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Abstract
Non-terrestrial networks (NTNs) are poised to 

play an important role in the future communica-
tion landscape, particularly with the advent of 6G 
technology. This article explores the integration 
of digital twin (DT) technology with 6G NTNs to 
enhance resource allocation and network manage-
ment. We outline the vision and architecture for 
developing DT-NTNs, discussing key integration 
challenges such as data freshness, computational 
power, reliable interconnections, interoperabili-
ty, and data security procedures. Various enabling 
technologies are also presented to facilitate inte-
gration and overcome these challenges. Moreover, 
a case study demonstrates the practical application 
of artificial intelligence (AI) and learning algorithms 
within DT-NTNs for optimizing network resources. 
Through these efforts, this article aims to provide 
insights and guidelines for developing highly intel-
ligent and dynamic non-terrestrial communication 
systems in the era of 6G technology, particularly by 
proposing a novel DT-NTN-based resource alloca-
tion approach, and demonstrating the effectiveness 
of AI-driven optimization.

Introduction
As the demand for data increases in the 6G era, 
traditional terrestrial networks are about to reach 
their capacity limits. In this ever-connected future, 
non-terrestrial networks (NTNs) are envisioned 
to augment existing infrastructure by providing 
seamless and ubiquitous connectivity, especially in 
remote or sparsely populated areas where terres-
trial coverage is challenging. NTNs, with their con-
stellations of satellites and aerial vehicles, offer a 
compelling solution to extend connectivity beyond 
the constraints of terrestrial infrastructure [1]. Thus, 
6G NTNs have a crucial role in ensuring global 
coverage for applications requiring high availability 
and resilience, bridging the digital divide, foster-
ing innovation, stimulating economic growth, and 
driving social progress. However, these benefits 
of NTNs come at the expense of higher complex-
ity due to their vast scale and constantly chang-
ing environments. Hence, the design and resource 
management of NTNs become increasingly costly 
and difficult. Besides, scalability is another major 
concern in NTNs due to the exponential growth 
in users and network nodes, leading to daunting 
resource allocation challenges [2].

To face these challenges, digital twin (DT) 
technology emerges as a promising solution, 
offering virtual models that replicate real-world 
physical assets in real-time within a digital environ-
ment. In this context, a DT-NTN serves as a virtual 
representation of the physical NTN, continuously 
fed with real-time data. This enables advanced 
simulations to test network behavior, real-time 
monitoring to proactively identify and address 
technical issues, and data-driven decision-making 
to optimize network performance and resource 
allocation [3]. For instance, DT-NTNs can enhance 
network energy efficiency by leveraging historical 
traffic data to dynamically adjust the power levels 
of network elements during periods of low activi-
ty, thereby conserving energy resources.

Unlike traditional simulation tools, DT-NTNs 
maintain a real-time connection with the physi-
cal NTNs through sensors and devices attached 
to network entities. This continuous data feed-
back loop provides immediate insights into net-
work performance, enabling high-fidelity design, 
dynamic control, and optimization based on actu-
al network conditions [4]. Further, conventional 
resource allocation methods for NTNs often rely 
on pre-defined policies and static allocation strat-
egies, adjusting based on periodic monitoring and 
historical data analysis. These approaches struggle 
with the dynamic nature of NTNs, where factors 
like signal strength and user mobility constantly 
change. In contrast, DT-based approaches inte-
grate real-time data from various network entities, 
enabling dynamic and adaptive resource alloca-
tion, which ensures optimal resource distribution 
in rapidly changing environments. While conven-
tional methods react to current states and past 
trends, DT-based strategies use predictive ana-
lytics and simulations to forecast conditions and 
demands, enabling proactive management and 
mitigating congestion issues [5].

