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ABSTRACT. In this work we make progress in the understanding of the so-called entanglement
of radicals, showing that there are extremely few additive relations among radicals. Our results
complete a famous theorem by Kneser from 1975 on the linear independence of radicals. In-
deed, we determine all the radicals belonging to the Kneser field, that is a cyclotomic extension
of the base field over which there is no entanglement anymore.

1. INTRODUCTION

Let K be a field (for which we fix an algebraic closure K) and consider a multiplicative group
G of radicals of K, that is a group generated by K× and by elements in K that have some
power in K×. Clearly, the multiplicative relations among the radicals in G are encoded in the
group structure. We are interested in the additive relations among the radicals in G (also called
entanglement) that become relevant when we consider the field K(G). To study the additive
relations among radicals we may suppose without loss of generality that the index |G : K×| is
finite. Then we can “measure” the additive relations by comparing this index and the degree
of the extension K(G)/K. Indeed, for radicals that are dependent (in the sense that they give
rise to additive relations that do not stem from multiplicative relations) the degree [K(G) : K]
is smaller than the index |G : K×|.
Roots of unity are radicals, and K-linear relations among them constitute one first type of
entanglement, which we call cyclotomic entanglement. The basic relations are the following:
if ζn is a root of unity of order n, then we have

1 + ζn + ζ2n + · · ·+ ζn−1
n = 0 .

Over Q the above relations (and those generated by them) are all the additive relations among
roots of unity, but there are more relations involving ζn for a field K such that the degree of
the cyclotomic extension K(ζn)/K is less than φ(n). For example, if K = Q(

√
5) ⊂ C and

ζ5 = e2πi/5, then we have the K-linear relation
√
5 · 1− ζ5 + ζ25 + ζ35 − ζ45 = 0 .

We remark that for a number field K there are only finitely many K-linear relations among
roots of unity which generate all additive relations: this is because there is a constant cK such
that the intersection of K with Q(ζ∞) (the largest cyclotomic extension of Q) is contained
in Q(ζcK ). In general, to understand the cyclotomic entanglement we have to analyze the
intersection K ∩ F (ζ∞), where F is Q or a prime field.

There can be further entangled radicals, for example the above relation
√
5 = ζ5 − ζ25 − ζ35 + ζ45
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is a Q-linear relation for the radical
√
5 involving roots of unity. More generally, all square-

roots of rational numbers are contained in a cyclotomic extension of Q. To generate the cor-
responding entanglement we first take the relation

√
2 = ζ8 + ζ78

with compatible choices for the roots (after an embedding in C we can take
√
2 and e±2πi/8

or −
√
2 and e±2πi3/8). Moreover, for any odd prime number p we express

√
p as a Q-linear

combination of 4p-th roots of unity with a Gauss sum that – with appropriate root choices –
can be written as follows:

√
p = (−1)(p−1)/4 ·

p−1∑
i=1

(
i

p

)
ζip .

An example of additive relation that is explained by multiplicative relations is

√
6 = ζ1724 + ζ1124 − ζ24 − ζ

19/24
24

(with root choices
√
6 > 0 and ζ24 = e2πi/24 in C) because this is obtained by multiplying the

additive relations for
√
2 and

√
3 presented above.

Over a field K different than Q there could be more entanglement of this type, which we call
Kummer entanglement, because there can be further radicals that are contained in a cyclotomic
extension of K. For example, over K = Q(

√
5) the square root of −5+

√
5

8 is contained in
Q(ζ5). For the Kummer entanglement, the entangled radicals generate abelian radical exten-
sions of K and we can invoke Schinzel’s Theorem on abelian radical extensions (Theorem
6): this entanglement is due to Kummer extensions of K that are contained in cyclotomic
extensions and hence it is well-understood.

Over Q, a special entanglement that is neither cyclotomic nor Kummer is given by the follow-
ing Q-linear relation (with the appropriate root choices):

4
√
−4 = 1 + ζ4 .

This entanglement relation is due to the decomposition in (8), which in turn stems from the
non-cyclicity of the extension Q(ζ8)/Q.

In fact, the relations that we presented completely describe the entanglement over Q (this is
also a special case of our results below). Rather surprisingly, the entanglement is as limited as
possible for any field. In a nutshell, for a general field there are no substantial differences with
respect to Q, and there may just be one element (of the form 1 + ζ2w ) that plays the role that
1 + ζ4 plays for Q.

In this work we are able to bound the entanglement over any field K because we determine
the radicals that are contained in its Kneser field (namely the field obtained by adding to K the
roots of unity of order 4 or a prime number), over which there is no entanglement by a famous
result by Kneser [6]. Our very general results are presented in the next section.

