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Abstract

Model robustness weaknesses significantly hinder the adoption of ML-enhanced
systems in critical real-world contexts. Adversarial examples and the natural decay
of model performance over time (known as distribution drift) are major challenges.
Current methods of evaluation do not sufficiently take into account the real context
and can lead to misleading evaluations. While methods to evaluate robustness
against adversarial examples in Computer Vision (CV) and Natural Language
Processing (NLP) are well-studied, their application to tabular data remains
scarcely explored. These methods often produce unrealistic feature vectors that do
not represent feasible domain objects. Additionally, existing approaches to mitigate
performance decay often overlook practical issues like labeling and deployment
delays, leading to an overestimation of their effectiveness. In collaboration with
BGL BNP Paribas, we address these challenges by demonstrating the importance of
realistic robustness evaluation for ML models in critical contexts. The contributions
of the thesis are as follows. We improve the evaluation of critical industrial systems
by proposing attacks that generate more realistic adversarial examples. Specifically,
we propose three algorithms that produce adversarial examples that satisfy domain
constraints (a necessary condition for the example to occur in reality). We develop
new defenses to robustify models against such adversarial examples by combining
synthetic data generators with adversarial training (a process in which adversarial
examples are integrated into the training). These defenses together with the realistic
evaluation of models’ robustness form TabularBench, a benchmark providing 200+
models across 5 datasets trained with 14 different training methods. We are
confident that our benchmark will accelerate the research of adversarial defenses
for tabular ML. We apply our contributions to a real-world use case from BGL
BNP Paribas and show how our defenses can robustify critical ML systems. As a
final contribution of this thesis, we consider the robustness of critical systems to
distribution drifts that produce performance decay. Inspired by a real-world use
case from BGL BNP Paribas, we reassess model retraining strategies by considering
industrial constraints such as labeling and deployment delays. Using a realistic
protocol, we benchmark 17 retraining strategies and find that ignoring delays
overestimates effectiveness and alters method rankings. The optimal drift detection



method without delay does not remain optimal if delays occur, highlighting the

necessity for realistic evaluation protocols. Overall, the objective of this dissertation

is to bridge gaps between the current assumption of evaluating and robustifying

ML models in the literature and the reality of ML models deployed in critical
s industrial systems.
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Introduction

With Machine Learning (ML )-based systems becoming the preferred means of
automating the processing of large amounts of data, the question of their
robustness is of utmost importance. Yet, testing the robustness of such ML-based
systems still poses challenges to practitioners. After introducing existing
approaches to evaluate and improve the robustness of ML models, we introduce the
challenges that appear when applying these methods to critical industrial systems.
Finally, we present the three contributions of this dissertation and how they tackle
the identified challenges.

Contents
1.1 Context . . .. . . ¢ i i i i ittt it e 2
1.2 Challenges in Evaluating and Building Robust ML
Systems . . . . .. e e e e e e e e e e e e e e e e e e e 4
1.3 Overview of contributions . ... ............. 6
1.4 Structure . . ... ... .. i e e 8
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1.1 Context

Machine Learning (ML), a subset of Artificial Intelligence, represents one of
the most significant technological advancements of the last two decades enabling
computers to learn from data without being explicitly programmed and driving
innovation across various industries, such as finance [GCG™20], medical [RIZ17]
or cybersecurity [PPC*20]. The rapid adoption of ML can be attributed to several
key factors. On the ML model’s developer side, the availability of large amounts of
data, the advancements in computing power lowering its cost, and the development
of sophisticated algorithms enabled by open source framework have facilitated
the industrialization of ML models. On the consumer side, recent development of
generative models (e.g. ChatGPT) and their accessibility have contributed to the
popularity of ML.

The industrial partner of this dissertation, BGL BNP Paribas Luxembourg has
leveraged recent advances in Machine Learning to improve their daily operation.
Specifically, BGL employs ML algorithms to identify and quarantine suspicious
transactions for manual inspection. This system has proven effective, accurately
classifying up to 80% of transactions, thereby minimizing human effort and reducing
risks for the bank. However, obstacles related to the technology continue to pose
difficulties for the spread of ML technologies both within the bank and in other areas.
Critical industrial systems are software and hardware systems that are essential
for the safe and reliable operation of industrial processes. The failure of these
systems can result in catastrophic consequences, including loss of life, significant
environmental damage, and substantial financial loss. A challenging issue that
critical industrial systems face is the robustness of their ML models. We broadly
define the robustness of ML systems as the degree to which a model’s performance
changes when confronted to a data distribution unseen during training. The
extreme case of distribution change between training and production is caused by
adversarial examples. Adversarial examples are carefully altered original examples
that preserve the semantics for a human observer but cause the model to output
wrong decisions. Another challenge of ML robustness is distribution drift, which are
unforeseeable change in the testing distribution of examples over time. For instance,
in the financial industry, the recent Covid-19 crisis has reshaped the economic
landscape and therefore can cause distribution drift in ML financial systems. In
this dissertation, we study these two phenomena in the context of critical industrial
systems.

To enable the secure deployment of ML models in critical systems it is important
to evaluate their robustness to adversarial examples. The standard approach to
assess the robustness of a model is known as adversarial testing. To conduct
adversarial testing, we use an adversarial attack to generate adversarial examples
from the testing set and evaluate the accuracy of the model over the generated
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adversarial examples. Adversarial attacks operate over the problem space or the
feature space. Attacks operating in the problem space manipulate real-world objects
such as malware [CSD19], which are then numerically represented in the feature
space before being fed to the ML models. Such attacks usually suffer from long
execution times [DGS*22| and require important engineering effort to adapt to
different domains. Attacks operating over the feature space directly manipulate
the feature representation of real-world objects, such as the pixel values of images
in computer vision [GSS15; SZST13a]. Recent studies [GCGT20; TWT*20] have
shown that a major limitation of feature space attacks is the lack of realism of the
examples they generate. Often, the resulting samples do not correspond to real-
world objects. Although the generated example successfully evades the ML model
in controlled experiments, they would not be feasible in industrial settings and
therefore are not valid proxy to evaluate the robustness of industrial systems. The
lack of realisticness arises from attacks perturbing examples without considering
domain constraints. In the problem space, domain constraints define what are valid
objects. For example, for BGL, a valid transaction must have a positive amount.
This problem space constraints directly translate to the feature space. In the feature
space, constraints arise as a direct translation of problem space constraints or as a
result of the feature engineering process. For example, financial systems feature
engineering involves computing statistical values on the history of transactions
over a period of time. In a valid feature space example, the feature representing
the minimum transaction amount should have a lower value than the feature
representing the average transaction amount. Adversarial attacks usually only
consider boundary constraints on the feature values and not the whole spectrum of
domain constraints, hence they fail to generate valid adversarial examples.

Another important consideration for deploying reliable ML models in critical
systems is their robustness to distribution drift, particularly, drift that causes a
decline in the model’s performance over time. Our industrial partner has observed
such a distribution drift and estimates, that when left unsupervised, distribution
drift causes such degradation of performance that a complete reengineering of the
system is necessary every year. Multiple solutions to the problem of distribution
drift have been proposed in the literature. The first family of methods involves
retraining the model periodically (baseline) or when a drift is observed in the
distribution. Methods have been proposed to detect drift in the input distribution
[KVDT14; QAWT15; Inc22; VKV 22| or in the error rate of the models [Pagh4;
GMC*04; BCF106; BG07a; FCR*15; RHS20|. Literature on data drift detectors
often evaluates the capacity of the detector to identify drift in the data distribution
but not how this detection method can help when integrated into an ML retraining
schedule. On the other hand, the error drift detector evaluation protocol supposes
that labels are available for retraining and that the model is directly available
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after training. On the contrary, for our industrial partner, there is a delay in
labeling incoming samples. Additionally, developed ML models must undergo a
(partly) manual validation phase which also introduces delays. Another approach to
managing distribution drift is online training introduced in [WK96]. Online training
involves updating a model’s parameters - and consequently its decision-making
- iteratively each time a new example is introduced into the system. However,
this approach is unsuitable for critical industrial systems, as it conflicts with
the requirement to thoroughly test a system’s robustness before deploying it in
production.

1.2 Challenges in Evaluating and Building Ro-
bust ML systems

Adversarial attacks and distribution drift are two major threats to the robustness
and therefore adoption of ML systems in critical domains. In computer vision
and natural language processing, methods have been proposed to evaluate and
robustify ML models against these two challenges. However, the applicability of
these methods to the particularities of tabular data, often used in critical industrial
systems remains scarcely explored. In particular, the following challenges arise
when applying robustness evaluation and enhancement to real-world critical systems
such as the one of BGL BNP Paribas.

1. Realistic robustness evaluation of critical systems against adversar-
ial examples.

As aforementioned, adversarial testing is a process where the model developer
generates adversarial examples using the strongest adversarial attack available
and measures the accuracy of the model under test for these examples. The
challenge lies in the realisticness of the examples produced by the attack.
In image classification, the domain of definition is straightforward: if all
elements of the input vector (each corresponding to a pixel) are in the interval
[0,255], the vector represents a valid image. However, critical industrial
systems are often based on tabular data, for instance in finance [GCGT20)]
and cybersecurity [CO19a]. With tabular data, the input vector is composed of
features and represents a domain object, such as a history of transactions. The
transformation from the domain object space to the feature space naturally
creates constraints in the feature space that must be satisfied for the examples
to be valid and realistic. For example, in a transaction system, the feature
average amount in the last ten days must be lower or equal to the feature
mazximum amount in the last ten days. To correctly assess the robustness
of the machine learning model, one must consider such constraints in the
adversarial evaluation and generation process. During robustness evaluation,
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we can automatically reject adversarial examples that do not respect domain
constraints. However, using traditional attacks that are not specifically
designed to respect these constraints, all examples will be rejected leading
to a false sense of robustness. This limitation calls for adversarial attacks
specifically designed to handle domain constraints. Although constrained
attacks and attacks in the problem space have been proposed, these attacks
require tremendous engineering effort to apply to other use cases.

. Effective training methods to robustify ML systems.

A large variety of methods have been proposed to defend against adversarial
examples. However, adversarial training [MMS*17] based defenses are recog-
nized as the only reliable defenses against evasion attack [TCB*20; Car23].
Tramer et al. [TCB*20] demonstrate that many recently published defenses,
although evaluated on existing adaptive attacks, could still be broken by
new adaptive attacks. More recently Carlini [Car23] showed the simplicity of
creating such attacks by letting a large language model propose the attack.
Adversarial training consists of adding adversarial examples during training
to empirically robustify the models against such examples. In addition to
adversarial training, data augmentation methods in combination with adver-
sarial training have been shown effective in robustifying models [RGC*21].
However, these techniques were mostly applied to computer vision and little
is known about their generalization to tabular data in critical industrial
systems.

. Realistic evaluation of performance drift mitigation of ML systems

in production. The evaluation process of drift mitigation techniques also
lacks realisticness. Earlier we determined that the only applicable method
to mitigate distribution drift in ML systems is a schedule of retraining,
periodic or based on drift detection. However, there remains a gap between
the process of evaluation of drift detectors in the literature and the reality
of the industrial process. The evaluation protocol of the literature often
does not consider the entire lifecycle of the MLL model. In particular, the
data acquisition process is often optimistic and a label for incoming data is
available shortly after an example is observed. Additionally, the validation
process, which remains partially manual introduces an additional delay. We
argue that for industrial systems, the most important challenge is not the
lack of effectiveness of existing technical solutions, but in the realisticness
of existing evaluation procedures. We hypothesize that this procedural gap
leads to an overestimation of the capabilities of drift detectors to mitigate
distribution drift that impacts performance drift.



1.3 Overview of contributions

This section presents the contributions of this dissertation to address the
aforementioned challenges related to the realistic evaluation of the robustness of
ML models deployed in critical environments.

« A constrained adaptive attack to evaluate the robustness of critical
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industrial ML systems in the constrained feature space.

In Chapter 4, we propose a theoretical framework to address the challenge of
realistically evaluating the robustness of ML systems in the constrained feature
space. We instantiate our framework with two attacks: CPGD, a gradient-
based attack inspired by PGD[MMS*17] using the penalty function, and
MOEVA, a multi-objective genetic algorithm whose objective is to produce
a misclassification while minimizing the penalty function. MOEVA is the
first attack to reliably generate adversarial examples in the constrained
feature space across various domains. Our results reveal that only MOEVA
is effective across all our four use cases and that simply adding the penalty
function to PGD is not sufficient to create a strong gradient-based attack. In
Chapter 5 we propose Constrained Adaptive PGD (CAPGD), an effective
gradient-based attack that overcomes the limitation of CPGD, notably by
integrating recent advances from computer vision[CH20] such as step size
adaptation and perturbation momentum, as well as a generic repair operator
for equality constraints. After showing the complementarity of our approach,
we propose CAA, the successive application of CAPGD and MOEVA, that
further increases the success rate the robustness while being up to five times
faster than MOEVA.

A collection of training methods to robustify models against adver-
sarial attacks in tabular deep learning. After building a strong attack
to evaluate the robustness of deep learning models to adversarial examples,
we focus on the robustification of these models (Chapter 6). We evaluate
different training methods to robustify models. We first evaluate Madry
adversarial training [MMS™17] approach to learn from adversarial examples,
hence increasing the robustness of our models. We found that adversarial
training is not sufficient to robustify a model. In the domain of computer
vision, Rebuffi et al. [RGC*21] showed that training on synthetic data can
also improve robustness when combined with adversarial training. Inspired
by this line of work, we adapt six synthetic data generators to be used with
adversarial training. Our empirical study reveals that combining adversarial
training with data augmentation increases robustness, even under a large
attack budget. Additionally, we validated our main claims by conducting
an empirical study on the industrial use case of our partner. We thereby
confirm that CAA reliably evaluates the robustness of ML models under
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domain constraints and that adversarial training with data augmentation
increases the robustness of the models. In practice, our method increases
the robustness of their transaction system from 43.3% accuracy to 75.5%
while maintaining similar clean performance (respectively MCC of 0.418 and
0.415). Building on these attacks and defenses constitutions, we introduce
TabularBench (Chapter 7), the first benchmark specifically designed for evalu-
ating adversarial attacks and defenses within a constrained feature space. We
propose a standard protocol to evaluate the robustness of models and training
methods across 5 datasets. We release a leaderboard based on more than
200 evaluations, a dataset zoo - a collection of real and synthetic datasets,
- a model zoo - a collection of robust models ready to use for downstream
application or further evaluation. The first version of this benchmark uses
CAA, as the strongest available constrained adversarial attack. With this
benchmark, we aim to support research in developing robustification methods
against adversarial examples in the constrained feature space. Currently, the
benchmark uses CAA as the strongest available attack in the constrained
feature space, but we welcome contributions in the form of novel attacks.

¢« An empirical study on the impact of industrial delays when miti-
gating distribution drifts. (Chapter 8)
We propose a novel evaluation protocol to bridge the gap between current
assumptions in the evaluation of drift detectors in the literature and the
reality of deploying such solutions in industrial contexts. In particular, our
protocol considers labeling and deployment delays when evaluating retraining
strategies, based on periodic retraining or drift detection. We show that
our protocol better identifies the optimal retraining strategies fitting the
practitioner’s case. We conduct an empirical study on the effectiveness and
efficiency of retraining strategies from the literature, both on BGL BNP
Paribas use case and a publicly available counterpart. Notably, we show the
impact of retraining window size, the importance of drift detector tuning,
and how the delays affect the Pareto-optimal retraining strategies.

