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Abstract—The escalating number of wireless users requiring
different services, such as enhanced mobile broadband (eMBB),
massive machine-type communications (mMTC), and ultra-
reliable low-latency communications (URLLC), has led to ex-
ploring non-orthogonal multiplexing methods like heterogeneous
non-orthogonal multiple access (H-NOMA). This method allows
users demanding divergent services to share the same resources.
However, implementing the H-NOMA scheme faces major re-
source management challenges due to unpredictable interference
caused by the random access mechanism of mMTC users. To
address this issue, this paper proposes a joint optimization and
cooperative multi-agent (MA) deep reinforcement learning-based
resource allocation mechanism, aimed at maximizing the energy
efficiency (EE) of H-NOMA-based networks. Specifically, this
work initially establishes an optimization framework capable of
determining the optimal power allocation for any specific sub-
channel assignment (SA) setting for all users. Based on that, a
cooperative MA double deep Q network (CMADDQN) scheme is
carefully designed at the base station to conduct SA among users.
In addition, a distributed full learning-based approach using
MADDQN for both SA and power allocation is also designed for
comparison purposes. Simulation results show that the proposed
joint optimization and machine learning method outperforms the
solely-learning-based approach and other benchmark schemes in
terms of convergence rate and EE performance.

Index Terms—Joint Optimization and Machine Learning,
DDQN, eMBB, Heterogeneous NOMA, mMTC, URLLC.

I. INTRODUCTION

THE future wireless networks are anticipated to support a
tremendous number of devices requiring heterogeneous

services, e.g., enhanced mobile broadband (eMBB), massive
machine type communications (mMTC), and ultra-reliable and
low-latency communications (URLLC), together with different
quality-of-service (QoS) demands [2]. Specifically, the eMBB
service aims to bring a significant increase in user data rate; the
mMTC service supports the connectivity for a huge number
of devices; and the URLLC is expected to provide a service
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with unprecedented high reliability and low latency [3]. Due to
the high data rate demand, eMBB communication is designed
under the assumption of infinite blocklength (iFBL) to target
Shannon’s channel capacity utilizing long data packets. In
contrast, the demands of high connectivity density in mMTC,
and ultra-reliable and low latency in URLLC require a new
transmission method since mMTC and URLLC packets are
generally short. In this regard, short-packet communications
(SPC) have been applied for mMTC and URLLC transmis-
sions to meet their requirements [4].

To meet the diverse requirements arising from hetero-
geneous services, non-orthogonal multiple access (NOMA)
technology is considered a promising solution [5], [6]. Specif-
ically, numerous studies in the literature have considered
employing NOMA to efficiently manage the transmission in
systems where heterogeneous services coexist [6], [7]. Thanks
to the NOMA mechanism, users of heterogeneous services
can simultaneously communicate with the base station (BS)
using the same time-frequency resource block (RB). This
is achieved through various methods such as power domain
[5], [8], rate splitting [9], or codebook/pilot sequences [10].
Recently, NOMA technologies have been empowered by the
introduction of the semi-grant-free (semi-GF) strategy, also
known as semi-GF NOMA [11]. Following this novel inte-
grated strategy, users having stringent QoS requirements (e.g.,
eMBB or URLLC users) are scheduled orthogonally by the
system controllers (e.g., BS, access point, etc.) using grant-
based (GB) access to fulfill their demands. Meanwhile, other
users, such as mMTC users, can access the opened RBs
freely according to a grant-free (GF) access mechanism. This
approach can significantly increase connectivity opportunities
in dense networks. On top of the semi-GF scheme, the NOMA
transmission becomes particularly advantageous when more
than one user accesses a specific RB.

A. Related Works
Recently, the applications of NOMA to the systems with

multiplexed diverse services have been investigated [6], [11]–
[15]. In particular, the authors in [6] explored a heterogeneous
NOMA (H-NOMA)-based network slicing scheme for wireless
communication systems supporting the eMBB, URLLC, and
mMTC services. In this work, H-NOMA is defined as a novel
approach to non-orthogonal sharing of the RBs for various
services, distinct from the conventional NOMA which caters
to homogeneous demands. In particular, the employment of
this H-NOMA network slicing scheme enables users requiring
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various services to continuously utilize the same specific
frequency radio resources over time. This approach leads
to a significant improvement in spectrum efficiency. This
work also showed that the H-NOMA-based slicing scheme
can outperform heterogeneous orthogonal multiple access (H-
OMA) in meeting diverse requirements under certain consid-
ered scenarios. In [11], [12], the advantage of the semi-GF
NOMA scheme serving both GB and GF users has been in-
vestigated in different circumstances. Furthermore, the closed-
form expressions of outage probability and ergodic rate were
derived in these works to analyze system performance. In [13],
the authors have developed an efficient NOMA-based slicing
solution for eMBB and URLLC coexisting networks to mini-
mize the total power consumption. In [14], the coexistence of
eMBB and URLLC in multiple-input multiple-output (MIMO)
NOMA systems was investigated by maximizing eMBB users’
data rate while fulfilling the latency demands of URLLC
users. In [15], a network slicing method for eMBB, URLLC,
and mMTC based on a rate-splitting MA (RSMA) scheme
was proposed. This work showed that RSMA-based network
slicing can achieve better performance in terms of sum-rate in
some investigated regions as compared to conventional OMA-
based and NOMA-based ones.

The GF strategy can reduce the overhead time associated
with setting up transmission links; however, it also introduces
complex issues related to interference management. Specifi-
cally, for massive access scenarios, the random access nature
of GF or mMTC users can result in severe interference when
a large number of users attempt to access a limited number of
RBs. This can make users’ heterogeneous QoS requirements
unsatisfied, leading to significant performance degradation.
Furthermore, in the context of the wireless channel varying
unpredictably over time, developing dynamic resource allo-
cation (RA) mechanisms addressing the above congestion
problem and fulfilling the various QoS requirements from
different services becomes more challenging. In recent years,
the reinforcement learning (RL) method has been applied
to intelligently resolve the RA problem in communications
[16]–[18]. Its application to the coexistence of heterogeneous
services has been investigated in [19]–[22].

Specifically, the authors in [19] developed an intelligent
resource-slicing approach for downlink eMBB-URLLC coex-
isting orthogonal frequency-division MA (OFDMA) systems
by exploiting the well-known deep RL (DRL) tools. Con-
sidering uplink transmission, the authors in [20] proposed
a multi-agent (MA) DRL (MADRL) RA framework using
deep Q network (DQN) and transfer learning for OFDMA-
based uplink systems serving multiple users with different QoS
requirements, such as high reliability, low latency, and high
data rate. In this study, the power quantization (PQ) method
is utilized to discretize the continuous range of possible trans-
mission powers into a limited set of transmission power levels
(TPLs), thereby facilitating the learning process. However, this
approach may lead to performance loss if the discretized power
levels are unable to closely approximate the optimal points. In
[21], Fayaz et al. developed a DRL-based sub-channel (SC)
and power allocation mechanism for semi-GF NOMA-based
uplink HetNets, which aims to maximize the sum rate while

meeting different rate demands of both GB and GF users.
In this work, the PQ method is only employed for GF users’
power allocation while the transmission power of the GB users
is fixed. In [22], the authors investigated a two-hop NOMA-
based uplink HetNet, where each GF user first transmits its
message to a selected GB user, the chosen GB users then
forward the information to BS. The GF users in this scheme
were considered as DQN agents to select SC and transmission
power from finite sets of all SCs and pre-discretized TPLs.
In addition, a GB user is designated as the head of the GF-
user cluster. Meanwhile, the power allocation for GB users
is centrally defined at the BS using another DRL algorithm,
namely proximal policy optimization (PPO).

B. Contributions

This paper develops a joint optimization and MADRL-based
method for H-NOMA-based uplink systems serving eMBB,
mMTC, and URLLC users requesting heterogeneous QoS
requirements, not only to speed up the learning process but
also to achieve the optimal RA solution. Specifically, the main
contributions of this paper are summarized as follows:

• We investigate the coexistence of eMBB, mMTC, and
URLLC in a H-NOMA uplink system, where eMBB and
URLLC users are assigned orthogonally to a number of
SCs to fulfill their stringent QoS requirements on high
reliability, low latency, and high data rate. Meanwhile,
mMTC users can access any SCs freely and quickly
without any admission approval from BS to improve the
spectrum access efficiency and connectivity density.

• We formulate an energy efficiency (EE) maximization
problem for the considered system. The objective is to
maximize the long-term average EE under constraints on
various QoS requirements of users.

• We design a novel learning-based RA strategy to address
the proposed problem. In particular, we propose a joint
optimization and cooperative MA DDQN (JOCDDQN)
method to optimize the RA policy as well as significantly
improve learning performance. The JOCDDQN method
utilizes a cooperative MA DDQN (CMADDQN) scheme
centralized at the BS for SC assignment based on which a
dynamic power allocation solution is developed to obtain
optimal transmission power for users. We also design a
distributed full learning solution based on MADDQN,
namely FDDQN, where all users are considered as learn-
ing agents to find the best SC and power level selection
policy in order to resolve the investigated problem. It is
noteworthy that the PQ method is applied in the proposed
FDDQN method similar to the existing works [20], [21].

