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Abstract—Radar simulation offers the potential to generate
data cubes with effectiveness and accuracy. However, the radar
simulator considering both dense multipaths of indoor environ-
ment and dynamic motions is rare. This paper develops a ver-
satile channel simulator that can generate frequency modulation
continuous wave (FMCW) waveform multiple inputs multiple
outputs (MIMO) signals of indoor scenarios. In the proposed
simulation framework, the open-source tool called Blender is
utilized to model dynamic scenarios and render animations. Each
frame of the animation is rendered into a picture with a defined
number of pixels by the ray tracing (RT) engine embedded in
Blender. Then, the distance, strength, angle of arrival (AoA),
and motion speed of each pixel are calculated based on the
traced rays. The sampled beat signal models of the commonly
used orthogonal multiplexing MIMO modes are derived in terms
of the Blender outputs. A virtual array generation method is
utilized to improve the simulation time efficiency. To eliminate
the velocity noise, a pixel filtering method is also introduced. For
validation, the measurements of the time division multiplexing
(TDM) FMCW MIMO sensor in both anechoic chamber and
corridor scenario at the mmWave band are compared with
the simulation using range, angle, Doppler, and micro-Doppler
results. The comparisons show the merits and validation of the
proposed simulation method.

Index Terms—Blender, channel simulation, FMCW radar,
indoor pedestrian, ray tracing.

I. INTRODUCTION

RADIO frequency (RF) based sensing systems have long
been used for aircraft monitoring, meteorological radar,

and synthetic aperture radar (SAR) imaging [1]–[3]. With the
use of millimeter wave (mmWave) and terahertz (THz) fre-
quency bands, radar systems have started to receive significant
attention in indoor applications, such as in-cabin monitoring,
occupancy sensing, gesture recognition, smart factory, health-
care, and home robotics [4]–[8]. The reasons are twofold.
Firstly, wide bandwidth can provide sufficient resolution for
applications in indoor scenarios [9]–[11]. Secondly, radio-
based sensors are believed to be better than camera-based ones
for protecting privacy and robustness [12].

To design and optimize wide-band indoor RF systems, the
knowledge of channel models is essential [13]. However, the
channel characterizations of indoor radar systems are different
from the outdoors for two main reasons. Firstly, because of
the dense multipath in indoor environments, the influence
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of clutter is more severe than in outdoors [14]. Secondly,
with the rise of data-driven-based applications, e.g., human
motion detection and gesture classification, the modeling of
Doppler and micro-Doppler in dynamic scenarios is becoming
a new requirement [15]. Furthermore, the emerging integrated
sensing and communication (ISAC) technology will be a key
vertical in the coming B5G communications era. As a result,
an understanding of the radar channel features, although not
limited to indoor, is being sought by a wider audience [16].

Conventionally, the channel characteristics can be obtained
by field measurements and simulations. However, measure-
ments can be time-consuming and expensive, especially in
high-frequency bands. Consequently, efficient channel sim-
ulation techniques offer a compromise [17]. The geometry-
based simulations are popular for the balance of accuracy and
time consumption. Some of them include the deterministic
ray tracing (RT) [18], [19], stochastic propagation graph [20],
[21], and the hybrid semi-deterministic methods [22], [23].
They make use of optical-ray-based geometrical principles
to mimic electromagnetic wave propagation. Those channel
simulation methods have long been used and validated in
wireless communications [24], [25] and source localization
[26], [27]. However, conventional simulators concentrate on
wireless parameters and lack the emulation of radar character-
istics like Doppler and micro-Doppler. Because communica-
tion systems have a preferential focus on large-scale coverage
and channel coherent time, therefore wireless communication
channel simulators usually simulate discrete positions of the
users’ track [28]–[30], while cannot satisfy the target-centric
radar requirements in some emerging research trends, e.g., the
abovementioned ISAC and radio-based AI applications.

In this paper, we aim to provide a radar simulator capable of
generating both the multipath of indoor environments and the
dynamic Doppler and micro-Doppler due to non-point target
motion.

A. Related works of radar simulation

To achieve Doppler changes due to realistic motion, [34]
and [35] utilize field measurement and computer vision,
respectively, to record skeleton velocities of typical human
motions and set up motion-capturing (MoCap) databases.
Those MoCap databases can be used to generate synthetic
radar signals. However, MoCap databases lack consideration
of the environment, while the multipath due to the environment
cannot be omitted for indoor applications, especially consid-
ering realistic radio propagation.
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TABLE I
A BRIEF COMPARISON OF THE PROPOSED WORK WITH THE CHANNEL MODELING METHODS IN LITERATURE

RT engine Reference index Indoor
multipaths

Radar
waveform MIMO Micro-

Doppler
Validation via
measurement

Conventional
RT algorithm Ref [18], [19], [24] ! ! !

Optix Ref [31] ! ! !

Blender
Ref [32] !
Ref [33]

This work ! ! ! ! !

To address this, some recent studies try to utilize animation
software, e.g., Blender [32], [36], [37] and Optix [31], to
model the environment. As a follow-up, [33] enhances the
Blender-based models by including the multi-bounce rays in
the simulation, i.e., the multipaths via more than one-time
reflections/ scattering by the target and environment. However,
gaps still exist in the state of the art. Many works are motivated
by the automatic driving industry and focus on outdoor scenes,
e.g., the OptiX-based ones [31] and FEKO [38]. Thus, they
simulate fewer multipath. Further, most of them fall short of
generating micro-Doppler due to gesture motions of the targets
[31]–[33], [36].

B. Contributions of this paper

In this paper, an image rendering-based mmWave multiple
inputs and multiple outputs (MIMO) radar simulator is devel-
oped for indoor applications built on Blender. By importing
the MoCap database and using the animation tools, we can
capture even the slight changes in propagation paths due to the
gestures and motions of the target as well as the interactions
of the environment. A summary of the differences between
the existing literature and the proposed work is summarized
in Table I. The detailed contributions of this work include:

• Using Blender extension to import the realistic human
motions in AMASS [39] and rendering propagation paths
containing both velocity and environment effects.

• Identification of appropriate Blender outputs and subse-
quent mapping of the frame rates of Blender animation
with the fast time and slow time of frequency modulation
continuous wave (FMCW) waveform. The sampled beat-
signal models of the commonly used orthogonal MIMO
modes are derived based on the RT outputs of each frame,
e.g., time division multiplexing (TDM), code division
multiplexing (CDM), and frequency division multiplexing
(FDM).

• Applying a virtual array generation method to accelerate
MIMO antenna simulation based on the array geometry,
the field of view (FoV) range settings, and the FoV
resolution.

• Validating via field measurement of pedestrian scenar-
ios in both anechoic chamber and office corridor using
mmWave band TDM-MIMO sensors. The important radar
images, i.e., the range-angle map (RAM), range-Doppler
map (RDM), and the continuous time-Doppler velocity
are measured, simulated, and compared. Besides, the
clear observation of the micro-Doppler phenomenon due

to the swings of arms and legs is presented in the
simulation.

