
1

Semantic Image Encoding and Communication for
Earth Observation with LEO Satellites

Van-Phuc Bui∗, Thinh Q. Dinh†§, Israel Leyva-Mayorga∗, Shashi Raj Pandey∗, Eva Lagunas‡, Petar Popovski∗,
∗Department of Electronic Systems, Aalborg University, Denmark ({vpb, ilm, srp, petarp}@es.aau.dk)

†University of Information Technology, Ho Chi Minh City, Vietnam (thinhdq@uit.edu.vn)
§Vietnam National University, Ho Chi Minh City, Vietnam

‡University of Luxembourg, Luxembourg (eva.lagunas@uni.lu)

Abstract—The substantial volume of data generated by Earth
observation (EO) satellites poses a significant challenge to the
limited-rate satellite-to-ground links. This paper addresses the
downlink communication problem of change detection in multi-
spectral satellite images for EO purposes. The proposed method
is based on a cohesive strategy capable of eliminating clouds
and performing semantic encoding during image processing.
This approach is a manifestation of semantic communication,
as it encodes vital information for the target application, in the
form of changed multi-spectral pixels (MPs) to minimize energy
consumption. The proposed method is based on a three-stage
end-to-end scoring mechanism, which quantifies the significance
of each MP before determining its transmission. Specifically, the
sensing image is (1) normalized and passed through a high-
performance cloud filtering via the Cloud-SLR model, (2) passed
to the proposed scoring algorithm that uses Change-Net to
identify MPs that have a high likelihood of being changed,
compress them, and forward to the ground station, and (3)
reconstructed at ground gateway based on the reference image
and received data. The numerical results show the effectiveness
of the proposed framework in achieving energy savings of up to
58% while upholding the transmission of high-quality data for
satellite-based EO applications.

Index Terms—Low Earth Orbit (LEO) satellite communi-
cations, Semantic communication, Earth observation, Change
detection, Image processing.

I. INTRODUCTION

Remote sensing satellites are vital for environmental mon-
itoring as they swiftly provide comprehensive coverage of
targeted regions, allowing for land use surveys, urban stud-
ies, and hazard management through image acquisition [2].
However, a major problem is that the use of high-resolution
sensors results in large volumes of data, which necessitates
significant communication resources and on-board data storage
capacity for transmitting data to ground-based end-users. For
instance, the Sentinel-2 system acquires an extensive amount
of data (2.4 Terabits per day) for transmitting to the terrestrial
gateway, with each surface location being captured at periodic
intervals of five days [3]. The grow of Low Earth Orbit (LEO)
satellite deployments in Earth Observation (EO) applications,
coupled with the constrained communication capacity of LEO
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Fig. 1: An example: (a), (b) a pair of images in different times
where changed areas are bounded with red; (c) a bar chart
on the co-responding contribution of changed and unchanged
pixels.

satellites, poses a limitation on the handling of daily generated
EO data. While forwarding the complete dataset can be advan-
tageous for accurately detecting any changes or anomalies, it
is not regarded as efficient in terms of data storage and trans-
mission capabilities. Therefore, the conventional approach of
transmitting captured images to the ground for analysis and
distribution may be inefficient. Thus, the vast amount of data
generated by EO satellites requires novel techniques for high-
spectral image processing and transmission.

Numerous forthcoming satellite missions aim to address
memory and bandwidth limitations by implementing on-board
processing operations that allow for data processing transfer
from the ground segment to the space segment. The adoption
of the new processing workflow is projected to significantly
improve the efficiency of downlink data transmission, leading
to a decrease in the required transmission resources. In order
to improve bandwidth utilization, compression should be se-
mantically related to change detection and the transmission
of differentially encoded data. This holds the potential to
diminish bandwidth requirements and energy consumption
during communication but will increase energy expenditure
associated with computational and compression processes. As
illustrated in Fig. 1, a pair of images captured at different
times from a single location has been randomly selected from
the OSCD dataset [4]. Areas differing in Fig. 1(b) from the
corresponding reference image shown in Fig. 1(a) are outlined
in red. Fig. 1(c) shows the ratio of changed to unchanged areas
in Fig. 1(b). By accurately detecting only the changed regions
down to the pixel level and encoding them, we can save up
to 94% of communication overhead. Our primary focus is the
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identification of terrestrial changes. However, clouds present
a significant source of variability in image data, covering over
50% of the Earth’s surface, including approximately 55% of
terrestrial landmasses and 72% of the oceanic expanse [5].
Consequently, any methodology devised for change detection
necessitates the inclusion of a mechanism to discriminate
against or eliminate clouds from the image. In this study, we
develop a three-stage method specifically designed to reduce
the volume of data transmitted by identifying and encoding
only those non-cloud multi-spectral pixels that exhibit signif-
icant changes. This approach not only preserves the quality
and relevance of the transmitted data but also significantly
cuts down on the energy required for data processing and
transmission.

A. Related Works

1) Semantic communication: Semantic information repre-
sents the meaning and veracity of source information [6],
which has attracted extensive research interest very recently.
Popular approaches for reducing the transmitted information
payload while simultaneously preserving the quality of the
original data source encompass strategies such as (1) opti-
mizing compression parameters [7], (2) employing a machine
learning-based technique referred to as joint source-channel
coding (JSCC) [8], and (3) removing redundant or irrelevant
data. In the first task, authors in [7] introduced a novel method
by optimizing the compression ratio, segmentation, and dis-
tributed processing of EO images, employing an iterative
optimization approach within the framework of satellite mobile
edge computing. In the second, the JSCC framework has gar-
nered significant attention due to its remarkable performance
in operating effectively without reliance on precise channel
state information [8]. Utilizing an end-to-end approach, JSCC
is trained to attain high Peak signal-to-noise ratio (PSNR) val-
ues when transmitting a range of data types, including images
[8], [9], audio [10], text [11], or other specific tasks [12].
Nonetheless, we emphasize that the aforementioned techniques
tend to excessively compress data, whereas our objective lies
on the last point, focusing on transmitting changed information
to the terrestrial station. By scoring and encoding data from
observed images that exhibit a high probability of change, our
strategy seeks to save communication resources by directly
reducing the volume of information that must be transmitted
prior to the compression or encryption stages. This approach
is anticipated to yield groundbreaking improvements in energy
efficiency for data processing and transmission within the
domain of EO.