DT-NTN models extend beyond mere network 
replicas. They leverage optimization theory, game 
theory, and artificial intelligence (AI) to enable 
online optimization and algorithmic decision-mak-
ing for resource management. These capabilities 
empower the development of sophisticated mod-
els and simulations, crucial for training AI-based 
resource management methods. By incorporat-
ing these tools, DT-NTNs become more adept 
at optimizing network performance, managing 
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resources dynamically, and adapting efficiently to 
real-time changes. This multifaceted role of DTs 
underscores the significant value of DT-NTNs in 
enhancing resource allocation and management 
within NTNs. For example, to address the chal-
lenges of dynamic satellite topology and han-
dover loops, a DT-assisted storage strategy for 
satellite-terrestrial networks was proposed in [6]. 
Further demonstrating the potential of DT-NTNs, 
the study in [7] developed an autonomous sched-
uling model aimed at mitigating the issue of ineffi-
cient task scheduling caused by dynamic changes 
in task priority and satellite position.

To harness these intriguing potentials, this arti-
cle explores the essential aspects of constructing 
DT-NTNs for resource management. It begins by 
discussing the architecture of DT-NTNs, identify-
ing deployment challenges, and examining key 
enabling technologies. Following this, we focus on 
using DT-NTNs for optimizing resources in qual-
ity of service (QoS)-aware scenarios. We pres-
ent a case study on dynamic resource allocation 
in NTNs, with the goal of managing the coexis-
tence of enhanced mobile broadband (eMBB) 
and ultra-reliable low-latency communications 
(URLLC) services.

System Model of DT-NTN
According to the 3rd Generation Partnership 
Project (3GPP) specifications, NTN is defined as 
an umbrella term for communication networks 
that involve non-terrestrial flying objects including 
space-borne vehicles such as geostationary earth 
orbit (GEO), medium earth orbit (MEO), and low 
earth orbit (LEO) satellites, as well as airborne 
vehicles, that is, high altitude platforms (HAPs), 
and unmanned aerial vehicles (UAVs) [2]. The 
communication architecture of an NTN is general-
ly characterized by: 
•	 A space-aerial segment including satellites, 

HAPs, and UAVs
•	 A ground segment involving a number of 

ground stations/gateways that relay data to 

and from the space-aerial segment; and finally
•	 A user segment, which includes the termi-

nals, for example, ships, airplanes, and other 
various ground users. 

The ground segment includes the network con-
trol center (NCC) for real-time management and 
control of NTN communications, and the network 
management center (NMC) responsible for mon-
itoring and managing network element perfor-
mance and health.

The proposed DT-NTN concept aims to estab-
lish a high-fidelity virtual replica, facilitating con-
tinuous monitoring, simulation, and optimization. 
Drawing inspiration from DT architectures in 
industrial domains and aligning with the Interna-
tional Telecommunication Union (ITU) recom-
mendations for communication networks in [8], 
the proposed DT-NTN for resource allocation is 
depicted in Fig. 1. Specifically, building a DT-NTN 
involves several key steps, each crucial for creat-
ing an accurate and functional digital represen-
tation of the physical network and its operations. 
The process can be outlined as follows.

Data Collection: The first step involves contin-
uous data collection from NTN assets, including 
satellites, HAPs, UAVs, ground stations, and user 
terminals. This data includes telemetry, tracking, 
and control (TT&C) data, communication network 
data, and IoT sensor data.

Modeling Physical Assets: The DT-NTN lever-
ages collected data to continuously refine digital 
models of network assets. These high-fidelity rep-
licas strive to accurately represent the real-world 
behavior, performance, and interactions of each 
entity within the NTN.

Processing and Simulation: Advanced sim-
ulation techniques replicate the behavior of the 
physical NTN in the DT environment. These sim-
ulations can predict network performance under 
various conditions, identify potential issues, and 
test different resource allocation strategies. Fur-
ther, AI and learning algorithms are applied to the 
digital models and processed data to enable adap-

FIGURE 1. Reference architecture depicting a DT-NTN system model for resource management.
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tive and predictive capabilities. AI-driven models 
can optimize resource allocation by dynamically 
adjusting network parameters to maintain optimal 
performance. The ability to learn from data and 
improve over time is a key advantage of DT-NTNs.

