ON THE ENTANGLEMENT OF RADICALS
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ABSTRACT. In this work we make progress in the understanding of the so-called entanglement
of radicals, showing that there are extremely few additive relations among radicals. Our results
complete a famous theorem by Kneser from 1975 on the linear independence of radicals. In-
deed, we determine all the radicals belonging to the Kneser field, that is a cyclotomic extension
of the base field over which there is no entanglement anymore.

1. INTRODUCTION

Let K be a field (for which we fix an algebraic closure &) and consider a multiplicative group
G of radicals of K, that is a group generated by K * and by elements in K that have some
power in K *. Clearly, the multiplicative relations among the radicals in G are encoded in the
group structure. We are interested in the additive relations among the radicals in G (also called
entanglement) that become relevant when we consider the field K (G). To study the additive
relations among radicals we may suppose without loss of generality that the index |G : K| is
finite. Then we can “measure” the additive relations by comparing this index and the degree
of the extension K (G)/K. Indeed, for radicals that are dependent (in the sense that they give
rise to additive relations that do not stem from multiplicative relations) the degree [K (G) : K|
is smaller than the index |G : K*|.

Roots of unity are radicals, and K-linear relations among them constitute one first type of
entanglement, which we call cyclotomic entanglement. The basic relations are the following:
if ¢, is a root of unity of order n, then we have

1+ G+ 4+t =0.

Over Q the above relations (and those generated by them) are all the additive relations among
roots of unity, but there are more relations involving (,, for a field K such that the degree of
the cyclotomic extension K ({,,)/K is less than o(n). For example, if K = Q(v/5) C C and
(5 = *™/5 then we have the K -linear relation

VB 1—G+E+E -G =0.

We remark that for a number field K there are only finitely many K -linear relations among
roots of unity which generate all additive relations: this is because there is a constant cx such
that the intersection of K with Q(() (the largest cyclotomic extension of Q) is contained
in Q((c, ). In general, to understand the cyclotomic entanglement we have to analyze the
intersection K N F'({), where F' is Q or a prime field.

There can be further entangled radicals, for example the above relation
VE=G-G-E+G
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is a Q-linear relation for the radical v/5 involving roots of unity. More generally, all square-
roots of rational numbers are contained in a cyclotomic extension of Q. To generate the cor-
responding entanglement we first take the relation

V2=(+ ¢

with compatible choices for the roots (after an embedding in C we can take /2 and e*27%/8
or —/2 and e*273/8) Moreover, for any odd prime number p we express ,/p as a Q-linear
combination of 4p-th roots of unity with a Gauss sum that — with appropriate root choices —
can be written as follows:

VP = (-1)FP=D/L. pi <Z> ¢

im1 \P
An example of additive relation that is explained by multiplicative relations is
V6 =G+ — G — G

(with root choices v/6 > 0 and (o4 = €2™/24 in C) because this is obtained by multiplying the
additive relations for v/2 and v/3 presented above.

Over a field K different than Q there could be more entanglement of this type, which we call
Kummer entanglement, because there can be further radicals that are contained in a cyclotomic
extension of K. For example, over K = Q(1/5) the square root of —% is contained in
Q((5). For the Kummer entanglement, the entangled radicals generate abelian radical exten-
sions of K and we can invoke Schinzel’s Theorem on abelian radical extensions (Theorem
[6): this entanglement is due to Kummer extensions of K that are contained in cyclotomic

extensions and hence it is well-understood.

Over Q, a special entanglement that is neither cyclotomic nor Kummer is given by the follow-
ing Q-linear relation (with the appropriate root choices):

ﬂ:1+C4.

This entanglement relation is due to the decomposition in (), which in turn stems from the
non-cyclicity of the extension Q((g)/Q.

In fact, the relations that we presented completely describe the entanglement over Q (this is
also a special case of our results below). Rather surprisingly, the entanglement is as limited as
possible for any field. In a nutshell, for a general field there are no substantial differences with
respect to Q, and there may just be one element (of the form 1 + (ow) that plays the role that
1 4 (4 plays for Q.