All in all the objective of this thesis is to bridge gaps between the current
assumption of evaluating and robustifying ML models in the literature and the
reality of ML models deployed in critical industrial systems. For the robustness of
adversarial examples, we show that we can generate realistic adversarial examples to
conduct adversarial testing by integrating domain knowledge in the generation pro-
cess. Then we show how recent advances in synthetic data generation methods can
improve the robustness of deep learning models to adversarial examples. Regarding
the robustness of distribution drift, we propose a method to evaluate existing
retraining strategies under real-world constraints, that improves decision-making
on the strategy to adopt.
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1.4 Structure

The structure of this thesis is as follows:

Chapter 2 provides the necessary background of this work.

Chapter 3 reports on the related work.

Chapter 4 presents our framework to generate constrained adversarial
examples and proposes two attacks CPGD and MOEVA.

Chapter 5 presents CAA, an effective and efficient attack to conduct con-
strained adversarial testing by combining MOEVA and CAPGD, a gradient
attack improvement of CPGD.

Chapter 6 evaluates defenses based on adversarial training and data aug-
mentation.

Chapter 7 describes TabularBench, our benchmark for constrained adver-
sarial attacks and defenses.

Chapter 8 proposes a novel evaluation protocol to bridge the gap between
the evaluation process of drift detectors in the literature and the reality of
industrial systems.

Chapter 9 concludes the dissertation.
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Background

This chapter introduces the key concepts related to adversarial attacks and
distribution drift, laying essential groundwork for the rest of the thesis.

Contents

2.1 Robustness against adversarial attacks ... ... ... 10

2.2 Distributiondrift . .. ... ... ... ... . 000 13
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Let us consider a classification problem defined over an input space Z and
a set of class Y = {1,...,C'}. Each input z € Z is an object of the considered
application domain (e.g. malware [AGM™20], network data [CO19b], financial
transactions [GCG120]). We assume the existence of a feature mapping function ¢
. Z — X CR"™ that maps Z to an n-dimensional feature space X over the feature
set F' = {f17 f2, fn}

We consider a C-class classifier H : X — ) that maps an n-feature vector
= {x1,79,....,2,} € X to a predicted class y € J. The function h : X — R®
predicts a probability distribution over the set ). The predicted class H(x) is the

class with the highest probability, that is H(x) = arg max h;(z).
0<i<k

2.1 Robustness against adversarial attacks

2.1.1 Adversarial attack

The objective of an adversary is to change the class H(x) predicted by the
classifier. In a targeted attack, the adversary seeks to change the classification to a
specific, predefined class. Conversely, in an untargeted attack, the goal is simply to
alter the model’s prediction, regardless of the specific class it is changed to. For
simplicity, and without loss of generality, we consider the untargeted case in the
remaining of this section.

Un-constrained attacks

Given an original example xg, the attack aims at generating an adversarial
example zo+J that maximizes the probability of misclassification H (zq+d) # H(xo).
In unconstrained attacks, the adversary can freely perturb any feature.

The only restriction is that given a distance metric, D : X x X — R, the
distance between the clean example and the adversarial one is under a predefined
threshold, D(x,x + 0) < e. This restriction comes from computer vision, where
D is traditionally an L, norm, which ensures that the semantics of the perturbed
image is preserved. In other domains, attacks can be adapted with specific distance.
For instance in finance, [CAF*21] define a distance metric based on the feature
importance and the probability of human checks. Also in finance, [KKT22] considers
the cost and the utility (i.e. the gain) of updating each feature.

Therefore, the unconstrained attack objective is:

minimize D(z, %) (2.1)
such that H(Zg) # H(x) |

Constrained feature space attacks

In image classification, the unconstrained feature space X is equivalent to
the object space Z. For black-and-white images of a given resolution, the input
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and object spaces are defined by the range of possible pixel values. In other
domains such as finance and software security, the feature space is the result of the
transformation from the object space to the feature space ¢ : Z — X. Each sample
z € Z is an object of the considered application domain (e.g. malware, network
data, transactions). Each object z respects some natural conditions in order to
be valid. In the feature space, these conditions translate into a set of constraints
over the feature values. For instance, the feature fj,,, that corresponds to the
loan amount is always positive. Plus, the function ¢, which can be considered as
the feature engineering steps, introduces additional constraints. Given a feature
favg € F representing the average amount of money on the account over the
last 6 months and f,,4,; the maximum amount over the same period, this feature
engineering creates a new constraint fo,q < fies. We denote the set of constraint
Q2 and Xy = x € X|Vomega € Q, x E w the contained feature space. The objective
of constrained feature space attacks is to generate examples in Xy,. Hence, the
constrained attack objective is:

minimize D(z, &)
such that H (%) # H(x) (2.2)
.f‘o € Xq

Problem space attack

Attacks in the problem space directly manipulate objects in the object space Z
such as malware, URLs, or a set of transactions. The aim of the attack is to find a
sequence of valid domain-object transformation 7" = T}, o Tj,_1,. o1, such that T'(z)
that satisfies object-space constraints . The constraints v concern the adversarial
goal (preservation of the semantics) and domain-specific restriction (plausibility)
[PPC*20]. The objective of a problem-space attack is:

minimize |T|

such that T € T
H(p(T'(2))) # H(p(2))
T(z) Ey

(2.3)

with 7 the set of available transformation and |T'| the length of the sequence T.
The primary drawback of these attacks is that they are domain-specific and demand
significant engineering effort to be adapted to a new domain.

2.1.2 Robustification against adversarial attacks

There are different approaches to augment the robustness of a model to ad-
versarial examples. We focus on two empirical methods that generate synthetic
examples in the training process of the classifier H. First, adversarial training and
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its variants which integrate adversarial examples in the training process to robustify.
Second, data augmentation methods that, in combination with adversarial training
have been shown effective.

2.1.3 Adversarial training

Adversarial training proposed by [SZS*13b] is the standard way to robustify
models. The idea is to generate adversarial examples during training using a
strong and efficient attack (e.g. FGSM[GSS15]) and use them to update the model
parameters. We consider a classifier H with parameters 6 trained with a loss
function I. The most established way [MMS*17] to integrate these examples in
the learning process of a neural network is to generate for each training batch, the
worst-case adversarial examples (i.e. examples with the highest loss) and update
the model’s learnable parameters # to minimize the classification error over these
adversarial examples.

Hence, adversarial training solves the min-max optimization problem:

main ]E(xyy)ND{rglggc 10,2+, y)} (2.4)

where (z,y) are training data samples from D distribution, 6 € S is the perturbation
in the set of allowed maximum perturbations, [ is the loss of the model, and 6 the
model’s learnable parameters. In practice, in adversarial training, this optimization
problem is solved at each training batch.

This works well for models that can incrementally learn from data such as
neural networks. For traditional models, adversarial retraining [CWC20] is
more suited. In adversarial retraining, we use an attack A to generate adversarial
examples over the original training set D to produce an adversarial training data
DA = {(2;,9,)Y,}. We train the models on the join of the original and adversarial
training sets D* = D U D4, Adversarial retraining differs from adversarial training
as it generates adversarial examples on a single version of the model. In contrast,
adversarial training is iterative and at each step, new adversarial examples are
generated against a potentially stronger model over time.

2.1.4 Data augmentation

In [RGC*21], Rebuffi et al. show that adversarial training can suffer from
robust overfitting, where the robust test accuracy decreases during training, and so
does the robustness of the model. The authors propose to use adversarial training
with clean and synthetic data to reduce overfitting and augment the robustness of
the model. In practice, during training, at each generation, we generate a set of
synthetic examples DT, and we use (D; C D) U D, where D; is the training set
at iteration . We then optimize the same min-max problem as in 2.4.
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2.2 Distribution drift

This section introduces concepts related to distribution shift and drift detectors.

2.2.1 Definition and source of distribution drift

Inspired by the definition provided by Lu et al. in their survey [LLD*19], we
define distribution shift as follows:

Given a time period [0, ¢], the set of samples, denoted Sp; = {do, ..., d;}, where
d; = (x;,y;) is one observation (or a data instance), x; € X is the feature vector, y; €
Y is the label and Sp, follows a certain distribution Fo,(X,Y’). Distribution drift
occurs at timestamp ¢ + 1, if Fy(X,Y) # Fi11.00(X,Y), denoted 3t : P(X,Y) #
f)t-&-l (X ) Y)

According to this definition, distribution drift can be defined as the change in
the joint probability of X and Y at time ¢. The joint probability P;(X,Y") can be
decomposed as P,(X,Y) = P,(X) x P(Y|X), therefore, the distribution drift can
have three sources. We describe the three sources of distribution drift and explain
how each source can influence the performance of the model.

1. Covariate shift P,(X) # P, (X) while P(Y'|X) = P11 (Y]X), that is, only
the input space distribution P;(X') changes and the relation P,(Y|X) remains
unchanged. This kind of drift does not affect the true decision boundary.
Therefore, it may or may not affect the performance of the model depending
on the difference in the distributions and the generalization capability of the
model. It remains interesting to study drifts in the P(X) distribution as it
does not require the label and is model-agnostic. For example, an increase in
the average transaction amounts can lead to this kind of drift.

2. Concept drift P(Y|X) # P1(Y|X) while P(X) = P1(X), that is
the distribution of input P;(X) remains unchanged, but the true decision
boundary updates. Therefore, the decision boundary learned by the model is
outdated and this causes a drop in accuracy in the region where the boundary
has changed. For example, the changing economic context in which a financial
system evolves can cause this type of drift.

3. Label shift P,(Y) # P.1(Y) and P(X|Y) = P11 (X]Y), that is the distri-
bution of label P,(X) changes but the distribution of features given the class
P,(X]Y') does not change. For example, the change in the distribution of
labels, such as the proportion of accepted and refused transactions, can lead
to this type of drift.

While the primary focus in critical systems is on performance drift, identifying
sources of distribution shift, such as changes in data distribution and decision
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boundaries, serves as a valuable clue to identify early performance drift. Changes
in data distribution and decision boundaries are identified by drift detectors.

2.2.2 Drift detectors

A drift detector is a method that observes a stream of data over time and
determines for every new data point if the current distribution of the data has
changed compared to a reference data set.

We survey the literature for available drift detectors and identify three types of
detectors depending on the data distribution they observe: data-based detectors,
error-based detectors, and predictive detectors.

Data drift detectors observe the distribution P(X). For each batch of incoming
examples, it determines whether the current distribution P(X,,,) is different from
the reference distribution P(X,.r). The reference distribution is typically the one
used to train the ML model, while the reference (also referred to as test) window is
typically the latest data such that |Xcy.| = | X,ef, where |- | denotes the cardinality
of a set.

Error-based detectors observe the distribution of an arbitrary score function that
takes as input the output of the model’s prediction function h(z) and the ground
truth y. This score function is typically the Class Error (CE) (that is, returns 1 if
the prediction was wrong else 0) or the Probability Error (PE) (that is, 1 — h,(z),
where y is the correct class label). Error-based detectors directly observe the error
of the model; hence, we expect them to have a lower probability of false positives
(i.e. detecting a drift that does not affect the performance of the model) than
data-based or predictive detectors. However, by definition, error-based detectors
require ground truth labels, which are not always available. The availability of the
label highly depends on the use case and domain. For instance, in recommendation
systems (e.g. on video platforms) the ground truth of the prediction is available as
soon as the user provides feedback (e.g. click or do not click on the recommended
video). On the contrary, the labeling of images remains costly, for example, in the
medical domain [VC22].

Predictive detectors observe a metric computed during the inference of the
model. Unlike error-based detectors, predictive detectors do not use the true label
to predict the drift. For example, using an ensemble such as random forests, we
can use the predicted probability from each tree to compute the uncertainty of
the ensemble [SH20]. The ensemble’s uncertainty can then be used as a metric for
detecting drift.
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Related Work

This chapter discusses the related work of tabular machine learning and its
robustness to adversarial examples and distribution drift.
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3.1 Tabular Deep Learning

Tabular data remains the most commonly used form of data [SA21], especially
in critical applications such as medical diagnosis [UMC20; SRR*21], financial ap-
plications [GCGT20; CXY*20; CAF*21], user recommendation systems [ZYS*19],
customer churn prediction [AAM™*17; TXZ"20], cybersecurity [CO19b; AGM*20],
and more. Improving the performance and robustness of tabular machine learning
models for these applications is becoming critical as more ML-based solutions are
cleared to be deployed in critical settings.

[BLS*22] showed that traditional deep neural networks tend to yield less
favorable results in handling tabular data when compared to more shallow machine
learning methods, such as XGBoost. They suggested four main reasons specific
to tabular data, namely low-quality training data, complex irregular spatial
dependencies between features, sensitivity to preprocessing, and imbalanced
importance of features. To overcome these challenges, the tabular ML, community
proposed various optimizations that can be sorted across 3 families:

Data transformation methods such as VIME or Value Imputation for Mask
Estimation [YZJ*20] uses self and then semi-supervised learning through deep
encoders and predictors. The self-supervised encoder (a multilayer perceptron) is
trained to learn a feature representation z, to be used for the downstream task. This
encoder takes as input a corrupted sample 2’ input based on a clean sample x and a
mask m. The encoder is trained on two tasks, independent of the downstream task.
The first task is mask vector estimation whose objective is to predict corrupted
value in a sample and recover the mask m from the feature representation z. The
second, feature vector estimation, is to recover the original values of the sample x
that have been corrupted. During semi-supervised learning, the predictor is trained
using a supervised loss on labeled samples and a consistency loss on unlabeled
samples. The consistency loss is computed as the difference between the prediction
of corrupted (unlabeled) samples from the same clean samples but different masks.

Specialized architectures designed specifically for heterogeneous tabular data.
TabTransformer is a transformer-based model [HKC720]. It uses self-attention
to map the categorical features to an interpretable contextual embedding, and the
paper claims this embedding improves the robustness of models to noisy inputs.
TabNet is another transformer-based model [AP21]. Similarly to a decision tree,
it uses multiple subnetworks in hierarchical sequence. At each decision step, it uses
sequential attention to choose which features to reason. TabNet aggregates the
outputs of each step to obtain the decision.

Regularization models propose novel loss functions and training processes.
RLN or Regularization Learning Networks [SS18] uses an efficient hyperparameter
tuning scheme to minimize a counterfactual loss. The authors train a regularization

16



10

15

20

25

30

35

coefficient to weights in the neural network to lower the sensitivity and produce
very sparse networks. STG or Stochastic Gates [YLNT20] uses stochastic gates for
feature selection in neural network estimation problems. The method is based on
probabilistic relaxation of the Iy norm of features or the count of the number of
selected features.

Recent approaches like RLN [SS18] and TabNet [AP21] are catching up and
even outperforming shallow models in some settings. We argue that DNNs for
Tabular Data are sufficiently mature and competitive with shallow models and
require therefore a thorough investigation of their safety and robustness.

3.2 Adversarial attacks against tabular data

Adversarial attacks on tabular data require special attention to the specific
characteristics of the data, such as feature types and the relationships between
features, due to the underlying semantic structure.