As explained by Lenstra in [8], beyond the theoretical interest, the understanding of entangle-
ment is crucial for a designer of a computer algebra system who wishes to do computations
with radicals e.g. over number fields or function fields.
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2. THE MAIN RESULTS

We denote as customary the roots of unity, and we let char(K) be the characteristic of K. We
fix a prime number ℓ ̸= char(K) and denote by ℓn

√
K× the subgroup of K× consisting of the

elements whose ℓn-th power is in K× (and define ℓ∞√
K× as the union of ℓn

√
K× for n ⩾ 0).

Similarly, we write ζℓ∞ to mean all roots of unity whose order is a power of ℓ. Moreover, we
call K(ζ2P) the extension of K that is generated by the roots of unity whose order is 4 or an
odd prime number and it is not divisible by char(K).

Our results show the remarkable fact that the additive relations of radicals are extremely few.
This is because by a famous result by Kneser (Theorem 4) there are no more additive relations
over the Kneser field K(ζ2P).

Theorem 1. Suppose that ℓ is odd or that ζ4 ∈ K. Let t ⩾ 1 be the largest integer such that
ζℓt ∈ K(ζ2P), or set t = ∞ if no such largest integer exists. If ζℓ /∈ K, then we have

(1) K(ζ2P) ∩
ℓ∞√

K× = ⟨ζℓt ,K×⟩ and K(ζ2P) ∩K(
ℓ∞√

K×) = K(ζℓt) .

If there is some largest integer w > 0 such that ζℓw ∈ K, we have

(2) K(ζ2P) ∩K(
ℓ∞√

K×) = K(ζℓt ,K(ζ2P) ∩
ℓw
√
K×)

and

(3) K(ζ2P) ∩
ℓ∞√

K× = ⟨ζℓt ,K(ζ2P) ∩
ℓw
√
K×⟩ .

If t ⩽ 2w, then the field K(ζ2P) ∩K(
ℓ∞√

K×) = K(ζ2P) ∩K(
ℓw
√
K×) is the largest subex-

tension of K(ζ2P)/K that is Kummer and with exponent a power of ℓ.

Notice that the case ⟨ζℓ∞⟩ ⊆ K is not dealt with because setting w = ∞ in the above formulas
would result in a trivial assertion. We denote by

√
K× the subgroup of K× consisting of the

elements whose square is in K×, noticing that K(
√
K×)/K is a Kummer extension.

Theorem 2. Suppose that ℓ = 2 and ζ4 /∈ K. If ⟨ζ2∞⟩ ⊆ K(ζ2P), then we have

(4) K(ζ2P) ∩
2∞√

K× = ⟨ζ2∞ ,K(ζ2P) ∩
√
K×⟩

and

(5) K(ζ2P) ∩K(
2∞√

K×) = K(ζ2∞ ,K(ζ2P) ∩
√
K×) .

Else, call w ⩾ 2 the largest integer such that ζ2w + ζ−1
2w ∈ K and let t ⩾ w be the largest

integer such that ζ2t ∈ K(ζ2P). Then we have

(6) K(ζ2P) ∩K(
2∞√

K×) = K(ζ2t ,K(ζ2P) ∩
√
K×)

and

(7) K(ζ2P) ∩
2∞√

K× = ⟨ζ2t , 1 + ζ2w ,K(ζ2P) ∩
√
K×⟩ .

If t > w, we may omit 1 + ζ2w from the list of generators.

The further results of this paper are described in Section 4. We don’t consider general radicals
in ∞√K but only radicals in ℓ∞√K where ℓ is prime. This is sufficient for understanding the
additive relations among radicals because of the following property: for every extension K ′ of
K and for every α ∈ ℓ∞√K ′ that is not a root of unity, by Kneser theory (possibly applied over
K ′(ζ4), see Theorem 4) the degree of K ′(α)/K ′ is a power of ℓ, leading to pairwise coprime
degrees for different ℓ’s.
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The proofs of our results rely on two famous theorems: Kneser’s theorem on the linear inde-
pendence of radicals and Schinzel’s theorem on abelian radical extensions, see Theorems 4 and
6 respectively.

3. CLASSICAL THEORIES OF RADICALS

Kummer theory concerns the field extensions generated by radicals that satisfy the following
condition: any finite subextension is Galois and the exponent of its Galois group is the order of
a root of unity contained in the base field. We refer to [7, Ch. VI §8] or [3] for an introduction
to Kummer theory.

