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ABSTRACT Terrestrial networks form the fundamental infrastructure of modern communication systems,
serving more than 4 billion users globally. However, terrestrial networks are facing a wide range of
challenges, from coverage and reliability to interference and congestion. As the demands of the 6G
era are expected to be much higher, it is crucial to address these challenges to ensure a robust and
efficient communication infrastructure for the future. To address these problems, Non-terrestrial Network
(NTN) has emerged to be a promising solution. NTNs are communication networks that leverage
airborne (e.g., unmanned aerial vehicles) and spaceborne vehicles (e.g., satellites) to facilitate ultra-reliable
communications and connectivity with high data rates and low latency over expansive regions. This article
aims to provide a comprehensive survey on the utilization of network slicing, Artificial Intelligence/Machine
Learning (AI/ML), and Open Radio Access Network (ORAN) to address diverse challenges of NTNs from
the perspectives of both academia and industry. Particularly, we first provide an in-depth tutorial on NTN
and the key enabling technologies including network slicing, AI/ML, and ORAN. Then, we provide a
comprehensive survey on how network slicing and AI/ML have been leveraged to overcome the challenges
that NTNs are facing. Moreover, we present how ORAN can be utilized for NTNs. Finally, we highlight
important challenges, open issues, and future research directions of NTN in the 6G era.

INDEX TERMS NTN, network slicing, AI/ML, ORAN, and 6G.

I. INTRODUCTION

TERRESTRIAL networks, encompassing land-based in-
frastructures such as fiber optics, coaxial cables, and

wireless transmission, are the backbone of modern com-
munication systems, enabling the seamless exchange of
information in our interconnected world. However, with the

ever-increase of demands, e.g., nearly 5 billion Internet users
worldwide [1], terrestrial networks are facing a wide range
of challenges, from coverage and reliability to interference
and congestion. Particularly, as reported by Ericsson, only
10% of the global population has access to mobile broadband
services [2]. The main reason for this is due to the difficulties

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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in establishing infrastructure in underserved regions, such as
rural areas, islands, and isolated communities. Moreover, the
reliability and resilience of terrestrial networks are required
to be improved, especially in case of natural disasters,
accidents, or attacks [3]. Furthermore, current terrestrial
networks are not suitable for new use cases and services that
require high bandwidth, low latency, or global coverage [4].

Non-terrestrial Network (NTN), encompassing satellites,
Unmanned Aerial Vehicles (UAVs), and High-Altitude Plat-
form Stations (HAPS) networks, is a promising solution to
address the challenges that terrestrial networks are facing.
For instance, through the utilization of satellites and HAPS,
NTN can effectively overcome coverage gaps in terrestrial
networks, facilitating broadband connectivity across expan-
sive distances. NTN can also play a vital role in enhancing
the resilience of terrestrial infrastructure during crises by uti-
lizing UAVs to provide emergency access [5]. Furthermore,
by integrating with terrestrial networks, NTN can unlock new
possibilities for applications requiring high bandwidth, low
latency, and global coverage, including autonomous driving,
smart cities, Internet-of-Things (IoT), Augmented Reality,
Virtual Reality, cloud gaming, and video conferencing, in the
6G era [6], [7]. Table 1 [8] summarizes the main differences
between NTNs and terrestrial networks.

Despite its potential, the development of NTN is also
facing serious challenges. Particularly, NTN often faces
significant propagation delay and path loss due to high
altitudes. This can significantly hinder the effectiveness of
NTN in time-sensitive applications. Moreover, the challeng-
ing nature of channel estimation is exacerbated by the time-
variant characteristics of NTN. The high moving speed of
satellites also causes severe Doppler effects and serious
challenges in mobility management. Another limitation of
NTN is the high initial investment cost compared to that of
terrestrial networks, especially for satellites, e.g., more than
$2 million launch cost per satellite [14]. Additionally, the
complex integration of NTN and existing terrestrial network
infrastructure necessitates careful design and considerations
to optimize.

To address these challenges, various solutions have been
developed in recent years, leveraging technologies such
as network slicing, Artificial Intelligence/Machine Learn-
ing (AI/ML), and Open Radio Access Network (ORAN).
Particularly, with the powerful ability to create multiple
virtual networks from a shared physical network architecture,
network slicing enables a single NTN to serve multiple
types of applications and users with different demands, e.g.,
low-latency communication for UAVs and high bandwidth
for satellite Internet services. Moreover, AI/ML can help
NTNs to overcome critical challenges of NTNs. Specifically,
AI/ML techniques are very effective in handling non-linear
effects and general impairments of channels in NTNs. Those
techniques can also enable the autonomous operation of
numerous wireless applications, thereby reducing the need
for constant human intervention. Additionally, by utilizing

the current diverse vendors ecosystem, ORAN can help
to significantly improve NTNs’ resiliency, scalability, and
flexibility.

This paper aims to provide an in-depth and comprehensive
survey on the utilization of those technologies to address
the diverse challenges of NTNs from the perspectives of
both academia and industry. Particularly, we first provide
an in-depth tutorial on NTN and the enabling technologies
including network slicing, AI/ML, and ORAN. Then, we
provide a comprehensive survey on how network slicing and
AI/ML have been leveraged to overcome the challenges that
NTNs are facing. Moreover, we present how ORAN has been
utilized for NTNs from an industry standpoint. Finally, we
discuss the current challenges and open issues and introduce
potential research directions for NTN in the 6G era.

As summarized in Table 2, there are a few surveys on the
development of NTN in the literature, such as [4], [6], [7],
[9]–[12]. Particularly, [9] focuses on the integration of New
Radio in NTN, whereas [4] elaborates on the role of NTN in
5G systems. Moreover, [6] surveys the integration of NTN
with different types of networks such as IoT, Mobile Edge
Computing (MEC), and mmWave. Taking another approach,
[7] discusses the utilization of cellular, Wide-Area, and NTN
for IoT applications. Additionally, although [10] and [13]
provide comprehensive surveys on the application of AI/ML
in NTN, network slicing and ORAN are not the focus of
these surveys. Taking another approach, [11] and [12] discuss
the architecture, performance evaluation, and standardization
aspects of NTNs and terrestrial networks integration. To the
best of our knowledge, there exist no comprehensive studies
on how the abovementioned technologies are employed to
address the challenges in NTN, especially from an industry
perspective. Given the rapid increase in user demands and the
emergence of new services, there is an urgent need for new
solutions to address the limitations of NTNs. As a result,
this paper is expected to fill the gap in the literature and
contribute to the future development of 6G networks.

As illustrated in Fig. 1, the rest of this paper is organized
as follows. Section II provides a tutorial on NTN and its core
enabling technologies including network slicing, ORAN,
and AI/ML. Then, the applications of network slicing and
AI/ML in NTN are discussed in detail in Section III and IV.
Next, the industry applications of ORAN are presented in
Section V. Open issues, challenges, and future research
directions are presented in Section VI, and conclusions are
given in Section VII.

II. Overview of NTN and Enabling Technologies
In this section, we first provide an overview of NTN,
including its architectures, advantages, and use cases. Then,
the challenges in NTNs are discussed thoroughly. Finally,
we provide a brief background on advanced technologies and
infrastructures that can be adopted to efficiently address these
challenges, including network slicing, AI/ML, and ORAN.

2 VOLUME ,



TABLE 1. Comparison between NTNs and Terrestrial Networks [8]

Aspect Non-Terrestrial Networks (NTN) Terrestrial Networks
Coverage Area Global (up to 3500 km) Regional (up to 100km)

Communication Rates Up to 150 Mbps (Starlink) More than 100 Mbps on average

Latency Higher latency (more than 500ms for GEO satellite) Lower latency (lower than 40ms )

Infrastructure Cost Very high for satellites Lower for ground infrastructure

Reliability Robust to disasters Vulnerable to disasters, single points of failure

Accessibility Can reach remote/underserved areas Difficulty in remote area coverage

Mobility Support Seamless mobility across wide areas Frequent handovers for mobility

TABLE 2. Comparison with existing surveys

Ref. Focus Differences
[9] Integration of New Radio in NTN Not focus on network slicing, AI/ML, and ORAN

[4] Role of NTN in 5G systems Not focus on network slicing, AI/ML, and ORAN

[6] Integration of NTN with different types of networks Not focus on network slicing, AI/ML, and ORAN

[7] Utilization of cellular, Wide-Area, and NTN for IoT Not focus on NTN

[10] Application of AI/ML in NTN Not focus on network slicing and ORAN

[11] Architecture, performance evaluation, and standardization of NTNs Not focus on network slicing, AI/ML, and ORAN

[12] Architecture, performance evaluation, and standardization of NTNs Not focus on network slicing, AI/ML, and ORAN

[13] Integration of AI/ML for NTN Not focus on network slicing and ORAN
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FIGURE 1. Organization of this paper.

A. Overview of NTN
NTNs are communication networks that partially or fully
operate through the airborne or spaceborne vehicle(s) [8],
[15]–[17]. With connections from the air or space, NTNs
can empower ultra-reliable communications when terres-
trial infrastructures are not available, such as in remote
and unreachable areas or during natural disasters [18]. In
addition, NTNs can easily provide multicast connectivity
with high data rates and low latency over a large region,
enabling massive Machine Type Communication (mMTC)

and enhanced Mobile Broadband (eMBB) communications.
Moreover, multiple NTNs can be connected together and/or
connected to existing terrestrial networks to provide con-
tinuous and ubiquitous wireless coverage, thus bringing
us closer to the era of anything, anytime, and anywhere
communications [8].

The development of NTNs can be traced back to the 1990s
with the commercialization efforts of the two companies
Globalstar and Iridium Communications [19]. By deploying
several satellites, they can provide low-bandwidth connec-
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FIGURE 2. Overview of NTN [15].

tions to specialized handsets. Since then, NTN technologies
have been studied extensively by both academia and industry
with a vision of creating a network of satellites and providing
Internet services to users anywhere on Earth. The potential
features, requirements, and protocols for NTNs have been
standardized by 3GPP since 2017 with a study item on de-
ployment scenarios and channel models in Release-15 [18].
After that, the required features to enable New Radio (NR)
support for NTN are determined by a study in the Radio
Access Network (RAN) working group of Release-16. This
is then developed further in Release-17 with a set of potential
features to enable 5G NR to operate over NTN at frequencies
up to 7.125 GHz [18]. Potential use cases of IoT over NTN
with link budget and parameters are also discussed in this
Release-17. Release-18 is under development and will focus
on 5G systems with satellite backhaul architecture as well
as addressing the mobility and continuity problems when
connecting different NTNs and also connecting NTNs to
terrestrial networks [18].

NTN has been attracting great attention from both industry
and academia recently due to its potential to complement and
enhance existing terrestrial networks in terms of coverage,
capacity, and mobility. It is expected to play an essential
role in the development of 5G-advanced and 6G networks.
For that, big tech companies like SpaceX, OneWeb, Amazon
Kuiper, and SoftBank are investing billions of dollars in this
field to provide global connectivity and expand their business
models [20], [21]. In general, NTNs can be categorized into
airborne and spaceborne platforms as illustrated in Fig. 2.

1) Airborne Platforms
This category includes UAVs and HAPSs [22]. While UAVs
operate at low altitudes, (e.g., a few hundred meters),

HAPSs, such as airplanes, balloons, and airships, can reach
the stratosphere region with altitudes ranging from 20 kilo-
meters to 200 kilometers [15]. One example of airborne NTN
is Project Loon [23], [24] from Google which deploys bal-
loons at high altitudes from 18 kilometers to 25 kilometers to
provide connectivity to remote and rural areas. Facebook is
also involved in airborne NTN by developing solar-powered
drones that operate at an altitude of up to 27 kilometers
and provide Internet services to an 80-kilometer-radius area
below its flying path through Project Aquila [25].

Airborne NTN can be deployed quickly at a lower cost
and has a much smaller propagation delay compared to
spaceborne NTN. However, airborne platforms face critical
challenges of stabilization on air and refueling. In particular,
operating at low altitudes makes them vulnerable to environ-
mental conditions such as strong winds or storms that can
change the flying path of balloons and drones or even destroy
them. It is also difficult and inefficient to refuel airborne
vehicles while maintaining connections for users. These
challenges could be the reason for the termination of projects
Aquila and Loon in 2018 and 2021, respectively. While
airborne platforms may not be effectively used to provide
Internet services, they can be used in emergency scenarios
such as during natural disasters and rescue missions in rural
areas where cellular coverage is not available.

2) Spaceborne Platforms
Recently, spaceborne NTN has been emerging as a promising
technology for future communication networks (e.g., 5G-
Advanced and 6G) where satellites are placed in space to
provide communications for users on Earth. These satellites
fly around the Earth in specific orbits and can be cate-
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gorized into: (i) Geostationary Earth Orbit and (ii) Non-
Geostationary Earth Orbit [15], [26]–[28].

a: Geostationary Earth Orbit (GEO)
Satellites operating in GEO (i.e., GEO satellites) fly around
the Earth above the equator from west to east following the
Earth’s rotation. GEO satellites travel at the same rate as
the Earth and take 23 hours 56 minutes and 4 seconds to
complete one orbital period. As a result, these satellites are
“stationary”, i.e., appear motionless, at a fixed position in
the sky to observers on Earth [29]. To exactly match the
Earth’s rotation, GEO satellites must travel at the speed
of about 3 kilometers per second at an altitude of 35,786
kilometers. Due to the high altitude, GEO satellites can cover
a large portion of the Earth’s surface. Theoretically, three
GEO satellites can provide near-global coverage. The beam
footprint of GEO satellites can range from 200 kilometers
to 3,500 kilometers [8]. There are currently hundreds of
GEO satellites in the orbit [30], and most of them are
used to provide services such as weather monitoring, TV
broadcasting as well as remote sensing and positioning.
GEO satellites can also be used for communication services.
However, due to the high altitude, the communication latency
is significantly high (around 600 milliseconds according to
Starlink [20]). To provide low latency connections, satellites
operating at low orbits have been gaining great attention
recently.

b: Non-Geostationary Earth Orbit (NGEO)
Different from GEO satellites, NGEO satellites operate at
lower altitudes with orbital periods of less than 24 hours.
In addition, their positions can be always changed with
respect to observers on Earth. There are two types of NGEO
satellites according to their altitudes: (I) Medium Earth Orbit
(MEO) satellites and (ii) Low Earth Orbit (LEO) satellites.

• MEO satellites usually operate at 2,000 kilometers to
25,000 kilometers above the Earth’s surface [15]. Flying
at these altitudes allows MEO satellites to create beams
with diameters from 100 kilometers to 500 kilometers.

• LEO satellites can be deployed at altitudes from 200
kilometers to 2,000 kilometers [15] which is lower
than other orbits but still very far from the Earth’s
surface. LEO satellites can create beam footprints with
diameters from 5 kilometers to 200 kilometers.

