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ARTICLE INFO ABSTRACT

Keywords: Maintenance planning and scheduling are an essential part of manufacturing companies to prevent machine
Maintenance breakdowns and increase machine uptime, along with production efficiency. One of the biggest challenges
Manufac'turmg is to effectively address uncertainty (e.g., unexpected machine failures, variable time to repair). Multiple
Scheduling . approaches have been used to solve the maintenance scheduling problem, including dispatching rules (DR),
Reinforcement learning . . - . .

Metaheuristics metaheuristics and simheuristics, or most recently reinforcement learning (RL). However, to the best of our

knowledge, no study has ever studied to what extent these techniques are effective when faced with different
levels of uncertainty. To overcome this gap in research, this paper presents an approach by analyzing the impact
of categorized levels of uncertainty, specifically high and low, on the failure distribution and time to repair.
Upon the formalization of the maintenance scheduling problem, the experiments conducted are performed in
simulated scenarios with different degrees of uncertainty, and also considering a real-life manufacturing use
case. The results indicate that rescheduling based on a genetic algorithm (GA) simheuristic outperforms RL and
DR in terms of total machine uptime, but not in terms of the mean time to repair when configured with high
re-optimization frequencies (i.e., hourly re-optimization), but rapidly underperforms when the re-optimization
frequency decreases. Furthermore, our study demonstrates that GA-simheuristic is highly computationally
demanding compared to RL and rule-based policies.

1. Introduction depends on the company’s objectives (e.g., does the company want to
minimize makespan, completion time, improve system availability or

In the manufacturing industry, production and maintenance pro-
cesses are closely related. Although the objective of the production
process is to meet the customer’s demand for quality and production
standards on time, it can be affected by constant wear and tear on
machine components due to continuous use or environmental aspects,

which results in machine breakdown and degradation of quality (Geurt-

sustainability) and constraints (e.g., machine and technician priorities,
dependencies between machines or processes, production schedules,
etc.) (De Jonge & Scarf, 2020). Despite the prevalence of mathematical
programming (Song et al., 2023; Stojanovic, 2023) and metaheuristic
methods to solve maintenance scheduling problems, uncertainty re-

sen et al., 2023). The maintenance process works to prevent and
correct failures by restoring or replacing the components that caused
the machine to fail.

Fig. 1 illustrates a possible processing flow to schedule mainte-
nance tasks, starting from the collection of sensor data to estimate
the remaining useful life (RUL) and/or assess whether the quality of
manufactured products drops with time. This estimation/assessment
can then be used to create/open maintenance tickets — in addition to
traditional preventive and corrective tickets — that can finally be assigned
to technicians optimally. The effectiveness of a maintenance schedule

* Corresponding author.

mains a challenge (Guan et al., 2023; Zhuang et al., 2023) affecting the
maintenance decisions mainly due to the assumption that parameters
and their degree of uncertainty are known in advance, which usually
not the case in practice (De Jonge et al., 2015). Uncertainty can come
from different sources such as: estimation of RUL of equipment (Be-
naggoune et al., 2020), duration of maintenance time (Ying et al.,
2016), availability and efficiency/fatigue of the technician (Ferjani
et al., 2017), or the occurrence of unexpected events such as sudden
failures and unavailability of the technician.
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Fig. 1. Workflow diagram of the automated maintenance scheduling system.

To address this dynamic and stochastic problem, methods like
hybrid simulation optimization (aka Simheuristic) (Alves & Ravetti,
2020), Machine Learning (Su et al., 2022), and Rule-based are often
employed. One of these methods for hybrid simulation optimization is
GA. This is a search and optimization algorithm inspired by the evo-
lutionary principle, where solutions are obtained iteratively developed
using genetic operators such as selection, crossover, and mutation. It is
widely used to solve optimization problems such as exergoeconomic
optimization for geothermal power plant (Nasruddin et al., 2018),
stock market prediction (Deng et al., 2024), PID optimization (Zahir
et al., 2020), communication networks (Neumann et al., 2023) among
others. On the other hand, Reinforcement Learning (RL) is a type
of machine learning in which an agent (decision maker) learns a
policy through interaction with an environment with the objective
of maximizing a reward. For the nature of RL methods to obtain
an optimal (near-optimal) policy, several applications with different
degrees of complexity and uncertainty have been implemented, such
as vehicle routing (Pan & Liu, 2023), drone racing (Kaufmann et al.,
2023), protein design (Lutz et al., 2023), and even sectors with high-
risk implications like healthcare (Yang et al., 2023). Although these
methods are widely used to optimize maintenance scheduling, there is
still a lack of understanding of how they behave under different kinds
of uncertainties. To fill this gap in the literature, this article aims to
explore the performance of GA, RL, and classical DR, in terms of time
to repair, machine uptime, and time complexity, under varying levels of
uncertainty for machine failure distribution and maintenance duration.

Section 2 further discusses the maintenance scheduling problem,
along with state-of-the-art methodologies and methods to solve it.
Section 3 formally describes the maintenance scheduling problem and
the optimization methods considered for benchmarking purposes (incl.,
RL, GA-Simheuristic, DR). Section 4 presents the results obtained con-
sidering both simulated maintenance scenarios and a real-life use case;
discussion and conclusions follow. Note that all acronyms used in this
paper are summarized in Table 1.

2. Scheduling under uncertainty

The possible origins of uncertainty in maintenance scheduling dis-
cussed in Section 2.1. Section 2.2 analyzes the current literature on
static and dynamic maintenance scheduling, with a special emphasis
on studies taking into account uncertainty. Based on this analysis,

Section 2.3 discusses about the research gaps and how the present paper
progresses the state-of-the-art.

2.1. Where does uncertainty come from?

The scheduling of maintenance tasks can be performed statically or
dynamically. Static scheduling, which is performed offline, is adopted
when the maintenance requirements are known in advance (e.g., list of
tasks and technicians, job duration, technician’s skill level, etc.), while
dynamic maintenance is performed online to cope with the occurrence
of unexpected events (e.g., sudden machine failures). The dynamic
nature of the problem is highly linked to the uncertainty underpinning
the maintenance process, whose most common types of uncertainty
are (De Jonge & Scarf, 2020):

Maintenance type: there is often uncertainty about what main-
tenance actions must be performed when a ticket is created
such as component replacement, partial maintenance to restore
a component’s life, inspection, among others (Yu et al., 2019);
Maintenance duration: the predicted duration of the mainte-
nance can highly vary depending on the complexity of the op-
eration and the capabilities/experience of the technician, or even
depending on his fatigue at a given time (Ferjani et al., 2017);
Technician availability: technician might unexpectedly request
sick leave or vacation, or may need to be reassigned to a task of
higher priority (Ruiz Rodriguez et al., 2022);

Machine availability: unexpected failures may occur at any
time, or a change of priority in the production schedule (Huang
et al., 2020);

Failure distribution: deterioration models of components are
stochastic by nature, which may originate from natural condi-
tions, such as natural wear and tear, or artificial due to human
intervention (Sarazin et al., 2021);

Joint schedule: when trying to take into consideration sev-
eral schedules (e.g., maintenance and production schedules, aka.
opportunistic maintenance), any abrupt change in one of the
schedules (e.g., change in production frequency/priority) highly
impacts the second schedule (Wocker et al., 2020);

To solve the maintenance scheduling problem, three main classes of
methods can be used: (i) Mathematical Programming: set of techniques to
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Table 1
Acronyms used in the present article.

