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ABSTRACT

Non-terrestrial networks (NTNs) are poised to
play an important role in the future communica-
tion landscape, particularly with the advent of 6G
technology. This article explores the integration
of digital twin (DT) technology with 6G NTNs to
enhance resource allocation and network manage-
ment. We outline the vision and architecture for
developing DT-NTNs, discussing key integration
challenges such as data freshness, computational
power, reliable interconnections, interoperabili-
ty, and data security procedures. Various enabling
technologies are also presented to facilitate inte-
gration and overcome these challenges. Moreover,
a case study demonstrates the practical application
of artificial intelligence (Al) and learning algorithms
within DT-NTNs for optimizing network resources.
Through these efforts, this article aims to provide
insights and guidelines for developing highly intel-
ligent and dynamic non-terrestrial communication
systems in the era of 6G technology, particularly by
proposing a novel DT-NTN-based resource alloca-
tion approach, and demonstrating the effectiveness
of Al-driven optimization.

INTRODUCTION

As the demand for data increases in the 6G era,
traditional terrestrial networks are about to reach
their capacity limits. In this ever-connected future,
non-terrestrial networks (NTNs) are envisioned
to augment existing infrastructure by providing
seamless and ubiquitous connectivity, especially in
remote or sparsely populated areas where terres-
trial coverage is challenging. NTNs, with their con-
stellations of satellites and aerial vehicles, offer a
compelling solution to extend connectivity beyond
the constraints of terrestrial infrastructure [1]. Thus,
6G NTNs have a crucial role in ensuring global
coverage for applications requiring high availability
and resilience, bridging the digital divide, foster-
ing innovation, stimulating economic growth, and
driving social progress. However, these benefits
of NTNs come at the expense of higher complex-
ity due to their vast scale and constantly chang-
ing environments. Hence, the design and resource
management of NTNs become increasingly costly
and difficult. Besides, scalability is another major
concern in NTNs due to the exponential growth
in users and network nodes, leading to daunting
resource allocation challenges [2].

To face these challenges, digital twin (DT)
technology emerges as a promising solution,
offering virtual models that replicate real-world
physical assets in real-time within a digital environ-
ment. In this context, a DT-NTN serves as a virtual
representation of the physical NTN, continuously
fed with real-time data. This enables advanced
simulations to test network behavior, real-time
monitoring to proactively identify and address
technical issues, and data-driven decision-making
to optimize network performance and resource
allocation [3]. For instance, DT-NTNs can enhance
network energy efficiency by leveraging historical
traffic data to dynamically adjust the power levels
of network elements during periods of low activi-
ty, thereby conserving energy resources.

Unlike traditional simulation tools, DT-NTNs
maintain a real-time connection with the physi-
cal NTNs through sensors and devices attached
to network entities. This continuous data feed-
back loop provides immediate insights into net-
work performance, enabling high-fidelity design,
dynamic control, and optimization based on actu-
al network conditions [4]. Further, conventional
resource allocation methods for NTNs often rely
on pre-defined policies and static allocation strat-
egies, adjusting based on periodic monitoring and
historical data analysis. These approaches struggle
with the dynamic nature of NTNs, where factors
like signal strength and user mobility constantly
change. In contrast, DT-based approaches inte-
grate real-time data from various network entities,
enabling dynamic and adaptive resource alloca-
tion, which ensures optimal resource distribution
in rapidly changing environments. While conven-
tional methods react to current states and past
trends, DT-based strategies use predictive ana-
lytics and simulations to forecast conditions and
demands, enabling proactive management and
mitigating congestion issues [5].

DT-NTN models extend beyond mere network
replicas. They leverage optimization theory, game
theory, and artificial intelligence (Al) to enable
online optimization and algorithmic decision-mak-
ing for resource management. These capabilities
empower the development of sophisticated mod-
els and simulations, crucial for training Al-based
resource management methods. By incorporat-
ing these tools, DT-NTNs become more adept
at optimizing network performance, managing
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FIGURE 1. Reference architecture depicting a DT-NTN system model for resource management.

resources dynamically, and adapting efficiently to
real-time changes. This multifaceted role of DTs
underscores the significant value of DT-NTNs in
enhancing resource allocation and management
within NTNs. For example, to address the chal-
lenges of dynamic satellite topology and han-
dover loops, a DT-assisted storage strategy for
satellite-terrestrial networks was proposed in [6].
Further demonstrating the potential of DT-NTNs,
the study in [7] developed an autonomous sched-
uling model aimed at mitigating the issue of ineffi-
cient task scheduling caused by dynamic changes
in task priority and satellite position.

