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A B S T R A C T

This study investigates a tri-level optimal market strategy for the integrated electric vehicle fleets and solar
distributed generations (IEVSDG) to engage in the local electricity market (LEM) as a strategic price-maker.
The distribution company (Disco) which operates the LEM, participates in the wholesale electricity market
(WEM) to provide its consumers, is also a strategic price-maker. For this purpose, the IEVSDGs are integrated
at the first level of the optimization problem, while the Disco operator and WEM operator form the second and
third levels, respectively. In other words, Disco acts as an intermediary retailer that links the LEM (modelled
by IEEE 69-bus distribution system) to WEM (modelled by an IEEE 24-bus transmission network). The study
puts forward a novel solution strategy, where the second and third level problems are conjoined through
the Karush–Kuhn–Tucker (KKT) conditions. Moreover, the equilibrium point between the first level and this
conjoined problem is achieved through the alternating direction method of multipliers (ADMM). In a hybrid
robust optimization (RO) and stochastic programming (SP) approach, the uncertain specifications, such as the
arrival/departure times and daily travelled miles are modelled through the SP scenarios. On other hand, the
RO was deployed to handle solar power forecasting uncertainties. Different case studies of dumb and smart
charging were devised to evaluate the method. The outcomes show that the proposed three-level approach
leads to 57.21% reduction in the LEM price, and 0.86% reduction in the WEM price. Furthermore, the smart
charging strategy eliminated 105 MWh of load interruptions.
1. Introduction

1.1. Background

The widespread adoption of distributed generation (DG) units has
undeniably transformed electric distribution systems, turning them
from passive consumers bound by market prices into active participants
with control over their energy demand [1]. Accordingly, with the
integration of DGs, the distribution system earned a new title as an
active distribution system (ADS) since it was enabled to supply active
energy and be part of the production chain [2]. Another imperative
breakthrough in electricity distribution was marked by the liberaliza-
tion of the electricity markets that laid the foundation of the modern
and free marketplace. In turn, this phenomenon led to substantial
improvements in both quality and efficiency of the production and
distribution [3].

At a global level, the transportation sector attributes the high-
est energy consumption by accounting for 29% of the global energy
demand [4]. As a result, it has been designated as one of the main pol-
luters by accounting for 7 billion tons of the global CO2 emissions [5].
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Moreover, some studies estimate that transportation sector takes up
65% of the global oil consumption [6]. The increasing awareness about
the climate change has forced this problem on highest propriety of the
global agenda. In this concern, transportation electrification has been
unanimously designated as a feasible solution. For instance, the UK has
enforced legislation to halt the sales of the petroleum-based vehicles by
2030, while simultaneously setting up goals to achieve a zero-emission
energy sector [7]. The latest research indicate that in 2022 up to 40% of
the UK’s energy was supplied through renewable energy forms, which
is targeted to reach net zero value by 2035 [8].

The sharp ongoing increase in the penetration level of electric
vehicles (EV) has created deep concerns around their impact on the
power systems’ security. In this regard, the consensus is that their
coordinated charging is the key for addressing peak-shaving require-
ments and secure operation [9]. On the other hand, solar distributed
generations (SDGs) have shown a dramatic decline in production
cost, which has made them a popular green energy form, and they
are currently increasingly deployed in urban centres. Considering the
high penetration of these SDGs and idle EVs at smart parking lots, their
vailable online 11 March 2024
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Nomenclature

Abbreviations

IEVSDG Integrated electric vehicle fleets and solar
distributed generations

LEM Local electricity market
Disco Distribution company
WEM Wholesale electricity market
KKT Karush–Kuhn–Tucker
ADMM alternating direction method of multipliers
RO Robust optimization
SP Stochastic programming
DG Distributed generation
ADN Active distribution system
TN Transmission network
Genco Generation company
EV Electricity vehicle
EVF Electricity vehicle fleet
MCP Market clearing price

Sets and indices

s, t Index of time, scenario
v, kl Index of IEVSDG, linearization segments
k, l, d Index of DG, interruptible loads, demand
i, j Index of ADN nodes
b,b′ , g Index of TN nodes, Genco
m Index of generation blocks
Ax
y Set of connectivity between 𝑥 and 𝑦

Parameters

𝜌 penalty factor
𝜋s Probability of each scenario
𝜆LEM∗
t,i Optimal value of MCP of LEM ($/MW)
𝑐pvv Operation cost of SDGs ($/MW)
𝜂v, 𝐸𝐵v The efficiency/capacity of the EVF battery

(MWh)
TAs,v, TDv,s Arrival/departure time of EVF
𝑆𝑂𝐶 In

v,s, 𝑆𝑂𝐶des
v Initial/Desired SOC of the EVFs

𝑆𝑂𝐶v, 𝑆𝑂𝐶v Min/Max SOC of EVFs
𝑆𝑂𝐶end

v,s SOC of EVFs at departure
𝐷𝑇v,s Driven miles by EVFs (mile)
𝐸𝑀v Energy consumption per mile (MWh/mile)
𝐶𝑟 Nominal charging rate of EVFs (MW)
𝑎0 Degradation function fitting parameter
𝐵𝐶v Battery cost of EVFs ($)
𝑝pvv,t , 𝑝̂

pv
v,s,t Maximum/Deviation of SDG power (MW)

𝛤RO The robustness budget of RO
𝐶 IL
l , 𝐶

DG
k Cost of interruptible loads,DGs ($/MWh)

𝐶G
g,m Cost of linear DG generation block ($/MWh)

𝑝DGk , 𝑝DGk Min/Max DG power (MW)

𝐶
⌢
S
k , 𝐶

⌣
S
k Start-up/shutdown cost of DG ($)

⌢
𝑅k ,

⌣
𝑅k Ramp up/down rate of DG (MW)

𝑇Ue
k , 𝑇De

k Minimum up/down time of DG (h)
𝑅𝑈𝑔 , 𝑅𝐷𝑔 Ramp up/down rate of Genco (MW)
𝑇U0
k , 𝑇D0

k Minimum up/down time at the beginning (h)
𝑅DS
ij , 𝑍

DS
ij Resistance/Impedance of feeders (𝛺)
2

𝐼DSij Maximum ADS current (KA)

𝑉 DS
i , 𝑉 DS

i Min/Max ADS voltage (kV)
𝐶𝑀𝑎𝑥
𝑏,𝑏′ Maximum capacity of TN lines (MW)

𝑃DSL
d,t ADS load (MW)
𝐵b,b′ Susceptance of TN feeders (1/𝛺)
𝑃d,t Genco demand (MW)
𝑝Dsc
t
, 𝑝Dsct Min/Max power exchange of ADS with WEM

(MW)

Variables

𝑂𝐹1, 𝑂𝐹2, 𝑂𝐹3 First, second, and third level objectives ($)
𝑝+v,s,t , 𝑝

−
v,s,t Charging/Discharging power of EVFs (MW)

𝑝pvv,s,t The power dispatched from SDGs (MW)
𝑑𝑔Linv,s,t , 𝑑𝑔

𝑁𝑙
v,s,t Linear/nonlinear battery erosion cost ($)

𝑆𝑂𝐶v,s,t State of charge of EVFs.
𝐶𝐷𝑠𝑐𝑡 Offer price of Disco
𝑃 𝑔 Maximum power generation of Genco (MW)
𝜎v,s,t Cycle depth of EVFs
𝜓v,s,t Cycle depth degradation of EVFs
𝑀𝐷v,s,t Marginal battery degradation ($/MW)

𝑃 ES
t,v ,

←
𝑃
ES

t,v The exported/imported IEVSDG power (MW)
𝑦aux1v,s,t , 𝑦

aux1
v,s,t Auxiliary variables in degradation lineariza-

tion
ℏa1kl,v,s,t , ℏ

a2
kl,v,s,t Semi-integer variable used in degradation

linearization.
𝐹𝑌 aux1

v,s,t , 𝐹𝑌 aux2
v,s,t Linear decompositions of the degradation

cost function.
𝜆WEM
b,t , 𝜆LEMt,i The MCP of WEM/LEM ($/MWh)
𝑝Dsct The power exchange of Disco with WEM

(MW)
𝑝ILl,t , 𝑃

DG
k,t Interruptible load, DG power (MW)

⌢
𝑆k,t ,

⌣
𝑆k,t Start-up/shutdown cost of DG ($)

↔
𝑃
ES

v,t Energy exchange of Disco with IEVSDG (MW)
𝑃 f low
ij,t Power flow from node i to j (MW)
𝑉 DS
i,t , 𝑉

DS
i,t ADS Voltage and linear square of ADS voltage

(kV)
𝑃 Loss
ij,t Feeder power loss (MW)
𝐼DSij,t , 𝐼

DS
ij Feeder current and linear square of it (A)

𝜆LEMt,i , 𝜆WEM
t,i MCP of LEM/WEM ($/MWh)

𝜌Gg,m,t Maximum power generation block of Genco
(MW)

𝛿b,t The voltage angle of TN node
𝑃G
g,t The Genco generation (MW)

Binary variables

𝑢𝑐v,s,t , 𝑢𝑑v,s,t Charge/discharge state of EVFs
𝐼k,t Commitment state of DG
𝑦k,t , 𝑧k,t Start-up/shutdown state of DG

Dual variables

𝜇, 𝑣, 𝜁 Inequality dual variable.
𝑥ROv,s,t , 𝑧

RO
v,s,t , 𝑝

RO
v,s,t , 𝑦

𝑅𝑂
v,s,t The dual auxiliary variables of RO

cooperation in form of integrated electric vehicle fleets and solar
distributed generations (IEVSDG) would be beneficial for both sides.
Accordingly, not only the green solar energy usage will be maximized,
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but also the transportation sector will be greener and economical [10].
Furthermore, they can take part in the local electricity market (LEM)
to submit offers/bids that can maximize their collective profit as they
can exert influence in the local market [11]. That said, the distribution
company (Disco), which operates the LEM, procures part of its energy
through the wholesale electricity market (WEM) [12].

Therefore, the Disco must submit the best offer/bids in WEM. In
fact, there are three levels of operators that must coordinate IEVSDG,
Disco and WEM, which requires a multi-level optimization tool to reach
the best equilibrium state. Furthermore, the arrival/departure time of
EVs and their daily travelled miles, along with the SDG production, are
uncertain data that should be accounted for with novel methods [13].
The EV aggregators have gained a great deal of popularity in recent
publications [14]. The reason is that a single EV cannot participate
in the energy markets and have a significant influence on the power
system comparable to a drop in the ocean. Admittedly, it can improve
the profits of the owner by following the price/load patterns as a
price-taker. Nevertheless, when aggregated at great numbers, EVs could
engage in the electricity markets and improve the collective profit of
the owners by their market strategies as a price-maker rather than
a price-taker that has no authority over the market-clearing price
(MCP) [15].