• This study can serve as a guide in generating dynamic
digital maps for wireless channel simulations. For RT
simulation frameworks like [36], the number of propa-
gation paths may change in different frames, therefore it
is challenging to identify the velocity of each path. The
proposed method exploits the fixed number of pixels in
each image to generate the same number of paths in each
frame and calculate velocity due to target motions, i.e.,
the velocities are obtained by differentiating the distances
of each pixel. Since the work does not assume identical
paths, the calculated velocity is perturbed due to pixel
migrations. Further, we use a velocity filtering method to
reduce the noise due to pixel migrations.

The rest of the paper is organized as follows. Section II
introduces the simulation chain and the outputs of Blender.
Section III derives the sampled beat signal models and maps
with Blender outputs. Section IV gives the measurement-based
validation and Section V concludes the paper.

The following notations are used throughout this paper:
lower-case (upper-case) bold characters denote vectors (matri-
ces), particularly, A ∈ RN1×N2 and A ∈ CN1×N2 respectively
denote the real and complex matrix of size N1 × N2, and
[A]n1,n2 ≜ An1,n2 denotes the (n1, n2)-th entry of the matrix,
A[n1, :] denotes the n1th row of the matrix, and A[:, n2]
denotes the n2th column of the matrix. (·)T and (·)H denote
the transpose and the conjugate transpose of a matrix or
vector, respectively. The symbol mod(·) refers to a remainder
operation.

II. IMAGE RENDERING-BASED RADAR SIMULATION CHAIN

Fig. 1 illustrates the process considered in this paper to
generate FMCW signals that will be detailed in the sequel.
However, a cursory look indicates the two-step methodology
wherein, an effective depiction of the scenario using the critical
target parameters, i.e., range, angle, Doppler, and reflectivity
is first carried out using image rendering and these parameters
are subsequently used to generate FMCW signals using a
model-based approach. The different steps in image rendering
are elaborated below; the next section deals with the generation
of radar signals.

A. Rendering methodology

1) Scenario modeling using Blender: The first step of sce-
nario modeling requires emulating the objects in the real scene
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Fig. 1. FMCW Radar channel simulation outline.

in software by appropriately defining the material properties,
their geometric size, orientation, and motion [40]. Blender
is an open-source animation tool [41] offering flexibility in
incorporating such scenes using native animation tools or
through well-defined interfaces. In addition to the pre-set
scene, the view settings define the perspective. The light source
and camera of Blender are regarded as the transmitter (Tx) and
receiver (Rx), respectively, where the FoV is regarded as the
ideal Rx antenna pattern. Here, the Rx is used as an idealized
directive antenna with unit gain throughout the FoV and no
reception outside the FoV (i,e, without sidelobes outside the
FoV). In this paper, we deal with monostatic radars, and hence
the light source and camera are co-located. However, if the
positions of the light source and camera are separated, the
method can be extended to simulate bistatic systems.

2) Image rendering using RT: The operation of the second
step is image rendering, where the dynamic 3D scene is
converted to sequential 2D images. Each image consists of
a certain number of pixels and each pixel can be regarded as
a point object. The RT embedded in Blender is utilized to trace
the propagation paths among Tx, Rx, and each point object,
from which the desired parameters like the spatial, angular,
and Doppler information can be extracted. Henceforth, in the
paper, a rendered image is also called a frame; this forms the
basic processing unit in Blender.

Each frame is rendered to be an image represented by
Naz × Nel pixels, where Naz and Nel denote the number of
pixels in the azimuth and elevation axes, respectively. Each
pixel represents an object located in the pixel’s angle of arrival
(AoA) direction to the camera. As a result, any propagation
path is denoted by propagation distance, signal attenuation due
to scattering loss and propagation, and the AoA. Further, a
dynamic scenario in Blender consists of Nframe frames at a
particular frame rate of Rframe Hz. The velocity information
is then calculated using the frame rate and the pixel strength
across the frames. These parameters are now detailed.

B. Image rendering: parameters, their derivation, and visual-
ization

1) Distance and strength matrices: In a dynamic scenario,
the distance and strength of each pixel vary with the frames.

To obtain these parameters, we begin by denoting nframe =
1, 2, ..., Nframe to be the index of the frame. The location of
the object at the nelth row and the nazth column of the nframeth
frame is denoted as

lnframe,nel,naz = [xnframe,nel,naz ynframe,nel,naz znframe,nel,naz ]
T. (1)

The term lnframe,nel,naz is obtained from Blender after the
modeling of the scenario.

Let Rnframe ∈ RNel×Naz denote the output distance matrix of
the nframe frame, and Rnframe,nel,naz denote the distance of the
received propagation path via the object at lnframe,nel,naz . The
path distance is calculated inside the RT engine. For example,
the distance from Tx and scattered by the object at lnframe,nel,naz

to Rx for the line of sight (LoS) path is determined as

Rnframe,nel,naz =
∥lnframe,nel,naz − ltx∥2

2
+

∥lnframe,nel,naz − lrx∥2
2

,

(2)
where the ltx and lrx denote the location of the reference
Tx and Rx, respectively. For non-LoS (NLoS) paths, the RT
uses the geometry-based method, e.g., shooting-bouncing and
image method, to find the interacting pixels and calculate the
cascaded distance of multiple reflections.

Let Prnframe ∈ CNel×Naz denote the signal strength matrix of
the nframeth frame, and, in particular, Prnframe,nel,naz

denotes
the strength of the received propagation path via the object
at lnframe,nel,naz . This quantity is obtained from Blender. In
principle, the LoS signal strength is calculated as

Prnframe,nel,naz
=

PtGtσnframe,nel,naz

(4π)2(Rnframe,nel,naz/2)
4
Aeff, (3)

where Rnframe,nel,naz is the distance of the pixel obtained in
(2), Pt, Gt, Aeff = Grλ

2/4π, Gr, λ denote the transmitted
power, transmitted antenna gain, the effective receive antenna
aperture size, receiving antenna gain, wavelength, respectively.
These quantities are either set in the Blender or calculated by
the tool. Further, σnframe,nel,naz , denotes the radar cross section
(RCS) or the so-called scattering coefficient; its determination
can be complicated and various scattering models are used
in the literature, e.g., the Lambertian model used in optical
waves [42], the single-lobe scattering pattern [43] and the
back-scattering model [44] used in RF band. Generally, it is
dependent on the material, frequency, incident angle, and even
the Fresnel zone. In Blender, users can adjust parameters to
obtain a relatively accurate replacement of (3) for different
materials. For further studies, the field measurement-modified
Blender parameters of more complex materials and frequencies
can be adjusted based on the application requirement.