MEO and LEO satellites can be used for sensing, position-
ing, and communication systems due to their low propagation
delay compared to GEO satellites. For example, the US
Global Positioning System (GPS) uses at least 24 MEO
satellites for its global positioning services. As of June
26, 2022, the GPS constellation consists of 31 operational
satellites [31]. Although MEO satellites can be used for com-
munication services, the communication latency is still high
and may not be feasible for today and future communication
applications. Recently, LEO satellites have been emerging
as promising platforms to provide Internet services to users

on Earth anywhere and anytime. For example, Starlink, the
world’s first and largest constellation, uses thousands of LEO
satellites to deliver broadband Internet for services such as
streaming, online gaming, and video calls to users around the
world [20]. Starlink’s satellites fly at an altitude of about 550
kilometers with much lower propagation delay compared to
those of GEO and MEO satellites. As a result, Starlink can
achieve a roundtrip delay of around 25 milliseconds for its
services [20]. The current biggest competitor of Starlink is
Amazon’s Project Kuiper which aims to launch over 3,236
LEO satellites to provide low latency and high-speed Internet
services to users on a global scale. In addition, this satellite
system is also integrated into resilient communication infras-
tructure powered by a global network of ground stations and
Amazon Web Services for better services [21].

B. Challenges of NTN
Although providing various promising applications and use
cases, NTN faces several technical challenges that need to be
fully addressed to ensure its success in future communication
networks.

• Propagation delay and path loss: NTN platforms face
a particular challenge of propagation and path loss due
to their high altitudes. For example, GEO satellites
experience a round-trip latency of around 600 mil-
liseconds [20] which is considered significantly high.
This may not be feasible for communications that
require low or ultra-low latency such as online gaming,
video streaming, and VR/AR. Compared to terrestrial
communications, the propagation path losses of NTN
platforms are much higher due to long distances to
UEs. In addition, NTN platforms at high altitudes
can cover large areas to serve a massive number of
users with different propagation delays and path losses
in different regions [8]. Consequently, ensuring good
communications for all users is very challenging. More-
over, managing initial accesses and synchronizations
for these diverse users also poses another challenge to
NTNs.

• Channel estimation: Channel estimation is an essential
task in every communication system. For NTNs, it
is even more challenging due to the inherent time-
variant property of NTN platforms. In particular, at
high altitudes, NTN platforms fly from horizon to
horizon very fast (e.g., around 5-10 minutes for LEO
satellites [15]). As a result, users on Earth remain in
the coverage of a particular NTN platform for a very
short period. In addition, the long propagation delay
may make estimated channel state information outdated
quickly [32]. Hence, traditional estimation methods in
terrestrial networks may not be feasible for NTNs, and
advanced approaches are required to ensure the success
of NTNs.

• Doppler effect: Due to their high movement speeds,
NTN platforms introduce significant Doppler effects
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on communication links between them and users on
Earth. In particular, the Doppler effect is the shift in the
frequency of signals during the relative motion between
transceivers. The Doppler effect also happens in terres-
trial networks, e.g., users on high-speed trains or cars.
However, in NTNs, this effect is more serious as NTN
platforms fly at very high speeds. For example, a user
communicating with an LEO satellite operating at 600
kilometers above the ground may experience a Doppler
shift of up to 48 kHz given the carrier frequency of
2 GHz [33]. This Doppler shift is significantly larger
compared to those of users in terrestrial networks.

• Mobility management: Another challenge in NTNs is
mobility management due to the high speeds of NTN
platforms. For example, satellites operating at NGEO
have short orbital periods (around 2-10 hours [15]).
Consequently, users on the ground can only observe
a particular NGEO satellite over a very short period,
typically several minutes [15]. In this case, the ground
users will need to perform handovers frequently, espe-
cially when these satellites use multiple beams to cover
an area on Earth.

• Resource management: Compared to terrestrial termi-
nals, NTN platforms need to transmit signals with
much higher power to deal with the high path loss
and ensure users on Earth can successfully decode the
transmitted signals. This introduces a new challenge for
NTN platforms as they are not equipped with stable
power sources like terrestrial terminals. Moreover, the
frequency bands assigned to NTN communications are
limited and already crowded. In particular, the S-band
and Ka-band are the target bands for NTNs [15].
However, 4G LTE devices are using the S-band, and
millimeter wave-enabled devices in 5G are using the
Ka-band. As a result, users in NTNs may experience
co-channel interference from these terrestrial devices.
This demands novel spectrum-sharing solutions to in-
telligently and efficiently utilize the limited frequency
bands.

C. Technologies and Infrastructures for NTN
Solutions to address the aforementioned challenges of NTNs
have been actively developing in the past few years, in-
cluding beamforming designs, efficient resource allocation,
dynamic routing, and intelligent operation management [34],
[35], by leveraging advanced technologies in AI/ML, com-
munications and networking, and computing. Among them,
network slicing, ORAN, and AI/ML are promising technolo-
gies that are expected to play vital roles in NTNs. In this
section, we will provide the fundamentals and advantages of
these technologies for NTNs.

NTN Infrastructure

Low Latency

Massive Connectivity

High Reliability

FIGURE 3. General architecture of network slicing-powered NTN [36], [37].

1) Network Slicing
Network slicing is a new technology that allows us to create
multiple unique logical and virtualized networks, called
slices, on top of a physical infrastructure [37]–[39]. With
network slicing, service providers can quickly serve diverse
services according to their requirements such as resources,
quality of service (QoS) demands, and network function-
alities, simultaneously. To do that, network slicing deploys
various technologies such as Software-Defined Networking
(SDN), Network Function Virtualization (NFV), and Net-
work Orchestration. In particular, SDN is an approach to
decouple the control plane from the data plane of network de-
vices and make the control plane programmable [40]. In this
way, SDN can dynamically perform network configurations
through the centralized controller, resulting in better network
performance compared to conventional networking. NFV is
a novel technology to virtualize network services such as
firewalls, routers, and load balancers by using virtualization
technologies and commercial off-the-shelf programmable
hardware [41]. In such a way, NFV brings various benefits to
network operators such as decoupling software from hard-
ware, flexible network function deployment, and dynamic
scaling [42]. Finally, network orchestration refers to the
automated rules to dynamically control and automatically
program the network, allowing it to ensure the service level
agreements for the services. With these advanced technolo-
gies, network slicing is expected to play an essential role in
5G and beyond due to its advantages as follows [39], [43]:

• Enabling Scalability and Flexibility: In practice, net-
work services may require different amounts of re-
sources and network functions at different times. To
better utilize the system’s resources, network slicing
allows network operators to dynamically allocate re-
sources from a particular slice to other slices that
demand higher resource requirements without affecting
services in the source slice. Network slicing also can
quickly create a slice for new services when requested,
e.g., critical applications, and adjust the allocated re-
sources and network functions based on users’ de-
mands.

• Ensuring Security and Privacy: Although using the
same physical infrastructure, slices in network slicing
networks are independent. As such, security attacks in
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one slice cannot affect other slices in the system. This
is called slice isolation, an important design principle
of network slicing.

• Improving QoS: Network slicing can allocate different
types of resources and network functions to diverse
services based on their QoS requirements. In addition,
during congestion situations, network slicing can still
guarantee the QoS for users by dynamically allocating
resources and prioritizing traffic between slices in the
network.

With the aforementioned advantages, network slicing has
emerged as a potential enabler that can effectively address
various challenges of NTNs. A general network slicing-
powered NTN system is illustrated in Fig. 3. In particular,
like traditional network components, NTN platforms can
also be virtualized both in terms of resources and network
functions by using SDN and NFV to support different types
of services simultaneously. With network slicing, service
providers can quickly establish new slices for NTN services
such as Earth observation, broadcast services, and broadband
services to serve different groups of users [44]. This can
efficiently address the problem of high cost and high delay in
building satellite constellations in orbits. In addition, network
slicing also allows NTNs to be effectively and flexibly
integrated into existing terrestrial networks. Nevertheless,
network slicing-powered NTN systems still face several chal-
lenges in designs, protocols, and optimizations. In particular,
the high mobility of satellites can create frequent topology
changes and handovers that may not be fully addressed
by using existing network slicing technologies. In addition,
satellite communications have higher latency and energy
consumption compared to traditional communications. As
such, managing and allocating different types of virtual
resources to maintain efficient network slicing operations are
more complex in NTNs than in terrestrial networks. These
challenges and existing approaches in the literature will be
discussed in detail in Section III.

2) AI/ML
AI/ML has been developing significantly since the deep neu-
ral network (DNN) architecture was re-invented and trained
over a large amount of data by powerful computational com-
puters. It has been successfully applied to various areas such
as computer vision, gaming, and natural language process-
ing. In the fields of communications and networking, AI/ML
has been emerging as a promising solution to efficiently and
significantly improve communication performance. AI/ML
is a potential technology for NTNs to overcome their crit-
ical challenges that conventional approaches cannot handle
well. For instance, Deep Reinforcement Learning (DRL), an
advanced AI/ML algorithm, can be used to address resource
allocation, routing, handover, and beamforming problems
in NTNs [45]–[47] due to its capability in dealing with
the dynamics and uncertainty of the system. Deep learning

(DL) with advanced neural network architectures such as
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) is very effective in handling non-linear
effects and general impairments of channels in NTNs. In this
section, we will present the fundamentals of common AI/ML
techniques that can be used to improve the performance of
NTNs. The details of existing AI/ML applications for NTNs
will be presented in Section IV.

AI refers to a field of computer science that focuses
on building machines (especially computer systems) to per-
form tasks that require human intelligence such as learning,
problem-solving, decision-making, and reasoning. ML is a
special subset of AI in which a machine tries to learn a
specific task (e.g., image classification, voice recognition, or
signal classification and resource allocation in communica-
tion networks) and performance metrics such as classification
accuracy and performance loss by using only the data
collected from the task. ML can be generally categorized
into three subsets: (i) supervised learning, (ii) unsupervised
learning, and (iii) Reinforcement Learning (RL) [48].

• Supervised learning: In this type of ML, the learning
model is trained with labeled datasets to classify data
or predict outcomes accurately. For example, an ML
model can be trained with a dataset of images of
different animals that are labeled by humans. Over time,
the model can learn ways to identify these animals.
Supervised learning is the most common type of ML
used today. The standard supervised learning techniques
include Naive Bayes, Liner Regression, Decision Tree,
Support Vector Machine, and Logistic Regression [48].

• Unsupervised learning: Different from supervised
learning, unsupervised learning models are trained on
unlabeled data. To do that, unsupervised learning algo-
rithms scan through training data to identify patterns
or trends without human intervention. For example,
unsupervised learning can be used to learn from online
sales data to look for different types of clients making
purchases. The standard techniques in unsupervised
learning include K-means clustering, Self-Organization
Map, and Principal Component Analysis [48].

• Reinforcement learning: This type of ML does not
require a prior dataset for training. In particular, RL
is trained through trial and error by interacting with
an external environment. Given a particular state, the
RL agent makes an action based on its current policy.
After that, it observes the next system state and the
immediate reward calculated by a predefined reward
function. All these observations will be learned by
the agent to gradually obtain the optimal policy. The
standard techniques in RL include Q-learning, deep Q-
learning, and multi-armed bandit [48]–[51].

To further improve the prediction performance of ML
models, DL has been proposed by leveraging the capabilities
of DNNs in learning from a large amount of data. Compared
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to conventional ML algorithms, DL has several advantages
such as no need for system modeling, supporting parallel and
distributed algorithms, and being reusable. A typical DNN
consists of four main components: (i) neurons, (ii) weights,
(iii) biases, and (iv) activation functions. In particular, layers
of a DNN are connected to each other by neurons, also
known as nodes. Each neuron has an activation function such
as tanh, sigmoid, and relu [49]. The activation function is
used to calculate the output of each neuron given its weight
and bias. During training, the weights of the DNN are up-
dated by calculating the gradient of the loss function. There
are three main types of DNNs including (i) Artificial Neural
Network (ANN), (ii) Recurrent Neural Network (RNN), and
(iii) Convolutional Neural Network (CNN).

• Artificial Neural Network: ANN, also known as feed-
forward neural network, is the most common type
of DNNs. Typically, an ANN consists of nonlinear
processing layers, including an input layer, several fully
connected hidden layers, and an output layer as shown
in Fig. 4. As a hidden layer takes the outputs of its
previous interconnected layer as its inputs, ANN pro-
cesses information in one direction from the input layer
through the hidden layer to the output layer. Generally,
ANN can work well with nonlinear functions, and thus
it can be considered a universal function approximation.
Due to its simple architecture and ability to extract
useful information from training data, ANN has been
commonly adopted to address emerging issues in com-
munications and networking. For example, the authors
in [52] propose to use an ANN architecture with only
three hidden layers for channel estimation and signal
detection in orthogonal frequency-division multiplexing
(OFDM) systems. Simulation and experimental results
then reveal that ANN is a promising tool for channel
estimation and signal detection in wireless environ-
ments under complex channel distortion and interfer-
ence. Moreover, in [53], the authors present several
use cases of applying ANNs to different problems in
wireless communications such as UAV-based wireless
networks, radio access, and mobile edge caching and
computing.

…

…

…

…

…

Inputs Outputs

Input layer

Fully connected hidden layers

Output layer

FIGURE 4. General architecture of ANN.

• Recurrent Neural Network: RNN is a special architec-
ture of DNNs that is widely used for time series data or
data that involves sequences. To do that, RNN deploys
a feedback loop and hidden states to store information

of previous inputs to improve the learning processes of
the next data, as illustrated in Fig. 5. In particular, the
output of the RNN cell at time t − 1 will be stored
in the hidden state ht. This stored information will
be used for learning the next sequence at time t. In
complex systems, RNN may not perform well due to
the “vanishing” or “exploding” gradient problem during
the backpropagation operation. To overcome this issue,
an extended version of RNN, namely Long Short-Term
Memory (LSTM), is proposed. In particular, LSTM
employs additional gates to determine the amount of
previous information in the hidden state that will be
used for the output and the next hidden state. In this
way, LSTM can efficiently learn the long-term depen-
dencies in training data while mitigating the issue of
the backpropagation process. RNN, especially LSTM,
has emerged as a promising architecture for signal clas-
sification in wireless communications due to the fact
that signals are naturally sequential and collected over
multiple antennas [54], [55]. In addition, LSTM can be
used for resource allocation, modulation classification,
intrusion detection, and beamforming [56]–[58].

RNN

𝑥𝑡

𝑦𝑡

𝑥0

𝑦0

𝑥1

𝑦1

𝑥𝑡

𝑦𝑡

𝒉𝟎 𝒉𝟏 𝒉𝒕…

FIGURE 5. General architecture of RNN.