Feedback Loop: A continuous feedback loop is 
established between the DT-NTN and the physical 
network. The DT-NTN provides actionable insights 
and recommendations to the network, ensuring 
synchronization with the actual NTN conditions. 
This feedback mechanism enables proactive man-
agement and rapid response to changes, facilitat-
ing efficient network operation and meeting the 
diverse requirements of various services.

In this setting, establishing standardized inter-
faces is essential for bridging the physical NTN 
with its virtual DT-NTN, as well as facilitating seam-
less information exchange between DT-NTNs and 
network applications. On one side, two primary 
interfaces enable real-time interactive mapping 
between the physical NTN and DT-NTN. The first 
interface collects TT&C data from flying assets, 
ensuring system health and control. The second 
interface gathers communication-related data, 
such as traffic demands, channel states, topolog-
ical routes, and connection/failure incidents, sup-
porting effective network management to meet 
user demands. On the other side, DT-NTN inter-
faces must align with the requirements of various 
network applications, including regular network 
management, protocol validation, and perfor-
mance optimization.

Challenges and Enabling Technologies for DT-NTN
This section identifies the key challenges for the 
proposed DT-NTN and the enabling technologies 
that address them.

DT-NTN Challenges
While DT technology offers unequivocal benefits 
and enhancements, its deployment for resource 
allocation within NTNs faces several challenges.

Data Freshness: This is particularly challenging 
due to the heterogeneity and dynamicity of NTNs 
as they operate in remote and harsh environments, 
where data collection and real-time transmissions 

may experience delays. While it is feasible to col-
lect and use data for offline operations, achieving 
online optimization through DTs needs further 
enhancing real-time data processing capabilities.

Ownership and Privacy Concerns: This chal-
lenge emerges from the diverse ownership struc-
tures within NTNs, compounded by regulatory 
frameworks such as the general data protection reg-
ulation (GDPR) in the European Union. Ensuring the 
protection of customers’ private data is a paramount 
concern for DT-NTNs. Compliance with local laws 
based on the locations of the NTN infrastructure 
or its DT is critical to safeguarding user privacy and 
maintaining regulatory compliance.

Computational Complexity: The complex and 
ever-changing characteristics of NTNs require 
sophisticated modeling techniques. For instance, 
parameters like flight dynamics, autonomous nav-
igation trajectories, constellation patterns, and 
communication link performance need to be 
modeled as accurately as possible. This requires 
substantial computational resources and access 
to high-performance computing infrastructure. 
Besides, many resource allocation problems in 
NTNs are inherently non-convex or involve chal-
lenging combinatorial optimization, demanding 
high computational power.

Resource-Limited Devices: NTN entities, 
including LEO small satellites, downstream 
nano-satellites (nanosats), and HAPs, face sub-
stantial challenges due to their constrained com-
putational capacity, limited memory, and often 
restricted power supply. Processing and manag-
ing the extensive data required for effective dig-
ital twinning poses difficulties for these devices. 
Hence, it is crucial to alleviate their burden by 
offloading storage and computing capabilities. 
This measure is essential to maintain sustained 
functionality and extend their operational lifespan 
in challenging NTN environments.

Interoperability and Standardization: NTNs 
often incorporate equipment and systems from 
various vendors with incompatible configurations, 
which imposes a challenge for seamless integration 
and operational efficiency. The lack of interoper-
ability and standardization among vendor equip-

TABLE 1. Comparison of DT enabling technologies and targeted challenges.