2) AoA of each pixel: Let Θ ∈ RNel×Naz and Φ ∈ RNel×Naz

denote the azimuth and elevation AoA matrices, respectively
with the assumption that the camera direction is the image
center, i.e., both the azimuth and elevation angle are zero
degrees. The entries in AoA matrices for the pixel at elevation
index nel and azimuth index naz can be calculated as

Θnel,naz = θbw

(
−1

2
+
naz − 1

Naz − 1

)
, Naz > 1,

Φnel,naz = ϕbw

(
−1

2
+
nel − 1

Nel − 1

)
, Nel > 1,

(4)
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(b) Heat map of distance matrix

(c) Turning direction
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(d) Heat map of distance matrix

Rendering region

Office scenario 

(e) A human walking in an office scenario

(f) Heat map of rendering distance matrix after multiple bounces
Fig. 2. The modeling in Blender and rendering outputs are represented by
the heat map as a function of elevation and azimuth angles, where the color
bar denotes the distance in meters.

where nel = 1, 2, ..., Nel, and naz = 1, 2, ..., Naz respectively,
θbw and ϕbw are the azimuth and elevation FoV of the camera
defined in Blender in degrees.

3) Visualization of image rendering: The rendering results
of distance and strength matrices can be mapped with the AoA
matrices using (2), (3), and (4), respectively. For example,

Fig. 2 represents the heat map of the distance matrix1 as
a function of elevation and azimuth angles. Fig. 2 (a), (c),
and (e) show the Blender models of pedestrian walking,
turning, and an office scenario, respectively. The Fig. 2 (b), (d),
and (f) illustrate the heat map of angle-distance matrices of
each scenario, respectively, where the x, y and z axes denote
the azimuth angle, elevation angle, and the distance of each
pixel, respectively. Furthermore, multiple bounces can also be
rendered and the user can define their maximum order in the
rendering engine, e.g., in the indoor office scenario shown
in Fig. 2 (f), the mirror images of the human and furniture
due to multiple scattering can be observed clearly on the left
and back walls. It is also worth mentioning that the one-
bounce simulation is constrained by the FoV of the camera.
However, the multiple bounces are not necessarily constrained
by the FoV and the simulator is applicable in multiple target
scenarios. This rendering offers a reference for the appropriate
images subsequently created using radar signals.

In summary, we first define the FoV of the camera (i.e., the
image view as seen by the camera) and the number of pixels in
this image. This allows us to calculate the angle of arrival from
each pixel to the camera using (4). The AoA of the multipath
is obtained similarly using the pixel that is involved in that
multipath.

C. Velocity calculation and mitigation of pixel migration

The difference in distance can be used for velocity calcula-
tion. Let Vnframe ∈ RNel×Naz denote the radial velocity matrix,
with the entries calculated as

Vnframe,nel,naz =
−2(Rnframe,nel,naz −Rnframe−1,nel,naz)

Tframe
, (5)

where the range of each pixel Rnframe,nel,naz is the output of the
Blender in (2), and Tframe = 1/Rframe, with Rframe being the
frame rate of the imported MoCap databases or the manually
set value of a rendered dynamic video in Blender. For example,
Rframe is 30 Hz as mentioned in AMASS MoCap [39]. The
Blender can also over-sample the Rframe of the imported
motions, e.g., the case used in Fig. 3 is multiplied by two
times the Rframe of AMASS MoCap databases to decrease
pixel migration.

As objects move, the same pixel in subsequent frames
tends to represent different scatterers; we refer to this as pixel
migration. Setting short frame intervals, we assume a particular
pixel in a frame continues to represent the same scatterer
in the subsequent frame (i.e., we assume that the motion is
confined within the pixel). Then the difference in distance for
the same pixel in subsequent frames (i.e., pixels with identical
AoA indices), obtained from Blender, can be used for velocity
calculation. To avoid pixel migration based on this discussion,
several settings in Blender need to be carefully chosen. As
a case in point, a higher number of pixels for a given frame
size leads to a lower size of each pixel thereby enhancing pixel
migration; further, faster frame rates Rframe shorten the interval

1If there are no reflections, the distance in principle is infinite, for
illustration and further processing convenience in calculating velocity, we set
those to be zeros.
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(a) Velocity image
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(b) Velocity image after filtering
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(c) Signal strength of pixels
Fig. 3. Velocity and strength heat maps with 200× 200 pixels: the Rframe = 60 Hz, the threshold for filtering the pixel immigration is 6 m/s.

between two frames and reduce pixel migration. When setting
those parameters, we have to consider the radar parameters
in practice, the scenario, the relative velocities, and also the
ultimate performance of the hardware and Blender software.

Nevertheless, pixel migration is inevitable and results in
large velocity, especially at the edge of the target. Taking
the human walking scenario in Fig. 3 (a) as an example, it
can be observed that the velocities of some edge pixels are
much greater than those corresponding to a human walking,
which is typically less than 2 m/s. Considering that micro-
Doppler velocity may be greater than the main body’s velocity,
a threshold of 6 m/s is applied. The velocity image after
filtering is shown in Fig. 3 (b), where the extremely large
velocities due to pixel migration are filtered out. It is also
worth mentioning the signal strength image in Fig. 3 (c), where
the signal strength of edge pixels is rather weak compared to
the trunk, this feature prevents severe noise even if the pixel
migration is not totally filtered.

III. RADAR SIGNAL GENERATION

Having obtained the key parameters from Blender, this
section elaborates on the methodology to generate radar sig-
nals from the derived parameters. It begins by discussing the
applicability of optical source-based results from Blender into
RF-based radar systems, identifies the key missing component
of MIMO, and provides a mechanism to generate MIMO radar
signals based on FMCW waveforms.

A. Applicability of parameters

The RT renders the scenarios based on optical-ray prin-
ciples, which can result in inaccurate powers of simulated
paths. For purposes requiring accurate path loss predictions,
e.g., wireless communication base station deployment, elab-
orated measurements are needed to calibrate RT parameters.
However, for purposes of utilizing RT to identify the geometry
parameters of propagation paths, e.g., sensing and environment
mapping, accurate strength models are not necessary [45]. In
this radar simulation, we are concerned about the radio path
trajectory from RT, the geometry parameters, e.g., range, AoA,
and the Doppler velocity due to target motions. Since the RT is
based on the optical setting, the absolute reflected power would
be different than mmWave propagation. However, users can
define parameters like material and additional scattering loss in
Blender. The simulation can obtain relative power strengths of

Tx1 Tx2 TxM

θ

θ

Distance:

Ndsinθ (M-1)Ndsinθ

Rx1 Rx2 RxN

θ

θ

λ/2 λ/2 λ/2

(N-1)dsinθdsinθ

Distance: ……

……

……

……

Rx1 Rx2 RxN

Tx1 Tx2 TxM

Nλ/2 Nλ/2 Nλ/2

Fig. 4. An illustration of ULA with the AoA at Rxs and AoD at Txs denoted.

targets and clutters based on the material settings and bouncing
orders.

B. Virtual MIMO generation based on steering vector

The Blender-based rendering offers a single input single
output (SISO) perspective. However, the paper is interested
in generating radar signals beyond the SISO architecture.
Towards this, and to enable MIMO, the rendering must be
repeated for the position of each transmit-receive antenna
pair. Such an exercise is resource-consuming and a simplified
alternative is provided below.