Let K be a field, and K an algebraic closure of K. Let Γ be a subgroup of K̄× containing
K× such that Γ/K× is finite and with order coprime to char(K) (in particular, the extension
K(Γ)/K is separable). We then have the following:

Theorem 3 (Kummer theory). Suppose that the exponent of the group Γ/K× is the order of a
root of unity in K. Then K(Γ)/K is a Galois extension and we have

Gal(K(Γ)/K) ≃ Γ/K× .

On the other hand, Kneser theory is the theory about the linear independence of radicals that is
based on the following result, see [6, Satz].

Theorem 4 (Kneser’s theorem on the linear independence of radicals). Suppose that ζq ∈ K
holds for every odd prime q ̸= char(K) such that ζq ∈ Γ. Moreover, if char(K) ̸= 2, suppose
that ζ4 ∈ K if 1 + ζ4 or 1− ζ4 is in Γ. Then we have

[K(Γ) : K] = |Γ : K×| .

The condition in Kneser’s theorem relates to [7, Theorem 9.1, Ch.VI]:

Theorem 5. Let a ∈ K× and n > 1. The polynomial xn − a is irreducible in K[x] if for all
prime numbers q | n we have a /∈ K×q and, in case char(K) ̸= 2 and ζ4 /∈ K and 4 | n, we
additionally have a /∈ −4K×4.

The reason for the additional assumption for odd characteristic is the decomposition

(8) (x4 + 4) = (x2 + 2x+ 2)(x2 − 2x+ 2) .

Indeed, the roots of this polynomial are the fourth roots of −4: the squareroots of −4 generate
the field Q(ζ4) and the fourth roots of −4 also generate that field because they are ±(1 + ζ4)
and ±(1− ζ4).

We also rely on the following result, see [12, Theorem 2]:

Theorem 6 (Schinzel’s theorem on abelian radical extensions). Let n ⩾ 1 be not divisible by
char(K). If a ∈ K×, the extension K(ζn, n

√
a)/K is abelian if and only if am = bn holds for

some b ∈ K× and for some m | n such that ζm ∈ K.

Finally, we apply [4, Satz B] by Halter-Koch, that states the following:

Theorem 7 (Halter-Koch’s Theorem B). Suppose that [K(Γ) : K] = |Γ : K×|. If char(K) ̸=
2 and ζ4 /∈ K and 4 divides the order of Γ/K× suppose moreover that the following condition
holds: if y ∈ K(Γ) and (1 + ζ4)y ∈ Γ, then ζ4 ∈ K(y) or ζ4 ∈ K(yζ4). Then every field F
such that K ⊆ F ⊆ K(Γ) is conjugated over K to a field of the form K(ΓF ) where ΓF is a
subgroup of Γ that contains K×.
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We also mention Schinzel’s theorem on the linear independence of radicals [13], that is con-
cerned with the case of maximal degree [K(Γ) : K] = |Γ : K×|. Moreover, Halter-Koch
proves further results with a focus on the case in which the degree is maximal (see e.g. [5, Satz
5]). There is also a vast literature on radical extensions, see for example [2] by Barrera Mora
and Vélez, and the book [1] by Albu. Most importantly, there are results by Rybowicz [11,
Theorems 2.3 and 2.4] which also complete Kneser’s theorem.

The theory of entanglement was established by Lenstra [8] and it was later developed by Palen-
stijn [9], see also [10] (for number fields) by Perucca, Sgobba and Tronto.

4. OVERVIEW OF THE RESULTS

4.1. Notation. Let ℓ be a prime number different from char(K). We suppose that we have

Γ = ⟨K×,Wℓ,Γℓ⟩

where Wℓ is a finite group generated by roots of unity of odd prime order different from ℓ and
where Γℓ is a subgroup of Γ containing K× such that Γℓ/K

× has order a power of ℓ (this may
include roots of unity of order a power of ℓ). For the ℓ-part of the index we have

|Γ : K×|ℓ = |Γℓ : K
×| .

4.2. Results for ℓ odd. Suppose that ℓ is odd and different from the characteristic of K.

Theorem 8. Suppose that ζℓ ∈ K, and set Γℓ,E := Γℓ ∩K(Wℓ). Then we have

K(Γℓ) ∩K(Wℓ) = K(Γℓ,E)

and

[K(Γ) : K] =
|Γℓ : K

×| · [K(Wℓ) : K]

|Γℓ,E : K×|
.

Supposing additionally that a root of unity ζ of order a power of ℓ is in K(Wℓ) only if it is in
K, then K(Γℓ,E)/K is a Kummer extension.

Remark 9. Theorem 8 still holds if we replace Wℓ with W ′
ℓ := ⟨Wℓ, ζ4⟩, the proof is com-

pletely analogous.

Theorem 10. Suppose that ζℓ /∈ K.