1.2. Literature review

The vehicle to grid capabilities of an idle EV was effectively utilized
by [16] to enhance home energy management strategies in the form of
demand response and interruptible loads (IL) for emergency purposes.
In [17], the charging stations were assigned to the EVs considering
vacancy positions. Afterward, the optimal scheduling was conducted
via the 2-PEM method considering the EVs demand as an uncertain
parameter. The congestion issue will be a serious threat to the well-
being of the distribution system. In this respect, Ref. [18] investigated a
congestion-oriented distributed marginal pricing method to control EVs
with price signals under the command of an aggregator. The proposed
model was a bi-level problem, wherein the aggregator was the upper-
level leader, while the disco was the follower. Similarly, the authors
in [19] studied the impact of congestion that might be caused by
uncoordinated charging. Additionally, the study proposed an analytical
strategy to find the highest possible EV penetration level that can be
held without line congestion.

In [20], the EVs were modelled as flexible demand response provid
ers in community-integrated energy systems, while multi-stakeholder
scenarios were considered through bi-level optimization. A novel ex-
act algorithm was proposed in [21] for EV aggregators to submit
offers/bids at the leading stage, while the EV owners were modelled
as lower-level followers that self-schedule according to the offer/bid
of the aggregator. Furthermore, a distributionally robust stochastic
optimization framework was proposed in [22] for collaborative bidding
scheduling of wind farms, EV aggregators, and hydroelectric facili-
ties. A multi-objective optimization strategy was inspected by [23] to
investigate the coordinated scheduling of the integrated EV systems
and wind generation units, which aimed at improving the wind power
adsorption and energy conservancy of the thermal units. A risk-averse
optimal scheduling framework is investigated in [24] for smart parking
lots in electricity market trading considering electricity price fluctua-
tions. In [25], a hybrid stochastic-robust scheduling is studied for the
interaction of smart parking lots with competitive electricity markets
in a distributed framework. In this research, the ADMM algorithm is
used to achieve the overall equilibrium point. Study [26] has designed
a fuzzy logic controller for coordination of EVs in EDNs, which leads to
the minimization of operating costs, flattening of the voltage profile and
reduction of emissions. A hybrid stochastic-robust model is investigated
in [27] for the optimal day ahead scheduling of plug-in electric vehicles
3

connected to the EDN in the presence of RESs.
Although studies [28–30] have not included EVs in their frame-
work, they have made notable contributions in bi-level optimization
concerning power system studies. Particularly, [28] investigated a risk-
averse and risk-seeker price-maker optimization framework for Disco
to engage in WEM The alternating direction method of multipliers
(ADMM) was deployed by [29] to solve the bi-level optimization prob-
lem for price-maker microgrids that participate in LEM. In particular,
the study deployed robust optimization (RO) to deal with uncertain
data. Furthermore, a novel Dantzig–Wolfe decomposition technique
was introduced by [30] to solve the optimal price-maker scheduling
of multiple microgrids in WEM, while the study integrated an RO-SP
method to deal with uncertain data. A bi-level optimization approach
is discussed in [31] for strategic participation of Disco in day-ahead and
real-time wholesale market.

A hybrid Stackelberg–Nash mechanism is presented in [32] for
decentralized trading of smart homes with Disco. In this study, ADMM
algorithm is used to achieve the equilibrium of energy exchanged
between players. In [33], a bi-level optimization approach based on
risk management is proposed for the strategic participation of the Disco
in the day-ahead WEM. In this study, the Disco and the WEM are
modelled at the upper and lower levels of the problem, respectively.
A bi-level approach based on game theory is investigated in [34] for
trading between microgrids and electrical distribution network (EDN).
In this study, the SP method is used to model the uncertain behaviour of
uncertainty parameters. A bi-level optimization framework is proposed
in [35] for decentralized trading of smart parking lots, LEM and multi-
ple microgrids. In this study, the DRO method has been used to model
the uncertain behaviour of RESs. In [36], a hybrid stochastic-robust
scheduling is proposed for the participation of EV aggregators in the
WEM as a strategic player. In this study, EV aggregators and WEM are
modelled at the upper and lower levels of the problem, respectively. A
hybrid stochastic-robust framework is presented in [37] to investigate
the effects of smart charging in an active EDN. In [38], a convex
optimization framework is proposed to investigate the impact of smart
charging and uncontrolled charging in multi-energy EDN considering
flexible energy sources. In this study, the hybrid stochastic-robust
method is used to model the uncertain behaviour of the uncertainty
parameters.

1.3. Contribution

Table 1 gives a comprehensive taxonomic evaluation on the main
characteristics of the current literature and this study. Aside from the
timely contributions of all the aforementioned studies, the following
under-researched aspects stand out:

a The studies [16,17,19–21,23–26,29,32,34,35,37,38] have adop
ted a price-taker market participation strategy approach. How-
ever, a higher level of profit can be obtained if a price-maker
market model was adopted to give offers/bids and be an active
part of the market.

b In bi-level studies [18,20,21,26,28,35,37–39], the participation
strategies in LEM is studied, while publications [28,31], and [33]
have studied the scheduling strategies of Disco in WEM as a
price-maker. Nevertheless, the price-maker framework has not
been addressed for both LEM and WEM simultaneously, which
requires a tri-level optimization method.

c The SP method has been deployed by [20,31,33], while stud-
ies [28,29] proposed RO models to deal with uncertain param-
eters of real-world conditions. Although [25,27,30,36–38] have
used a hybrid RO-SP strategy to deal with some uncertainties,
this novel method has not been applied for handling uncertain
nature of EVs and SDG production intermittency. Furthermore,
EVs’ uncertainty is neglected in [16,17,19,21,23,26,32].

d The power system models have a great significance as they
consider the system’s constraints, such as voltage, current and
congestion. However, the studies [16,17], and [23] lack the

power system models.
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To address these existing gaps in the literature, this study puts forward
a novel tri-level optimization framework for IEVSDGs to take part in
LEM and WEM. The IEVSDGs form the first level of the problem and
they consist of smart urban EV parking lots that are integrated with
SDGs. The IEVSDGs’ operator at the ADS level receives the distribution
of the uncertain data, e.g., solar power production, arrival/departure
time and daily travelled miles of EVs. Subsequently, the EVs are clus-
tered into fleets (EVF) according to their empirical probability dis-
tribution functions via the k-means clustering method. At this stage,
the IEVSDGs operator schedules the charge/discharge patterns of the
EVFs as well as the solar energy dispatch and strategically submits the
offers/bids in the LEM, which is modelled by IEEE 69-bus ADS. At
the second level, the Disco operator self-schedules and clears LEM to
minimize the operational costs, which is the reason why IEVSDGs’ be-
haviour is considered as strategic since it includes the possible response
of the market to the submitted energy offer/bid. However, to procure
part of its energy, the Disco also partakes in WEM, which is modelled
by IEEE 24-bus transmission network (TN). When the Disco submits its
offers/bids in WEM (the third level of the problem), the WEM operator
clears the market and announces the MCP of WEM.

In summation, the behaviour of the Disco in WEM is also strategic
and the proposed problem has double layers of strategic behaviour
since the IEVSDGs is a strategic price-maker in LEM, while the LEM
operator (that is Disco) is also a strategic price-maker in WEM. In
other words, the Disco is an intermediary link that connects IEVSDGs
to WEM. To solve this three-level optimization problem this study
combines ADMM and KKT conditions, which to the best of authors’
knowledge, have not been studied in previous publications. Addition-
ally, this work deploys a hybrid RO-SP approach to deal with uncertain
data to benefit the advantages of the both methods. For instance, the
RO provides more reasonable results with erratic parameters, such as
solar production, while the parameters that have certain probability
distribution functions, i.e., EVFs behavioural patterns, are better han-
dled with SP. Overall, the original contributions of this study can be
listed as follows:

i A novel tri-level optimization framework is proposed for IEVS-
DGs to take part in LEM as a strategic price-maker, while con-
sidering that Disco is also and strategic price-maker in WEM.

ii The study combines KKT and ADMM methods to solve the
tri-level optimization problem.

iii An effective hybrid RO-SP method is deployed to deal with
uncertainties that are derived from EVFs’ behavioural patterns
and SDG production.

2. Problem description

In the proposed model, the IEVSDG is the first-level optimization
problem. The IEVSDGs’ operator is obliged to coordinate EVFs and
SDGs intending to minimize their collective operational costs. The
uncertain data set corresponding to EVFs’ arrival/departure times, and
travelled distance before reaching the smart parking lot, are modelled
based on scenario-based stochastic programming (SP), while the solar
energy is a rather erratic parameter, which is therefore defined by RO
models to handle its uncertain nature. More information on this hybrid
RO-SP method is included in [40]. At first stage, the IEVSDG submits
the offers/bids in LEM, which is operated by the Disco and forms
the second level problem. Then the Disco operator is an intermediary
retailer between the IEVSDG and WEM. Accordingly, the Disco oper-
ator submits its offers/bids in WEM, which is designated as the third
level problem, whose objective is achieving the highest possible public
satisfaction. In other words, the proposed model provides the best LEM
participation strategy for IEVSDG considering that its operator (Disco)
is also trying to achieve the best market strategy at WEM, and WEM
has the goal of maximizing social satisfaction. The general structure
of the tri-level problem, interactions of different operators and system
4

components are depicted by Fig. 1.
3. Formulation & algorithm

3.1. Integrated electric vehicle fleets and solar distributed generations (first
level)

In this study, the EVs are clustered into fleets (EVF) via the k-means
clustering method as it is presented in [41], and they are assumed to be
in idle mode from the arrival to the parking lot to their departure time.
The vehicles’ arrival/departure and daily travelled miles are uncertain-
ties that follow certain distributions, and are handled by finite scenarios
for each EVF in the SP approach. The IEVSDG forms the first level of
the problem, and it consists of smart EV parking lots and SDGs. The
SP objective of the IEVSDG operator can be observed in Eq. (1), which
contains the cost of taking part in LEM, the EVFs’ battery degradation
and operational costs of SDGs. After forming this SP problem, the
RO is adopted to deal with SDG production uncertainties, which is
described in Appendix D. The state of charge (SOC) of each fleet at
their arrival time to the parking lot and other periods is defined by
Eqs. (2)–(3), respectively. The first term in Eq. (3) illustrates the initial
value of SOC when EVFs arrive as a function of their daily travelled
miles and minimum allowed SOC. The bound of the SOC at departure
(when vehicle leaves the lot) is enforced by Eq. (4), which ensures
that EVFs have required amount of charge at the departure time. The
min/max restrictions for SOC and charge/discharge power are declared
by Eqs. (5)–(6), respectively. The binary constraint Eq. (7) prevents the
actions of simultaneous charge/discharge. Moreover, the cycle depth,
the cycle depth degradation cost function, and marginal degradation
are established in Eqs. (8)–(10). The overall battery degradation in
each time step is derived from Eq. (11) [42], which is a nonlinear
equation, and its linearization is elaborated in Appendix C. Further
details on the battery degradation cost function are included [43].
Eqs. (12)–(16) illustrate the robust solar power model, Eventually, the
exported/imported electrical energy from LEM is established through
Eq. (17).

