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Abstract. In this paper, a technique for the Berlekamp-Massey(BM)
algorithm is provided to reduce the latency of decoding and save decod-
ing power by early termination or early-stopped checking. We investigate
the consecutive zero discrepancies during the decoding iteration and de-
cide to early stop the decoding process. This technique is subject to
decoding failure in exchange for the decoding latency. We analyze our
proposed technique by considering the weight distribution of BCH code
and estimating the bounds of undetected error probability as the event of
erroneous stop checking. The proposed method is effective in numerical
results and the probability of decoding failure is lower than 10−119 for
decoding 16383 code length of BCH codes. Furthermore, the complexity
compared the conventional early termination method with the proposed
approach for decoding the long BCH code. The proposed approach re-
duces the complexity of the conventional approach by up to 80%. As a
result, the FPGA testing on a USB device validates the reliability of the
proposed method.

Keywords: BCH code, BCH decoding, Berlekamp-Massey algorithm,
low latency design, early stop, early termination.

1 Introduction

Flash memory [1] performs as the main non-volatile storage device, and the flash
interface unit is applied for system-on-chip (SoC) products. The market size of
NAND flash memories is still growing and is projected to see a compound annual
growth rate of 6.39% [2]. Flash memory provides a low-power solution for storage
systems [3] and, small size and the light form factor are the essential properties
for this type of storage. In the SoC applications, all of the boot information
is generally stored in flash memory. The flash memory includes a number of
partitions for the boot loader code and the flash file system is created in the flash
memory [4]. The DMA interacts with the error control coding (ECC) block [5],
which provides two main purposes. The first is to generate the ECC bytes and
program in the spare area, and the second is to correct the data in the data buffer.
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Consequently, the ECC engine is a critical issue regarding system performance.
The chip area is dominated by the ECC decoder, comprising a high percentage
of the flash controller [6].

The Bose-Chaudhuri-Hocquenghem (BCH) code has become the ultimate so-
lution for the ECC engine in recent years. In coding theory, the BCH codes form
a class of cyclic error-correcting codes that are constructed using finite fields. The
decoding algorithm is based on a feasible implementation where the Berlekamp-
Massey (BM) algorithm [8] has been widely selected in typical examples. The
complexity of the decoding is competitive with respect to the BM properties of
the linear feedback shift register. However, system latency suffers from larger t
error correction capability which requires 2t iterations of conventional BM de-
coding and common applications require high error-correcting capability. The
long decoding time has become a bottleneck in the system performance while
using BM decoding. The error distribution for flash memory shows that few er-
rors at the beginning of its usage and the low number of errors dominate the
majority of the probability that will occur within a code block. In order to over-
come this degradation, early termination of BM decoding is necessary to improve
the system performance for high-speed applications. In [9], the authors adopt a
restricted Gaussian elimination on the Hankel structured augmented syndrome
matrix to reinterpret an early-stopped version of the Berlekamp-Massey algo-
rithm. This approach has proven the minimal iterations t+ e of the Berlekamp-
Massey algorithm where e is the number of error bits. Following the thread
of [10], the author presents a feasible approach for early termination but the
investigation of malfunction probability was present in [11].

In this paper, the probability of decoding failure is considered in exchange
for early-stopped BM decoding feasibility. The proposed technique terminates
conventional BM decoding after less than t+ e iterations so as to reduce redun-
dant latency. However, the proposed technique is subject to the decoding failure
problem. The probability that a detection error will occur must be evaluated
to ensure the reliability of the proposed approach. Consequently, we propose
an early-stopped technique for BM decoding by observing certain conditions
while performing decoding iterations. In Section II, we present the early-stopped
checking procedure of BM decoding by observing consecutive zero discrepancies.
Since zero discrepancies provide the information of detectable decoding, it is an
interesting problem to estimate the undetectable decoding after consecutive zero
discrepancies. We provide an estimation of the erroneous early-stopped checking
by means of the probability of undetected error probability in [7]. After com-
bining the early-stopped checking criterion in [10], we propose our approach.
In Section III, the complexity analysis is presented to compare with the con-
ventional early-stopped BM approach. In Section IV, the numerical results are
presented to evaluate the feasibility of a practical application. Conclusions are
presented in Section V.
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2 Early stopped approach based on the view of
discrepancy for the BM algorithm

In coding theory, BCH codes [12] [13] are constructed using polynomials over a
finite field (also called the Galois field and is denoted as GF(q)). One of the key
features of BCH codes is that, during code design, there is precise control over
the number of symbol errors that are correctable by the code. In particular, it
is possible to design binary BCH codes that can correct multiple-bit errors in
discrete distribution under a correction capability of t bits. Another advantage of
BCH codes is the ease with which they can be decoded, namely, via an algebraic
method known as syndrome decoding. This simplifies the design of the decoder
for these codes, using small low-power electronic hardware.