3.2.1 Realistic Adversarial Examples

Initially applied to computer vision, adversarial examples have also been adapted
and evaluated on tabular data. [BAL'19] considered feature importance to craft the
attacks. [KKT22] suggested considering both the cost and benefit of perturbing each
feature. [MLK™'22] considered mutability, type, boundary, and data distribution
constraints, Domain constraints are emerging as critical elements for developing
effective adversarial attacks. This last approach is closest to the trend in adversarial
machine learning in critical scenarios such as malware and finance [PPC*20;
DGSt22; GCGT20].

Our work follows this last hypothesis and focuses on constrained feature-space
attacks to realistically assess the robustness of deep tabular learning models.

While domain constraints satisfaction is essential for successful attacks, re-
search on robustness for industrial settings (eg [GCG'20] with a major bank) also
demonstrated that imperceptibility remains important for critical systems with
human-in-the-loop mechanisms, which could deflect attacks with manual checks
from human operators. Imperceptibility is domain-specific, and multiple approaches
have been suggested [BALT19; KKT22; DGS*22]. None of these approaches was
confronted with human assessments or compared with each other, and in our study,
we decided to use the most established Ly norm. Our algorithms and approaches
are generalizable to further distance metrics and imperceptibility definitions.

Overall, none of the existing attacks for tabular machine learning supports the
feature relationships inherent to realistic tabular datasets, as summarized in Table
3.1. Nevertheless, we evaluate all the approaches that support continuous values

and where a public implementation is available to confirm our claims: LowProFool,
BF*, CPGD, and MOEVA.
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Table 3.1: Evasion attacks for tabular machine learning. Attacks with a public
implementation in bold. Cont. = continuous, Disc = discrete, Cat. = categorical,
and Rel. = relation.

Attack Supported features Supported constraints
Cont. Disc. Cat. Cat. Disc. Rel.

LowProFool (LPF) [BAL*19) v X X X X
[CAF+21]

[GHS*+21]

[XHR*+23]

[WHB*20]

[BHZ+23]

BF*/BFS [KHS*18; KKT23]
[MLK*22]

CPGD, MOEVA (OURS)
CAPGD, CAA (OURS)

N N N S ENEN
N N NS ENEN
SN N N N RN
SN N N N NN
N N NS ENEN
N

3.2.2 Adversarial attacks for constrained domains

In the constrained adversarial attacks literature, most of the studies upgrade
existing attacks to support some constraints and only a few propose new algo-
rithms tailored to each domain specifically. One of these novel methods for crafting
adversarial attacks that respect domain constraints was proposed by [KHST18].
The authors use a graphical framework where each edge represents a feasible trans-
formation. The nodes of the graph are the transformed examples. The downside
of this method is that it works only with linear models, and it comes with high
computation costs. [CO19b] builds an iterative gradient-based adversarial attack
that considers groups of feature families. The modifications that do not respect
the constraints are updated until they enter a feasible region. The implementation
provided by the authors is closely related to the botnet domain, therefore it can
not be reused in new domains. [LLY"20] considers simple linear constraints for
cyber-physical systems. They generate practical examples using a best-effort search
algorithm. However, the solution is not scalable to practical applications that
have more complex non-linear constraints. Other researchers tune existing attacks
to support constraints. [SPWT20] extends the traditional JSMA algorithm to
support constraints resolution. They use the concept of a primary feature in a
group of interdependent features. Meanwhile, Tian et al. [TWT*20] introduced
C-IFGSM an updated version of FGSM that considers feature correlations. They
embed the correlations into a constraint matrix which is used to calculate the
Hadamard product with the sign of the gradient in order to determine the direction
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and magnitude of the update. [TPS20] crafted constrained adversarial examples
for NIDS by extending the optimization function in the Carlini and Wagner attack.
They group flow-based features by their modification feasibility and assign weights
to each group based on the level of difficulty of the modification. The authors
in [EBM*21] introduce non-uniform perturbation in the PGD attack to enable
adversarial retraining with more realistic examples. They use Pearson’s correlation
coefficient, Shapley values, and masking to build a matrix that constrains the
direction and magnitude of change similarly to [TWT*20]. All the attacks above
are upgraded to handle simple and general constraints but do not deal with more
complex domain-specific constraints. Therefore, the samples they generate are
more restricted but not totally feasible.

[GCG™20] proposed a black-box, genetic-based approach to generate con-
strained adversarial examples for an industrial credit scoring system. This work is
the closest to one of the attacks we propose in this thesis. However, their evaluation
is limited to the financial domain.

Therefore, there is a need for attacks that can generate realistic examples while
respecting domain constraints in tabular data.

3.2.3 Defending against adversarial examples.

The standard method to defend against adversarial examples is Madry adversar-
ial training [MMS™17]. Madry et al. define the problem of adversarial robustness
as a saddle point problem where the training algorithm updates the parameters by
minimizing the loss over the adversarial that attempts to maximize this loss. In
[MMS*17] they showed the importance of using a strong attack during adversarial
training [GSS15], and proposed Projected Gradient Descent.

Rice et al. [RWK20] demonstrated that adversarial training is prone to robust
overfitting, a phenomenon where test set accuracy rapidly declines while train
set accuracy continues to improve. Rice et al. [RWK20] suggest early stopping
as the primary approach to counteract robust overfitting and show that models
trained with early stopping are more robust than those using other regularization
techniques like data augmentation. In contrast, Rebuffi et al. [RGC*21] argue
that combining data augmentation with regularization methods, such as weight
averaging [IPGT18], can significantly enhance robustness.

A large variety of defenses have been proposed against adversarial examples,
leveraging different techniques as gradient masking [XZZ19], model ensemble [VS19;
PXD*19; SRR20], adversarial detection [YHG19; YKR19] or preprocessing steps
[YZK*19]. However, Tramer et al. [TCB*20] demonstrate that several of these
defenses, although evaluated on existing adaptive attacks, could still be broken
by new adaptive attacks. More recently Carlini [Car23] showed the simplicity of
creating such attacks by letting a large language model propose the attack. Hence,
adversarial training based methods are so far the only reliable defense against
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3.3 Distribution drift mitigation
3.3.1 Drift detectors

Table 3.2: Summary of drift detectors

Detector Type Detection mode
No detection Baseline ~ None
Periodic detector Baseline  Periodic
Statistical test [VKVT22] Data Periodic
Divergence metric [Inc22] Data Periodic
PCA-CD [QAWT15] Data Periodic
ADWIN [BGOTa] Error Stream
DDM [GMC*04] Error Stream
EDDM [BCFE*06] Error Stream
HDDM-A [FCR*15] Error Stream
HDDM-W [FCR*15] Error Stream
KSWIN [RHS20] Error Stream
Page-Hinkley [Pagb4] Error Stream
Uncertainty [SH20] Predictive Periodic
Aries [HGX 23] Predictive Periodic

A drift detector is a method that observes a stream of data over time and
determines for every new data point if the current distribution of the data has
changed compared to a reference data set. There is a large literature on drift
detectors but to the extent of our knowledge, none of the papers propose to study
the applicability of drift detectors in a real-world scenario with delays.

We survey the literature for available drift detectors and identify three types
of detectors: data-based detectors, error-based detectors, and predictive detectors
as explained in Section 2.2.2. The alibi python library [VKV'22] observes the
P(X) distribution feature by features using the K-S test for numerical features,
and the chi-squared test for categorical ones. To handle multivariate data, the
tool uses the Bonferroni [Dun61] or False Discovery Rate (FDR) correction [BH95].
The evidently library [Inc22] uses Wasserstein distance for numerical features and
the Jensen-Shannon divergence for categorical features. If the distance exceeds
a predefined threshold, the feature is flagged as shifted. For multivariate data,
the tool proposes to detect shifts if more than a predefined number of feature
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drifts. In [QAWT15], the method PCA-CD proposes to apply Principal Component
Analysis (PCA) to the data X. They show that PCA not only preserves the ability
to detect changes in the mean and standard deviation of individual features but
also allows one to detect changes in the feature correlations. PCA-CD computes a
divergence score on and uses the Page-Hinkley method [Pagb4| to detect drift in
this metric. [KVD™14] proposed a theoretically elegant approach for multivariate
data using kdqg-trees. However, this approach does not scale well to high-dimension
datasets. Data-based drift detectors have been shown effective at detecting drift in
the data distribution in their respective papers. However, little is known about
their effectiveness mitigate performance degradation over time, when used to trigger
model retrains.

Error-based detectors observe the distribution of an arbitrary (univariate) score
function that takes as input the prediction of the model and the ground truth. The
simplest approach, DDM [GMC™04], observes the error rate and detects drifts if
the error rate surpasses a certain threshold above the minimum error rate observed
over time. Similarly, [BCFT06] observes the error rate but detects drift by keeping
track of the average distance between two errors. In [FCR*15], HDDM-A and
HDDM-W observe the error rate and use respectively Hoeffding’s and McDiarmid’s
inequalities to detect drift. [BG07a] observes an arbitrary score function using an
adaptive windowing mechanism. KSWIN [RHS20] uses the Kolmogorov-Smirnov
on a sliding window. The Page-Hinkley[Pagb4] method uses the mean and a
cumulative sum and detects drif when the cumulative sum exceeds a predefined
threshold. Error-based drift detectors have been shown effective in detecting change
in the performance of models. However, their applicability in industrial contexts
with labeling and deployment delay constraints remains unexplored.

Finally, one can take advantage of recent advances in uncertainty estimation
and test accuracy prediction to build drift detectors. For instance, Aries [HGX123]
compares the distance to the model decision boundary of the test samples with that
of the training sample to estimate the accuracy of test examples. Based on this
accuracy, we simulate the error rate using a uniform distribution controlled by the
estimated accuracy. We use ADWIN to monitor the error rate. The uncertainty
drift detector uses Bayesian approaches [SH20| to compute the epistemic, allegoric,
and total uncertainty. We use ADWIN to observe the uncertainty distribution.
Although using such an approach to detect drift is a natural application, to the
extent of our knowledge it has not been explored.

Table 3.2 summarizes the drift detectors that can be applied in our industrial
context.
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3.3.2 Delays in time series evaluation

Masud et al. [MGK™"10] study the problem of novel class detection while con-
sidering the true label delay constraints. They show how delaying the classification
of incoming samples helps to detect new classes before the true label is available,
hence providing a more accurate prediction.

[PCvD*22] investigated recently the reliability of data and error-based drift
detectors. However, the experimental protocol used does not consider label and
deployment in production delays, which is the core of our study.

In [PA16], Plasse et. al introduced a taxonomy to describe the labeling delay
mechanism. They showed how delayed labels can be used to pre-update classifiers
in real-world applications. However, the study didn’t tackle validation delays and
their impact on the model’s deployment or the drift monitoring process.

[Z1i10] analyzed the factors that allow distribution drift detection before the
label is available. However, no experiments are conducted on the impact of the
findings on the performance of ML predictions, which is the aim of our novel
protocol.

3.3.3 Domain Generalization

The domain generalization (DG) problem was first formally introduced by
Blanchard et al. [BLS11]. Unlike other related learning problems such as domain
adaptation or transfer learning, DG considers the scenarios where target data is
inaccessible during model learning. Hence, adaptation to distribution shift falls
under the umbrella of domain generalization. [ZLQ"22] introduced a categoriza-
tion of techniques commonly used to address the DG challenge, including domain
alignment training, synthetic data augmentation, and self-supervised learning. Our
work stems from the need of our industrial partner to improve the monitoring of
the deployed models and to effectively trigger their well-established retraining pro-
cedures. While we believe that DG techniques could also improve the performance
of the models against distribution shift, all these approaches are orthogonal to our
investigations for an efficient retraining schedule under delay.

3.3.4 Online learning

Online learning is an orthogonal line of research to our work, and labeling
delays remain scarcely explored. [GGB20] proposed an evaluation procedure that
updates the model online with new samples and labels following the labeling delay.
Similar to our study, they considered the case where the predictions can be refined
when a newer version of the model becomes available. They also performed a
continuous evaluation of the latest samples encountered the improve the accuracy
of the models. However, online deployment of new models is impossible in our
financial industrial setting. In addition, retroactive evaluation of new samples as
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they propose is unrealistic in our production setting.
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A Unified Framework for Adversarial Attacks in
Constraint Feature Space

Existing adversarial attacks generate unconstrained and unrealistic examples.
s In this chapter, we propose a framework for constrained adversarial examples. We
instantiate our framework with two attacks, CPGD (gradient-based) and MOEVA
(search-based) to enhance the evaluation of machine learning models’ robustness.
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4.1 Introduction

In this chapter, we address the first challenge of this thesis, which is to generate
valid adversarial examples in the constrained feature space.

Research on adversarial examples initially focused on image recognition [DDS*04;
SZS*13a] but has, since then, demonstrated that the adversarial threat concerns
many domains including cybersecurity [PPC*20; SPW*20], natural language
processing [ASE118], software security [YAY20], cyber-physical systems [LLY*20],
finance [GCG*20], manufacturing [MH20], and more.

A peculiarity of these domains is that the ML model is integrated into a larger
software system that takes as input domain objects (e.g. financial transactions,
malware, network traffic). Therefore altering an original example in any direction
may result in an example that is infeasible in the real world. This contrasts with
images that generally remain valid after slight pixel alterations. Hence, a successful
adversarial example should not only fool the model and keep a minimal distance
to the original example but also satisfy the inherent domain constraints.

As a result, generic adversarial attacks that were designed for images — and are
unaware of constraints — equally fail to produce feasible adversarial examples in
constrained domains [GCG*20; TWT*20]. A blind application of these attacks
would distort model robustness assessment and prevent the study of proper defense
mechanisms.

Problem-space attacks are algorithms that directly manipulate problem objects
(e.g. malware code [AGM120; PPC*20], audio files [DJL*20], wireless signal [SL19])
to produce adversarial examples. While these approaches guarantee by construction
that they generate feasible examples, they require the specification of domain-
specific transformations [PPC*20]. Their application, therefore, remains confined
to the particular domain they were designed for. Additionally, the manipulation
and validation of problem objects are computationally more complex then working
with feature vectors.

An alternative to problem-space attacks is feature-space attacks that enforce
the satisfaction of the domain constraints. Some approaches for constrained
feature space attacks modify generic gradient-based attacks to account for con-
straints [SPW*20; TWT*20; EBM™*21] but are limited to a strict subset of the
constraints that occur in real-world applications (read more in Section 3.2, where
we discuss the related work thoroughly). Other approaches tailored to a specific do-
main manage to produce feasible examples [CO19b; LLY*20; GCG™20] but would
require drastic modifications throughout all their components to be transferred
to other domains. To this date, there is a lack of generic attacks for robustness
assessment of domain-specific models and a lack of cross-domain evaluation of
defense mechanisms.

In this chapter, we propose a unified framework for constrained feature-space
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attacks that applies to different domains without tuning and ensures the production
of feasible examples. Based on our review of the literature and our analysis of
the covered application domains, we propose a generic constraint language that
enables the definition of (linear and non-linear) relationships between features.
We, then, automatically translate these constraints into two attack algorithms
that we propose. The first is Constrained Projected Gradient Descent (CPGD) —
a white-box alteration of PGD that incorporates differentiable constraints as a
penalty in the loss function that PGD aims to maximize, and post-processes the
generated examples to account for non-differentiable constraints. The second is
Multi-Objective EVolutionary Adversarial Attack (MOEVA) — a grey-box multi-
objective search approach that treats misclassification, perturbation distance, and
constraints satisfaction as three objectives to optimize. The ultimate advantage
of our framework is that it requires the end-user only to specify what domain
constraints exist over the features. The user can then apply any of our two
algorithms to generate feasible examples for the target domain.