In this work we are able to bound the entanglement over any field K because we determine
the radicals that are contained in its Kneser field (namely the field obtained by adding to K the
roots of unity of order 4 or a prime number), over which there is no entanglement by a famous
result by Kneser [6]]. Our very general results are presented in the next section.

As explained by Lenstra in [8], beyond the theoretical interest, the understanding of entangle-
ment is crucial for a designer of a computer algebra system who wishes to do computations
with radicals e.g. over number fields or function fields.
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2. THE MAIN RESULTS

We denote as customary the roots of unity, and we let char(K') be the characteristic of K. We
fix a prime number ¢ # char(K') and denote by VKX the subgroup of K- consisting of the

elements whose ¢"-th power is in K * (and define ZW as the union of ['W forn > 0).
Similarly, we write (s to mean all roots of unity whose order is a power of £. Moreover, we
call K((2p) the extension of K that is generated by the roots of unity whose order is 4 or an
odd prime number and it is not divisible by char(K).

Our results show the remarkable fact that the additive relations of radicals are extremely few.
This is because by a famous result by Kneser (Theorem [ there are no more additive relations
over the Kneser field K ((ap).

Theorem 1. Suppose that ¢ is odd or that {4 € K. Lett > 1 be the largest integer such that
Cpt € K(Cop), or set t = oo if no such largest integer exists. If (o ¢ K, then we have

(1) K(Gp)n VEX = (e, K*)  and K(Gp) NK("VEX) = K(Cp).

If there is some largest integer w > 0 such that (pw € K, we have

0 K(Gop) NK(VEX) = K(C, K(Gop) N VEX)
and
3) K(Gp) N VEX = (G, K(Gp) N VEX).

Ift < 2w, then the field K (Cop) N K(‘VEKX) = K(Cop) N K('VEKX) is the largest subex-
tension of K ((op)/ K that is Kummer and with exponent a power of L.

Notice that the case ((y) C K is not dealt with because setting w = oo in the above formulas
would result in a trivial assertion. We denote by v K> the subgroup of K* consisting of the
elements whose square is in K, noticing that K (v K*)/K is a Kummer extension.

Theorem 2. Suppose that { =2 and (4 ¢ K. If ((a00) C K ((2p), then we have

4) K(Gp) N *VEX = (G, K (Gp) N VEX)
and
(5) K(Cop) N K(*VEX) = K(Core, K(Cop) NVEX).

Else, call w > 2 the largest integer such that (ow + CQ_wl € K and lett > w be the largest
integer such that (ot € K (Cop). Then we have

©6) K(Gop) NK(*VEX) = K(Cor, K (Gop) N VEX)
and
) K(Gop) N VKX = (Cory 1+ Cow, K (Gop) NVEX) .

Ift > w, we may omit 1 4+ (ow from the list of generators.

The further results of this paper are described in Sectiond] We don’t consider general radicals
in ¥/K but only radicals in VK where ( is prime. This is sufficient for understanding the
additive relations among radicals because of the following property: for every extension K’ of
K and for every a € “VK' that is not a root of unity, by Kneser theory (possibly applied over
K'({4), see Theorem {4)) the degree of K'(«)/K’ is a power of ¢, leading to pairwise coprime
degrees for different £’s.
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The proofs of our results rely on two famous theorems: Kneser’s theorem on the linear inde-
pendence of radicals and Schinzel’s theorem on abelian radical extensions, see Theorems 4] and
[6] respectively.

3. CLASSICAL THEORIES OF RADICALS

Kummer theory concerns the field extensions generated by radicals that satisfy the following
condition: any finite subextension is Galois and the exponent of its Galois group is the order of
a root of unity contained in the base field. We refer to [[7, Ch. VI §8] or [3] for an introduction
to Kummer theory.

Let K be a field, and K an algebraic closure of K. Let I' be a subgroup of K* containing
K> such that I'/ K * is finite and with order coprime to char(K) (in particular, the extension
K(I")/K is separable). We then have the following:

Theorem 3 (Kummer theory). Suppose that the exponent of the group T'/ K* is the order of a
root of unity in K. Then K(I')/ K is a Galois extension and we have

Gal(K(I')/K) ~T/K*.