• Convolutional Neural Network: CNN is designed
mainly for training over image data. The general archi-
tecture of a CNN is illustrated in Fig. 6. Specifically,
a CNN consists of convolution layers that have a
set of convolutional filters. Each convolutional filter
extracts specific features from image data. After each
convolution operation, CNN uses a Rectified Linear
Unit (ReLU) transformation to maintain positive values
during training. This helps the training process to be
faster and more effective. The pooling layer, also known
as downsampling, is used to reduce the number of train-
ing parameters by performing dimensionality reduction.
It has been widely demonstrated that CNN can handle
image data much more effectively than ANN. This is
because CNN does not need to convert images to 1-
dimensional data before training, which increases the
number of training features as well as removes the
correlations of features in images. CNN, in contrast,
can learn these features directly from image data by
using convolutional layers. As a result, CNN has been
widely applied in communications and networking to
handle data in the form of images or high-dimensional
matrices. For example, the authors in [59] propose
to use CNN for spectrum sensing in cognitive radio
networks. In addition, CNN can be used for automatic
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modulation classification as demonstrated in [60] by
taking IQ time-domain vectors of modulated signals as
its inputs. Due to the ability to handle high-dimensional
input data, CNN is a promising architecture for channel
feature extraction as studied in [61].

C
o

n
v

o
lu

ti
o

n

R
e

lu

P
o

o
li

n
g

C
o

n
v

o
lu

ti
o

n

R
e

lu

P
o

o
li

n
g

F
u

ll
y

 c
o

n
n

e
c

te
d

 

la
y

e
rs

Input image 

… Outputs

FIGURE 6. General architecture of CNN.

As mentioned, DL approaches usually require sufficient
training data from users to achieve good performance. How-
ever, in practice, users may not be willing to share their
data with the centralized server due to privacy and security
concerns. To address this issue, federated learning (FL) was
introduced in [62]. In FL, each user, i.e., client, uses their
local data to train a DL model. After that, they send their
model updates, i.e., their models’ weights, to a centralized
server for aggregation. The server then sends the aggregated
global model to all the clients. Based on this global model,
the clients then continue to train it with their local data. This
process is repeated until a desirable accuracy is obtained. In
this way, FL can effectively address the privacy problem
as well as reduce the required bandwidth as only models’
weight is transmitted to the server instead of raw training
data. Due to these advantages, FL has been widely adopted in
wireless communications and networking to address a wide
range of problems such as spectrum management, caching,
and IoT [63], [64]. Applications of FL in NTNs will be also
discussed in detail in Section IV.

3) ORAN
ORAN is the disaggregation of the traditional RAN, al-
lowing cellular equipment provided by different vendors
can be interoperated by using open and standards-based
protocols [65], [66]. In the following, we first provide the
fundamentals of RAN and then discuss the architecture and
advantages of ORAN over RAN.

Base Station

Base Station

Base Station

RU

BBU

Core 

Network Services

Radio Access Network

Backhaul

Users

FIGURE 7. General architecture of mobile networks.

Fig. 7 illustrates a general architecture of mobile networks,
including RAN, core network, and services. In particular,

the purpose of RAN is to connect user devices (e.g., mobile
phones and computers) to the core network to access services
provided by network operators. The main component of
RAN is base stations. In general, a base station consists of
two main units: (i) radio unit (RU) and (ii) baseband unit
(BBU). RU receives signals from users and sends them to
BBU for processing before transmitting them to the core
network. Traditionally, a single vendor provides all the units,
software, and connections between them of the base station.
As a result, it is difficult if not impossible to change any
component of RAN, making it costly and less flexible in
deployment and operation. To address all these drawbacks
of conventional RAN, ORAN was proposed recently with a
more flexible design.

Proprietary RAN Software
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FIGURE 8. RAN vs ORAN [67].

In Fig. 8, we illustrate the differences in the designs of
RAN and ORAN. In particular, ORAN allows the radio
access network to work with hardware from any vendor
while traditional RAN requires a specific vendor for its
hardware. Similarly, in the software part, software from
any vendor can be used with a commercial off-the-shelf
server, whereas RAN requires proprietary RAN software
from a specific vendor. With this open design, ORAN offers
various advantages compared to RAN, such as flexibility,
open management, and orchestration, enabling multi-vendor
solutions, and being able to use less-expensive third-party
hardware and software. With these advantages, ORAN can
be an important technology for NTNs as well as NTN-
integrated terrestrial networks. More detailed applications of
ORAN for NTN and current development both in academia
and industry will be presented in Section V.

III. Network Slicing-aided NTN
Network slicing is a powerful technique in telecommuni-
cations, which allows operators to create multiple virtual
networks from a shared physical network architecture. Uti-
lizing technologies such as SDN and NFV, the operators can
dynamically allocate network resources to each network slice
according to its specific requirements in terms of bandwidth,
latency, and reliability. In the context of NTN, network
slicing enables a single network infrastructure to serve mul-
tiple types of applications and users with different demands.
For example, remote control for UAVs often requires low-
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latency communication, whereas satellite internet service
might require higher bandwidth to serve millions of users.
For both cases, network slicing can divide a single physical
NTN into two virtual slices to meet different demands by
allocating different resources to each slice.

A. Satellite Networks
Satellite networks, due to their benefits such as worldwide
coverage area and fast deployment, can significantly enhance
mobile terrestrial networks [36]. Several challenges for satel-
lite networks such as delay, throughput, and utilization of re-
sources can be addressed effectively by network slicing [68].
However, those advantages come with several problems such
as seamless integration of satellite network into the existing
mobile networks [36], load balancing, resource allocation
considering satellite constellation topology [69], and efficient
routing methods [70]. To address these problems, multiple
approaches have been proposed.

1) Resource Allocation
Among those problems, resource-allocation-related chal-
lenges have been addressed in [71]–[74]. Specifically, in
[71], the authors propose innovative approaches to inte-
grate network slicing into railway communication. These
approaches aim to optimize network resource allocation by
ensuring that latency requirements are met for each class of
service in a network. First, a mathematical approach, namely
Queuing Theory (QT) method, uses a nonlinear constrained
optimization to minimize the difference between the latency.
In addition, a Neural Network (NN) approach, namely NN
total model, utilizes delays obtained through simulations
as input dataset to produce the control variables. Since
this approach approximates the required latency by simple
fitting, it could lead to inefficient and inaccurate results.
To overcome this drawback, the authors propose an NN-
divided model [71] to approximate the latency of satellite and
terrestrial networks using two separate neural networks. This
approach solves an optimization problem similar to that of
the QT-based method, except that it minimizes an expected
mean latency. Simulation results show that these approaches
can reduce the latency by roughly 25%-60%. With a focus on
the dynamic allocation of radio resources, in [72], the authors
propose an RL-based slicing strategy, namely dynamic radio
resource slicing strategy (Sat-RRSlice), to serve the LEO net-
works. Particularly, the network slicing problem is modeled
as a Semi-Markov Decision Process (SMDP), including net-
work states, actions, state dynamics, and rewards. The states
of each slice denote the resource allocation and utilization
at a time slot. Moreover, the actions, taken by a resource
manager on each slice at a time slot, indicate whether a
resource unit is allocated to a slice or not. Furthermore, the
reward function is used to calculate the reward, defined by
the network’s total utility, for taking a certain action. Using
Q-learning, optimal Q-values are learned iteratively based

on information obtained from a wireless environment over
discrete time slots. Simulation results show that, compared
with the static slicing strategy [72], Sat-RRSlice can increase
the resource utilization rate and sum utility (i.e., the total
benefit gained from communication) by at least 18.5% and
9%, respectively.

Taking another approach, in [73], the authors design a
network-slicing architecture for the LEO satellite network
with a focus on increasing flexibility and resource utilization.
In this architecture, network slicing is managed through
Network Slice Selection Assistance Information (NSSAI)
and Network Slice Selection Policy (NSSP). The NSSAI,
stored in each device, is specifically configured for each
device while the NSSP is the set of rules that the network
management component must follow. Moreover, two types of
network slices are defined: shared slices used by all users for
common functions (e.g., storing user data and authenticating
users), and dedicated slices for providing personalized ser-
vice. Experimental results show that a network implemented
with this architecture can effectively handle multimedia com-
munications over IP networks. The authors in [74] design a
framework for SDN/NFV-enabled satellite ground segment
systems to enable on-demand network slicing. This frame-
work, namely OnDReAMS, has a Service Orchestrator (SO)
responsible for managing the life cycle of network slices,
e.g., instantiation, maintenance, and termination. Besides, an
NFV Manager is used to handle the instantiation, modifica-
tion, and termination of the VNFs. Moreover, a novel com-
ponent, namely Satellite Network Slice Descriptor (SNSD),
describes the characteristics of the slice as requested by the
customer, allowing the SO to set up the slice with flexibility.
For resource allocation, the slicing problem is solved using
a Mixed Integer Linear Program (MILP) model. A time-
window-based online algorithm is then developed to handle
the on-demand aspect of the solution, which solves the MILP
at the beginning of each time window with updated slice
resources. Simulation results show that OnDReAMS can
reduce the average QoS violation by approximately 10%-
50% compared with a baseline approach.

2) Routing
Besides resource allocation, another important aspect of
slice-aware satellite networks is routing, which is the focus
of [70] and [75]. Particularly, in [70], a routing strategy
for real-time applications over satellite networks with Vir-
tual Functions (VFs) deployed on satellites is proposed.
Particularly, the authors develop a VF constrained simple
path algorithm to find the shortest path by searching for
paths while checking their delay and function requirements
iteratively. To overcome the drawbacks of this algorithm
(i.e., sub-optimality, instability, and non-scalability), a sec-
ond algorithm is developed, namely VF-aware shortest path
algorithm (VFSP). In this algorithm, the problem of finding
the best path in an SN is divided into two sub-problems:
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finding the shortest path from the source to each functional
satellite and from each functional satellite to the destination.
By leveraging the unique property of Dijkstra’s algorithm
[76], these sub-problems are solved efficiently by running
the algorithm twice, once forward from the source and
once from the destination, eventually joining these paths
to find the optimal solution. Simulation results show that
both algorithms have a run time of approximately 100 times
faster than that of the integer linear programming (ILP)
approach. Moreover, compared to the KSP-based approach,
the VFSP method can improve the acceptance ratio by at
least 5%. Another approach for routing, i.e., link-embedding
methods, is presented in [75]. Specifically, the authors
propose a network slicing planning scheme for satellite
networks, considering the mobility of LEO satellites and
the handover of virtual networks. To this end, two link-
embedding methods are developed. The first method is an
algorithm that aims to find the shortest path while ignoring
the links with limited capacity, thereby significantly reducing
the propagation delay. The second method locates the largest
link in the neighborhood and updates the path weight to
the found path’s minimum link capacity, thereby improving
the link stability. Simulation results show that the proposed
methods can improve the data throughput by up to 21%.

3) Satellite Edge Computing
Network slicing applications to satellite edge computing
(SatEC) architectures are discussed in [69] and [68]. Par-
ticularly, in [69], the authors present an IoT-supportable
SatEC architecture to use satellites for 6G IoT services
efficiently. To that end, the authors propose solutions to
address two problems: balancing the trade-offs between
latency and power and managing network resource alloca-
tion. For the first problem, a multi-objective optimization
problem is formulated considering latency, computational
power, and transmission power attenuation. A Satellite Edge
Multi-objective Tabu Search (SE-MOTS) [77] algorithm is
used to find a Pareto-optimal point, which presents the best
trade-off among the three factors considering the dynamic
satellite topology and service requirements. For the second
aspect, a sliced SatEC optimization problem, formulated as
a normalized weighted sum of three objective functions, is
used to schedule the tasks with different demands. A golden-
section method [78] is used to solve this aspect with low
computational resources. Taking another approach, in [68],
the authors design a system architecture that combines space-
based edge computing and network slicing for space-based
network resource management, as illustrated in Fig. 9. In
this architecture, edge computing nodes are included due
to their benefits of being closer to the data sources and
their ability to process data locally. These nodes, namely
distributed fog satellite nodes and centralized space-based
edge clouds, are responsible for computing tasks with low
and high complexity, respectively. In the control plane of

API

Slices

Control plane
CSC&SSM

FSC

centralized space-based
edge clouds

distributed fog
satellite nodes

Resource management

Data plane

Network status &

service requirements

FIGURE 9. Space edge cloud satellite network architecture [68].

the network, the authors introduce the two-layer controller,
Fog SDN controller (FSC) and Cloud SDN controller &
Slicing Manager (CSC&SM). Particularly, FSC abstracts fog
satellite nodes and manages their resources while CSC&SM
optimizes resource management of network slices with a
global view of the network. Moreover, a 5G Satellite Net-
work Slice Management(5G SNSM) [68] is proposed to
perform flexible network slice allocation based on QoS
requirements. Simulation results show that the proposed
architecture can improve the end-to-end delay and jitter by
at least 7% and 50%, respectively.

4) Slice Admission Control
Slice admission control is another important aspect of
network slicing that should be considered simultaneously
with resource allocation. In [79], a two-stage approach is
developed to jointly optimize resource allocation and slice
admission control in LEO satellite networks. To this end,
the authors first formulate a robust optimization problem to
optimize slice admission, taking into account the uncertainty
in the network state and user distribution. Based on the
admission decisions in the first stage, the resource allocation
strategies are optimized in the second stage to guarantee QoS
for users. Since the original optimization problem is non-
convex, auxiliary variables are introduced to transform the
problem into a convex form, thereby significantly reducing
the problem’s complexity. Simulation results show that the
proposed approach can improve the user QoS by 7.2%
compared to the non-robust approach.

B. Integrated Satellite-Terrestrial Networks
Integrated Satellite-Terrestrial Networks (ISTNs) utilize
satellite communication to extend network coverage and
reduce the dependence on terrestrial infrastructure, thereby
offering services to users with higher efficiency. Network
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slicing can bring several advantages to ISTNs such as effi-
ciency in resource sharing, differentiated QoS provisioning
[80], and network flexibility as well as scalability. However,
multiple challenges also arise from this application, includ-
ing network awareness requirements and the highly dynamic
environments [80], QoS reduction due to terrestrial obsta-
cles [81], limited resource constraint, and service provider
incentives.

1) Resource Allocation
Innovative approaches are proposed to overcome those
challenges. To address the resource allocation problem in
slice-aware ISTN, optimizing the VNE [82] algorithm is
a promising solution. To that end, the authors in [81]
design a framework, namely Slice-Aware VNE for Satellite-
Terrestrial (SAST-VNE) to improve the implementation of
the VNE algorithm in ISTNs. In this framework, problematic
network slices, i.e., those that do not meet Key Performance
Indicators (KPIs) or will undergo satellite handover, are
inserted into a queue for analysis. In case a new slice is
created, the embedding is computed using the DViNE algo-
rithm [83]. For problematic network slices, if they have high
priority, i.e., low tolerated latency, each affected link will be
remapped with the shortest-path algorithm. On the contrary,
if they have lower priority, the authors propose an iterative
algorithm, namely SAST-VNE, to balance the network load
and minimize the migration cost. Simulation results show
that during handovers, SAST-VNE can reduce the average
node migrations and average link migration by roughly 25%
and 6%, respectively. Another implementation of VNE for
ISTNs is presented in [80]. Particularly, the authors design
a testbed to validate the feasibility of integrating non-GEO
satellite constellations and implementing VNE algorithms in
highly dynamic network conditions. This testbed consists of
a dynamic satellite-terrestrial network emulated in Mininet
[80], an external Ryu SDN [80] controller and a VNE
algorithm script. First, the Mininet emulator is used to build
an OpenFlow-based substrate network, enabling the Ryu
SDN controller to manage the flow of packets in the network.
The Ryu SDN controller also uses a Traffic Engineering (TE)
application to create paths for each VN, set rate limits, gather
network statistics, read the network topology, and process
changes to the network topology in real-time. Furthermore,
the VNE algorithm script, implemented in Matlab using
an Integer Linear Programming formulation with a load-
balancing objective function, handles required resources for
virtual networks and updates the network configuration to the
Ryu SDN controller. Simulation results show that the testbed
can handle many scenarios and changes in the network
topology such as adding new VNs, dynamic changes in the
network layout, and handling of network failures.

