of computational resources. Mobile
devices have limited computational power, battery life, and
storage capacity. Running AI models on such constrained
devices can lead to performance issues, such as slow pro-
cessing times, thus impacting the user experience. Another
crucial challenge lies in model protection. As the models are
deployed locally, the risk of model theft increases, which can
result in intellectual property loss. In RQ4 of our empirical

study (cf. Section 5.2), we show that several embedded
models in AI apps are not encrypted, indicating the risk of
model theft.

One of the primary challenges in on-cloud AI deploy-
ment is data privacy and security. AI systems typically
require access to large amounts of user data, which can
include sensitive information. Since AI models are deployed
in the cloud, user data is stored on remote servers managed
by third-party providers, leading to potential privacy and
security issues. Another critical challenge lies in network
dependency. Cloud-based processing requires a stable and
high-speed internet connection. Poor connectivity can lead
to a degraded user experience.

Some common challenges for both on-device and on-
cloud deployment include model accuracy issues. In RQ6
of our empirical study, we find that 80% of negative re-
views highlight model accuracy issues, considering that the
predictions of the models are not accurate enough. Another
critical challenge is user privacy concerns. Our experimental
results in RQ5 demonstrate that most AI apps can access
several crucial attributes of sensitive user data (e.g., name,
address, email, images, etc.), which increases the risk of
user-sensitive information leaks.
7.1.2. Opportunities

Deploying AI technologies in mobile applications offers
numerous opportunities. First, AI techniques enhance the
user experience through personalization. For instance, AI-
driven personal assistants can learn from individual inter-
actions to better predict user needs and offer more relevant
assistance. Moreover, in some crucial fields like health mon-
itoring and financial services, AI technologies can enable
mobile applications to process and interpret complex data
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in real time. For example, mobile health apps can utilize
AI technologies to provide real-time analysis of health data,
preventing users from potential health issues before they
become critical.
7.2. Future Directions

Though AI techniques have demonstrated significant po-
tential in enhancing mobile applications, several challenges
remain due to the unique constraints and requirements of
mobile environments. In this section, we suggest five future
directions for AI in mobile applications.
• Exploring LLM-Driven AI Applications With the grow-

ing capabilities of large language models (LLMs), there
is a significant opportunity to integrate LLM models
into mobile applications to enhance user interaction and
provide more advanced features. By integrating LLMs,
mobile apps can offer more personalized experiences,
enabling sophisticated features like real-time language
translation and intelligent content generation. Exploring
LLM-driven AI applications is a valuable future direction.

• User Privacy Protection As mobile applications increas-
ingly rely on AI to process personal data, ensuring privacy
and security becomes crucial (Zhang, Patras and Haddadi
(2019)). This raises future research regarding ensuring
data privacy and security without compromising the per-
formance and usability of AI models.

• AI Model Security AI models are vulnerable to adver-
sarial attacks, where small, deliberate perturbations to the
input data can result in incorrect outputs. This vulnerabil-
ity can severely affect the reliability of AI applications,
particularly in critical fields like healthcare, finance, and
autonomous driving. How to protect AI models from such
attacks could be a future research direction.

• Optimization of Lightweight Models AI on mobile plat-
forms requires balancing performance with limited com-
putational and battery resources. While techniques like
model compression and pruning strive to achieve this,
maintaining optimal performance with minimal reduction
in accuracy remains a challenge. This raises the question
of how to design AI models that deliver high accuracy
while being computationally lightweight on mobile de-
vices.

• Real-time Processing The demand for real-time AI pro-
cessing on mobile devices is growing, particularly in
applications like augmented reality, real-time transla-
tion, and autonomous navigation (Battineni, Chintala-
pudi, Ricci, Ruocco and Amenta (2024), Omar and Salih
(2024)). Achieving real-time performance with limited
hardware resources is challenging. How to enable real-
time AI capabilities while maintaining high accuracy and
low power consumption is a crucial question to address.

7.3. Recommendations for AI App Developers,
Users and R&D

Based on the findings from the experimental results
(cf. Sections 4.3 to Section 6.2), we discuss the concrete
recommendations for AI application developers, AI users,
and AI R&D.