Notation Description Notation Description

Al Artificial Intelligence Ad Artificial Data

At Adjust Av Availability of system

CBM Condition-Based Maintenance CM Corrective Maintenance

CMMS Computerized Maintenance Management CNC Computer Numerical Control machine
System

Cm Corrective Co Completion Time

DBSCAN Density-Based Spatial Clustering of DQN Deep Q-Network
Applications with Noise

DR dispatching rules De Deterministic

Dy Dynamic FIBT First-In-Best-Technician

FIFO First-In-First-Out GA Genetic Algorithm

In Inspect KPI Key Performance Indicators

MDP Markov Decision Process MES Manufacturing Execution System

ML Machine Learning MNNIA Non-dominated neighbor immune

algorithm

MP Mathematical Programming MTBF Mean Time Between Failures

MTTR Mean Time to Repair Ma Maintain

Me Metaheuristics Mk Makespan

NSGA-II Non-dominated Sorting Genetic o Others
Algorithm II

PHM Prognostic and Health Management PM Preventive Maintenance

PPO Proximal Policy Optimization PdM Predictive Maintenance

Po Production Pr Preventive

Pt Profit RL Reinforcement Learning

RUL Remaining Useful Life Re Replace

Rd Real Data Re Reliability of system

Rr Repair SB3 Stable-baseline-3

Sc Service cost Se Stochastic

St Static Su Sustainability

TTR Time to repair Ta Maximum Tardiness

uf Failures Um Maintenance time

Up Production Ut Tooling degradation

Ut Technician availability Uv Machine availability

find the optimal solution (or feasible solutions in case of complexity or
time constraints) but with the disadvantage of being computationally
and time expensive; (ii) Metaheuristics: set of techniques to find near-
optimal solutions but with a faster processing time than exact methods;
and (iii) Machine Learning (ML): set of techniques that not only allow
one to perform a search for the solution but also to train the algorithm
to identify patterns to generalize for new instances of the problem.

2.2. Current state of affairs

Sections 2.2.1 and 2.2.2 provide an overview of research work
dealing with static and dynamic maintenance scheduling, with a focus
on approaches taken into account for uncertainty.

2.2.1. Static scheduling

The set of constraints and the complexity of the problem determine
the type of scheduling to be used. Although some degrees of uncertainty
are occasionally taken into account, static scheduling is often a deter-
ministic problem, where all maintenance operations to be completed
are known in advance. A large number of studies have used meta-
heuristics to solve such problems. Let us mention (Miao et al., 2022)
who propose a modified non-dominated neighbor immune algorithm
(MNNIA) for the allocation of technicians and spare parts, the objective
being twofold: reducing both tardiness and maintenance cost. The
authors compare MNNIA against other multiobjective algorithms under
different conditions (i.e., varying the number of machines, technicians,
and maintenance tasks), whose results show that MNNIA performs bet-
ter in most cases. Yazdani et al. (2022) work on a joint production and
maintenance problem aiming at reducing the total absolute deviation of
completion time. The overall goal is to ensure that the machines have a
similar completion time that is constrained by maintenance activities.
To solve this problem, a Lion Optimization Algorithm is proposed,
whose evaluation is carried out based on randomly generated cases
considering different levels of complexity (varying the number of tasks

from 50-600 and machines from 1-20). The algorithm is compared
with six other metaheuristics, the results evidencing that it outperforms
all of them. Other researchers such as Wocker et al. (2020) have used
ML (clustering) techniques such as k-means, mean-shift, Expectation-
Maximization, or Density-Based Spatial Clustering of Applications with
Noise (aka DBSCAN) to solve static scheduling problems. The main
problem was in the production of parts using unsupervised learning to
apply opportunistic maintenance. Their approach was evaluated using
real-life data from a car manufacturing plant based on a performance
indicator showing “how many stations can be stopped for maintenance
while maintaining the desired production capacity?”.

Unlike the above studies, some scholars have considered differ-
ent types of uncertainty in the static scheduling problem. For exam-
ple, Németh et al. (2020) propose a GA to select the most appropriate
and cost-effective maintenance strategies and labor policies for produc-
tion equipment considering the failures and availability of machines
and technicians. The objective is to reduce the Life Cycle Cost, which is
computed based on labor and production costs, maintenance costs, and
on-demand service costs. Sun et al. (2019) worked with the problem of
the saturation effect of maintenance actions, for which they proposed
an algorithm to find the best maintenance intervals and the number
of maintenance actions to decrease maintenance cost. The authors
evaluate their approach using two types of mechanical systems, namely
a high-precision boring mill and a power generation turbine system.