Moreover, approaches to optimize resource allocation are
presented in [84] and [85]. Particularly, the authors in [84]
propose a dynamic slicing strategy for ISTNs. The proposed

strategy uses mirror nodes, instead of virtual nodes, to store
motion duration and resource information of satellites. Based
on that, the service forwarding path and slice resources can
be adjusted, as illustrated in Fig. 10. The mirror nodes also
communicate the satellite resources with ground stations and
receive feedback, i.e., which satellites to be chosen for the
slicing process. An optimization model is then formulated
to maximize the long-term average slicing performance of
the network with a constraint of computing, storage and
bandwidth resources. Moreover, a resource reserved in slices
and adaptive adjustment between slices algorithm (R2A2)
is developed to solve the optimization problem. Simulation
results show that, compared to a DQN approach, R2A2
can increase resource utilization and slice satisfaction by
roughly 33% and 30%, respectively. With a focus on the
admission decision for a slice request, the authors in [85]
propose a game-theory-based solution for resource allocation
in ISTNs. To solve the challenges related to limited resource
constraints, slice admission control is formulated involving
different combinations of service providers and users. Specif-
ically, service providers and users form a multi-sided market
to exchange resources. To participate in the network, both
sides consider their prices, i.e., network resources for the
providers and the cost for the users. An auction, designed
with the Multi-Sided Ascending-Price Auction Mechanism
[85], is performed by increasing the price for both sides
based on supply and demand until a balance is reached.
Eventually, the final prices are set, and the allocation of
resources to users is determined. Experimental results show
that, compared to a baseline approach, i.e., second-price
auction [85], the ascending-price auction can increase the
bandwidth per user, the admission ratio, and the gain from
trade per user by up to 25%, 33%, and 20%, respectively.

A novel approach for network slice orchestration is pre-
sented in [86]. Particularly, the authors present a system
model for the deployment of network slicing for aircrafts
using satellites. This model aims to enhance resource man-
agement in ISTNs by incorporating the concept of slice
collaboration, i.e., defining network slices based on their
willingness to share user traffic statistics with the infras-
tructure provider). To this end, a Mixed Integer Non Linear
Programming (MINLP) model is developed to maximize
the resources, i.e., cache and backhaul resources) while
satisfying slice constraints. Moreover, a pricing model [86] is
proposed to increase the chances of uncooperative slices, i.e.,
slices that are unwilling to share user traffic statistics, being
served. Simulation results show that the MINLP model can
increase the selection probability of uncooperative slices by
33% and cooperative slicing can accommodate 200% more
services compared to that of uncooperative slicing. Taking
another approach, the authors in [36] propose a slice-aware
NTN architecture to enable the seamless integration between
NTN and terrestrial networks. To this end, the authors
propose an end-to-end slicing model which treats the NTN
as a slice-aware link in the terrestrial network. Based on the
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proposed model, a functional architecture fully compliant
with the 3GPP standard is developed to allow the NTN to
be integrated with the terrestrial network. The architecture
consists of three main segments: the user segment with the
satellite terminal, the ground segment with satellite gateways
and network control components, and the space segment with
one or more satellites. The Satellite Terminal (ST) serves as
the User Equipment (UE) in 5G networks, communicating
with the space segment, which then relays messages to the
satellite gateway. Satellite gateways are the central entities
that manage resource allocation, authentication, and data
processing. Simulation results show that the proposed slice-
aware scheme can achieve better trip time, packet error rate,
and jitter compared to those of the cases without network
slicing.

2) User Assignment
In addition to routing, several frameworks have been pro-
posed to enhance network performance by optimizing user
assignment in [87], [46], and [88]. Particularly, in [87],
the authors propose a network slicing scheme for hybrid
satellite-terrestrial networks, aiming to improve reliability
and reduce the video traffic offload. To this end, the authors
develop a scheduling strategy that assigns the users to
three different types of networks, e.g., only satellite, only
terrestrial, and hybrid satellite-terrestrial, based on Channel
Quality Indicator (CQI) and QoS requirements. Simulation
results show that the proposed scheduling strategy can im-

prove the network throughput by up to 48% compared to the
case where only the satellite network is employed. Differ-
ently, with a focus on space-terrestrial integrated vehicular
networks (STIVN), the authors in [46] propose a scheme
for network slicing to support both delay-tolerant services
(DTSs) and delay-sensitive services (DSSs). This scheme
aims to solve the problem of scheduling and resource slicing
in STIVN, which involves allocating spectrum resources to
slices, determining bandwidth allocation, and user assign-
ment for each vehicle. Specifically, the system cost (i.e., DSS
requirement violation, DTS delay, and slice reconfiguration)
is taken into account in two subproblems: a resource slicing
subproblem in large-timescale, and a resource scheduling
subproblem in a smaller timescale. To solve those sub-
problems, a two-layered RL-based scheme is developed.
In the first layer, namely resource slicing layer, spectrum-
resources are pre-allocated to slices using a proximal pol-
icy optimization (PPO)-based RL algorithm [46]. In the
second layer, namely resource scheduling layer, depending
on network conditions and service requirements, spectrum
resources are assigned to vehicles using match-based algo-
rithms. Simulation results show that the proposed approach
can reduce the overall system cost up to roughly 72.57%,
compared to that of a baseline approach. In another approach,
the authors in [88] propose a network slicing scheme to
improve their existing resource management approach in
satellite-LTE networks. In the previous approach, an adaptive
hybrid satellite-LTE downlink scheduler (H-MUDoS) [89]
determines if users can be served through satellite network
or ground-based stations. However, simulation results show
that the decrease in QoS of the satellite network affects the
performance of the entire hybrid network. In the current
approach, the network is separated into isolation slices, each
with its own scheduling strategy assigned by the scheduler.
Simulation results show that the decrease in QoS of a slice
does not affect other slices.

3) Routing
Next, approaches for optimizing routing are presented in [90]
and [91]. Particularly, in [90], the authors propose a novel
framework to optimize resource distribution for network
slicing management in ISTNs. In this framework, a hybrid
approach combining ML and Ant Colony Optimization, is
implemented to associate a new metric, i.e., a cost metric, to
any route in the network. In this case, when a route is chosen
more frequently, its cost is increased and vice versa. With
this mechanism, the network can adapt to changes in user
demands and effectively allocate resources. Experimental
results show that the proposed framework increases the user
acceptance ratio up to roughly 15% under different numbers
of users and 20% under different numbers of servers. Taking
another approach, an automatic network slicing framework
for ISTNs is presented in [91]. The proposed framework
aims to find the satellite-gateway assignments and resource
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allocation to optimize the overall utility, e.g., throughput and
latency, of network slices. To that end, a Voronoi tessellation-
based topology construction mechanism is proposed to map
the satellite constellations to equivalent network topologies.
Based on that, an MILP is formulated. To reduce the com-
plexity of the MILP problem, the optimization problem is de-
composed into a resource allocation and a satellite-gateway
assignment sub-problems. An online iterative algorithm is
then developed to solve the two sub-problems. Simulation
results show that the proposed framework can increase the
slice admittance rate by up to 23% and reduce the control
traffic by 76% compared to the standard SDN approach.

C. Space-Air-Ground Integrated Networks
Space-Air-Ground Integrated Networks (SAGINs) aim to
achieve full network coverage and ubiquitous services by
integrating terrestrial networks, satellite networks, and aerial
networks [92], [93]. While applying network slicing to
SAGINs is an effective solution for efficient usage of net-
work resources, this technique faces new challenges such
as complex slice orchestration in multi-domain networks,
resource optimization considering UAVs position, and dis-
patching cost. To address those challenges, multiple innova-
tive schemes have been proposed.

1) Resource Allocation
For instance, as the main concern of network slicing appli-
cation, resource allocation is discussed in [94]–[97]. Particu-
larly, in [94], the authors propose a framework for integrating
network slicing to a SAGIN, which establishes three types
of RAN slices, i.e., high-throughput, low-delay, and wide-
coverage. In particular, a non-scalar multi-objective opti-
mization problem (MOOP) is formulated to jointly optimize
throughput, service delay, and coverage area. Moreover,
a Central and Distributed Multi-agent Deep Deterministic
Policy Gradient (CDMADDPG) algorithm is developed to
solve the problem. This CDMADDPG algorithm uses a
centralized unit to determine the optimal positions for the
virtual UAVs (vUAVs) and the most suitable subchannels as
well as power resources among the slices. Then, intra-slice
resource sharing is arranged by virtual base stations, vUAVs,
or virtual LEO satellites, depending on the distributed units.
Eventually, near-Pareto optimal solutions can be found. Sim-
ulation results show that, compared to a baseline approach,
the proposed framework can improve throughput and delay
by up to 10% and 50%, respectively. With a focus on
dynamically slicing spectrum resource in SAGINs an online
control framework is proposed in [95]. Here, the proposed
framework aims to adapt to varying vehicular environments
and achieve isolated service provisioning, i.e., each type of
service is processed in an independent queue. To that end, the
authors propose a workflow of dynamic slicing consisting of
four steps, i.e., request admission, request scheduling, UAV
dispatching, and resource slicing, to ensure that services
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FIGURE 11. AI based network slicing solution [96].

with different QoS are adequately served. Based on that,
a Lyapunov-based approach is proposed to maximize the
system revenue and minimize a time-averaged penalty while
stabilizing the system. This approach aims to minimize time-
averaged queue backlogs of all services, i.e., the average
number of unprocessed requests in a queue over a period.
Simulation results show that the proposed framework can
increase the throughput by approximately 26%.

Taking another approach utilizing AI, the authors in [96]
introduce an AI-enabled network slicing architecture for 6G
networks, aiming to enable intelligent network management
and facilitate emerging AI services. Particularly, the archi-
tecture has two main characteristics: AI for slicing, i.e.,
using AI to manage multiple network slices with strict QoS
requirements, and slicing for AI, i.e., creating special slices
for AI services. It is shown in [96] that AI can be used
to support different phases of the network slicing process
such as preparation (e.g., service demand prediction and slice
admission), planning (e.g., VNF placement and resource
reservation), and operation (e.g., resource orchestration and
Radio Access Technology selection), as illustrated in Fig. 11.
Moreover, in the proposed architecture, network slices are
tailored to support three stages of AI services (including
data collection, model training and model inference) with
their corresponding required QoS. Simulation results show
that a deep deterministic policy gradient (DDPG)-based
network slicing solution has a system cost (a weighted sum
of resource reservation cost, slice reconfiguration cost, and
delay requirement violation penalty) 15% lower than that of
myopic resource reservation [96].

Considering the current status of power communication
network development, the authors in [97] propose a SAGIN
slicing architecture. Specifically, the proposed architecture
consists of four layers, i.e., service request, slicing manage-
ment and scheduling, virtualized resource, and infrastructure
layer. The service request layer receives requests from users
to define requirements and build service slices. The slicing
management and scheduling layer provides the management
interface for users, controls the scheduling management,
stores the data required by the platform environment and
transmits the corresponding data to the lower functional
components. The virtualized resource layer utilizes NFV
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to virtualize the physical resources and allocates sufficient
virtual resources to different slices. The infrastructure layer
provides the physical resources. It is shown in [97] that
this architecture can manage network resource allocation
efficiently to meet different demands of the power grid
communication service.

2) Slice Configuration and Routing
Together with resource allocation, multiple aspects are con-
sidered to enhance network performance, including slice
configuration, Service Level Agreement (SLA) decomposi-
tion, and routing. A multi-domain network slicing framework
is proposed in [98], which aims to jointly optimize all the
three aspects. It is shown in [98] that the proposed framework
can handle multiple slice configurations in satellite-terrestrial
edge computing networks (STECNs). Particularly, a Markov
process is modeled to track the probability of satisfying
the SLA per configuration. Moreover, an index-based slice
configuration policy, based on restless multi-armed bandits
(RMABs) [99] [100], is defined to solve the multi-domain
slicing problem. Based on the slice configuration policy
and the slice/resource availability, the SLA is decomposed.
The routing and resource allocation optimization problem is
solved by each domain controller with consideration of the
slice/resource availability. Simulation results show that the
proposed framework can achieve three to six times higher
rewards than those of baseline approaches in terms of user
requirements in the SLA and the energy consumption. It is
also shown in [98] that the proposed framework can achieve
optimal configuration under different network conditions,
e.g., outage and delay.

In [101], the authors propose a scheme to integrate
network slicing to SAGINs with native AI. In particular,
under the assumption that all network entities are software-
defined and can load multiple network functions and take any
required roles, all network entities are classified into three
classes, i.e., end entity, routing entity, and management as
well as orchestration entity. End entities are communication
sources and destinations. Routing entities are responsible
for access control, traffic routing, and QoS management.
Management and orchestration entities are responsible for
entity management, network slicing management, and re-
source orchestration. A pre-defined operating entity [101],
aware of network characteristics, adopts the Distributed
Weighted Classification Method (DWCM) to assign roles
to all network entities. Experimental results show that,
compared to a baseline approach [101], the proposed scheme
can increase the delivery ratio and the overall data rate by
roughly 4% and 28%, respectively and reduce the end-to-end
delay and routing overhead by approximately 46% and 6%,
respectively.

Summary: In this section, we have discussed multiple
approaches for network slicing integration in NTNs, e.g.,
satellite networks, ISTNs, and SAGINs. Specifically, net-

work slicing is an effective solution to enhance NTNs
with better delay, throughput, network resource utilization,
network flexibility, and scalability. However, multiple chal-
lenges arise when applying network slicing to NTNs such as
resource allocation, routing, load balancing, slice admission
control, and SLA decomposition. Among those challenges,
resource allocation is the most noticeable concern. To ad-
dress resource allocation, one approach is to formulate an
optimization problem, which can be solved by AI/ML-based
methods, mathematic algorithms, scheduling strategies, or
innovative mechanisms. Additionally, optimizing VNE is
effective in enhancing resource allocation. Another challenge
to network slicing is routing, which can be solved by
shortest-path approaches. Although the proposed approaches
can effectively address various challenges of network slicing
in NTN, there are still open issues that stem from the
complexity of network slicing optimization problems. Par-
ticularly, these problems often include numerous constraints
due to resource limitations and various platforms, e.g., space,
air, and ground, resulting in high complexity. As a result,
most of the proposed approaches do not consider network
slicing holistically or are based on simplified assumptions.
Therefore, additional effort is needed to develop effective
and holistic solutions for network slicing in NTNs, especially
the integration of NTNs and terrestrial networks. The works
surveyed in this section are summarized in Table 3.