We have conducted a large empirical study to evaluate the utility of our
framework. Our study involves four datasets from finance and cybersecurity, and
two types of classification models (neural networks and random forests). Our results
demonstrate that our framework successfully crafts feasible adversarial examples.
Specifically, MOEVA does so with a success rate of up to 100%, whereas CPGD
succeeded on the finance dataset only (with a success rate of 9.85%).

In turn, we investigate strategies to improve model robustness against feasible
adversarial examples. We show that adversarial retraining on feasible examples
can reduce the success rate of CPGD down to 2.70% and the success rate of the
all-powerful MOEVA down to 85.20% and 0.80% on the finance and cybersecurity
datasets, respectively.

To summarize, the contributions of this chapter are:

1. A generic constraint language that enables the definition of relationships
between features in tabular data.

2. Constrained Projected Gradient Descent (CPGD), a gradient-based attack
derived from PGD that incorporates differentiable constraints.

3. MOEVA, a grey-box genetic-based attack that treats misclassification, per-
turbation distance, and constraints satisfaction as objectives to optimize.

4. A large-scale empirical study revealing that attacks unaware of domain con-
straints mostly fail to generate adversarial examples but dedicated methods,
in particular MOEVA can generate constrained examples.
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4.2 Problem Formulation

We formulate below the problem for binary classification. We generalize to
multi-class classification problems in Appendix B.

4.2.1 Constraint Language

Let us consider a classification problem defined over an input space Z and a
binary set ) = {0, 1}. Each input z € Z is an object of the considered application
domain (e.g. malware [AGM™20], network data [CO19b], financial transactions
[GCG'20]). We assume the existence of a feature mapping function ¢ : Z —
X C R"™ that maps Z to an n-dimensional feature space X over the feature
set F' = {f1, f2,..fn}. For simplicity, we assume X to be normalized such that
X C[0,1]". That is, for all z € Z, p(z) is an n-sized feature vector z = (1 ...x,)
where z; € [0,1] and is the j-th feature. Each object z respects some natural
conditions in order to be valid. In the feature space, these conditions translate into
a set of constraints over the feature values, which we denote by 2. By construction,
any feature vector x generated from a real-world object z satisfies all constraints
w € Q.

Based on our review of the literature, we have designed a constraint language to
capture and generalize the types of feature constraints that occur in the surveyed
domains. Our framework allows the definition of constraint formulae according to
the following grammar:

wi=w Awy | wy Vws | Py =1y

Yi=cl| f|i1 @y |

where f € F, ¢ is a constant real value, w,w;,ws are constraint formulae,
e {<, <, =,#,>,>}, ¥, ..., are numeric expressions, & € {+,—, *,/},
and z; is the value of the i-th feature of the original input z.

One can observe from the above that our formalism captures, in particular,
feature boundaries (e.g. f > 0) and numerical relationships between features (e.g.
fi/f2 < f3) — two forms of constraints that have been extensively used in the

literature [CO19b; GCGT20; TWT20; LLY *20].

4.2.2 Threat Model and Attack Objective

Let a function H : X — Y be a binary classifier and function h: X — R be a
single output predictor that predicts a continuous probability score. The function
h: X — RY predicts a probability distribution over the set ). The predicted class

H(z) is the class with the highest probability, that is H(z) = arg max h;(x).
0<i<k

In our threat model, we assume that the attacker has knowledge of h and its
parameters, as well as of ' and ). We also assume that the attacker can directly

(4.1)
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modify a subset of the feature vector z = (zy ... x,,), with m < n. We refer to this
subset as the set of mutable features. The attacker can only feed the example to
the system if this example satisfies €).

Given an original example x, the attack objective is to generate an adversarial
example = + ¢ such that H(x + 6) # H(x), § < e for a maximal perturbation
threshold € under a given p-norm, and = + § € Xy. While domain constraints
guarantee that an example is feasible, (e.g. total credit amount must be equal
to the monthly payment times the duration in months), we limit the maximum
perturbation to produce imperceptible adversarial examples. By convention, one
may prefer p = oo for continuous features, p = 1 for binary features, and p = 2 for
a combination of continuous and binary features. We refer to such examples x +
as a constrained adversarial example. We also name constrained adversarial attack
algorithms that aim to produce the above optimal constrained adversarial example.
We propose two such attacks.

4.3 Constrained Projected Gradient Descent

Past research has shown that multi-step gradient attacks like PGD are among
the strongest attacks [KGB16]. PGD adds iteratively a perturbation ¢ that follows
the sign of the gradient V with respect to the current adversary x; of the input x.
That is, at iteration ¢ + 1 it produces the input

xt+1 = Hm+5(l‘t + ()éSng(V;gtl(@ha xt7 y))) (42)

where 6, the parameters of our predictor h, II is a clip function ensuring that = + ¢
remains bounded in a sphere around x of a size € using a norm p, and V[ is the
gradient of the loss function tailored to our task, computed over the set of mutable
features. For instance, we can use cross-entropy losses with a mask for classification
tasks. We compute the gradient using the first-order approximation of the loss
function around z.

However, as our experiments reveal (see Table 4.2 and Section 4.6), a straight
application of PGD does not manage to generate any example that satisfies (2.
This raises the need to equip PGD with the means of handling domain constraints.

An out-of-the-box solution that we have experimented with is to pair PGD with
a mathematical programming solver, i.e. Gurobi [Gur22]. Once PGD managed to
generate an adversarial example (not satisfying the constraint), we invoke the solver
to find a solution to the set of constraints close to the example that PGD generated
(and under a perturbation sphere of € size). Unfortunately, this solution does not
work out either because the updated examples do not fool the classifier anymore or
the solver simply cannot find an optimal solution given the perturbation size.

In face of this failure, we conclude that this gradient-based attack cannot
generate constrained adversarial examples if we do not revisit its fundamentals in
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Table 4.1: From constraint formulae to penalty functions. 7 is an infinitesimal
value.

Constraints formulae Penalty function

w1 N\ Wy w1 + Wa

wi V wa min(wy, wo)

P < by max (0, Y1 — 1)

wl < wg maX(O, 'Lbl — ¢2 + 7')
Y1 = 1Py | 1 — 1o |

light of the new attack objective. We, therefore, propose to develop a new method
that considers the satisfaction of constraints as an integral part of the perturbation
computation.

Concretely, we define a penalty function that represents how far an example
x is from satisfying the constraints. More precisely, we express each constraint
w; as a penalty function penalty(z,w;) over z such that x satisfies w; if and only
if penalty(z,w;) <= 0. Table 4.1 shows how each constraint formula (as defined
in our constraint language) translated into such a function. The global distance
to constraint satisfaction is, then, the sum of the non-negative individual penalty
functions, that is, penalty(z, Q) = X, cq penalty(x, w;).

The principle of our new attack, CPGD, is to integrate the constraint penalty
function as a negative term in the loss that PGD aims to maximize. Hence, given
an input x, CPGD looks for the perturbation § defined as

arg max{l(h(z +0),y) — Y_ penalty(z + 6,w;)} (4.3)

&:18l,<e w; €N

The challenge in solving (4.3) is the general non-convexity of penalty(z,$2). To
recover tractability, we propose to approximate (4.3) by a convex restriction of
penalty(z, ) to the subset of the convex penalty functions. Under this restriction,
all the penalty functions used in (4.3) are convex, and we can derive the first-order
Taylor expansion of the loss function and use it at each iterative step to guide
CPGD. Accordingly, CPGD produces examples iteratively as follows:

e =1L 5(R(2" + asgn(Vl(h(z"), y)
— Y Vaepenalty(z', ¢;)))) (4.4)
@i

with 2° = 2, and R a repair function. At each iteration ¢, R updates the features
of the example to repair the non-convex constraints whose penalty functions are
not back-propagated with the gradient V[ (if any).
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4.4 Multi-Objective Generation of Constrained
Adversarial Examples

As an alternative to CPGD, we propose MOEVA, a multi-objective optimization
algorithm whose fitness function is driven by the attack objective described in
Section 4.2.

4.4.1 Objective Function

We express the generation of constrained adversarial examples as a multi-
objective optimization problem that reflects three requirements: misclassification
of the example, maximal distance to the original example, and satisfaction of
the domain constraints. By convention, we express these three objectives as a
minimization problem.

The first objective of a constrained attack is to cause misclassification by the
model. When provided an input z, the binary classifier H outputs h(z), the
prediction probability that x lies in class 1. If h(z) is above the classification
threshold ¢, the model classifies x as 1; otherwise as 0. Without knowledge of ¢, we
consider h(x) to be the distance of z to class 0. By minimizing h(x), we increase
the likelihood that the H misclassifies the example irrespective of ¢t. Hence, the
first objective that MOEVA minimizes is g;(z) = h(x).

The second objective is to minimize perturbation between the original example 2°
and the adversarial example, to limit the perceptibility of the crafted perturbations.
We use the conventional L, distance to measure this perturbation. The second
objective is go(x) = Ly(x — 2°).

The third objective is to satisfy the domain constraints. Here, we reuse the
penalty functions that we defined in Table 4.1. The third and last objective function
is thus g3(z) = X, cq penalty(z,w;).

Accordingly, the constrained adversarial attack objective translates into MOEVA
a three-objective function to minimize with three validity conditions, that is:

minimise g;(x) = h(z) st.ogi(z) <t
minimise go(7) = L,(z — 2°) go(z) <€ (4.5)
minimise g3(z) = Y penalty(z,w;) g3(x) =0

w; EQ

and this three-objective function also forms the fitness function that MOEVA
uses to assess candidate solutions.

4.4.2 Genetic Algorithm

We instantiate MOEVA as a multi-objective genetic algorithm, namely based on
R-NSGA-IIT [VDBI18]. We describe below how we specify the different components
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of this algorithm. It is noteworthy, however, that our general approach is not
bound to R-NSGA-III. In particular, the three-objective function described above
can give rise to other search-based approaches for constrained adversarial attacks.

Algorithm 1 Generation process of MOEVA

1: Input: x¢, an original example

2 G_objectives|gy, g2, g3], the 3 objective functions
3 Ngen, number of generations

4: L, population size

5 C, number of children

6: Output: A population P of adversarial examples minimizing the G objectives
functions

P <+ init(xq, L)

8: for j =1 to Ny, do

=

9: Purents < select_random(P, C')

10: Pyt fspring < twoPointsCrossover(Ppgrents)
11: P < P U polyMutate(P, s fspring)

12: Ppjectives < evaluate(P, G_objectives)
13: P < survive(P, Popjectives; L)

14: end for

15: return P

Algorithm 1 formalizes the generation process of MOEVA.

Population initialization (1. 7). The algorithm first initializes a population P
of L solutions. Here, an individual represents a particular example that MOEVA
has produced through successive alterations of a given original example x. We
specify that the initial population comprises L copies of x. The reason we do so is
that we noticed, through preliminary experiments, that this initialization was more
effective than using random examples. This is because the original input inherently
satisfies the constraints, which makes it easier to alter it into adversarial inputs
that satisfy the constraints as well.

Population evolution (1. 8-14). The algorithm proceeds iteratively and makes
the population evolve into new “generations”, until it reaches a predefined number
Nyep, of iterations/generations. At each iteration, MOEVA evaluates each individual
in the current population through the three-objective function defined above. Hence,
we know at each stage if the algorithm has managed to successfully generate
constrained adversarial examples. The evolution of the population then proceeds

in three steps:

1. Crossover (I. 9-10): We create new individuals using two-point binary
crossover [DSOO07]. This crossover is useful for our approach to preserve
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constraint satisfaction, as the “children” individuals keep the feature values of
their “parents”. We randomly select the parents from the current population.

2. Mutation (I. 11): To introduce diversity in the population, we randomly
alter the features of each “child” (resulting from crossover) using polynomial
mutation [DSO07]. Our mutation operator enforces the satisfaction of con-
straints that involve a single feature, e.g. it preserves boundary constraints
and does not change immutable features. The set of children that result from
this mutation process is then added to the current population.

3. Survival (1. 12-13): MOEVA next determines which individuals it should
keep in the next generation. Being based on R-NSGA-III, our algorithm uses
non-dominance sorting and reference directions to make this selection, based
on our three objective functions. That is, we place non-dominated individuals
in a first Pareto front and repeat (without replacement) until we reach N
Pareto fronts. Individuals in these N Pareto fronts form the next generation
and the others are discarded. If there are less than L individuals (i.e., the
population size), then, the algorithm fills the population with individuals
from the N + 1-th front, selected using reference directions — an approach
that aims to maximize diversity in the selection [BDD*21].

After the specified number of generations, the algorithm returns the last population
together with the evaluation of the three objective functions.

4.5 Experimental Settings
4.5.1 Datasets and Constraints

Because images are devoid of constraints and fall outside the scope of our
framework, we evaluate CPGD and MOEVA on four datasets coming from inherently
constrained domains. These datasets bear different sizes, features, and types (and
numbers) of constraints. We evaluate both neural networks (NN) and random
forest (RF) classifiers. More details about datasets and models are in Appendix C.

LCLD. It is inspired by the Lending Club Loan Data [Kag19]. Therein, examples
are credit requests that can be accepted or rejected. We trained a neural network
and a random forest that both reach an AUROC score of 0.72. We have identified
constraints that include 94 boundary conditions, 19 immutable features, and 10
feature relationship constraints (3 linear, 7 non-linear). For example, the installment
(I), the loan amount (L), the interest rate (R), and the term (T) are linked by the
relation I = L* R(1+ R)T/((1 + R)T —1).
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CTU-13. Tt is a feature-engineered version of CTU-13, proposed by [CO19b]. Tt
includes a mix of legit and botnet traffic flows from the CTU campus. We trained a
neural network and a random forest to classify legit and botnet traffic, which both
achieved an AUROC of 0.99. We identified 324 immutable features and 360 feature
relationship constraints (326 linear, 34 non-linear). For example, the maximum
packet size for TCP ports should be 1500 bytes.

Malware. [t comprises features extracted from a collection of benign and malware
PE files [AGM™20]. We trained a random forest with an AUROC of 0.99. We
identified 88 immutable features and 7 feature relationship constraints (4 linear, 3
non-linear). For example, the sum of binary features set to 1 that describe API
imports should be less than the value of the feature api_nb, which represents the
total number of imports on the PE file.

URL. It comes from [HY21] and contains a set of legitimate or phishing URLs.
The random forest we use has an AUROC of 0.97. We have identified 14 relation
constraints between the URL features, including 7 linear constraints (e.g. hostname
length is at most equal to URL length) and 7 are if-then-else constraints.

4.5.2 Experimental Protocol and Parameters

In all datasets, a typical attack would be interested in fooling the model to
classify a malicious class (rejected credit, botnet, malware, and phishing URL) into
a target class (accepted, legit, benign, and legit URL). By convention, we denote
by 1 the malicious class and by 0 the target class.

We evaluate the success rate of the attacks on the trained models using, as
original examples, a subset of the test data from class 1. In LCLD we take 4000
randomly selected examples from the candidates, to limit computation cost while
maintaining confidence in the generalization of the results. For CTU-13, Malware,
and URL, we use respectively all 389, 1308, and 1129 test examples that are
classified in class 1.

Since all datasets comprise binary, integer, and continuous features, we use the
Ly distance to measure the perturbation between the original examples and the
generated examples.