2.2.2. Dynamic scheduling

When there is a high level of uncertainty in the system, dynamic
scheduling is considered and used more frequently. Until now, meta-
heuristics and iterative algorithms have been the preferred option
(Geurtsen et al., 2023). In this respect, Mi et al. (2020) propose a multi-
objective model using GA (NSGA-II) that aims to minimize maintenance
costs and carbon emissions. The authors validate their approach on a
cement production use case, whose results show that the reliability
of the predictive maintenance plan is improved, while successfully
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addressing the trade-off between carbon emission and maintenance
cost. Ghaleb et al. (2020) also use GA to address the scheduling problem
for a machine with multiple degradation states, the objective being to
minimize the total system cost that consists of the inspection of the
system, the machine repair, the completion time of the machine and
the energy consumption costs. To evaluate the proposed mathematical
model, different random instances were generated, and experiments
show that the model outperforms other metaheuristics (incl., single-
based metaheuristic and imperialist competitive algorithm). Celen and
Djurdjanovic (2020) propose a decision-making model in a flexible
manufacturing system with several stations that suffer from multiple
degradations that cannot be perfectly observed; the goal being to
maximize profits and decrease maintenance costs. The authors make
use of the Tabu search algorithm, whose evaluation experiments consist
of simulating a semiconductor manufacturing plant and comparing its
algorithm with the traditional operation-independent and operation-
dependent Condition-Based Maintenance (CBM) policies. The results
show a significant improvement in the profit gain. Detti et al. (2019)
work on the problem of joint scheduling of several jobs and mainte-
nance activities considering uncertainty about maintenance duration,
whose objective is to minimize makespan and total completion time.
The authors implement different heuristics and make use of CPlex with
randomly generated instances. Ruschel et al. (2020) address the prob-
lem of setting maintenance inspection intervals using process mining
techniques and a probabilistic model in Bayesian networks. Their work
is evaluated with the log of a lathe installed in a plant of the Brazilian
automotive industry, whose results show an improvement in terms
of cost and time. Lu et al. (2021) also use a Bayesian approach to
predict future deterioration of product quality and machine reliability,
thus optimizing maintenance costs, product quality, and machine reli-
ability. Their model is applied to a boring mill used to manufacture
a type of bearing seats and compared with a classical maintenance
policy (considerable savings are obtained). Alves and Ravetti (2020)
propose to use a Simheuristic approach to deal with uncertainty in
the lot-sizing and scheduling problem in a maintenance system of
identical parallel machines. The objective of maintenance scheduling
is to define the periodicity of preventive maintenance to minimize
the total time between preventive maintenance actions and corrective
maintenance. Artificial data are used by varying different parameters
exhaustively to show the results of the selection of different parameters
for failure prevention. Arena et al. (2022) develop a framework called
“maintenance driven scheduling cockpit” to support RUL-based mainte-
nance and production scheduling decisions. The prototype is evaluated
in different scenarios in a simulation establishing different costs for
maintenance and production operations. Xia et al. (2021) proposes an
energy-oriented joint optimization of the machine maintenance and
tool replacement policy, in which energy consumption and cost are
considered to decide the best maintenance action(s). The proposed
policy is evaluated with respect to periodic preventive maintenance
and energy-oriented preventive maintenance policies in a numerical
example of a CNC machine, showing significant improvement.

Besides the use of metaheuristics and iterative algorithms, there
has been an increasing attention to agent-based systems. Among other
relevant studies, let us mention (Rokhforoz & Fink, 2021) who present
an iterative distributed framework using a combination of model pre-
dictive control and Benders decomposition to address the problem of
joint production and maintenance scheduling, where agents are used
to model degradation of production units. The proposed framework
is evaluated through the simulation of two distinct systems (food
manufacturing and electrical production) and compared with central-
ized optimization and model predictive control methods. The results
show that the proposed approach outperforms such methods, leading
to significant computational power savings. Bencheikh et al. (2022)
also developed a multiagent system for a joint production and main-
tenance scheduling policy considering Prognostic and Health Manage-
ment (PHM) modules. Agents are used to subdivide the complexity
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of the system that consists of (i) an environment agent that controls
the access to information to solve the subproblems; (ii) a supervisor
agent that controls the access to the environment; (iii) a customer
agent that corresponds to the manufacturing orders; (iv) a producer
agent that manages each machine and its scheduling; (v) a mainte-
nance agent that is responsible for providing maintenance tasks. One
of the main insights of this work is the implementation of effective
PHM modules to optimize the number of maintenance actions and
machine availability. Kuhnle et al. (2019) propose an approach to
determine the best window of opportunity to perform maintenance
in a stochastic production environment. This approach uses multiple
independent agents that learn the policy based on information from the
production system buffer and time-to-failures. The RL policy outper-
forms Corrective Maintenance (CM) and Preventive Maintenance (PM)
policies with respect to completed jobs, while evidencing how agents
learn to execute maintenance closer to failure times with a low buffer
volume. Valet et al. (2022) also tackle the problem of opportunistic
maintenance using RL in a wafer manufacturing plant scenario. The
proposed approach is compared with dispatching rules-based policies
based on different performance indicators, including, among other in-
dicators, order cycle time, machine downtime, and remaining lifetime.
The work demonstrates the ability of a DQN agent to learn a joint
competitive strategy for dispatching and opportunistic maintenance.
Finally, let us mention (Yan et al., 2022) who addresses the problem
of flexible job shop problem integrated with time-based maintenance
and CBM. A RL algorithm called “double-layer Q-learning algorithm”
is designed to select machines and jobs in a dynamic way. This work
was evaluated against several metaheuristics, showing the relevance of
the approach.

2.3. Research gaps & paper contribution

For ease of analysis and discussion of the remaining gaps in re-
search, all research studies previously discussed have been summarized
in Table 2 based on the following criteria:

* Maintenance Policy: Corrective (Cm), Preventive (Pr), and Predic-
tive (PdM)

Maintenance action: Inspect (In), Adjust (At), Maintain (Ma), Re-
pair (Rr), Replace (Rc)

Scheduling type: Static (St), Dynamic (Dy)

Environment: Stochastic (Se), Deterministic (De)

Uncertainty: Maintenance time (Um), Technician availability (Ut),
Machine availability (Uv), Production (Up), Failures (Uf), Tooling
degradation (Ut)

Objective: Makespan (Mk), Maximum Tardiness (Ta), Completion
Time (Co), Reliability of system (Re), Availability of system (Av),
Profit (Pt), Service cost (Sc), Sustainability (Su), Production (Po)
Optimization methods: Metaheuristics (Me), Machine Learning
(ML), Mathematical Programming (MP), Others (O).

Evaluation: Artificial Data (Ad), Real Data (Rd)

The literature analysis shows that most of the studies (~57%)
seek to minimize service costs as part of preventive and/or predictive
maintenance policies, but very few seek to minimize maintenance time,
while it can contribute to achieve substantial savings. Looking now at
how and what type of uncertainty is tackled by the reviewed studies,
it is interesting to note that most addresses the uncertainty of failure
and very few addresses the uncertainty related to the duration of
maintenance tasks (~ 11%), while this duration can vary greatly from
one technician to another. In the reviewed studies, Németh et al. (2020)
consider uncertainty about the availability of technicians and Valet
et al. (2022) and Detti et al. (2019) consider uncertainty about mainte-
nance duration, but none of them consider/tackle both together. In the
present paper, we propose three methods to jointly address these two
types of uncertainty using three methods of different nature, namely
RL, GA-simheuristic, and DR. In addition, our objective is to answer
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Table 2
Summary table of the literature review.
Article Policy Actions Sche. Env. Uncert. Objective Meth. Eval.
Kuhnle et al. (2019) PdM Ma Dy Se uf Po,Ri ML Ad
Detti et al. (2019) Pr N/A Dy Se Um Mk,Co MP Ad
Sun et al. (2019) Pr Ma,Rc St Se uf Sc (o] Rd
Ruschel et al. (2020) Pr In Dy Se Up Av,Sc ML Rd
Alves and Ravetti (2020) Cm,Pr,PdM N/A Dy Se Uf Mk,Po,Ta o Ad
Mi et al. (2020) PdM Ma,Rr,Rc Dy Se uf Sc,Su Me Rd
Celen and Djurdjanovic (2020) Pr,PdM Ma,Rc Dy Se Ut Pt,Sc Me Ad
Ghaleb et al. (2020) PdM In,Rr Dy Se Uf,0 Pt,Sc Me Ad
Németh et al. (2020) Cm,Pr,PdM Rc St Se Ut,Uv,Uf Pt,Sc Me N/A
Wocker et al. (2020) Pr N/A St De - Po,Av ML Rd
Lu et al. (2021) PdM Rr,Rc Dy Se Ut Pt N/A Rd
Rokhforoz and Fink (2021) PdM Rc Dy Se Ut Po,Sc MP Rd
Xia et al. (2021) Cm,Pr Ma,Rc Dy Se uf Re,Sc N/A Rd
Yazdani et al. (2022) Pr Ma St De - Co Me Ad
Miao et al. (2022) Cm Rc St De - Ta,Sc Me Ad
Valet et al. (2022) Cm,Pr Ma Dy Se Um Po,Av,Re ML Rd
Bencheikh et al. (2022) PdM N/A Dy Se uf Po,Av,Re [¢] Ad
Yan et al. (2022) Cm,Pr Rc Dy Se Up,Uf Mk ML Ad
Arena et al. (2022) PdM Rc Dy Se uf Ta,Sc (6] Ad
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Fig. 2. Overview of the two-stage dynamic maintenance scheduling framework.