𝑂𝐹1 = 𝑚𝑖𝑛
∑

s
𝜋s

∑

t

∑

𝑣,𝑖∈Av
i

⎛

⎜

⎜

⎝

(

𝑝+v,s,t − 𝑝
−
v,s,t − 𝑝

pv
v,s,t

)

𝜆LEM∗
t,i

+𝑑𝑔Linv,s,t + 𝑐
pv
v 𝑝

pv
v,s,t

⎞

⎟

⎟

⎠

(1)

𝑆𝑂𝐶v,s,t = 𝑆𝑂𝐶v,s,t−1 +
(

𝜂v.𝑝+v,s,t∕𝐸𝐵v

)

−
(

𝑝−v,s,t∕𝐸𝐵v.𝜂v
)

∀v, s, t ≠ 𝑇𝐴s,v

(2)

𝑆𝑂𝐶v,s,t = max
(

𝑆𝑂𝐶v, 1 − (𝐷𝑇v,s × 𝐸𝑀v∕𝐸𝐵v)
)

(

𝜂v.𝑝
+
v,s,t∕𝐸𝐵v

)

−
(

𝑝−v,s,t∕𝐸𝐵v.𝜂v

)

v,s,t = 𝑇𝐴s,v

(3)

𝑆𝑂𝐶v,s,t = min
(

𝑆𝑂𝐶end
v,s , 𝑆𝑂𝐶

des
v

)

,∀v, s, t = TDv,s (4)

𝑆𝑂𝐶v ≤ 𝑆𝑂𝐶v,s,t ≤ 𝑆𝑂𝐶v∀v, s, t (5)

𝑝+v,s,t ≤ 𝐶𝑟v.𝑢𝑐v,s,t , 𝑝
−
v,s,t ≤ 𝐶𝑟v.𝑢𝑑v,s,t∀v, s, t (6)

𝑢𝑐v,s,t + 𝑢𝑑v,s,t ≤ 1∀v, s, t (7)

𝜎v,s,t = 𝜎v,s,t−1 − (𝑝−v,s,t∕𝐸𝐵v.𝜂v)∀v, s, t (8)

𝜓v,s,t
(

𝜎v,s,t
)

= 𝑎0.
(

𝜎v,s,t
)2.03∀v, s, t (9)

𝑀𝐷v,s,t = 2.03𝑎0(𝐵𝐶v∕𝐸𝐵v.𝜂v)𝜎v,s,t 1.03∀v, s, t (10)

𝑑𝑔𝑁𝑙v,s,t = 𝑝−v,s,t .𝑀𝐷v,s,t∀v, s, t (11)

0 ≤ 𝑝pv ≤ 𝑝pv∀v, s, t (12)
v,s,t v,t
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Table 1
Comparative evaluations between this study and previous works.

Ref IEVSDG LEM WEM Smart charge Strategic behaviour Model Algorithm Uncertainty

[16] ✓ ✕ ✕ ✓ Price taker Single level ✕ ✕

[17] ✓ ✕ ✕ ✓ Price taker Single level ✕ ✕

[18] ✓ ✓ ✕ ✕ Price maker Bi-level KKT ✕

[19] ✓ ✓ ✕ ✓ Price taker Single level PSO ✕

[20] ✓ ✓ ✕ ✕ Price taker Bi-level Two stage SP
[21] ✓ ✓ ✕ ✕ Price taker Bi-level Two stage ✕

[22] ✓ ✕ ✓ ✕ Price maker Bi-level KKT DRO
[23] ✓ ✕ ✕ ✕ Price taker Single level ✕ ✕

[24] ✓ ✓ ✕ ✓ Price taker Single level ✕ CVaR
[25] ✓ ✕ ✓ ✕ Price taker Bi-level ADMM SP-RO
[26] ✓ ✓ ✕ ✓ Price taker Single level ✕ ✕

[27] ✓ ✓ ✕ ✕ Price taker Single level ✕ SP-RO
[28] ✕ ✓ ✓ ✕ Price maker Bi-level KKT IGDT
[29] ✕ ✓ ✕ ✕ Price taker Bi-level ADMM RO
[30] ✕ ✕ ✓ ✕ Price maker Bi-level Dantzig–Wolfe SP-RO
[31] ✕ ✓ ✓ ✕ Price maker Bi-level KKT SP
[32] ✕ ✓ ✕ ✕ Price taker Bi-level ADMM+ benders ✕

[33] ✕ ✓ ✓ ✕ Price maker Bi-level KKT CVaR
[34] ✕ ✓ ✕ ✕ Price taker Bi-level Game theory SP
[35] ✓ ✓ ✕ ✓ Price taker Bi-level ADMM DRO
[36] ✓ ✕ ✓ ✓ Price maker Bi-level KKT SP-RO
[37] ✓ ✓ ✕ ✓ Price taker Single level ✕ SP-RO
[38] ✓ ✓ ✕ ✓ Price taker Single level ✕ SP-RO
This paper ✓ ✓ ✓ ✓ Price maker Tri-level KKT+ADMM SP-RO
Fig. 1. Overall structure of the tri-level problem.
𝑝pvv,s,t − 𝑥
RO
v,s,t𝑝

pv
v,t + 𝑧

RO
v,s,t𝛤

RO + 𝑝ROv,s,t ≤ 0∀v, s, t (13)

𝑧ROv,s,t + 𝑝
RO
v,s,t ≥ 𝑝̂pvv,s,t𝑦

𝑅𝑂
v,s,t∀v, s, t (14)

− 𝑦ROv,s,t ≤ 𝑥ROv,s,t ≤ 𝑦ROv,s,t∀v, s, t (15)

𝑦ROv,s,t , 𝑝
RO
v,s,t , 𝑧

RO
v,s,t > 0, 𝑥ROv,s,t = 1∀v, s, t (16)

𝑃 ES
t,v −

←
𝑃
ES

t,v =
∑

𝜋s.(𝑝
pv
v,s,t − 𝑝

+
v,s,t + 𝑝

−
v,s,t )∀t, v (17)
5

s

3.2. Distribution company (second level)

3.2.1. DG’s commitment
The Disco is an intermediary body that facilitates the energy trans-

actions between the IEVSDG and WEM. The Disco’s objective is estab-
lished in Eq. (18), which contains the cost of the energy purchased/sold
in WEM, the IL cost and DG-related costs, such as their operation
cost and start-up/shutdown costs. The multiplication nonlinearities in
Eq. (18) are dealt with via the theory of strong duality according
to [44]. Eventually, the last expression in the objective function rep-
resents the cost/benefit of transacting energy with IEVSDG (first level).
The commitment schedule of the DGs (adopted from [45]) is clarified
through Eq. (19), while Eq. (20) expresses the fuel cost associated with
starting the DGs up or shutting them down. The ramp up/down rate
restrictions are constrained via Eqs. (21)–(22). The start-up/shutdown
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time requirements at the initial and final time steps of the scheduling
period are established in Eqs. (23)–(24), while they are enforced by
Eqs. (24)–(28) for various scheduling horizons, e.g., beginning, mid-
dle and final time intervals. Moreover, the on/off modes of DGs are
determined through binary equality in Eq. (29).

𝑂𝐹2 = 𝑚𝑖𝑛
∑

t

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

b∈ADs
b

𝜆WEM
b,t 𝑝Dsct +

∑

l
𝐶 IL
l 𝑝

IL
l,t

+
∑

k

(

𝐶DG
k 𝑃DG

k,t +
⌢
𝑆k,t +

⌣
𝑆k,t

)

+
∑

𝑣,𝑖∈Av
i

↔
𝑃
ES

v,t 𝜆
LEM∗
t,i

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(18)

DG
k 𝐼k,t ≤ 𝑝DGk,t ≤ 𝑝DGk 𝐼k,t∀t, k (19)

⌢

k,t ≥ 𝐶
⌢
S
k 𝑦k,t ,

⌣
𝑆k,t ≥ 𝐶

⌣
S
k 𝑧k,t∀t, k (20)

DG
k,t − 𝑝DGk,t−1 ≤ (1 − 𝑦k,t )

⌢
𝑅k + 𝑦i,t𝑝

DG
k ∀t, k (21)

DG
k,t−1 − 𝑝

DG
k,t ≤ (1 − 𝑧k,t )

⌣
𝑅k + 𝑧i,t𝑝

DG
k ∀t, k (22)

Ue
k = min

{

𝑇 , 𝑇U0
k

}

, 𝑇De
k = min

{

𝑇 , 𝑇D0
k

}

∀k (23)

TUek
∑

t=1
𝐼k,t = 𝑇Ue

k ,
𝑇De
𝑘
∑

t=1
𝐼k,t = 0∀k (24)

t+TUek −1
∑

t=r
𝐼k,r ≥𝑇U

k 𝑦k,t∀𝑘,∀𝑡 =
[

𝑇Ue
k + 1,… , 𝑇 − 𝑇U

k + 1
]

(25)

T
∑

t=r
(𝐼k,r−𝑦k,t ) ≥ 0∀k,∀t =

[

𝑇 − 𝑇U
k + 2,… .., 𝑇

]

(26)

t+TDk −1
∑

t=r
(1 − 𝐼k,r ) ≥𝑇D

k 𝑧k,t∀k,∀t =

[

𝑇De
k + 1,… .,

𝑇 − 𝑇D
k + 1

]

(27)

T
∑

t=r
(1 − 𝐼k,r−𝑧k,t ) ≥ 0∀k,∀t =

[

𝑇 − 𝑇D
k

+2,… ., 𝑇

]

(28)

k,t − 𝑧k,t = 𝐼k,t - 1 − 𝐼k,t

k,t + 𝑧k,t ⩽ 1 ∀t,k
(29)

.2.2. Active distribution system
This study has adopted the ADS model from [44]. The feeders’

ower flow is calculated by Eq. (30), while Eqs. (31)–(32) define
heir corresponding power loss and current flow. The bounds of volt-
ge/current values are circumscribed by Eq. (33). The Eq. (34) models
he active power limit that can be transmitted from the feeders. Eventu-
lly, the power equilibrium in slack node and other nodes is introduced
y Eqs. (35)–(36) [46]. It is noteworthy that the dual variable associ-
ted with Eq. (36) defines the local market price (𝜆LEMt,i ). Eventually,
q. (37) expresses the constraint that connects the first level variables
o the second level variables.

f low
ij,t =

(

𝑅DS
ij ∕(𝑍DS

ij )2
)

.(𝑉 DS
i,t − 𝑉 DS

j,t )∀ij,∀t (30)

Loss
ij,t = 𝑅DS

ij 𝐼
DS
ij ∀ij,∀t (31)

DS DS DS DS
6

ij,t = (𝑉i,t − 𝑉j,t )∕𝑍ij ∀ij,∀t (32)
− 𝐼DSij ≤ 𝐼DSij,t ≤ 𝐼DSij ,𝑉 DS
i ≤ 𝑉 DS

i,t ≤ 𝑉 DS
i ∀ij,∀t (33)