2) Change detection: The primary aim of change detection
in the field of remote sensing is to identify pixels exhibiting
“semantic change” within multi-spectral sensing images ob-
tained at distinct time points within a particular region [13].
Various factors can contribute to this change, including object
deformation, relative motion, alterations in appearance, or ob-
ject disappearance. Traditional approaches to change detection,
including basic image difference measurement, Change Vector
Analysis (CVA) [14], Principal Component Analysis (PCA)
with K-means [15], and Gramm-Schmidt transformation [16]

have demonstrated effective results in certain straightforward
scenarios. Enhanced variants have also been developed to
achieve superior performance, such as Parcel CVA [17] and
Robust CVA [18]. Additionally, the fuzzy local information
clustering method with decomposition is applied for land-
cover change detection [19], while the fuzzy C-means (FCM)
algorithm is combined with a Bayesian network to detect and
classify structural changes between two sensing images [20].

In recent years, the utilization of various techniques and
components derived from neural networks has been increas-
ingly employed in the task of scene segmentation for change
detection. The goal is to extract more profound representa-
tions from the data. Deep learning approaches, particularly
Convolutional Neural Networks (CNNs), possess the ability to
automatically learn image features during the training process,
leading to notable advancements in performance. Many of
these approaches utilize an encoder-decoder structure, with
the U-Net architecture being a prominent example [21]–[24].
Typically, CNN-based change detection methods encompass
two primary approaches: change detection based on post-
classification, or direct detection at the patch-level or pixel-
level [25]. The first approach involves training CNNs to
classify remote sensing images captured during two distinct
periods for deriving change information [26], [27]. The latter
approach entails designing a CNN utilizing patch or pixel-
level samples for network training, which necessitates a metic-
ulously designed structure to attain good performance [28]–
[31]. However, because of the complex nature of sensing
images from LEO satellites, change detection approaches have
not made real breakthroughs in very high-precision localiza-
tion of changes to the pixel-level. That leads to the fact that it
is highly plausible that information-carrying data would be lost
if these methods were applied directly to satellite processing
where only pixels determined to be changed are sent. As a
result, conventional change detectors are only meaningful in
assisting ground-based data analysis when we have all the
data received from the satellite. Our methodology advances
this by scoring each pixel and selectively transmitting those
potentially to be changed, i.e., maintaining a 95% probability
of selecting and encoding the changed pixels.

3) Cloud removal: The majority of processing tasks in-
volving optical remote sensing imagery necessitate cloud
detection at the pixel scale, making it a fundamental step in
the analysis and preprocessing of such imagery. Researchers
have dedicated their efforts to investigating and developing
cloud detection techniques centered around spectral thresholds
[32], [33]. These methods compute thresholds using diverse
attributes like cloud reflectivity and brightness. Furthermore,
the application of machine learning is explored for cloud
detection [34], encompassing the extraction of features such
as cloud texture, color, and geometric characteristics, fol-
lowed by the design and training of classifiers. However,
these approaches necessitate the manual configuration of ap-
propriate thresholds or the creation of distinct features tai-
lored to different instances, demanding specialized expertise
and often exhibiting limited robustness. CNN is capable of
autonomously learning suitable features, thereby eliminating
the need for manual feature selection. Consequently, various
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approaches employing CNN have been introduced for cloud
detection, predominantly relying on fully convolutional net-
works (FCNs) [35]–[39]. The U-Net [40], a well-established
encoder–decoder architecture, incorporates skip-connections
to fuse corresponding features from both the encoding and
decoding stages, thereby recovering spatial information. The
effectiveness of U-Net in delineating clouds in Landsat 8 im-
agery, aided by automatically generated Ground Truths (GTs),
has been firmly established [36]. Authors in [41] proposed a
global–local fusion architecture based on convolutional neural
networks CNNs to detect clouds. Besides, [42] utilized a
feature pyramid network to reconstruct missing information.
In [43], temporal-information-based methods were employed
to use corresponding areas in ancillary images from different
acquisition times to recover cloud-covered regions. These
methods aim to restore parts obscured by clouds but often fail
when unexpected events occur. In these works, the authors
concentrated on enhancing or proposing models designed to
augment the precision in discerning cloud pixels or generating
image pixels to fulfill the missing parts. Here, instead, the
focus is on the preservation of non-cloud meteorological
parameters for subsequent procedural stages.

Previous research efforts have primarily concentrated on en-
hancing noise reduction techniques [32]–[35], particularly for
cloud-related data, or refining the precision of ground-based
change detection methods upon receiving comprehensive data
from satellites. However, these existing solutions prove inad-
equate for complex end-to-end systems due to the lack of
comprehensive consideration given to the vital transmission
of critical information contained within noisy sensing images
to the gateway. In addition, the factor of processing power
for intelligent processing and communications has not been
investigated.

B. Contributions

This paper analyzes the energy required to support all opera-
tions for an end-to-end system that utilizes deep learning-based
architecture to process and transmit valuable information from
noisy sensing images captured by satellites. Our contributions
are listed as follows:

• This work extends and improves our preliminary end-to-
end semantic communication framework [1] for satellite-
based EO by including the energy consumption for the
execution of the models to extract changed MPs at the
satellites. This allows us to evaluate the total energy
consumption for processing and transmission of satellite
images to the ground stations.

• We present a 3-stage architecture for semantic com-
munication of EO images. The architecture includes
a learning-based transmitter that extracts changed MPs
from the captured images, which drastically reduces the
data to be transmitted by the satellites and, hence, the
required communication resources, without performance
degradation.

• We present two models that were developed based on
the U-Net encoder-decoder architecture [40]: Cloud-SLR
(Cloud removal model enhanced by Smooth Labeling

TABLE I: Key parameters defined in the paper.

Symbol Description

Scenario
Xt0 Reference image taken at time t0
Xt1 Observed image taken at time t1
H Height of each image [pixels]
W Width of each image [pixels]
D Depth of each image [pixels]
X ti Set of available MPs in image Xti , i ∈

{0, 1}
P Set of selected MPs for transmission

Communication
fc Carrier frequency [Hz]
γt SNR for downlink satellite-to-ground link

at a time t
Gtx Transmitter antenna gain
Gtrx Receiver antenna gain
dt Distance between that satellite and gateway

at time t
Ptx Transmission power at the satellite [W]
µamp

RF Inefficiency of the power amplifier
P sta

RF Static power consumption by communica-
tion [W]

RP Selected communication rate at the time t
Processing

fCPU Processor frequency [Hz]
NMAC Number of MAC operation
ε Number of consumes energy units per

MAC operation [fJ]
ρ Compression ratio
κ Parameter that determines the complexity

of the compression algorithm
C(ρk, κ) Number of CPU cycles to compress one bit

of data
Dcloud = {(ai, zi) Cloud learning set over input ai and output

zi for SLR-Cloud model
κ Degree of smoothing in training SLR-

Cloud model
Dchange = {(bi, yi) Change learning set over input bi and

output yi for Change-Net model

Regularization technique) and Change-Net. Cloud-SLR
was designed for a highly accurate cloud detection
through increased depth, width, and skip connections
with varying receptive fields and by applying the label
smoothing technique. Change-Net was designed to accu-
rately detect changed multi-spectral pixels through a dual-
branch structure to process pre- and post-change images,
subsequently generating change maps with pixel scoring.