• If ζℓ /∈ Γ, then we have

[K(Γ) : K] = |Γℓ : K
×| · [K(Wℓ) : K] .

• If ζℓ ∈ Γ, then we have

[K(Γ) : K] =
|Γℓ : K

×| · [K(Wℓ, ζℓ) : K]

ℓε · [K(ζℓτ ) : K(ζℓ)]
,

where τ ⩾ 1 is the largest integer such that ζℓτ ∈ Γ ∩K(Wℓ, ζℓ), and ε is the largest
integer such that ζℓε ∈ Γ ∩K(ζℓ).



6 CHI WA CHAN, ANTIGONA PAJAZITI, FLAVIO PERISSINOTTO AND ANTONELLA PERUCCA

4.3. Results for ℓ= 2. Suppose that the characteristic of K is different from 2. We call special
case of Kneser’s theorem the following case: ζ4 /∈ K, and 1 + ζ4 ∈ Γ or 1− ζ4 ∈ Γ.

Theorem 11. Exclude the special case of Kneser’s theorem, and set Γ2,E := Γ2 ∩ K(W2).
Then we have

K(Γ2) ∩K(W2) = K(Γ2,E)

and

[K(Γ) : K] =
|Γ2 : K

×| · [K(W2) : K]

|Γ2,E : K×|
.

Supposing additionally that a root of unity ζ of order a power of 2 is in K(W2) only if it is in
K, then K(Γ2,E)/K is a Kummer extension.

Theorem 12. Consider the special case of Kneser’s theorem. Then we have

[K(Γ2) : K] = 2|⟨Γ2,K(ζ4)
×⟩ : K(ζ4)

×| .
Moreover, setting Γ2,E := ⟨Γ2,K(ζ4)

×⟩ ∩K(W2, ζ4), we have

K(Γ2) ∩K(W2, ζ4) = K(Γ2,E)

and

[K(Γ) : K] =
[K(Γ2) : K] · [K(W2, ζ4) : K]

2 · |Γ2,E : K(ζ4)×|
.

Also consider the following:

Remark 13. Let K be a field of characteristic zero, ℓ a prime number, and W a finite group of
roots of unity of order coprime to ℓ. Suppose that ℓ does not ramify in any finite subextension
of K/Q. Then a root of unity ζ of order a power of ℓ is in K(W ) only if it is already in K. If K
is a number field, this is because K(ζ)/K is totally ramified at ℓ while K(W )/K is unramified
at ℓ. In general, we may reduce to number fields: firstly we may restrict to consider the subfield
of K consisting of algebraic elements, secondly we may reduce to a finitely generated field.

5. PROOF OF THE RESULTS FOR THE CASE ℓ ODD

Let ℓ be an odd prime number different from char(K).

Proof of Theorem 8. Let w be the largest integer such that ζℓw ∈ K, or set w = ∞ if ζℓn ∈ K
holds for every n ⩾ 1. To prove that K(Γℓ,E)/K is a Kummer extension, it suffices to show
that K(α)/K is a Kummer extension for every α ∈ Γℓ,E . Fix α ∈ Γℓ,E , and let n be the
smallest non-negative integer such that αℓn ∈ K. We have to prove that n ⩽ w, so suppose
instead that n > w. By Theorem 6, as α is contained in an abelian extension of K, we
have αℓw ∈ ⟨K×, ζℓm⟩ for some minimal non-negative integer m ⩽ n, and we must have
m > w because αℓw /∈ K×. We deduce that ζℓm ∈ ⟨K×, αℓw⟩ and hence ζℓm ∈ K(Wℓ). The
additional assumption implies ζℓm ∈ K and hence m ⩽ w, contradiction.

Now consider the general case. Since ζℓ ∈ K, by Kneser’s theorem we have

(9) [K(Γℓ) : K] = |Γℓ : K
×| and [K(Γℓ,E) : K] = |Γℓ,E : K×| .

So we are left to prove

(10) K(Γℓ) ∩K(Wℓ) = K(Γℓ,E) ,

the inclusion ⊇ being clear. Letting F = K(Γℓ,E), it suffices to prove that F (Γℓ) ∩ F (Wℓ) =
F . By (9) the degree of F (Γℓ)/F is a power of ℓ. Since F (Wℓ)/F is abelian, it suffices to
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prove that F (Γℓ)/F has no subextension L/F of degree ℓ contained in F (Wℓ). As ζℓ ∈ F ,
such an extension would be a Kummer subextension of F (Γℓ)/F and hence we would have
L = F (γ) for some γ ∈ Γℓ. Since γ ∈ L ⊆ K(Wℓ), this would contradict F (Γℓ,E) = F . □

Lemma 14. Suppose that ζℓ /∈ K and ζℓ ∈ Γ. Letting τ ⩾ 1 be the largest integer such that
ζℓτ ∈ Γ ∩K(Wℓ, ζℓ), we have

(11) K(Γℓ) ∩K(Wℓ, ζℓ) = K(ζℓτ ) .