For AI app developers: 1) Encrypt AI Models Finding
18 reported that among all the collected AI models, only
520 models, accounting for just 0.25%, are considered to
be encrypted. Therefore, we recommend developers prior-
itize encrypting models, especially those handling sensitive
tasks, to protect against potential breaches. 2) Enhance
User Experience with Accurate AI Models Finding 21
reported the accuracy problem of AI models in AI applica-
tions. Specifically, accuracy issues are the most commonly
reported problem in negative user reviews. We recommend
that developers focus on improving the predictive accuracy
of AI applications to enhance the user experience. 3) Opti-
mize AI App Size and Performance Finding 12 indicated
that AI apps supported by deep learning tend to be larger in
size. This insight suggests developers to consider focusing
on optimizing app size to reduce download time and improve
user experience.

For AI app users: 1) Provide Feedback to Improve
AI Apps User comments can provide valuable insights for
improving AI apps. For example, Finding 21 mentions that
accuracy issues, incomplete functionality, and crashes and
errors are the three main sources of negative reviews, which
can help developers identify the shortcomings of current
AI apps and make targeted improvements. Therefore, we
recommend that users provide more suggestions to help
developers better improve AI apps. 2) Manage Privacy
Settings Proactively Finding 19 indicates that AI applica-
tions frequently access sensitive user data, such as names,
addresses, emails, and locations. Therefore, we recommend
that users regularly review and manage the privacy settings
of AI applications. This can effectively reduce the risk of
potential data breaches and protect users’ privacy.

For AI R&D: 1) Analyze High-Scoring AI Apps Ac-
cording to Finding 7, AI applications in the Racing Games
and Comics categories have the highest average scores. We
recommend analyzing the factors contributing to the high
ratings of these applications and applying these successful
strategies to the development of AI applications in other
categories to enhance overall app quality and user ratings.
2) Continued Focus on User Feedback Findings 20, 21,
and 22 highlight user feedback on current AI apps. We
recommend that AI R&D teams continue to focus on user
feedback, particularly on negative feedback, and use it as a
crucial reference for optimizing applications. This approach
will further enhance user experience and satisfaction.
7.4. Threats to Validity

Threats to External Validity. The external threat of the
study lies in the model protection measurement method
we applied in RQ4. We adopted the standard entropy test
approach to determine whether a model is encrypted, which
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assesses the encryption status of an AI model based on the
model’s entropy value. If the value exceeds the threshold,
the model is considered encrypted. However, the accuracy
of the method is not guaranteed. To mitigate this threat, we
adopt the threshold value of 7.99 since it has been validated
by the work of Sun et al. Moreover, we validate the accuracy
of the approach standard entropy test by manually check-
ing. Specifically, we randomly selected 50 AI application
models considered encrypted by the standard entropy test
and manually verified whether they were actually protected
through two steps. First, we tried to open them using the
Netron viewer, but none of the models could be opened.
Subsequently, we attempted to use the official API of these
AI models to load them, but we also found that none of the
models could be opened.

Threats to Internal Validity. A major threat to internal
validity arises from the manual collection of keywords for
identifying AI applications. We collected a set of AI-related
keywords to distinguish AI apps from the mobile apps in An-
droZoo. To mitigate this threat, we invested sufficient time
in gathering the keywords by consulting extensive literature
and related GitHub materials. Moreover, as some simple AI
terms (e.g., LSTM, CNN) can also appear in non-AI word-
s/phrases, we excluded them from the keyword dictionary to
improve the accuracy of AI app identification. Additionally,
recognizing that some AI apps do not rely on AI frameworks
and thus may not be detected using framework keywords, we
supplemented the keyword dictionary with package names
of ML/DL algorithms.