We detail and justify in Appendices C and D the attack parameters including
perturbation threshold e, the number of generations and population size for the
genetic algorithm attack, and the number of iterations for the gradient attack.

4.6 Experimental Results

4.6.1 Attack Success Rate

Table 4.2 shows the success rate of PGD, PGD + SAT, CPGD, and MOEVA
on the two neural networks that we have trained on LCLD and CTU-13; and the
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Table 4.2: Success rate (C&M) of the attacks on the neural network (NN) and
random forest (RF) models, in % of the original examples. M is the success rate
disregarding constraint satisfaction; C is the ratio of original examples where the

attack found examples that satisfy the constraints and are within the perturbation
bound.

Model Dataset  Attack C M C&M
PGD 0.00 22.20 0.00

PGD + SAT 2.43 0.00 0.00

LCLD CPGD 61.68 22.03 9.85

Neural Network MOEVA 100.00  99.90 97.48
PGD 0.00 100.00 0.00

PGD + SAT 100.00 0.00 0.00

CTU-13 CPGD 0.00  17.57 0.00

MOEVA 100.00 100.00 100.00

Papernot 0.00 11.86 0.00

LCLD MOEVA 99.98 61.84 41.51

Papernot 79.36  13.02 0.0

Random Forest =~ 0 "> MOEVA 100.00  7.62  5.41
Malware Papernot 0.00 51.99 0.00

MOEVA 100.00 100.00  39.30

URL Papernot 84.23  11.25 8.50

MOEVA 100.00 32.06 31.89
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success rate of the Papernot attack and MOEVA on the random forests that we
have trained on each dataset. More precisely, we use the extension of the original
Papernot attack [PMG16] that [GCG™20] proposed to make this attack applicable
to random forests.

PGD and PGD + SAT fail to generate any constrained adversarial examples.
The problem with PGD is that it fails to satisfy the domain constraints. While the
use of a SAT solver fixes this issue, the resulting examples are classified correctly.
CPGD can create LCLD examples that satisfy the constraints and examples that
the model misclassifies, yielding an actual success rate of 9.85%. On the CTU-13
dataset, however, the attack fails to generate any constrained adversarial examples.
The reason is that CTU-13 comprises 360 constraints, which translates into as
many new terms in the function of which CPGD backpropagates through. As
each function contributes with diverse, non-co-linear, or even opposed gradients,
this ultimately hinders the attack. Similar phenomena have been observed in
multi-label [SJTH*18] and multi-task models [GCP*21]. By contrast, MOEVA,
which enables a global exploration of the search space, is successful for 97.48% and
100% of the original examples, respectively.

MOEVA also manages to create feasible adversarial examples on the random
forest models, with a success rate ranging from 5.41% to 41.51%. This indicates
that our attack remains effective on such ensemble models, including with other
datasets. Like PGD, the Papernot attack — unaware of constraints — cannot produce
a single feasible example on LCLD, CTU-13, and Malware, whereas it has a low
success rate (8.50%) on URL compared to MOEVA (31.89%).

Conclusion: While adversarial attacks unaware of domain constraints fail,
incorporating constraint knowledge as an attack objective enables the successful
generation of constrained adversarial examples.

4.6.2 Adversarial Retraining

We, next, evaluate if adversarial retraining is an effective means of reducing the
effectiveness of constrained attacks.

We start with our models trained on the original training set. We generate
constrained adversarial examples (using either CPGD or MOEVA) from original
training examples that each model correctly classifies in class 1. To enable a fair
comparison of both methods, for the LCLD (NN), we use only the original examples
for which CPGD and MOEVA could both generate a successful adversarial example.
In all other cases, we do not apply this restriction, since MOEVA is the only
technique that is both applicable and successful. While MOEVA returns a set of
constrained examples, we only select the individual that maximizes the confidence
of the model in its (wrong) classification, similar to CPGD which maximizes the
model loss.
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Table 4.3: Success rate of CPGD and MOEVA after adversarial retraining and
constraint augmentation (on neural networks). For a fair comparison, the model
denoted by the same symbols (* or f) are trained with the same number of
adversarial examples, generated from the same original samples.

Defense Attack LCLD CTU-13
None CPGD 9.85 0.00
MOEVA 9748  100.00

CPGD 8.78 NA

.
CPGD Adv. retraining MOEVA 9490 NA
CPGD 2.70 NA
g

MOEVA Adv. retraining MOEVA 8520 0.8
Constraints augment CPGD 0.00 NA
SHICHE. MOEVA  80.43 0.00

MOEVA Adv. retrain. { MOEVA  82.00 NA
Combined mechanisms f MOEVA 7743 NA

Table 4.4: Success rate of MOEVA on the random forest models.

Defense LCLD CTU-13 Malware URL
None 41.51 5.41 39.30 31.89
Adv. retraining 3.90 4.67 37.69 22.14
Cons. augment.  19.73 6.63 28.52  20.99
Combined 0.77 4.67 28.98 15.94

Regarding the perturbation budget, we follow established standards [CAP*19]
and provide the attack with an € budget 4 times larger than the defense.

Table 4.3 (middle rows) shows the results for the neural networks, and Table 4.4
(second row) for the random forests. Overall, we observe that adversarial retraining
remains an effective defense against constrained attacks. For instance, on LCLD
(NN) adversarial retraining using MOEVA drops the success rate of CPGD from
9.85% to 2.70%, and its own success rate from 97.48% to 85.20%. The fact that
MOEVA still works suggests, however, that the large search space that this search
algorithm explores preserves its effectiveness. By contrast, on CTU-13 (NN), we
observe that the success rate of MOEVA drops from 100% to 0.8% after adversarial
retraining with the same attack.

We assess the effect of adversarial retraining more finely and show, in Figure
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Figure 4.1: Success rate of MOEVA against the original LCLD neural network, the
defended counterparts, and constraints engineering, over the generations.
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4.1, the success rate of MOEVA on the LCLD neural network over the number
of generations. Compared to the undefended model, adversarial retraining (using
MOEVA) lowers the asymptotic success rate. Moreover, the growth of the success
rate is much steeper for the undefended model. For instance, MOEVA needs ten
times more generations to reach the same success rate of 84% against the MOEVA
defended models than against the undefended model (100 generations versus 12
generations). Adversarial retraining using CPGD is less effective: while it reduces
the success rate in the earlier generations, its benefits diminishes as the MOEVA
attack runs for more generations.

Conclusion: Adversarial retraining remains an effective defense against con-
strained adversarial attacks. The benefits of adversarial retraining against
MOEVA are achieved as soon as the earliest generations and persist throughout
the attack process.

4.6.3 Impact of Constraints Engineering

We hypothesize that constraints — in particular, non-convex constraints can
hinder the generation of adversarial examples. To verify this hypothesis, we propose
a systematic method to add engineered constraints, and we evaluate the effectiveness
of our attack against this augmented dataset.

To define new constraints, we first augment the original data with new features
engineered from existing features. Let f denote the mean value of some feature
of interest f over the training set. Given a pair of feature (f1, f2), we engineer a
binary feature f. as

fo@) = (fi < m1) @ (fo < 22) (4.6)

where x; is the value of f; in  and @ denotes the exclusive or (XOR) binary
operator. The comparison of the value of the input z for a particular feature f; with
the mean ﬁ allows us to handle non-binary features while maintaining a uniform
distribution of value across the training dataset. We use the XOR operator to
generate the new feature as this operator is not differentiable. We, then, introduce
a new constraint that the value of f. should remain equal to its original definition.
That is, we add the constraint

we = (felw) = (h S 21) @ (f2 < 2)) (4.7)

The original examples respect these new constraints by construction. In other
words, for an adversarial attack to be successful, the attack should modify f. if the
modifications it applied to f; and f, would imply a change in the value of f..

To avoid combinatorial explosion, we add constraints only on pairs of the most
important mutable features. We measure importance with the approximation
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of Shapley value [SGK17], an established explainability method. In the end, we
consider a number M of pairs such that M = argmax (;ﬁ) < % where N is the

total number of features.

As a preliminary sanity check, we verified that constraint augmentation does
not penalize clean performance and confirmed that the augmented models keep
similar performance.

We evaluate our attacks following the same protocol, except that the models
are trained on the augmented set of features. That is, we assume that the attacker
has knowledge of the added features and constraints.

We show the results in Table 4.3 and 4.4 (third row). Constrained augmentation
nullifies the low success rate of CPGD on LCLD - the gradient-based attack
becomes unable to satisfy the constraints. Constraints augmentation also decreases
significantly the success rate of MOEVA in all cases except the CTU-13 random
forest. For instance, it drops from 97.48% to 80.43% for LCLD NN, and from 100%
to 0% on CTU-13 NN.

In Figure 4.1, we assess the effect of constraints augmentation on the success
rate of MOEVA on the LCLD neural network over the number of generations
Compared to the original model, constrained augmentation lowers the success rate.
The growth of success rate is much slower for the clean constrained engineered
model.

Conclusion: Constraint augmentation hinders the generation of constrained
adversarial attacks, as early as the first generations.

4.6.4 Combining mechanisms

We investigate whether the combination of constraint augmentation with ad-
versarial retraining yields a decrease in MOEVA performance. A positive answer
would indicate that constraint augmentation and adversarial retraining have com-
plementary benefits.

We add to the models the same engineered constraints as we did previously. We
also perform adversarial retraining on the augmented models, using all adversarial
examples that MoEvA managed to generate on the training set. Then, we attack the
defended models using MoEvA applied to the test set. For a fair comparison with
adversarial retraining, we also apply this defense without constraint augmentation,
using the same number of examples. We do not experiment with CPGD, which
was already ineffective when only one defense was used. Neither do we consider
the datasets for which one defense was enough to fully protect the model.

Tables 4.3 and 4.4 (last rows) present the results. On LCLD (NN), the combined
mechanisms drop the attack success rate from 97.48% (on a defenseless model)
to 77.23%, which is better than adversarial retraining (82.00%) and constraint
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augmentation (80.43%) applied separately. On the RFs, the combination either
offers additional reductions in attack success rate compared to the best individual
defense (LCLD and URL) or has negligible effects (CTU-13 and Malware).

Conclusion: Constraint augmentation and adversarial training are comple-
mentary. Compared to their separate application, the combination can decrease
the attack success rate by up to 5%.

4.7 Conclusion

In this chapter, we proposed the first generic framework for adversarial attacks
under domain-specific constraints. We instantiated our framework with two meth-
ods: one gradient-based method that extends PGD with multi-loss gradient descent,
and one that relies on multi-objective search. We evaluated our methods on four
datasets and two types of models. We demonstrated their unique capability to gen-
erate constrained adversarial examples. We would like to encourage the evaluation
of the robustness of machine learning models deployed in critical software systems.
With this work, we enable practitioners to correctly evaluate the robustness of
their models by generating realistic adversarial examples (i.e. that respect domain
constraints). In addition to adversarial retraining, we proposed and investigated a
novel mechanism that introduces engineered non-convex constraints. This strategy
is as effective as adversarial retraining. Although adaptive attacks could potentially
breach this approach, it still demonstrates the capacity of constraints to hinder
adversarial attacks. We hope that our approach, algorithms, and datasets will
be the starting point of further endeavors toward studying feasible adversarial
examples in real-world domains that are inherently constrained. In particular,
we explore in the next chapter, improvements to gradient-based attacks and the
construction of a strong and effective attack that combines fast gradient attacks
with effective search attacks.
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Constrained Adaptive Attack: Effective
Adversarial Attack Against Deep Neural
Networks for Tabular Data

The reliable evaluation of Deep Neural Networks’ robustness requires strong
and efficient attacks. We propose Constrained Adaptive PGD (CAPGD) a fast
gradient-based attack that is complementary to MOEVA. By combining these two
attacks, we obtain Constrained Adaptive Attack a strong attack subsuming all other
constrained attacks while being up to five times faster.
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5.1 Introduction

This chapter continues to address the first challenge of this thesis which is to
evaluate the robustness of critical systems against adversarial examples. Chapter
4 introduced a framework to generate constrained adversarial examples that we
instantiated with two attacks CPGD and MOEVA. While we empirically showed
the effectiveness of our framework and attacks, the success rate of CPGD remains
low (at most 9.85%) and MOEVA remains computationally expensive.

While research has studied the robustness of deep learning models in Computer
Vision (CV) and Natural Language Processing (NLP) tasks, many real-world
applications instead deal with tabular data, including in critical fields like finance,
energy, and healthcare. If classical “shallow” models (e.g. random forests) have
been the go-to solution to learn from tabular data [HK20], deep learning models are
becoming competitive [BLS*22]. This raises anew the need to study the robustness
of these models.

However, robustness assessment for tabular deep learning models brings a
number of new challenges that previous solutions - because they were originally
designed for CV or NLP tasks - do not consider. One such challenge is the fact that
tabular data exhibit feature constraints, i.e. complex relationships and constraints
across features. The satisfaction of these feature constraints can be a non-convex
or even non-differentiable problem; this implies that established evasion attack
algorithms relying on gradient computation do not create valid adversarial examples
(i.e., constraint satisfying) [GCG20]. Meanwhile, attacks designed for tabular
data also ignore feature type constraints [BALT19] or, in the best case, consider
categorical features without feature relationships [WHB"20; XHR23; BHZ 23]
and are evaluated on datasets that exclusively contain such features. This restricts
their application to other domains that present heterogeneous feature types.

As of today, Constrained Projected Gradient Descent (CPGD) and Multi-
Objective Evolutionary Adversarial Attack (MOEVA) remain the only published
evasion attacks that support feature constraints [SDG*22]. CPGD is an extension
of the classical gradient-based PGD attack with a new loss function that encodes
how far the generated examples are from satisfying the constraints. Although theo-
retically elegant and practically efficient, this attack suffers from a low success rate
due to its difficulty in converging toward both model classification and constraint
satisfaction [SDG122]. Conversely, MOEVA is based on genetic algorithms. It offers
an outstanding success rate compared to CPGD and works on shallow and deep
learning models. However, it is computationally expensive and requires numerous
hyper-parameters to be tuned (population size, mutation rate, generations, etc.).
This prevents this attack from scaling to larger models and datasets.

Overall, research on adversarial robustness for tabular machine learning in
general (and tabular deep learning in particular) is still in its infancy. This is in
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stark contrast to the abundant literature on adversarial robustness in CV [LGX122]
and NLP tasks [DGC23]. Given this limited state of knowledge, the objective of
this chapter is to propose novel and effective attack methods for tabular models
subject to feature constraints.

We hypothesize that gradient-based algorithms have not been explored ade-
quately in Chapter 4 and that the introduction of dedicated adaptive mechanisms
can outperform CPGD. To verify this, we design a new adaptive attack, named
Constrained Adaptive PGD (CAPGD), whose only free parameter is the number of
iterations and that does not require additional parameter tuning (Section 5.3). We
demonstrate that the different mechanisms we introduced in CAGPD contribute
to improving the success rate of this attack compared to CPGD, by 81% points.
Across all our datasets, the set of adversarial examples that CAPGD generates
subsumes all the examples generated by any other gradient-based method. Fur-
thermore, CAPGD is 75 times faster than MOEVA, while the latter reaches the
highest success rate across all datasets.