Moreover, let ε ⩾ 1 be the largest integer such that ζℓε ∈ Γ ∩K(ζℓ). We have

[K(Γℓ) : K(ζℓ)] = |Γℓ : K
×| · ℓ−ε

and

(12) |Γℓ ∩K(ζℓ)
× : K×| = ℓε .

Proof. We first prove (11). The inclusion ⊇ holds because ζℓτ ∈ Γℓ, so it suffices to consider
F := K(ζℓτ ) and prove

F (Γℓ) ∩ F (Wℓ) ⊆ F .

Over F we can apply Kneser’s theorem to ⟨Γℓ, F
×⟩. If F (Γℓ) ∩ F (Wℓ) is larger than F , it

contains a subfield L such that L/F has degree ℓ (hence it is a Kummer extension). So we have
L = F (γ) for some γ ∈ Γℓ. Notice that γ ∈ F (Wℓ) = K(Wℓ, ζℓ). Let m ⩾ 1 be minimal
such that γℓ

m ∈ K×. Since K(ζℓm , γ) is abelian, by Theorem 6 we deduce that γ ∈ ⟨ζℓn ,K×⟩
holds for some minimal positive integer n ⩽ m. So we have

ζℓn ∈ ⟨γ,K×⟩ ⊆ Γ ∩K(Wℓ, ζℓ)

and hence n ⩽ τ . We deduce that γ ∈ F and L = F , contradiction.

By Kneser’s theorem over K(ζℓ) we have

[K(Γℓ) : K(ζℓ)] = |⟨Γℓ,K(ζℓ)
×⟩ : K(ζℓ)

×| = |Γℓ : Γℓ ∩K(ζℓ)
×| .

So to conclude it suffices to prove (12). Notice that ℓε divides the index in (12) because
ζℓε ∈ Γℓ ∩ K(ζℓ)

× and ζℓ /∈ K×. It then suffices to prove that for every α ∈ Γℓ ∩ K(ζℓ)
×

we have α ∈ ⟨ζℓn ,K×⟩ for some integer n ⩾ 0 (taking n minimal, we have n ⩽ ε because
ζℓn ∈ ⟨α,K×⟩). This is a consequence of Theorem 6 because we have αℓm ∈ K× for some
m ⩾ 0 and α is contained in an abelian extension of K (hence αℓm ∈ K×ℓm). □

Proof of Theorem 10. Suppose first that ζℓ /∈ Γ. By Kneser’s theorem we have [K(Γℓ) : K] =
|Γℓ : K×| hence it suffices to prove that K(Wℓ) ∩ K(Γℓ) = K. The extension K(Wℓ)/K
is abelian while K(Γℓ)/K has degree a power of ℓ by Kneser’s theorem applied to Γℓ. So it
suffices to prove that K(Γℓ) has no subextension L/K of degree ℓ that is abelian. By Theorem
7 applied to Γℓ the field L is conjugated and thus equal to K(γ) for some γ ∈ Γℓ \ K×.
By Kneser’s theorem applied to ⟨γ,K×⟩ we deduce that γℓ ∈ K×. Since the extension
K(ζℓ, γ)/K is abelian, Theorem 6 implies γℓ ∈ K×ℓ. So we have γ ∈ Γℓ ∩ ⟨ζℓ,K×⟩,
contradicting that γ /∈ K× and ζℓ /∈ Γℓ.

Now consider the case ζℓ ∈ Γ (equivalently, ζℓ ∈ Γℓ). We can apply Theorem 8 to Γ′
ℓ :=

⟨Γℓ,K(ζℓ)
×⟩ over K(ζℓ), setting Γ′

ℓ,E := Γ′
ℓ ∩K(Wℓ, ζℓ). We get

[K(Γ) : K(ζℓ)] =
|Γ′

ℓ : K(ζℓ)
×| · [K(Wℓ, ζℓ) : K(ζℓ)]

|Γ′
ℓ,E : K(ζℓ)×|
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and hence

[K(Γ) : K] =
|Γℓ : K

×| · [K(Wℓ, ζℓ) : K]

|Γ′
ℓ,E : K(ζℓ)×| · |Γℓ ∩K(ζℓ)× : K×|

.