Enabling Technology Potential Targeted Challenge

Narrow-band Internet of things 
(NB-IoT)

Real-time data collection, asset tracking, condition monitoring, predictive maintenance, 
mission simulation Data freshness

AI and learning techniques Dynamic resource allocation and optimization, improved decision-making, anomaly 
detection, failure prediction Computational complexity

Space-based cloud computing  NB-IoT data analysis, multi-user DT-NTNs, data archiving, AI model training, 
redundancy and backup in space, immunity to natural disasters occurring on Earth

Resource-limited devices, 
security and reliability

Neuromorphic computing Energy-efficient computation, autonomous device learning, dynamic data analysis and 
decision-making, self-adaptive networks, AI model integration

Computational complexity, 
resource-limited devices

Quantum cryptography Unconditionally secure communication, quantum-safe cryptography, quantum key 
distribution, post-quantum security, protection against eavesdropping Security and reliability

Quantum computing Solving complex optimization problems, parallel processing quantum machine learning, 
AI model acceleration complex simulation and modeling in DT-NTNs Computational complexity

Quantum sensing  Highly accurate measurements, enhanced NB-IoT sensing, environmental monitoring, 
ultra-precise positioning, remote sensing, precision time synchronization

Data freshness and 
accuracy

Open radio access network 
(O-RAN)

Flexible deployment, multi-vendor interoperability, real-time configurations, service-
specific network slices open interfaces, virtualized network function (VNF) integration

Interoperability and 
standardization
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ment further complicates the modeling of NTN 
element interactions. Therefore, DT-NTNs must 
be able to collect and integrate data from diverse, 
autonomous, and heterogeneous sources.

Security and Reliability: For an accurate rep-
resentation of the physical NTN in the virtual 
DT-NTN, secure and reliable communication chan-
nels are essential. Any interruption or tampering in 
these channels can result in inaccurate or incom-
plete data, compromising the quality of analysis 
and decision-making. Therefore, robust communi-
cation protocols and security measures are crucial 
to safeguard against such issues and to maintain 
the DT-NTN’s fidelity to the physical NTN.

DT-NTN Enabling Technologies
This section explores enabling technologies and 
their key features aimed at tackling challenges 
within DT-NTNs. Table 1 outlines these technolo-
gies and their potential solutions for deployment 
issues. These technologies are critical enablers 
for constructing DT-NTNs designed for optimized 
resource allocation. By leveraging these advance-
ments, DT-NTNs can dynamically adapt to chang-
ing conditions and demands, thereby significantly 
improving resource allocation efficiency compared 
to traditional methods. We specifically address 
challenges such as computing, sensing, and 
interoperability, offering a deeper understanding of 
their significance in the context of DT-NTNs.

Narrow-Band Internet of things (NB-IoT): 
The 3GPP organization in its Release-17 has out-
lined guidelines to incorporate narrow-band IoT 
(NB-IoT) over satellites [9]. Renowned for its low 
power consumption, NB-IoT is ideal for battery-op-
erated devices, enabling data collection from 
remote and power-limited assets within NTNs. Its 
adoption is crucial for enabling DT-NTNs, allow-
ing real-time data collection, remote monitoring, 
and predictive maintenance, thereby improving 
the precision of DT-NTN models. NB-IoT provides 
network operators with valuable insights, enhanc-
ing network management capabilities. Despite 
potentially exhibiting slightly higher latency than 
other IoT technologies, NB-IoT generally fulfills 
the requirements for many DT applications. Toler-
ating this marginal increase in latency in exchange 
for global coverage makes NB-IoT as a crucial 
enabler. By implementing techniques like pre-
diction, data summarization, and prioritization, 
DT-NTNs can still offer significant benefits even 
with less-than-instantaneous data updates. For 
example, a few seconds of delay might be accept-
able for most monitoring purposes, allowing the 
DT-NTN to identify trends and potential issues.

Moreover, NB-IoT devices can be used for 
security monitoring, ensuring the safety and integ-
rity of the NTNs. Particularly, DT-NTNs can incor-
porate security measures based on NB-IoT data 
to respond to potential threats and vulnerabilities. 
More importantly, NB-IoT technology can act as a 
bridge between diverse communication standards 
within NTNs by leveraging specific communication 
protocols to create a unified platform capable of 
understanding and translating data from multiple 
sources. This synergy enhances the overall adapt-
ability and performance of the NTN ecosystem.