− 𝑃 flow
ij,t ⩽ 𝑃 flow

ij,t ⩽ 𝑃 flow
ij ∀ij,∀t (34)

𝑝Dsct +
∑

𝑘∈𝐴𝑘𝑖

𝑃DG
k,t +

∑

l∈Al
i

𝑃 IL
l,t +

∑

v∈Av
i

↔
𝑃
ES

v,t =
∑

d∈Ad
i

𝑃DSL
d,t

+0.5(
∑

𝑗∈𝐷𝑆
𝑃 Loss
ij,t +

∑

𝑗∈𝐷𝑆
𝑃 f low
ij,t )∀𝑖 = 1,∀𝑡

(35)

∑

k∈𝐴k
i

𝑃DG
k,t +

∑

l∈Al
i

𝑃 IL
l,t +

∑

v∈Av
i

↔
𝑃
ES

v,t =
∑

d∈Ad
i

𝑃DSL
d,t

+0.5(
∑

j∈DS
𝑃 Loss
ij,t +

∑

j∈𝐷𝑆
𝑃 f low
ij,t )∶𝜆LEMt,i ,∀i ≠ 1,∀𝑡

(36)

↔ES

v,t = 𝑃 ES
t,v −

←
𝑃
ES

t,v ,∀𝑡,∀𝑣 (37)

.3. Wholesale electricity market (third level)

The WEMO’s objective is expressed by Eq. (38), where the first term
orresponds to the Genco operation cost, while the second term is the
ost/benefit of transacting with Disco. Furthermore, the nodal energy
quilibrium is satisfied by Eqs. (39)–(40). Moreover, the dual variables
f these equality constraints (𝜆WEM

b,t ) represent the MCP in WEM. The
apacity limits of the Gencos is imposed by Eq. (41). In this study, the
lock offering model is adopted for Gencos from [47], and Eq. (42)
haracterizes the bounds of each production block. The ramp rate
estrictions of the Gencos are established by Eqs. (43)–(46). Eq. (47)
estricts the transaction limits between Disco and WEM, and the wind
arm limit are defined by Eq. (48). The limitation of transmission lines
s also modelled by Eq. (49). The voltage angle of the nodes are limited
ithin the nominal bounds through Eq. (50). The overall generation of

he Gencos is equal to the summation of all their piece-wise segments,
hich is defined via Eq. (51). Ultimately, the voltage angle of the slack
ode is fixed as the reference node in Eq. (52).

𝐹3 = min
∑

t

{

∑

g

∑

m
𝐶G
g,m𝜌

G
g,m,t − 𝐶

Dsc
t 𝑝Dsct

}

(38)

∑

g∈Ag
b

𝑃G
g,t +

∑

w∈Aw
b

𝑃WT
w,t − 𝑃Dsc

t =
∑

b′∈Tr
𝐵b,b′ (𝛿b,t − 𝛿b′ ,t ) ∶ 𝜆

WEM
b,t

∀b ∈ ADs
b ,∀t

(39)

∑

g∈Ag
b

𝑃G
g,t +

∑

w∈Aw
b

𝑃WT
w,t −

∑

d∈Ad
𝑏

𝑃d,t =
∑

b′∈Tr
𝐵b,b′ (𝛿b,t − 𝛿b′ ,t ) ∶ 𝜆WEM

b,t

∀𝑏 ∉ ADs
b ,∀𝑡

(40)

≤ 𝑃G
g,t ≤ 𝑃g,t ∶ 𝜇1g,t , 𝜇

1
g,t∀g,∀t (41)

0 ≤ 𝜌Gg,m,t ≤ 𝜌̄g,m ∶ 𝜇2g,m,t , 𝜇
2
g,m,t∀g,∀m,∀t (42)

𝑃𝐺g,t − 𝑃
G
g,t−1 ≤ 𝑅𝑈g ∶ 𝜇3g,t∀g,∀t > 1 (43)

G
g,t − 𝑃

G
g,ini ≤ 𝑅𝑈g ∶ 𝜇4g,t∀g,∀t = 1 (44)

G
g,t−1 − 𝑃

G
g,t ≤ 𝑅𝐷g ∶ 𝜇5g,t∀g,∀t > 1 (45)

G
g,ini − 𝑃

G
g,t ≤ 𝑅𝐷g ∶ 𝜇6g,t∀g,∀t = 1 (46)

Dsc ≤ 𝑝Dsc ≤ 𝑝Dsc ∶ 𝜇7, 𝜇7,∀𝑡 (47)

t t t t t
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𝑥

0 ⩽ 𝑃WT
w,t ⩽ 𝑃WT

w,t ∶ 𝜇8w,t, 𝜇
8
w,t∀w,∀t (48)

−𝐶Max
b,b′

≤ 𝐵b,b′ (𝛿b,t − 𝛿b′ ,t ) ≤ 𝐶Max
b,b′

∶ 𝑣b,b′ ,t , 𝑣b,b′ ,t

∀b,∀b′,∀t
(49)

− 𝜋 ≤ 𝛿b,t ≤ 𝜋 ∶ 𝜉b,t , 𝜉b,t∀b,∀t (50)

∑

m
𝜌Gg,m,t = 𝑃G

g,t ∶ 𝜆
1
g,t∀g,∀t (51)

𝛿b=ref ,t = 0 ∶ 𝜉𝑙b=ref ,t∀b,∀t (52)

3.4. Algorithm

In the proposed model, the Disco is an intermediary entity between
the IEVSDGs and WEM and its’ sole duty is to procure energy for
the customers. In this respect, it endeavours to self-schedule the local
DGs and submit the most suitable offer/bid in WEM and provide the
best price to IEVSDGs. The WEM operator receives all the offers/bids
and independently clears the market to maximize community wealth.
Accordingly, the Disco scheduling must be of a tactical (strategic)
nature, as it must anticipate its possible impact on the market as a
price-maker, which makes the second and third-level problems a bi-
level model. On the other hand, the IEVSDG operator has a similar kind
of transactional relationship with Disco at the local market level. That
is to say the IEVSDG operator self-schedules and submits offers/bids
at the LEM level as a tactical price-maker since it takes the possible
response of the market into consideration. In summation, the IEVSDG
is a tactical price-maker at local level, which considers that Disco is also
a tactical player at the WEM level. In Fig. 2, the overall schematic of the
proposed tri-level optimization problem is illustrated. The participation
of the Disco in WEM forms the second and third level problems, which
is a bi-level problem. Since this problem has a convex lower-level, the
KKT conditions are adopted in this study (see [48]) to achieve the best
equilibrium point, which converts the second (Disco) and third level
(WEM) problems into a single-objective optimization model. The KKT
conditions of this study are included in Appendices A and B elaborates
on the theory of strong duality. After merging the second and third
levels in single-level problem, the first-level and this merged problem
create another two-level optimization problem as it is illustrated in
Fig. 1. Since this problem is a complicated non-convex MILP, we
could not use the KKT conditions again to solve this problem. In this
regard this problem was solved by ADMM, which is a powerful new
iterative algorithm with fast convergence. The details of achieving the
overall equilibrium point through the hybrid ADMM algorithm and KKT
condition are as follows.

In general, an optimization problem can be solved by ADMM in
following decomposable format:

min
𝑥∈𝑋,𝑧∈𝑍

𝑓 (𝑥) + 𝑔(𝑧) (53)

s.t

𝐴𝑥 + 𝐵𝑧 = 𝑐 (54)

The augmented lagrangian function of the Eqs. (53), and Eq. (54)
s defined by Eq. (55), where 𝜆 is known as the lagrangian multiplier
which is the local electricity market price in our problem), while ‖.‖
enotes the penalty term in the form second order norm vector. The
DMM is comprised of repeating Eqs. (53)–(58), where k represents

he index of iterations (or repetitions in a loop). As a result, Eq. (56)
nd (57) are solved separately, which makes the ADMM a powerful
ecentralized solving method.

𝑇 𝜌∕ 2
7

(𝑥, 𝑧, 𝜆) = 𝑓 (𝑥) + 𝑔(𝑧) + 𝜆 (𝐴𝑥 + 𝐵𝑧 − 𝑐) + ( 2) ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2 (55)
(𝑘 + 1) = argmin
𝑥∈𝑋

𝐿(𝑥, 𝑧(𝑘), 𝜆(𝑘)) (56)

(𝑘 + 1) = argmin
𝑧∈𝑍

𝐿(𝑥(𝑘 + 1), 𝑧, 𝜆(𝑘)) (57)

(𝑘 + 1) = 𝜆(𝑘) + 𝜌(𝐴𝑥(𝑘 + 1) + 𝐵𝑧(𝑘 + 1) − 𝑐) (58)

he convergence of the ADMM is defined based on the primal residuals,
hich is defined as follows:

𝜆(𝑘 + 1) − 𝜆(𝑘)‖ ≤ 𝜀 (59)

According to Eq. (53), we assume that 𝑓 (𝑥) expresses the objective
unction of IEVSDGs and 𝑥 is also the decision variables related to
EVSDGs. On the other hand, it is assumed that 𝑔(𝑧) expresses the
bjective function of LEM and z shows the decision variable of LEM.
ow, according to the explanations given, Eq. (53) can be reformulated
y the integrated approach Eq. (60):

in
∑

𝑠
𝜋s

∑

𝑡

⎛

⎜

⎜

⎜

⎜

⎝

∑

𝑣
𝐶𝐸𝑉𝑣,𝑡 +

∑

b∈ADs
b

𝜆WEM
b,t 𝑝Dsct +

∑

l
𝐶 IL
l 𝑝

IL
l,t

+
∑

k

(

𝐶DG
k 𝑃DG

k,t +
⌢
𝑆k,t +

⌣
𝑆k,t

)

⎞

⎟

⎟

⎟

⎟

⎠

(60)

here 𝐶𝐸𝑉𝑣,𝑡 = 𝑑𝑔Linv,s,t + 𝑐pvv 𝑝
pv
v,s,t represents the operating cost of

EVSDGs in integrated mode with the Disco. In other words, in Eq. (60),
he owner of IEVSDGs is the Disco, and the privacy of IEVSDGs is not
espected in trading with Disco.

In the proposed approach, Eq. (54) can also be reformulated by
q. (61).