Recalling (12) it suffices to show |Γ′
ℓ,E : K(ζℓ)

×| = [K(ζℓτ ) : K(ζℓ)]. By Kneser’s theorem
over K(ζℓ) we have

|Γ′
ℓ,E : K(ζℓ)

×| = [K(Γ′
ℓ,E) : K(ζℓ)]

so we may conclude by proving K(ζℓτ ) = K(Γ′
ℓ,E). The inclusion ⊆ is because ζℓτ ∈ Γℓ ∩

K(Wℓ, ζℓ). The other inclusion is because K(Γ′
ℓ,E) ⊆ K(Γℓ) ∩ K(Wℓ, ζℓ) (as K(Γ′

ℓ) =

K(Γℓ)) and this intersection equals K(ζℓτ ) by (11). □

Proof of Theorem 1 for ℓ odd. The last assertion concerning the special case t ⩽ 2w follows
from (3) and (14), considering that ζℓt ∈

ℓw
√
K×.

To avoid a case distinction, we set w = 0 if ζℓ /∈ K. We first prove

(13) K(ζ2P) ∩
ℓ∞√

K× ⊆ ⟨ζℓt+w ,
ℓw
√
K×⟩

(14) K(ζ2P) ∩K(
ℓ∞√

K×) = K(K(ζ2P) ∩
ℓ∞√

K×) .

Let α ∈ K(ζ2P) ∩ ℓ∞√
K×. Since α is contained in an abelian extension of K, by Theorem 6

there is some non-negative integer n such that αℓwζℓn ∈ K×. We deduce that ζℓn ∈ K(ζ2P)

and hence n ⩽ t, so (13) follows. If w = 0, (13) implies K(ζ2P) ∩ ℓ∞√
K× = ⟨ζℓt ,K×⟩. The

second equality in (1) will then follow from (14).

The inclusions ⊇ in (2), (3) and (14) are immediate, and to prove the other inclusions we may
replace ℓ∞√

K× by a subgroup Γℓ ⊇ K× such that Γℓ/K
× is finite. Moreover, we may replace

K(ζ2P) by a subfield K(Wℓ, ζ4, ζℓ) ∋ ζℓt where Wℓ is a group generated by finitely many
roots of unity of odd prime order different from ℓ. Set W ′

ℓ := ⟨Wℓ, ζ4⟩. In view of Remark 9,
Theorem 8 applied to ⟨Γℓ,K(ζℓt)

×⟩ over K(ζℓt) gives

K(W ′
ℓ, ζℓ) ∩K(Γℓ) ⊆ K(⟨Γℓ,K(ζℓt)

×⟩ ∩K(W ′
ℓ, ζℓ)) .

Over K(ζℓt)
×, the elements of ⟨Γℓ,K(ζℓt)

×⟩ ∩K(W ′
ℓ, ζℓ) are generated by elements in Γℓ ∩

K(W ′
ℓ, ζℓ) ⊆ K(ζ2P) ∩ ℓ∞√

K× and we conclude the proof of (14) because ζℓt ∈ K(ζ2P) ∩
ℓ∞√

K×.

We now prove (3), where we may suppose that t is finite (the case t = ∞ being obvious) and
hence K has characteristic zero by Remark 15. Notice that the containment ⊇ is clear. From
(13) we deduce that

K(ζ2P) ∩
ℓ∞√

K× ⊆ ⟨ζℓt+w ,K(ζℓt+w , ζ2P) ∩
ℓw
√
K×⟩ .

Let α ∈ K(ζ2P) ∩ ℓ∞√
K× and write α = ζmℓt+wβ where β ∈ K(ζℓt+w , ζ2P) ∩ ℓw

√
K× and

m ⩾ 1.

By Kummer theory (because K(ζ2P , ζℓt+w)/K is abelian and we investigate a Kummer subex-
tension) we may write β = β′γ so that β′ ∈ K(ζℓt+w) ∩ ℓw

√
K× and γ ∈ K(ζ2P) ∩ ℓw

√
K×.

We may suppose w.l.o.g. that γ = 1. So we have

K(α) ⊆ K(ζℓt+w) ∩K(ζ2P) = K(ζℓt) .

We have β ∈ K(ζℓ2w) because K(β) is a subextension of K(ζℓt+w)/K with exponent dividing
ℓw. From K(α) ⊆ K(ζℓt) we deduce that t + w − vℓ(m) ⩽ max(t, 2w). If t ⩾ 2w we may
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conclude because α ∈ ⟨ζℓt , β⟩ ∩K(ζ2P) = ⟨ζℓt , ⟨β⟩ ∩K(ζ2P)⟩. Else, we conclude because
α ∈ ⟨ζℓ2w , β⟩ ∩K(ζ2P) ⊆ ℓw

√
K ∩K(ζ2P).