To harness these intriguing potentials, this arti-
cle explores the essential aspects of constructing
DT-NTNs for resource management. It begins by
discussing the architecture of DT-NTNs, identify-
ing deployment challenges, and examining key
enabling technologies. Following this, we focus on
using DT-NTNs for optimizing resources in qual-
ity of service (QoS)-aware scenarios. We pres-
ent a case study on dynamic resource allocation
in NTNs, with the goal of managing the coexis-
tence of enhanced mobile broadband (eMBB)
and ultra-reliable low-latency communications
(URLLC) services.

SYSTEM MopeL oF DT-NTN

According to the 3rd Generation Partnership
Project (3GPP) specifications, NTN is defined as
an umbrella term for communication networks
that involve non-terrestrial flying objects including
space-borne vehicles such as geostationary earth
orbit (GEO), medium earth orbit (MEO), and low
earth orbit (LEO) satellites, as well as airborne
vehicles, that is, high altitude platforms (HAPs),
and unmanned aerial vehicles (UAVs) [2]. The
communication architecture of an NTN is general-
ly characterized by:
* A space-aerial segment including satellites,
HAPs, and UAVs
+ A ground segment involving a number of
ground stations/gateways that relay data to

and from the space-aerial segment; and finally
+ A user segment, which includes the termi-

nals, for example, ships, airplanes, and other

various ground users.
The ground segment includes the network con-
trol center (NCC) for real-time management and
control of NTN communications, and the network
management center (NMC) responsible for mon-
itoring and managing network element perfor-
mance and health.

The proposed DT-NTN concept aims to estab-
lish a high-fidelity virtual replica, facilitating con-
tinuous monitoring, simulation, and optimization.
Drawing inspiration from DT architectures in
industrial domains and aligning with the Interna-
tional Telecommunication Union (ITU) recom-
mendations for communication networks in [8],
the proposed DT-NTN for resource allocation is
depicted in Fig. 1. Specifically, building a DT-NTN
involves several key steps, each crucial for creat-
ing an accurate and functional digital represen-
tation of the physical network and its operations.
The process can be outlined as follows.

Data Collection: The first step involves contin-
uous data collection from NTN assets, including
satellites, HAPs, UAVs, ground stations, and user
terminals. This data includes telemetry, tracking,
and control (TT&C) data, communication network
data, and 10T sensor data.

Modeling Physical Assets: The DT-NTN lever-
ages collected data to continuously refine digital
models of network assets. These high-fidelity rep-
licas strive to accurately represent the real-world
behavior, performance, and interactions of each
entity within the NTN.

Processing and Simulation: Advanced sim-
ulation techniques replicate the behavior of the
physical NTN in the DT environment. These sim-
ulations can predict network performance under
various conditions, identify potential issues, and
test different resource allocation strategies. Fur-
ther, Al and learning algorithms are applied to the
digital models and processed data to enable adap-
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Enabling Technology

Potential

Targeted Challenge

Narrow-band Internet of things
(NB-IoT)

Al and learning techniques

Space-based cloud computing

Neuromorphic computing

Quantum cryptography

Quantum computing

Quantum sensing

Open radio access network
(O-RAN)

Real-time data collection, asset tracking, condition monitoring, predictive maintenance,

mission simulation

Dynamic resource allocation and optimization, improved decision-making, anomaly

detection, failure prediction

NB-IoT data analysis, multi-user DT-NTNs, data archiving, Al model training,
redundancy and backup in space, immunity to natural disasters occurring on Earth

Energy-efficient computation, autonomous device learning, dynamic data analysis and
decision-making, self-adaptive networks, Al model integration

Unconditionally secure communication, quantum-safe cryptography, quantum key
distribution, post-quantum security, protection against eavesdropping

Solving complex optimization problems, parallel processing quantum machine learning,
Al model acceleration complex simulation and modeling in DT-NTNs

Highly accurate measurements, enhanced NB-IoT sensing, environmental monitoring,
ultra-precise positioning, remote sensing, precision time synchronization

Flexible deployment, multi-vendor interoperability, real-time configurations, service-
specific network slices open interfaces, virtualized network function (VNF) integration

TABLE 1. Comparison of DT enabling technologies and targeted challenges.

tive and predictive capabilities. Al-driven models
can optimize resource allocation by dynamically
adjusting network parameters to maintain optimal
performance. The ability to learn from data and
improve over time is a key advantage of DT-NTNs.