the research question of “How does RL, GA-Simheuristic, DR perform
when applied to different levels of uncertainty?, which to the best of our
knowledge has never been answered by the current literature. Section 3
presents the methodology to answer this research question.

3. Maintenance scheduling approaches

To evaluate and compare different optimization methods under
different degrees of uncertainty, a two-stage approach is adopted, as
illustrated in Fig. 2. The first step consists in building the environment
to simulate the maintenance process in a job shop floor, where both
machines and technicians are modeled (cf., Fig. 2). The uncertainty
associated with machines and technicians respectively relate to fail-
ure distribution and time to repair. The second stage consists in the
definition of the three optimization methods (RL, GA-simheuristic, DR)
and the way to compare them. These two stages are further detailed in
Sections 3.1 and 3.2 respectively.

3.1. System description (environment)

The maintenance scheduling problem is defined as when and how
to perform maintenance activities to maximize machine uptime. Let
M be the set of machines. Each machine i € M can fail at any time
step ¢ following a 2-parameter Weibull distribution w;, ~ W(a;, ;) and
changing its state, x;, € {0,1,2}, from a working state (x; = 0) to a
breakdown state (x; = 1). If machine i € M fails, then a technician
Jj € T needs to perform maintenance on machine i and the technician’s
state changes from available (y;, = 0) to busy (y;, = 1), while the
machine’s state changes to maintenance (x; = 2). Maintenance is
assumed to be perfect, which means that machines are restored to the
“As-Good-As-New” state. Each technician j € 7 has different skills
(e.g., one technician may be able to repair one type of failure in
less time than another technician), so the intervention time for each
machine i € M is given by d;; ~ [N'(u;;,0,;)|, where y;; and o;; indicate
the mean and standard deviation of the time to repair of technician j
to machine i, respectively. A machine i € M that is maintained by a
technician j € 7 in step ¢ is represented by z,;,. We assume that a single
technician repairs a machine at a given step 1, therefore ;. ; z;;, =
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Table 3
Nomenclature for variables used in the maintenance scheduling model.
Variable Description
M The set of all machines
T The set of all technicians
D Maintenance Log
F The set of all failures
H Horizon of the scheduling
t Timestep 0 <t < H
a; Mean time of the failure for machine i
B Standard deviation of the failure for machine i
Xif State of the machine i at timestep ¢
Vir State of the technician j at timestep ¢
d; Intervention time of technician i to machine j
Nije Remaining maintenance time of technician i to machine j at time ¢
Hij Mean of the time to repair for machine i by technician j
o Standard deviation of the time to repair for machine i by technician

J
Indicate if a technician j is doing maintenance to a machine i at
the timestep ¢

Sk Time of the ticket opening k from the maintenance log

I Duration of the ticket k from the maintenance log

qr Indicates the technician who serviced the ticket k

fx Indicates the type of failure of the ticket k

7 Normalized remaining time of the intervention of the ticket i
v, Normalized timespan since the last intervention of the ticket i
®; Normalized remaining time of the technician j to be available

{0, 1}. The objective is to maximize the uptime of the machines in the
complete horizon, which is equivalent to minimizing the MTTR while
simultaneously reducing the breakdown time of the machines. The
mathematical formulation can be written as in (1). Table 3 summarizes
all the variables used in this paper.

max 2 z I(x;, = 0) (@]

VieH VieM

Where I(x;, = 0) is an indicator variable that takes the value of 1 if the
condition in the parenthesis is met, in this case, the machine i at the
timestep ¢ is in a working state. The goal of this objective function is
to maximize the total number of time steps + € H where all machines
i € M are in a working state x;, = 0 across the entire time horizon H.

The problem of decision making in the context of the assignment
of maintenance technicians can be formally represented as a Markov
Decision Process (MDP), since we deal both with temporal dynamics
(taking a maintenance decision at each time step ¢) and probabilistic
uncertainty (about the potential failure of machines and the variable
time to repair of technicians). MDP is a mathematical formulation of a
problem in which an agent (decision maker) selects actions sequentially
to transit through different states guided by rewards. An MDP can
be expressed as a 5-tuple (S, A,P, R,y) consisting of (i) a state space
S: indicating all possible states in which the agent can be in; (ii) an
action space A: indicating all possible actions the agent can take; (iii)
a transition function P : S x A — S: indicating the probability of
transitioning from any state s € S to state s’ € .S given that the
agent took action a € A; (iv) a reward function R : S X A X .S — R:
returning an immediate reward given by the transition from (s, a) to s;
and (v) a discount factor y € [0, 1]: indicating how myopic the agent
is (y = 0 indicates that the agent only cares about immediate reward,
while y — 1 indicates that the agent gives more weight to future state
information).

The state of the system, represented by different characteristics of
the technician and the tickets, is represented by the vector o. This
vector provides three time-related features.

» Remaining intervention time (z;): For each ticket i, 7; € R
represents the normalized time left for the intervention to be
completed.

« Lifespan of the tickets (y;): Each ticket i, reflects the normalized
duration or age since its creation represented by y; € R
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+ Technician availability (¢;): For each technician j, ¢; € R rep-
resents the remaining time of the technician to become available.

The state vector is represented as follows:
WM P1s - D] (2)

In our system, the actions are defined as a selection process in which
an available technician ¢ € T, is assigned to address and intervention
i € M. The definition of the action space is given by:

0= [T],---,T|M|,W1,---

ae MxTuU{d} 3)
The Eq. (3) and its components can be understood as follow:

» a : Is the action taken by the agent at a particular timestep

* M x T : Is the Cartesian product of the set of interventions M
and technicians 7. Represents all possible paring indicating which
technician is assigned to which intervention.