Notice that (2) can be obtained by combining (14) and (3). □

6. PROOF OF THE RESULTS FOR THE CASE ℓ=2

Now we consider the results for ℓ = 2.

Proof of Theorem 11. This is the analogue of Theorem 8. Beyond the special case of Kneser’s
theorem, we may reason as done in the proof of Theorem 8 for the case ζℓ ∈ K. □

Proof of Theorem 1 in case ℓ = 2. Since ζ4 ∈ K, we may proceed as in the case ℓ odd and
ζℓ ∈ K, relying on Theorem 11 in place of Theorem 8. □

Proof of Theorem 12. Since we are in the special case of Kneser’s theorem we have in partic-
ular ζ4 /∈ K and ζ4 ∈ K(Γ2). By Theorem 11 applied to Γ′

2 := ⟨Γ2,K(ζ4)
×⟩ over K(ζ4) we

obtain
K(Γ2) ∩K(W2, ζ4) = K(Γ2,E)

and

[K(Γ) : K(ζ4)] =
|Γ′

2 : K(ζ4)
×| · [K(W2, ζ4) : K(ζ4)]

|Γ2,E : K(ζ4)×|
.

It then suffices to prove
[K(Γ2) : K(ζ4)] = |Γ′

2 : K(ζ4)
×|

which follows by Kneser’s Theorem applied to Γ′
2 over K(ζ4). □

Remark 15. If p is a prime and ℓ ̸= p is a prime, then Fp(ζ2P) contains Fp(ζℓ∞). Indeed, the
field Fp(ζℓ∞) is the compositum of Fp(ζℓ) and of all extensions of Fp whose degree is a power
of ℓ. Moreover, by Zygsmondy’s Theorem [14], for every m ⩾ 3 there is a prime q ̸= p such
that the multiplicative order of (p mod q) equals m, which implies [Fp(ζq) : Fp] = m.

Remark 16. With the notation of Theorem 2, let w ⩾ 2 and suppose that ζ2w + ζ−1
2w ∈ K.

Consider the radical
η := ζ2w+1

√
ζ2w + ζ−1

2w + 2 ∈ 2∞√
K× .

We have η2 = (1 + ζ2w)
2 hence η ∈ {±(1 + ζ2w)} and K(η) = K(ζ4). Notice that

ζ−1
2w+1

√
ζ2w + ζ−1

2w + 2 ∈ ⟨η, ζ2w ,K×⟩

and that, in general, the ratio between a radical and its negative is in K×.

Example 17. With the notation of Theorem 2, if K = Q(
√
6), then t = 3 and ζ8 /∈ K(ζ4).

Proof of Theorem 2. Let s be the largest element in Z ∪ {∞} such that ⟨ζ2s⟩ ⊆ K(ζ2P) (and
let s+ 1 = ∞ if s = ∞). We first prove

(15) K(ζ2P) ∩
2∞√

K× ⊆ ⟨ζ2s+1 ,
√
K×⟩ .

Fix α ∈ K(ζ2P)∩ 2∞√
K×. To investigate α we may replace 2∞√

K× by a subgroup Γ2 ⊇ K×

such that Γ2/K is finite and contains 1 ± ζ4, and we may replace K(ζ2P) by an extension
of the form K(ζ4,W2) where W2 is generated by finitely many roots of unity that have odd
prime order. Then α ∈ Γ2 ∩K(W2, ζ4). Since α is contained in an abelian extension of K by
Theorem 6 (since ζ4 /∈ K) we have α2 · ζ2n ∈ K× for some minimal n ⩾ 0. We deduce that
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ζ2n ∈ ⟨α2,K×⟩ ⊆ Γ2∩K(W2, ζ4) hence n ⩽ s. We deduce that α ∈ ⟨ζ2s+1 ,
√
K×⟩. We now

prove

(16) K(ζ2P) ∩K(
2∞√

K×) ⊆ K(ζ2s+1 ,
√
K×) .

It suffices to show that, if W2 and Γ2 are as above, we have

K(W2, ζ4) ∩K(Γ2) ⊆ K(ζ2s+1 ,
√
K×) .

By Theorem 12 we have

K(W2, ζ4) ∩K(Γ2) = K(Γ2,E) where Γ2,E := ⟨Γ2,K(ζ4)
×⟩ ∩K(W2, ζ4) .

We may conclude because the group Γ2,E is generated by K(ζ4)
× ⊆ K(

√
K×) and by ele-

ments in Γ2 ∩K(W2, ζ4) which, as shown above, are in ⟨ζ2s+1 ,
√
K×⟩.