Feedback Loop: A continuous feedback loop is
established between the DT-NTN and the physical
network. The DT-NTN provides actionable insights
and recommendations to the network, ensuring
synchronization with the actual NTN conditions.
This feedback mechanism enables proactive man-
agement and rapid response to changes, facilitat-
ing efficient network operation and meeting the
diverse requirements of various services.

In this setting, establishing standardized inter-
faces is essential for bridging the physical NTN
with its virtual DT-NTN, as well as facilitating seam-
less information exchange between DT-NTNs and
network applications. On one side, two primary
interfaces enable real-time interactive mapping
between the physical NTN and DT-NTN. The first
interface collects TT&C data from flying assets,
ensuring system health and control. The second
interface gathers communication-related data,
such as traffic demands, channel states, topolog-
ical routes, and connection/failure incidents, sup-
porting effective network management to meet
user demands. On the other side, DT-NTN inter-
faces must align with the requirements of various
network applications, including regular network
management, protocol validation, and perfor-
mance optimization.

CHALLENGES AND ENABLING TECHNOLOGIES FOR DT-NTN

This section identifies the key challenges for the
proposed DT-NTN and the enabling technologies
that address them.

DT-NTN CHALLENGES

While DT technology offers unequivocal benefits
and enhancements, its deployment for resource
allocation within NTNs faces several challenges.
Data Freshness: This is particularly challenging
due to the heterogeneity and dynamicity of NTNs
as they operate in remote and harsh environments,
where data collection and real-time transmissions

Data freshness

Computational complexity

Resource-limited devices,
security and reliability

Computational complexity,
resource-limited devices

Security and reliability

Computational complexity

Data freshness and
accuracy

Interoperability and
standardization

may experience delays. While it is feasible to col-
lect and use data for offline operations, achieving
online optimization through DTs needs further
enhancing realtime data processing capabilities.

Ownership and Privacy Concerns: This chal-
lenge emerges from the diverse ownership struc-
tures within NTNs, compounded by regulatory
frameworks such as the general data protection reg-
ulation (GDPR) in the European Union. Ensuring the
protection of customers’ private data is a paramount
concern for DT-NTNs. Compliance with local laws
based on the locations of the NTN infrastructure
or its DT is critical to safeguarding user privacy and
maintaining regulatory compliance.

Computational Complexity: The complex and
ever-changing characteristics of NTNs require
sophisticated modeling techniques. For instance,
parameters like flight dynamics, autonomous nav-
igation trajectories, constellation patterns, and
communication link performance need to be
modeled as accurately as possible. This requires
substantial computational resources and access
to high-performance computing infrastructure.
Besides, many resource allocation problems in
NTNs are inherently non-convex or involve chal-
lenging combinatorial optimization, demanding
high computational power.

Resource-Limited Devices: NTN entities,
including LEO small satellites, downstream
nano-satellites (nanosats), and HAPs, face sub-
stantial challenges due to their constrained com-
putational capacity, limited memory, and often
restricted power supply. Processing and manag-
ing the extensive data required for effective dig-
ital twinning poses difficulties for these devices.
Hence, it is crucial to alleviate their burden by
offloading storage and computing capabilities.
This measure is essential to maintain sustained
functionality and extend their operational lifespan
in challenging NTN environments.

Interoperability and Standardization: NTNs
often incorporate equipment and systems from
various vendors with incompatible configurations,
which imposes a challenge for seamless integration
and operational efficiency. The lack of interoper-
ability and standardization among vendor equip-
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ment further complicates the modeling of NTN
element interactions. Therefore, DT-NTNs must
be able to collect and integrate data from diverse,
autonomous, and heterogeneous sources.