On the other hand, Kneser theory is the theory about the linear independence of radicals that is
based on the following result, see [[6, Satz].

Theorem 4 (Kneser’s theorem on the linear independence of radicals). Suppose that (; € K
holds for every odd prime q # char(K) such that {; € I'. Moreover, if char(K) # 2, suppose
that {4 € K if 1 + (4 or 1 — (4 is in T'. Then we have

[K(T): K]=|I": K*|.

The condition in Kneser’s theorem relates to [7, Theorem 9.1, Ch.VI]:

Theorem 5. Let a € K* and n > 1. The polynomial x™ — a is irreducible in K|x| if for all
prime numbers q | n we have a ¢ K*? and, in case char(K) # 2 and (4 ¢ K and 4 | n, we
additionally have a ¢ —4K**,

The reason for the additional assumption for odd characteristic is the decomposition

(8) (2t +4) = (22 + 20 +2)(2® — 22 +2).

Indeed, the roots of this polynomial are the fourth roots of —4: the squareroots of —4 generate
the field Q(¢4) and the fourth roots of —4 also generate that field because they are +(1 + (4)
and (1 — (4).

We also rely on the following result, see [12, Theorem 2]:

Theorem 6 (Schinzel’s theorem on abelian radical extensions). Let n > 1 be not divisible by
char(K). If a € K*, the extension K ((,, {/a)/K is abelian if and only if a™ = b" holds for
some b € K* and for some m | n such that (,,, € K.

Finally, we apply [4, Satz B] by Halter-Koch, that states the following:

Theorem 7 (Halter-Koch’s Theorem B). Suppose that [K(T") : K] = |T' : K*|. If char(K) #
2 and (4 ¢ K and 4 divides the order of T'/ K* suppose moreover that the following condition
holds: ify € K(T') and (1 + (4)y € T, then {4 € K(y) or (4 € K(yC4). Then every field F
such that K C F C K(T) is conjugated over K to a field of the form K (I'r) where T'r is a
subgroup of T that contains K *.
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We also mention Schinzel’s theorem on the linear independence of radicals [13]], that is con-
cerned with the case of maximal degree [K(I') : K] = |I' : K*|. Moreover, Halter-Koch
proves further results with a focus on the case in which the degree is maximal (see e.g. [S) Satz
5]). There is also a vast literature on radical extensions, see for example [2] by Barrera Mora
and Vélez, and the book [1]] by Albu. Most importantly, there are results by Rybowicz [11,
Theorems 2.3 and 2.4] which also complete Kneser’s theorem.

The theory of entanglement was established by Lenstra [8]] and it was later developed by Palen-
stijn [9], see also [[10] (for number fields) by Perucca, Sgobba and Tronto.

4. OVERVIEW OF THE RESULTS

4.1. Notation. Let ¢ be a prime number different from char(K). We suppose that we have
['= (K™, Wy, Ty)

where Wy is a finite group generated by roots of unity of odd prime order different from ¢ and
where Iy is a subgroup of I' containing K * such that Iy / K * has order a power of ¢ (this may
include roots of unity of order a power of £). For the ¢-part of the index we have

T : K*|g=1T: K.

4.2. Results for ¢ odd. Suppose that ¢ is odd and different from the characteristic of K.
Theorem 8. Suppose that {; € K, and set Ty p :=T'y N K(Wy). Then we have
K(T) N K(Wy) = K(L'ep)

and
Do KX [K(Wy) K]

(K(T): K] Tro: B

Supposing additionally that a root of unity ¢ of order a power of £ is in K(W,) only if it is in
K, then K(I'y )/ K is a Kummer extension.

Remark 9. Theorem [§| still holds if we replace W, with W, := (W, (4), the proof is com-
pletely analogous.

Theorem 10. Suppose that (; ¢ K.
o If(y ¢ T, then we have
K(D): K] = [T s K| [K(We) : K]
o If(y €T, then we have

_ P KX[- [K(We, G) - K]
- [K(Gr) s K(G)]

where T > 1 is the largest integer such that (y € T' N K(Wy, (;), and € is the largest
integer such that (= € T' N K((y).