• We carry out the performance comparison between our
proposed methods and other benchmark schemes to eval-
uate the efficiency of the former in terms of convergence
property and EE performance. Additionally, we provide
numerical results to analyze the effects of different system
parameters, such as the number of SCs, number of trans-
mission power levels (TPLs), number of users, maximum
transmission power, and divergent QoS requirements, on
the system performance.
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TABLE I: Main Notations and Symbols

Notation Description
az(t) The action of agent z at TS t
α The learning rate

CN
(
0, σ2

) A scalar complex Gaussian distribution with zero mean
and variance σ2

c
(k)
z (t)

Binary SC allocation variable for user z over SC k in
time-slot (TS) t

Dz The transmission latency
E [·] The expectation operator
εz The decoding error probability of user z
γ The discount factor

γ
(k)
z (t)

The received signal-to-interference-plus-noise ratio
(SINR) according to user z over SC k in TS t

h
(k)
z (t)

The channel coefficient of the link from user z to the
BS over SC k in TS t

K The set of SCs
L The number of TPLs

ME eMBB user set
MM mMTC user set
MU URLLC user set
nb The packet size
νE eMBB numerology indices
νU URLLC numerology indices

P
(k)
z (t) The Tx-power of user z over SC k in TS t
Pmax
z The maximum Tx-power of user z
P̂l The l-th TPL

Q (x) The Gaussian Q-function
Q−1 (x) The inverse of the Gaussian Q-function
r(t) The reward function at TS t
rc The cell radius

R
(k)
z (t) The achievable rate of user z over SC k in TS t
sz(t) The network state of agent (user) z at TS t
WE SC bandwidth according to eMBB users
WU SC bandwidth according to URLLC users

x
(k)
z (t) The message of user z transmitted on SC k in TS t
ζ(t) EE in TS t
|·| The absolute value

The remainder of the paper is organized as follows. Section
II presents the system model, uplink transmission strategy for
H-NOMA-based systems, the achievable rate of users, and the
EE maximization (EE-Max) problem. Section III describes the
proposed JOCDDQN solution to address the EE optimization
problem. Section IV shows the proposed distributed FDDQN
method to resolve the considered problem. Section V provides
the simulation results and discussions. Finally, Section VI
concludes this paper. For clarity, a summary of the main
notations and symbols is provided in Table I.

II. SYSTEM MODEL

As shown in Fig. 1, we investigate an H-NOMA-based
uplink system that consists of one BS located at the center of
the cell with a radius of rc (m) and a number of users randomly
distributed in this cell requiring different services such as
eMBB, mMTC, and URLLC. Let MU, ME and MM be the
sets of URLLC, eMBB, and mMTC users, whose cardinalities
are MU, ME and MM, respectively. For convenience, we also
denote the set of all users as M = MU ∪ ME ∪ MM and
M =MU+ME+MM. To serve these users, a total bandwidth
of W (Hz) is assumed in the system, which is divided into
K SCs. Let K be the set of all K SCs. Furthermore, due to
high requirements of eMBB (data rate) and URLLC (reliability
and latency) services, one assumes that each of the eMBB
and URLLC users is preassigned several orthogonal SCs for

URLLC device

eMBB device

MTC device

…
…

…
BS

Fig. 1: Illustration of a H-NOMA-based uplink system.

its transmissions. Meanwhile, the mMTC users are assumed
to be able to access any available SCs freely to improve
the connection density due to the massive access requirement
of the mMTC service. Therefore, the mMTC users can use
the SCs granted to the eMBB and URLLC users. In this
case, when more than one user occupies the same SC, the
power-domain H-NOMA scheme is applied for multi-user
communication. In practice, the number of active mMTC and
URLLC users is random resulting in a dynamic traffic load,
which can be described by Poisson distribution [7]. Here, we
consider the worst scenario where all MM mMTC users and
MU URLLC users have packets to transmit in each time-slot
(TS), leading to the highest co-channel interference.

A. Uplink Transmission Strategy for H-NOMA

1) 5G New Radio (NR) Numerologies: 5G NR standard
introduces various physical-resource-block (PRB) or subchan-
nel (SC) types in order to support different communication
requirements and use-cases, which is referred to as “numerol-
ogy”. In particular, the bandwidth of SC in 5G NR schemes
is defined as 2ν times of SC’s bandwidth in 4G systems (i.e.,
180 kHz), where ν ∈ {0; 1; 2; 3; 4} is the numerology index
[2]. PRBs with high SC spacing are arranged for URLLC
services while traffic flows from the eMBB service can adopt
a numerology with the smaller SC spacing [2]. Therefore, this
paper focuses on an SC setting that the whole bandwidth
is divided into two sets of SCs, KU and KE. Particularly,
KU represents the set of SCs serving URLLC users with
numerology νU while KE is the set of eMMB-service SCs
with numerology νE. Herein, KU ∪ KE = K. One assumes
that νE < νU and denotes WE = 2νE × 180 (kHz) and
WU = 2νU×180 (kHz) as the bandwidth of SCs corresponding
to eMBB and URLLC services, respectively.

2) Uplink Transmission Mechanism: Considering the trans-
mission over SC k (k ∈ K), we denote c(k)z (t) (z ∈ M) as
a binary SC allocation variable at TS t, where c(k)z (t) = 1 if
user z occupies SC k and c(k)z (t) = 0 otherwise. As mentioned
earlier, each of eMBB and URLLC users is assigned a set
of orthogonal SCs to guarantee its strict requirements. In
addition, we assume a one-SC freely access strategy for
mMTC users where each mMTC user can select only one
arbitrary SC for its transmission. These assumptions yield

(C1) :
∑

z∈ME∪MU
c
(k)
z (t) ≤ 1, ∀k ∈ K. (1)

(C2) :
∑

k∈K c
(k)
z (t) = 1, ∀z ∈ MM. (2)

Thus, many mMTC users can access the same SC and they
can use the SCs granted to the eMBB and URLLC users. To
enable a multi-user data stream over the same SC, the power-
domain H-NOMA scheme is employed. Following H-NOMA
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principle, many users requiring different services can occupy
the same SC for their transmissions. In this regard, the received
signal over SC k at the BS in TS t can be expressed as

yk(t) =
∑
z∈M

c(k)z (t)

√
P

(k)
z (t)h(k)z (t)x(k)z + wk(t), (3)

where wk(t) ∼ CN
(
0, σ2

k

)
is the additive white Gaussian

noise (AWGN) over SC k at the BS; P (k)
z (t), h(k)z (t), and x(k)z

denote the transmission power (Tx-power), channel coefficient,
and transmitted symbol of user z over SC k, respectively. It
is worth noting that the Tx-power is defined as P (k)

z (t) = 0

if c(k)z (t) = 0 and P
(k)
z (t) ̸= 0, otherwise. From (3), the

BS can decode the received multi-user data systematically
through the use of the successive interference cancellation
(SIC) technique [23]. In uplink NOMA, the decoding order
of the multi-user data stream is affected by various different
factors. Specifically, a decoding order can be formulated based
on channel gain conditions [12], received power levels [24], or
QoS constraints of users [23]. In this paper, the messages of
the users over each SC can be decoded at the BS as follows:

• Due to strict requirements on reliability and latency,
the URLLC users’ messages need to be decoded first.
However, as long as their requirements are guaranteed,
the SCs granted to them can still be used by the mMTC
users to improve the spectrum efficiency.

• The symbols belonging to eMBB and mMTC users will
be decoded in the order of the corresponding channel
gains. In particular, the user having the higher channel
gain will be decoded earlier at the BS.

• After decoding the message of a user based on the
decoding order mentioned above, the BS removes this
component from its observation to decode the remaining
users’ messages by using the successive interference
cancellation (SIC) technique.

Given the above context, it is noteworthy that an SC selection
of mMTC users needs to guarantee the minimum co-channel
interference to optimize network performance while satisfying
the QoS requirements of both granted users (i.e., URLLC
and eMBB) and themselves. Otherwise, an alternative SC
allocation for mMTC users is necessary.

Without loss of generality, one assumes there are Zk users
accessing SC k in TS t, then they are arranged in the decoding
order discussed above as Z(k)(t) =

{
z
(k)
1 , ..., z

(k)

Zk

}
. Ac-

cordingly, the received signal-to-interference-plus-noise ratio
(SINR) of user z(k)ℓ (1 ≤ ℓ ≤ Zk) is expressed as

γ
(k)

z
(k)
ℓ

(t) = Y(k)

z
(k)
ℓ

(t)/

[
Zk∑

j=ℓ+1

Y(k)

z
(k)
j

(t) + σ2
k

]
, (4)

where Y(k)
z (t) = P

(k)
z (t)g

(k)
z (t) is the power of signal due

to user z’s data over SC k, g(k)z (t) =
∣∣∣h(k)z (t)

∣∣∣2 denote the
corresponding channel gain, and σ2

k = FN0Wk represents the
noise power over SC k. Herein, F is the noise figure in dB,
N0 is the noise power spectral density (PSD) in dBm/Hz, Wk

denotes the bandwidth of SC k, Wk = WE if k ∈ KE and
Wk =WU if k ∈ KU. It is noted that we consider a perfect SIC
scenario similar to [22], [24], [25], where the interference from

stronger users
{
z
(k)
1 , . . . , z

(k)
ℓ−1

}
is perfectly removed before

decoding the message of user z(k)ℓ . Meanwhile, the power
noise σ2

k is still considered in the power estimation process.