• The proposed framework is evaluated through numerical
simulations that utilize available standard datasets (38-
Cloud and OSCD datasets) and real-world data obtained
from Sentinel-2 about the North Jutland Region, Den-
mark. The results clearly show that our approach reduces
both energy consumption at the satellite and the amount
of data for encoding and transmission while preserving
critical information, leading to truly intelligent edge pro-
cessing.

II. SYSTEM MODEL

In this section, we introduce the semantic encoding system
architecture, which differs from existing literature primarily
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Fig. 2: Proposed end-to-end scoring architecture.

focusing on optimizing compression ratios [7] or establishing
efficient JCSC frameworks for data transmission [8]. Our
emphasis, in contrast, is on enhancing energy efficiency by op-
timizing the extraction and encoding of new sensing data from
satellites before transmission. This is done while adhering
to established communication protocols, which feature built-
in mechanisms for error detection and packet retransmission,
ensuring the accurate delivery of information. This strategic
approach allows our system to remain adaptable for future
integration of optimization techniques, including compression
techniques or the incorporation of the JSCC framework. Next,
motivated by the shortcomings of previous works in handling
the energy constraints, we formulate the problem of mini-
mizing energy consumption, both in processing and commu-
nication, under the constraint of a given data downloading
performance.

A. Satellite-Based Image Transmission System

We consider a framework for satellite communication, de-
picted in Fig. 2 involving a LEO satellite engaging in com-
munication with a ground-level gateway directly connected
to a server. The satellite assumes responsibility for capturing
multispectral images and is equipped with an AI module
designed for image feature extraction. These features, such as
potential pixel changes and their associated coordinates, must
be transmitted within the limited time period when the satellite
and gateway are connected. In this context, the proposed end-
to-end framework comprises three sequential stages: (1) the
acquired images undergo preprocessing and cloud removal
using the Cloud-SLR model. This step is imperative, as its
omission may result in the inadvertent misclassification of
cloud pixels, a common occurrence in satellite imagery, as
change pixels. (2) The resultant set of cloud-free image pairs
is then subjected to the Change-Net model, alongside a scoring
mechanism, which serves the purpose of identifying semantic

map including scheduled MPs. These selected MPs are sub-
sequently encoded and transmitted to a designated gateway.
(3) The ultimate reconstruction of multi-spectral images is
accomplished by leveraging reference images in conjunction
with received changed data.

Consider two coregistered multi-spectral satellite images
taken at different time instances

Xt0= {xt0(i, j, k)|1 ≤ i ≤ H, 1 ≤ j ≤ W, 1 ≤ k ≤ D},(1)
Xt1= {xt1(i, j, k)|1 ≤ i ≤ H, 1 ≤ j ≤ W, 1 ≤ k ≤ D} (2)

of size H×W×D, where H , W , and D are the size of height,
width, and number of spectral bands, respectively. Xt0 is the
reference image taken at the reference time t0 and Xt1 is the
newly observed image taken at time t1.

Definition 1. Pixel change is defined as the temporal varia-
tion occurring of coregistered images at a specific location,
including changes in land use, urban coverage, deforestation,
and other similar types of deviation [44], [45].

Our objective is to communicate the changed multi-spectral
pixels (MPs) from the sensing image Xt1 captured by the
satellite to Earth while minimizing the data transmitted to
ground and the energy consumption of the entire process.
Specifically, given X t1 = {xt1

ij} as a set of available MPs
in image Xt1 , e.g., xt1

ij could be represented by the MP (i, j)
including all spectral bands, we need to select a subset of MPs
P ∈ X t1 . The reference pixel set X t0 = {xt0

ij} of the reference
image Xt0 is processed similarly. We define S = {sij} as
the accurate change map where sij ∈ {0, 1} represents the
changed/unchanged MP. In particular, sij = 1 if there is a
pixel change at location (i, j), and vice versa.

Remark 1. The considered change scenarios bring supe-
rior improvements in information encoding transmitting and
storing. However, the complexity will be problematic when
we simply classify change MPs and semantic data. In fact,
the sensing images typically include noise (i.e., clouds [5]),
then noise MPs will be classified as changed, leading to
unnecessary propagation down the gateway and waste of
valuable communication resources.

Our work addresses this raising issue defined in Remark 1
by using high-performance Cloud-SLR to remove cloud MPs
before detecting change MPs, which is performed by the
Change-Net module. Our focus is on analyzing the energy effi-
ciency of our architecture compared to conventional schemes,
rather than on the training process of CNNs.

B. Energy consumption

We evaluate the energy consumption by calculating the com-
bined energy consumption associated with image processing,
compression, and communication. We denote αij ∈ {0, 1} is
a binary decision variable with α ≜ {αij |1 ≤ i ≤ H, 1 ≤ j ≤
W}, where αij = 1 if we select the MP xt1

ij as a candidate
of P . As a consequence, the transmission set P could be
constructed as

P ≜ {xt1
ij |αij = 1}, ∀αij ,x

t1
ij . (3)
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Then, the total amount of data C(α) to transmit the set P is
computed by

C(α) =
∑

αij∈α
Dαij . (4)

The total energy for processing and transmitting the selected
data P is derived as

Etot(α) = Eproc + Ecomp(α) + Etrans(α), (5)

where Eproc(α) is the required energy for processing raw
images and selecting the transmitted set P , Ecomp(α) stands
for compress energy and Etrans(α) indicates the consumed
communication energy.

1) Processing energy: The energy consumption Eproc(α)
for image processing is mainly consumed by well-trained
CNN-based models, formulated by [46]

Eproc = EMAC + Emov, (6)

where EMAC and Emov are energy for CPU computation
for Multiply-And-Accumulate (MAC) operations and mem-
ory access for data movement between CPU and memory,
respectively. Herein, we focus on the convolution layers for
energy consumption because these layers dominate the overall
computation and energy consumption [46]. Considering one
convolution layer with the input feature map, assume there
are M filters with height, width, and number of channels are
R, S, and D, respectively. As a result, we have M output
feature map with size as E × F . Considering the stride with
size S̄× S̄, the number of MAC operations in this convolution
layer is NMAC = RSDEFM/S̄2. Then, given each MAC
operation consumes energy of ε units [47], the total energy
consumed during MAC operations is calculated as

EMAC = εNMAC = εRSDEFM/S̄2. (7)

The data movement energy Emov is consumed when CPU
reads input image pixels, filter weights, partial sums, and then
writes updated partial sums to the cache or memory. In the
context of computational energy estimation, the initial step
involves the computation of the quantity of MACS operations,
which is subsequently adjusted by the energy expenditure as-
sociated with the hardware execution of a MAC. Consequently,
the total computational energy outlay is contingent solely upon
the number of MACs [48].