[K(T) : K]
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4.3. Results for /= 2. Suppose that the characteristic of K is different from 2. We call special
case of Kneser’s theorem the following case: (4 ¢ K,and 1+ (4 € Tor1l — (4 €T.

Theorem 11. Exclude the special case of Kneser’s theorem, and set I'y  := T'o N K (W>).
Then we have
K(T2) N K(W2) = K(I'y,p)

and
T K[+ [K(W3) : K]

|F27E : KX|
Supposing additionally that a root of unity ¢ of order a power of 2 is in K (Ws) only if it is in
K, then K(I's i)/ K is a Kummer extension.

[K(T) : K]

Theorem 12. Consider the special case of Kneser’s theorem. Then we have
[K(T2) « K] = 2|(T'2, K(Ca)™) : K(Ca)”|.
Moreover, setting I's g := (I'a, K (C4)™) N K (W, 4), we have
K(T2) N K(Wa, () = K(I'2k)

and
[K(T'9) : K] [K(Wa,(4) : K]

[K(T): K] = 2-Top : K(C4)¥|

Also consider the following:

Remark 13. Let K be a field of characteristic zero, £ a prime number, and W a finite group of
roots of unity of order coprime to £. Suppose that £ does not ramify in any finite subextension
of K/Q. Then a root of unity ¢ of order a power of £ is in K (W) only if it is already in K. If K
is a number field, this is because K (¢)/K is totally ramified at £ while K (W)/K is unramified
at £. In general, we may reduce to number fields: firstly we may restrict to consider the subfield
of K consisting of algebraic elements, secondly we may reduce to a finitely generated field.

5. PROOF OF THE RESULTS FOR THE CASE £ ODD
Let ¢ be an odd prime number different from char(K).

Proof of Theorem[§] Let w be the largest integer such that (v € K, or set w = oo if {;n € K
holds for every n > 1. To prove that K(I'y )/ K is a Kummer extension, it suffices to show
that K («)/K is a Kummer extension for every € I'y . Fix a € I'y i, and let n be the
smallest non-negative integer such that of" € K. We have to prove that n < w, so suppose
instead that n > w. By Theorem [6] as « is contained in an abelian extension of K, we
have o’” € (K*,(sm) for some minimal non-negative integer m < n, and we must have
m > w because o' ¢ K*. We deduce that (;m € (K>, ') and hence (;m € K (W;). The
additional assumption implies (;m € K and hence m < w, contradiction.

Now consider the general case. Since (; € K, by Kneser’s theorem we have

(9) [K(F[) : K] = |Fg : KX| and [K(F&E) : K] = |Pg’E : KX‘ .
So we are left to prove
(10) KN KWe) = K(TeE),

the inclusion 2 being clear. Letting F' = K (I'y g), it suffices to prove that F'(I'y) N F'(W) =
F. By (9) the degree of F(I'y)/F is a power of ¢. Since F'(W,)/F is abelian, it suffices to
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prove that F'(I'y)/F has no subextension L/F of degree ¢ contained in F'(Wy). As (;, € F,
such an extension would be a Kummer subextension of F'(I'y)/F' and hence we would have
L = F () for some vy € I'y. Since v € L C K (W), this would contradict F(I'y ) = F. O

Lemma 14. Suppose that (; ¢ K and (y € T. Letting T > 1 be the largest integer such that
Cor € N K(Wy, (), we have

(11) K(Le) N K(We, G) = K(Cr) -

Moreover, let € > 1 be the largest integer such that (= € T' N K ({;). We have
[K(Ly) : K(Co)] = [T : KX[- 77

and

(12) ’FgﬂK(Cg)X:KX‘Ze‘E.

Proof. We first prove (L1). The inclusion D holds because (;~ € Ty, so it suffices to consider
F := K((r) and prove
F(Fg)ﬂF(Wg) CF.