These results motivate us to design Constrained Adaptive Attack (CAA), an
adaptive attack that combines our new gradient-based attack (CAPGD) with
MOEVA for an increased success rate at a lower computational cost. Our experi-
ments show that CAA reaches the highest success rate for all models/datasets we
considered, except in one case where CAA is second-best. With this attack, we
offer a strong baseline for future research on evasion attacks for tabular models,
which should become the minimal test for robust tabular architectures and other
defense mechanisms.

Our contributions can be summarized as follows:

1. We design a new parameter-free attack, CAPGD that introduces momentum
and adaptive steps to effectively evade tabular models while enforcing the
feature constraints. We show that CAPGD outperforms the other gradient-
based attacks in terms of the capability to generate valid (constraint-satisfying)
adversarial examples.

2. We propose a new efficient and effective evasion attack (CAA) that combines
gradient and search attacks to optimize both effectiveness and computational
cost.

3. We evaluate CAA in a large-scale evaluation over four datasets, five architec-
tures, and two training methods (standard and adversarial training). Our
results show that CAA outperforms all other attacks and is up to 5 times
more efficient.
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5.2 Problem formulation

We formulate the problem of evasion attacks under constraints. We assume
the attack to be untargeted (i.e. it aims to force misclassification in any incorrect
class); the formulation for targeted attacks is similar and omitted for space reasons.

We denote by # € R? an input example and by y € {1,...,C} its correct
label. Let h : R? — R be a classifier and h,, (z) the classification score that
h outputs for input z to be in class ¢;. Let A C R? be the space of allowed
perturbations. Then, the objective of an evasion attack is to find a 6 € A such that
argmateeq,. cyhe(r +6) # y.

In image classification, the set A is typically chosen as the perturbations
within some [,-ball around z, that is, A, = {§ € R? ||d]|, < €} for a maximum
perturbation threshold e. This restriction aims at preserving the semantics of the
original input by assuming that small enough perturbations will yield images that
humans perceive the same as the original images and would therefore classify the
perturbed input into the same class (while the classifier predicts another class).
This also guarantees that the example remains meaningful, that is,  + § is not an
image with random noise.

Tabular data are by nature different from images. They typically represent
objects of the considered application domain (e.g. botnet traffic [CO22], financial
transaction [GCG*20]). We denote by ¢ : Z — R? the feature mapping function
that maps objects of the problem space Z to a d-dimensional feature space defined
by the feature set F' = {fi, fo,...fa}. Each object z € Z must inherently respect
some natural condition to be valid (to be able to exist in reality). In the feature
space, these conditions translate into a set of constraints on the feature values,
which we denote by . By construction, any input example x obtained from a
real-world object z satisfies 2, noted = = Q.

Thus, in the case of tabular data, we additionally require the perturbation ¢§
applied to z to yield a valid example x + § satisfying (2, that is, A,(z) = {§ € R?:
6], <eNz+d = Q)

To define the constraint language expressing €2, we consider the four types
of constraint introduced in Chapter 4. These four constraint types cover all the
constraints of the datasets in our empirical study. Hence, immutability defines
what features cannot be changed by an attacker; boundaries defines upper / lower
bounds for feature values; type specifies a feature to take continuous, discrete, or
categorical values; and feature relationships capture numerical relations between
features. These four types of constraints can be expressed with the following
grammar:

wi=w Aws | w1 Vwsy | = by

Vi=cl|fli @Y |y (5.1
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where f € F is a feature, ¢ is a constant, w,wy,wq are constraint formulae, =€ {<
,<,=,#,>,>} is a comparison operator, 1,1y, ..., are numeric expressions,
@ € {+, —,*,/} is a numerical operator, and x; is the value of the i-th feature of
the original input z.

5.2.1 Constrained Projected Gradient Descent

Constrained Projected Gradient Descent (CPGD) is an extension of the PGD
attack [MMST17] to generate adversarial examples satisfying constraints in tabular
machine learning. It integrates constraint satisfaction into the loss function that
PGD optimizes. This is achieved by translating each constraint w into a differen-
tiable function penalty(x,w) that values to zero if x |= w; otherwise, the function
represents how far x is from satisfying w. We use the translation table of Chapter
4 to translate each construct of the constraint grammar into a penalty function.

Based on this, CPGD produces adversarial examples from an initial sample
Torig Classified as y by iteratively computing:

2D = Ro(Ps(z® + n®vL(z®, y, h, Q) (5.2)

where 2° = ., (the original input), Ps is the projection onto & = {z €

R |2 — Torigl|p < €}, VL is the gradient of loss function £, defined as

L(z,y,h, Q) =1l(h(z),y) — > penalty(z,w;). (5.3)

wi; €N

In the original CPGD implementation, the step size n® follows a predefined
decay schedule, n®) = ¢ x 10~/ LE/MID with M =7, and K = max(k). L'(z)
abbreviates L(z,y, h, ).

5.2.2 Experimental settings

Our experiments are driven by the following datasets, models, and attack
parameters. More details about the datasets and models are given in Appendix
10.2.1.

Datasets To conduct our study, we selected tabular datasets that present feature
constraints from their respective application domain. URL [HY21] is a dataset
of legitimate and phishing URLs. With only 14 linear domain constraints and 63
features, it is the simplest of our empirical study. LCLD [Geol8§] is a credit-scoring
dataset with non-linear constraints. The WiDS [LRG20] dataset contains medical
data on the survival of patients admitted to the ICU. It has only 30 linear domain
constraints. The CTU [CO22] dataset reports legitimate and botnet traffic from
CTU University. The challenge of this dataset lies in its large number of linear
domain constraints (360). We detail the datasets in the Appendix 10.2.1.
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Architectures We evaluate five top-performing architectures from a recent survey
on tabular ML [BLS*22]: TabTransformer [HKC*20] and TabNet [AP21] are
transformer-based models. RLN [SS18] uses a regularization coefficient to minimize
a counterfactual loss. STG [YLNT20] optimizes feature selection with stochastic
gates, and VIME [YZJ*20] relies on self-supervised learning. These architectures
achieve performance equivalent to XGBoost, the best shallow machine learning
model for our use cases.

Perturbation parameters We use the L2-norm to measure the distance between
original and perturbed inputs, because this norm is suitable for both numerical and
categorical features. We set € to 0.5 for all datasets. Each dataset has a critical
(negative) class, respectively phishing URLs, rejected loans, flagged botnets, and
not surviving patients. Hence, we only attack clean examples from the critical
class that are not already misclassified by the model and report robust accuracy of
models.

Evaluation metrics We measure the effectiveness of our attack using robust
accuracy defined as the accuracy of valid examples generated by a given attack. If
a clean example is misclassified, we do not perturb it. If the attack generates an
invalid example, we consider it as correctly classified. We measure the efficiency of
the attacks in computational time.

5.3 Our Constrained Adaptive PGD

The relative lack of effectiveness of CPGD as reported in its original publication
leads us to investigate the cause of these weaknesses. We investigate four factors
that may affect the success rate of the attack: (1) we conjecture that the fixed
step size and predefined decay in CPGD might be suboptimal because the choice
of the step size is known to largely impact the effectiveness of gradient-based
attacks [MATT18]; (2) CPGD is unaware of the trend, i.e. it does not consider
whether the optimization is evolving successfully and is not able to react to it; (3)
CPGD does not check constraint satisfaction between the iterations, which could
“lock” the algorithm into a part of the invalid data space; (4) CPGD starts with
the original example, whereas classical gradient-based attacks often benefit from
random initialization.

5.3.1 CAPGD algorithm

We propose Constrained Adaptive PGD (CAPGD), a new constraint-aware
gradient-based attack that aims to overcome the limitations of CPGD and improve
its effectiveness. We detail CAPGD in Algorithm 1 in Appendix 10.2.1, and
summarize its components below.
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Step size selection We introduce a step-size adaptation. We follow the exploration-
exploitation principle by gradually reducing the gradient step [CH20]. However,
unlike CPGD, this reduction does not follow a fixed schedule but is determined by
the optimization trend. If the value of the loss function grows, we keep the same
step size; otherwise, we halve it. That is, we start with a step n®© = 2¢, and we
identify checkpoints wy = 0, wy, ..., w, at which we decide whether it is necessary
to halve the size of the current step. We halve the step size if any of the following
two conditions holds:

1. Since the last checkpoint, we count how many cases since the last checkpoint
w;_1 the update step has successfully increased £’. The condition holds if
the loss has increased for at least a fraction of p steps (we set p = 0.75):

wj—1
Yo Loty < p- (W) —wio). (5.4)
i=wj_1

2. The step has not been reduced at the last checkpoint and the loss is less or
equal to the loss of the last checkpoint:

n(qu) = n(wj) A 5&0;5{1) = ) (5.5)

max

where £'(z) is the loss function, £5%) s the highest loss value in the first
J + 1 iterations.

Repair operator We also introduce a new “repair” operator denoted Rq that
projects back the example produced at each iteration into the valid data space.
The idea is to force the value of any feature f that occurs in constraints of the
form f =1 (see Equation 5.1) to be 1 valued based on all other feature values in
the example.

Initial state As for initialization, we apply the attack from two initial states:
the original example x,.;, and a random example sampled from S (the Lp-ball
around z,.;4). The goal behind this second initialization is to reduce the risk of
being immediately locked into local optima that encompass only invalid examples.
Our experiments later reveal the complementary of these two initializations.

Gradient step Finally, we introduce in CAPGD a momentum [DLP*18]. Let

n®) be the step size at iteration &, then we first compute z**+1 before the updated

example z(++1).

2D = Py(a® 4 (VL (2 ®)) (5.6)
2* ) = R (Ps(x® + a- (25 — 2y 4 (1 — @) - (2® — z=+D))

where o € [0,1] (we use o = 0.75 following [CH20]) regulates the influence
of the previous update on the current, and Ps is the projection onto § = {z €
R, |2~ Zorigl | < .

49



10

Table 5.1: Robust accuracy against CAPGD and SOTA gradient attacks. A lower
robust accuracy means a more effective attack (lowest in bold).

Dataset Model Clean LPF CPGD CAPGD

TabTr. 93.6 93.6 91.9 10.9
RLN 944 944 92.8 12.6
URL VIME 92.5 925 90.7 56.3
STG 93.3 93.3 93.3 72.6
TabNet 934 934 88.5 19.3
TabTr. 69.5 69.2 69.5 271
RLN 68.3 68.3 68.3 0.2
LCLD VIME 67.0 67.0 67.0 2.6
STG 66.4 66.4 66.4 55.5
TabNet 674 674 67.4 6.3
TabTr. 95.3 953 95.3 95.3
RLN 97.8 978 97.8 97.8
CTU VIME 95.1 951 95.1 95.1
STG 953 953 95.3 95.3
TabNet 96.1 96.1 96.1 96.1
TabTr. 75.5 755 75.2 48.0
RLN 7715 775 7.3 61.8
WIDS VIME 72.3 723 71.5 51.4
STG 7.6 T7.6 7.5 65.1
TabNet 79.7 79.7 76.0 10.2

5.3.2 Comparison of CAPGD to gradient-based attacks

To evaluate the benefits of CAPGD, we compare it with CPGD as well as
LowProFool, the only other public gradient attack for tabular models that can be
extended to support all types of features.

CAPGD is more successful than existing gradient attacks. We compare
the robust accuracy across our four datasets and five architectures with CPGD,
LowProFool, and CAPGD, and report the results in Table 5.1. CAPGD significantly
outperforms CPGD and LowProFool. It decreases the robust accuracy on URL,
LCLD, and WIDS datasets to as low as 10.9%, 0.2%, and 10.2% respectively.

The results also reveal that gradient attacks are ineffective on the CTU dataset.
These results demonstrate that gradient-based attacks are not enough and motivate
us to consider combining CAPGD with search-based attacks, as investigated in
Section 5.4.
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CPGD LowProFool

CAPGD

Figure 5.1: Visualization of the complementarity of CAPGD, CPGD, and LowPro-
Fool with the number of successful adversarial examples.
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CAPGD subsumes all gradient attacks. We analyze in detail the original
examples from which attacks could generate valid and successful adversarial ex-
amples. For each attack, we take the union of the sets of clean examples across
5 seeds. We generate the Venn diagram for CPGD, LowProFool, and CAPGD,
for all datasets and model architectures. We sum the partition values in Figure
5.1. CAPGD generates adversarial examples for 6597 original examples from which
none of the other gradient attacks could produce adversarial examples. In contrast,
all successful adversarial examples by CPGD (132) and LowProFool (3) are also
generated by CAPGD.

5.3.3 Components of CAPGD

All components of CAPGD contribute to its effectiveness. We conduct
an ablation study on the components of CAPGD. We evaluate CAPGD without
the repair operator at each iteration (NREP), without the initialization with clean
example (NINT), without the initialization with random sampling (NRAN), and
without the adaptive step (NADA). Table 5.2 reveals that removing a component
of CAPGD reduces its effectiveness. Interestingly, not all components affect all
datasets similarly. For instance, removing the repair at each gradient iteration
only affects the LCLD datasets’ success rate. For URL and WIDS, CAPGD-NREP
remains in the confidence interval of CAPGD. Removing any other components
always negatively affects CAPGD, up to an improvement of 32.1% of the robust
accuracy for CAPGD-NADA on the WIDS dataset and TabNet model.

CAPGD components are complementary. None of the components of
CAPGD negatively affects its capability of finding an adversarial example for
a given clean example. In Figure 5.2, we analyze the coverage of each CAPGD
variant A (Covered Attack) with regard to another variant B (Covering Attack).
For A and B, we compute the set of clean examples C'y and Cg on which the
attacks are successful. The percentage in the heatmaps represents the proportion
of C4 UCpg covered by Cp, that is

coverage = \07]54
|C'a U Cpl
where |C| is the cardinality of C. Attack B subsumes A when coverage = 1. In
practice, to avoid random effect, we run the attack for N = 5 seeds, and take the
union of clean examples on which we generate a successful example.

Figure 5.2 reveals that CAPGD subsumes all its variants with coverage over
99%, while none of the variants subsumes CAPGD. Therefore all components of
CAPGD are necessary to obtain the strongest attack.
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Coverring Attack (B)
NREP NINI NRAN NADA

CAPGD

CAPGD NREP NINI NRAN NADA
Coverred Attack (A)

Figure 5.2: Visualization of the utility of CAA’s components. For attack A
(respectively B) we compute the set of clean examples C4 (respectively Cg)) on
which the attack is successful. The percentage represents the proportion of the set
C, U Cp is covered by Cg. CAPGD-NADA is CAPGD without an adaptive step,
CAPGD-NRAN is CAPGD without the random start, CAPGD-NINI is CAPGD
without the clean example initialization and CAPGD NREP is CAPGD without
repair at each iteration.
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Table 5.2: Ablation study: Robust accuracy for CAPGD and its variant without
key components. The Clean column corresponds to the accuracy of the model on
the subset of clean samples that we attack. A lower robust accuracy means a more
effective attack. The lowest robust accuracy is in bold.