* d : Indicated the scenario where no technician is assigned to any
intervention.

The reward function is designed to provide a higher value as more
machines are in a working state and decrease as the time remaining
for maintenance increases, reflecting the cost of machines being out of
service. The reward function, denoted as r(0,a,0’), is defined as:

Nijt
ZieM(l - maxd,j)

M|
Where each of the components of (4) are represented as:

4

r(0,a,0') =

* r(0,a,0") : The reward function, dependent on the current obser-
vation o, the action taken a, and the next observation o’.

a- %) : The operational efficiency, #,;;, is the remaining
maintenance time for machine i under technician j at time f,
and maxd;; is the maximum possible maintenance duration for
machine i and technician j. As this fraction represents the nor-
malized remaining maintenance time, with the subtraction from
1 flipping the value to represent the efficiency (more remaining
time means less efficiency).

M : Represents the total number of machines to normalize the
reward.

In general, the agent learns a policy () to perform the best assignment
since the reward is inversely proportional to the remaining time to
repair; therefore, cases may arise where it is better to wait for a
technician who will perform a fast intervention than to assign an
available technician with a slow intervention time.

3.2. Decision-making layer

This layer defines the actions that should be performed based on the
pending maintenance tasks and the information from the technician.
Sections 3.2.1 to 3.2.2, respectively, introduce the proposed RL, GA-
simheuristic, and DR to solve the dynamic maintenance scheduling
problem formalized in Section 3.1.

3.2.1. Reinforcement learning

During exploration, the RL agent has to select a technician and
machine to perform maintenance. One challenge consists in avoiding il-
legal actions such as “the selected technician is already working on another
machine” or “the selected machine is already under maintenance”. There
are usually two ways to solve this problem: (i) penalizing the illegal
actions of the agent with a negative reward; (ii) using an action mask
that allows the agent to select only actions that are valid and discard
exploring non-viable solutions. In the present paper, we propose to use
the Proximal Policy Optimization (PPO) (Schulman et al., 2017) with
action masking based on the Stable-baseline-3 (SB3) library
implementation. PPO is part of the policy gradient methods and ensures
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that the policy update stays close to the previous policy by optimizing
a clipped surrogate objective. The idea of action masking is to apply a
function directly on the raw logits of the actor’s network to prevent the
network from selecting actions as defined in 3.2.1-(6), where I(s) is the
logits generated based on state s and M is a large negative number. In
this way, the policy can prevent the selection of actions due to the zero
probability from the softmax function.

I, ifaq; isvalidin s
mask(1(s)); = . 5
M  Otherwise
7)(-|s) = softmax(mask(I(s))) (6)

3.2.2. GA-simheuristic

GA is a popular alternative for the static scheduling problem
(Németh et al.,, 2020), but it faces several challenges in dynamic
scheduling such as: (i) representing all the states of an MDP in a
chromosome may not be feasible, (ii) high execution time in relation to
the number of states, or still (iii) managing uncertainty is not possible.
To address these challenges, we adopt a strategy to obtain solutions in
every n step with the current state of the system where we combine
the genetic search for solutions using the MDP as a simulator. In our
GA-simheuristic (GA-S), the encoding of the chromosome, at time 7, is
a vector of the form [e, b, ¢], where:

e=ley,...,ey] e; € {0,1} @
b = [bg, ..., by pg—y)] beT (8)
c=[co, s pp—y] ¢, EZL 9

The elements of e represent whether a maintenance action will
be performed ¢; = 1, or if no action, ¢, = 0, will be performed
for each time step t. The elements of b represent which technician
will be assigned to perform the maintenance actions. The elements of
¢ represent which machine will receive maintenance. This encoding
allows one to preserve the sequential nature of actions. The vector e
will generate two new children, e! and e?, based on a point p, the
elements [e) : e;l;—l] of the child e! (as shown in Fig. 2 through &
symbol) will be permuted and the elements of [e} : ;] of the child e?
(as shown in Fig. 2 through ¥ symbol) will be permuted. Let us consider
n= f=0 e}, which is the number of maintenance operations that were
performed up to p. Now, similar to the previous operation, the vector
b and ¢ will generate two new children each, b', b2, ¢!, ¢ based on
#, the elements [b(lJ : b,17_|] and [bi : b|2M—1|] will be mutated to select
different technicians, while the elements [0(1) : C»;—I] and [cj_] : CIZM—Il]
will be permuted to change the order of maintenance operations. The

new children are then denoted by [e!,b!,c!] and [e2, b2, c?].

3.2.3. Dispatching rules

A simple way to perform maintenance scheduling is to establish
rules or guidelines to determine how and in what order maintenance
tasks should be performed. In this paper, we propose to use two rules
for scheduling, namely (i) First-In-First-Out (FIFO): the first available
task is assigned to the first available technician'; (ii) First-In-Best-
Technician (FIBT): similar to FIFO except that the available technicians
are evaluated regarding the maintenance task to be performed, the most
suitable technician — whose skills perform maintenance in the shortest time
— being assigned.

! In case the pairing cannot be performed, no maintenance action is
performed.
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Fig. 3. Schematic representation of the organizational structure in Section 4.

4. Result and analysis

In this section, we present the evaluation of RL, GA-S, and DR to
solve the dynamic scheduling problem previously defined (cf., Sec-
tion 3.1), along with a financial discussion. To ease understanding of
how this section is structured, we refer the reader to Fig. 3: Section 4.1
discusses the experimental settings, including how artificial/synthetic
data is generated to consider different degrees of uncertainty (Sec-
tion 4.1.1), how GA’s hyperparameters are chosen (Section 4.1.2), and
how real data from historical maintenance data from a manufacturing
industry are processed/transformed to model the dynamic maintenance
problem. Then, as highlighted in Fig. 3, both datasets (synthetic and
real) are used as inputs of our experiments, whose results are presented
and discussed in Section 4.2. Section 4.3 presents a case study on use
of a manufacturing industry. Section 4.4 presents a brief discussion of
the financial considerations to apply each policy in terms of the uptime
of the machines.