Over F we can apply Kneser’s theorem to (I'y, F*). If F(I'y) N F(W,) is larger than F, it
contains a subfield L such that L/ F has degree ¢ (hence it is a Kummer extension). So we have
L = F(vy) for some v € I'y. Notice that v € F(W;) = K(W,, (). Let m > 1 be minimal
such that v/ € K*. Since K ((ym,~) is abelian, by Theorem@we deduce that y € ((gn, K*)
holds for some minimal positive integer n < m. So we have

Cen € (7, ) ST N K(We, ()
and hence n < 7. We deduce that v € F' and L = F', contradiction.

By Kneser’s theorem over K ((;) we have
[K(Te) : K(Co)l = [T, K(C0)™) = K(Co)™| = [Te: Te VK (C) ™|

So to conclude it suffices to prove (I2). Notice that ¢ divides the index in because
Cre € Ty N K(C)™ and ¢y ¢ K*. It then suffices to prove that for every a € T'y N K ((p)*
we have a € ((pn, K*) for some integer n > 0 (taking n minimal, we have n < ¢ because
Cm € (a, K*)). This is a consequence of Theorem |§I because we have o/ € K* for some
m > 0 and « is contained in an abelian extension of K (hence o € K*™). ]

Proof of Theorem[I0} Suppose first that (; ¢ I'. By Kneser’s theorem we have [K (I'y) : K| =
[Ty : K*| hence it suffices to prove that K (W) N K(I'y) = K. The extension K (W,)/K
is abelian while K (I'y)/K has degree a power of ¢ by Kneser’s theorem applied to I'y. So it
suffices to prove that K (I'y) has no subextension L/ K of degree ¢ that is abelian. By Theorem
applied to I'y the field L is conjugated and thus equal to K(v) for some v € I'y \ K*.
By Kneser’s theorem applied to (y, K*) we deduce that ¢ € K*. Since the extension
K (¢,7)/K is abelian, Theorem |6] implies v* € K*‘. So we have v € Ty N ((, K),
contradicting that v ¢ K> and (y ¢ T'y.

Now consider the case (, € T’ (equivalently, ¢¢ € T'y). We can apply Theorem [§|to I", :=
(Te, K (Co) ™) over K (Ce), setting I' p := Ty N K (W, (). We get

T = K(Co)*| - [ (We, Co) = K(Cr)]
‘F&E' (Q)X‘

[K(T) : K(¢o)] =
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and hence

B Ty : K*|- [K(Wy, () : K]

T K (G- TN K (C)* - KX

Recalling (12) it suffices to show |I') 5 : K((o)*| = [K(Cer) : K(()]- By Kneser’s theorem
over K ((;) we have

[K(T) : K]

Thp: K(C) ™| = [K(TYg) « K(Co)]
so we may conclude by proving K ((;r) = K (I') ). The inclusion C is because (;- € I'y N
K(Wy, (). The other inclusion is because K(I', ;) C K(I'y) N K(Wy, () (as K(T)) =
K (T'p)) and this intersection equals K ({y~) by O

Proof of Theorem|l|for £ odd. The last assertion concerning the special case ¢ < 2w follows
from (3) and (T4), considering that ¢ € VKX,

To avoid a case distinction, we set w = 0 if (, ¢ K. We first prove

(13) K(Gp) N VEX C (Guvw, VEX)
(14) K(Gop) N K("VEX) = K(K(Gp) N “VEX).

Let o € K(Cap) N “VK*. Since a is contained in an abelian extension of K, by Theorem@
there is some non-negative integer n such that o*“(,n € K*. We deduce that (;n € K ((op)

and hence n < t, so follows. If w = 0, implies K (Cop) N “VK* = (¢, K*). The
second equality in (1)) will then follow from (14).
The inclusions 2 in (2), (3) and (14)) are immediate, and to prove the other inclusions we may
replace /K by a subgroup I'y D K * such that I';/ K * is finite. Moreover, we may replace
K ((2p) by a subfield K(Wy, C4,Cr) > (e where Wy is a group generated by finitely many
roots of unity of odd prime order different from ¢. Set W, := (W, (4). In view of Remark@
Theorem [8applied to (I'y, K ({pe)*) over K ({p:) gives