Consider a colocated unified linear array (ULA) radar
system with M transmitters (Tx) and N receivers (Rx) shown
in Fig. 4, where the Rx elements are placed at a distance of λ/2
while the transmit elements are placed at a distance of Nλ/2,
Txm and Rxn denote the mth Tx and the nth Rx element in the
ULA, respectively, with m = 1, 2, ...,M and n = 1, 2, ..., N
representing the index of the Tx and Rx elements, respectively.
This resulting M × N channels generate a virtual MIMO, a
more detailed illustration can refer to [46]. Kindly note that
Tx1 and Rx1 are the reference antennas. Here we can not
generate the M ×N virtual channels simultaneously. Hence,
a strategy for generating virtual MIMO channels based on the
array geometry is utilized. We make use of only rendering
results of one Tx-Rx pair, referring to them as the reference
antennas in the sequel to generate virtual MIMO.

1) Distance matrix of virtual channel: Let Rnframe,m,n ∈
RNel×Naz denote the distance matrix of the channel between
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Fig. 5. Transmitted FMCW signal in one CPI.

Txm and Rxn. Then, Rnframe,m,n can be generated based on
the ULA geometry as

Rnframe m,n =Rnframe + (m− 1)N
λ

2
sinΘnframe

+(n− 1)
λ

2
sinΘnframe ,

(6)

where the Rnframe is the reference range of the reference
antennas obtained in (2) and Θnframe is the azimuth AoA matrix
of the reference Rx obtained in (4). Here, we only consider
the azimuth angles, it is also applicable to generate virtual
rectangular MIMO by considering both azimuth and elevation
angles.

2) Signal strength matrix of virtual channels: Considering
the short spacing of the MIMO array in mmWave, the signal
strengths of reference antennas are used for all the pairs of
MIMO.

3) Doppler velocity matrix of virtual channels: Let
Vnframe,m,n ∈ RNel×Naz denote the radial velocity matrix of
the channel between Txm and Rxn. Then, Vnframe,m,n can be
obtained in a manner similar to the reference antenna in (5)
as

Vnframe,m,n =
−2(Rnframe,m,n − Rnframe−1,m,n)

1/Rframe
. (7)

Assuming the AoA angles are stationary within two frames
and substituting (6) into (7), we have

Vnframe =
−2(Rnframe − Rnframe−1

)

1/Rframe
. (8)

In this case, the Doppler is unchanged among MIMO channels
in the simulation.

Finally, generating virtual MIMO channels in the afore-
mentioned avoids significant processing delays caused by
rendering all the paths in a multi-antenna system, one at a
time.

Having obtained the relevant parameters, the sequel now
discusses the generation of appropriate radar signals based
on FMCW. Extensions to other waveforms are provided in
Appendix B and Appendix C.

Tp

fl
Time

Tx1

fl
Time

Tx2

……
fl

Time

fl
Time

…

TxM

Rx

Tb = MTp

……

One block (M chirps) 

……

……

……

……

…

……

Tb = MTp

……

One block (M chirps) 

TDM block  1 TDM block  2

Fig. 6. An illustration of M -Tx TDM-MIMO FMCW signal.

C. TDM-MIMO FMCW radar transmissions

FMCW is widely used in radar systems, due to the low-
cost and efficient de-chirp techniques [8]. Fig. 5 shows the
typical FMCW signal, the Tx transmits a linear frequency-
modulated waveform sequentially. Each Coherent Processing
Interval (CPI) consists of L chirps, with each chirp time Tp
and idle time Ti consisting of a block duration Tb. Usually,
in literature the idle time Ti is ignored, thereafter the block
duration Tb can be replaced by the chirp time Tp. The Tb is
the so-called pulse repetition interval (PRI). The indices of the
chirps are indices of the so-called FMCW slow-time. In TDM-
MIMO [47], [48], the orthogonality in time is exploited to
separate the Tx signals at the Rx side. Recalling the colocated
MIMO radar system with M Tx and N Rx elements as shown
in Fig. 6, every TDM block consists of M time slots, each
corresponding to transmission by one of the M Tx antennas.

The signal transmitted by the radar is a function of time t
and chirp index l, and is obtained by the superposition of the
transmitted signals of all the antennas as

s(t; l) =

M∑
m=1

sm(t− (l − 1)Tb − (m− 1)Tp), (9)

where Tb = MTp represents the TDM block time with the
omission of the idle time, l = 1, 2, ..., L is the index of TDM
block, m is the index of Tx, and sm(t; l) is the transmitted
signal of the mth Tx at the lth time block taking the form

sm(t; l) =

√
P0

2
exp(jϕ(t̃)), (10)

with
t̃ = (t− (l − 1)Tb − (m− 1)Tp), (11)

and P0 is the transmitted power, mod denotes reminder op-
eration, and the linear phase

ϕ(t̃) = 2π(flt̃+
1

2
µt̃2)− ϕ0, (12)

where fl is the starting frequency point, µ = B/Tp is the
FMCW slope with B represents the bandwidth, Tp represents
one chirp duration.
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D. Beat signal model for TDM-MIMO FMCW radar

The received signal at the nth antenna is

rn(t; l) =

M∑
m=1

σm,n,lsm(t̃− τm,n,l), (13)

where n = 1, ..., N is the index of Rx, σm,n,l contains the
RCS of the target and the channel attenuation between the
mth Tx and the nth Rx at the lth CPI block, the propagation
delay τm,n,l is time-varying and can be calculated as

τm,n,l = 2
Rm,n,l + vr t̃

c
, (14)

where vr is the speed of the target, Rm,n,l is the range from the
mth Tx antenna to the target and return to the nth Rx antenna
at the lth chirp, for the ULA in Fig. 4 it can be calculated as

Rm,n,l = R0,l + (m− 1)Nd sin θ + (n− 1)d sin θ, (15)

where R0,l is the range between the target and the reference
antennas, and θ is the AoA.

After the dechirp process on the receive side, the phase of
the IF signal is

∆ψn(t; l) =

M∑
m=1

2π(flτm,n,l + µτm,n,lt̃−
1

2
µτ2m,n,l),

(16)
Substituting (14) into (16), we have

∆ψn(t; l) =

M∑
m=1

2π((
2µRm,n,l

c
− fD)t̃+ ϕ1), (17)

where fD represents the Doppler frequency shift, which can
be represented as

fD = −2
vr
c
fl, (18)

and ϕ1 is a constant

ϕ1 =
2Rm,n,lfl

c
. (19)

The detailed derivation of (17) is in Appendix A.
Every chirp block of the de-chirped signal is then sampled

with the sampling frequency Fs thereby providing Ns number
of samples. The sampling time Ts = 1/Fs is the so-called fast
time [49]. Let Zn ∈ CL×Ns be the beat signal of TDM-MIMO
at the nth antenna, Ns denote the number of samples in one
FMCW chirp. ns = 1, 2, ..., Ns and l = 1, 2, ..., L denote the
index of the samples and chirps, i.e., the fast time and slow
time axis, respectively. The (l, ns)-th entry can be expressed
as

Zn(ns, l) =
M∑

m=1

σm,n,l exp(j2π(
2µRm,n,l

c

ns − 1

Fs
− fD(l − 1)Tb)).