IV. AI/ML-aided NTN
As people continue to explore and establish more practical
applications throughout the Earth, there exists a growing
need for advanced technologies to support NTN. AI/ML-
aided NTN offers a guarantee for significant benefits in
this area, from improving communication efficiency for IoT
systems to enabling autonomous UAV operations in huge
and remote areas. Specifically, AI/ML can increase efficiency
and reliability to optimize communication protocols using
NTN. They can also enable the autonomous operation of
numerous wireless applications, thereby reducing the need
for constant human intervention. Finally, AI/ML can facili-
tate new scientific discoveries and insights by enabling more
efficient and targeted data analysis using NTN. As a result,
NTN can generate vast quantities of data, and AI/ML may
help to extract valuable insights and enable better-informed
decisions in a variety of practical applications, as discussed
in the following.

A. IoT
The utilization of AI and ML in NTN has the potential
to revolutionize IoT systems by improving data collection
and enabling extensive communication for sensors located in
remote and broad areas. NTN may increase radio coverage,
provide monitoring, and incorporate sensing services to
remote locations by utilizing satellites, airships, and aircraft
as illustrated in Fig. 12. This can lead to significant im-
provements in data collection from areas that were previously

VOLUME , 15



Nguyen et al.: Preparation of Papers for IEEE OPEN JOURNALS

TABLE 3. Summary of network slicing approaches in NTN.

Reference Network Type Problem Technique

[71]

Satellite Network

Resource allocation NN-based model
[72] Resource allocation RL-based slicing strategy
[73] Resource allocation Managing slice through NSSAI and NSSP
[74] Resource allocation MILP
[70] Routing Dijkstra’s algorithm
[75] Routing Develop new shortest path algorithm
[69] Satellite edge computing SE-MOTS, golden-section method
[68] Satellite edge computing 5G SNSM
[79] Slice admission control Simplifying robust optimization problem using auxiliary variables

[81]

ISTN

Resource allocation SAST-VNE
[80] Resource allocation Testbed design
[84] Resource allocation R2A2
[85] Resource allocation Multi-Sided Ascending-Price Auction Mechanism
[86] Resource allocation MINLP
[36] Resource allocation End-to-end slicing model
[87] User assignment Hybrid scheduling strategy
[46] User assignment PPO-based RL algorithm, matched-based algorithms
[88] User assignment Smart scheduler
[90] Routing ACO
[91] Routing MILP

[94]

SAGIN

Resource allocation CDMADDPG
[95] Resource allocation Lyapunov-based algorithm
[96] Resource allocation Managing slice by AI
[97] Resource allocation Scheduling
[98] Slice configuration and routing RMABs
[101] Slice configuration DWCM
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FIGURE 12. The integrated air-ground and NTN for IoT systems.

inaccessible, allowing for more comprehensive and accurate
insights.

In [102], the authors investigate the potential use of DL for
NTN-based industrial IoT (IIoT) services, i.e., spaceborne-
based and airborne-based intelligent IIoT systems. This
research describes how diverse DL-based algorithms have

been used and tested for NTN-based IIoT applications based
on the optimization objective, the available power, and pro-
cessing resources. Here, DL is considered the most effective
AI algorithm when it comes to end-to-end optimization.
Specifically, for spaceborne applications, an ensemble DNN-
based optimization can be utilized for resource allocation
while a deep-Q network can be used for energy consumption
and processing latency in Satellite-IoT (S-IoT) networks.
Additionally, S-IoT edge computing and DL methods can
accelerate data processing and transmission as well as en-
hance bandwidth utilization. Since the practical viability
of conventional DL is contingent on the availability of a
large amount of sensor data and sufficient computing power,
DRL with lower complexity can be used. For airborne
applications, an IoT network with three layers for online
large data processing based on MEC is proposed with UAVs
as edge servers, Lyapunov optimization, DRL algorithm, and
CNN Q-networks. In this case, the CNN Q-network, which
enables action reward prediction, is trained using the UAVs’
views of the surrounding environment, and the DRL can
efficiently optimize the path planning of the UAVs.

To provide more benefits of using ML/AI-aided NTN, the
authors in [103] categorize the NTN into integrated UAV-
IoT networks and integrated S-IoT networks. For integrated
UAV-IoT networks, an RL method can be applied to build
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the data collection trajectory of a UAV from IoT devices
with the aim to increase the UAV’s flight duration. Using
a double deep Q-network strategy, an effective path to
maximize collected IoT data under flight time and obstacle
avoidance limitations can be designed. Then, to increase the
IoT network’s energy efficiency, a DRL strategy is employed
to optimize the channel and power allocation of IoT devices
in the uplink communication. Meanwhile, a DRL approach
can be adopted in the integrated S-IoT networks. In this case,
an energy-efficient channel allocation mechanism for LEO
S-IoT network can be implemented. The DRL approach can
also be employed to address the complexity of energy cost
and latency minimization influenced by IoT user association
and resource allocation.

Despite that NTNs, especially the ISTNs, can provide
wide coverage for IoT systems, their links still suffer from
high dynamics and latency. To address the problem, sev-
eral ML/DL approaches are surveyed in [104], aiming at
optimizing the routing strategy update. Specifically, traffic
patterns of the integrated network are learned using CNN,
resulting in routing paths that balance traffic. Then, a deep
Q-learning-based method is proposed to reduce the routing
delay in the integrated network by combining both satellite
and terrestrial users’ networking, caching, and computing
resources. Additionally, the ISTN has considerable spectrum-
sharing potential, and thus two spectrum-sharing systems
based on SVM and CNN are presented. Here, the intelligent
spectrum sharing reduces interference and increases spec-
trum efficiency compared to traditional approaches. As the
satellite covers a large area, it is important for IoT devices
to be accurately positioned to ensure that the service stays
up and runs in the integrated network.

B. Mobile Services
Since NTN consists of space-borne base stations (BSs), e.g.,
satellites, and airborne BSs, e.g., UAVs and aircraft, they
may lead to a dynamic and non-stationary environment. As
such, non-terrestrial users (NT-users) on the ground need to
predict the mobility of those non-terrestrial BSs (NT-BSs)
autonomously. Likewise, NT-users may move frequently,
e.g., drones, which makes the trajectory estimation from the
NT-BSs side challenging (as illustrated in Fig. 13).

To cope with those issues, the work in [105] and [106]
propose new ML/AI-aided NTN, aiming at supporting the
activities of NT-BSs and NT-users. In [105], the authors
introduce an NT-users-driven DRL approach for handover
and throughput optimization in NTN-based multi-user access
control. Specifically, a centralized agent on the backhaul
side of NT-BSs trains DQN parameters with a sigmoid
activation function. The trained DQN is then used by each
NT-user with slow mobility, e.g., smartphone user, to make
his/her own access decisions. The proposed technique allows
each NT-user to intelligently access a suitable NT-BS to
improve long-term system throughput and reduce the NT-
BSs’ handovers. Compared with other benchmark methods,
e.g., RSS-based and Q-learning algorithms, the proposed
framework is superior in terms of the long-term throughput
and the handover numbers by 6 times and 8%, respectively.

The above work is then extended with the existence of NT-
users with medium/high mobility, i.e., drones in low-altitude
or high-altitude, by the authors in [106]. In this case, each
NT-BS should autonomously forecast NT-users’ trajectories
and the likelihood of their presence at any site. For that,
instead of using the aforementioned complex DRL method,
this work proposes novel RL systems in which each of many
NT-BSs independently calculates deployment trajectories
to maximize the access of NT-users. For the deployment
trajectory, multiple NT-BSs can apply k-step state reduction
(SR) distributive Q-learning to optimize the autonomous
trajectory. Via simulation results, the suggested approaches
outperform Q-learning, maximal SINR, and distributive DRL
in terms of the average number of served NT-users up to
47%.

C. Network Management
One of the NTN communication systems, i.e., the satellite
communication networks, typically has a challenge in terms
of system capacity, in which the resources of most satel-
lites are usually underutilized. To address this challenge,
collaboration among different satellite systems can be one of
the most effective solutions to enhance resource utilization.
Currently, each satellite has an unconnected system archi-
tecture and dedicated resource utilization. For that, ML/AI
approaches can be used to cope with the above limitations by
developing intercommunication frameworks among different
satellite systems.

The authors in [107] propose a resource management
framework in heterogeneous satellite networks. In the frame-
work, SDN and virtualization methods in the data center are
used to manage and combine disparate resources as shown
in Fig. 14. To obtain the optimal resource utilization, a DRL
approach that uses the Markov decision process (MDP) and
integrates DL for inference capability as well as RL for
decision-making potential is then applied. In this work, the
state space contains service and resource states, whereas the
action state includes all actions in which an agent provides
resources to the services. Additionally, the reward may in-
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clude spectral efficiency, bandwidth, throughput, and power
efficiency. Here, each satellite acts as a smart multi-agent
that can perform distributed data processing and transmit
information between satellites and/or ground stations in the
cloud system. This reduces the workload of the data center
and enhances the efficiency of communication because of
shorter transmission paths. The SDN-based integrated net-
works for resource allocation are also proposed in [108]. The
purpose of this integrated network is to monitor networks,
computation resources as well as caches, and orchestrate
them all simultaneously. They use the Markov decision
process for the resource allocation optimization problem,
and deep Q-learning approach for the problem solving.
The simulation results reveal that the proposed scheme can
achieve the highest expected utility per resource up to 10
times compared with other baseline methods.

Then, the work in [109] presents a novel framework of
”self-evolving networks (SENs),” which employs AI through
ML algorithms, e.g., federated learning and online learning,
to fully automate and intelligently evolve future integrated
NTN in terms of network management, communication,
computation, and mobility of mobile users. For that, the au-
thors utilize the intelligent vertical heterogeneous network (I-
VHetNet) architecture as a model to envision the idea of SEN
in future integrated networks. The I-VHetNet design not only
combines terrestrial, aerial, and satellite networks, but also
includes intelligence, computation, and caching platforms to
allow multi-level edge computing. In particular, the SEN
engine first employs AI to forecast where additional network
capacity and coverage are required based on user movement,
behavior, and applications. Utilizing the prediction result, the
SEN engine intelligently and automatically sends UAV-BSs
or adjusts a HAPS beam to enhance network coverage and
increase its capacity to serve customers. It then can choose
terrestrial, aerial, or satellite networks to backhaul UAV-BSs
based on the QoS requirements. The SEN engine can also
execute computational offloading to the best computational
level systems, e.g., cloud computing, fog computing, or
collaborative computing of mobile users. Afterward, the
SEN engine can monitor network performance and user
satisfaction. To adapt to dynamic changes and create more
accurate automated and intelligent decisions, the SEN engine
uses network environment assessment as feedback. From
the simulation using three data centers and 300/3000 users,
the proposed system can minimize the data offloading and
computing delay by 0.05 seconds with 10GB-10TB offloaded
data per user.

To further relax the network management and service-
oriented resource allocation of the integrated terrestrial and
NTN in B5G/6G networks, network slicing can be used
through leveraging AI-based approaches. In [110], dynamic-
adaptive AI-enabled network slicing management to deal
with dynamic wireless environments is discussed. Specif-
ically, to allow intelligent orchestration of optimization
problems in network slicing management, several AI-based
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FIGURE 14. The communication between satellites and ground stations
using software-defined network and virtualization.

approaches can be applied. However, it is worth noting that
using conventional DNN, CNN, or DRL methods may suffer
from a slow convergence rate, and thus it can deteriorate
the learning performance especially when parameters change
fast dynamically. To this end, transfer learning and meta-
learning can provide a fast response with fewer samples.
Both learning methods benefit from transfer/meta knowledge
without requiring data training from scratch to solve the new
learning problem with less training data. The use of RL then
can speed up the convergence in re-training and improve
the re-fitting ability. Based on the case study, the proposed
transfer and meta-learning framework can minimize the loss
and cost of slices up to 0 and 0.7 over time, respectively,
in two typical dynamic schemes, i.e., bursty traffic and
devices’ arrival/departure in slices. A similar network slicing
method to guarantee different QoS levels according to users’
requirements for eMBB in 5G-satellite networks is proposed
in [111]. Particularly, the authors introduce a neural network-
based resource allocation optimization problem to satisfy
different QoS requirements. Here, the work adopts the neural
network with a weighted round-robin scheduler (WRR-NN)
since a multi-queue system for packet fetching is utilized,
aiming at meeting the delay requirement for average end-
to-end packet delivery delay. Based on the comprehensive
simulations, this technique can precisely follow system dy-
namics and satisfy eMBB’s service latency and jitter criteria
at approximately 0.025s and 10-50ms, respectively.

The addition of privacy for resource allocation in in-
tegrated networks can also be implemented. The authors
in [112] present a distributed federated learning (FL)-based
intrusion detection system (IDS) in the integrated terrestrial
networks and NTN, aiming at addressing limited satellite
network resources and high privacy requirements. As such,
the FL is used to allocate resources adequately in each
domain and block malicious traffic, including DDoS attacks.
Here, the FL only sends the trained model without raw data
sharing to preserve privacy. This solution outperforms DL-
based IDS for malicious traffic identification rate at 98%,
packet loss at 0%, and CPU consumption rate at 70%.
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D. Vehicular Networks
In terms of vehicular networks, the integration between
terrestrial and NTN has the potential to bring efficient,
reliable, and robust data transmission for medium/high speed
or delay-sensitive/delay-tolerant services. This can reduce
the dynamic network environment including handover and
unstable network connection problems.

For example, the authors in [113] apply multipath trans-
mission control protocol (MPTCP) congestion control mech-
anism to perform data transmission through the integrated
networks concurrently for high-speed railway schemes.
Nonetheless, due to frequent handover problems, they utilize
reference signal received power information according to
a DRL approach to boost the goodput (i.e., the amount
of successful data received by the recipient within the
deadline) performance. Particularly, the integration among
gated recurrent unit (GRU), CNN, and deep deterministic
policy gradient (DDPG) are used to build a learning model.
First, the representation network generates a network state
representation for the actor and critic networks to develop
congestion control actions. Second, the actor network can de-
rive the congestion control actions according to the observed
state. Meanwhile, the critic network can assess congestion
control actions performance to further optimize the policy
gradients and update the actions. Finally, the experience
memory stores congestion control state, action, reward,
and next state sequences. Random sampling from saved
experience sequences then trains the representation, critic,
and actor networks, thereby reducing data reliance. Through
simulations using static and high-speed mobile scenarios, the
proposed solution can achieve the highest goodput up to 63%
compared with other baseline algorithms.