B. Achievable Rate of Users
1) URLLC Communication: Regarding the transmission of

URLLC user u over SC k in KU, which happens when
c
(k)
u = 1. Based on the NOMA transmission mechanism given

in Section II-A2, one must have u ≡ z
(k)
1 . Moreover, the SINR

of URLLC device u over SC k is expressed as

γ(k)u (t) = Y(k)
u (t)/

[
I(k)
u (t) + σ2

u

]
, (5)

where I(k)
u (t) =

∑Zk

j=2 Y
(k)

z
(k)
j

(t) represents the interference

caused by mMTC users over SC k. Furthermore, bandwidth
of SC k in KU is WU and σ2

u = FN0WU. In URLLC
communication, short packet communication (SPC) in finite
blocklength (FBL) regime is implemented to meet the strict
URLLC requirements. Consequently, Shannon’s capacity for-
mula cannot be applied for URLLC communication model to
capture the transmission data rate and decoding error prob-
ability effectively since it is designed under the assumption
of infinite blocklength (iFBL). According to [26], [27], the
achievable rate of URLLC user u over SC k in FBL regime
for a quasi-static flat fading channel can be approximated as

R(k)
u (t) =WU[log2(1 + γ(k)u (t))− Φ(k)

u (t)], (6)

where Φ
(k)
u (t) =

√
V

(k)
u (t)
DuWU

Q−1(εu)
ln 2 , εu is the decoding error prob-

ability (DEP) which can be used to evaluate the transmission
reliability, Du is the transmission latency threshold, Q−1(x)

is the inverse of the Gaussian Q-function, and V (k)
u (t) is the

channel dispersion which is given by

V (k)
u (t) = 1−

[
1 + γ(k)u (t)

]−2

≈ 1. (7)

Here, the approximation is very tight when γku(t) ≥ 5 dB [27],
[28]. In contrast, V k

u (t) decreases (V
(k)
u (t) < 1) as γ(k)u (t)

gets lower. Thus, by using the approximation V k
u (t) ≈ 1 in low

SNR regime (γ(k)u (t) < 5 dB), we can achieve the lower bound
of the achievable rate in (6). Users’ QoS requirements can be
satisfied if the lower bound is employed for RA optimization.
Therefore, the approximation in (7) can be used for further
analysis. Note that the channel dispersion definition in (7) is
achieved based on the assumption that each user has its perfect
channel state information1 (CSI), such that the packet error
occurs due to the noise instance only [4], [28].

Remark 1. For short-packet transmission, the packet size
can influence the latency and the decoding error probability
(reliability). Considering the achievable rate in [packets/s], the
packet size-latency and packet size-reliability relations can be,
respectively, mathematically determined based on (6) as

Du =
{
Q−1(εu)/

[√
WU

(
Cu(t)− nuR

(k)
u (t)/WU

)
ln 2

]}2

,

(8)

1CSI-related signaling exchange between BS and users may yield a latency
increase. The effect of this scenario can be analyzed by addressing the problem
of latency minimization which is beyond the scope of this paper.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3476083

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

εu = Q
((
Cu(t)− nuR

(k)
u (t)/WU

)
ln 2

√
DuWU

)
, (9)

where Cu(t) = log2(1 + γ
(k)
u (t)) and nu denotes the packet

size. One can observe from (8) and (9) that the increase in
the value of the packet size leads to higher latency Du and
lower reliability (i.e., higher decoding error probability εu).

For URLLC service, we assume that each URLLC user tries
to upload one packet over one SC in each TS. To analyze the
URLLC requirements, we transform them into an SNR con-
straint, as discussed in [27], where a target SNR threshold is
defined based on the transmission latency threshold Du and the
decoding error probability εu. Thus, the target SNR threshold
for URLLC user u that satisfies the URLLC requirements (i.e.,
Du and εu) can be derived based on (6) as [27]

γtaru = 2
nu

DuWU
+

Q−1(εu)

ln 2
√

DuWU − 1, (10)

where nu is the packet size. This demand yields

(C3) : c(k)u (t)γ(k)u (t) ≥ γtaru , ∀k ∈ K. (11)

2) eMBB Communication: Regarding the transmission of
eMBB user e over SC k in KE, e.g., c(k)e (t) = 1. Due to its
order in the NOMA-based decoding process, its SINR denoted
as γ(k)e (t), as in (4) with noting that σ2

k = FN0WE. Then,
the achievable rate of eMBB user e is given by

R(k)
e (t) =WE log2

[
1 + γ(k)e (t)

]
. (12)

Herein, one addresses a predetermined target transmission rate,
Rtar

e , for each eMBB user e in every TS as

(C4) :
∑
k∈K

c(k)e (t)R(k)
e (t) ≥ Rtar

e , ∀e ∈ ME. (13)

3) mMTC Communication: Based on the NOMA transmis-
sion strategy mentioned earlier in Section II-A2, the mMTC
users can select a free SC or the one occupied by either
eMBB or URLLC user. When c

(k)
m (t) = 1, mMTC user m

utilizes SC k in TS t. In such case, the SINR of this user,
denoted as γ(k)m (t), can be calculated as in (4) with noting that
σ2
k = FN0Wk. In mMTC communication, SPC is utilized to

exchange small packets. Consequently, the achievable rate of
mMTC user m over SC k in FBL regime for a quasi-static
flat fading channel can be approximated as [26], [27]

R(k)
m (t) =Wk

[
log2(1 + γ(k)m (t))− Φ(k)

m (t)
]
, (14)

whose parameters are defined similarly in (6). From (14), we
define a target SINR threshold for mMTC user m to satisfy
its DEP and latency requirements (i.e., εm and Dm) when
transmitting one packet over one SC in each TS as [27]

γtarm = 2
nm

DmWk
+

Q−1(εm)

ln 2
√

DmWk − 1, (15)

where nm is the packet size. This demand yields

(C5) : c(k)m (t)γ(k)m (t) ≥ γtarm , ∀k ∈ K. (16)

It is noteworthy that the successful packet transmission of
mMTC users is considered based on SINR condition in (16)
and the NOMA decoding order mentioned in Section II-A2.

C. Energy Efficiency Maximization Problem
In this paper, we aim to develop an effective SC and power

allocation (PA) strategy based on users’ channel conditions
and requirements to minimize the co-channel interference to
maximize the long-term average EE while ensuring the specific
QoS requirements from different services 2. To guarantee
the transmission rate requirement while reducing the power
consumption for the system, we define an EE factor as

ζ(t) = Rtot(t)/
(
PTx(t) +MPc

)
, (17)

where Rtot(t) =
∑

k∈K
∑

z∈M c
(k)
z (t)R

(k)
z (t), PTx(t) =∑

k∈K
∑

z∈M P
(k)
z (t), and Pc denotes the circuit power con-

sumption. Then, the EE-Max problem can be stated as
max
c,P

Et [ζ(t)] (18a)

s.t. (C1)− (C5), (18b)
(C6) :

∑
k∈K

P (k)
z (t) ≤ Pmax

z , ∀(z, t), (18c)

where c and P denote the SC assignment and power control
variables and (C6) stands for the user power budget.

Remark 2. Problem (18) is a mixed-integer non-linear pro-
gramming (MINLP), well-known as NP-hard, which is difficult
to solve. In particular, the challenges of solving this problem
include the coupling between binary variables c and continu-
ous ones P. Moreover, the complicating H-NOMA-based SINR
formula of users as given in (4) has raised another extremely
critical issue to define the solution of this problem.

III. PROPOSED JOINT OPTIMIZATION AND COOPERATIVE
MADDQN METHOD

In this section, we present the proposed joint optimization
and MADRL method to solve (18), where a cooperative
MADDQN (CMADDQN) scheme is built for SC assignment
based on which a dynamic PA (DPA) for every SC setting is
proposed to maximize the EE in (18). To do this, one assumes
that the perfect CSI is available at the BS.

A. Power Allocation for Given SC Assignment
Before presenting the CMADDQN-based SC assignment,

we first introduce our proposed PA solution for a given
SC assignment in this section. In particular, for a fixed SC
allocation, problem (18) in TS t can be expressed as

max
P

ζ(t) s.t. (C1)− (C6), (19)

where P(t) = {P (k)
z (t)}∀(z,k). To tackle the fraction form of

ζ(t) in (19), an efficient method well-known as the Dinkelbach
algorithm [29], [30] can be employed. Following this, an
iterative approach can be developed to obtain the optimal
solution of (19) by dealing with a sequence of parameterized
subtracting-form problems. Let us state the parameterized
problem for a given value of ζ as follows:

max
P

Rtot(t)− ζPTx(t) s.t. C1)− (C6). (20)

2To further analyze the distinct objectives of the URLLC and mMTC
services, more specific optimization problems such as minimizing latency or
decoding error probability, and maximizing successful packet rate or number
of successfully served mMTC users can be investigated, which are interesting
for future works.
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Then, Theorem 1 in [30] suggests to iteratively solve problem
(20) for a certain value of ζ and adjusting ζ until an optimal
ζ⋆ ≥ 0 satisfying Rtot(t) = ζ⋆

(
PTx(t) +MPc

)
is found.

To address the problem (20), we first provide the following
valuable remark based on (4) and the uplink NOMA transmis-
sion mechanism discussed in Section II-A2.

Remark 3. The SINR in (4) demonstrates that there is no
interference suffering the decoding process due to user z(k)

Zk .

Moreover, once the power of all users in set
{
z
(k)
ℓ+1, ..., z

(k)

Zk

}
is

defined, the Tx-power of user z(k)ℓ , i.e., P (k)

z
(k)
ℓ

, can be optimized
without coupling to other users. Hence, the Tx-power can be
determined in the reverse order of the coding sequence.

Thanks to Remark 3, an efficient approach to solving the
problem (20) will be proposed in the following. The concept
of this solution is to decompose problem (20) into a number
of sub-problems each of which aims to obtain the Tx-power
of a user separately. Then, the sub-problems are solved in the
order suggested in Remark 3. Particularly, the PA strategy for
all types of users is described as follows:

• Each mMTC user will have its Tx-power optimized only
when the power of all other users accessing the same SC
with weaker channel are determined.