Security and Reliability: For an accurate rep-
resentation of the physical NTN in the virtual
DT-NTN, secure and reliable communication chan-
nels are essential. Any interruption or tampering in
these channels can result in inaccurate or incom-
plete data, compromising the quality of analysis
and decision-making. Therefore, robust communi-
cation protocols and security measures are crucial
to safeguard against such issues and to maintain
the DT-NTN’s fidelity to the physical NTN.

DT-NTN ENABLING TECHNOLOGIES

This section explores enabling technologies and
their key features aimed at tackling challenges
within DT-NTNs. Table 1 outlines these technolo-
gies and their potential solutions for deployment
issues. These technologies are critical enablers
for constructing DT-NTNs designed for optimized
resource allocation. By leveraging these advance-
ments, DT-NTNs can dynamically adapt to chang-
ing conditions and demands, thereby significantly
improving resource allocation efficiency compared
to traditional methods. We specifically address
challenges such as computing, sensing, and
interoperability, offering a deeper understanding of
their significance in the context of DT-NTNs.

Narrow-Band Internet of things (NB-loT):
The 3GPP organization in its Release-17 has out-
lined guidelines to incorporate narrow-band loT
(NB-loT) over satellites [9]. Renowned for its low
power consumption, NB-loT is ideal for battery-op-
erated devices, enabling data collection from
remote and power-limited assets within NTNs. Its
adoption is crucial for enabling DT-NTNs, allow-
ing real-time data collection, remote monitoring,
and predictive maintenance, thereby improving
the precision of DT-NTN models. NB-loT provides
network operators with valuable insights, enhanc-
ing network management capabilities. Despite
potentially exhibiting slightly higher latency than
other loT technologies, NB-loT generally fulfills
the requirements for many DT applications. Toler-
ating this marginal increase in latency in exchange
for global coverage makes NB-loT as a crucial
enabler. By implementing techniques like pre-
diction, data summarization, and prioritization,
DT-NTNs can still offer significant benefits even
with less-than-instantaneous data updates. For
example, a few seconds of delay might be accept-
able for most monitoring purposes, allowing the
DT-NTN to identify trends and potential issues.

Moreover, NB-loT devices can be used for
security monitoring, ensuring the safety and integ-
rity of the NTNs. Particularly, DT-NTNs can incor-
porate security measures based on NB-loT data
to respond to potential threats and vulnerabilities.
More importantly, NB-loT technology can act as a
bridge between diverse communication standards
within NTNs by leveraging specific communication
protocols to create a unified platform capable of
understanding and translating data from multiple
sources. This synergy enhances the overall adapt-
ability and performance of the NTN ecosystem.

Al and Learning Techniques: DT-NTN mod-
els rely on extensive data, which has to be thor-
oughly analyzed to extract insights about physical

assets. In this regard, Al and learning algorithms are
essential for analyzing data collected from NB-loT
and sensor devices. These advanced algorithms
empower enhanced decision-making, predictive
maintenance, and anomaly detection, thereby
improving the DT-NTN role in network manage-
ment and resource allocation. Moreover, Al can
accelerate DT-NTN algorithms, potentially enabling
real-time operations and large-scale technology
testing. For instance, deep learning techniques
have shown a remarkable ability in modeling com-
plex satellite communication networks. Research-
ers have effectively employed diverse learning
approaches to investigate and improve various
aspects such as network modeling, resource opti-
mization [10], and network slicing [11]. With these
advancements, it is evident that Al and learning
algorithms will play a significant role in shaping
the DT-NTN paradigm. However, these tools may
require higher computational power.

Furthermore, the modular architecture of DT
technology allows for the creation of individ-
ual DT for each asset component. This modular
approach involves breaking down the system into
smaller, manageable modules or components,
each representing a specific aspect or function of
the asset. These components can then be seam-
lessly interconnected into a comprehensive inte-
grated DT-NTN, providing a holistic view of the
entire NTN. This modularity supports process rep-
lication, facilitates knowledge transfer, and empow-
ers intelligence at the edge. It enables techniques
like federated learning and transfer learning, which
enhance system resilience by leveraging distrib-
uted intelligence and diverse data sources. This
approach not only helps avoiding costly redundan-
cies within NTNs but also enables the prediction
of potential disruptions by identifying weak points.