↔ES

v,t = 𝑃 ES
t,v −

←
𝑃
ES

t,v ∀𝑣,∀𝑡 (61)

ow, according to Eq. (60), Eq. (55) and (61), the augmented La-
rangian function of the proposed approach can be obtained by equa-
ion Eq. (62):
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⎟
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(62)

As it was mentioned, equation Eq. (62) can be decomposed to solve
IEVSDG and LEMP problems in a decentralized form (two separate
problems). The iterative ADMM algorithm is illustrated in Fig. 2, as
it is implemented in following steps:

Algorithm: Tri-level equilibrium
Initialization: Receive the input parameters for first, second and third
level problems.
1. Choose a penalty rate (𝜌) and a convergence threshold (𝜀). Provide

random value for energy bidding (𝜆LEM∗
t,i ) and energy trade between

EVSDG and LEM (which is
↔
𝑃
ES

v,t ).
. Solve the optimization problem of the IEVSDG based on the value of
𝜆LEM∗
t,i ) and (

↔
𝑃
ES

v,t ) as follows:

(𝑘 + 1) = argmin
𝑥∈𝑋

∑

𝜋s
∑ ∑

v
s t 𝑣,𝑖∈Ai
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Fig. 2. The general structure of the proposed algorithm from the concept and mathematics point of view.
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Subject to: Eqs. (2)–(17)

3. Update 𝑃 ES∗
t,v (k) and

←
𝑃
ES∗

t,v (k) from the solution.
4. Merge the second and third level problems in single problem using
the conditions of KKT. Please refer to Appendices A and B for the details
of this step.
5. Solve the LEM problem using the obtained fixed inputs 𝑃 ES∗

t,v (k) and
←
𝑃
ES∗

t,v (k) as follows:

𝑧(𝑘 + 1) = argmin
𝑧∈𝑍
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Subject to: Eqs. (19)–(52) and Eqs.(a.1)-(a.21)
6. Update

↔
𝑃 ES∗
v,t (k + 1) and 𝜆LEMt,i (k) from the solution.

7. Update 𝜆LEM∗
t,i (k + 1) = 𝜆LEMt,i (k)+𝜌

(

↔
𝑃 ES∗
v,t (𝑘) −

(

𝑃 ES∗
t,v (𝑘) −

←
𝑃
ES∗

t,v (𝑘)
))

8. Terminate the algorithm if |

|

|

𝜆LEM∗
t,i (k) − 𝜆LEM∗

t,i (k + 1)||
|

∕𝜆LEM∗
t,i (k) ≤ 𝜀.

Otherwise, return to line 2

At first step of the algorithm, the MCP of LEM (𝜆LEM∗
t,i ) is acquired

from the dual variable value of the Eq. (36), wherein the sign ‘‘∗’’
stands for the value of the this dual decision variable, and a random
value is denoted to

↔
𝑃 ES∗
v,t , which is the amount of energy that LEM

operator wants to exchange with the IEVSDGs. The sign ‘‘∗’’ stands
for the value of the this dual decision variable. At the second step,
IEVSDGs’ objective function (first level) is minimized, while adding a
penalty term to the objective function. Here,

↔
𝑃 ES∗
v,t is parametric value

of energy exchange which is provided by the LEM. In other word, the
penalty term is applied when the energy transaction variables between
first and second levels are different. As can be observed, this term is
quadratic, which allow the small variations tolerable and pushes the
algorithm towards the point of equilibrium in each iteration, which is
the basis for the ADMM method [49]. At the third step, the optimal
8

energy change parametric value of the first and second levels are
updated after solving the first level problem. The second level and
third level problems form a bi-level model, which is merged into a
single-level problem through the KKT conditions [48]. This new merged
problem is designated by 𝑂𝐹2&3. As it was mentioned, 𝑂𝐹1 and 𝑂𝐹1&3
form the main bi-level problem in the ADMM. At the fifth step, the
same quadratic penalty term of second step is added to 𝑂𝐹1&2 and
the optimization problem is solved. At the sixth and seventh steps, the
MCP of the LEM and energy transaction parametric values are updated,
respectively. Eventually, if the MCP of the LEM converges to certain
value in consecutive iterations, the algorithm is stopped at the eighths
step. Otherwise, the loop is reiterated from the second step.

4. Numerical simulations and results

In the current study, the vehicles were clustered into 9 EVFs with
similar stochastic behavioural patterns using the k-means clustering
method, and their data was obtained from [50,51]. These clusters
form the IEVSDGs together with SDGs, which are scattered across
the distribution system. Fig. 3 depicts the overall topology of these
IEVSDGs, systems, connection and equipment sites. As can be observed
the WEM is modelled through a standard IEEE 24-bus TN [47], while
LEM (operated by Disco) is established by a standard 69-bus ADS [52].
The WEM involves 12 Gencos, and the LEM includes 10 DG. Addi-
tionally, the ADS is linked to TN through the 20th node. Fig. 4
illustrates the arrival/departure time data distribution of each EVFs,
while the empirical probability distribution function for their daily
travelled miles is captured in Fig. 5. These distributions are deployed to
generate the stochastic scenarios associated with each EVF. The data on
EVs was obtained from [53]. Furthermore, all these data are included
in the online repository [54]. In this regard, 10000 scenarios were
generated by random sampling from these distributions, which were
then reduced to 10 most probable cases by forward scenario reduction
method [55]. The expected value of the solar energy production and
considered variation interval of RO is illustrated in Fig. 6. To illustrate
the impact of IEVSDGs in various markets by the proposed tri-level
optimization framework, the following case studies (CS) are devised:

CS1: In this case, no control strategy is applied to vehicles and their
battery is charged from the moment they park until full charge. (Also
known as dumb charging.)

CS2: In this model, a smart charging strategy is exerted on EVFs. In

the smart charging strategy, the charge/discharge powers of the EVFs
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Fig. 3. The topology and connections of different system, equipment and markets.
Fig. 4. EVFs’ arrival/departure time points of EVFs.

Fig. 5. Distribution of EVFs’ daily travelled miles.

are the decision variable that are obtained from solving the proposed
tri-level stochastic model

CS3: In this case, the RO framework is included in CS2 to handle
SDGs uncertainties in RO-SP framework. (considering 𝛤RO = 1)

In mathematical terms, the proposed problem consists of two mixed
integer quadratic programming (MIQP) optimization models in main
body of the ADMM. The first one is the IEVSDGs’ problem that forms
the first level, while the second problem was formed from the merger
of the second and third levels by the KKT conditions. These MIQPs were
solved on an Intel(R) Core (TM) i5-8250U CPU @ 1.60 GHz (4 CPUs),
RAM 8 GB system in 24 min, using standard CPLEX solver.

The hourly SOC scheduling (concerns the first level) of the EVFs
is summarized in Fig. 7 throughout various cases. As can be noticed,
in CS1 the SOC of EVFs demonstrates a steady and sharp increase
9

in hours 11 to 19, which corresponds to the time interval that most
EVFs reach the parking lot (see [41]), and they immediately start the
charging process. However, in CS2 the optimal scheduling has shifted
the charging process (see the slope of the curves) to hours 13–11
that is associated with the off-peak interval in both LEM and WEM.
This shift in charging scheduling is even more predominant in CS3.
Evidently, the reason is that the RO framework enforces the problem to
take conservative steps regarding solar energy production. Therefore,
a further quantity of the charging load is shifted back to off-peak
periods to profit from higher market prices and compensate solar power
shortage.

The hourly optimal power dispatch scheduling of DGs (owned by
Disco and concerns the second level) is plotted in Tables 2–4 regarding
various cases. The most notable outcome is that when EVs are charged
without any control in CS1, the peak EV charging demand accumulates
on the already existing residential load. The result is that a huge surge
in demand activates the interruptible loads (101.82 MWh in total) as a
measure against security constraints’ violation. Furthermore, Expensive
DGs (No: 2,3,8,10) are operating with high power dispatch. On the
other hand, in CS2 a large portion of the charging demand is moved
to off-peak intervals, which is in line with SOC observations in Fig. 7.
Overall, in this case, the interrupted load value is zero. When compared
with CS1, the overall DG production is dropped by 50.71%, the losses
reduced by 25.02% and power imported from WEM is increased by
11.05%, which is because cheaper energy is purchased during off-peak
intervals. The robust formulation of CS3, has engendered a conservative
scheduling program. In this case, the overall DG production has surged
by 22.66% compared to CS2, while the WEM provides 8.4% higher
portion of demand, which is an attempt to decrease the involved risks
in SDGs’ underproduction contingencies (see Fig. 8).

The MCP of the LEM is demonstrated by Fig. 9. As can be seen, CS1
imposes the highest MCP value at the local level. The reason is that
not only this case has the highest DG production level, but also the
expensive interruptible loads have augmented the MCP dramatically.
According to the experimental outcomes, the MCP of this case is a
staggering 180% higher than that of the CS2, which shows the capabil-
ities of the EVFs as a local price-maker. Furthermore, CS3 has a 4.06%
higher local MCP since the solar production risks are included in the
RO framework. Another notable phenomenon is that the MCP of CS1 is
rather low during the off-peak intervals, which is due to the fact that
EVs demand is not shifted to these periods that would have increased
the MCP. This observation also emphasizes the huge gap between the
peak and off-peak periods when EV charging is uncoordinated.

At the third level, the energy procurement strategy of the WEM
throughout different cases is depicted in Fig. 10 for the most expensive
generation unit (Genco4), and in Fig. 11 for the cheapest genera-
tion unit (Genco11) of the standard 24-bus TN. In Fig. 10, it can be
observed, that CS1 enforces the expensive Genco4 to operate with

higher production to compensate the demand peak imposed by the
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Fig. 6. The solar energy production profile of RO.
Fig. 7. The SOC of EVFs: (a) CS1 (b) CS2 (c) CS3.
uncoordinated electric vehicles in the IEVSDG level (first level). In
particular, the production of this expensive units is diminished by 176
MWh (23.8%). However, it is noted that CS3 imposes 65.5 MWh more
demand in this expensive unit compared to CS2, which is imposed to
mitigate the conservative estimates in SDG production. Fig. 11 shows
that the cheap unit of Genco11 has 292.7 MWh (4.4%)more production
in CS2 compared to CS1, which is due to the fact that the smart
charging has successfully shifted the EVs charging demand to off-peak
hours to take advantage of this cheap Genco. It can be noted that after
hour 11 this unit has the highest production regardless of the case
study, since it is a cheap production unit. It is noted that in CS3, the
increase in the production of this units is still 247 MWh more compared
to CS1, while it is 45 MWh lower than CS2. The reason is that smart
charging strategy shifts the demand to off-peak hours. However, the
Conservative operation state of CS3 slightly limits the system flexibility
by robust estimation of SDG production.
10
In summation, CS1 enforces the expensive Gencos to operate with
expensive piecewise blocks. For instance, cheap production units, i.e.,
Genco 11 & 12 have 3.4% lower production regarding CS2, while
expensive units, i.e., Genco 1–7 have a 3.03% higher production rate.
On the other hand, large units i.e., Genco 8–10 are activated ceaselessly
in all cases as they support the base demand. CS3 has imported even
a higher portion of the load through cheaper units (1.33% higher than
CS2) as it relies heavily on the market to mitigate the possible lack of
SDGs production. The MCP of the WEM is plotted in Fig. 12. The results
further confirm the previous statements on the Genco scheduling at
WEM level. Accordingly, CS1 has the highest MCP for the WEM since a
large quantity of the demand is procured by high-cost Gencos. Overall,
the MCP of the WEM is 0.86% lower in CS2, which testifies the price-
maker qualities of the IEVSDG at WEM level. Additionally, the MCP
is 0.50% lower in CS3, which is still marginally higher than the price
in CS2. Nevertheless, the results are scheduled for conservative SDG
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Table 2
The power demand schedule of the local energy market in CS1.

DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9 DG10 PV WEM IL loss EVF DSL

1 0 3.09086 0.5 0.75 0.801504 0.5 0 0.3 1 1 0 41.80185 0 −1.32858 −6.6072 41.05843
2 0 3.29086 0 0 1.116773 0 0 0 0.5 0.5 0 34.62777 0 −1.04274 0 38.99266
3 0 3.49086 0 0 0.75 0 0 0 0 0 0 26.91149 0 −0.5057 0 30.64665
4 0.35 3.69086 0 0 0.75 0 0 0 0 0 0 19.33888 0 −0.16321 0 23.96653
5 0.7 3.89086 0 0 0.75 0 0 0 0 0 2.992896 16.19065 0 −0.16636 0 24.35804
6 1.05 4.09086 0 0 0.75 0 0 0 0 0 6.790896 12.4633 0 −0.18269 0 24.96236
7 1.4 4.29086 0 0 1.25 0 0 0 0.3 0 9.115218 25.54711 0 −0.51954 −6.753 34.63066
8 1.75 4.49086 0 0 1.75 0.5 0 0 0.8 0 15.65064 35.53615 0 −1.21219 −13.6255 45.63998
9 2.1 4.69086 0.8 0 2.25 1 0.6 0 1.3 0.5 20.079 35.92172 0 −1.45121 −19.8579 47.93242
10 2.45 4.89086 0.870489 0 2.75 1.5 1.2 0.6 1.8 0.474067 22.1985 40.4648 0 −1.17657 −25.4009 52.62125
11 2.8 5.09086 1.670489 0 3.25 2 1.8 1.2 2.3 0.974067 24.52284 60.55237 0 −1.21038 −51.5782 53.37209
12 3.15 5.29086 2.470489 0 3.75 2.5 2.4 1.8 2.8 1.474067 25.5852 52.85845 0 −0.58676 −54.1266 49.36567
13 3.5 5.09086 2.4 0 3.5 2.5 1.8 1.2 2.3 0.974067 27.48852 34.0043 0 −0.73115 −35.6896 48.33702
14 3.85 5.2 3.2 0 4 3 1.2 0.6 2 1.474067 23.49468 24.5078 0 −1.26095 −25.1716 46.09402
15 4.2 5.4 4 0 4.5 3.5 1.60426 0.3 2.5 1.974067 18.86886 32.57778 0 −1.46434 −24.5855 53.37509
16 4.55 5.6 4.8 0 5 4 2.20426 0.775121 3 2.474067 19.08846 60.50625 0 −3.32774 −52.6859 55.9845
17 4.9 5.8 5.6 0 5.5 4.5 1.754109 0.3 3.5 2.974067 14.46032 80.62664 0 −5.90372 −73.4336 50.57781
18 5.25 6 6.4 0 6 5 2.354109 0.9 4 3.474067 7.943094 85.66313 4.107319 −7.42863 −76.7932 52.86987
19 5.6 5.8 7.2 0 6.5 5.5 1.8 1.5 4.5 3.974067 6.058602 93.30042 0 −4.44825 −81.2128 56.072
20 5.95 6 8 0 7 6 2.4 2.1 5 4.474067 2.911518 70.07677 35.82671 −5.75394 −91.7779 58.20719
21 6 6 8 0 7 6 1.8 1.797296 5 4.504933 0 64.4502 42.21675 −6.41677 −87.9402 58.41225
22 6 6 8 0 7 6 1.2 1.197296 5 4.004933 0 64.8562 23.78298 −6.12794 −74.0747 52.83878
23 5.65 5.8 7.2 0 6.5 5.5 0.6 0.597296 4.5 3.504933 0 63.40079 0 −5.01199 −47.4142 50.82678
24 5.3 5.6 6.4 0 6 5 0 0 4 3.004933 0 42.19344 0 −4.55048 −25.4862 47.46166
Table 3
The power demand schedule of the local energy market in CS2.

DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9 DG10 PV WEM IL loss EVF DSL

1 0 4.75444 0.5 0.75 0.763188 0.5 0 0.3 5 0.4 0 49.55426 0 −2.14602 −18.5674 41.05843
2 0 4.55444 0 0 1.263188 0 0 0 4.672763 0.5 0 52.36613 0 −2.09465 −22.2692 38.99266
3 0 4.35444 0 0 1.035427 0 0 0 4.172763 0 0 51.00905 0 −1.90465 −28.0204 30.64665
4 0 4.15444 0 0 0.75 0 0 0 3.672763 0 0 145.5089 0 −2.03553 −128.084 23.96653
5 0 3.95444 0 0 0.75 0 0 0 3.604 0 2.992896 128.0415 0 −1.97288 −113.012 24.35804
6 0 3.75444 0 0 0.75 0 0 0 3.842498 0 6.790896 99.05541 0 −2.01577 −87.2151 24.96236
7 0 3.55444 0 0 1.25 0 0 0 4.342498 0.430206 9.115218 50.42237 0 −2.09414 −32.3899 34.63066
8 0 3.574965 0 0 1.75 0 0 0 4.842498 0.930206 15.65064 49.01129 0 −2.42195 −27.6977 45.63998
9 0 3.774965 0 0 2.25 0 0 0.3 4.725917 1 20.079 43.3932 0 −2.51164 −25.079 47.93242
10 0 3.974965 0 0 1.75 0 0.567746 0.9 4.225917 0.5 22.1985 35.93691 0 −1.88571 −15.5471 52.62125
11 0 4.032011 0 0 1.25 0 1.167746 0.6 3.725917 0 24.52284 29.39585 0 −1.72706 −9.59521 53.37209
12 0 3.832011 0 0 0.75 0 0.567746 0 3.225917 0 25.5852 23.94075 0 −1.66294 −6.87301 49.36567
13 0 3.833802 0 0 0.75 0 0 0 3.115376 0 27.48852 21.33335 0 −1.66669 −6.51735 48.33702
14 0 4.033802 0 0 0.75 0 0.59422 0 3.615376 0 23.49468 26.56531 0 −1.54127 −11.4181 46.09402
15 0 4.233802 0 0 0.878018 0 1.19422 0.6 4.115376 0 18.86886 33.46551 0 −1.80791 −8.17279 53.37509
16 0 4.433802 0 0 0.993486 0 1.79422 0.935954 4.615376 0 19.08846 46.93365 0 −1.83204 −20.9784 55.9845
17 0.35 4.633802 0 0 0.75 0 1.19422 0.335954 4.350019 0 14.46032 39.97413 0 −1.64993 −13.8207 50.57781
18 0.7 4.833802 0 0 1.25 0 1.79422 0 4.850019 0 7.943094 38.71987 0 −1.69552 −5.52561 52.86987
19 1.05 5.033802 0 0 1.75 0 2.333455 0.555646 5 0 6.058602 42.81184 0 −1.74164 −6.77971 56.072
20 0.7 5.233802 0 0 1.756128 0 2.4 1.155646 5 0 2.911518 45.32227 0 −1.86389 −4.40828 58.20719
21 0.35 5.433802 0 0 1.941217 0 1.8 1.707521 5 0 0 44.86608 0 −1.89311 −0.79326 58.41225
22 0 5.633802 0 0 1.441217 0 1.2 1.107521 4.5 0 0 43.12295 0 −1.78406 −2.38265 52.83878
23 0 5.833802 0 0 1.941217 0 0.6 0.507521 5 0.5 0 49.68311 0 −2.16744 −11.0714 50.82678
24 0 5.754063 0 0 2.441217 0 0 0 5 0.4 0 52.18961 0 −2.46536 −15.8579 47.46166
production values. These values might seem trivial. However, consid-
ering the large scale of the WEM it is only fair for players to be able
to influence market price with minute values, which is also the case
in other markets that have different products rather than electricity.
The voltage profile of 69-bus ADS at peak time (hour 21) is plotted for
all buses in Fig. 13. In terms of deviation from the base voltage, CS1
demonstrates the lowest root mean square (RMS) of deviations, as the
RMS of deviations from the base is 0.3448 kV (2.72%). This might look
uncanny, as this case has the most destructive impact of uncoordinated
charging. However, a huge amount of interrupted load lies under the
facade of this rather desirable profile. The RMS of deviations from
the base value in CS2 and C3 are 0.5797 kv (4.57%) and 0.5648 kV
(4.46%), respectively. The reason for this improved profile in CS3 is
that the possible SDG shortage contingencies are considered in RO
framework, which enforces the algorithm to shift a higher amount of EV
load to off-peak periods. Nevertheless, this action leads to higher local
11
LMP in CS3. The maximum voltage value at CS2 & cs3 is 12.66 kv.
However, in CS1, the maximum voltage value of 13.92 kv was noted,
which is equal to the highest bound of voltage variable. This outcome
is due to the high load shedding in this CS1, which might also lead
to voltage instability due to the uncontrolled charging demand of the
EVFs.

The optimal solution values for important decision variables, such
as the objectives of various levels are summarized in Table 5, which
substantiates the previously mentioned hypothesis. As can be noticed,
the uncoordinated charging strategy in CS1 gives rise to the highest
operational cost at all levels, while the value of power loss and inter-
ruptible loads are unacceptably high, which is due to the uncoodinated
charging mode of CS1. The most notable discrepancy between CS1 and
CS2 is the cost of energy and amount of energy that is purchased from
the WEM by Disco. As can be observed higher energy is imported with
lower cost in coordinated charging mode. The reason is that a large



International Journal of Electrical Power and Energy Systems 158 (2024) 109916S. Zeynali et al.
Fig. 8. The power schedule of the WEM: (a) CS1 (b) CS2 (c) CS3.
Table 4
The power demand schedule of the local energy market in CS3.

DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9 DG10 PV WEM IL loss EVF DSL

1 0 4.972808 0.5 0.75 0.75 0.5 0 0.3 5 0.4 0 49.54375 0 −2.15154 −18.7566 41.05843
2 0 4.910826 0 0 1.25 0 0 0 4.745791 0.465778 0 52.30601 0 −2.10603 −22.5797 38.99266
3 0 5.110826 0 0 0.900789 0 0 0 4.245791 0 0 92.72576 0 −1.90659 −70.4299 30.64665
4 0.3 5.310826 0 0 0.75 0 0 0 3.745791 0 0 67.026 0 −2.12852 −51.0376 23.96653
5 0.3 5.510826 0 0 0.75 0 0 0 3.73363 0 0 96.58478 0 −2.10149 −80.4197 24.35804
6 0.3 5.710826 0 0 0.75 0 0 0 3.874574 0 0 133.6932 0 −2.11078 −117.255 24.96236
7 0.65 5.910826 0 0 1.25 0 0 0 4.374574 0.4 0 98.97066 0 −2.1687 −74.7567 34.63066
8 0.3 6 0 0 1.75 0 0 0 4.874574 0.9 2.15064 51.76833 0 −2.42138 −19.6822 45.63998
9 0.65 6 0 0 2.25 0 0 0.334896 5 0.905408 6.579 53.66149 0 −2.60576 −24.8426 47.93242
10 1 6 0 0 2.75 0 0.6 0.934896 5 0.487867 8.6985 49.0509 0 −2.23643 −19.6645 52.62125
11 1.35 6 0.8 0 2.25 0.5 0.6 1.2 5 0.5 11.02284 29.39585 0 −1.11726 −4.12934 53.37209
12 1 6 0 0 1.75 0 0 0.6 4.5 0 12.0852 34.84727 0 −1.5121 −9.9047 49.36567
13 0.65 6 0 0 1.25 0 0.5 0 4 0 13.98852 29.55216 0 −1.54139 −6.06227 48.33702
14 0.3 6 0 0 0.75 0 0.649541 0 4 0 9.99468 35.60492 0 −1.60395 −9.60117 46.09402
15 0.65 6 0 0 1.06883 0 1.249541 0.6 4.5 0 5.36886 42.97662 0 −1.86831 −7.17045 53.37509
16 1 6 0 0 1.137002 0 1.849541 0.93506 5 0 5.58846 56.27443 0 −1.89385 −19.9061 55.9845
17 1.35 6 0 0 1.230943 0 1.249541 0.33506 4.5 0 0.960318 48.52564 0 −1.60933 −11.9644 50.57781
18 1.7 6 0 0 1.730943 0 1.820068 0 5 0 0 42.5562 0 −1.61383 −4.3235 52.86987
19 2.05 6 0 0 2.230943 0 2.343994 0.56156 5 0 0 45.98384 0 −1.66947 −6.42887 56.072
20 1.7 6 0 0 2.116064 0 2.4 1.16156 5 0 0 46.63323 0 −1.80053 −5.00313 58.20719
21 1.35 6 0 0 2.278651 0 1.8 1.703179 5 0 0 44.03932 0 −1.80363 −1.95527 58.41225
22 1 6 0 0 1.778651 0 1.2 1.103179 4.5 0 0 43.91243 0 −1.78318 −4.8723 52.83878
23 0.65 6 0 0 2.278651 0 0.6 0.503179 5 0.5 0 50.61623 0 −2.23723 −13.0841 50.82678
24 0.3 5.8 0 0 2.778651 0 0 0 5 0 0 51.37495 0 −2.36224 −15.4297 47.46166
12
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Fig. 9. The MCP of the LEM (IEEE-69 bus).

quantity of the charging load is moved to off-peak hours that provide
cheaper energy. In particular, this effect was proven by Figs. 10 and
11.

Moreover, the cost of DG operation is remarkably lower since the
load is shifted and DGs are not obliged to operate in high-cost modes.
In general, when the RO framework is deployed (CS3), the costs are
slightly higher as possible SDG production shortages are modelled con-
servatively. Furthermore, the EVFs’ battery erosion cost for supporting
the grid is nearly 88% higher in CS3 since the SDG production estimates
are conservative and the EVFs take on more pressure the compensate
for this production shortage.The battery degradation cost is zero in CS1,
as in EVFs do not provide any service in the uncoordinated charging
mode. In order to observe the iterative convergence of the ADMM
algorithm the value of IEVSDG objective function in each integration
is remonstrated in Fig. 14. As it can be noted, the cost value shows a
very fast decline in the first few iterations as the initial values are given
in random. However, the difference between two consecutive iterations
were negligibly small after the 30th iteration, which was a sign that the
ADMM had converged to the optimal solution

It is imperative to observe the impact of uncertainty in the third
level as it has a essential role in market clearing process. In this regard,
two wind farms with production capacity of 100 MW were installed on
the 5th and 17th nodes of the TN. Fig. 15 shows the MCP of the WEM
for different 𝛤 values. Based on the results, the higher values of 𝛤 leads
to a marginally higher energy price. In particular, the robust solutions
shows 5.11% higher MCP when the RO is deployed. It should be noted
that this higher price ensures a more robust and reliable operation for
the TN. Eventually it is noteworthy to sum up the main highlights in
the obtained results from this study. The results show that using the
proposed three-level model leads to 0.86% reduction in the wholesale
market price and 57% in LEM price. Therefore, it testifies the benefits
of combining these two market models. Likewise, in the study [29]
a similar reduction in the local market price was reported, while the
retailer was a price-taker in the WEM. On the other hand, [28] had
reported a similar amount of reduction (0.5%–0.9%) in the WEM price.
Nevertheless, this study ignored the impact of small-scale player such
as IEVSDGs on the LEM clearing price. Additionally, some studies such
as [39] have ignored the possibility of using EVs as flexible loads
through smart charging, and the EVS are modelled as constant load.
To this end, the outcomes of this study illustrated that through the
proposed model the peak demand could be shaved dramatically, which
ultimately led to elimination of 105 MWh of total lead interruptions
that occur due to security-induced reason, and overloading of the ADS.

5. Conclusion

This study investigated a tri-level strategic price-maker optimization
13

framework for integrated electric vehicle fleets and solar distributed
Table 5
Important decision variables in different cases.

CS1 CS2 CS3

First level
objective ($)

159 891.9 5918.752 9035.00

Second level
objective ($)

84 613.35 23 247.6 26 373.89

Third level
objective ($)

410 217.2 410 333.2 410 349.4

Total interrupted
load (kWh)

105.933 0 0

Total power
losses (kWh)

61.9718 46.581 46.353

Total Energy
import of
LEM from WEM
(kWh)

1118.37 1242.623 1347.623

Total Genco
generation
(kWh)

51 482.89 51 607.14 51 712.14

Total DG
generation
(kWh)

563.979 278.139 340.906

Total SDG power
generation
(kWh)

247.249 247.249 76.437

Total energy
purchase
of LEM in WEM
($)

17 151.73 16 193.80 17 686.55

Total load
interruption cost
($)

52 966.88 0 0

Total unit
commitment cost
($)

14 494.73 7053.79 8687.33

Total battery
degradation cost
($)

0 319.721 601.32

generations (IEVSDG) to participate in the local electricity market (LEM
was operated by Disco), considering that Disco itself is an strategic
price-maker in the wholesale electricity market (WEM). In the proposed
model, the IEVSDGs formed the first level, the Disco operator was
the second level, while the WEM operator was integrated to the third
level. To solve the tri-level problem, the second and third levels were
unified in a single problem by utilizing KKT conditions. Ultimately, the
equilibrium point between the first level and this conjoined problem
was achieved through the alternating direction method of multipliers.
The study investigated various coordinated, smart and robust charging
strategies and reached the following conclusive points:

1. By smart charging scheduling strategy (CS2), the IEVSDGs can
become a price-maker at LEM as marginal electricity price was
reduced by 180% compared to dumb charging strategy (CS1).
Although in the real-word circumstances all vehicles might not
be charged uncoordinatedly, their destructive impact would still
be significant at the local market level.

2. Through the liaison of the Disco, IEVSDGs can also be a price-
maker at the WEM level by reducing the wholesale market price
by 0.86%.

3. The reduction in the market clearing price at both the local
and wholesale market levels prove that IEVSDGs can effectively
deploy the proposed tri-level model the improve its market
strategy at deeper levels.



International Journal of Electrical Power and Energy Systems 158 (2024) 109916S. Zeynali et al.
Fig. 10. The energy dispatch schedule of Genco4.
Fig. 11. The energy dispatch schedule of Genco11.
Fig. 12. The MCP of the WEM.
Fig. 13. The Voltage profile of 69-bus ADS.
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Fig. 14. The convergence of the total cost of IEVSDG in ADMM.
Fig. 15. The sensitivity of the MCP of WEM for different robustness levels in wind production uncertainty.
4. Dumb charging strategy (CS1) marks the highest operational cost
values for all market levels. Furthermore, power losses, inter-
rupted loads, local and wholesale market prices are dramatically
high.

5. Although the operational cost in the RO framework (CS3) is
slightly higher than the deterministic case (CS2), it provides a
reliable operation scheduling since perfect forecasting is highly
unexpected.
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Appendix A. Mathematical program with equilibrium constraints
(MPEC)

In bi-level optimization problems that the lower level is a convex
problem, the KKT conditions can effectively convert the model into a
single-level optimization problem. In this study, the third level problem
is the wholesale electricity market optimization to maximize the social
welfare, which is a convex model. Therefore, we replaced this model by
its KKT conditions to convert the second and third levels into a single
problem. The KKT conditions of the wholesale electricity market are as
follows:

A.1. Stationary conditions

The lagrangian function of the proposed problem can be defined
by Eq. (A.1), where 𝑥 represents the vector of decision variables,
while𝑓 (𝑥), ℎ(𝑥) and 𝑔(𝑥) are the objective function, equality constraints
and inequality constraints. The stationary conditions state that the
derivatives the lagrangian function over each variable must be equal
to zero, which is developed as follows:

𝐿𝐸𝑁 = 𝑓 (𝑥) + 𝜆𝑇 ℎ(𝑥) + 𝜇𝑇 𝑔(𝑥) (A.1)

𝜕𝐿EN

𝜕𝑃G
g,t

= −𝜆WEM
b,t + 𝜇1g,t − 𝜇

1
g,t + 𝜇

3
g,t |𝑡>1 − 𝜇

3
g,t+1|t>1

+𝜇4g,t |𝑡=1 − 𝜇
5
g,t |t>1 + 𝜇

5
g,t+1|t>1 + 𝜇

6
g,t |t=1 + 𝜆

1
g,t = 0∀g ∈ 𝐴g

b,∀b,∀t
(A.2)

𝜕𝐿EN

𝜕𝜌Gg,m,t
= 𝐶G

g,m + 𝜇2g,m,t − 𝜇
2
g,m,t − 𝜆

1
g,t = 0∀g,∀m,∀t (A.3)

𝜕𝐿EN

𝜕𝑝Dsct
= −𝐶Dsc

t + 𝜆WEM
b,t + 𝜇7t − 𝜇

7
t = 0∀t (A.4)

𝜕𝐿WT

𝜕𝑃WT
w,t

= −𝜆WEM
b,t + 𝜇8w,t − 𝜇

8
w,t = 0∀w,∀t (A.5)

𝜕𝐿EN

𝜕𝛿b,t
=
∑

b′∈𝑇 𝑟 𝐵b,b′ (𝜆WEM
b,t − 𝜆WEM

b′ ,t ) +
∑

b′∈𝑇 𝑟 𝐵b,b′ (𝑣b,b′ ,t − 𝑣b′ ,b,t )

+
∑

𝑏′∈𝑇 𝑟 𝐵b,b′ (𝑣b′ ,b,t − 𝑣b,b′ ,t ) + 𝜉b,t − 𝜉b,t + 𝜉1𝑏=1 = 0∀b,∀b′,∀t

(A.6)
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A.2. Primal, dual and complementary conditions

The primal, dual and complementary conditions can be summarized
by following set of equations that state that outer multiplication of the
primal and dual variables must be greater than zero.