K(W},G) N K (D) € K(Te, K(Ge)*) NE (W)
Over K ((pt)*, the elements of (I'y, K ((pt)*) N K (W}, (;) are generated by elements in I'y N
KW}, () € K(Gp)N “VK* and we conclude the proof of because (it € K((2p) N
VKX,
We now prove (3)), where we may suppose that ¢ is finite (the case ¢ = oo being obvious) and

hence K has characteristic zero by Remark Notice that the containment O is clear. From
(13]) we deduce that

K (Gp) N VEX C (G, K (Cpow, Gop) 1 VEX)
Let « € K((op) N VK and write a = CivwB where B € K(Cprrw,Cop) N VKX and
m > 1.

By Kummer theory (because K (Cap, (pi+w )/ K is abelian and we investigate a Kummer subex-
tension) we may write 3 = 3"y so that 8/ € K ((pt+w) N VK> and y € K((p)N VK~
We may suppose w.l.o.g. that v = 1. So we have

K(a) € K(perw) N K (C2p) = K(Cet) -

We have 5 € K ((y2w) because K () is a subextension of K ((y+w)/K with exponent dividing
¢*. From K (o) C K ((p) we deduce that t + w — vy(m) < max(t,2w). If ¢ > 2w we may
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conclude because o € ((pt, B) N K ((op) = (Cpt, (B) N K (Cap)). Else, we conclude because
a € (G, B) N K (Cp) € VK NK(Cop).
Notice that (2)) can be obtained by combining and (3). O

6. PROOF OF THE RESULTS FOR THE CASE /=2
Now we consider the results for ¢ = 2.

Proof of Theorem[[1] This is the analogue of Theorem [§] Beyond the special case of Kneser’s
theorem, we may reason as done in the proof of Theorem [§|for the case (; € K. ([l

Proof of Theorem([l|in case ¢ = 2. Since (4 € K, we may proceed as in the case ¢ odd and
(¢ € K, relying on Theorem [I1]in place of Theorem [§] O

Proof of Theorem[I2] Since we are in the special case of Kneser’s theorem we have in partic-
ular (4 ¢ K and {4 € K(T'2). By Theorem [11]applied to I'y := (T's, K ((4)*) over K ((4) we
obtain
K(Fg) M K(WQ, C4) = K(F27E)
and
_ G K(Ga)*| - [K (W2, Ga) : K(Ca)]
To.p 0 K(Ga)*|

[K(T) : K(C4)]
It then suffices to prove
[K(Ta) : K(Ca)] = [T : K (Ca)™]
which follows by Kneser’s Theorem applied to I', over K ((4). g
Remark 15. If p is a prime and ¢ # p is a prime, then [F,,((2p) contains [F},({so ). Indeed, the
field I}, ((yo- ) is the compositum of [F,({,) and of all extensions of I, whose degree is a power

of £. Moreover, by Zygsmondy’s Theorem [14], for every m > 3 there is a prime ¢ # p such
that the multiplicative order of (p mod ¢) equals m, which implies [F),((,) : Fp] = m.

Remark 16. With the notation of Theorem [2} let w > 2 and suppose that (ow + CQ_wl € K.
Consider the radical

1= Cowt1\/Cow + (ot +2 € VKX,
We have 1% = (1 + (ow)? hence € {£(1 + (o)} and K (n) = K ((4). Notice that

Cpuin\/ Cow + G +2 € (n, Gow, KX)

and that, in general, the ratio between a radical and its negative is in K*.

Example 17. With the notation of Theorem if K = Q(V/6),thent =3 and (s ¢ K((4).

Proof of Theorem[2] Let s be the largest element in Z U {oo} such that ((2s) C K ((2p) (and
let s + 1 = oo if s = 00). We first prove

(15) K(Gop) N “VEX C (Goern, VEX) .