Space-Based Cloud Computing: Cloud plat-
forms are crucial for the creation and operation of
DTs due to their ability to provide the necessary
computational power and storage capacity for
developing, maintaining, and running twin models
effectively. Particularly, space-based cloud com-
puting (SCC) has immense potential for the devel-
opment of DT-NTNs, offering unique capabilities
such as ultra-low latency and high bandwidth con-
nectivity [12]. These features significantly enhance
real-time data processing and model execution
within the DT-NTN system, leading to faster and
more accurate network behavior predictions.
This enables more efficient resource allocation
and service management across geographically
dispersed NTN elements. By positioning cloud
platforms closer to physical NTN entities, SCC
can reduce latency and improve real-time per-
formance. Additionally, these platforms offer
resilience against Earth-based disruptions, ensur-
ing continuous monitoring and management of
physical NTNs. Moreover, SCC enables scalable
and flexible resource management by dynami-
cally allocating computational resources based
on the network needs. This scalability is essen-
tial for handling the varying demands of different
services, such as high-throughput applications or
latency-sensitive communications.

Neuromorphic Computing: Unlike conven-
tional computers that follow the von Neumann
architecture, neuromorphic computers emulate
the structure of biological brains with artificial

For an accurate representa-
tion of the physical NTN in
the virtual DT-NTN, secure
and reliable communication
channels are essential. Any

interruption or tampering in

these channels can result
in inaccurate or incomplete
data, compromising the
quality of analysis and
decision-making.
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FIGURE 2. Twin Al-based model for resource allocation in NTNs,

neurons and synapses. This unique structure
enables them to execute complex tasks such as
pattern recognition and learning in ways similar
to the human brain. Neuromorphic computing is
particularly valuable in scenarios characterized by
temporal signals and the necessity for continual
learning from diverse data sources within com-
plex environments such as NTNs. Furthermore,
neuromorphic hardware and algorithms excel in
handling complex, dynamic, and adaptive pro-
cesses, making them ideal for real-time data anal-
ysis and decision-making, thus enhancing the
capabilities of DT-NTNs to simulate and respond
to changing network conditions. In the field of
satellite communications, ongoing research is
exploring the use of neuromorphic processors
for Al-based applications. These processors offer
significant advantages in tasks requiring extensive
parallelism and matrix-based operations, thereby
enhancing satellite payload performance, reliabil-
ity, and power efficiency [13].

Neuromorphic technology presents a compel-
ling advantage for DT-NTNs due to its exceptional
energy efficiency. Unlike traditional architectures,
neuromorphic computers can perform complex
computations with significantly lower power
consumption. This characteristic is crucial for
resource-constrained environments often encoun-
tered in NTNs, where minimizing power demands
translates to extended network operation and
reduced reliance on external power sources.
Beyond energy efficiency, neuromorphic com-
puting offers additional advantages for DT-NTNs.
Their ability to process information similar to the
human brain enables real-time analysis of the vast
amount of data generated by NTNs. This real-time
processing capability is essential for timely deci-
sion-making and optimization within the dynamic
environment of DT-NTNs. Furthermore, inspired
by the brain’s natural redundancy, neuromor-
phic computers exhibit inherent fault tolerance.
This means they can continue functioning even if
some components experience failures, a valuable
feature for ensuring the reliability of DT-NTNs. In
addition, neuromorphic systems can be scaled
efficiently to accommodate varying workloads
and network sizes, making them suitable for
DT-NTNs of different scales and complexities.

Quantum Technologies: From an implemen-
tation perspective, NTN entities are mostly inter-
connected via free-space optical (FSO) links, which

are favored in quantum communications protocols
due to negligible background thermal radiation
at optical frequencies [14]. In this context, the
development of secure communication channels
is paramount for DT-NTNs. However, the complex
and distributed nature of these networks creates
significant security challenges. Quantum cryptog-
raphy, with protocols like quantum key distribution
(QKD), offers a compelling solution. Unlike tra-
ditional encryption methods, QKD leverages the
laws of quantum mechanics to establish keys with
unconditional security, which effectively addresses
the inherent vulnerabilities of DT-NTNs, ensuring
robust protection across the entire system.