2) Compression energy: The model to calculate the satel-
lite’s energy spending for processing tasks captures the most
relevant CPU parameters [49]. The model establishes a direct
relationship between the energy consumed per clock cycle and
the square of the CPU clock frequency fCPU multiplied by
the effective capacitance coefficient, which is specific to the
processor under consideration [49]. Thereby, we have

Eproc
cycle =

Pproc(fCPU)

fCPU
, (8)

where P proc(fCPU) is the power consumption during process-
ing at the maximum CPU frequency. Noting that the supplied
power is linear with the number of processor cores NCPU, the

energy consumption to process data Eproc(α) is modeled as

Ecomp(α) = C(α)R̂compEproc
cycle , (9)

where

R̂comp = eκρ − eκ (10)

represents the compressing complexity, which is defined as
the number of CPU cycles to compress one bit of data by a
compression ratio ρ and the positive constant κ depending on
used compression algorithm [50].

3) Communication energy: We consider an interference-
free communication channel affected by additive-white Gaus-
sian noise (AWGN) with zero-mean and variance ϖ2 [7].
Consequently, the signal-to-noise ratio (SNR) for the downlink
satellite-to-ground link at a particular time t, represented by
γt, is calculated as

γt = GtxGrxPtx

(
c

4πdtfcϖ

)2

, (11)

where Gtx and Grx stand for the transmitter and receiver
antenna gains. Ptx is the transmission power at the satellite, fc
is the carrier frequency, and c = 2.998 × 108 is the speed of
light. The distance between the satellite and gateway dt can be
calculated due to satellite’s predefined connection time to the
gateway, orbit time, and satellite’s altitude. Once we know the
SNR, a proper modulation and coding scheme is selected to
achieve reliable communication, i.e., following the DVB-S2
system [51]. We denote a available throughput R̄ [bps] and
γmin(R̄) as the minimum SNR to achieve a reliable rate R̄ to
achieve a block error rate < 10−5with rate R̄. Then the set
of ordered pairs is defined as QDVB-S2 = {R̄, γmin(R̄)}. The
selection of transmission rate for the selected set P is deter-
mined by adapting the modulation and coding scheme in order
to attain the maximum data rate for reliable communication.
Let γt be minimum SNR experienced at the gateway at time
t, when the transmission of the data is initiated. At this time
instant, the rate is selected as

RP = max
{
R̄ ∈ QDVB-S2 : γt ≥ γmin(R̄)

}
. (12)

The energy consumption associated with the downlink trans-
mission of data encompasses the data’s size P , the inefficiency
of power amplifiers, and the fixed power consumption origi-
nating from communication modules [52]. As a result, the
power expenditure attributed to the downlink phase in the
communication process, denoted as PRF, can be computed as

PRF = µamp
RF Ptx + P sta

RF , (13)

where µamp
RF represents the inefficiency of the power amplifier,

P sta
RF is the static power consumption by communication.

Under the assumption that the RF link of the recipient satellite
consistently consumes a fixed power of P sta

RF without variation,
this aspect is exempt from the energy consumption assessment
of the considered framework [7]. Consequently, the downlink
energy consumption for download data P from the satellite to
the gateway is calculated by

Etrans(α) =
PtxC(α)

RP
. (14)
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C. Energy Efficient Data Downloading With Change-
Detection Constraint

In contrast to conventional approaches aimed at improving
the efficiency of the change detection algorithm that is applied
to the sensed images at the satellite [53], our focus is centered
on the reduction of the energy required to transmit all change
to the nearby gateway, which shifts the focus towards the
communication aspects of the system. That is, all xij that have
change map sij = 1 will be scheduled to the transmission
set P . This is achieved by setting the values of the decision
variable α as

α ≜ {αij |αij ≥ sij}, ∀αij , sij , (15)

which ensures that all the changed MPs are transmitted.
Accordingly, the optimization problem is to minimize the
communication energy subject to change detection constraints,
which is formulated as

P1 : min
α

Etot(α) (16a)

s.t. αij ≥ sij . (16b)

Proposition 1. The problem P1 achieves optimality when the
constraints (16b) satisfy αij = sij ,∀i = {1, 2, . . . ,H}, j =
{1, 2, . . . ,W}. This is straightforward to prove due to the
fact that the energy decreases monotonously as the number of
transmitted pixels, identified by the number of non-zero entries
in α, decreases.

III. SEMANTIC ENCODING SYSTEM

This section introduces a practical solution for MP schedul-
ing by proposing a system designed to identify most changed
MPs in real-world observation images. To accomplish this,
problem (1) is reformulated in a practical manner for reso-
lution. We then outline a proposed architecture for detecting
changed MPs in EO applications. This architecture includes a
preprocessing step using Cloud-SLR to eliminate cloud cover,
followed by the deployment of a deep learning model, Change-
Net, which aims to detect as changed MPs in captured images
before they are transmitted to the gateway.

A. Approximate Formulation of Data Downloading with
Change Detectors

We underscore that the primary difficulty in addressing
problem (16) resides in managing the binary constraint (16b).
Under realistic conditions, where the satellite cannot precisely
determine the indices of all the changed MPs in captured
sensing images, fully adhering to constraint (16b) proves
infeasible. Instead, it is necessary to implement an AI model
at the satellite to estimate sij and, hence, perform inference
on the changed MPs, which in turn requires a reformulation
of P1. In this paper, we would like to build a practical
predictor that can recognize most of the change MPs. We
define spij ∈ {0, 1} as the predictor for sij given by the
selected change detection algorithm, which achieves an error

level ϵ. Then, P1 is reformulated as

P2 : min
{αij}

H∑
i=1

W∑
j=1

αij (17a)

s.t. αij ≥ spij , (17b)
Pr(spij = 0|sij = 1) ≤ ϵ, (17c)

where ϵ ∈ [0, 1] is the threshold that ensures a sufficient
number of change MPs are selected. It is evident that when
the value of epsilon is decreased, the criteria for identifying
change MPs become more rigorous, leading to the selection
of additional pixels for transmission. As an illustration, when
setting ϵ = 0.05, the problem P2 is devised to guarantee the
selection and labeling of no less than 95% of change MPs.
Accordingly, we propose an algorithm to obtain an efficient
suboptimal solution to the problem (17).