4.1. Experimental settings

4.1.1. Synthetic data

In reliability, the Weibull distribution is a continuous probability
distribution commonly used to model the time to failure (Sulewski &
Szymkowiak, 2022). It can be defined by 2-parameters, shape (f) and
scale (a) parameters as shown in (10).

ssam =L (X)) e 10
a \a

While the scale parameter represents a characteristic life, the shape
parameter can characterize a specific type of failure. This type of
failure can be observed in the bathub curve, where a < 1 represents
infant mortality, § ~ 1 a random failure, and # > 1 a wear-out
effect (Jayatilleka & McLinn, 2021), as shown in Fig. 4(a). In our
experiments, two degrees of uncertainty (low and high) for the failure
distribution and time to repair are considered, which leads us to define
four scenario configurations that combine all degrees of uncertainty.
To vary the uncertainty of the failure distribution, g € {1.2,3.0}
is defined, which represents the levels of uncertainty. These values
were selected to characterize the shape of the distribution where, 1.2
showed a skewed distribution while 3.0 tends to be a more symmetrical
distribution. p > 1 establishes a wear-out model in the components
where uncertainty decreases as f# — oo, reducing the spread of the
failures. Uncertainty in the time to repair is defined as ¢ € {0.5,1.5},
where uncertainty decreases as ¢ — 0. These values were chosen to
provide a stretched distribution, indicating lower degree of uncertainty
in the distribution of failures (close to 0) and a longer characteristic
of life being the components more resistant to failure, as shown in
Fig. 4(b). Let us note that the proposed MDP has an horizon of 168 steps,
equivalent to one week.
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(a) Bathtub curve representing different failure rates over time
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(b) Failure distribution and Time to repair with varying 3, and o~ param-
eters

Fig. 4. Illustration of failure rate and their corresponding phases in product life and model parameter uncertainty.
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Fig. 5. Comparative analysis of genetic algorithm parameters: (a) Crossover Rates, (b) Mutation Rates, and (c) Population sizes, over 24 steps.

Table 4

Parameter Configuration for GA-S.
Variable Value
Population Size 100, 250, 500

Mutation Rate
Crossover Rate
Stopping Criterion
Selection Strategy

10%, 30%, 40%, 50%
10%, 50%, 100%

5 min

Tournament

Table 5
Optimal genetic algorithm hyperparameters at each step interval.

Number of steps

1 2 4 6 8 12 16 20 24
Cross. 1.0 1.0 0.5 0.5 0.5 1.0 1.0 0.5 0.5
Mut. 0.3 0.3 0.5 0.4 0.5 0.1 0.1 0.1 0.1
Pop. 500 100 100 250 250 500 500 500 100

4.1.2. GA-S hyperparameter optimization

We conducted a series of experiments with the objective of finding
the best setting of the GA’s parameters: population size, mutation
rate, and crossover rate. To this end, a stopping time criteria (set
to 5 min) is defined, along with a tournament selection strategy.
Experiments are carried out 20 times with # = 2.0 and y = 1.0. In
total, 324 configurations are tested, which results from the combination
of 3 Population size x 4 Mutation Rate x 3 Crossover Rate x 9-step
configurations. In each of these configurations, the objective function
values are normalized to ease comparison and identification of the
best hyperparameter setting. Let us note that one of our goals is to
select a parameter setting that would be flexible and robust to any
operator’s decision to modify the number of steps when performing
dynamic scheduling. Table 4 summarizes the different hyperparameters
selected.

In the GA-S approach, a defined re-optimization period must be
defined to perform the rescheduling. In this respect, we propose to

define G € {1,2,4,6,8,12,16,20,24} in which the search for the optimal
solution will be performed. Although a timestep can be of different
unit time (sec, min, hour), we selected those numbers in reference to
a day (1 to 24), which means that one timestep refers to 1 h in our
environment. Figs. 5(a), 5(b), 5(c) show the performance comparison
between the different crossover rates, mutation rates and population
size against the other parameters. The x-axis shows the different num-
ber of steps in which the re-optimization/rescheduling is performed,
while the y-axis shows the values of the normalized objective function.
Fig. 5(a) presents the comparative analysis of various crossover rates in
all mutation rates and population sizes. The first configuration, which
involves 1-step rescheduling, executes the scheduling process 168 times
(as the MDP’s horizon is of 168 steps). At the other extreme, the 24-step
configuration carries out rescheduling only seven times, as it reaches
the end of the horizon. The values obtained are very close to each other
and it is difficult to conclude any trend with the crossover rate. Looking
now at Fig. 5(b), which shows the comparative analysis of various
mutation rates in all cases of crossover rates and population sizes, one
may note a slight improvement associated with a mutation rate of 0.1
against the others for most of the steps. Finally, Fig. 5(c) shows a com-
parative analysis of population sizes in different time steps. The results
suggest that a smaller population size is more advantageous in high-
frequency rescheduling, characterized by low time-step values, as it
enables increased crossover and mutation operations and enhances the
exploration of diverse solutions. However, by decreasing the frequency
of rescheduling, which leads to a higher complexity of the problem,
a larger population size becomes more effective as it covers a wider
range of solutions. As a summary, Table 5 gives insights into the best
configuration results per re-optimization period (G).

4.1.3. Real data transformation

In this section, we conduct the experiments on a real-life use case
from a manufacturing industry. We used 10-year historical mainte-
nance data in which we pre-processed the data to extract the parame-
ters for the maintenance duration and failure distribution.
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Fig. 6. Illustration of feature extraction methodology based on maintenance data.
Table 6
Comparative performance evaluation of RL, DR, GA, under different levels of uncertainty in Failure Distribution and Maintenance Duration.
Uncertainty Methods
Fail Dist Maint Dur RL D1 D2 Gl G2 G4
Reward MTTR Reward MTTR Reward MTTR Reward MTTR Reward MTTR Reward MTTR
High Low 27.40 4.03 23.68 6.05 23.99 5.90 27.51 5.83 26.71 5.86 26.56 5.81
Low Low 44.77 4.54 37.92 6.07 38.65 5.78 46.89 5.80 45.23 5.79 44.70 5.77
High High 27.19 4.90 25.37 5.96 25.77 5.65 27.64 6.84 27.15 6.60 26.81 6.40
Low High 45.01 4.74 39.47 6.04 40.28 5.76 46.43 6.71 44.74 6.50 43.95 6.44
Fail Dist Maint Dur G6 G8 G12 G16 G20 G24
Reward MTTR Reward MTTR Reward MTTR Reward MTTR Reward MTTR Reward MTTR
High Low 26.03 5.64 25.80 5.74 25.25 5.74 23.30 5.88 19.95 5.77 19.06 5.82
Low Low 44.18 5.62 43.01 5.76 41.44 5.93 37.54 5.93 32.94 5.75 30.73 5.77
High High 26.42 6.22 26.22 6.48 25.80 6.34 23.96 6.33 20.60 6.15 19.86 5.99
Low High 43.62 6.33 43.02 6.42 41.54 6.33 38.02 6.33 33.18 6.14 32.26 6.00

Each maintenance entry (ticket) k € D is characterized by the
following attributes:

+ Creation date and time (s, ) represents the specific date and time
when the maintenance ticket was created.

» Maintenance Duration (¢, ) denotes the total time taken to com-
plete the maintenance intervention

+ Technician Identifier (gq;,) represents the id of the technician
who complete the maintenance intervention

+ Failure type (f,) represents the type of failure that was addressed
by the technician on the maintenance intervention

All tickets in the maintenance records are chronologically ordered
based on their creation date and time s,.