Fix a € K((op) N VK. To investigate o we may replace VKX by a subgroup I's O K*
such that Iy /K is finite and contains 1 + (4, and we may replace K ({2p) by an extension
of the form K ({4, Wo) where W5 is generated by finitely many roots of unity that have odd
prime order. Then v € 'y N K (W, (4). Since « is contained in an abelian extension of K by
Theorem@ (since ¢4 ¢ K) we have a? - (3n € K* for some minimal n > 0. We deduce that
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Con € (02, K*) C TyNK(Wa,(4) hence n < s. We deduce that a € (Cost1, VK X). We now
prove

(16) K (Gop) N K (*VEX) C K (Genr, VEX).
It suffices to show that, if W5 and I'y are as above, we have
K (W2, ¢1) N K (T2) € K (Gorr, VEX).
By Theorem [I2] we have
K(Wa, () NK(T2) = K(T'y ) where T p:= (T2, K(C1)*) N K(Wa,(a)

We may conclude because the group I'; g is generated by K ((4)* € K(vK*) and by ele-
ments in I'y N K (W, (4) which, as shown above, are in ((ys+1, VK ¥).

The assertion for s = oo is a consequence of (I5)) and (16). Now suppose that s is finite. By
Remark [I3]the field K has characteristic zero. Notice that (I5) implies

(17) K(Gp) N *VEX C (G, VEX MK (Cop, Goon))

Fix an embedding Q((2~) — K and write Ko := K N Q((a). Let e € K(Cop) N VKX
and write o = (%, 3 where 8 € VK> N K((2p, Cos+1) and m > 1.

By Kummer theory (since K (Cop, (55+1)/K is abelian, a subextension of degree 2 is contained
in the compositum of two subextensions of degree at most 2 of K (Cop)/K and K ((os+1)/K

respectively) we may write 5 = 'y so that ' € VK> N K((ys+1) and vy € VK> N K ((2p).

We now prove (7), noticing that the containment O holds by Remark [I6] We may suppose
w.l.o.g. that v = 1. So we have

K(a) C K(Gost1) N K(C2p) = K(C2s) -

If K ((o¢) strictly contains K ((4) or if Ky is not totally real, then the exponent of K ((ys+1)/K
is divisible by 4. We deduce that § € K ((2s) because (3 is contained in a subextension of
exponent 2 of K ((ys+1)/K. From K (a) C K((2s) we deduce that m must be even and we
may easily conclude.

Now we may suppose that K ((a2s) = K ((4), that K is totally real, and w.l.o.g. that « ¢ vV K *.
So we have K (a) = K((4) and s = w. By Remark the radical n € *VK* is such that
K (n) = K((4), and the same holds for 7/(as.

If 1 + ¢4 ¢ (a, K*), then by Kneser’s theorem the degree of K («)/K is 2", where n > 2
is minimal such that o®" € K. This contradicts o € K ((4). From this we also deduce that
R e (n,K*)and R' € (n/¢2s, K*) hold for some R, R’ € {1+ (4}, where R # R’ because
1 and 1/(2s are complex conjugates (for any embedding of the involved radicals inside C).

Finally suppose that R € (a, K*) for some R € {1+ (4}. If « € (R, K*), we may conclude
because « € (Cos,7, K*). Else, up to replacing o by an odd power of it, or replacing « by
its reciprocal, we can write a2 = Rkq for some kg € K* and for some d > 1. Writing
R = (gtlﬂ we get & = (H34q 2\d/ V/2kq for some odd integer x. Since 2\d/ V/2kq is contained
in an abelian extension of K, by Theorem @ we have 2k2 € K*2" and hence v/2 € K. Then
we have o = Cstm\/k»l for some k1 € K and for some odd integer y. If 3+ d < s we deduce

that o € (Cas, K((op) NV K*) and we conclude. Moreover, we cannot have 3 + d > s + 2
because K (a,/k1)/K has exponent 2 while K ((ys+2)/K has exponent at least 4. Finally
suppose that 3+ d = s+ 1. The conditions K (a)) = K({4) and (3511 € K (o, v/k1) imply that
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K (Vky) is either K (Cos+14C4) or K (Ca(Costr +C5:k1 ). Remarking that ((os1 45010 )? =
Cos + C2—51 + 2, we conclude because o € ((as, 7, K*).

To show (6), consider the proof of and observe that by (7) we know that I'y N K (W3, (4)
is contained in K ((2s, K (Cop) NV K™). O
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