AI and Learning Techniques: DT-NTN mod-
els rely on extensive data, which has to be thor-
oughly analyzed to extract insights about physical 

assets. In this regard, AI and learning algorithms are 
essential for analyzing data collected from NB-IoT 
and sensor devices. These advanced algorithms 
empower enhanced decision-making, predictive 
maintenance, and anomaly detection, thereby 
improving the DT-NTN role in network manage-
ment and resource allocation. Moreover, AI can 
accelerate DT-NTN algorithms, potentially enabling 
real-time operations and large-scale technology 
testing. For instance, deep learning techniques 
have shown a remarkable ability in modeling com-
plex satellite communication networks. Research-
ers have effectively employed diverse learning 
approaches to investigate and improve various 
aspects such as network modeling, resource opti-
mization [10], and network slicing [11]. With these 
advancements, it is evident that AI and learning 
algorithms will play a significant role in shaping 
the DT-NTN paradigm. However, these tools may 
require higher computational power.

Furthermore, the modular architecture of DT 
technology allows for the creation of individ-
ual DT for each asset component. This modular 
approach involves breaking down the system into 
smaller, manageable modules or components, 
each representing a specific aspect or function of 
the asset. These components can then be seam-
lessly interconnected into a comprehensive inte-
grated DT-NTN, providing a holistic view of the 
entire NTN. This modularity supports process rep-
lication, facilitates knowledge transfer, and empow-
ers intelligence at the edge. It enables techniques 
like federated learning and transfer learning, which 
enhance system resilience by leveraging distrib-
uted intelligence and diverse data sources. This 
approach not only helps avoiding costly redundan-
cies within NTNs but also enables the prediction 
of potential disruptions by identifying weak points.

Space-Based Cloud Computing: Cloud plat-
forms are crucial for the creation and operation of 
DTs due to their ability to provide the necessary 
computational power and storage capacity for 
developing, maintaining, and running twin models 
effectively. Particularly, space-based cloud com-
puting (SCC) has immense potential for the devel-
opment of DT-NTNs, offering unique capabilities 
such as ultra-low latency and high bandwidth con-
nectivity [12]. These features significantly enhance 
real-time data processing and model execution 
within the DT-NTN system, leading to faster and 
more accurate network behavior predictions. 
This enables more efficient resource allocation 
and service management across geographically 
dispersed NTN elements. By positioning cloud 
platforms closer to physical NTN entities, SCC 
can reduce latency and improve real-time per-
formance. Additionally, these platforms offer 
resilience against Earth-based disruptions, ensur-
ing continuous monitoring and management of 
physical NTNs. Moreover, SCC enables scalable 
and flexible resource management by dynami-
cally allocating computational resources based 
on the network needs. This scalability is essen-
tial for handling the varying demands of different 
services, such as high-throughput applications or 
latency-sensitive communications.

Neuromorphic Computing: Unlike conven-
tional computers that follow the von Neumann 
architecture, neuromorphic computers emulate 
the structure of biological brains with artificial 

For an accurate representa-
tion of the physical NTN in 
the virtual DT-NTN, secure 

and reliable communication 
channels are essential. Any 
interruption or tampering in 

these channels can result 
in inaccurate or incomplete 

data, compromising the 
quality of analysis and 

decision-making.