Using this information, we performed a data processing to obtain
the values of u;;, 0;;, a;;, f;; that will be used to represent the dynamic
scheduling environment. The maintenance data is used to calculate
the Mean Time to Repair (MTTR) and Mean Time Between Failures
(MTBEF), as illustrated in Fig. 6. These Key Performance Indicators (KPI)
will be used to estimate the failure distribution and to determine the
maintenance duration of the technicians per failure.

To model the failure distribution, we subdivided D by an initial
filter into tickets by the type of failure /' € F and for each technician
j € T, resulting in subsets Df j. Consequently, D is represented as the
union of these subsets, denoted by D = | Df . For each subset Dfj,
the Time Between Failures (TBF) is determined by s, | —(s; +¢;) where
k € Dy; (see green samples in Fig. 6). To model the failure distribution,
we fit a two-parameter Weibull distribution using the Reliability
Library where we subsequently extracted a and p parameters. For the
Time to Repair (TTR) for each technician, represented by a normal
distribution, we added a second filter in addition to each failure type by
filtering for each technician. The TTR for each ticket k was computed
based on the duration ¢,, with these samples highlighted as orange

in Fig. 6. From this procedure, we calculated the average repair time
Hyj and the standard deviation o +; for each failure and technician
combination.

4.2. Comparative analysis

In this section, results of the comparative analysis of the methods
(RL, GA-S, DR) are presented and discussed. Let us remind ourselves
that (i) the performance evaluation of each method is done based on
Eq. (4) and considering the MDP defined in Section 3.1. The reader can
find hereinafter a few more experimental setting information for each
method:

* RL: the RL agent was trained using the PPO algorithm (Schulman
et al., 2017) based on the SB3 library. For the parameters of
PPO, we define the size of the networks for the actor and critic as
[256,256] for each. The total number of steps in the environment
to train the network is 3M with 250 epochs. The learning rate is
defined as a linear schedule from le=2 — 0 for the total training.
Other parameters follow the default settings in SB3. The PPO
policy converged after training for 13 h on 4 GPUs of Tesla
V100-SXM2-32 GB and 28 CPU cores;

GA-S: the implementation of the GA-S model is based on the
Pymoo library. We defined different numbers of steps in which
the search for the optimal solution will be performed based on
current information for the tickets (failures) and the availability
of the technicians. The scheduling is performed in every nG step
given that n € Z and 0 < nG < H;

DR: for the two DRs (FIFO, FIBT), there are no hyperparameters
to define. In each timestep, the rules perform an assignment based
on current information as described in Section 3.1.
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Fig. 7. Performance differential of RL, DR, GA across low and high uncertainty in Time-to-Repair and Failure Distribution.
Table 7
Wall-clock time (s) comparison of RL, GA, and DR for maintenance scheduling under differing degrees of uncertainty.
Configuration Methods
Failure Distribution Maintenance Duration RL D1 D2 G1 G2 G4
High Low 0.38 0.05 0.04 6317.05 563.27 226.32
Low Low 0.35 0.04 0.04 6681.33 606.27 237.62
High High 0.35 0.04 0.05 6186.50 537.95 226.43
Low High 0.38 0.04 0.04 6400.39 559.74 229.44
Failure Distribution Maintenance Duration G6 G8 G12 G16 G20 G24
High Low 582.09 417.07 1268.48 917.97 696.99 64.17
Low Low 598.62 437.04 1270.40 930.85 717.78 72.07
High High 582.41 416.96 1148.53 872.95 680.05 62.58
Low High 592.93 418.19 1171.24 894.28 665.13 68.41
The results for the comparison analysis are presented in Table 6 for Table 8
the three methods.2 We used the reward and the MTTR as performance Comparative Evaluation of reward, time-to-repair, and solving time for RL, DR, GA
o1 ’ . . A . methods using real data.
indicators as both provide different insights into the performance of Py L ~ - o = ”
. . . . . etric
the methods in scheduling. The MTTR provides information on the ef-
fectiveness of technician allocations in performing interventions, while Reward  11.38 6.83 5.52 685 7.06 6.97
h d d 1l health d d L. £ th MTTR 4.68 4.49 2.62 4.49 4.50 4.56
t e.rewar provides an .overa ealth an pr(? uctivity of the sy.stfem Time (5) 077 0.20 0.19 1047630  1061.07  569.52
as Tt measure .the working state of the machines and the remaining Metric co cs 2T a6 G20 Goa
maintenance time. In the case of the reward (Eq. (4)), the results
btained f RL and G1 ite similar: the total d obtained i Reward 6.76 6.78 6.66 6.57 6.15 6.62
o. aine .rom F an ar(? quite similar; the total reward o a1.ne %s MTTR 453 451 447 449 493 437
slightly higher in GA-S than in RL for the cases where the uncertainty is Time (s)  1203.02  887.39  2022.17  1580.30 1873.02  224.70

low for the failure distribution, but the performance of RL — compared
to GA-S — increases along with the increase of uncertainty in the failure
distribution. This finding can be visualized in Fig. 7 where we display
the difference between RL, D2, and GA-S for 1 step (every hour), 8
steps (every shift), and 24 steps (every day). The biggest impact on the
reward is influenced by the uncertainty of the Failure Distribution. With
the RL approach, the results show that there is a tendency to obtain bet-
ter results when there is less unpredictability in the Failure Distribution
even if there is high uncertainty on how long the maintenance will take.
In contrast, the GA approach shows the opposite response under similar
conditions. On the other hand, when the uncertainty in the Failure
Distribution is high, it is the GA methods that improve the rewards,
while RL method’s rewards decrease. Regarding DR, even if the meth-
ods provide lower rewards, the reward increases when the uncertainty
in both Failure Distribution and Maintenance Duration increases. This
difference highlights the behavior of the methods under uncertainty
and which method might be more reliable under different conditions.
Regarding the MTTR, RL showed superior performance, consistently
achieving lower values compared to the other methods, including D2,
which is responsible for choosing the best technician. This suggests that
RL is an effective approach for the maintenance process, leading to a
better allocation of resources and a reduction in operational downtime.
In the case of DR methods, there is an exceptional behavior for the high

2 We remind the reader that G1, G2, G4,..., G24 refer to the use of GA-S
considering different re-optimization periods for generating the re-scheduling
(i.e., every hour, 2 h, 4 h,..., 24 h).

10

uncertainty in the Failure Distribution and the Maintenance Duration,
where a decrease is observed in the MTTR for both D1 and D2.