In the following, we describe the steps to detect change
MPs in EO applications, which include preprocessing to
remove cloud cover and the use of a deep learning model
to determine the likelihood that each specific pixel is changed
from reference versions of the image. The aim is to ensure
that the reconstructed images at the gateway are as precise as
possible, thereby facilitating their accurate interpretation by
human/domain experts in EO.

B. Preprocessing and Cloud Removal

1) Preprocessing: As part of the preprocessing stage, the
following steps are undertaken: (1) the selection of bands
representative of the complete set of MP images; (2) the
adjustment of illumination levels to facilitate the detection
(cloud and change) in the subsequent stage; and (3) the
elimination of cloud cover from the observed image. First,
N (N < D) useful bands are selected for processing based
on the principle that a group of appropriate bands (e.g.,
visible and near-infrared bands) could reduce the processing
requirements for both training and execution phases. This is
consistent with realizing cloud detection on the satellite with
limited hardware and processing capabilities. Before removing
clouds, a radiometric correction procedure is implemented to
rectify radiometric disparities among multi-spectral images
stemming from diverse imaging conditions such as sun angle,
light intensity, and atmospheric circumstances. The chosen ap-
proach is relative radiometric normalization, which is founded
on the z-score method, which normalizes images to zero mean
and a unit standard deviation. Given a MP pair, denoted by
xt0
ij = [xt0

1 , xt0
2 , . . . , xt0

N ] and xt1
ij = [xt1

1 , xt1
2 , . . . , xt1

N ]. The
radiometric relative normalization can be expressed as [54]

x̂t0
n =

xt0
n − µ

x
t0
n

σ2
x
t0
n

; x̂t1
n =

xt1
n − µ

x
t1
n

σ2
x
t1
n

, (18)

where µ
x
tk
n

is the mean and σ2

x
tk
n

is the variance for band n of
image Xtk , (k ∈ {0, 1}) . The radiometric correction would
suppress the radiometric difference between multi-spectral
images caused by different conditions.

2) Cloud removal with Cloud-SLR: In this work, the Cloud-
SLR model for identifying cloud regions in multi-spectral
Sentinel-2 images based on U-Net using a combination of
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Fig. 3: Cloud-SLR for cloud detection based on U-net architecture.

thresholding and deep learning techniques is deployed. This
approach utilizes four spectral bands - Red, Green, Blue, and
Near Infrared (RGBNir) - for both training and prediction. The
detailed design of the Cloud-SLR architecture, which encom-
passes downsampling and upsampling convolutional blocks
along with their corresponding structures, is visually depicted
in Fig. 3. As each spectral band in Sentinel-2 encompasses a
substantial number of pixels (approximately 10980×10980), it
is necessary to segment them into smaller image patches using
a cropping technique. This is achieved by dividing the selected
spectral band image into 384 × 384 × 4 non-overlapping
patches, with each of the four patches corresponding to the
RGBNir bands being combined to create a 4D input. To
enhance the resilience towards patterns of clouds or similar,
the input patches underwent geometric transformations, such
as horizontal flipping, rotation, and zooming. The output
probability map is obtained via the use of a sigmoid activation
function in the final convolution layer of the network. The
cloud learning set consists of tuples

Dcloud = {(ai, zi) ∈ (A×Z)|i = 1, . . . ,Mcloud)}, (19)

obtained from an unknown joint distribution PDcloud over A×Z ,
where Mcloud is the total number of instances, and zi represents
the corresponding label of the input ai. Our aim is to estimate
a function g(ai|ψ) that maps inputs ai to outputs zi, where ψ
is a set of parameters that are optimized using the training set.
To estimate ψ, one can utilize the Adam gradient descent [55]
method to implement the Cross-Entropy (CE) loss function as

L(ẑψ,i, zi) = −
(
zi log(ẑψ,i)+(1− zi) log(1− ẑψ,i)

)
, (20)

with ẑψ,i = g(ai|ψ) is the output of the model.

Remark 2. In order to enhance the training efficiency of
Cloud-SLR, we utilize the CE loss function empowered by the
label smoothing regularization technique [56]. Specifically, let
z̄i as a label introduced to facilitate label smoothing. The
smoothed label zSLi is formulated as

zSLi = (1− κ)zi + κz̄i, (21)

where the parameter κ ∈ (0, 1) denotes the degree of
smoothing. The label z̄i is sampled from the Pz̄ distribution.

Algorithm 1 Proposed algorithm for problem P2

Input: Geometrical multi-spectral image pair Xt0 and Xt1

Output: The transmission set P , Reconstructed MP image
X̂t1 , and Energy requirement for processing and trans-
mission
Preprocessing and Cloud Removal

1: Select process bands (R, G, B, Nir) for cloud removal and
change detection

2: Normalize Xt0 and Xt1

3: Cloud detection and removal using Cloud-SLR
Change Scoring and Semantic Encoding

4: Scoring MPs using Change-Net and update {spij} as in
(25)

5: Perform threshold segmentation to get the transmission set
P = {xt1

ij |s
p
ij = 1, i = 1, 2, . . . ,H, j = 1, 2, . . . ,W}

6: Update αij = spij ∀i, j and calculate required energy
Etot(α) as in (5)

Herein, we adopt a uniform distribution z̄i = 1/2 for all
labels. Consequently, the CE loss (20) is replaced by

L(ẑψ,i, z
SL
i ) = −

(
zSLi log(ẑψ,i)+(1− zSLi ) log(1− ẑψ,i)

)
. (22)

The concept of label smoothing entails substituting the con-
ventional one-hot vector labels with smoothed labels, which
are the result of averaging between the distinct target labels
and a uniformly distributed array of alternative labels. This
technique has demonstrated significant efficacy in addressing
the challenge of overfitting without requiring interventions
within the latent activations or parameters of the neural
network induced by other methodologies, i.e., such as the
application of penalties like ℓ1-norm or ℓ2-norm on model
parameters, the utilization of Dropout to stochastically nullify
neuron outputs, batch normalization, and data augmentation
techniques. Through the introduction of noise into the target la-
bels during the training process, the label smoothing technique
prompts the model to exhibit reduced levels of confidence in
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Fig. 4: Change-Net for semantic encoding (Θ indicates the network branch’s learnable parameters).

its predictions, thus resulting in a more equitable dispersion
of the probability mass across all classes. The employment of
the label smoothing methodology in Cloud-SLR training yields
remarkable outcomes, as extensively showcased and examined
in the section IV. The well-trained weights of the Cloud-
SLR model are then applied to the target image to generate a
predicted cloud probability map. This map is binarized using
a global threshold of γ and multiplied with the image Xt1 to
produce the cloud-removed image X̃t1 with X̃ t1 = {x̃t1

ij} as
a set of MPs in X̃t1 .