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 04,2024 at 21:27:24 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • Accepted for Publication5

neurons and synapses. This unique structure 
enables them to execute complex tasks such as 
pattern recognition and learning in ways similar 
to the human brain. Neuromorphic computing is 
particularly valuable in scenarios characterized by 
temporal signals and the necessity for continual 
learning from diverse data sources within com-
plex environments such as NTNs. Furthermore, 
neuromorphic hardware and algorithms excel in 
handling complex, dynamic, and adaptive pro-
cesses, making them ideal for real-time data anal-
ysis and decision-making, thus enhancing the 
capabilities of DT-NTNs to simulate and respond 
to changing network conditions. In the field of 
satellite communications, ongoing research is 
exploring the use of neuromorphic processors 
for AI-based applications. These processors offer 
significant advantages in tasks requiring extensive 
parallelism and matrix-based operations, thereby 
enhancing satellite payload performance, reliabil-
ity, and power efficiency [13].

Neuromorphic technology presents a compel-
ling advantage for DT-NTNs due to its exceptional 
energy efficiency. Unlike traditional architectures, 
neuromorphic computers can perform complex 
computations with significantly lower power 
consumption. This characteristic is crucial for 
resource-constrained environments often encoun-
tered in NTNs, where minimizing power demands 
translates to extended network operation and 
reduced reliance on external power sources. 
Beyond energy efficiency, neuromorphic com-
puting offers additional advantages for DT-NTNs. 
Their ability to process information similar to the 
human brain enables real-time analysis of the vast 
amount of data generated by NTNs. This real-time 
processing capability is essential for timely deci-
sion-making and optimization within the dynamic 
environment of DT-NTNs. Furthermore, inspired 
by the brain’s natural redundancy, neuromor-
phic computers exhibit inherent fault tolerance. 
This means they can continue functioning even if 
some components experience failures, a valuable 
feature for ensuring the reliability of DT-NTNs. In 
addition, neuromorphic systems can be scaled 
efficiently to accommodate varying workloads 
and network sizes, making them suitable for 
DT-NTNs of different scales and complexities.

Quantum Technologies: From an implemen-
tation perspective, NTN entities are mostly inter-
connected via free-space optical (FSO) links, which 

are favored in quantum communications protocols 
due to negligible background thermal radiation 
at optical frequencies [14]. In this context, the 
development of secure communication channels 
is paramount for DT-NTNs. However, the complex 
and distributed nature of these networks creates 
significant security challenges. Quantum cryptog-
raphy, with protocols like quantum key distribution 
(QKD), offers a compelling solution. Unlike tra-
ditional encryption methods, QKD leverages the 
laws of quantum mechanics to establish keys with 
unconditional security, which effectively addresses 
the inherent vulnerabilities of DT-NTNs, ensuring 
robust protection across the entire system.

Beyond secure communications, quantum tech-
nologies offer further advantages for DT-NTNs. 
Quantum sensing provides precise measurements 
of crucial parameters for accurately representing a 
DT-NTN, such as position, velocity, and environmen-
tal conditions. These sensors, based on atomic and 
molecular systems, offer unparalleled precision in 
time and frequency. This enables detailed analysis of 
signal propagation, interference patterns, and noise 
within the physical NTN. Further, quantum comput-
ing represents a revolutionary leap in computing 
capabilities. Classical computers often struggle with 
large-scale optimization problems encountered in 
DT-NTNs. However, quantum computing algorithms 
can tackle them efficiently due to the exponential 
nature of the quantum computational space. This 
unprecedented scalability paves the way for opti-
mized modeling and resource allocation within the 
dynamic and complex environments of DT-NTNs.

Open Radio Access Network (O-RAN): RAN 
is a transformative architecture aimed at fostering 
interoperability and innovation within the RAN 
domain. By decoupling hardware and software 
components, it enables flexible deployment of 
network infrastructure. This separation facilitates 
interoperability among hardware from different 
vendors and promotes openness in software 
and interfaces, encouraging collaboration and 
advancement within the RAN ecosystem. More-
over, the open interfaces within the O-RAN archi-
tecture facilitate multi-vendor interoperability and 
coexistence across functions, ensuring seamless 
integration of various components and efficient 
data exchange through standardized interfaces. 
Thus, data-driven network control and manage-
ment solutions can be effectively incorporated 
into O-RAN architecture [15].