(20)
With the beat signal model, the remaining task is to substitute
relevant parameters from the Blender which is detailed in the
sequel.

Blender 

frames:
= 1/Rframe

……

fl

Time

Tframe

First frame Last frame Second frame 

FMCW 

CPI: 

First chirp

Tp

……

fl

Time

Second chirp Lth chirp 

Tc  = L Tp

Tframe
Tframe

One Blender frame used     as one FMCW CPI

Fig. 7. The illustration of the mapping of Blender frames and FMCW CPIs.

E. Beat signal simulation for TDM-MIMO FMCW radar

In Blender-based radar simulation, the following assump-
tions are utilized:

• Each frame in Blender is regarded as one CPI, where
there are L chirps within, hence the duration of CPI
is Tframe = 1/Rframe, and the chirp duration is Tp =
Tframe/L. An illustration of how Blender frames corre-
spond to FMCW CPIs is provided in Fig. 7. The virtual
slow time is generated by slicing one Blender frame to
L chirps.

• In each chirp, the beat signal is obtained by sampling
the IF signal with a sampling frequency Fs. Since Fs

is much larger than fD, the variations in the latter are
ignored within sampling intervals.

• Each pixel of the Blender output image can be regarded
as a target in radar detection, hence the received signal
models used for simulation are the summary effects of
NazNel pixels.

Recalling the definition of Zn from (20), the (l, ns)-th entry
of this matrix, after appropriate substitutions, can be expressed
as

Zn(ns, l) =

Naz∑
naz=1

Nel∑
nel=1

M∑
m=1

Prnframe,nel,naz
exp(j2π(

2µRnframe,nel,naz

c

ns − 1

Fs
− 2

flVnfame,nel,naz

c
(l − 1)

Tframe

L

+
((m− 1)N + n− 1)∆d

λ
sin θnel,naz)),

(21)
where ∆d = λ/2 is the interval between Rx antennas, λ
is the wavelength, the Rnframe,nel,naz , Prnel,naz

, Θnel,naz , and
Vnfame,nel,naz

are outputs of Blender obtained in (2), (3), (4),
and (5), respectively.

In TDM-MIMO, the radar signal of different Txs can be
separated based on the chirp index l at each Rx side, i.e., one
TDM block contains M time orthogonal chirps. The signal
from the mth Tx to the nth Rx Zm,n ∈ C(L/M)×Ns can be
obtained as

Zm,n[l̂, :] = Zn[m+ (l̂ − 1)M, :], (22)
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Real
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data
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Measurement

Raw 

data
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e.g., FFT

for each 

dimension, 

Capon

Estimated

results of 
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Estimated

results of 

simulation

Comparison:
range-angle map;

range-Doppler map

Fig. 8. The validation procedure of the radar simulator based on field
measurement.

TABLE II
SENSOR CONFIGURATIONS

Configurations Chamber Corridor
Type of TI sensor 1642booster 6843ISK

Central frequency [GHz] 77 60
Bandwidth [GHz] 1.8 3.6

FMCW slope [MHz/us] 30 60
Frame/CPI duration [ms] 40 40
NO. of chirps per frame 128 128
Sampling rates [MHz] 10 10

NO. of IF samples 256 256
NO. of Tx 2 2
NO. of Rx 4 4

Sensor height [meter] 0.5 1.5
Walk speed [m/s] 1 [0.75, 1]

with
l̂ = 1, 2, ...,

L

M
. (23)

In the preceding development, the beat signal for TDM
mode radar with FMCW transmissions, denoted by Zn has
been obtained. Besides TDM mode, other commonly used
multiplexing techniques include CDM-mode and FDM-mode
[11], [50], [51]. However, there are no free lunches, and the
utilization of MIMO for angle detection may sacrifice the
Doppler ambiguity or the range ambiguity. Using the simulator
as a tool to explore the features of MIMO configurations is
possible. The beat signal models for other schemes can be
developed in similar ways presented earlier for TDM-MIMO.
Interested readers are kindly referred to Appendix B and
Appendix C for details.

IV. VALIDATION

The developed radar simulator is validated by a human 2

walking in both anechoic chamber and office corridor scenar-
ios, where the field measurements with mmWave Texas Instru-
ments (TI) sensors are conducted. The validation procedure is
outlined in Fig. 8. Firstly, a field measurement is carried out to
collect raw data based on the TI mmWave TDM MIMO sensor.
Important sensor configurations and measurement descriptions
can be found in Table II, where these sensor configurations are

2All the testers are on the author list, hence informed consent was obtained.

Fig. 9. A measurement picture in the anechoic chamber.

Sensor

Site dSite c

Site b

Site a

distance 0.8 m

distance 1 m

distance 0.8 m

distance 2.3 m

Anechoic 

chamber

Fig. 10. Description of environment, sensor deployment, and walking routes
in the anechoic chamber.

applied in all subsequent measurements and simulations except
those specifically mentioned. Subsequently, the environment
and human motions are mimicked in Blender to obtain simu-
lated data. Finally, applying the same estimation algorithms on
both the measured and simulated data to compare the estimated
range, angle, Doppler, and micro-Doppler results, and discuss
the performance of the proposed simulator.

A. Measurement campaign of anechoic chamber

1) Measurement description: A picture of the measurement
environment and sensor is shown in Fig. 9. A human walks
in the predefined routes, which are illustrated in Fig. 10. A
human walks from the Site d via Site a to Site c, and walks
from Site a straight to Site b, then walks back to Site a.

2) Calibration in measurement: A static measurement is
conducted to calibrate the power level, range, and angle offset
of measurement, where a human is standing still at the Site
a in Fig. 10. Then the RAM is obtained, where the estimated
range and angle of the target are around 3.38 meters and
−2.5 deg. In the ground truth as shown in Fig. 10, the
range and angle should be 3.3 meters and 0 deg, hence
concluding that the systematic error of measurement in range
and angle are within 0.1 meters and 3 deg, respectively. To
keep identical simulation and measurement power levels for a
fair comparison, each radar image is normalized by the highest
power of each image. Hence the highest power is 0 dB in all
the figures shown later.
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(a) Simulation of 1 by 4 antennas
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(b) Simulation of 2 by 4 antennas
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(c) Simulation of 4 by 4 antennas
Fig. 11. The simulated angular resolution using different numbers of MIMO antennas: the range-angle maps obtained via FFT.