• For eMBB users, the Tx-power of an eMBB user over
all SCs assigned to it will be optimized jointly when all
mMTC users using the same SCs with weaker channel
gains have their power defined.

• For URLLC users, they will be the last ones having their
power optimized over all SCs that they are assigned.

Next, one presents the sub-problems and their solution corre-
sponding to eMBB, mMTC, and URLLC services.

1) Power Allocation for mMTC Users: Considering the
user set accessing SC k, Z(k)(t) defined in Section II-A2,
one assumes that user m ≡ z

(k)
ℓ is an mMTC user. When

{P (k)

z
(k)
i

}Zk

i=ℓ+1 are determined, this user’s Tx-power, i.e., P (k)
m ,

will be optimized by solving the following sub-problem,

max
p

Wk

[
log2

(
1 +A(k)

m p
)
− Φ(k)

m

]
− ζp (21a)

s.t. P tar
m ≤ p ≤ Pmax

m , (21b)

where P tar
m = γtarm /A

(k)
m , p is the Tx-power variable, A(k)

m

represents the NOMA-based channel gain over interference
and noise ratio (NOMA-CINR) of user m, i.e.,

A(k)
m =

∣∣∣h(k)m (t)
∣∣∣2/[ Zk∑

j=ℓ+1

∣∣h(k)
z
(k)
j

(t)
∣∣2P (k)

z
(k)
j

+ σ2
k

]
. (22)

Note that constraint P tar
m ≤ p is equivalent to (C5) for this

user. The solution of the problem (21) is determined in the
following proposition.

Proposition 1. The Tx-power of mMTC user m over SC k is
the solution of (21) which is given as

P (k)⋆
m = min

(
max

(
Wk

ζ ln 2
− 1

A
(k)
m

, P tar
m

)
, Pmax

m

)
. (23)

Proof: The proof can be described simply as follows.
Let y(k)m (p) = Wk

[
log2

(
1 +A

(k)
m p

)
− Φm(k)

]
− ζp. Then,

problem (21) is convex since y
(k)
m (p) is concave and the

feasible set is convex. With feasible-set regardless, we first
derive the derivative of y(k)m (p) concerning the variable p as

∂y(k)m (p)/∂p =WkA
(k)
m /

[(
1 +A(k)

m p
)
ln 2

]
− ζ. (24)

From (24), the maximum point of the objective function can
be defined by resolving the equation ∂y(k)m (p)/∂p = 0 as

p̂ =Wk/(ζ ln 2)− 1/A(k)
m . (25)

Then, by taking the feasible set into account, the optimal
solution of problem (21) can be defined as given in (23).

2) Power Allocation for eMBB Users: Considering the
transmission of eMBB user e ∈ ME. Assume that user e
is assigned n SCs named as {ke1, ..., ken}, and it is denoted
as user z

(ke
j )

ℓ ∈ Z(ke
j )(t) over SC kej (1 ≤ j ≤ n and

1 ≤ ℓ ≤ Zke
j ), where Z(ke

j )(t) =
{
z
(ke

j )

1 , ..., z
(ke

j )

Z
ke
j

}
denotes

the user set accessing SC kej at TS t arranged in the decoding
order explained in Section II-A2. Then, if all mMTC users
with weaker channel gains on {ke1, ..., ken} have their power
defined, the Tx-power over all SCs of eMBB user e can be
determined as follows. Denote Ae

j be the NOMA-CINR of
eMBB user e over SC kej which is defined similarly as in (22).
Then, the decomposed part of the problem (20) according to
eMBB user e can be stated as

max
Pe

∑
∀j

(
WE log2

(
1 +Ae

jp
e
j

)
− ζpej

)
(26a)

s.t.
∑
∀j

WE log2
(
1 +Ae

jp
e
j

)
≥ Rtar

e , (26b)

∑
∀j

pej ≤ Pmax
e , (26c)

where Pe = [pe1, ..., p
e
n] and pej denotes the Tx-power vari-

able corresponding to eMBB user e over SC kej . As can
be observed, this problem is convex and hence its optimal
solution can be obtained by employing the duality method. In
particular, the solution approach can begin with describing the
Lagrangian of (26) as

L(Pe, κ, λ) =
∑
∀j

[
(1 + κ)WE log2

(
1 +Ae

jp
e
j

)
− (ζ + λ)pej

]
−κRtar

e + λPmax
e , (27)

where κ and λ are the Lagrangian multipliers of (26b) and
(26c), respectively. Then, the dual function can be defined as

g(κ, λ) = max
Pb

L(Pb, κ, λ). (28)

Proposition 2. The solution of the right-hand-side (RHS) of
(28) is defined as

pbj = max
( (1 + κ)WE

(λ+ ζ) ln 2
− 1

Ab
j

, 0
)
. (29)

Proof: The proof of this proposition can be obtained
easily by solving the equation ∂L(Pb, κ, λ)/∂pbj = 0.

To determine κ and λ, the dual problem can be written as

max
κ,λ

g(κ, λ) s.t. κ, λ ≥ 0. (30)

Since (26) is convex, the dual-gap corresponding to this
problem is zero [31]. In the following, one will describe a
searching approach to define the optimal solution of the dual
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problem by using the standard sub-gradient method, where the
dual variable κ and λ can be iteratively updated as

κ(v+1)=
[
κ(v)−δ(v)

(∑
∀j

WE log2(1 +Ab
jp

b
j)−Rtar

e

)]+
, (31)

and λ(v+1) =
[
λ(v) + δ(v)

(∑
∀j

pej − Pmax
e

)]+
, (32)

where the suffix (v) represents the iteration index, δ(v) is the
step size, and [x]+= max(0, x). This sub-gradient method
guarantees the convergence if the step-size δ(v) is chosen
appropriately so that δ(v)v→∞−→0, e.g., δ(v) = 1/

√
v [31], [32].

3) Power Allocation for URLLC Users: Similarly, one
assumes that there are l SCs assigned to URLLC user u
denoted as {ku1 , ..., kul }. If the power of all mMTC users on
SCs {ku1 , ..., kul } are determined, the Tx-power over all SCs
can be optimized by solving the following

max
Pu

l∑
j=1

(
WU

(
log2

(
1 +Au

j p
u
j

)
− Φu

j

)
− ζpuj

)
(33a)

s.t. puj ≥ γtaru /Au
j , ∀j (33b)

l∑
j=1

puj ≤ Pmax
u , (33c)

where γtaru is defined in (10), Φu
j =

√
V u
j

DuWU

Q−1(εuj )
ln 2 , V u

j =

1−
(
1 +Au

j p
u
j

)−2 ≈ 1 [33], Pu = [pu1 , ..., p
e
l ] and puj denotes

the Tx-power of URLLC user u over SC kuj . Similar to the
results obtained in solving problem (26), the Tx-power of
URLLC user u over SCs {ku1 , ..., kul }, can be defined as

puj = max
(
WU/

[
(ψ + ζ) ln 2

]
− 1/Au

j , γ
tar
u /Au

j

)
,∀j, (34)

where ψ can be iteratively updated as follows:

ψ[v+1] =
[
ψ[v] + δ[v]

(∑
∀j

puj − Pmax
u

)]+
. (35)

4) Proposed Power Allocation Algorithm for Given SC
Assignment: Thanks to the Dinkelbach solution approach and
the PA mechanism given above, one proposes an energy-
efficiency power control algorithm which is summarized in
Algorithm 1. In particular, once the SC Assignment is defined,
Algorithm 1 can be implemented at the BS to determine
the Tx-power of all users in the network. For the user set
employing the same SC k, arranged in the decoding order as
Z(k)(t) =

{
z
(k)
1 , . . . , z

(k)

Zk

}
, their Tx-power is dictated by the

observation detailed in Remark 3. Specifically, considering that
user z(k)

Zk , the final one to have its message decoded, operates
without interference, its Tx-power is initially calculated using
(23) if z(k)

Zk ∈ MM, (29) if z(k)
Zk ∈ ME, or (34) if z(k)

Zk ∈ MU.
Subsequently, the PA for the next user z(k)

Zk−1
follows a similar

procedure, where the messages of users with defined power,
i.e., z(k)

Zk , are treated as noise. This process iterates until all
users have their power levels determined.

B. CMADDQN-based SC Assignment Strategy

We assume that each eMBB or URLLC user is preassigned
several SCs for its transmissions to guarantee its high re-
quirements. Meanwhile, mMTC users can use SCs freely to
reduce access latency and increase the number of active users
[16]. However, this scenario can lead to severe co-channel
interference when multiple users occupy the same SC. To

Algorithm 1 ENERGY-EFFICIENCY POWER ALLOCATION ALGORITHM

1: Initialize v = 0, ζ(0) = 0, step size δ, the Lagrangian multipliers
κ, λ, and ψ, χi = 1 (1 ≤ i ≤ 4), and choose predetermined
tolerate ϕ.

2: repeat
3: for k = 1, . . . ,K do
4: Determine the number of users accessing SC k, i.e., Zk.
5: for z = Zk, . . . , 1 do
6: if z ∈ MM then
7: Determine P (k)

z as in (23).
8: end if
9: if z ∈ ME then

10: Determine P (k)
z as in (29).

11: end if
12: if z ∈ MU then
13: Determine P (k)

z as in (34).
14: end if
15: end for
16: end for
17: Update κ(v+1), λ(v+1), and ψ(v+1) as in (31), (32), and (35),

respectively.
18: Update ζ(v+1) = Rtot(t)

PTx(t)+MPc
.

19: Update χ1 = |κ(v+1) − κ(v)|, χ2 = |λ(v+1) − λ(v)|, χ3 =
|ψ(v+1) − ψ(v)|, and χ4 = |ζ(v+1) − ζ(v)|.