BCH codes are used in applications such as satellite communications, com-
pact disc players, DVDs, disk drives, solid-state drives, etc.

There are many algorithms for decoding BCH codes. The most common
follow this general outline:

1. Calculate the syndromes for the received vector
2. Determine the number of errors v and the error locator polynomial N(x)

from the syndromes
3. Calculate the roots of the error location polynomial to determine the error

locations Xi

4. Calculate the error values at those error locations
5. Correct the errors

The decoding algorithm may determine that the received vector contains too
many errors and cannot be corrected. For example, if the number of errors is
greater than the correction capability, then the correction would fail. In a trun-
cated (not primitive) code, an error location may be out of range. If the received
vector has more errors than the code can correct, the decoder may unknowingly
produce an apparently valid message that is not the one that was sent.

In order to determine any possible solutions to shorten the BM decoding
process, based on the result in [10] and [9], we classify the solutions in two
conditions as follows.

Condition 1:
For the u-th iteration of the BM algorithm, the discrepancy at iteration u is
presented as du, and any discrepancies in the next t-lu-1 steps of the iteration
are zero.

Condition 2:
If the number of errors in the received polynomials is v, only t+v steps of the
iteration are needed in order to determine the error-location polynomials.

2.1 Heuristics for consecutive zero discrepancies

Following the thread of Condition 2, the probability of the erroneous event based
on the view of the discrepancy is investigated as follows. The discrepancies in
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certain iterations equal to zero, as shown in Condition 1 represent the detection
capability reach in a certain level of lu iterations, i.e. lu = v, where v is the
number of error bits hypothesized by our proposed approach.

Heuristic 1: Let a BCH code ζ have minimum Hamming distance d ≥ 2t+1
and consider that ζv+κ ⊂ ζ denotes a BCH code subset with minimum Ham-
ming distance ds ≥ v + κ and κ is the number of consecutive zero discrepancies
for the v-th iteration of BM algorithm. The next κ steps actually occurred with
v + κ ≤ 2t. Rationale: The Hamming distance for the received codeword r and
the transmitted codeword c is presented as d(r, c) = i, i < t, where c ∈ ζv+κ.

Heuristic 2: The error pattern ξ defects the codeword c, it can also be
presented as r = c + ξ and d(r, c) = d(ξ, c). Rationale: Assume e = v and
e denotes the exact number of error bits caused by the channel without the
decoding fault. Otherwise, a malfunction occurs when the location of the error
pattern is beyond the detection capability at lu = v+κ iteration which indicates
the case of v + κ < e.

2.2 Numerical Analysis of fault probability for the proposed early
stopped technique

Based on the above heuristics, the error event of observing consecutive zero
discrepancies during decoding iterations is investigated as follows. A non-zero
discrepancy occurs after performing v+κ BM decoding iterations and the code-
word c ∈ {ζv+κ − ζ} which results in the proposed technique failing to provide a
correct BM decoding. Hence, the probability of malfunction is given as follows.

Pmf = p[v + κ < e] =

t∑
i=0

P [d(r, c) = i|c ∈ ζi+κ − ζ]

=

t∑
i=0

P [d(ξ, c) = i|c ∈ ζi+κ]− P [d(ξ, c) = i|c ∈ ζ] (1)

According to [7], the bounds of the probability Pud that an undetected error will
occur can be bound by the assumption of a long codeword length n and m is
equal to the message length,

Pud =

t∑
i=0

P [d(ξ, c) = i|c ∈ ζ] ∼= 2−mt
t∑

s=0

(
n

s

) n∑
h=t+1

(
n

h

)
εh(1− ε)n−h (2)

The undetected error probability of the difference between upper and lower
bounds is limited to 1%. We further extend the bounds of the probability of
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an error pattern given by [14] and [7]. The conditional probability of a BCH
code ζd

′
that has minimum Hamming distance d′ is interpreted as follows.

P [d(ξ, c) = i|c ∈ ζd
′
] ∼=

n∑
h=(d′+1)/2

(
n

h

)
εh(1− ε)n−h (3)

Substituting (3) into (1), the probability of malfunction can be estimated as

Pmf ∼= 2−mt[

t∑
s=0

(
n

s

) n∑
h=(s+κ+1)/2

(
n

h

)
εh(1− ε)n−h

−
t∑

s=0

(
n

s

) n∑
h=t+1

(
n

h

)
εh(1− ε)n−h] (4)

Furthermore, (4) can be simplified further by bounds of the type considered
in [7] and define λ1 = (s+ κ+ 1)/(2n) and λ2 = (t+ 1)/n.