Dataset Model ‘Clean NREP NINI NRAN NADA CAPGD
TabTr. 93.6 10.9150‘1 11.8i0A3 12.6i0‘0 34.6i04 10.9i0A1

RLN 944 12.7+02 14.9+02 148100 30.2105 12.6:02
URL VIME 92.5 56.3+01 58.1+0s 56.9+00 65.2+01  56.3x01
STG 93.3 72.6100 734102 73.0x00 753201 T2.6x00

TabNet 93.4 19.2i07 27.6+0s 29.7+00 34.4403 19.3+0s6
TabTr. 69.5 38.3+0.4 38.0+0.9 38.0+0.0 44 4414 27 1400

RLN 68.3 5.3+0.2 14405 1.6+0.0 1.1403 0.2+01
LCLD VIME 67.0 17.9+06 7. 1+05 7.3+0.0 3.6+0.4 2.6+0.2
STG 66.4 59.4401 H8.0+03 56.5+00 59.7+02 55.B+02

TabNet 674 304106 33.1+1a  10.8+00 7.3+0.4 6.3+0.4
TabTr. 95.3 95.3:i00 95.3100 95.3100 95.3+00 95.3+0.0

RLN 97.8 97.8:00 97.8:100 97.8:00 97.8:00 97.8+00
CTU VIME 95.1 951100 95.1:00 95.1i00 95.1:00 95.1+00
STG 95.3 953200 95.3100 95.3100 95.3:00 95.3+00

TabNet 96.1 96.1:00 96.1400 96.1:00 96.1:00 96.1+0.0
TabTr. 755 48 2403 54.7+0.9 53.3+0.0 64.9+0.6 48.0+0.3

RLN 77.5 61.8+03 066.3+04 63.7+00 72.3105 61.8+0s
WIDS VIME 72.3 51l.4+03 55.6+09 Hd.1+00 62.9+04 5l.440s
STG 77.6 651i0a 68.9+03 67.6400 74.0402 65.1404

TabNet 797 10.1405 20.710.9 17.5&0‘0 42.3i0,7 10.2+0s
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MOEVA

953

BF*

Figure 5.3: Visualization of the complementarity of CAPGD, MOEVA, and BF*
with the number of successful adversarial examples.

5.4 CAA: an ensemble of gradient and search
attacks

We next propose Constrained Adaptive Attack (CAA), an effective and efficient
ensemble of gradient- and search-based attacks. The idea underlying CAA is that
gradient-based attacks for tabular data are more efficient but less successful than
search-based attacks. Thus, CAA integrates the best search-based attacks from
each family in a complementary way, such that we maximize the set of adversarial
examples that can be generated.

5.4.1 Design of CAA

Following our related work study, we consider the search attacks MOEVA and
BF* [KHS*18; KKT23]. As a first step, we compare in Figure 5.3 these two
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Table 5.3: Robust accuracy for CAPGD, MOEVA, and CAA. The Clean column
corresponds to the accuracy of the model on the subset of clean samples that we
attack. A lower robust accuracy means a more effective attack. The lowest robust
accuracy is in bold.

Robust accuracy ({)
Dataset Model Clean CAPGD BF* MOEVA CAA
URL TabTr. 93.6 10.9401  93.2+0 18.2+0.8 894102

RLN 94.4 12.6202  93.810 23.6+05 10.8+0.2
VIME 92.5 56.3+01  92.24+0 56.5+00 49.5+05
STG 93.3 72.6+00  93.2+0 58.2+09 D8.0+0s

TabNet 93.4 19.3+0.6 90.94+0 17.5+06 11.0x0.5
LCLD TabTr. 69.5 27.1i0.9 61.140 ]_0.7i0.8 7.9i0.6

RLN 68.3 0.2401  38.9+0 0.8+02  0.0+0.0
VIME 67.0 2.6102  52.600 241115 2.4101
STG 66.4  55.5+02 53.0x0  55.4+02  53.6+01

TabNet 67.4 6.3+0.4 49.0+0 0.8+0.1 0.4+01
CTU TabTr. 95.3  95.3+00 995.3+0 95.3+00  95.3x0.0

RLN 97.8  97.8400 97.520 94.0+02 94.0:0:2
VIME 95.1  95.1x00 95.1+0 40.8:47 40.81a7
STG 95.3  95.3+00 95.3x0  95.3100  95.3x00

TabNet 96.1 96.1+0.0 13.0+0 0.0+0.0 0.0+0.0
WIDS TabTr. 75.5 48.0+0.3 67.7+0 59.2406 45.9+03

RLN 77.5  61.8+03 77.0x0  67.7:03 60.9:02
VIME 72.3  bl.dsos 71240  59.4405 50.3+02
STG 776  65.1t04 77520  68.8+03 63.8+02

TabNet 79.7 10.2403 73.1+0 13.9404 5.3+0.4
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Table 5.4: Attack duration for CAPGD, MOEVA, and CAA. A lower duration is

better. The lowest time between MOEVA and CAA is in bold.

Duration in seconds ()

Dataset Model CAPGD BF* MOEVA CAA
URL TabTr. 110 330 75+2 1741
RLN 110 27 +0 T4+s 1941
VIME 241 32+0 70+1  B5li2
STG 2+0 580 90+0 T73zs
TabNet 810 444 10 1654 5811
LCLD TabTr. D+1 15440 12445 8342
RLN 110 1470 90+1 1043
VIME 1+0 14940 4942 1311
STG 30 191+0 60+2 BT+2
TabNet 410 754 +0 68+2 23+0
CTU TabTr. 410 371+0 98+:4 11045
RLN 915 120 98:3 11244
VIME 4o 92410 107+s 116+2
STG D0 9548+0 105+ 11944
TabNet T+o 8160 15717 18214
WIDS TabTr. 30 4400 65+3 4911
RLN 3+0  2520+0 52+1 4912
VIME 2+0  1406=0 48+ 41+1
STG 3+0 18880 64+1 591
TabNet O5+0 104720 TT+a 2541
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attacks in terms of the original examples for which they could generate successful
adversarial examples. We also include CAPGD in this comparison, since we have
shown that this attack subsumes the other gradient-based attacks. Our results
reveal that CAPGD and MOEVA together subsume BF* except for 5 examples.
Additionally, CAPGD and MOEVA are complementary, with CAPGD generating
477 unique examples and MOEVA 953. Overall, the combination of CAPGD with
MOEVA yields the strongest method including only one gradient-based attack
and one search-based attack. One could also include BF* for a slight increase in
effectiveness, but this would come at the computational cost of running this attack
in addition to the other two; our experimental results (presented below) actually
reveal that BF* brings a substantial computational cost compared to CAPGD and
MOEVA. Hence, we stick to CAPGD and MOEVA only.

The principle of CAA is thus to successively apply CAPGD and MOEVA, in
that order. By applying CAPGD first, CAA has the opportunity to generate valid
adversarial examples at low computational cost (benefiting from the performance
of gradient attacks compared to search attacks). If CAPGD fails on an original
example, CAA executes the slower but more effective MOEVA method.

5.4.2 Effectiveness and efficiency of CAA

We evaluated the effectiveness (robust accuracy) and efficiency (computation
time) of CAA compared to the other methods. The hyperparameters of all attacks
are fixed for all experiments (see Section 10.2.1 of the appendix) and follow the
recommendation given in their original paper.

Table 5.3 shows that CAA achieves the best performance in all cases but one:
for STG model and LCLD dataset, BF* achieves a robust accuracy 0.6 percentage
points lower than CAA — these are the unique original examples from which BF*
could generate successful adversarial examples. Overall, CAA leads to a decrease
in accuracy of up to 96.1%, 84.3%, and 21.7% compared to CAPGD, BF*, and
MOEVA respectively.

The main advantage of CAA is its ability to find "easy" constrained adversarial
using the cheaper gradient attack CAPGD, before processing harder examples with
expensive search. We compare in Table 5.4 the cost of running each attack, i.e.,
its execution time. CAA shines particularly in terms of efficiency. CAA reduces
execution costs by up to 5 times compared to MOEVA. It is significantly faster
than MOEVA for LCLD, URL, and WIDS datasets (except STG), and marginally
more costly for CTU.

CAA is up to 418 times faster than BF*. In particular, in the only case where
BF* marginally outperforms CAA, BF* requires 3.4 times more computation to
generate the adversarial examples.
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Figure 5.4: Impact of CAA budget on the robust accuracy for CTU dataset.
5.4.3 Impact of attack budget

We study the impact of the attacker’s budget on the effectiveness of CAA,
in terms of (i) maximum perturbation € and (ii) the number of iterations of its
components. We focus on the CTU dataset, which models are the only ones to
remain robust through our previous experiments. All the datasets are evaluated in
Appendix 10.2.2. Figure 5.4 reveals in (a) that the maximum perturbation distance
€ has little impact on the effectiveness of the attack. Increasing the number of
iterations for the gradient attack component (b) does not have an impact on the
success rate of CAA. Increasing the budget of the search attack component (c)
significantly impacts the robustness of some models. While TabTransformer and
STG remain robust, the robust accuracy of RLM and VIME drops below 0.4 when
doubling the number of search iterations to 200, and to zero with 1000 search
iterations.

5.4.4 Impact of Adversarial training

We evaluate the effectiveness of our attack against models made robust with
Madry’s adversarial training (AT) [MMS*17], using examples generated by the
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Table 5.5: CAA performances (XX+/-YY) against Madry adversarially trained
model. XX refers to accuracy. YY is the difference between the accuracy of the
adversarially trained model and standard training (cf. Table 5.3), such that ’+’
means a higher accuracy for the adversarially trained model.

Dataset Accuracy ‘ TabTr. RLN VIME  STG TabNet

URL Clean 93.9+0.3 95.210.8 93.4+0.9 94.3+1.0 99.546.1
CAA 56. 74478 50.21454 69.84203 90.04320 91.84s0s
LCLD Clean 73.944.4 69.511.2 65.5-15 15.6-508 0.0-67.4
CAA 70.3+62.4 63.0463.0 10.44s0 12.1-215 0.0-0.4
CTU Clean 95.3+0.0 97.3-0s 95.1+0.0 95.1-02 0.2-905.8
CAA 95.3+0.0 97.1430 94.04532  95.1-0.2 0.210.2
WIDS Clean 77.3418 78.0+0.5 72.1 02 62.6-151 98.411856
CAA 65. 14192 66.6+57  52.141s  45.2-186 5844531

PGD attack. We consider this defense because it was shown to be the only reliable
defense against evasion attacks [TCB*20; Car23]. In Table 5.5, we show the clean
accuracy and the robust accuracy (against CAA) of the adversarially trained models
(big numbers in Table 5.5). We also show the accuracy difference with the models
trained with standard training (small numbers).

Adversarial training can degrade clean and robust performance. Asa
preliminary check, we investigate whether adversarial training degrades the clean
performance of the models. This is important to ensure that a non-increase of
robust accuracy does not originate from clean performance degradation (instead
of being due to CAA’s strength). Our evaluation shows that adversarial training
significantly degrades the clean performance of the STG and Tabnet architectures.
The accuracy of STG models drops to 15.6% and 62.6% for LCLD and WIDS
respectively. As for Tabnet models, the clean accuracy drops to 0.0% (LCLD) and
0.2% (CTU). In all other cases, clean accuracy remains stable.

CAA remains effective against adversarial training for some architectures.
The effectiveness of CAA against robust models is architecture- and dataset-
dependent. The attack remains effective on VIME architecture applied to LCLD
and WIDS, with robust accuracy as low as 10.1% and 52.2% respectively, as well as
on RLN architecture on the WIDS dataset (66.6% robust accuracy and only +5.7%
improvement compared to standard training). However, the robustness against
CAA of Tabtransformer architecture is significantly improved on URL and LCLD
datasets by respectively 47.8% and 62.4%, and marginally improved on WIDS
dataset by 19.2%. Similarly, RLN robustness to CAA improves on URL (445.4%)
and LCLD (4+63%).
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5.4.5 Impact of constraints complexity

CAPGD and CAA fail to generate adversarial examples on CTU for 2 out of
5 models. CTU dataset has a large number of constraints (360) compared to the
other datasets, and some are particularly challenging (involving 90 features). We
argue that some of these constraints hinder gradient attacks and are harder to
optimize. To confirm our hypothesis and provide additional insights, we split the
constraints of CTU based on their type into 4 buckets:

e CGO: 1 constraint involving 90 features in the form of }° F; = >° F; where

both sums represent the total number of sent packets.

« CG1: 1 constraint involving 90 features in the form of }° F; = > F; where

both sums represent the total number of received packets.

o CG2: 34 constraints in the form of BYTE/PACKETS < 1500, to model

the fact that each packet contains at most 1500 bytes.

e CG3: 324 constraints in the form of A < B where A and B are statistical

properties (min, max, sum) for each port, and direction.

First, we run an ablation study, where we ignore one bucket of constraint at a
time. Next, we study the success rate when we considered each bucket separately.
Finally, we reported the impact of the number of constraints to optimize from CG3,
the largest bucket.

The number of constraints and their complexity impact the success rate of
attack. The results in Table 5.6 and 5.7 show that for gradient attacks, removing
one type of constraint is not enough to improve the success rate. Constraints
across multiple remaining categories are not satisfied. The individual bucket study
confirms that only when considering constraints of type CG2 alone, CAPGD
improves its success rate (in VIME and TabNet). When only considering CG3
constraints, reducing the number of constraints improves the success rate (by
reducing robust accuracy from 95.3% when considering 100% of CG3 constraints to
84.5% and 43.0% respectively when considering 50% and 10% of the constraints).

5.4.6 Generalization to non-differentiable models

Tree-based models, and in particular random forest and XGBoost models remain
among the best architectures for tabular data for some datasets [BLST21]. We
hypothesize that CAA is relevant to any models, including tree-based models with
two settings:

1. in transferability, by generating adversarial examples on a surrogate model
and evaluating their success rate on the target (tree-based) model,

2. by applying CAA (through the search-based component MOEVA that is
model agnostic).
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Table 5.6: Robust accuracy with subset of constraints and CAPGD attack. 2 is
the complete set of constraints. CGX denotes the constraint group X. For CG2 and
CG3, we evaluate with the entire group and on 10%, 25%, 50% selected randomly
and averaged on 5 seeds.

CAPGD
Group RLN STG TabNet TabTr. VIME
Q 97.8 95.3 96.1 95.3 95.1

Q\CGO 97.8 953 96.1 95.3 95.1
Q\CG1 978 953 96.1 95.3 95.1

Ablation Q\CG2 97.8 953 961 953  95.1
Q\CG3 97.8 953 961 953  95.1

CGO 978 953 961 953  95.1

Comtonents CG1 978 953 961 953  95.1
P CG2 753 953 314 943 0.0
CG3 972 953 953 953  05.1

10% 852 953 430 951 113

Percentage CG3  25% 93.4 95.3 59.9 95.3 37.8
50% 949 953 845 953  03.2
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Table 5.7: Robust accuracy with subset of constraints and CAA attack.  is the
complete set of constraints. CGX denotes the constraint group X. For CG2 and
CG3, we evaluate with the entire group and on 10%, 25%, 50% selected randomly
and averaged on 5 seeds.

CAA
Group RLN STG TabNet TabTr. VIME
Q 94.0 95.3 0.0 95.3 40.8
Q\NCGO 939 953 0.0 95.3 21.0
Ablation Q\CG1 941 953 0.0 95.3 37.1
Q\NCG2 939 953 0.1 95.3 40.8
Q\CG3 893 953 0.0 95.3 2.4
CGO 91.6 95.3 0.0 95.2 2.8
Components CG1 91.1 95.3 0.0 95.2 1.9
P CG2 72.0 95.3 0.0 94.3 0.0
CG3 92.7  95.3 0.0 95.3 19.0
10% 80.8 95.3 0.0 94.9 0.6
Percentage CG3  25% 87.1 95.3 0.0 95.3 2.5
50% 88.6 95.3 0.0 95.3 8.3

Table 5.8: Tree-based model robust accuracy in direct and transferability scenario
(minimum robust accuracy over 5 neural networks).