20: Set v := v + 1.
21: until χi ≤ ϕ.

overcome this issue, we investigate a CMADDQN-based DRL
method to help mMTC users quickly select the best SCs for
interference mitigation. By using the CMADDQN scheme,
each mMTC user is mapped to a learning agent and all MM

agents are centralized at the BS to exploit full information
on users available at the BS [34]. This facilitates the learning
process and helps users select the most appropriate SC for
their transmissions to maximize the overall network EE.

1) Optimization-based DRL Approach: We denote S, A,
and R as the set of states, actions, and rewards, respectively.
At the beginning of each TS t, an agent observes the current
state s(t) ∈ S to take an action a(t) ∈ A. Performing the
action a(t) can return a reward/penalty from the environment
and discover the next state s(t + 1). Thanks to the feedback
from the environment, the agent can update/strengthen its
decision policy. The process can be operated continuously until
an optimal policy can be obtained at the agent. Given this
context, the definitions of state, action, and reward according
to each agent m ∈ MM are described as follows.

• State: The state of agent m in TS t, sm(t) ∈ Sm with
cardinality of K(1+MM), is defined as the combination
of its current channel gains over K SCs and the previous
SC selection status of all MM mMTC users, i.e.,

sm(t) = {gm(t), c(t− 1)} , (36)

where gm(t) = {g(1)m (t), . . . , g
(K)
m (t)}, c(t − 1) =

{c1(t− 1), . . . , cMM
(t− 1)}, and cm(t− 1) = {c(1)m (t−

1), . . . , c
(K)
m (t− 1)}.

• Action: Since each mMTC user m can use only one SC
every TS, the action of agent m in TS t, am(t) ∈ Am,
is defined as its current SC selection which is given as

am(t) ∈ Am = {1, . . . ,K} . (37)

As can be observed, the action space size of agent m
is determined as |Am| = K. For the action selection
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strategy, the ϵ-greedy policy can be exploited, where
the random action is taken with the probability of ϵ
and the action with the highest Q-value is employed
for the remaining probability. In particular, the action
am(t) is selected based on the ϵ-greedy policy can be
mathematically expressed as

am(t) =

{
random action, with prob. of ϵ,

amax
m , with prob. of 1− ϵ,

(38)

where, amax
m = arg maxa∈Am

{Q (sm(t), a;θm)},
Q (sm(t), am(t);θm) is the Q-value of (am(t), sm(t)).

• Reward: In MADRL frameworks, both centralized and
decentralized reward structures can be employed for
building learning models. Specifically, MADRL methods
with centralized rewards provide a common reward for
all agents, whereas each agent can receive a distinct
reward in MADRL methods with decentralized rewards
[35]. However, using decentralized rewards can lead to
the selfish behavior of agents, where they may compete
with each other to maximize their own rewards. This
degrades the global performance. To acreess this, the
same reward can be allocated to all agents to achieve a
common objective [36]. This paper aims to optimize the
average network EE while fulfilling the heterogeneous
QoS requirements of all users. Therefore, we design a
CMADDQN algorithm for SC assignment with central-
ized rewards to optimize the above common objective.
Specifically, we use the achieved EE in (17) to define
the immediate common reward for all agents. Thus, the
reward function in TS t, denoted by r(t), is defined as

r(t) =

{
ζ(t), if all constraints are satisfied,
0, otherwise. (39)

Based on the actions and rewards obtained from trials, each
agent m builds its own DDQN model consisting of two deep
neural networks (DNNs), namely online and target networks
corresponding to weight matrices θm and θ′

m, respectively.
Herein, the online network is used to select an action. Mean-
while, the target network is applied to evaluate the online-
network-based action. Thus, the objective is to reduce the loss
function which is formulated as [25]

L(θm) = [ym(t)−Qm (sm(t), am(t);θm)]
2
, (40)

where ym(t) denotes the target Q-value determined as

ym(t)=r(t)+γQm

(
sm(t+1), arg max

a∈Am

Qm(t+1);θ′
m

)
, (41)

where γ denotes the discount factor, Qm(t + 1) =
Qm (sm(t+ 1), a;θm). It is noteworthy from (41)
that in DDQN model, the action selection, i.e.,
arg maxa∈Am

Qm(t+ 1), and action evaluation, i.e.,
Qm(sm(t+ 1), arg maxa∈Am

Qm(t+ 1);θ′
m), are decoupled

using two different Q-value function to avoid the conventional
overestimation [37].

2) Joint Optimization and Cooperative MADDQN Algo-
rithm: Based on the above discussions, we propose a joint op-
timization and cooperative MADDQN method as in Algorithm
2, so-called JOCDDQN, to address the problem (16). The
proposed method is the combination of the CMADDQN-based

Algorithm 2 JOCDDQN ALGORITHM FOR MAXIMIZING EE

1: Initialize the weight matrices of the online and target networks,
i.e., θm and θ′

m, ∀m ∈ MM.
2: for i = 1, . . . , Ep do
3: Initialize the state sm(t), ∀m.
4: for t = 1, . . . , T do
5: All agents take an action (SC selection) am(t) (∀m)

following the ε-greedy policy in (38).
6: Run Algorithm 1 to achieve the optimal Tx-power for all

users.
7: The BS broadcasts the SC selection and the PA to users.
8: All agents observe the reward r(t) in (39) and move to the

next states sm(t+ 1) (∀m).
9: for m = 1, . . . ,MM do

10: Store an experience tuple
(sm(t), am(t), r(t), sm(t+ 1)) to the memory of
agent m.

11: Randomly sample a mini-batch of experiences from the
memory to train the online network.

12: Update θm by using gradient descent to minimize the
loss function in (40).

13: if t%F = 0 then
14: Set θ′

m = θm.
15: end if
16: end for
17: end for
18: end for

SC assignment solution presented in Section III-B and the dy-
namic PA approach proposed in Algorithm 1. Specifically, the
JOCDDQN method with the integration of the CMADDQN-
based SC assignment and PA algorithms, shown in Algorithm
2, can be depicted through the following main steps:

• Step 1 - Input collection: The input information (state)
on channel gains and SCs status are collected.

• Step 2 - CMADDQN-based SC Assignment: Based
on the input information, the CMADDQN is applied for
SC allocation, where each agent m mapping to mMTC
user m observes its current state sm(t) ∈ Sm and
takes an action of SC selection am(t) ∈ Am. Thus,
the actions of all agents can be expressed as a vector
a(t) = {a1(t), . . . , am(t), . . . , aMM

(t)}.
• Step 3 - Input PA algorithm: The output of the CMAD-

DQN algorithm, i.e., a(t), and the input information are
then fed into the PA algorithm in Algorithm 1.

• Step 4 - PA decision: Using the input provided, the PA
method in Algorithm 1 is then utilized to achieve optimal
Tx-power for all users. The output power vector for all
users is indicated as P (t) =

{
P u(t),P e(t), P

am(t)
m (t)

}
∀(u ∈ MF, e ∈ ME,m ∈ MM). Herein, P am(t)

m (t) is
the power of mMTC user m over the SC identified from
the selected action am(t); P u(t) = {Pu

1 (t), . . . , P
u
l (t)}

and P e(t) = {P e
1 (t), . . . , P

e
n(t)} denote the power vector

allocated to the URLLC user u and the eMBB user e over
preassigned SCs, respectively, as defined in Section III-A.

• Step 5 - Feedback: Based on the agents’ selected
actions and optimized power allocated to users, the EE
is determined using (17) and agent m observes the
environment to receive a reward r(t) and moves to a new
state sm(t+ 1). Thus, the output of the PA algorithm is
utilized to identify the reward of the learning model in
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Fig. 2: Flowchart of Algorithm 2.

the CMADDQN algorithm.
• Step 6 - Train and update the learning model of

CMADDQN scheme: Agent m then stores an experience
tuple of (sm(t), am(t), r(t), sm(t+ 1)) into its experi-
ence replay memory, and a minibatch of experiences
is sampled for training the online network. The weight
matrix of the online network θm is then updated to
minimize the loss function in (40) by using the stochastic
gradient method. After a predetermined number of TSs
(F ), the weight matrix of the target network θ′

m is
updated by copying θm.

• Step 7 - Iteration: At the next TSs, steps 1-6 are repeated
until reaching a predefined number of episodes (NoE)
guaranteeing the algorithm’s convergence.

The single-episode flowchart of Algorithm 2 is provided in
Fig. 2 showing the implementation steps and the integration
of the CMADDQN and PA algorithms into this algorithm.

IV. PROPOSED FULL DISTRIBUTED REINFORCEMENT
LEARNING METHOD AND FURTHER DISCUSSION

In this section, we present another DRL-based solution to
address (18) by developing a full MADDQN method, namely
FDDQN, in a distributed manner to reduce the information
exchange between the BS and users. The FDDQN method is
designed to conduct both SC assignment and PA.

A. FDDQN Method

Employing FDDQN method, all users are considered as
learning agents to find the optimal policies for selecting both
SC and Tx-power. In addition, the multi-level quantization
strategy is exploited to deal with the continuous characteristic
of power variables in the similar approach introduced in [24],

[25]. Specifically, we investigate a scenario where mMTC
users build their own DDQN model to learn how to choose
the best SC and power level for their transmissions from the
available SCs and TPLs sets. Furthermore, eMBB and URLLC
users are also learning agents to select suitable TPLs for their
communication over preassigned orthogonal SCs.