C. Change Scoring and Semantic Encoding
In this stage, we have two multi-spectral images that have

been geometrically aligned, have consistent lighting condi-
tions, and have had cloud cover removed. Our goal is to
propose a computationally efficient automatic change detection
method for these two images that are practical for satellite
applications. Motivated by [40], [57], the Change-Net based
on U-Net architecture is developed to perform semantic seg-
mentation of images. We use a negative log-likelihood loss
function to classify every MP in the observed images as
either changed or not. Specially, we are considering a change
learning set consisting of tuples Dchange as

Dchange = {(bi, yi) ∈ (B × Y)|i = 1, . . . ,Mchange} (23)

with inputs bi, and labels yi. With θ as a set of learnable
parameters to be optimized, the likelihood p(bi,θ) is defined
as the joint density of the observed data, which can be viewed
as a function of θ that maps any given input bi to outputs
yi. By denoting m as the mini-batch size, the parameter set
θmodel is then achieved through training process as

θmodel = argmax
θ

m∏
i=1

p(yi|bi,θ). (24)

In our case, the system output s̄ij ∈ [0, 1] is defined as
the change score of the corresponding cloud-removed MP
x̃t1
ij , which is the probability of p(sij = 1|x̃t1

ij ,θmodel) =

ξ(θTmodelx̃
t1
ij ) with ξ(·) is the Log Softmax function. As s̄ij is

close to 1, it is likely that there is a change in location (i, j).
Thus, to make a good prediction, we would like to learn a
scoring system such that

spij = 1(s̄ij ≥ τ), (25)

where τ is the predefined threshold, derived experimentally to
satisfy the constraint (17c). The configuration of our change

scoring and semantic encoding framework is depicted in Fig. 4.
Herein, the FC-EF-Res structure [57] is employed in the
encoder-decoder block for training over a dataset. In partic-
ular, a 4-band image pair (RGBNir bands) rendered cloud-
free is the outcome of the Cloud-SLR process, serving as
input for Change-Net. In distinction from typical classification
models that endeavor to categorize MPs within an image as
either changed or unchanged, Change-Net generates a change
probability map, subsequently subjected to a scoring phase,
culminating in the generation of a semantic map comprising
compacted and transmitted MPs. This procedural stage is de-
vised to address the inefficiencies inherent in prevailing change
detection methodologies. Further analysis of this process is
expounded upon in Section IV.

It is important to note that the computation of energy
consumption in the Cloud-SLR and Change-Net frameworks
is executed via (6), wherein the determination of MACs is
contingent upon the dimensions of the input image and the
intricacy inherent in both architectural models. Specifically,
enabling, for processing an input, Cloud-SLR requires 6.99×
109 MACs, as the architecture depicted in Figure 3, while
Change-Net, utilizes an encoder-decoder architecture similar
to [57], consumes 3.66 × 109 MACs. For the adaptability
of our algorithm to scenarios, this framework is specifically
designed for EO satellites. This three-stage process ensures
that our framework can handle a variety of environmental
conditions and image qualities, i.e., those from Sentinel-2
systems. Our evaluations on diverse datasets and real-world
Sentinel-2 images, demonstrate the robustness and adaptability
of our framework, which is detailed analysis in the next
section. Algorithm 1 captures steps for solving problem P2.

IV. NUMERICAL RESULTS

A. Implementation Details

We evaluate our proposed algorithm in the Sentinel-2 sys-
tem when the transmission process initiates upon the satellite’s
entry into the gateway’s coverage area. This is a worst-case
scenario for the energy consumption for communication. Other
important parameters for performance analysis are included
in Table II. We use the 38-Cloud dataset for training and
testing Cloud-SLR, which covers 38 Landsat-8 scene images
and their manually extracted pixel-level ground truths for
cloud detection. The 38-Cloud dataset, originally introduced
in [58], comprises 8400 non-overlapping (NOL) patches, each
measuring 384 x 384 pixels. These patches are extracted from
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Fig. 5: The performance of the proposed algorithm on the real Sentinel-2 data (the multi-spectral images were acquired in the
North Jutland Region of Denmark during the period from 23/08/2022 to 24/09/2022), with the reference image captured on
23/08/2022 (figures (a), (b), and (c) are display using RGB channels).

18 Landsat 8 Collection 1 Level-1 scenes, serving as the
training dataset. Additionally, the test dataset is constituted by
9201 patches of equivalent spatial dimensions, sourced from
20 Landsat 8 scenes. The scenes primarily originate from
North American locations, with their corresponding ground
truths (GTs) manually derived. For Change-Net model, we
conduct the Onera Satellite Change Detection (OSCD) dataset,
publicly available on the IEEE-DataPort repository [4], widely
used in the literature to detect changes in multi-spectral images
of Sentinel-2 satellite [59]. The use of Sentinel-2 datasets,
which provide multispectral imagery, helps us mitigate cold
start issues with trained models during practical deployment.
Although acquiring high-quality annotated data is complex and
crucial for improving model performance, this paper primarily
focuses on optimizing the use of existing data systems to
enhance energy efficiency in satellite communications. En-
hancing annotated datasets further is left for future works. The
weights were assigned inversely proportional to the number of
examples in each class in order to address class imbalances
between the two categories (change versus no change). The
features are preprocessed classically to facilitate training. The
dataset was split into a shuffled and stratified training set and

a test set, comprising 60% and 40% of the data, respectively.
Both Cloud-SLR and Change-Net are trained on the ground
and applied to satellites for further processing of sensing data.
Following training and evaluation on the dataset with anno-
tated ground truth, we apply the trained models to real-world
data collected from a Sentinel-2 image to identify changes at
the pixel level relative to reference images. These identified
semantic map S are subsequently labeled and encoded prior
to being transmitted to the gateway.

We conduct our experiments on a 28-core Intel(R) Xeon(R)
Gold @ 2.8 GHz server (52 virtual cores) with 256 GB
memory and a Nvidia Tesla V100 GPU. Our implementation
for the proposed models and algorithm is Pytorch-based.