Next, a joint resource slicing and scheduling problem
to minimize the system cost in a long-term scenario in
the integrated space-terrestrial vehicular networks is inves-
tigated in [114]. Here, the system cost includes the delay-
sensitive service cost, delay-tolerant service cost, and slice
configuration cost. To find the solution, a two-layer RL-
based approach is used, as illustrated in Fig. 15. In the
resource slicing layer, a proximal policy optimization-based
RL method pre-allocates spectrum resources. Meanwhile,
matching-based algorithms assign spectrum resources in
each slice to each vehicle based on dynamic network cir-
cumstances and service requirements in the resource schedul-
ing layer. From the trace-driven experiments, the proposed
framework can efficiently minimize the system cost by 98%
while meeting service quality standards, compared with the
proportional slicing scenario.

Then, the authors in [115] foresee 6G convergent terres-
trial and NTNs of virtual emotion and pandemic prevention
from two perspectives that are Red AI for accuracy and
Green AI for efficiency. Specifically, the Red AI-enabled 6G
virtual emotion approach leveraging DL algorithms can be
used to detect specific emotions of humans passing through
a specified area using vehicles with high accuracy and

Satellite 
resource

Terrestrial 
base station 

resource

Delay-sensitive slice

Delay-tolerant slice

Resource slicing

Resource scheduling
Delay-sensitive slice Delay-tolerant slice

FIGURE 15. The resource slicing and scheduling in the integrated
space-terrestrial vehicular networks.

low delay. Furthermore, the Red AI-enabled 6G epidemic
prevention approach is utilized to provide epidemic services
including fast medical item delivery and epidemic prevention
map construction using autonomous vehicles with smart
devices on the ground. Meanwhile, Green AI-enabled 6G
virtual emotion focuses on computation cost reduction in
detecting emotion with pre-defined accuracy. For Green AI-
enabled 6G epidemic prevention using DL algorithms, it
provides the same services as the Red AI however with the
minimum data and reduced number of training processes and
communications, thereby maximizing the efficiency. All the
above are supported by the NTN via 6G communications.

E. UAV
In the next decade, B5G and 6G wireless networks that in-
clude terrestrial networks and NTN will be heavily reliant on
UAVs for a variety of purposes [116]. For that, wireless com-
munication must be reliable, trustworthy, and inexpensive
to support such huge UAV deployments. Through unlimited
connectivity in 6G, UAVs for commercial use can be used
widely at different altitudes from low to high ones, e.g.,
delivery, surveillance, traffic control, and aerial imaging.

The authors in [117] investigate antenna tilt deployment
optimization of air-to-ground (A2G) network between ter-
restrial base stations and UAVs using a DL method, aiming
at maximizing users’ throughput in the air. In particular,
bi-DNN is employed to approximate the behavior of the
A2G network and decide the optimal network configuration.
The optimal solution can be achieved by considering inter-
site distance, number of antenna sectors, UAV altitude, base
stations’ locations, and traffic load. Through the experiment,
optimal antenna tilt angles decrease by up to 30 degrees
as inter-site distance increases between 20km and 80km to
ensure adequate coverage throughout the cell.
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FIGURE 16. The integration between LEO SATs and UAVs with RF/FSO
links for packet forwarding.

In [118], UAV-based low altitude platform systems
(LAPS) with ML/DL approaches to create a flying ad hoc
network (FANET) is discussed. Specifically, Q-learning-
based RL can be used to develop autonomous and adaptive
packet routing among UAVs. In addition to Q-learning, SVM
and logistic regression can support real-time and dynamic
resource allocation to provide robust UAV services. The
combination of Q-learning and FL, i.e., federated Q-learning
can also be utilized to protect the FANET through jamming
detection. A case study with ground base station and UAVs
in smart farming scenarios using the opportunistic network
environment shows that the proposed system can achieve
more than 95% delivery ratio and average latency 50% lower
than those of other delay tolerant networks.

To further optimize packet forwarding between distant
ground terminals, the integration between LEO satellites and
UAVs to provide seamless relays using radio frequency (RF)
or free-space optical (FSO) links is presented in [119] (as
shown in Fig. 16). Here, the authors propose multi-agent
DRL to optimize the relationship between orbiting LEO
satellites and UAVs’ trajectories by maximizing the overall
throughput of communication over long distances while
reducing the system’s energy consumption. The environment
includes multi-hop communication, while the state includes
LEO satellites’ position in two orbital planes, the UAV’s
position, the link distance for each RF/FSO link, the UAV’s
energy consumption, and the time slot. The actions contain
associations and accelerations, while the reward function op-
timizes the actions that maximize throughput and minimize
energy consumption and distance between UAVs. Through
simulations, it is shown that the proposed framework can
obtain throughput two times higher than that of a baseline
method with fixed ground relays. Furthermore, the energy
efficiency can be improved by 2.25 times compared with the
baseline method.

F. Maritime Services
Seamless marine connection service is becoming a reality
as a result of recent advances in merging high-capacity
and ultra-reliable integrated terrestrial network and NTN

technologies. Here, NTN can boost terrestrial system cov-
erage and enable access to marine services in offshore
and non-line-of-sight (NLoS) environments. To deal with
the rising complexity of controlling these interconnected
systems, ML/AI-based approaches can be applied, aiming at
achieving the service needs and energy efficiency objectives
in diverse marine communication conditions.

For example, the use of ML/AI-based methods to provide
sustainable 6G maritime networks through NTN is inves-
tigated in [120]. Particularly, the most potential maritime
scenarios are first described including maritime search and
rescue, intelligent harbor and vessel logistics, on-board en-
tertainment, navigation and fleet management, and shipborne
IoT. In this case, distributed intelligence, wherein learning
and inference are utilized at several system levels, is required
to cope with the dynamic networking. Then, the authors
show how ML may improve energy-efficient topology man-
agement and scheduling in dynamic marine networks over
baseline model-based techniques. For the energy-efficient
topology management, a multi-hop wireless network with
the aid of NTN is deployed in the area of 100 km2 to
reduce energy usage of the network while finding the optimal
routing paths for heterogeneous traffic delivery to multiple
destinations, e.g., cargo vessels. For that, the DNN-based
DL approach is utilized to estimate which connections are
absolutely necessary for the best possible configuration as the
system’s traffic patterns change. As a result, the number of
involving connections in the routing and execution time can
be minimized. Additionally, the temporal and geographical
correlations in traffic may be discovered and multi-objective
optimization issues can be supported by employing other
promising methods such as LSTM and auto-encoder. For
the energy-efficient scheduling, the LSTM approach can be
applied to predict channel quality because of its ability to
deal with time series problems. Consequently, the channel
reporting accuracy can be improved and packet delay can be
reduced at a fixed 2 seconds for a user density of more than
2 users/m2.

G. Other Applications
Aside from all the above applications, ML/AI-aided NTN
scenarios have been investigated for other emerging appli-
cations. For example, a cybertwin-enabled 6G for SAGIN
using FL is discussed in [121]. Specifically, accounting for
non-homogeneity of SAGIN, mobile users that are served by
different RANs can offload their local data independently to
train them at the respective RANs as shown in Fig. 17. In
this case, the cloud server can work as the trained model
aggregator and global model updater. Here, MNIST dataset is
used in the cybertwin space of the SAGIN. Using additional
helpers from SAGIN as the edge nodes, i.e., LEO satellite
for the space network, a UAV for the air network, and a base
station for the ground networks, an FL training process can
be conducted. From the simulation results, it is shown that
the satellite network suffers from the slowest training time
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FIGURE 17. Federated learning using multi-level network architecture,
i.e., space-air-ground networks

and convergence rate due to the large communication delay
between the mobile users and the satellite. The convergence
gets faster when UAV-based networks and base station-
based networks are utilized. Here, the accuracy for SAGIN
can reach up to 90%. To further boost the accuracy, the
combination of all the edge nodes and mobile users can be
used for the FL training processes.

Due to the unique features of SAGIN, e.g., time-varying
connectivity, diverse resources, and complex 3-level network
design, an adaptive data transmission mechanism needs to
be investigated. In [122], a DRL-based intelligent adaptive
transmission framework for SAGIN is proposed, aiming
at maximizing the system throughput while satisfying the
packet delay and reliability standards of the traffic flow.
Particularly, the authors first formulate a mixed-integer
stochastic optimization problem. Then, a re-parameterization
method based on a deep deterministic policy gradient
(RPDDPG) algorithm is utilized to solve the problem. From
the numerical results, the RPDDPG algorithm is effective in
improving the throughput and outage probability compared
with the relaxation-based DDPG and heuristic algorithms.
Likewise, the authors in [123] propose a DL-based approach
to enhance the traffic control performance of the SAGIN.
Particularly, several GEO, MEO, and LEO satellites as well
as hundreds of UAVs are first considered. Then, online
training including data collection and the training process
using a CNN method is performed. From the trained model,
a routing strategy to forward packets to a specific destination
and select the optimal traffic path can be executed. From the
simulations, the proposed method can significantly boost the
network throughput by 9% over 500 episodes, compared with
the conventional routing strategy.

In [124], a clustering-based users’ scheduling problem
using their characteristics in high-throughput and multibeam
precoded GEO satellite systems is investigated. Particularly,
the work considers three clustering algorithms for unsuper-
vised learning including K-means, hierarchical clustering,
and self-organization. Each of the algorithms is evaluated as
a function of users’ feature vectors which contain location
and channel information. From the numerical results, it is
observed that the channel information of the user improves
the clustering and scheduling performance depending on
per-beam clusters and the number of multicast users. The
numerical results show that the K-means and hierarchical
clustering can achieve an average throughput of 0.01Gbps
higher than that of the self-organization method for 24 to 32
clusters per beam.

Summary: In this section, we have discussed the ML/AI-
aided NTN for various emerging applications/services, e.g,
IoT systems, mobile services, network management, ve-
hicular networks, UAVs, maritime services, cybertwin, and
adaptive data transmission. Particularly, ML/AI approaches
have emerged as one of the most potential solutions in
dynamic and mobile environments where the NTN radio ac-
cess network, e.g., satellites, frequently move. Additionally,
ML/AI-based NTN can support integrated networks where
the deployments of satellites on multiple orbits for space
networks, UAVs/drones for aerial networks, and base stations
for ground networks exist in such a highly dynamic envi-
ronment. Here, we can observe from the above discussion
that DL, RL, FL, and the combination among them can take
part successfully to help NTN implementation for various
services. First, the DL method is popular for end-to-end
optimization, e.g., resource allocation, channel estimation,
and scheduling. In this case, DNN with deep Q-network or
the joint DL and RL approaches, i.e., DRL, can be utilized
to reduce the complexity of the data training processes.
Meanwhile, the use of CNN can be used to optimize the
routing strategy of data traffic in the integrated networks. All
the aforementioned ML/AI techniques adopt the centralized
ML approach in which all radio accesses in the integrated
network send their data to a cloud server. Alternatively, the
FL approach can be used to provide a decentralized ML
approach, where satellites, UAVs, ground base station, and
mobile users can train their local data individually and then
share the train models with the cloud server. Nonetheless,
the existing works of ML/AI for NTN also face several
drawbacks. First, ML/AI-aided NTN may increase the com-
plexity of the overall NTN system due to the integration of
various ML/AI methods and their compatibility with existing
network infrastructure. Here, the next research can focus on
simplifying the implementation process without compromis-
ing accuracy performance through modular design, protocol
standardization, and abstraction layer introduction of ML/AI
method in NTN. Second, NTN with ML/AI method can
also suffer from large amounts of data that can lead to
data storage, processing, and transmission problems. To
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address this issue, future research can explore techniques
for data compression, feature selection, or data augmenta-
tion in NTN. Third, the ML/AI-based NTN may introduce
computationally-intensive and time-consuming training pro-
cess which can delay the deployment of NTN solutions. To
this end, future research can focus on developing more effi-
cient training algorithms, optimizing hardware accelerators,
or exploring distributed training approaches to parallelize the
training process. Finally, based on the existing centralized
and decentralized ML/AI approaches, future research can
investigate the trade-offs between these approaches in terms
of privacy, latency, and scalability, and then develop hybrid
approaches that combine the benefits of both centralized and
decentralized ML/AI in NTN. The summary of all ML/AI-
aided NTN for various applications is presented in Table 4.

V. ORAN-aided NTN
As open networks move the Radio Access Network (RAN)
to the cloud, an intriguing alternative is venturing into space.
The concept of NTN has garnered increasing attention, with
numerous experts asserting that this innovative approach
holds the potential to extend 6G coverage ubiquitously [135].
Nevertheless, there is currently a scarcity of research in this
domain. Consequently, this section delves into the potential
utilization of ORAN for NTN. In this section, we describe
the 3GPP and non-3GPP-based NTN architectures. Our
purpose is to provide a comprehensive overview of the NTN
architectures from both industrial and academic perspectives.
Subsequently, based on these architectures, we will demon-
strate how ORAN connects to the NTN system according to
each specific one. In particular, this work provides detailed
information about the NTN architecture in both 3GPP and
non-3GPP environments. Additionally, it offers insights into
components within the ORAN system that can connect to
satellites, which were previously not clearly addressed. This
comprehensive perspective aids researchers in gaining a
complete insights into the subject. We commence by examin-
ing the advantages of ORAN, followed by the presentation of
a general ORAN application architecture. Then, we present
each NTN architecture and the corresponding ORAN-based
NTN architecture. More specifically, we show two main
NTN architectures in 3GPP: transparent and regenerative
NTN systems in Release 16 of 3GPP [133]. Then, we show
1 more NTN architecture in non-3GPP scenario. Based on
each NTN system, we detail which components in ORAN
can connect to the NTN system, which has not been covered
before. This can provide an easy-to-understand perspective
for academic researchers instead of reading jargon-filled and
confusing industry documents.

A. Benefits of ORAN for 5G and beyond
ORAN plays a crucial role in 5G and beyond since it
provides several benefits as follows:

• Cost reduction and network resiliency: ORAN has the
potential to reduce costs for operators by opening

the RAN ecosystem to multiple vendors. Therefore,
operators have more options to select cost-effective
solutions suitable to their specific requirements. ORAN
also leverages off-the-shelf hardware and cloud-based
deployment, thereby lowering costs. This diverse ven-
dor ecosystem not only saves costs but also enhances
network resiliency. By using equipment from different
vendors, operators can reduce the risk of being depen-
dent on one vendor and better protect their networks
against service disruption or potential vulnerabilities.