1) MADDQN-based DRL Model: Given the above context,
the states, actions, and rewards of agents according to eMBB,
mMTC, and URLLC users are defined as follows:

• State: Considering a TS t, the state definitions of agents
according to user z ∈ ME∪MU and user m ∈ MM are,
respectively, expressed as

sz(t) = {gz(t),pz(t− 1)} , (42)

sm(t) = {gm(t), cm(t− 1),pm(t− 1)} , (43)

where gz(t) =
{
g
(kz

1)
z (t), . . . , g

(kz
b )

z (t)
}

(b = n if
z ∈ ME and b = l if z ∈ MU) is the chan-
nel gain vector of user z over assigned SCs, pz(t −
1) =

{
P

(kz
1)

z (t− 1), . . . , P
(kz

b )
z (t− 1)

}
denotes the

TPLs selection of user z over assigned SCs, gm(t)
and cm(t − 1) are defined in (36), and pm(t − 1) ={
P

(1)
m (t− 1), . . . , P

(K)
m (t− 1)

}
.

• Action: In TS t, the actions of agents according to user
z ∈ ME ∪ MU, az(t), and user m ∈ MM, am(t), are
defined as the power selection of user z over n granted
SCs, and the SC and power selection of mMTC user
m, respectively. Thus, the actions az(t) and am(t) are,
respectively, written by

az(t) =
{
P

(kz
1)

z (t), . . . , P
(kz

b )
z (t)

}
∈ Âz, (44)

am(t) ∈ Âm = {1, . . . , kl, . . . ,KL} , (45)

where P (k)
z (t) ∈ P , P = {P1, . . . , PL} is the available

L TPLs set, am(t) = kl indicates that mMTC user m
selects SC k and TPL l in TS t. Thus, the action space
size of agents z and m are

∣∣∣Âz

∣∣∣ = Lb and
∣∣∣Âm

∣∣∣ = KL.
• Reward: Similar to the JOCDDQN method, the reward

function in TS t for the FDDQN approach is also deter-
mined based on the achieved EE as in (39).

2) Full MA Double Deep Q-Network Algorithm: The FD-
DQN method requires each agent to create its own DDQN
model following the same process as described in Section
III-B. The details of the proposed FDDQN algorithm are
summarized in Algorithm 3. Particularly, at TS t, every agent
z ∈ M assesses its present state sz(t) and makes actions
of both SC and power level selections, denoted as az(t).
Subsequently, the agent observes the environment, receives
a reward r(t), and transitions to a new state sz(t + 1). It
then records this experience, trains its online network, and
adjusts the weight matrices of both the online and target
networks following a procedure akin to Algorithm 2. This
process repeats at TS t + 1, involving another round of SC
and power level selection. Iteration continues until reaching a
predetermined number of episodes, ensuring the convergence
of the algorithm.
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Algorithm 3 FDDQN ALGORITHM FOR MAXIMIZING EE

1: Initialize the weight matrices of the online and target networks,
i.e., θz and θ′

z , ∀z ∈ M.
2: for i = 1, . . . , Ep do
3: Initialize the state sz(t), ∀z.
4: for t = 1, . . . , T do
5: All agents take an action az(t), ∀z, following the ε-greedy

policy in (38), where az(t) is defined in (44) if z ∈ ME ∪
MU and in (45) if z ∈ MM.

6: All agents observe the reward r(t) in (39) and move to the
next states sz(t+ 1) (∀z).

7: for z = 1, . . . ,M do
8: Perform steps of storing experience, training the online

network, and updating θz and θ′
z , according to agent z

similar to steps 10− 15 in Algorithm 2.
9: end for

10: end for
11: end for

B. Complexity Analysis

1) FDDQN Algorithm: Let H , Nh, and Is be the number of
training layers, the number of neurons in layer h, and the size
of the input layer. For each TS, the computational complexity
of FDDQN algorithm in algorithm 3 can be calculated by

CTS = O (X), where X = IsN1 +
H−1∑
h=1

NhNh+1. For the

training phase with M agents, E episodes, and T TSs, the
computational complexity of the algorithm is given by

CFDDQN = O (METX) . (46)

2) JOCDDQN Algorithm: The complexity of the JOCD-
DQN algorithm in Algorithm 2 consists of the complexity
of the DPA algorithm in Algorithm 1 and the CMADDQN
scheme. For the DPA algorithm, its complexity is given by

CDPA = O(I(MM + nME + lMU)), (47)

where I denotes the number of iterations to get convergence.
For CMADDQN scheme, its complexity is determined simi-
larly to the one of the FDDQN algorithm as

CCMADDQN = CFDDQN = O(METX). (48)

Thus, the JOCDDQN-Alg. complexity can be calculated as

CJOCDDQN = CDPACCDDQN. (49)

C. Signaling Overhead Analysis

Signaling overhead (SO) refers to the information-bit num-
ber required to transmit channel status data, subcarrier indi-
cators (SCI), and Tx-power of a specific user over an SC
[40]. Factors such as the total number of users, SCs, and
the exchange of states and rewards between agents and the
environment also influence the SO. Higher SO leads to greater
computational complexity and processing time. According to
[40], transmitting a continuous value for channel status, data
rate, and reward requires 16 bits, while 4 bits are used for SCI,
Tx-power, and other related parameters. Table II compares
the SO of the proposed methods with several related works
[21], [38], [39], where MUE = MU +ME. In particular, the
related works have high SOs due to the need for feedback,
including data rates, rewards, power sets, pilot signals, CSI,

and interference thresholds (IT). The proposed JOCDDQN
method’s SO stems from the pilot signals used for channel
estimation and feedback of the SCI and Tx-powers from the
BS to users. For the proposed FDDQN method, the overhead
is based on feedback related to CSI, rewards, and power sets
from the BS to users. Unlike the works [21], [39], which
assume fixed Tx-power for high-demand users (i.e., URLLC
and eMBB users), we consider dynamic Tx-power for all users
to optimize network EE, leading to additional SO.

D. Convergence Discussion
This part provides a discussion regarding the convergence

of the proposed learning methods. In particular, the learning
mechanisms in the JOCDDQN and FDDQN methods are
built based on the DDQN model which combines Q-learning
and neural networks (NNs). Therefore, their convergence
properties can be described by considering the convergence
conditions of the Q-learning and NNs’ possibility of effec-
tively approximating the non-linear Q-values [41]. Firstly,
the convergence constraints of the Q-learning algorithm are
expressed as [42], [43]

lim
T→∞

T∑
t=1

αt = +∞ & lim
T→∞

T∑
t=1

α2
t < +∞, (50)

where 0 ≤ α ≤ 1 denotes the learning rate. The conditions
in (50) indicate that it is necessary to progressively reduce
the learning rate during the training process to ensure the
algorithm’s convergence. Secondly, the works in [43], [44]
showed that NNs can approximate any non-linear continuous
functions. Given the above discussions, the proposed methods
can achieve the convergence status.

E. Resource Allocation under Imperfect CSI and SIC
This section delves into adapting our proposed SC and PA

strategies for scenarios involving imperfect CSI (iCSI) and
imperfect SIC (iSIC).

1) Imperfect CSI Implementation: Under iCSI, the channel
coefficient h(k)z (t) of user z ∈ M can be estimated as

ĥ(k)z (t) = h(k)z (t) + η, (51)

where ĥ
(k)
z (t) and h

(k)
z (t) denote the estimated and true

channel coefficients, respectively. In addition, η ∼ CN (0, σ2
e)

indicates the estimated error, which is a random variable
approximated by a Gaussian distribution with zero mean and
variance σ2

e . To assess the effect of iCSI, we consider a
scenario as follows.

• For the JOCDDQN method with iCSI, the BS employs
the estimated channel based on iCSI to formulate the
state sm(t) in (36) and conduct the PA for all users in
Algorithm 1. The users then use the allocated Tx-power
to transmit their messages over the true channel. Subse-
quently, the BS calculates the obtained EE to determine
the reward for the learning process.

• For the FDDQN method with iCSI, a similar approach
can be applied. In particular, the iCSI-based estimated
channel is used for creating the agent state in (42) and
(43) and actions of SC and power level selection. After
that, users employ the selected Tx-power to communicate
with the BS over the true channel and receive feedback.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3476083

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

TABLE II: Quantitative Signaling Overhead Comparison

References Optimization Method Signalling Overhead

[21] Decentralized MADRL 16MM︸ ︷︷ ︸
Data rates

+ 16︸︷︷︸
Reward

+ 16︸︷︷︸
PS

[38] Conventional 2︸︷︷︸
Pilot

+4MUE︸ ︷︷ ︸
Power

+16MUE︸ ︷︷ ︸
CSI

+ 4︸︷︷︸
IT

[39] Decentralized MADRL 16KMM︸ ︷︷ ︸
CSI

+ 16︸︷︷︸
Reward

Proposed JOCDDQN Centralized joint optimization and MADRL 4M︸︷︷︸
Pilot

+ 4M︸︷︷︸
SCI

+ 4M︸︷︷︸
Power

Proposed FDDQN Decentralized MADRL 16KM︸ ︷︷ ︸
CSI

+ 16︸︷︷︸
Reward

+ 16︸︷︷︸
PS

2) Imperfect SIC Solution: Given this context, the SINR in
(4) is rewritten as

γ
(k)

z
(k)
ℓ

(t) =
Y(k)

z
(k)
ℓ

(t)

ℓ−1∑
j=1

ψY(k)

z
(k)
j

(t) +
Zk∑

j=ℓ+1

Y(k)

z
(k)
j

(t) + σ2
k

, (52)

where 0 ≤ ψ ≤ 1 denotes the imperfect SIC factor, where
higher values of ψ implies larger interference; and Y(k)

z (t) =

P
(k)
z (t)

∣∣∣h(k)z (t)
∣∣∣2. In Section III-A, we propose a PA method

under perfect SIC (pSIC), where the residual interference∑ℓ−1
j=1 ψY

(k)

z
(k)
j

(t) is perfectly removed to decode the message

of user z(k)ℓ . However, the presence of this component in the
case of iSIC makes the problem (18) become more challenging
to solve due to the non-convex log term in the achievable rate.
To overcome this issue, we introduce a new PA approach using
a loop method as follows.