B. Overall energy efficiency performance

In order to evaluate the effectiveness of our architectural
framework using real-world data, we integrated data sourced
from the Sentinel-2 system, encompassing considerations of
data reduction volume as well as an examination of the com-
putational energy requisites for processing and transmitting
the data, operating under the performance from both the
Cloud-SLR and Change-Net components. Furthermore, in our
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TABLE II: Simulation parameters.

Parameter Symbol Value

Carrier frequency fc 20 GHz
Altitude of satellites [3] h 786 km
Processor frequency fCPU 1.8 GHz
Compression factor ρ 5
Power consumption for processing P proc(fCPU) 10 W
Complexity of
the image processing algorithm κ 0.1
Inefficiency of the downlink
RF power amplifier µRF 1
Bandwidth B 500 MHz
Noise power ϖ2 -115 dB
Satellite antenna gain Gtx 32.13 dBi
Gateway antenna gain Grx 34.2 dBi
Performance in change detection ϵ 0.05
Transmission power Ptx 10 W
Communications duration T pass 15 min
Orbital period 100 min
Initial learning rate of Cloud-SLR ηcloud 10−4

Degree of smoothing κ 0.1
Initial learning rate of Change-Net ηchange 10−4

Energy cost of each MAC operation [47] ε 51 fJ

assessment of the collective energy consumption by the two
networks, we postulated that the energy attributed to EMAC,
constitutes approximately 10% of the total processing energy,
Eproc, a proportion akin to the one observed in the GoogLeNet
architecture [60]. We opted to employ acquired Sentinel-2 data
not only to assess the proficiency of our proposed framework
but also due to the unavailability of a dataset encompassing
both cloud patterns and contemporaneous alterations. This
limitation is one of the underlying factors hindering the direct
practical applicability of machine learning applications for
advanced intelligent satellite systems. The specific utility of
images is exemplified through Fig. 5(a)-(c). The outcomes
reveal that our proposed architecture confers advantages, par-
ticularly when the Peak Signal-to-Noise ratio (PSNR) between
the reconstructed image (Fig. 5(c)) and the original captured
image (Fig. 5(b)) attains a value of 55.94 dB, post cloud
removal and absent compression. To achieve this, Change-
Net strategically selected up to 60% of MPs (as demonstrated
in Fig. 5(d) on the date 04/09/2023) in order to ensure a
satisfactory selection of changed MPs.

Figure 5(d) presents the count of MPs identified as changed
and those associated with cloud cover. We can see that our
schematic works effectively through its capability to achieve
efficient data reduction by up to 55% for transmission to
Earth (as of September 24, 2022). As seen in the pair of
illustrations in Fig. 5(a)-(b), subsequent to cloud area removal,
a substantial proportion of terrestrial regions are earmarked
and dispatched for monitoring (constituting approximately
40%-60% of the total), while marine regions (approximating
20%) are excluded unless experiencing noteworthy alterations.
It becomes apparent that in contrast to the conventional OSCD

dataset comprised of cleared pairs resulting in a few number of
changed MPs are selected, Changed-Net excels in the selection
of the almost land areas for forwarding. This observation
underscores the importance of employing advanced image
pre-processing methods, particularly in real-world datasets
affected by noise and cloud interference. Such techniques
enable accurate and targeted localization of changed regions,
facilitating more streamlined data transmission, which is left
for our future works. Fig. 5(e) shows the energy requisites for
the processing (both in Cloud-SLR and Change-Net), compres-
sion, and transmission of satellite-derived data. We note that
the required energy for conventional algorithm (transmit all
capture data) changes over time despite the same area because
captured data from Sentinel-2 does not always capture the
entire region and output the same amount of data. In a com-
parative analysis to the conventional paradigm of transmitting
the entire sensing image, our architectural framework results
in a minimum conservation of 28% in energy requirements,
which saves up to 2.39× the energy consumption compared
to conventional one. This conservation translates directly into
not only diminished energy consumption for data processing
and satellite transmission, but also economical storage capacity
and processing duration at terrestrial gateways.

In pursuit of the attainment of such communication ef-
ficiency, we have engineered the Cloud-SLR and Change-
Net components to ensure their substantial reliability and
efficiency. A detailed evaluation of their performance and
capabilities is delineated in the following.

C. Cloud-SLR Performance

It is imperative to underscore that our principal objective
centers on proposing an approach with the capacity to detect
clouds with high performance while retaining a significant
portion of non-cloud MPs. Consequently, we place special
emphasis on three evaluation metrics, Specificity, Precision,
and Overall Accuracy which are computed as

Specificity =
TN

TN + FP
, Precision =

TP
TP + FP

,

Accuracy =
TP

TP + FN
, (26)

where TP, FN, TN, FP are respectively True Positive, False
Negative, True Negative, and False Positive. As seen in (26),
the metric that we focus on most is specificity as it reflects
the amount of non-cloud information retained after using
Cloud-SLR. A higher specificity value is evident in its direct
correlation to the quantity of non-cloud information preserved,
which corresponds to valuable information.

We examine the convergence behavior of Cloud-SLR, as
depicted in Fig. 6. Notably, our proposed model demonstrates
fast convergence coupled with robust stability. In addition,
Table III presents a comparative analysis between our Cloud-
SLR and other contemporary approaches, conducted on the 38-
Cloud dataset. Building upon the aforementioned discourse,
by employing the label smoothing technique in tandem with
an appropriately set classification threshold, Cloud-SLR effec-
tively preserves 99.56% of non-cloud MPs-exhibiting superior-
ity over existing methodologies. Moreover, our model ensures
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TABLE III: Numerical performance over 38-Cloud dataset (%)

Method Precision Specificity Overall
Accuracy

FCN [36] 96.15 98.34 95.05
Fmask [61] 88.65 94.20 94.94
Cloud-Net [58] 97.60 98.97 95.86
Cloud-Net+ [62] 97.33 98.83 96.36
Cloud-SLR (Ours) 97.94 99.56 95.12
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Fig. 7: ROC curves over OSCD dataset; the AUC scores are
shown in the legends.

an overall accuracy exceeding 95%, while also attaining the
highest precision in comparison to extant techniques. The
heightened dependability and accuracy of Cloud-SLR ensure
the retention of changed MPs without compromise, which
constitutes the focal content intended for transmission through
the gateways.

D. Semantic Encoding Performance

We evaluate the Receiver Operating Characteristics (ROC)
of the change detection model with different thresholds to
show trade-off between True Positive Rate (TPR) and False
Positive Rate (FPR) ratio. Herein, the TPR and FPR are
respectively defined as TPR = TP/(TP + FN), and FPR =
FP/(FP + TN). Based on ROC, the Area Under the ROC
Curve (AUC) could be calculated, which measures how well
predictions are ranked.