Pmf ∼= 2−mt
t∑

s=0

(
n

s

)
[2−nE(λ1,ε) − 2−nE(λ2,ε)] (5)

where E(λ, ε) is the relative entropy between the binary probability distribution
λ and ε.

E(λ, ε) = H(ε) + (λ− ε)H(ε)−H(λ) (6)

= λlog2(λ/ε) + (1− λ)log2((1− λ)/(1− ε))

Based on the above observing dj discrepancies during BM iteration, we illus-
trate the proposed early-stopped checking method, which is described below.
The proposed method is denoted as the early-stopped(ES) version, and we pro-
vide three different versions. For BM decoding of the j-th iteration, we observe
the following discrepancy based on the proposed method. We denote that δmax
represents the maximum error location degree of the BM algorithm.

Algorithm 1 ES version 1

Beginning from j = 4 as j-th iteration of the BM algorithm, verify the following steps:
1. Check Case A: t+ δmax/2 = j
2. Check Case B: dj , dj−1, dj−2 and dj−3 are all zero.
3. If Case A and Case B are satisfied, terminate the BM decoding. Otherwise, proceed
to the next BM iteration and return to Step 1.
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Algorithm 2 ES version 2

Beginning from j = 6 as j-th iteration of the BM algorithm, verify the following steps:
1. Check Case A: t+ δmax/2 = j
2. Check Case B: dj , dj−1, dj−2, dj−3, dj−4, dj−5 are all zero.
3. If Case A and Case B are satisfied, terminate the BM decoding. Otherwise, proceed
to the next BM iteration and return to Step 1.

Algorithm 3 ES version 3

Beginning from j = κ as j-th iteration of the BM algorithm, verify the following steps:
1. Check the Case A: dj , dj−1, ..., dj−κ+1 are all zero.
2. If Case A is satisfied, terminate the BM decoding. Otherwise, proceed to the next
BM iteration and verify Step 1.
κ is set to 4, 5 or 6 before simulation.

ES version 1 in Algorithm 1 for checking 4 consecutive zero discrepancies and
ES version 2 in Algorithm 2 for checking 6 zeros are presented to summarize a
combination of early-stopping approaches considering [10] and our technique.
However, ES version 3 in Algorithm 3 is the main core of our proposed approach
to reveal the best complexity reduction.

3 Complexity analysis

The early stopped technique saves processing time and lowers power consump-
tion. In this section, the analysis of multiplicative complexity is presented. Thanks
to the author in [9] the upper bound of complexity analysis can be applied to
evaluate the proposed technique by comparing it with the conventional BM al-
gorithm and its related early-stopped technique. Since our proposed technique
stops the conventional BM algorithm by certain conditions, the complexity of de-
coding can be computed by considering stopping the conventional BM algorithm
at e+κ iterations. Following the thread in [9], the multiplicative complexity CES3
of the proposed ES version 3 is upper bound by 2e(e + κ) − 1 which require at
most e+κ steps to check the discrepancies dj . We summarize the comparison in
Table I to show the merit of our proposed technique. e denotes the exact number
of error bits caused by the channel. To compare with the proposed technique, the
conventional BM algorithm, and conventional early-stopped technique enjoy low
complexity when decoding the short codeword BCH code with a small t. How-
ever, the complexity of our proposed technique is not related to the parameter t
and is only dominated by e2+eκ which is quite beneficial for decoding long BCH
code with larger correcting bits t. The complexity analysis results contribute to
applications such as NAND flash and future satellite communication. A 16384
code length BCH code with large t = 72 is considered. For an example of t = 72,
e = 2 and κ = 6, 1− CES3/CESBM denote as the complexity reduction ratio of
the proposed technique is equal to 79%. We present the complexity reduction ra-
tio in Fig. 1 and the proposed technique can reach up to 80% improvement over
the early-stopped approach in [9]. The complexity reduction comes from taking
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the risk of decoding failure. Hence, we investigate the probability of decoding
failure for the proposed technique in the following section.

Table 1: COMPARISON OF UPPER BOUNDS OF FINITE-FIELD MULTIPLICA-
TIVE COMPLEXITY

CESBM [9] CHV CBM CES3
te+ e2 − 1 2te+ 1

2
(e2 − e) 2et− 1 2e(e+ κ) − 1
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Fig. 1: The complexity reduction of the proposed technique with t=72.