3) Angular resolution of virtual MIMO in simulation: We
simulate a human stand at Site d using different numbers of
MIMO antennas to compare the simulator’ angular resolutions.
Fig. 11 shows the RAMs obtained via fast Fourier transform
(FFT) of 1 by 4, 2 by 4, and 4 by 4 antennas in a ULA,
respectively. We can observe that the angular resolution of 1
by 4, 2 by 4, and 4 by 4 ULA are around 40, 20, and 10
deg, respectively. As the number of antennas in the virtual
array increases, the angular resolution increases, and the
sidelobes are suppressed. It validates the simulator’s capability
of generating MIMO radar signals. The virtual MIMO array
generation method keeps the properties of MIMO radars.

B. Comparison of the anechoic chamber scenario

1) Comparison of the range-angle maps: Considering the
angular resolution of 2 by 4 ULA obtained by FFT is around
20 deg in Fig. 11. We apply Capon [52] to both simulated
and measured data. The normalized RAMs at Site d, Site a,
and Site c is shown in the first, second, and third column of
Fig. 12, respectively, where the simulated and measurement
results obtained via Capon [52] are shown in the sub-figures
of the first and the second row, respectively. For each sub-
figure, the point with the highest power is labeled with a red
dot.

Generally, the simulation is in line with the measurement
data, where both simulated angles and measured angles at
Site d, Site a, and Site c are around 15 deg, 0 deg, and
−15 deg, respectively. According to the trigonometric rang-
ing formula, the theoretic absolute values of the angle of
arrivals (AoAs) at Site c and Site d can be calculated as
arctan

0.8

2.3 + 1

180

π
= 13.63 deg. The estimated ranges and

angles corresponding to the maximum power in the RAM
spectrum of both measurement and simulation are listed in
Table III, where the difference between the ground truth and
the simulation results in ranges and angles are less than 0.15
meters and 2.5 deg; the difference of measurement results in
ranges and angles are less than 0.4 meters and 2.5 deg. Hence,
both the simulated and measured RAMs match the ground
truth.

2) Comparison of range-Doppler maps: The human walks
from Site a to Site b and then walks back to Site a is used to
compare the Doppler velocity. For the description convenience,

TABLE III
NUMERICAL COMPARISONS OF RANGE-ANGLE BETWEEN SIMULATIONS

AND MEASUREMENTS

Contents Site d Site a Site c
Measured range [meters] 3.74 3.37 3.51
Simulated range [meters] 3.51 3.41 3.5

Difference [meters] 0.23 0.04 0.01
Measured angle [deg] 15 -2.14 -13.57
Simulated angle [deg] 13.46 -2.12 -14.88

Difference [deg] 1.54 0.02 1.31

the movement from Site a to Site b is called Site ab in
the following discussion, and the movement from Site b to
Site a is called Site ba. The estimated normalized RDM
examples of Site ab of measurement, simulation with clutter,
and simulation without clutter are shown with 30 dB dynamic
range in Fig. 13 (a), (b), and (c), respectively.

Typically in radar, we define the velocity of the target mov-
ing close to the radar to be negative, and moving away to be
positive [53]. The estimated velocity of the simulation matches
exactly with the measurement data of the movement Site ab,
where the detected speed of the main body is around −1 m/s.
Besides, both the measurement and simulation results show
dispersion in the ranges and micro-Doppler due to the walking
motions. It gives a more clear observation of motion effects.
Furthermore, we could also observe that the measurement
results and simulation considering clutter contain some zero-
Doppler returns, which are multipaths due to clutters in the
measurement environment.

3) Comparison of continuous time-Doppler and micro-
Doppler results: To have a further analysis of the Doppler and
micro-Doppler results, we plot the continuous time-Doppler
results based on each RDM, i.e., by choosing the velocity
bins of the range index with the maximum value of the
RDM and its neighbors to plot the continuous time-Doppler
plots. This method is a commonly used way to observe the
micro-Doppler [54]. The continuous time-Doppler plots of
measurement, simulation with clutter, and without clutter are
shown in Fig. 14 (a), (b), and (c), respectively.

For both the measurement and simulation: (i) when the
human walks toward the sensor, the Doppler velocity is around
−1 m/s; when the human walks away from the sensor, the
Doppler velocity is around 1 m/s. (ii) The quasi-periodic
micro-Doppler due to periodic arm and leg swings during
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(a) Site d: Simulated RAM obtained via Capon
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(b) Site a: Simulated RAM obtained via Capon
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(c) Site c: Simulated RAM obtained via Capon
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(d) Site d: Measured RAM obtained via Capon
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(e) Site a: Measured RAM obtained via Capon
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(f) Site c: Measured RAM obtained via Capon
Fig. 12. Range-azimuth angle comparison of simulation and measurement via TDM-MIMO sensor.
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(a) Measurement via TDM-MIMO sensor
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(c) Simulation without clutter
Fig. 13. Comparison of RDM obtained via 2D FFT: from Site a to Site b. simulation.
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(a) Field measurement
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(c) Simulation without clutter
Fig. 14. Continuous time-Doppler plots comparison: the hamming window is applied to eliminate sidelobes for each RDM.

walking is observed. Simulation shows better micro-Doppler
results than that obtained from measurement since Blender
can capture any slight changes in motion, especially without

clutter. Meanwhile, it could also be observed that the hardware
has some limitations in the measurement result, e.g., the noise,
however, the simulation approach shows good anti-interference
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(c) 3D model of the office corridor scenario used
in simulation

Human
Human reflected 
by the left wall Human reflected by 

the right wall

Terminal 
wall

Terminal wall reflected 
by the right wall

Terminal wall 
reflected by the 
right wall

(d) Image rendering by considering two-bounce
reflections: white pixels in the image denote a
reflecting one-bounce or multi-bounce paths, the
black pixels denote no multipaths in that direction
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colorbar shows the total tracing distance
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(f) Recovered point clouds of up-to two-bounce
paths, where one point corresponds to one pixel
that denotes one reflecting path, the color shows
the normalized scattering strength of that path

Fig. 15. One frame description of the office corridor scenario in both measurement and simulation.

performance.

C. Measurement campaign of the office corridor scenario

1) Measurement description: The measurement environ-
ment of the office corridor is shown in Fig. 15 (a). The width
of the corridor is 2 meters, and the sensor is at the center
facing a terminal located at a distance of more than 5 meters.
A human walks along the predefined yellow line as shown in
Fig. 15 (a) from Site A to Site B and returns. The sensor
continuously measures the multipath signals from the moving
human and the interaction with the environment. The detailed
environment geometry and distance information are illustrated
in Fig. 15 (b), and the sensor configuration is provided in
Table II.

2) Simulation settings: The 3D environment is built in
Blender according to the geometrical size of the measurement
scenario, as shown in Fig. 15 (c). The left and right walls are
set to be reflectors, and the terminal wall is set to be a diffuse
scatter. Up to two bouncing paths are traced in this simulation
setting. The human’s walking velocity is around 1 m/s, where
the whole motion process consists of 300-frame video with a
frame rate of 30 Hz. This means the time difference between
two images is 1/30 seconds.