Let us now analyze the wallclock time it takes to make inferences
for each of the methods, whose results are given in Table 7 (note:
inferences were run on a MacOS Ventura with 2.6 GHz 6-Core Intel
Core i7 on the processor and 32 GB 2667 MHz DDR4 on RAM). It can
be observed that the method that obtains the results in the shortest
time is DR, followed by RL, and finally GA-S. The wallclock time
taken by GA-S to obtain the results for each step (1 h step) is higher
(~ 1.72 on average) than the time needed to calculate the steps (1 h),
which makes it not applicable in real-time settings with our current
computational resources. We should mention that there is no linear
relationship between reducing the number of steps and the complexity
of the problem when applying GA-S to this problem. When we perform
the scheduling in each time step, we have to perform 168 schedules
that represent 168 h (equivalent to 1 week); however, the number of
interventions to be performed will be significantly reduced because
in each schedule we solve certain active tickets. On the other side,
reducing the frequency of scheduling involves greater complexity by
having more active interventions due to the cumulative tickets that are
being generated in each step of time for which we do not perform any
action. This effect can be seen as the computational time decreases in
G1, G2, and G4, but increases in G6, and increases again from G8 to
Gl2.



M.L. Ruiz-Rodriguez et al.
4.3. Use case study of a manufacturing industry

We present here the real-life case study using 10 years of histor-
ical maintenance data from a manufacturing company. To do so, we
conducted the analysis described in Section 4.1.3, which resulted in
the derivation of 100 Weibull distributions for all types of failures
and machines and 8 technicians. For this, ten representative Weibull
distributions were chosen with sufficient samples at the fitting time,
and making sure they are satisfying specific criteria. Among other
criteria, a shape parameter greater than 1.0 and the distributions with
a low scale parameter is expected, which eases the execution of the
experiments since the failure distributions happen in a short amount of
time modeling a wear-out degradation. Let these ten distributions be
represented by lists «,,,, and f,,,;, with ten values each representing
the scale and shape parameters of a Weibull distribution, respectively.
Our experiments are based on a set of 100 Weibull distributions formed
by combining the values of «,,, and §,,, defined as:

{(W(s,k) . 5 € oy k € Proar}

The results, presented in Table 8, reveal important insights of the
behavior of the scheduling methods for the real-based scenario.

* GA-S shows a minimal variation for the different reschedule
frequency, suggesting that the occurrence of failures is prolonged.
Consequently, having a lower frequency reschedule (e.g. 24 h
reschedule) offers optimal benefits in terms of wallclock time, as
frequent rescheduling does not provide significantly benefits.

RL once trained, shows a shorter inference time compared to GA-
S. This efficiency translates into significant time savings when
used recurrently, as illustrated in Fig. 8. Furthermore, the results
presented show that the reward is considerably higher compared
to the other methods indicating how well RL methods deal with
real data distributions to keep machines in a working state.

DR present lower reward than comparing with the best model
of the other methods. However, the D2 variant of DR effectively
reduces MTTR by assigning the best technicians compared to
GA and RL. This trade-off between suggests that although D2
optimizes technician assignment, it may not adequately address
the complexity of the environment, particularly in prioritizing less
frequent but critical failures.

Based on these findings, selecting the appropriate scheduling method
involves a strategic decision. While GA-S may be less efficient in
terms of computational time, its consistent results across rescheduling
frequencies is suitable for a more stable and less complex parameter
tuning, in addition, it presents a well-balanced solution between the
reward and MTTR. In contrast, the RL approach is highly time efficient
and generates higher rewards, making it attractive for operations that
need high uptime. Lastly, rule-based methods are an alternative without
the need for parameter selection that demonstrates excellent perfor-
mance in minimizing the MTTR with a low computational time. Each of
these methods presents benefits and challenges that the decision maker
should consider.

4.4. Financial consideration

The objective of the proposed model is to minimize the downtime
of the equipment which leads to the reduction of the maintenance
duration. It should be noted that several costs are involved in the
maintenance operations, including e.g. the type of maintenance per-
formed. Imperfect maintenance allows to restore the equipment to a
previous state by extending the RUL of the component or equipment,
or replacement operation, whose purpose is to restore the equipment
as good as new by substituting the component by a new (or almost
new) one. The cost of these different types of maintenance can vary
significantly, with maintenance replacement operations generally being
more expensive. In addition, if the component of an equipment cannot
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Fig. 8. Wall-Clock time required by RL, G1, G8, G24 for scheduling over different
periods of time.

receive maintenance because it reaches its useful life, a spare part
needs to be installed. This is one of the most significant costs after
a breakdown especially for high-end equipment. Another factor to
consider is the cost of the workforce. Indeed, maintenance operations
require skilled technicians who can perform maintenance with different
degrees of quality, not only by reducing the MTTR but also maximizing
the MTBF. On the business side, a decision maker needs to consider the
advantage of extending the lifespan of the equipment to keep a high
production against the cost of performing maintenance considering
spare parts, technicians, type of maintenance, among other factors.

5. Conclusion and future work

Maintenance scheduling implies to deal with different types of
uncertainties, spanning from the maintenance duration (which may
highly vary depending on the assigned technician) to RUL estima-
tion/approximation or unexpected changes in the production schedule.
While metaheuristics and some extensions (e.g., Simheuristics) have
been widely used to deal with stochastic combinatorial optimization
problems, Reinforcement Learning is increasingly used in all sectors
due to democratization of AI/ML.

To the best of our knowledge, no research study has ever analyzed
how such methods - RL, GA-simheuristic and traditional dispatching
rules (DR) in the present paper — perform when faced with different
levels of uncertainty in the scheduling problem. The present paper
overcomes this lack of study by considering two types of uncertainty
as part of the stochastic scheduling problem (uncertainty about ma-
chines’ failure distribution and time to repair of technicians), with
the overall goal to increase machine uptime and reduce mean time to
repair, while minimizing wallclock time. Experiments are carried out
considering both artificial/synthetic data and a real-life use case with
a manufacturing company (using 10 years of maintenance data). The
experimental results indicate that RL shows an exceptional adaptability
to decrease the MTTR, especially in the face of high uncertainty.
Overall, GA-S performs well in several scenarios, particularly when the
re-optimization frequency is high (re-optimized every hour), but has
the disadvantage of having a high inference time. Finally, DR policies
provide a computationally efficient solution for fast decision making
under resource constrained conditions. For example, in the case of
the real-life use case, DRs obtain high performance in reducing the
time to repair compared to RL and GA-S. Although the exploration
space is large, the complexity of the environment is low, managing to
outperform in terms of MTTR.

In future work, we plan to consider hybrid approaches to take
advantage of the strengths of the different methods (e.g., computational
efficiency that can reflect the carbon footprint) while mitigating their
weaknesses. In addition, we will investigate uncertainty as a continuous
parameter to comprehensively assess its different effects and trade-offs.



M.L. Ruiz-Rodriguez et al.

Finally, we seek to consider the uncertainty of the production processes
and machine degradation to perform an opportunistic scheduling and
look for the best time window to optimize the MTTR, but also to
maintain a high production that turns into economic benefit.
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