O-RAN architecture offers significant advan-
tages for developing DT-NTNs. Its flexibility and 
programmability contribute to efficient resource 
management, reduced network latency, and ulti-
mately, enhanced DT-NTN performance. Spe-
cifically, the openness of O-RAN software and 
interfaces simplifies data collection and manage-
ment, which reduces the complexity of modeling 
interactions between diverse network elements 
within the DT-NTN. Furthermore, O-RAN func-
tional partitioning allows for flexible representa-
tion of the physical NTN in its DT-NTN, leading 
to more accurate simulations and enhanced pre-
dictive and optimization capabilities. This syner-
gy is further amplified by DT technology itself. 
DT-NTNs leverage virtual modeling capabilities 
for testing and optimizing scenarios before imple-
mentation in the physical NTN, minimizing risks 
and ensuring efficient network operation.

FIGURE 2. Twin AI-based model for resource allocation in NTNs.

Authorized licensed use limited to: University of Luxembourg. Downloaded on November 04,2024 at 21:27:24 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • Accepted for Publication 6

Case Study: DT-NTNs for Resource Optimization
In the context of the challenges and enabling tech-
nologies discussed earlier, the integration of DT 
and AI technologies emerges as a powerful para-
digm for addressing the complexities of 6G NTNs. 
This section delves into a case study illustrating 
the practical application of DT-NTNs in optimiz-
ing resources within QoS-aware scenarios. Specif-
ically, we explore the implementation of learning 
techniques for dynamic resource allocation with-
in O-RAN-based NTNs. The primary objective is 
to enable the seamless coexistence of conflicting 
eMBB and URLLC services, accommodating their 
divergent requirements. While eMBB demands 
high data rates and URLLC necessitates ultra-low 
latency, optimizing these services simultaneous-
ly poses a significant challenge. Addressing these 
conflicting demands requires advanced resource 
management and network design strategies. 
Through this case study, we aim to demonstrate 
how DT-NTNs can effectively manage these chal-
lenges and optimize resource allocation to meet 
diverse service requirements within 6G NTNs.

Network Scenario
We consider a network of LEO satellites at a 550 
km altitude, operating in the Ku band (12-18 
GHz) with a 12.5 GHz carrier frequency. Each 
satellite node transmits at 40 dBm with a 10 dBi 
antenna gain. Noise power is set at –174 dBm/
Hz. eMBB traffic follows full-buffer traffic, while 
URLLC traffic follows a Poisson process with 
rate l. This constellation of multiple LEO satel-
lites serving multiple distributed users with distinct 
requirements, as shown in Fig. 2. Specifically, LEO 
satellites collect network information, including 
channel states, network traffic, and QoS require-
ments, and then send the collected data to the 
non-real time RAN intelligent controller (non-RT 
RIC) located at a cloud server through a gate-
way. The DT-NTN process the collected network 
information, which will be updated over time to 
keep synchronizing with the physical network. We 
developed a Python-based simulator for modeling 
the LEO network, utilizing its libraries for wireless 
environment simulations and machine learning. 
TensorFlow is used for implementing deep learn-
ing models. A learning model based on deep neu-
ral networks (DNNs) is installed at the non-RT RIC 
and trained by interacting with the DT-NTN to 
improve the spectral efficiency while satisfying the 
QoS requirements of each service. Specifically, 
the QoS for eMBB services is characterized by 
a defined minimum data rate threshold, whereas 
the QoS for URLLC is determined based on the 
outage probability.

The resource allocation decisions are then 
performed based on the trained models within 
the DT-NTN and sent to the physical network. In 
the DNN architecture, we use a model consist-
ing of three hidden layers: the first hidden layer 
is configured with 600 neurons, the second with 
300 neurons, and the third contains 250 neu-
rons. The number of neurons in the input layer is 
aligned with the considered network information, 
including channel states, network traffic, and QoS 
requirements. Furthermore, the number of neu-
rons in the output layer corresponds to the size 
of the resource allocation matrix. We utilize the 

rectified linear unit (ReLU) activation function for 
the hidden layers, while the output layer employs 
the Softmax function.