• Scalability, flexibility, and interoperability between ven-
dors: ORAN allows operators to easily scale up/down
their networks through disaggregation and hardware
and software supply chain decoupling. Hereby, disag-
gregation refers to the separation of traditional mono-
lithic RAN components such as baseband processing,
radio functions, and control functions, into independent
and functional entities/modules that can be developed,
deployed, and operated independently. For example,
the control unit (CU) is responsible for centralized
functions, i.e., baseband processing, control plane pro-
cessing, and network management functions. The dis-
tributed unit (DU) is responsible for radio functions
such as physical layer processing (PLP), radio fre-
quency processing (RFP), and connection management.
By disaggregating the RAN components, ORAN offers
flexibility and vendor diversity to the infrastructure.
Therefore, the operator can select the best solutions
from different vendors for each functional component,
promoting competition and innovation in the market. It
also leverages interoperability between different ven-
dors’ devices, and thus, it is easier to integrate and
upgrade network components.

• Innovation, forward-looking, and technology conver-
gence: ORAN encourages innovation by allowing start-
ups and niche vendors to introduce their novel solutions
and technologies into the RAN domain. It fosters a
vibrant ecosystem that helps drive advancements in VR,
MEC, AI, digital twins, semantic communications, hap-
tic communications, and network automation. ORAN
architecture interfaces can facilitate the integration and
interoperability of the above-mentioned technologies.

• Security enhancement: With ORAN disaggregated ar-
chitecture, security checks and verifications can be
performed more efficiently. Moreover, operators can
analyze and evaluate the security of each component,
including CUs and DU. This level of granularity allows
for better identification and mitigation of potential
vulnerabilities. Another reason for the security enhance-
ment is that ORAN supports network slicing, allowing
operators to create virtualized networks dedicated to
specific use cases. Each network slice can have its secu-
rity policies and mechanisms, creating separate security
zones. This allows for custom security configurations
for different services and applications, ensuring that
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TABLE 4. Summary of ML/AI-aided NTN for Various Emerging Applications

Application Service ML/AI method Refs

IoT

Resource allocation, energy consumption,
trajectory optimization

DNN, DRL, CNN [102]

Power and channel allocation, latency
minimization

DRL [103]

Routing strategy optimization, spectrum
sharing

CNN, DQN, SVM [104]

Mobile services
Handover and throughput optimization DRL [105]
Trajectory forecast SR distributive Q-learning [106]

Network management

Resource utilization and allocation DRL [107], [108]
Network capacity and coverage
prediction

FL, online learning [109]

Network slicing Transfer and meta learning [110]
Network slicing and resource allocation WR-NN [111]
Resource allocation FL [112]

Vehicular networks

Congestion control DRL, CNN [113]
Resource slicing and scheduling RL [114]
Virtual emotion and pandemic prevention DL [115]

UAVs

Antenna tilt deployment optimization Bi-DNN [117]

Autonomous and adaptive packet routing,
dynamic resource allocation, jamming
detection

RL, SVM and logistic regression,
Federated RL

[118]

Packet forwarding DRL [119]
Maritime services Energy-efficient topology management

and scheduling
DNN, LSTM [120]

Other applications

Cybertwin-based image classification FL [121]
Adaptive data transmission DRL [122]
Optimal routing path CNN [123]

Clustering-based scheduling problem
K-means, hierarchical clustering,
and self-organization

[124]
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appropriate security levels are maintained based on the
specific requirements of each slice.

B. ORAN architecture
Based on the above-mentioned benefits of ORAN for 5G
and beyond, we introduce ORAN architecture as shown in
Fig. 18. Fig. 18 represents different components of ORAN
such as service management and orchestration, near-real-
time RIC, open evolved NodeB (O-eNB), O-RAN Central
Unit-Control Plane (O-CU-CP), Open Distributed Unit (O-

DU) and Open Radio Unit (O-RU), and O-Cloud (a cloud
computing platform comprising physical infrastructure nodes
to host O-RAN functions) [136]. First, O-Cloud is a cloud-
computing platform consisting of a set of physical infras-
tructure components satisfying the ORAN requirements to
host related ORAN functions such as O-CU-UP, O-CU-
CP, O-DU, and near-RT RIC. Moreover, O-Cloud supports
three software components, i.e., virtual machine monitor,
operating system (OS), and container runtime. Second, O-
eNB enables O-RU and O-DU with an Open Fronthaul
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TABLE 5. ORAN interface notations

Interfaces Description References

E2
This interface establishes a connection between the near-RT RIC and multiple O-CU-CPs, O-CU-UPs,

and O-DUs.
[125]

E1 Interface linking the SMO with O-RAN managed elements [125]

O1

The interface facilitating communication between management entities (NMS/EMS/MANO) and
O-RAN managed elements enables operational and managerial functions. This encompasses FCAPS
management (fault, configuration, accounting, performance, and security), software management, and

file management

[125]

O2 Interface between the SMO and the O-Cloud [126]

A1
The interface linking the non-RT RIC and Near-RT RIC facilitates policy-driven guidance of Near-RT

operations
[126]

F1-u F1 User Plane interface [127]

F1-c F1 Control Plane interface [127]

NG-c The next generation (NG) control plane interface is defined between an NG-RAN node and a 5GC [128]

NG-u
The NG user plane (NG-U) interface is established between an NG-RAN node and a UPF. It ensures

the non-guaranteed delivery of PDU Session/MBS session user plane PDUs between the NG-RAN
node and the user plane function (UPF).

[128]

Xn-u
The Xn user plane (Xn-U) interface is established between two NG-RAN nodes. It facilitates the

non-guaranteed delivery of user plane PDUs between these two NG-RAN nodes
[129]

Xn-c Reference point for the control plane protocol interconnecting NG-RAN nodes [129]

X2-c
Control plane interface for the exchange of application-level configuration data required for seamless

interoperability between eNB and en-gNB
[130]

Open FH
M-Plane

Open fronhaul M-Plane interface which is a management interface controlling O-RU [131]

NGAP Control plan protocol of 5G [132]

GTP GTP tunnel to control the UE’s data traffic [132]

NR Uu Satellite radio interface (SRI) between satellite and UE/NTN gateway. [133]

NG over SRI
Satellite radio interface between satellite and NTN gateway (NTNGW) in the regenerative satellite

scenario.
[133]

NG
Next generation interface between satellite and gNB/5G core network (5G CN) in the

transparent/regenerative satellite scenario. Besides, it is also the interface between gNB and 5G CN in
the transparent satellite case.

[133]

N6 It is the interface connecting 5G CN to the data network. [133]

Interface (OFI) between them. Third, an Open radio unit (O-
RU ) is used to terminate the OFI and LOW-PHY functions
(i.e., Fast Fourier Transform (FFT), inverse Fast Fourier
Transform (iFFT), and physical random access channel
(PRACH) extraction.) of the radio interface (RI) to the UE.
Moreover, O-RU also terminates the OF M-Plane Interface
(OFMPI) to the Open distributed unit (O-DU) and Service
Management and Orchestration (SMO). Fourth, O-DU is
used to terminate OFI, F1, and E2 interfaces, together with
the radio link control (RLC), medium access control (MAC),
and HIGH-PHY functions of the RI to the UE. O-DU also
terminates the OFMPI to the O-RU and O1 interface to
the SMO. Fifth, the Oran Control Unit User Plane (O-
CU-UP) helps to terminate the F1-u, X2-u, S1-u, Xn-u,
E1, 01, and NG-u interfaces. Besides, it also terminates
the Service Data Adaption Protocol (SDAP) and Packet
Data Convergence Protocol (PDCP) protocols. Sixth, the

ORAN control unit control plane helps to terminate the X2-
c, F1-c, NG-c, Xn-c, E2, O1 interfaces, PDCP protocol,
and radio resource control (RRC) protocol. Seventh, the
near-real-time (RT) RAN intelligent control (RIC) supports
RT control and optimization for E2 functions and actions
over the E2 interface with latency between 10 ms to 1
second. Lastly, the SMO helps to manage the O-Clouds
and support the orchestration of platform, and workflow
management. The following functionalities are supported by
SMO, i.e., software management of deployments; deploy-
ments and allocated O-Cloud resources; creating, deleting,
and associating O-Cloud resources; software management of
cloud platform; administration of O-Cloud resources.

In the description above, we provide an overview of each
ORAN function but it would be remiss if we did not mention
the interface between them. The details of interfaces in
ORAN architecture can be described in Table 5.
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FIGURE 20. ORAN-aided NTN architecture for the regenerative NTN with gNB onboard.

C. ORAN-aided 3GPP NTN architecture
In this subsection, we describe about 3GPP-based NTN
architectures [133]. Then, we outline the specific ORAN
components that can interface with it, a perspective not previ-
ously presented in detail. In 3GPP Release 16, two primary
NTN architectures are listed: transparent and regenerative
NTN systems [133]. Consequently, we’ll illustrate these
two NTN architectures alongside their respective ORAN
counterparts.

1) ORAN-aided NTN architecture for transparent satellite,
without gNB onboard
Fig. 19 a) shows the transparent NTN system whereas the
satellite acts as a relay between the NTN ground gateway
and the UE [133]. More specifically, the satellite plays
the roles of RF amplifier and frequency conversion [133],
[137]. Besides, the satellite can replicate the radio interface,
transmitting signals from the feeder link (connecting the
NTNGW and the satellite) to the service link (linking the
satellite and the UE), and vice versa. The interfaces in a
transparent NTN system can be described as follows:
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• The UE connects to the satellite through NR Uu inter-
face. Moreover, the NR Uu interface will also be used
to connect between satellite and NTNGW and from
NTNGW to gNB.

• The gNB connects to the 5G CN through next genera-
tion (NG) interface.

• N6 interface is used to connect between 5G CN to the
data network.

In Fig. 19 b), we show a scenario with transparent NTN
while gnB is assumed to be allocated on the Earth [133].
Therefore, it is assumed that the NTN O-DU is located on
Earth and is connected to the NTNGW through the next
generation (NG) interface [137]. The UE then connects to
the satellite through NR-Uu interface [137]. Moreover, the

O-CU-CP and O-CU-UP have NGNA and GTP interfaces
with 5GC, respectively.

2) ORAN-aided NTN architecture for regenerative satellite,
with gNB onboard
Fig. 20 a) and b) present the regenerative NTN systems
in which the satellite is equipped as a base station [133].
In Fig. 20 a), we depict the scenario where only a single
satellite connects to the NTNGW. Fig. 20 b) presents a
generalized version of Fig. 20 a), incorporating an inter-
satellite link (ISL) interface between satellites. The interfaces
in regenerative NTN system can be described as follows:

• The UE connects to the satellite through NR-Uu inter-
face.

• The Xn interface, operating over the ISL, facilitates
connections between satellites. The ISL can utilize
either a radio interface (RI) or an optical interface
(OI) and may conform to either 3GPP or non-3GPP
standards.

• The regenerative satellite connects to the NTNGW
through the NG satellite radio interface (SRI), which
serves as a transport link. Moreover, the NTNGW
is a transport network layer (TNL) node capable of
supporting all transport protocols.

• N6 interface is used to connect between 5G CN to the
data network.

In Fig. 20 c), we show a novel architecture for the regener-
ative satellite [138]. To the best of our knowledge, this is the
first proposed architecture that shows how ORAN can work
with NTN systems [138]. Specifically, the gNB is equipped
with a satellite. In this scenario, the NTNGW connects
directly to the O-CU-UP and O-CU-UP through the F1-c
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and F1-u interfaces, respectively. Besides, the NTNGW also
connects with non-real-time RIC, and the in-band controls
such as E2, F1-c, and F1-u. Then, the NTNGW connects
to the satellite through F1/O1/E2 over SRI interface. In this
case, the satellite is assumed to be equipped with NTN O-
DU. The UE also connects to the satellite through NR-Uu
as in the transparent satellite scenario.

D. ORAN-aided non-3GPP NTN architecture
In this subsection, we describe one more NTN architecture
that is not agreed and listed in 3GPP documents [133]. Then,
we show in detail which ORAN components can connect to
the NTN system.

In Fig. 21 a), we illustrate a scenario in which the gNB
cannot directly connect to the 5G CN [36]. This may occur
if the gNB is deployed in an isolated area without an optical
link to the 5G CN, or if the connection is disrupted due to
a disaster or accident. The interfaces in a transparent NTN
system can be described as follows:

• The UE connects to the gNB through NR Uu interface.
• The gNB connects to the NTNGW through the NG

interface.
• The satellite connect to the NTNGW and 5G CN

through NG over SRI interface.
• N6 interface is used to connect between 5G CN to the

data network.

In In Fig. 21 a), we detail how ORAN components connect
to the satellite. In this scenario, the satellite plays as a
relay between NTNGW and the 5GC. Therefore, it provides
a satellite backhaul link to the NTNGW. Moreover, the
satellite connects to the 5GC through NG over SRI interface.
As an illustration, let us consider an example to facilitate

understanding. Initially, let’s assume there exists an optical
link between the 5GC and the gNB. However, in the event
of a disaster, this link is destroyed. To expedite the rescue
mission in the isolated area, satellites can serve as relays to
transmit information from the 5GC to the gNB located in
this isolated region.

E. ORAN-aided UAV trajectory design based on radio
resource allocation
In this section, we describe a case where a UAV trajectory
flight path is based on the UAV radio resource allocation,
which helps operators fine-tune their radio resource policies
in the ORAN architecture [134]. Since the location along
the trajectory is mainly focused on GUEs, the UAV does not
always belong to the main lobe of the ground base station
(GBS). Moreover, the side lobes of the GBS antenna lead to
the scattered cell association phenomenon, especially in the
sky. The cell pattern on the ground is ideally a contiguous
area whereas the best cell is usually the cell closest to the UE.
When the UE moves upward, the side lobes of the antenna
start to show up and the best cell may no longer be the
closest one. The connectivity of the cell in this case becomes
discrete, particularly at an altitude of 300m or more.

As shown in Fig. 22, the NRT RIC can retrieve essential
UAV-related measurements from the network based on UE
and SMO reports, as well as UAV trajectory information,
aerial load information, and climate information. For ex-
ample, unmanned traffic management (UTM) is used to
build/train relevant AI/ML models deployed in RAN. This
could be uplink/downlink interference from the UAVs, UAV
detections, and prediction of available radio resources such
as bandwidth, frequency, cell, and beam. Based on this infor-
mation, the NRT RIC can support the building and execution
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of AI/ML models from Non-real-time RIC. Moreover, the
NRT RIC can make radio resource allocation for on-demand
coverage of UAVs taking into account the trajectory and
radio channel information.