3) Rendering results: An example of the image rendering
result is shown in Fig. 15 (d), where both the one-bounce
and two-bounce paths are presented. Based on the strength of
each pixel, the propagated distance corresponding to each pixel

can be calculated in Blender as elaborated in [33], i.e., (i) the
distance for one-bounce path: light source → pixel → camera;
(ii) the distance for two-bounce path: light source → pixel /
(reflector) → pixel / (reflector) → camera. As the view width
of the camera is known, the AoAs of all pixels are known.
The image rendering outputs can be illustrated by each pixel’s
AoA and its distance as shown in Fig. 15 (e). The pixels used
in the simulation can be further illustrated as point clouds in
Fig. 15 (f), using the distance, angles, and normalized strength
calculated by RT in Blender. We can observe that the two-
bounce paths are presented as virtual one-bounce paths with
the exact distance and AoAs after two-bounce propagation.
We can also notice from the color in Fig. 15 (f), the relative
strength of paths diminishes after multiple bounces. Finally,
each pixel is regarded as a one-bounce multipath and generates
the radar signal according to (21).

D. Comparison of the office corridor scenario

1) Comparison of multi-bounce effects in range-angle
maps: As the human walks from Site A to Site B, the distance
between the human and the sensor changes from around 4.5
meters to 2 meters. We choose the measured RAMs at a
distance of every 0.5 meter in the motion from Site A to
Site B, i.e., the human at the ranges of 4, 3.5, 3, and 2.5
meters, to compare with the simulations. Those four measured
RAMs are shown in Fig. 16 (a) to Fig. 16 (d), respectively.
The return walk from Site B back to Site A at the range of



12

Walking human

Reflection from 
the right wall

Reflection from 
the left wall

Terminal 
reflection

(a) Measurement: A to B at 4 m (b) Measurement: A to B at 3.5 m (c) Measurement: A to B at 3 m (d) Measurement: A to B at 2.5 m

Walking human

Reflection from 
the right wall

Reflection from 
the left wall

Terminal 
reflection

(e) Simulation: A to B at 4 m (f) Simulation: A to B at 3.5 m (g) Simulation: A to B at 3 m (h) Simulation: A to B at 2.5 m

(i) Measurement: B to A at 2.5 m (j) Measurement: B to A at 3 m (k) Measurement: B to A at 3.5 m (l) Measurement: B to A at 4 m

(m) Simulation: B to A at 2.5 m (n) Simulation: B to A at 3 m (o) Simulation: B to A at 3.5 m (p) Simulation: B to A at 4 m
Fig. 16. Range-angle maps comparison between simulations and measurements.
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(a) Measurement: B to A at 3 m
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(b) Simulation: A to B at 3 m
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(c) Simulation with velocity refined
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(d) Simulation with material refined
Fig. 17. Range-Doppler maps comparison between simulation and measurement.

2.5, 3, 3.5, and 4 meters are shown in Fig. 16 (i) to Fig. 16 (l),
respectively. The simulated RAMs of walking from Site A to
Site B at the range of 4, 3.5, 3, and 2.5 meters are shown in
Fig. 16 (e) to Fig. 16 (h), respectively, and the return walk at
the range of 2.5, 3, 3.5, and 4 meters are shown in Fig. 16 (m)

to Fig. 16 (p), respectively.

Some RAMs are not identical and the following reason
can be ascribed for the differences. The measurement and
simulation are dynamic. The simulated human motions are
imported from the MoCap database, which is recorded from
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real human activities; hence the motion is not strictly symmet-
rical and contains random movements. Those dynamic factors
also exist in measurements. Therefore, at a given distance,
the gesture, orientation to the radar, and movement of part
of the body may differ. The superposed signal contains the
reflection of the walls, which can enlarge those differences.
For comparison in the given dynamic process, the focus is
laid on the macroscopic information concerning the target’s
location and the strong reflections from the left, right, and back
walls. In the figures, these important and similar components
are labeled as triangles, squares, and circles, respectively, in all
the RAMs. Consider the measured Fig. 16 (a) and simulated
Fig. 16 (e) as an example for comparison, we observe

• The one-bounce reflection of the human is highlighted at
the range of 4 meters with an angle of −10 deg.

• At the range of around 4.2 meters, the reflection compo-
nent by the left wall is around −25 deg.

• At the range of around 4.5 meters, the reflection com-
ponent by the right wall is around 35 deg. The angle
difference matches with the measurement environment
because the human is closer to the left wall.

• The terminal wall reflection is around 5.5 meters with the
angle 0 deg in all the RAMs.

2) Comparison of the range-Doppler maps: Using the com-
mon notion in radar that the velocity is defined to be negative
when the distance between the target and sensor decreases, and
positive when the distance increases, the measurement RDMs
of the motion from Site B to Site A at the range of 3 meters
is illustrated in Fig. 17 (a) and the corresponding simulation
is illustrated in Fig. 17 (b).

There are two differences in Fig. 17 (a) and (b). Firstly,
the range-Doppler map of measurement is more focused while
the simulation is more spread. An identical walking velocity
between the imported MoCap database and the measurements
cannot be guaranteed and hence the velocity of the torso in the
simulation and measurement are different. In Fig. 17 (a), the
resulting human velocity is around 0.5m/s, though the subject
tried to walk at a velocity of 1 m/s in the measurement, while
in Fig. 17 (d), the imported simulation velocity is around 1
m/s. The superposition of reflection signals can enlarge those
differences. These effects require calibration. In this context,
we reduce the Blender frame rate in (5) by a factor of two, i.e.,
calibrated velocity in simulation is halved, and the shape of
the simulated Doppler in Fig. 3 (c) becomes more focused and
more similar to the measurement. This constant calibration is
used for all frames of the scenario.

Secondly, the simulated reflection components are stronger
than the measurement. By refining the additional 10 dB loss
in the target material, we can observe that the simulated RDM
in Fig. 3 (d) matches better with the measurement.

• The non-zero velocities of RDMs are in the ranges of
around 3 to 3.5 meters, where the human is at the range
of around 3 meters with a velocity of around 0.5 m/s;
the human reflections at the range of around 3.5 meters
and with the velocity up-to 1.5 m/s. Another strong
zero-velocity component of RDMs is mapping with the
terminal wall at around 5.5 meters at RAMs.

• Compared with RDMs in anechoic chambers, the velocity
becomes more dispersed, because of the superposition of
multipath components.

3) Summary of the office corridor scenario: Generally, we
can conclude that the simulated geometrical results, i.e., the
distance, angle, and velocity of multipath components, are
in line with the office corridor measurements. Besides, the
strengths of some reflection components are not identical,
thereby requiring material-specific calibration. We also find
the interesting Doppler reflection phenomenon. Nevertheless,
in this paper, we emphasize the general simulation framework
for dynamic channels given the material reflectivity values.
Calibrating the material loss parameters and quantifying the
Doppler reflection are left for future modeling work.