Results Discussion
Figure 3 shows the downlink spectral efficien-
cy for different settings of URLLC traffic rate 
(l). Here, spectral efficiency is obtained as the 
sum data rate of eMBB and URLLC users divid-
ed by the system bandwidth. A fully buffered 
traffic model is considered for eMBB users. We 
compare the dynamic resource allocation-based 
approach to the static orthogonal method, where 
pre-determined fixed resources are assigned to 
each service. The findings reveal that the AI-based 
dynamic resource allocation approach within the 
DT-NTN provides better resource utilization com-
pared to the orthogonal technique. Nevertheless, 
in case of heavy URLLC traffic, the orthogonal 
method may perform slightly better than the 
dynamic approach, as most resources allocated 
to URLLC users are utilized effectively. As illus-
trated in Fig. 3, the dynamic approach achieves 
approximately 60 percent higher spectral efficien-
cy than the orthogonal method when l = 100 
packets/time slot. However, this efficiency gap 
narrows with increasing URLLC traffic, as more 
eMBB resources are diverted to serve the high-pri-
ority URLLC traffic, thereby affecting the over-
all eMBB data rate. When the URLLC traffic rate 
reaches l = 200 packets/time slot, the spectral 
efficiency of the orthogonal method rises to about  
2.2 b/s/Hz, while the dynamic approach drops 
to roughly 2.1 b/second/Hz. This is because the 
static approach can fully utilize its pre-allocated 
resources for URLLC traffic, whereas the dynamic 
method requires ongoing monitoring and adjust-
ment, introducing additional signaling overhead. 
The dynamic allocation also attempts to meet 
stringent URLLC reliability by reallocating more 
resources, which impacts eMBB data rates and 
results in decreased spectrum utilization due to 
the reduction in eMBB performance.

Figure 4 depicts the cumulative distribution 
function (CDF) of URLLC reliability defined in 
terms of the outage probability Pr[Ru(t) ≤ zl(t)] 
≤ emax, where Ru(t) is the obtained sum data rate 
of URLLC users at time slot t, z represents the 
URLLC packet size and emax denotes the max-
imum threshold of the outage probability. The 
results obtained at emax = 0.07 and z = 32 bytes, 
while the value of l varies over time slots. Specif-
ically, the cumulative probability that the outage 

FIGURE 3. Downlink spectral efficiency.
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probability exceeds the threshold emax is around 
0.02. This outcome is due to the fact that the 
dynamic scheduling algorithm prioritizes critical 
URLLC traffic by allocating resources from eMBB 
users over time slots, considering the stochastic 
network dynamics. In short, these findings high-
light the potential advantages of incorporating AI 
models within DT-NTNs for enhancing the perfor-
mance of 6G NTNs, ensuring the required reliabil-
ity, and meeting the diverse QoS requirements.

Conclusions
This article has introduced and explored the inte-
gration of DT technology into 6G NTNs, present-
ing a novel approach for enhancing resource 
allocation and network management. We out-
lined the vision and architecture for developing 
DT-NTNs, and discussed the key deployment 
challenges such as data freshness and accuracy, 
computational power, reliable interconnections, 
interoperability, and data security procedures. 
Various enabling technologies were explored to 
facilitate the integration and address these chal-
lenges. Furthermore, a case study was present-
ed to illustrate the practical application of AI and 
learning algorithms within DT-NTNs for optimizing 
NTN resources. In essence, this article introduced 
practical aspects of DT-NTN development that 
can potentially trigger more in-depth research into 
creating highly intelligent and dynamic non-terres-
trial communication systems.
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FIGURE 4. URLLC outage probability.
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