4 Numerical results

The proposed early stopped technique has the capability to reduce the decoding
latency. For example, the case of t error correcting which is equal to 72 leads to a
huge cost of the area to implement the BCH decoder and the decoding latency of
BM decoding degrades the system performance of the DMA accessing the flash
memory. The authors in [7] obtained bounds on the probability of undetected
errors in binary primitive BCH codes by applying the result to the code and
showed that the bounds are quantified by the deviation factor of the true weight
distribution from the binomial-like weight distribution. This approach presents
a promising prediction for us to investigate that a long primitive BCH code can
be robust to applying an early-stopped technique for a NAND flash system.

First, we consider a BCH code with a length that is equal to 31 in GF (25),
and that can correct t = 3, which has an outcome of 231 codewords. During the
decoding of the received codewords used to compute the discrepancy, we consider
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Table 2: A FAILURE CASE OF EARLY STOPPED CHECKING

Discrepancy > 0 0 0 d’

BM iteration 1 2 3 4

the following case in Table II. If we observe that the number of discrepancies is
consecutively zero, we can compute the probability of a failure event occurring
if d’ is equal to non-zero. A conditional failure event can cause the proposed
method to fail to decode a correct codeword which is subject to the observation
of consecutively zero discrepancies. Consequently, it is interesting to investigate
how should we set the parameter κ. The probability of erroneous early-stopped
checking for the proposed ES version can be calculated using equation (5). In
Fig 2, a BCH code with a length 1024 and t = 17 is presented to show that the
highest probability of an erroneous event for proposed ES version 3 is 1.63752×
10−12 for κ = 1, 1.7629 × 10−15 for κ = 2 and 1.77413 × 10−18 for κ = 3
respectively. As a result, we trade the failure probability with the early-stopped
technique is not good enough while we use κ = 1, 2, 3. In particular, a threshold
of κ is set as κ > 4 to obtain the result with the probability of an erroneous
event as 1.7005× 10−21 for κ = 4 and 1.85605× 10−26 for κ = 6.
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Fig. 2: The probability of undetected errors during early termination checking for ES
version 3 using GF (210) BCH code t=17.

Furthermore, we show that the problem of decoding failure caused by early-
stopped techniques can be neglected with the nature of long BCH codes. By
using equation (5) as shown in Fig 3, a BCH code with a length 16384 and
t = 72 is presented as an example to reveal the effectiveness of the proposed
early-stopped checking method. For ES version 3 with κ = 6, the highest prob-
ability of undetected errors is calculated as 6.49437× 10−119 over the cross-over
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probability at 2.5 × 10−3. It can be shown as an example that ES version 3
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Fig. 3: The probability of undetected errors during early termination checking for ES
version 3 using GF (214) BCH code t=72.

provides a reliable result for early termination checking by observing that the
number of discrepancies is consecutively zeros. For practical applications, the
proposed ES version 3 should be considered to prevent decoding failure over
the firmware and decoder commuting period. As a matter of fact, the reliability
of the early stopped method is the major concern for the flash controller rather
than comparing the performance. If the detection failure occurred from the BCH
decoder, the credibility of hard decoding would collapse. To address this issue,
this paper focuses on the practical consideration of investigating the malfunction
probability in this sense. To evaluate the credibility of the proposed method, we
have given a complete test sample based on an FPGA board from the Altera
family Statix II which operates at a clock rate of 110Mhz and uses BCH code
length of 16384 that is suitable for a USB firmware testing. The system through-
put is set to 480Mbps based on the USB 2.0 standard. The whole test sample
quantity has a great amount of 5.9793×1035. Each test sample contains the data
package of 3 BCH code blocks and the code length is 16383 using GF (214) BCH
code t=72. This result means that we never encountered any decoding failure
during the time using a storage device based on the proposed design.

5 Conclusion

We have provided a practical solution for early termination checking while de-
coding BCH code. The complexity analysis and numerical results are presented
to show the merit of the proposed technique which is suitable for long and large
error-correcting capability of BCH code with complexity reduction up to 80%
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over conventional early-stopped approach in [9]. The decoding failure is success-
ful in exchange for decoding latency since the numerical result illustrates that
the probability of undetected errors is lower than 6.49437× 10−119 for GF (214)
BCH code t=72. The FPGA testing on a USB device using 16384 code length
of BCH code has been implemented to justify the reliability of the early termi-
nation checking strategy and the number of testing samples is accumulated up
to 5.9793 × 1035. This approach is shown to provide a solution for a practical
design.
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