The assertion for s = ∞ is a consequence of (15) and (16). Now suppose that s is finite. By
Remark 15 the field K has characteristic zero. Notice that (15) implies

(17) K(ζ2P) ∩
2∞√

K× ⊆ ⟨ζ2s+1 ,
√
K× ∩K(ζ2P , ζ2s+1)⟩ .

Fix an embedding Q(ζ2∞) ↪→ K and write K0 := K ∩ Q(ζ2∞). Let α ∈ K(ζ2P) ∩ 2∞√
K×

and write α = ζm2s+1β where β ∈
√
K× ∩K(ζ2P , ζ2s+1) and m ⩾ 1.

By Kummer theory (since K(ζ2P , ζ2s+1)/K is abelian, a subextension of degree 2 is contained
in the compositum of two subextensions of degree at most 2 of K(ζ2P)/K and K(ζ2s+1)/K

respectively) we may write β = β′γ so that β′ ∈
√
K× ∩K(ζ2s+1) and γ ∈

√
K× ∩K(ζ2P).

We now prove (7), noticing that the containment ⊇ holds by Remark 16. We may suppose
w.l.o.g. that γ = 1. So we have

K(α) ⊆ K(ζ2s+1) ∩K(ζ2P) = K(ζ2s) .

If K(ζ2s) strictly contains K(ζ4) or if K0 is not totally real, then the exponent of K(ζ2s+1)/K
is divisible by 4. We deduce that β ∈ K(ζ2s) because β is contained in a subextension of
exponent 2 of K(ζ2s+1)/K. From K(α) ⊆ K(ζ2s) we deduce that m must be even and we
may easily conclude.

Now we may suppose that K(ζ2s) = K(ζ4), that K0 is totally real, and w.l.o.g. that α /∈
√
K×.

So we have K(α) = K(ζ4) and s = w. By Remark 16, the radical η ∈ 2∞√
K× is such that

K(η) = K(ζ4), and the same holds for η/ζ2s .

If 1 ± ζ4 /∈ ⟨α,K×⟩, then by Kneser’s theorem the degree of K(α)/K is 2n, where n ⩾ 2
is minimal such that α2n ∈ K. This contradicts α ∈ K(ζ4). From this we also deduce that
R ∈ ⟨η,K×⟩ and R′ ∈ ⟨η/ζ2s ,K×⟩ hold for some R,R′ ∈ {1± ζ4}, where R ̸= R′ because
η and η/ζ2s are complex conjugates (for any embedding of the involved radicals inside C).

Finally suppose that R ∈ ⟨α,K×⟩ for some R ∈ {1± ζ4}. If α ∈ ⟨R,K×⟩, we may conclude
because α ∈ ⟨ζ2s , η,K×⟩. Else, up to replacing α by an odd power of it, or replacing α by
its reciprocal, we can write α2d = Rk0 for some k0 ∈ K× and for some d ⩾ 1. Writing
R = ζ±1

8

√
2 we get α = ζx

23+d

2d
√√

2k0 for some odd integer x. Since 2d
√√

2k0 is contained
in an abelian extension of K, by Theorem 6 we have 2k20 ∈ K×2d and hence

√
2 ∈ K. Then

we have α = ζy
23+d

√
k1 for some k1 ∈ K× and for some odd integer y. If 3+d ⩽ s we deduce

that α ∈ ⟨ζ2s ,K(ζ2P) ∩
√
K×⟩ and we conclude. Moreover, we cannot have 3 + d ⩾ s + 2

because K(α,
√
k1)/K has exponent 2 while K(ζ2s+2)/K has exponent at least 4. Finally

suppose that 3+d = s+1. The conditions K(α) = K(ζ4) and ζ2s+1 ∈ K(α,
√
k1) imply that
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K(
√
k1) is either K(ζ2s+1+ζ−1

2s+1) or K(ζ4(ζ2s+1+ζ−1
2s+1)). Remarking that (ζ2s+1+ζ−1

2s+1)
2 =

ζ2s + ζ−1
2s + 2, we conclude because α ∈ ⟨ζ2s , η,K×⟩.

To show (6), consider the proof of (16) and observe that by (7) we know that Γ2 ∩K(W2, ζ4)

is contained in K(ζ2s ,K(ζ2P) ∩
√
K×). □
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[2] BARRERA MORA, F. AND VÉLEZ, W. Y. Some results on radical extensions, J. Algebra 162 (1993) no. 2,

295–301.
[3] BIRCH, B. J. Cyclotomic fields and Kummer extensions in Algebraic Number Theory, edited by J.W.S. Cassels
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