Recently, there are some works that investigate how
ORAN meets UAV communications [139]–[142]. In [139],
Mitsui et al. tried to solve the fairness problem from ground
UEs to UAV by optimizing the UAV’s speed and allo-
cated bandwidth. Particularly, the authors proposed iterative
algorithms that run on ORAN architecture to solve the
above-mentioned problem. More specifically, they first fixed
the allocated bandwidth and optimized the UAV’s flying
speed. Then, they used the optimized UAV’s flying speed
to optimize the allocated bandwidth. This algorithm was
stopped when it reached the saturation point. In [140], Betalo
et al. tried to minimize the UAV’s energy consumption
by optimizing task scheduling, trajectory design, and re-
source allocation in wireless sensor networks (WSNs). As
the problem is NP-hard, they designed a multi-agent deep
reinforcement learning (MADRL) algorithm to solve it, and
this algorithm is deployed on the ORAN system. [141] is
the first work that investigated the benefits of multi-UAV
in ORAN architecture. More specifically, the authors aimed
to maximize network utility, i.e., data rate and computing
resources, by optimizing the UAVs’ flight paths and the
allocated offloading tasks in ORAN architecture. Different
to other works that investigated from the theoretical perspec-
tive, Lorenzo et al. [142] conducted an experimental study on
drone video streaming applications on ORAN architectures.
More specifically, the authors designed a control system for
UAV positions and transmission directionality to improve the
total network performance, i.e., the UE’s uplink throughput.
Specifically, they prototyped the proposed solution in a real
testbed.

F. Flow diagram for ORAN-aided UAV trajectory design
based on radio resource allocation
In Fig. 23, we describe a flow diagram for an ORAN-aided
UAV trajectory design based on radio resource allocation
using ML models [134]. In step 1, the collector in the
SMO performs data collection from O-CU/O-DU via the
O1 interface. Then this data is transmitted to the non-RL
RIC in step 2. In step 3, the application server transmits
the application data to non-RT RIC. From steps 4 to 6, the
ML flow is performed. In particular, non-RT RIC trains and
deploys the ML models in steps 4 and 5, respectively. In
step 6, non-RT RIC deploys or updates ML models in near-
RT-RIC through the O1 interface. In step 7, the application
data is transmitted from the application server to non-RT
RIC. In steps 8 and 9, non-RT RIC sends radio resource
allocation, updated policies, intents, and enrichment data to
near-RT RIC via the A1 interface. From steps 11 to 14, the
performance evaluation and optimization are performed. In
step 11, the collector collects data from O-CU/O-DU and
then transmits it to the non-RT RIC in step 12. In step 13,

the non-RT RIC executes the performance monitoring and
evaluation. Finally, the process of re-training or updating the
model is performed in step 14.

G. Summary
In this section, we have discussed multiple approaches for
ORAN-aided NTN, i.e., benefits of ORAN for 5G and
beyond, ORAN architecture, ORAN-aided 3GPP NTN ar-
chitecture (ORAN-aided NTN architecture for transparent
satellite and ORAN-aided NTN architecture for regener-
ative satellite), ORAN-aided non-3GPP NTN architecture,
ORAN-aided UAV trajectory design based on radio resource
allocation. Different to the traditional monolithic RAN ar-
chitecture, ORAN provides many advantages such as cost
reduction, scalability, interoperability between vendors, and
disaggregation. It also brings new challenges and opportuni-
ties for researchers due to the architecture of ORAN is totally
different from the RAN. Some potential research directions
of ORAN-aided NTN can be described as follows:

• Design ORAN-NTN routing path: Designing ORAN-
NTN routing paths to efficiently support the heteroge-
neous requirements of UEs in each area, with different
latency and rate requirements and in a large coverage
area, has become essential to satisfy the UE’s QoS. This
is especially important in emergency/disaster scenarios
or when the terrestrial network becomes overloaded.

• Real time applications: How to design efficient algo-
rithms in an ORAN-NTN system to support real-time
(e.g., latency requirement of less than 1 ms), near-real-
time (e.g., latency requirement from 10 ms to 1 sec-
ond), and non-real-time RIC (e.g., latency requirement
greater than 1 second) requirements at UEs is a complex
issue. Depending on different data rates and latency
requirements at UEs, we need to allocate resources and
design routing paths efficiently. This problem becomes
tricky in large-scale scenarios in practice, e.g., more
than 1000 BSs and hundreds of thousands of UEs.

• AIML for ORAN control: In order to utilize ORAN
efficiently on a large scale and automatically, AIML can
provide efficient solutions by predicting the incoming
traffic of the network. Therefore, it offers good solu-
tions to deal with dynamic control and varying traffic
requirements.

• Security for ORAN-NTN: It is necessary to design,
maintain, develop, and test algorithms to improve the
security of the ORAN-aided NTN system, especially
since the large distance between NTN and ORAN
creates high transmission delays, making it vulnerable
to attacks

• Energy efficiency: One of the biggest concerns of the
operators is how to reduce the energy consumption
at the BSs, which contributes to 2-3% of greenhouse
gas emissions and is a major operational expense.
Therefore, designing efficient algorithms to operate the
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ORAN-aided NTN system has become an urgent need.

• ORAN-based NTN network slicing: How we enable
ORAN NTN network slicing to support diverse applica-
tions with varying latency and rate requirements. How
we design routing paths from NTN through different
ORAN components to meet the UE’s QoS requirements
with limited resources.

• NTN-based ORAN digital twin: How to enable ORAN
NTN digital twin for real-time, near real-time, and
non-real-time in different NTN architectures, such as
transparent and regenerative NTN modes.

VI. Challenges, Open Issues, and Future Research
Directions
A. Challenges and Open Issues
1) Complexity of network slicing
The complexities of constrained optimization problems in-
herent in network slicing for NTN pose significant chal-
lenges. Particularly, these optimization problems are char-
acterized by numerous practical constraints, ranging from
bandwidth limitations and latency requirements to secu-
rity considerations. Moreover, the combination of various
platforms in different altitudes, e.g., satellites, UAVs, and
base stations, further aggravates the problem complexity.
Consequently, to ensure the effectiveness of network slicing
in NTN, optimization techniques need to be carefully de-
signed to take into account the unique characteristics of each
platform and the dynamic nature of the network environment.

2) Challenges of AI-enabled NTN
AI techniques in NTN face a wide range of challenges due
to the distinctive features of non-terrestrial communication
environments. First, the dynamic nature of NTN, influenced
by atmospheric conditions and connectivity shifts, hinders
the effectiveness of conventional AI techniques with limited
domain adaptation capability. Moreover, constrained band-
width further complicates the deployment of AI models,
limiting the transmission of large datasets, which in turn
reduces the effectiveness of AI models’ training. Non-
terrestrial platforms also often have limited power and com-
putational capabilities, which complicates the deployment
of AI techniques. Additionally, applications demanding high
prediction accuracy, such as autonomous driving, introduce
challenges in adapting AI models to the inherent propagation
delay of NTN. To address these challenges, techniques
such as Transfer Learning (TL) [143] can be employed to
improve the domain adaption ability of AI models, as well
as to address the limited power and computational issues.
Moreover, both FL and TL can be utilized to reduce the
data transmission demands.

3) Security
There is a wide range of security issues in NTNs, ranging
from data transmission and signal jamming to unauthorized
access. Particularly, due to the vast distance of transmission,
NTNs are susceptible to interception and eavesdropping.
Moreover, the expansive coverage areas of NTN also make
them potential targets for unauthorized access. This also
brings forth privacy concerns as sensitive data are transmitted
over long distances. Additionally, the reliance on satel-
lite communication introduces challenges related to secure
satellite operation, such as satellite commands and cyberat-
tacks. To overcome these problems, promising solutions such
as AI-empowered intrusion detection systems, blockchain-
based authentication, and privacy-preserving homomorphic
encryption should be investigated.

B. Future Research Directions
1) Blockchain for NTN
Potential applications of blockchain in NTN encompass
diverse areas, aiming to enhance security, interoperability,
efficiency, and privacy. For example, in [144], a blockchain-
based approach is developed for secure data sharing in
SAGINs. The proposed approach utilizes session-based au-
thentication and public key cryptography for secure commu-
nication between satellites, UAVs, and IoT devices. In this
system, a blockchain serves as a decentralized platform to
manage authentication processes, leveraging smart contracts
to automate and securely execute the authentication protocols
between entities.

Besides automating the authentication processes, smart
contracts can be leveraged to orchestrate network slicing,
enabling the automatic execution of agreements among
network entities, as well as streamlining the process of
allocating and managing resources dynamically. Blockchain
can also play a pivotal role in stimulating collaboration
and resource-sharing through digital tokens and incentive
mechanisms [145]. Particularly, participants can be incen-
tivized to contribute resources, share data, or engage in
collaborative efforts through token-based rewards, thereby
alleviating resource and data demands in NTN applications.

2) FL for NTN
In NTN, FL can enable collaborative model training across
various non-terrestrial platforms. This collaborative learning
paradigm brings two significant advantages. First, data can
be used to train the models locally, and thus reducing the
risks of exposing sensitive data over the network. Moreover,
this also reduces the need to transmit data, thereby alle-
viating the transmission demands [146]. Nevertheless, the
integration of FL in NTN involves challenges related to
varying connectivity, platform mobility, and heterogeneous
datasets. Specifically, different non-terrestrial platforms may
experience intermittent or fluctuating network connections,
affecting the synchronization and coordination required for

VOLUME , 29



Nguyen et al.: Preparation of Papers for IEEE OPEN JOURNALS

FL processes. Moreover, the mobility of these platforms
introduces complexities in maintaining consistent and reli-
able communication channels for collaborative model train-
ing. The transmission of training data for FL, especially
over large distances, might also be prone to eavesdrop-
ping [147]. Addressing these challenges, therefore, is crucial
for unlocking the full potential of FL in NTN and requires
more efforts from the academia.

3) Generative AI for NTN
Exploring the integration of Generative Artificial Intelligence
(GAI) in NTN is a promising future research direction with
huge potential. Generative AI, known for its ability to create
synthetic data and generate novel content [148], can be
utilized to address several challenges in NTN. For instance,
it can be employed to generate high-quality synthetic data,
complementing the training and testing of traditional AI
techniques in the dynamic and diverse NTN environments.
Moreover, GAI can enhance the security of NTN by gen-
erating realistic attack scenarios, enabling robust evaluation
of network defense mechanisms. Another approach is uti-
lizing GAI to generate network data for simulating various
network conditions, thereby aiding network optimization and
predicting potential bottlenecks.

4) Holographic MIMO and Intelligent Reflecting Surfaces
The recent advancement of antenna technologies has opened
promising research directions that can significantly enhance
the performance of NTN. For example, holographic MIMO
is an advanced antenna technology that leverages principles
from holography to enable highly directional and focused
transmissions from a single aperture. This technique enables
highly directional transmissions while mitigating interfer-
ence, thereby improving spectrum utilization and throughput
for NTN systems [149]. Additionally, the concept of intelli-
gent reflecting surfaces (IRS) has emerged as a promising
enabling technology for NTNs. IRSs comprise arrays of
reconfigurable meta-surfaces that can alter the propagation
properties of impinging electromagnetic waves [150]. By
strategically deploying IRSs in conjunction with satellites or
aerial platforms, NTN providers can optimize signal reflec-
tions, extend coverage areas, and enhance the overall quality
of service. Moreover, another promising direction could
be the combination of IRS and holographic MIMO, e.g.,
deploying IRSs in strategic locations to intelligently reflect
and focus the multiple beams generated by a holographic
MIMO transmitter towards intended receivers.

VII. CONCLUSION
In this paper, we have presented a comprehensive survey
of NTN for 6G networks from both academic and industry
perspectives. Particularly, we have presented an in-depth
tutorial on NTN and the enabling technologies including net-
work slicing, AI/ML, and ORAN. Then, we have surveyed

state-of-the-art network slicing and AI/ML approaches that
are proposed to address various challenges of NTN in the
literature. Moreover, we have presented how ORAN has been
utilized for NTN from the industry standpoint. Finally, we
have discussed the current challenges as well as open issues
and introduced promising technologies as future research
directions of NTNs.
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[86] A. Papa, H. M. Gürsu, L. Goratti, T. Rasheed, and W. Kellerer,
“Cost of network slice collaboration: Edge network slicing for in-
flight connectivity,” in ICC 2021-IEEE International Conference on
Communications. IEEE, 2021, pp. 1–6.

[87] S. Hendaoui, A. Mannai, and N. Zangar, “Cognitive cqi/5qi based
scheme for software defined 5G hybrid satellite-terrestrial network:
Slicing for ultra reliability and video congestion offloading,” in 2020
International Symposium on Networks, Computers and Communica-
tions (ISNCC). IEEE, 2020, pp. 1–7.

[88] S. Hendaoui and C. N. Zangarz, “Leveraging sdn slicing isolation for
improved adaptive satellite-5G downlink scheduler,” in 2021 Inter-
national Symposium on Networks, Computers and Communications
(ISNCC). IEEE, 2021, pp. 1–5.

[89] N. Zangar and S. Hendaoui, “Leveraging multiuser diversity for adap-
tive hybrid satellite-lte downlink scheduler (h-mudos) in emerging
5G-satellite network,” International Journal of Satellite Communica-
tions and Networking, vol. 37, no. 2, pp. 113–125, 2019.

[90] T. K. Rodrigues and N. Kato, “Network slicing with centralized
and distributed reinforcement learning for combined satellite/ground
networks in a 6G environment,” IEEE Wireless Communications,
vol. 29, no. 1, pp. 104–110, 2022.

[91] A. Kak and I. F. Akyildiz, “Towards automatic network slicing for the
internet of space things,” IEEE Transactions on Network and Service
Management, vol. 19, no. 1, pp. 392–412, 2021.

[92] Z. Yin, T. H. Luan, N. Cheng, Y. Hui, and W. Wang, “Cybertwin-
enabled 6G space-air-ground integrated networks: Architecture, open
issue, and challenges,” arXiv preprint arXiv:2204.12153, 2022.

[93] X. Hou, J. Wang, Z. Fang, Y. Ren, K.-C. Chen, and L. Hanzo,
“Edge intelligence for mission-critical 6g services in space-air-ground
integrated networks,” IEEE Network, vol. 36, no. 2, pp. 181–189,
2022.

[94] G. Zhou, L. Zhao, G. Zheng, S. Song, J. Zhang, and L. Hanzo,
“Multi-objective optimization of space-air-ground integrated network
slicing relying on a pair of central and distributed learning algo-
rithms,” IEEE Internet of Things Journal, 2023.

[95] F. Lyu, P. Yang, H. Wu, C. Zhou, J. Ren, Y. Zhang, and X. Shen,
“Service-oriented dynamic resource slicing and optimization for
space-air-ground integrated vehicular networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7469–7483,
2021.

[96] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen,
and W. Zhuang, “Ai-native network slicing for 6G networks,” IEEE
Wireless Communications, vol. 29, no. 1, pp. 96–103, 2022.

[97] D. Yang, J. Liu, Y. Xia, Z. Wang, H. Ding, and S. Meng, “Research
on the integrated space-air-ground communication network based on
network slicing and its key technologies,” in 2020 IEEE Sustainable
Power and Energy Conference (iSPEC). IEEE, 2020, pp. 2652–
2657.

[98] H. H. Esmat, B. Lorenzo, and J. Liu, “Leons: Multi-domain network
slicing configuration and orchestration for satellite-terrestrial edge
computing networks,” in ICC 2023-IEEE International Conference
on Communications. IEEE, 2023, pp. 6294–6300.
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