The efficacy of the Change-Net model is validated in Fig. 7
by analyzing Receiver Operating Characteristic (ROC) curves

across the OSCD dataset under varying thresholds with the
highest, median, and lowest AUC levels, respectively. The
notable performance of our Change-Net is readily observed as
it achieves a high level of performance with a maximum AUC
of 0.98 and a minimum AUC of 0.80. Therefore, selecting
the appropriate score threshold to guarantee the fulfillment of
constraints in (17) while simultaneously ensuring the selection
of an adequate number of modified points can be considered
a dependable approach. The demonstrated success of Change-
Net with the OSCD dataset is significant as it sets the stage for
subsequent endeavors when enabling the proficient selection
of changed MPs as a foundational step toward the efficient
identification of semantic map pixels in real-world scenarios.
This strategic approach not only holds the potential to enhance
data selection but also contributes to saving transmission
resources.

Figure 8 shows the efficacy of Change-Net through four
illustrative scenarios drawn from the OSCD dataset. More
specifically, images in Fig. 8(a) and Fig. 8(b) correspond to
pairs of images captured at the same geographical location
but at different times. Fig. 8(c) manifests as a cartographic
representation of change probabilities at the pixel level, in-
tricately portraying the probability of alterations within the
visual domain. Subsequently, Fig. 8(d) enhances this discourse
by integrating two tiers of information: firstly, the ground
truth depicted in blue, capturing the change map between
images in Fig. 8(a) and Fig. 8(b); and secondly, the composite
representation of the semantic encoding map rendered in red.
The ensuing interplay between the probabilistic rendering of
figure in Fig. 8(c) and a well-structured scoring mechanism
facilitates the extraction of pixels endowed with semantic
depth. It is noteworthy that the semantic encoding map,
covering a substantial portion of the ground truth, achieves
a coverage rate of approximately 95%, contingent upon the
specific geographical locations. This map then plays as a
semantic mask to extract information for subsequent trans-
mission to the gateway. Based on the probabilistic alteration
representations depicted in Fig. 8(c), the extent of seman-
tic information chosen exhibits variability. For example, in
scenarios involving image pairs captured in locales such as
Hong Kong or Montpellier, where the probability change map
distinctly delineates the unchanged-changed MP pairs, the
discernment of semantic MP candidates closely approximates
ground truth. Consequently, the data transmission burden upon
the encoder is notably diminished. Conversely, instances like
that of Las Vegas may manifest a profusion of MPs bearing
elevated probabilities of being designated as changed MPs.
Hence, ensuring a 95% assurance in the selection of altered
MPs entails the concurrent selection of numerous unchanged
MPs. In contrast to prevailing methodologies which merely
convey changed pixels, our proposed approach represents a
logical progression, preserving crucial insights into the sensing
images and thus enabling practical applications within the
domain of satellite systems.

In Figure 9, we present a graphical representation illustrat-
ing the cumulative percentage of downloaded content, as well
as the probabilities associated with changed and unchanged
MPs), juxtaposed against the score attributed to multi-spectral
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(a) Nantes at t0 (b) Nantes at t1 (c) (d)

(a) Montpellier at t0 (b) Montpellier at t1 (c) (d)

(a) Lasvegas at t0 (b) Lasvegas at t1 (c) (d)

(a) Hongkong at t0 (b) Hongkong at t1 (c) (d)

Fig. 8: (a), (b) Example pair of images in different times (displayed in RGB bands). (c) Probability map of change. (d) Ground
truth and Semantic encoding map, respectively (Ground Truth is displayed in blue and Semantic map is display in red).
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Fig. 9: (a-c) Cumulative Percentage Downloaded versus score of multi-spectral images under different AUC; (d-f) Probability
of changed and unchanged MPs versus score of multi-spectral images.

images, across distinct AUC values. It is easy to see that
the utilization of varied AUC values results in a considerable
disparity in the distribution pattern of changed and unchanged
MPs, as exemplified in Fig. 9(a)-(c). Consequently, the at-
tainment of a 95% ratio of changed MPs necessitates an
adjustment of the score threshold. Specifically, MPs annotated
as 0 and 1 exhibit a degree of overlap, as evidenced in
Fig. 9(d)-(f), engendering the situation wherein the requisite
count of changed MPs selection also entails the selection of
a number of unchanged MPs (denoted by the red regions in
Fig. 8(d)). Specifically, in order to ensure the identification of
a satisfactory quantity of changed MPs at a 95% frequency,
approximately 50% of the unchanged MPs are classified with
a value of 1. We emphasize that our approach places primacy
on the establishment of a threshold for designating a specific
fraction of changed MPs post-training, rather than solely
evaluating the model’s performance metrics on the test dataset.

Summing up, we have evaluated our proposed algorithm in
the Sentinel-2 system, demonstrating significant improvements
in energy efficiency. Our results indicate that the proposed
architecture reduces data transmission volume by up to 55%
and conserves at least 28% of energy compared to traditional
methods. The reliability and efficiency of the Cloud-SLR and
Change-Net models have been validated through experimental
results, ensuring their high practical applicability. Specially,
we used the 38-Cloud dataset to train and test Cloud-SLR,
achieving an overall accuracy exceeding 95% and a speci-
ficity of 99.56%. The Change-Net model’s performance was
confirmed through OSCD dataset, achieving a maximum AUC
of 0.98, demonstrating high performance in change detection.

V. CONCLUSION AND DISCUSSION

This study investigated the context of EO with the primary
goal of augmenting the efficiency of processing operations and
mitigating energy utilization within edge devices throughout
the phases of sensing data transmission and storage. To
realize this objective, we introduce a comprehensive end-
to-end learning-based scoring framework, which is designed
to autonomously encode semantic MPs from multi-spectral
sensing images. In accordance with this approach, initial
preprocessing and the elimination of cloud interference from
captured images are executed via the implementation of the
Cloud-SLR technique. Subsequently, the establishment of the
semantic map is facilitated through the utilization of the
Change-Net model, coupled with a scoring system, thereby
enabling streamlined encoding and effective data transmis-
sion to ground-based stations. The restoration of captured
images is facilitated through the integration of received data
and reference images. The numerical results demonstrate the
enhanced data detection capabilities of our proposed solution,
underscoring its potential to achieve a remarkable reduction of
up to 58% in energy consumption. The proposed architecture
serves as a valuable foundation for future research endeavors,
providing inspiration for conducting more comprehensive case
studies that incorporate cutting-edge techniques for mitigating
various forms of noise, thus paving the way for the realization
of truly intelligent satellite systems.
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