V. CONCLUSION

This paper developed an FMCW MIMO radar channel simu-
lation based on the Blender scenario animation. The simulator
can generate time-varying radar signals with the consideration
of MIMO modes. Field measurement of indoor pedestrians
using mmWave sensors shows the validity and merits of the
developed simulation tool, including the enhanced estimation
of range, angle, Doppler, and micro-Doppler of the targets.
Further, the simulation-based method also performs well for
micro-Doppler assessment when compared with measurement
in anechoic. This provides a general approach to generating
radar channels, which can be useful for AI-based identification
applications as well as the coming integrated sensing and
communication era.

APPENDIX A
DERIVATION OF (17)

Since τm,n,l ≪ Tb, we neglect the last term
1

2
µτ2m,n,l in

(16), substitute (14) into (16),

∆ψn(t; l) =

M∑
m=1

2π(2(fl + µt̃)
Rm,n,l + vr t̃

c
),

=

M∑
m=1

2π(
2Rm,n,lfl

c
+

2flvr + 2µRm,n,l

c
t̃+

2µvr t̃
2

c
).

(24)

Neglecting the range-Doppler-coupling term, i.e.,
2µvr t̃

2

c
, we

obtain (17).

APPENDIX B
SIMULATION OF CDM-MIMO

In FMCW, CMD refers to slow-time CDM waveforms,
where the commonly used ones are Doppler division multi-
plexing (DDM) [55] and binary phase multiplexing (BPM)
[56]. The transmitted FMCW signals can be represented as

sC(t; l) =

M∑
m=1

wm,lsC,m(t; l)

=

M∑
m=1

wm,l

√
P0

2
exp(jϕ(t− (l − 1)Tp)),

(25)
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where ϕ(t) is the phase of FMCW chirp defined in (12), and
wm,l is the orthogonal phase code. For M -Tx DDM [55],

wDDM
m,l = exp(j2π

(m− 1)(l − 1)

M
). (26)

For M -Tx BPM, M = 2k, integer k ≥ 1, the orthogonality
codes can be provided by M ×M Hadamard matrix [57]

WBPM
2k = WBPM

2 ⊗WBPM
2k−1 , (27)

with

WBPM
2 =

[
1 1
1 −1

]
. (28)

Following the procedures and the assumptions in Blender
simulation to obtain (21) as in Section III-D. Let the beat
signal model of the nth Rx be ZCn ∈ CL×Ns , the (l, ns)-th
entry is

ZCn l,ns
=

Naz∑
naz=1

Nel∑
nel=1

M∑
m=1

wm,lPrnframe,nel,naz
exp(j2π(

2µRnframe,nel,naz

c

ns − 1

Fs
− 2

flVnfame,nel,naz

c

l − 1

L
Tframe

+
((m− 1)N + n− 1)∆d

λ
sinΘnel,naz)),

(29)
where the Rnframe,nel,naz , Prnel,naz

, Θnel,naz , and Vnfame,nel,naz

are outputs of Blender obtained in (2), (3), (4), and (5),
respectively.

In CDM-MIMO, decoding strategies are simplified based
on the transmitted codes, hence it would be difficult to obtain
a general decoding strategy. Coincidentally, the two-Tx DDM
and two-Tx BPM share the same code. Here, we derive the
general formula of CDM-MIMO in Blender-based radar signal
simulation and take two-Tx DDM/BPM as an example to
explain the decoding procedure. Consider two-Tx DDM/BPM,
ZCn

is the sum of signals from Tx1 and Tx2 as

ZCn
=ZC1,n

+ ZC2,n
, (30)

where

ZC1,n
≈ exp(j(l − 1)π) exp(

∆dN sin θ

λ
)hC2,n

. (31)

The channel of Tx1 ZC1,n ∈ CL/2×Ns can be demodulated
as

ZC1,n l̃,ns
=

1

2

(
ZCn2l̃−1,ns

+ ZCn2l̃,ns

)
, (32)

where L̃ = L/2, l̃ = 1, 2, ..., L̃, and the channel of Tx2
ZC2,n

∈ CL/2×Ns can be demodulated as

ZC2,n l̃,ns
=

1

2

(
ZCn2l̃−1,ns

− ZCn2l̃,ns

)
. (33)

In BPM/DDM-MIMO, we could obtain individual channels
to enable MIMO, however with some limits: (1) We only get
L/2 chirps instead of L chirps for two-Tx systems. The unam-
biguous velocity decreases to vmax/2. (2) The demodulation
approach in (31), (32), and (33) ignores the differences of
phase difference term exp(∆dN sin θ/λ) in (31), which would
result ambiguity in angle sidelobe.

APPENDIX C
SIMULATION OF FDM-MIMO

For FDM-MIMO, the orthogonality is in frequency, i.e.,
Txs simultaneously transmit signals with non-overlapping fre-
quency bands. The transmitted signal of FDM-MIMO can be
represented as

sF (t; l) =

M∑
m=1

sF,m(t; l)

M∑
m=1

√
P0

2
exp(jϕF,m(t− (l − 1)Tb)),

(34)

with

ϕF,m(t) = 2π((fl + (m− 1)B)t+
1

2
µt2)− ϕ0, (35)

where B denotes the bandwidth of one FMCW chirp.
The received signal at the nth antenna can be represented

as

rF,n(t; l) =

M∑
m=1

σm,n,lsF.m(t− τm,n,l; l). (36)

The dechirp processing of FDM is more complex than TDM
and CDM in the hardware and RF processing, the received
signal rF,n(t; l) is alternatively multiplied by M transmitted
signals sF,m(t; l), so as to separate the coupling Tx signals.
However, for simulation, we can proceed directly to the beat
signal of FDM-MIMO between the mth Tx and the nth Rx
antenna as
zFm,n(ns; l) =

σm,n,l exp(j2π(
2µRm,n

c

ns − 1

Fs
− fDF ,m(l − 1)Tp)),

(37)

where the Doppler shift fDF ,m,l of FDM-MIMO is distin-
guished from TDM and CDM by the carrier frequency of the
Tx index m as

fDF ,m = −2
(fl + (m− 1)B)vr

c
. (38)

Applying the assumptions of Blender-based radar simulation
used in TDM-MIMO. Let the beat signal model between
the mth Tx and the nth Rx antennas used for FDM-MIMO
simulation be ZFm,n ∈ CL×Ns , the (l, ns)-th entry can be
expressed as

ZFm,n l,ns
=

Naz∑
naz=1

Nel∑
nel=1

M∑
m=1

Prnframe,nel,naz

exp(j2π(
2µRnframe,nel,naz

c

ns − 1

Fs

− 2
(fl + (m− 1)B)Vnfame,nel,naz

c

l − 1

L
Tframe

+
((m− 1)N + n− 1)∆d

λ
sinΘnel,naz)),

(39)

where the Rnframe,nel,naz , Prnel,naz
, Θnel,naz , and Vnfame,nel,naz

are
outputs of Blender defined in (2), (3), (4), and (5), respectively.

For FDM-MIMO, the channels of different Txs have already
been separated in (39), which is distinguished from the (21)
in TDM and (29) in CDM. We do not need extra decoding
approaches.
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