Beyond secure communications, quantum tech-
nologies offer further advantages for DT-NTNs.
Quantum sensing provides precise measurements
of crucial parameters for accurately representing a
DT-NTN, such as position, velocity, and environmen-
tal conditions. These sensors, based on atomic and
molecular systems, offer unparalleled precision in
time and frequency. This enables detailed analysis of
signal propagation, interference patterns, and noise
within the physical NTN. Further, quantum comput-
ing represents a revolutionary leap in computing
capabilities. Classical computers often struggle with
large-scale optimization problems encountered in
DT-NTNs. However, quantum computing algorithms
can tackle them efficiently due to the exponential
nature of the quantum computational space. This
unprecedented scalability paves the way for opti-
mized modeling and resource allocation within the
dynamic and complex environments of DT-NTNs.

Open Radio Access Network (O-RAN): RAN
is a transformative architecture aimed at fostering
interoperability and innovation within the RAN
domain. By decoupling hardware and software
components, it enables flexible deployment of
network infrastructure. This separation facilitates
interoperability among hardware from different
vendors and promotes openness in software
and interfaces, encouraging collaboration and
advancement within the RAN ecosystem. More-
over, the open interfaces within the O-RAN archi-
tecture facilitate multi-vendor interoperability and
coexistence across functions, ensuring seamless
integration of various components and efficient
data exchange through standardized interfaces.
Thus, data-driven network control and manage-
ment solutions can be effectively incorporated
into O-RAN architecture [15].

O-RAN architecture offers significant advan-
tages for developing DT-NTNs. Its flexibility and
programmability contribute to efficient resource
management, reduced network latency, and ulti-
mately, enhanced DT-NTN performance. Spe-
cifically, the openness of O-RAN software and
interfaces simplifies data collection and manage-
ment, which reduces the complexity of modeling
interactions between diverse network elements
within the DT-NTN. Furthermore, O-RAN func-
tional partitioning allows for flexible representa-
tion of the physical NTN in its DT-NTN, leading
to more accurate simulations and enhanced pre-
dictive and optimization capabilities. This syner-
gy is further amplified by DT technology itself.
DT-NTNs leverage virtual modeling capabilities
for testing and optimizing scenarios before imple-
mentation in the physical NTN, minimizing risks
and ensuring efficient network operation.
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CASE Stuny: DT-NTNS FoR RESOURCE OPTIMIZATION

In the context of the challenges and enabling tech-
nologies discussed earlier, the integration of DT
and Al technologies emerges as a powerful para-
digm for addressing the complexities of 6G NTNss.
This section delves into a case study illustrating
the practical application of DT-NTNs in optimiz-
ing resources within QoS-aware scenarios. Specif-
ically, we explore the implementation of learning
techniques for dynamic resource allocation with-
in O-RAN-based NTNs. The primary objective is
to enable the seamless coexistence of conflicting
eMBB and URLLC services, accommodating their
divergent requirements. While eMBB demands
high data rates and URLLC necessitates ultra-low
latency, optimizing these services simultaneous-
ly poses a significant challenge. Addressing these
conflicting demands requires advanced resource
management and network design strategies.
Through this case study, we aim to demonstrate
how DT-NTNs can effectively manage these chal-
lenges and optimize resource allocation to meet
diverse service requirements within 6G NTNs.

NETWORK SCENARID

We consider a network of LEO satellites at a 550
km altitude, operating in the Ku band (12-18
GHz) with a 12.5 GHz carrier frequency. Each
satellite node transmits at 40 dBm with a 10 dBi
antenna gain. Noise power is set at =174 dBm/
Hz. eMBB traffic follows full-buffer traffic, while
URLLC traffic follows a Poisson process with
rate L. This constellation of multiple LEO satel-
lites serving multiple distributed users with distinct
requirements, as shown in Fig. 2. Specifically, LEO
satellites collect network information, including
channel states, network traffic, and QoS require-
ments, and then send the collected data to the
non-real time RAN intelligent controller (non-RT
RIC) located at a cloud server through a gate-
way. The DT-NTN process the collected network
information, which will be updated over time to
keep synchronizing with the physical network. We
developed a Python-based simulator for modeling
the LEO network, utilizing its libraries for wireless
environment simulations and machine learning.
TensorFlow is used for implementing deep learn-
ing models. A learning model based on deep neu-
ral networks (DNNs) is installed at the non-RT RIC
and trained by interacting with the DT-NTN to
improve the spectral efficiency while satisfying the
QoS requirements of each service. Specifically,
the QoS for eMBB services is characterized by
a defined minimum data rate threshold, whereas
the QoS for URLLC is determined based on the
outage probability.