8. Related Work
8.1. Mobile Deep Learning

Deploying deep learning (DL) techniques to mobile de-
vices has shown remarkable benefits, including quick re-
sponse time, network independence, and enhanced privacy
protection, thus attracting much attention in recent studies
(Cheng, Wang, Zhou and Zhang (2017); Huang and Chen
(2022); He, Lin, Liu, Wang, Li and Han (2018); Xu et al.
(2019); Zhang, Zhou, Lin and Sun (2018); Howard, Zhu,
Chen, Kalenichenko, Wang, Weyand, Andreetto and Adam
(2017)). Cheng et al. (2017) conducted a comprehensive
review of state-of-the-art techniques for compressing DNN
models, including parameter pruning and quantization, low-
rank factorization, compact convolutional filters, and knowl-
edge distillation. He et al. (2018) proposed an effective
model compression tool, AutoML, which utilized reinforce-
ment learning to sample the design space and improve model
compression quality. Xu et al. (2019) conducted the first
large-scale study to explore the development progress of on-
device deep learning and contributed valuable new findings.
For example, early adopters of deep mobile learning are the
top applications where embedded deep learning technology
plays an important role. Zhang et al. (2018) introduced a
computation-efficient CNN architecture, ShuffleNet, espe-
cially for mobile devices with minimal computing power.
Howard et al. (2017) demonstrated MobileNets, a new model

architecture for mobile and embedded vision applications
that achieved significant performance compared to other
popular models on ImageNet classification.
8.2. ML/DL as cloud services

Unlike deploying ML/DL models directly to mobile
devices, traditional computing paradigms prefer an online
mode, where models are deployed on cloud platforms to
perform training and inference. Under this mechanism, the
mobile device sends data to the remote end and receives the
prediction results. MLaaS (Machine Learning as a Service)
(Ribeiro, Grolinger and Capretz (2015)) is a prevalent cloud
service that offers a suite of pre-built machine learning tools
and capabilities, allowing users to perform data analysis and
prediction without needing to deeply understand the princi-
ples of ML algorithms. Yao, Xiao, Wang, Viswanath, Zheng
and Zhao (2017) reviewed the effectiveness of MLaaS sys-
tems ranging from fully automated, turnkey systems to fully
customizable systems, observing that user control can affect
ML task performance. Shokri, Stronati, Song and Shmatikov
(2017) empirically evaluated classification models trained
by commercial MLaaS providers (e.g., Google and Amazon)
from the perspective of model security, designing the first
inference attack against ML models provided by Google
Prediction API and Amazon. Tramèr, Zhang, Juels, Re-
iter and Ristenpart (2016) investigated the vulnerability of
machine learning models offered by MLaaS providers to
model extraction attacks. They demonstrated that adver-
saries with black-box access to these models can replicate
them by making numerous queries to the prediction APIs,
even when confidence scores are omitted. They underscore
the insufficiency of removing confidence values as a protec-
tive measure and call for more robust security strategies for
protecting these models.

9. Conclusion
In this paper, we conducted the most extensive empirical

study on AI-driven applications, focusing on on-device ML
apps, on-device DL apps, and AI service-supported apps.
By analyzing 56,682 real-world AI applications identified
from a pool of 7,259,232 mobile apps in the AndroZoo
repository, we provide several key insights into the landscape
of AI in mobile applications across three main perspectives:
application analysis, framework and model analysis, and
user analysis. For example, from the application analysis
perspective, we find that incorporating AI technology into
applications has become a growing trend since 2018, with
the Finance and Business categories releasing the highest
number of AI apps. From the framework and model anal-
ysis perspective, we find that AI apps supported by on-
device DL techniques accounted for the highest proportion,
and TFLite is the most prevalent framework among single-
framework AI apps. From the user analysis perspective, we
find that the most frequently accessed private attributes by
the collected AI apps are name, address, email, and location,
and users generally have a positive attitude towards AI in
apps, with accuracy issues being the most reported problem
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in negative reviews. Our detailed analysis offers insights
into the prevalence, update practices, framework usage, and
model protection in AI apps, guiding future AI app develop-
ment and maintenance strategies. Moreover, by examining
user privacy and attitudes, we highlight the importance of
privacy protection in AI app development and offer insights
into how users perceive current AI technologies utilized in
AI apps. We provide a large-scale AI app dataset for further
research, offering a valuable resource for the academic and
developer communities.
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