To tackle the residual interference component in (52), we

define an initial power value set
{
P

(0)

z
(k)
1

, . . . , P
(0)

z
(k)
ℓ−1

}
for this

term and treat it as noise to determine the Tx-power for user
z
(k)
ℓ . After that, the PA approach presented in Section III-A

can be utilized to calculate the Tx-power P (1)

z
(k)
ℓ

for all users.

The power set is then updated as
{
P

(0)

z
(k)
1

, . . . , P
(0)

z
(k)
ℓ−1

}
={

P
(1)

z
(k)
1

, . . . , P
(1)

z
(k)
ℓ−1

}
to initiate another loop. This process

continues until reaching a predetermined number of loops
guaranteeing optimal PA for all users. To assess the con-
vergence of this method, simulation results across varying
numbers of loops are provided in Fig. 11 of Section V.

V. SIMULATION RESULTS

This section provides the simulation results to evaluate our
proposed algorithms’ performance. The DDQN model consists
of three fully-connected hidden layers including 256, 128, and
64 neurons. The experimental parameters are provided in Table
III. To investigate the channel conditions, we generate different
Rician channel realizations randomly for all users at each time-
slot during the training and testing phases. Here, we investigate
the behavior and the performance of our proposed algorithms
(i.e., JOCDDQN and FDDQN) as well as the benchmark
methods which are described as follows:

• Fixed Tx-power (FTP): In this scheme, each user trans-
mits their messages with a predetermined Tx-power [11].

Thus, the MADDQN algorithm is applied only for SC
assignment in this case.

• Fixed RA (FRA): This scheme is considered in [21],
where SC and PA for high-demand users (i.e., URLLC
and eMBB users) is fixed, whereas mMTC users can find
the best RA policy based on MADDQN scheme.

• Random SC selection (RSS): The SC assignment is
carried out randomly in this RSS method. Based on this
SC setting, Algorithm 1 is implemented for optimal PA.

Since the hyper-parameters significantly affect the learning
process in the DRL algorithms, we first evaluate the effect of
the learning rate (α) on the convergence performance in terms
of reward in Fig. 3a. Note that this figure only investigates the
convergence behaviour of the FDDQN method versus different
values of α. This figure shows that varying the values of α lead
to distinct convergence behaviours. Specifically, smaller values
of α (i.e., α = 0.0001 and α = 0.00001) cause the algorithm
to converge to lower rewards than the cases α = 0.01 and α =
0.001. Additionally, to further clarify the influence of α on the
system performance, we plot the achieved EE in the testing
phase versus the learning rate across different action space
scenarios (i.e., variations in the number of SCs (K) and TPLs
(L)) in Fig. 3b. The figure indicates that the case of α = 0.001
provides better EE performance than other cases. Moreover,
we can observe from Figs. 3a and 3b that a lower learning
rate can make the agents learn a poor policy leading to low
performance in terms of reward and EE. Conversely, a higher
learning rate accelerates learning but risks rapid convergence
to sub-optimal solutions. Therefore, careful selection of the
learning rate is necessary. Based on the results observed from
Fig. 3, we set the learning rate value as 0.001.

Fig. 4 depicts the convergence behavior of the proposed
approaches (i.e., JOCDDQN and FDDQN) by plotting the
achieved reward versus number of episodes. Furthermore,
different values of the number of TPLs (L) are considered in
this figure. One can observe from Fig. 4 that both JOCDDQN
and FDDQN methods can achieve the convergence status
after a number of learning episodes. More specifically, the
JOCDDQN method obtains higher reward and converges faster
than the FDDQN method. This is because the JOCDDQN
method utilizes the CMADDQN scheme to select only SCs for
users, resulting in a small action space; and applies the DPA
algorithm in Algorithm 1 to attain an optimal PA, leading to
a performance improvement in terms of the achieved reward
and convergence. In contrast, the FDDQN method is designed
by using the power quantization (PQ) method [21], [24] to
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TABLE III: Experimental Parameters

Parameters Value
Cell radius (r) 500 m
Channel model Rician
eMBB and URLLC numerology indices (νE & νU) 1 & 2
Number of SCs (K) 4
Number of URLLC users (MU) 1
Number of eMBB users (ME) 1
Number of mMTC users (MM) 6
Number of SCs assigned to a URLLC/eMBB user 2
eMBB data-rate demand

(
Rtar

e

)
2 bps/Hz

URLLC & mMTC latency threshold (Du & Dm) 1 & 2 ms
URLLC & mMTC reliability threshold (εu & εm) 10−5 & 10−3

Maximum Tx-power 23 dBm
Circuit power consumption (Pc) 0.05 W
Noise figure & PSD (F & N0) 6 dB & -174 dBm/Hz
Packet length (mb) 32 bytes
Number of hidden layers 3
Number of neurons per hidden layers {256, 128, 64}
Learning rate (α) 0.001
Discount factor (γ) 0.9
Optimizer Adam

split the Tx-power into multiple discrete power levels, and
the MADDQN scheme is then applied for SC and power
level selection. This significantly increases the action space
requiring agents to spend more time (episodes) exploring the
environment. Additionally, the PQ method makes it challeng-
ing to obtain an optimal PA policy. Therefore, the FDDQN
method demonstrates inferior learning performance compared
to the JOCDDQN method. Furthermore, Fig. 4 shows that
the FDDQN method can get a higher reward towards the
one achieved by the JOCDDQN method when increasing L.
However, the value of L should be selected carefully since
increasing L makes the action space larger leading to a longer
learning process. Note that the JOCDDQN is not influenced
by the values of L since it does not employ the PQ method.

Fig. 5 shows the variation of EE versus the number of
mMTC users (MM) of different approaches including JOCD-
DQN, FDDQN, RSS, FRA, and FTP. This figure indicates
that lower EE performance for all considered methods can be
observed with the increase in the value of MM due to higher
interference. Moreover, the proposed JOCDDQN and FDDQN
methods outperform other investigated methods in terms of EE
performance when MM increases. In particular, the proposed
JOCDDQN method achieves the best EE performance thanks
to its joint optimization and DRL scheme, whereas the RSS
method gives the worst performance due to the random SC
selection strategy applied in this method. Among the remain-
ing approaches (i.e., FDDQN, FRA, and FTP), the proposed
FDDQN method attains higher EE performance as compared
to others. It can be explained by the fact that the FRA and
FTP methods are built based on some ideal assumptions
leading to their performance degradation. Specifically, the
FRA method fixes the Tx-power of high-demand users (i.e.,
URLLC and eMBB users), whereas the FTP method considers
a communication protocol with fixed Tx-power for all users.

In addition, Fig. 5 also provides the results obtained using
another advanced DRL technique, known as duelling double
deep Q network (D3QN) [45], for further comparative analy-
sis. The D3QN is expected to improve learning efficiency by
applying a duelling architecture to expedite the identification
of important states and optimal actions, as discussed in [21],
[45]. Within Fig. 5, we explore two different applications of
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Fig. 3: Learning rate analysis.
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the D3QN method in the studied context: (i) Joint optimization
and cooperative MA D3QN (JOCD3QN): This scheme utilizes
the D3QN for SC assignment while employing the methodol-
ogy outlined in Algorithm 1 for dynamic PA, similar to the
method proposed in Section III; and (ii) Decentralized full MA
D3QN (FD3QN): The distributed D3QN method is applied
for both SC and PA, mirroring the methodology introduced
in Section IV. Fig. 5 shows that the JOCD3QN and FD3QN
methods yield EE performances comparable to the proposed
JOCDDQN and FDDQN approaches, respectively. However,
it is noted that the former methods exhibit higher complexity
due to the implementation of the duelling architecture.
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Fig. 6 provides the EE performance validation across differ-
ent network sizes with the JOCDDQN method. In this context,
the number of SCs is defined as K = {2, 3, 4, 5}, while the
number of agents (users) is set to N = {6, 12, 20, 30}, corre-
sponding to the user density (UD) values of UD = N/K =
{3, 4, 5, 6}. Fig. 6 shows that the EE performance decreases
as the UD increases. This degradation occurs because a larger
UD implies that N is much greater than K, leading to stronger
interference among users sharing the same SCs. Moreover,
this figure highlights the scalability of our proposed method,
demonstrating its ability to converge and guarantee users’
requirements even in highly overloaded scenarios where the
number of users far exceeds the available SCs. Additionally,
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new agents can be seamlessly integrated into the system by
replicating the parameters of existing trained agents, facili-
tating the generalization of our method. Thus, our proposed
method is well-suited for H-NOMA systems with a large user
base and limited network resources.