0 ≤ 𝑃G
g,t⊥𝜇

1
g,t ≥ 0∀g,∀t (A.7)

0 ≤ (𝑃G
g,t − 𝑃

G
g,t )⊥𝜇

1
g,t ≥ 0∀g,∀t (A.8)

0 ≤ 𝜌Gg,m,t⊥𝜇
2
g,m,t ≥ 0∀g,∀m,∀t (A.9)

0 ≤ (𝜌g,m − 𝜌Gg,m,t )⊥𝜇
2
g,m,t ≥ 0∀g,∀m,∀t (A.10)

0 ≤ (𝑝Dsct − 𝑝Dsct )⊥𝜇7𝑡 ≥ 0∀t (A.11)

0 ≤ (𝑝Dsct − 𝑝Dsct )⊥𝜇7𝑡 ≥ 0∀t (A.12)

0 ≤ (𝑃WT
w,t ⊥𝜇

8
w,t ) ≥ 0∀w,∀t (A.13)

0 ≤ (𝑃WT
w,t − 𝑃WT

w,t )⊥𝜇
8
w,t ≥ 0∀w,∀t (A.14)

0 ≤ (𝐶b,b′ + 𝐵b,b′ (𝛿b,t − 𝛿b′ ,t ))⊥𝑣b,b′ ,t ≥ 0∀b,∀b′,∀t (A.15)

0 ≤ (𝐶b,b′ − 𝐵b,b′ (𝛿b,t − 𝛿b′ ,t ))⊥𝑣b,b′ ,t ≥ 0∀b,∀b′,∀t (A.16)

0 ≤ (𝜋 − 𝛿b,t )⊥𝜉b,t ≥ 0∀b,∀t (A.17)

0 ≤ (𝜋 + 𝛿b,t )⊥𝜉b,t ≥ 0∀b,∀t (A.18)

The dual variable associated with the equality variables, such as
qs. (39)–(40) and Eqs. (52) must be free in sign, which is defined as
ollows:
WEM
b,t ∀b, t, 𝜆1g,t∀g, t, 𝜉

l
b=1,t∀b, t (A.19)

As can be observed, Eqs. (A.7)–(A.18) are nonlinear. To establish a
MILP equivalent, the big-M method was used as defined in Eqs. (A.20)–
(A.21), where M1 and M2 are very large numbers and u is a binary
variable.

0 ≤ 𝑔𝑥⊥𝜇 ≥ 0 → 𝑔𝑥 ≥ 0, 𝜇 ≥ 0 (A.20)

0 ≤ 𝑔𝑥⊥𝜇 ≥ 0 → 𝑔𝑥 ≥ 0, 𝜇 ≥ 0 (A.21)

Appendix B. Linearization of 𝝀𝐖𝐄𝐌
𝐛,𝐭 𝒑𝐃𝐬𝐜𝐭 by the theory of strong

uality

As can be observed from Eq. (18) of the main manuscript, the term
WEM
b,t 𝑝Dsct is a nonlinear term since both 𝜆WEM

b,t and 𝑝Dsct are continues
ecision variables. This term can be linearized by the theory of strong
uality, which states that in optimal solutions point the value of the
rimal and dual optimization problems are equal, which is developed
n Eq. (B.1) in Box I. Based on Eqs. (A.11) and (A.12), it can be derived
hat

≤ (𝑝Dsct − 𝑝Dsct )⊥𝜇7𝑡 ≥ 0 → 𝑝Dsct 𝜇7𝑡 = 𝑝Dsct 𝜇7𝑡 ∀t (B.2)

0 ≤ (𝑝Dsct − 𝑝Dsct )⊥𝜇7𝑡 ≥ 0 → 𝑝Dsct 𝜇7𝑡 = 𝑝Dsct 𝜇7𝑡 ∀t (B.3)

In order to achieve a linear equivalent for 𝜆WEM
b,t 𝑝Dsct , Eq. (A.4) is

multiplied by 𝑝Dsct as follows:

−𝑝Dsct 𝐶Dsc
t + 𝑝Dsct 𝜆WEM

b,t + 𝑝Dsct 𝜇7t − 𝑝
Dsc
t 𝜇7t = 0∀t (B.4)

𝑝Dsct 𝐶Dsc
t = 𝑝Dsct 𝜆WEM

b,t + 𝑝Dsct 𝜇7t − 𝑝
Dsc
t 𝜇7t ∀t (B.5)

Eventually, the nonlinear term of 𝜆WEM
b,t 𝑝Dsct was replaced as given in

Box II.
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Appendix C. Battery degradation cost linearization

As can be observed, Eq. (11) is a nonlinear expression. To linearize
the production of two continuous variables in battery erosion cost, the
semi-integer linearization method is adopted from [41], as expressed by
Eqs. (C.1)–(C.7). It should be noted that ℏa1kl,v,s,t and ℏa2kl,v,s,t are specially
ordered semi-integer type two variables (SOS2) that have a auxiliary
role in the linearization process. More details on this linearization
method and SOS2 variables can be observed in [43].

𝑦aux1v,s,t = 0.5
(

𝑃𝐷v,s,t +𝑀𝐷v,s,t
)

∀v, s, t (C.1)

𝑦aux2v,s,t = 0.5
(

𝑃𝐷v,s,t −𝑀𝐷v,s,t
)

∀v, s, t (C.2)

𝑑𝑔NLv,s,t = 𝑃𝐷v,s,t .𝑀𝐷v,s,t =
(

𝑦aux1v,s,t

)2
−
(

𝑦aux2v,s,t

)2
(C.3)

𝐹𝑌 aux1
v,s,t =

KL
∑

kl=1
ℏa1kl,v,s,t

(

𝑦aux1kl,v

)2
,

𝐹𝑌 aux2
v,s,t =

𝐾𝐿
∑

kl=1
ℏa2kl,v,s,t

(

𝑦aux2kl,v

)2
∀v, s, t

(C.4)

𝑦aux1v,s,t =
KL
∑

kl=1
ℏa1kl,v,s,t

(

𝑦𝑎𝑢𝑥1kl,v

)

,

𝑦aux2v,s,t =
𝐾𝐿
∑

kl=1
ℏa2kl,v,s,t

(

𝑦𝑎𝑢𝑥2kl,v

)

∀v, s, t

(C.5)

KL
∑

kl=1
ℏa1kl,v,s,t = 1,

KL
∑

kl=1
ℏ𝑎2kl,v,s,t = 1∀v, s, t

ℏa1kl,v,s,t > 0, ℏa2kl,v,s,t > 0

(C.6)

𝑔Linv,s,t = 𝐹𝑌 aux1
v,s,t − 𝐹𝑌 aux2

v,s,t ∀v, s, t (C.7)

Appendix D. Robust optimization

Consider the following general robust optimization problem:
min
𝑥

max
𝛷

𝑧 = 𝑐1𝑥 + 𝑐2𝑦 (D.1)

𝑥 + 𝑦 = 𝑏 ; 𝜆 (D.2)

0 ≤ 𝑥 ≤ 𝑥 ;𝜇1, 𝜇1 (D.3)

0 ≤ 𝑦 ≤ 𝑦 ;𝜇2, 𝜇2 (D.4)

Eq. (D.1) expresses the objective function of the problem. The goal
of the problem is to find the worst case of the uncertainty variable
by the robust optimization method. Where 𝑐1 and 𝑐2 represent the
cost parameters and z the objective function of the problem. More-
over, 𝑥 is a positive decision variable and 𝑦 is a positive random
variable. Eq. (D.2) models the equality equations and Eq. (D.3)–(D.4)
express the inequality equations. Where 𝑥 and 𝑦 represent the upper
limit of positive decision and positive random variables, respectively.
Particularly, the variables 𝜇1,2, 𝜇1,2 express the dual inequality equa-
tions and the variable 𝜆 represents the dual equality equations. We
assume that the output of the random variable is volatile within the
interval

[

𝑦0 − 𝛥𝑦, 𝑦0 + 𝛥𝑦
]

. After adopting the uncertainty parameter,
the uncertainty set 𝛷 is described as follows.

𝛷 ∶=
{

𝛥𝑦
𝛥𝑦

≤ 𝛤 , 𝑦 = 𝑦0 + 𝛥𝑦
}

(D.5)

here 𝛥𝑦 models the difference between the actual value and the pre-
icted value of the uncertainty parameter, and 𝛥𝑦 shows the maximum

difference between the actual value and the predicted value of the
random variable. Furthermore, the variable 𝑦0 expresses the predicted
value of the uncertainty parameter and 𝑦 sets the maximum bounded
value of the random variable.
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g,t −
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𝐶Dsc
t 𝑝Dsct =

∑

t

∑

g

∑

m
𝐶G
g,m𝜌

G
g,m,t

−
∑

𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
∑

g
𝑃G
g,t𝜇

1
g,t −

∑

g

∑

m
𝜌g,m𝜇2g,m,t + 𝑝

Dsc
t 𝜇7t − 𝑝

Dsc
t 𝜇7t −

∑

w
𝑃WT
w,t 𝜇

8
w,t +

∑

d∈Ad
b

𝑃d,t𝜆
WEM
b,t

−
∑

b,b′∈𝑇 𝑟

𝑣b,b′ ,t𝐶b,b′ ,t −
∑

b,b′∈𝑇 𝑟

𝑣b,b′ ,t𝐶b,b′ ,t−
∑

b
𝜋(𝜉b,t + 𝜉b,t ) −

∑

g
𝑅𝑈g𝜇

3
g,t |t>1

−
∑

𝑔
(𝑅𝑈g + 𝑃G

g,ini)𝜇
4
g,t |t=1 −

∑

g
𝑅𝐷g𝜇

5
g,t |t>1 −

∑

g
(𝑅𝐷g − 𝑃G

g,ini)𝜇
6
g,t |t=1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.6)
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⎤

⎥
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⎥

⎥

⎥

⎥

⎥

⎦

(B.7)

Box II.
Solving robust problems Eq. (D.1)–(D.5) cannot be feasible normally
by using commercial solvers (due to min.max). For this purpose, using
the duality theory, we convert the min.max problem into a min.min
problem as proved in [56,57]. Finally, after solving the following
problem, the robust solution of problem Eq. (D.1)–(D.5) is obtained as
following exact equations.

min
𝑥
𝑧 = 𝑥𝜇1 + 𝑦𝜇2 + 𝑏𝜆 (D.6)

𝜇1 + 𝜆 ≥ 𝑐1 (D.7)

𝜇2 + 𝜆 ≥ 𝑐2 (D.8)

𝜇1, 𝜇2 ≥ 0

𝜆 ∈ 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
(D.9)
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