The resource allocation decisions are then
performed based on the trained models within
the DT-NTN and sent to the physical network. In
the DNN architecture, we use a model consist-
ing of three hidden layers: the first hidden layer
is configured with 600 neurons, the second with
300 neurons, and the third contains 250 neu-
rons. The number of neurons in the input layer is
aligned with the considered network information,
including channel states, network traffic, and QoS
requirements. Furthermore, the number of neu-
rons in the output layer corresponds to the size
of the resource allocation matrix. We utilize the
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FIGURE 3. Downlink spectral efficiency.

rectified linear unit (ReLU) activation function for
the hidden layers, while the output layer employs
the Softmax function.

ResuLTS DIScussioN

Figure 3 shows the downlink spectral efficien-
cy for different settings of URLLC traffic rate
(L). Here, spectral efficiency is obtained as the
sum data rate of eMBB and URLLC users divid-
ed by the system bandwidth. A fully buffered
traffic model is considered for eMBB users. We
compare the dynamic resource allocation-based
approach to the static orthogonal method, where
pre-determined fixed resources are assigned to
each service. The findings reveal that the Al-based
dynamic resource allocation approach within the
DT-NTN provides better resource utilization com-
pared to the orthogonal technique. Nevertheless,
in case of heavy URLLC traffic, the orthogonal
method may perform slightly better than the
dynamic approach, as most resources allocated
to URLLC users are utilized effectively. As illus-
trated in Fig. 3, the dynamic approach achieves
approximately 60 percent higher spectral efficien-
cy than the orthogonal method when & = 100
packets/time slot. However, this efficiency gap
narrows with increasing URLLC traffic, as more
eMBB resources are diverted to serve the high-pri-
ority URLLC traffic, thereby affecting the over-
all eMBB data rate. When the URLLC traffic rate
reaches A = 200 packets/time slot, the spectral
efficiency of the orthogonal method rises to about
2.2 b/s/Hz, while the dynamic approach drops
to roughly 2.1 b/second/Hz. This is because the
static approach can fully utilize its pre-allocated
resources for URLLC traffic, whereas the dynamic
method requires ongoing monitoring and adjust-
ment, introducing additional signaling overhead.
The dynamic allocation also attempts to meet
stringent URLLC reliability by reallocating more
resources, which impacts eMBB data rates and
results in decreased spectrum utilization due to
the reduction in eMBB performance.

Figure 4 depicts the cumulative distribution
function (CDF) of URLLC reliability defined in
terms of the outage probability Pr[R,(t) < ¢A(t)]
< €max Where R (1) is the obtained sum data rate
of URLLC users at time slot t, & represents the
URLLC packet size and g, denotes the max-
imum threshold of the outage probability. The
results obtained at €, = 0.07 and & = 32 bytes,
while the value of & varies over time slots. Specif-
ically, the cumulative probability that the outage
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FIGURE 4. URLLC outage probability.

probability exceeds the threshold &,y is around
0.02. This outcome is due to the fact that the
dynamic scheduling algorithm prioritizes critical
URLLC traffic by allocating resources from eMBB
users over time slots, considering the stochastic
network dynamics. In short, these findings high-
light the potential advantages of incorporating Al
models within DT-NTNs for enhancing the perfor-
mance of 6G NTNs, ensuring the required reliabil-
ity, and meeting the diverse QoS requirements.

CONCLUSIONS

This article has introduced and explored the inte-
gration of DT technology into 6G NTNs, present-
ing a novel approach for enhancing resource
allocation and network management. We out-
lined the vision and architecture for developing
DT-NTNs, and discussed the key deployment
challenges such as data freshness and accuracy,
computational power, reliable interconnections,
interoperability, and data security procedures.
Various enabling technologies were explored to
facilitate the integration and address these chal-
lenges. Furthermore, a case study was present-
ed to illustrate the practical application of Al and
learning algorithms within DT-NTNs for optimizing
NTN resources. In essence, this article introduced
practical aspects of DT-NTN development that
can potentially trigger more in-depth research into
creating highly intelligent and dynamic non-terres-
trial communication systems.
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