Fig. 7 depicts the effect of the maximum Tx-power (Pmax)
on the achieved EE performance of different approaches.
Herein, we consider a wide range of Pmax varying from 15
dBm to 50 dBm. Furthermore, for the power quantization
(PQ) approach utilized in the FDDQN method, we design
a Tx-power level (TPL) set for users’ selection including L
levels. Each power level (Pi) within this set is calculated as
Pi = i × Pmax/L for 1 ≤ i ≤ L. In Fig. 7, the value of L
is set to 3. It is noteworthy that during the training process,
the total Tx-power allocated to users in a time slot (TS) can
exceed the set range of Pmax, as users (URLLC and eMBB)
can utilize multiple subcarriers (SCs). This scenario provides
valuable learning experience for the agents to develop optimal
policies while respecting users’ available power budgets. Fig.
7 demonstrates that the proposed JOCDDQN method can still
bring the best EE performance when Pmax gets larger. In
contrast, the EE performance achieved by the FDDQN, FRA,
and FTP methods is significantly reduced with the increase in
Pmax. This phenomenon occurs since the PQ approach utilized
in these methods leads to higher Tx-power when Pmax scales
up, causing the EE performance loss. Meanwhile, the RSS
method can get higher EE performance than the FDDQN,
FRA, and FTP methods when Pmax becomes much larger.
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Fig. 11: EE of different approaches versus the packet length.

However, its random SC selection makes it difficult to obtain
an optimal solution.

Fig. 8 evaluates the impact of traffic load on the achieved
EE performance of different approaches. The traffic load
reflects users’ SINR or data rate requirements, which increase
with higher demands. In this context, we define the traffic
load sets through the users’ requirements on latency Du,
reliability εu, and data rate Rtar

e as (Du(i), εu(i), R
tar
e (i)),

where 1 ≤ i ≤ 5, Du = {4, 3, 2, 1, 0.5} (ms), εu ={
10−3, 10−4, 10−5, 10−6, 10−7

}
, and Rtar

e = {2, 4, 6, 8, 10}
(bps/Hz). As observed from Fig. 8, when the traffic load gets
higher, the worse EE performance can be observed. In addi-
tion, this figure also indicates that the proposed JOCDDQN
method outperforms other schemes, i.e., the FDDQN, RSS,
FRA, and FTP methods across various traffic load scenarios.

The computational complexity of an algorithm has cru-
cial practical implications that can impact system design
and performance. In particular, high complexity can increase
processing time, leading to greater latency. To clarify this
concern, Table IV provides a convergence time comparison
of various methods. Among the two proposed methods, the
JOCDDQN scheme converges to a larger EE value with
fewer episodes but requires a higher average time per episode
than the FDDQN, due to its smaller action space and power
optimization process. The JOCD3QN method converges to the
similar EE value to the JOCDDQN at the same number of
episodes but needs more average time per episode. In contrast,
the FRA and FTP methods converge faster than the others but

TABLE IV: Convergence Time Comparison

Parameters JOCDDQN FDDQN JOCD3QN FRA FTP
Avg. time per 4.94 4.28 5.79 3.25 3.19episode (s)
No. of episode 95 190 95 101 29to converge
Convergence 469.3 813.2 550.05 328.25 92.51time (s)

EE 91.67 48.97 91.01 44.43 38.37(Mb/J)

with significantly lower EE. Overall, the JOCDDQN method
demonstrates superiority, offering the highest EE performance
with a moderate convergence time.

Fig. 9 presents a comparison of EE performance between
methods utilizing centralized and decentralized rewards. The
centralized reward, as defined in equation (39), contrasts with
decentralized rewards where each agent’s reward depends on
its individual transmission outcome. Specifically, in pursuit
of maximizing EE while guaranteeing the heterogeneous re-
quirements of all users, an agent z’s decentralized reward
is determined as the ratio of its achievable rate to its Tx-
power, i.e., rz(t) =

∑
k∈K c

(k)
z (t)R

(k)
z (t)/

∑
k∈K P

(k)
z (t), if a

successful transmission is achieved, and is zero, i.e., rz(t) = 0,
otherwise. Fig. 9 illustrates that EE performance achieved with
decentralized rewards is inferior to that achieved with cen-
tralized rewards. This difference arises because decentralized
rewards can encourage selfish behavior among agents, leading
them to prioritize individual objectives over the collective
goal of maximizing overall EE while accommodating diverse
user requirements. Consequently, a degradation in global EE
performance under decentralized reward can be observed.

In practice, acquiring pCSI is challenging. Fig. 10 is pro-
vided to assess the effect of iCSI on the EE performance
by plotting the achieved EE against different values of the
estimated error variance σ2

e for the JOCDDQN and FDDQN
methods. The considered iCSI scenario is presented in Sec-
tion IV-E1. This figure shows that the EE achieved under iCSI
(i.e., σ2

e > 0) is lower than that with pCSI (i.e., σ2
e = 0). This

is because when σ2
e > 0, the Tx-PA for all users is determined

based on iCSI, not optimally suited for the true channel based
on pCSI, degrading the system EE. In particular, for the
JOCDDQN method, the EE drops by 5.18%, from 91.1358
Mb/J with pCSI to 86.4150 Mb/J at error variance value
σ2
e = 0.1. Meanwhile, the FDDQN method shows a decrease

of 0.53%, from 49.3302 Mb/J to 49.0685 Mb/J. The relation-
ship between the EE and σ2

e can be further quantitatively
analyzed by developing a relation function using Matlab’s
curve fitting tool [46]. Given the Gaussian distribution of the
estimated error, we utilize the exponential function for fitting
distribution and model the relationship as ζ = α̂e−β̂σ2

e , where
ζ stands for the EE, α̂ and β̂ denote the empirical parameters
obtained through the fitting process. This yields the relation
functions ζ = 89.7239e−0.4059σ2

e for the JOCDDQN method
and ζ = 49.3400e−0.0525σ2

e for the FDDQN method. These
functions can provide insights into how different levels of
channel estimation accuracy affect the EE.

Fig. 11 shows the effect of the packet length on the EE
performance when employing the proposed JOCDDQN and
FDDQN methods. As can be seen from this figure, the varia-
tion in the EE performance is small as the packet length varies
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from 8 (bytes) to 128 (bytes), particularly evident in the case
of using the FDDQN method. However, as the packet length
gets much higher, i.e., 256 (bytes), a significant degradation
in the EE performance can be observed with both JOCDDQN
and FDDQN methods, attributed to stricter QoS requirements
imposed on users under this scenario.

Fig. 12 provides the EE evaluation achieved by the proposed
JOCDDQN and FDDQN methods under the iSIC scenario
by plotting the variation of the achieved EE versus different
values of the iSIC factor ψ. Here, we also provide the EE
attained with pSIC case for comparison purposes. In addition,
using the loop method presented in Section IV-E2, we show the
EE results of the JOCDDQN method with iSIC across different
numbers of loops to validate its convergence. Particularly,
Fig. 12 demonstrates that under iSIC context, the JOCDDQN
method outperforms the FDDQN method in terms of the EE
performance. Furthermore, both methods approach their re-
spective EE results under pSIC as ψ gets smaller. Meanwhile,
the increase in the value of ψ leads to a significant degradation
in the EE performance due to larger interference. Additionally,
as the number of loops scales up, the JOCDDQN method with
iSIC exhibits higher EE performance, with a convergence of
results observed between cases with 10 and 15 loops.

Fig. 13 illustrates the effect of channel conditions on the
EE performance with the JOCDDQN method. The channel
conditions vary according to the distance from users to the
BS. To represent this, we adjust the cell radius rc, which
indicates the maximum user-BS distance, with users uniformly
distributed within this radius. Fig. 13 shows that stronger chan-
nel conditions, indicated by shorter user-BS distance (smaller
rc), result in improved EE performance. Conversely, increasing
rc leads to weaker channel conditions and a degradation in EE
performance due to higher path loss.

Thanks to the results, we can conclude that the proposed
JOCDDQN method demonstrates superior performance over
other considered approaches in terms of EE and convergence
rate thanks to its joint optimization and cooperative MADDQN
framework. However, this approach comes with a higher com-
plexity. Meanwhile, although the proposed FDDQN method
outperforms other benchmarks, it shows lower EE performance
and convergence characteristics than the proposed JOCDDQN
method. Notably, it allows for a distributed implementation
with reduced complexity as compared to the JOCDDQN
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Fig. 13: JOCDDQN performance with various channel conditions.

method. In addition, while the integration of optimization and
DRL in the JOCDDQN method can expedite the learning
process of the proposed algorithm, it encounters extended
learning time when scaling up to support larger numbers of
users and SCs typical of real-world networks. This is pri-
marily due to the increased complexity and enlarged discrete
action space. Exploring user-SC grouping strategies (such as
partitioning users and SCs into smaller groups for indepen-
dent algorithm execution) and investigating continuous DRL
techniques tailored to both continuous and extensive discrete
action spaces could potentially mitigate these challenges for
real-world network applications [47], [48]. In addition, offline
training through digital twins and online operation through
transfer learning to adapt an offline policy to the online reality
could be another promising solution [49]. Further research is
thus required to delve into these potential approaches.

VI. CONCLUSION AND FUTURE WORK

We have investigated the H-NOMA method for the coexis-
tence of eMBB, mMTC, and URLLC services. To analyze
the system performance, we have formulated the EE-Max
problem subject to divergent QoS constraints of various users.
We then have proposed two MADRL-based RA solutions, i.e.,
JOCDDQN and FDDQN, to address the considered problem.
In particular, the JOCDDQN method utilizes a CMADDQN
scheme for SC assignment among users while the power
corresponding to a given SC setting is optimized effectively
using the proposed dynamic PA algorithm. Meanwhile, the
FDDQN method implements a MADDQN scheme for both
SC and PA, where the continuous power variable is split
into multiple discrete power levels to facilitate the learning
process. Simulation results have shown that the JOCDDQN
method can achieve higher EE and converge faster than the
FDDQN method and other benchmark schemes. To improve
the scalability of the proposed methods towards real-world
networks, offline training and online execution leveraging the
benefits of digital twins, transfer learning, and continuous DRL
techniques could be an interesting future research direction.
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