Dataset Model Clean Direct Transferability
URL Random Forest 96.2 52.7 72.4
XGBoost 97.4 27.3 46.7
Random Forest 64.3 22.3 5.3
LCLD XGBoost 68.3 9.1 94
CTU Random Forest 95.6 92.2 95.0
XGBoost 97.3 76.3 97.1
Random Forest 52.2 5.2 14.1
WIDS XGBoost 0.4 38.0 60.7
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We train Random Forests (RF) and XGBOOST models to achieve the best
performance on our datasets.

CAA is effective against non-differentiable models Table 5.8 shows the
robust accuracy of both models against CAA for the four datasets in two settings:
(1) Direct attack where CAA (using its search component MOEVA) attacks directly
the RF and XGBOOST models, and (2) Transfer attacks, where we craft the
examples on our deep learning (DL) models and evaluate them on the RF and
XGBOOST models.

Our evaluation shows that (1) DL models of our study achieve comparable
clean performance to the shallow models, (2) both RF and XGBOOST models
are vulnerable to direct CAA attacks (down to 9.1% of robust accuracy on LCLD
XGBoost), and (3) CAA attacks on DNN transfer to RF (down to 5.3% robust
accuracy) and XGBoost (down to 9.4% robust accuracy) models.

The results confirm the relevance and significance of our attacks on tabular
models, including undifferentiable models.

5.5 Conclusion

In this chapter, we first propose CAPGD, a new parameter-free gradient attack
for constrained tabular machine learning. We also design CAA, a new Constrained
Adaptive Attack that combines the best gradient-based attack (CAPGD) and the
best search-based attack (MOEVA). We evaluate our attacks over four datasets and
five architectures and demonstrated that our new attacks outperform all previous
attacks in terms of effectiveness and efficiency. We believe that our work is a spring-
board for further research on the robustness of tabular machine learning and to open
multiple research perspectives on constrained tabular ML. We hope that CAA will
contribute to a faster development of adversarial defenses and recommend it as part
of a standard evaluation pipeline of new tabular machine models. One promising
venue is the field of cost-effective query-based attacks, that remained unexplored
on constrained tabular data. Combining our domain-constrained protocols with
concepts of cost and benefits will be crucial in assessing and bolstering the resilience
of machine learning systems and ensuring their reliability in real-world applications.
Another promising direction is in the evaluation of robustification methods such as
adversarial training in combination with synthetic data. We explore this research
direction in the next chapter where we propose a benchmark, evaluating 14 training
methods across 5 datasets using CAA as a strong and effective attack.

64



Defending Against Adversarial Attacks in Tabular
Deep Learning

After proposing Constrained Adaptive Attack (CAA), a strong constrained
s adversarial attack, we study robustification mechanisms for deep neural network
architectures. We propose training methods based on adversarial training and
synthetic data generation.
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6.1 Introduction

This chapter addresses the second challenge of this thesis which is the robustifi-
cation of machine learning models against adversarial examples. We leverage the
strong and effective attack CAA proposed in Chapter 5 to evaluate the clean and
robust accuracy of 14 training methods on 5 architectures from different mechanism
families and across 5 datasets.

Modern machine learning (ML) models have reached or surpassed human-level
performance in numerous tasks, leading to their adoption in critical settings such
as finance, security, and healthcare. However, concomitantly to their increasing
deployment, researchers have uncovered significant vulnerabilities in generating
valid adversarial examples (i.e., constraint-satisfying) where test or deployment
data are manipulated to deceive the model. Most analyses of these performance
drops have focused on the fields of Computer Vision and Large Language Models
where extensive benchmarks for adversarial robustness are available (e.g., [CAST20]
and [WCP*23]).

The need for dedicated defenses for tabular model robustness is enhanced by
the unique challenges that tabular machine learning raises compared to computer
vision and NLP tasks. One significant challenge is that tabular data exhibit
feature constraints, which are complex relationships and interactions between
features. Satisfying these feature constraints can be a non-convex or even non-
differentiable problem, making established evasion attack algorithms relying on
gradient descent ineffective in generating valid adversarial examples (i.e., constraint-
satisfying) [GCG™'20]. Furthermore, attacks designed specifically for tabular data
often disregard feature-type constraints [BALT19] or, at best, consider categorical
features without accounting for feature relationships [WHB*20; XHR"23; BHZ 23],
and are evaluated on datasets that contain only such features. This limitation
restricts their applicability to domains with heterogeneous feature types.

Moreover, tabular ML models often involve specific feature engineering, that
is, "secret" and inaccessible to an attacker. For example, in credit scoring appli-
cations, the end user can alter a subset of model features, but the other features
result from internal processing that adds domain knowledge before reaching the
model [GCGT20]. This raises the need for new threat models that take into account
these specificities.

Thus, the machine learning research community currently lacks an empirical
understanding of the impact of architecture in combination with robustification
mechanisms on tabular data model architectures.

To address this gap, we propose 6 new defense mechanisms based on synthetic
data generation. We evaluated adversarial robustness using Constrained Adaptive
Attack (CAA) introduced in Chapter 5, a combination of gradient-based and search-
based attacks that have been shown to be the most effective against tabular models.
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Our empirical study on defenses based on adversarial training (AT) reveals the
following insights:

Test performance is misleading: Given the same tasks, different architec-
tures have similar ID performance but lead to very disparate robust performances.
Even more, data augmentations that improve ID performance can hurt robust
performance.

Importance of domain constraints: Disregarding domain constraints over-
estimates robustness and leads to the selection of sub-optimal architectures and
defenses when considering the domain constraints.

Data augmentation effectiveness is task-specific. There is no data
augmentation that is optimal for both ID and robust performance across all tasks.
Some simpler augmentations (like Cutmix) can outperform complex generative
approaches.

Contributions. Our contributions can be summarized as follows:

o Six defense mechanisms that combine synthetic data generation with adver-
sarial training to train robust models.

o A large-scale empirical study that reveals that test performance is misleading,
the importance of domain constraints, and that augmentation effectiveness is
task-specific.

e An industrial application of our defense mechanisms to the use-case of BGL
BNP Paribas, a major financial actor in Luxembourg.

6.2 Preliminaries

Adversarial robustness refers to the ability of a model to maintain its accuracy
when exposed to adversarial examples, which are inputs that have been intentionally
perturbed to cause the model to make a classification mistake.

6.2.1 Problem formulation

Given a machine learning model H(.), and a pair of input € X and label
y € Y the objective is to ensure that the model’s prediction H(z) remains correct
even if x is perturbed as an adversarial example & = x+ . The adversarial example
can be unconstrained, that is only limited by a distance D threshold e like in
computer vision: D(x,Z) < €, or constrained, adding the constraints satisfaction
requirements as in Chapter 4 and 5: x € X.

The goal for the defender is to minimize the empirical risk of adversarial
examples.

Tramer et al. [TCB*20] demonstrate that several recently published defenses,
although evaluated on existing adaptive attacks, could still be broken by new adap-
tive attacks. More recently Carlini [Car23] showed the simplicity of creating such
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attacks by letting a large language model propose the attack. Hence, adversarial
training-based methods are so far the only reliable defense against evasion attacks.

6.2.2 Adversarial training

We consider a classifier H with parameters 6 trained with a loss function [.
Madry et al. [MMS™17] formulate a saddle point problem to find model parameters
that minimize the adversarial risk:

argemin E(mﬁy)wp[rglezg( 10,z + 4, y)} (6.1)

where (z,y) are training data samples from D distribution, § € S is the perturbation
in the set of allowed maximum perturbations, [ is the loss of the model, and 6 the
model’s learnable parameters.

To solve the inner optimization problem, Madry et al. [MMS*17] use Projected
Gradient Descent to generate adversarial examples.

PGD adds iteratively a perturbation ¢ that follows the sign of the gradient V
with respect to the current adversary z; of the input . That is, at iteration ¢ + 1
it produces the input

2 =T, (2 4+ asgn(Val(0h, 2%, y))) (6.2)

where 0;, the parameters of our predictor h, Il is a clip function ensuring that
x + 0 remains bounded in a sphere around x of a size € using a norm p, and V,l
is the gradient of the loss function tailored to our task. For instance, we can use
cross-entropy loss for classification tasks.

6.2.3 Robust overfitting

Rice et al. [RWK20] demonstrated that adversarial training suffers from robust
overfitting. Robust overfitting is a phenomenon that causes the accuracy on the
train set to quickly deteriorate while it continues to increase on the train set. Rice
et al. [RWK20] propose to use early stopping as the main method against robust
overfitting and show that models trained with early stopping are more robust than
those trained with other regularization techniques such as data augmentation. On
the contrary Rebuffi et al. [RGC*21] show that combining data augmentation with
regularization methods can significantly improve robustness.

6.3 Defense against adversarials in tabular data

We present our defense mechanisms against adversarial examples in computer
vision.
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6.3.1 Adversarial training

We start with adversarial training. Madry et al. [MMS*17] showed the
importance of using a strong attack during adversarial training.

We use adversarial training with PGD as in [MMS*17]. We compute the
adversarial example for K gradient steps of size «

2 = Pg(z® 4+ avL(2®, y, b)) (6.3)

where (¥ is chosen at random within S distance of the clean example zg, P4(a)
projects a point a back onto a set A and V is the gradient projected on the L,
unit sphere.

We use PGD with the adaptation of Kurakin et al. [KGB16] that trains with
both clean and adversarial examples at each batch.

The loss function at each batch is therefore:

Ly = W (AEﬁ(h(PGD(xi,yi)),yi) + i L(h(xi),yz-)> (6.4)

i=k+1

where m is the batch size, k is the number of adversarial examples and A the
weights of adversarial examples. We used £k = m/2 and A = 1. As depicted in
the loss function, the synthetic data generator produces new examples at each
batch. Hence, for a model trained for e epochs over a training set of size | Xjqin|

ex ‘Xtrain‘
2

we generate synthetic examples.

6.3.2 Data augmentation and adversarial training

Inspired by a recent study in computer vision, that demonstrates the effectiveness
of data augmentation methods in combination with adversarial training, we propose
to use data augmentation for tabular data to robustify models.

Data augmentation methods

We use data augmentation to artificially expand the size and diversity of a
training dataset.

We distinguish between two types of data augmentation methods, heuristic-
based and data-driven augmentations.

Heuristic-based data generation methods modify existing examples based
on one or more existing samples following simple rules. These methods include,
CutMix[YHO™19] which combines two images by cutting a rectangular region from
one image and pasting it onto another, Cutout [DT17] replaces a part of the image
with an empty patch, and MixUp [ZCD"17] that creates convex combinations of
pairs of images. We propose a simple adaptation of CutMix for tabular data where
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we randomly combine two clean examples to create a new pair of examples. By
definition, Cutout and MixUp are not directly adaptable to tabular data. For
Cutout, that would mean resetting part of the feature values to zero. For MixUp,
convex combinations of different feature types in a single example are not as
straightforward as for image. Hence, these synthetic generation methods are not
directly adaptable to tabular data.

Data-driven generation methods train a generative model by learning the

distribution of the training data. Based on the learned distribution, these techniques
can produce synthetic data samples. We reuse recent advances in the field of Deep
Generative Models (DGM) to build our defense.

70

We use the same five generative models as [SDC*24]:
« WGAN [ACBL17] is a GAN model trained with Wasserstein loss within a

standard generator-discriminator GAN framework. In our implementation,
WGAN utilizes a MinMax transformer for continuous features and one-hot
encoding for categorical features. It is not specifically designed for tabular
data.

TableGAN [PMGT18] is one of the pioneering GAN-based methods for
generating tabular data. Besides the conventional generator and discriminator
setup in GANSs, the authors introduced a classifier trained to understand
the relationship between labels and other features. This classifier ensures a
higher number of semantically correct generated records. TableGAN applies
a MinMax transformer to the features.

CTGAN [XSCT19b] employs a conditional generator and a training-by-
sampling strategy within a generator-discriminator GAN framework to model
tabular data. The conditional generator produces synthetic rows conditioned
on one of the discrete columns. The training-by-sampling method ensures
that data are sampled according to the log frequency of each category, aiding
in better modeling of imbalanced categorical columns. CTGAN uses one-hot
encoding for discrete features and a mode-based normalization for continuous
features. A variational Gaussian mixture model [CHS18] is used to estimate
the number of modes and fit a Gaussian mixture. For each continuous value,
a mode is sampled based on probability densities, and its mean and standard
deviation are used for normalization.

TVAE [XSC*19b] was introduced as a variant of the standard Variational
AutoEncoder to handle tabular data. It employs the same data transforma-
tions as CTGAN and trains the encoder-decoder architecture using evidence
lower-bound (ELBO) loss.

GOGGLE [LQB7"23] is a graph-based method for learning the relational
structure of data as well as functional relationships (dependencies between
features). The relational structure is learned by constructing a graph where
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nodes represent variables and edges indicate dependencies between them.
Functional dependencies are learned through a message-passing neural net-
work (MPNN). The generative model generates each variable considering its
surrounding neighborhood.

Adversarial training with data augmentation

Let GEN be a generic synthetic data generation function that takes as input a
batch i of inputs (X;,Y;).

Following the same principle as with adversarial training, we train with a
combination of k; clean examples, ky adversarial examples, k3 synthetic examples,
and k; adversarial synthetic data with Aj, Ay, A3, Ay weights respectively

The loss function at each batch is

1
Lp = i /\-k»<

)\1 Z£ x’uyl z)"’

k1 +k2

2 Y L(MPGD(xi,4:)), yi)+ (6.5)
1=k1+1

k1+ko+ks
A3 > L(WGEN(zi, %)), yi)+
i=k1+ka+1

Mo> L((PGD(GEN Gy, 1))

i=k1+ko+k3+1

We use \; =1 and k; = m/4 for all i € [1,...,4].

6.4 Empirical settings

We detail in this section the evaluation settings of our empirical study.

6.4.1 Tasks

We curated datasets meeting the following criteria: (1) open source: the
datasets must be publicly available with a clear definition of the features and
preprocessing, (2) from real-world applications: datasets that do not contain
simulated data, (3) binary classification: datasets that support a meaningful
binary classification task, and (4) with feature relationships: datasets that
contain feature relationships and constraints, or they can be inferred directly from
the definitions of features.

After an extensive review of tabular datasets, only the following five datasets
match our requirements.

71



10

15

20

25

30

Table 6.1: Properties of the use cases of our benchmark.

Dataset Domain Output to flip Total size  # Features # Ctrs Inbalance
CTU Botnet detection Malicious connections 198 128 756 360 99.3/0.7
LCLD Credit scoring Reject loan request 1 220 092 28 9 80/20

Malware = Malware detection Malicious software 17 584 24 222 7 45.5/54.5
URL Phishing Malicious URL 11 430 63 14 50/50
WIDS ICU survival Expected survival 91 713 186 31 91.4/8.6

The CTU [CO22] includes legitimate and botnet traffic from CTU University.
Its challenge lies in the extensive number of linear domain constraints, totaling
360. LCLD [Geol8] is a credit-scoring containing accepted and rejected credit
requests. It has 28 features and 9 non-linear constraints. The most challenging
dataset of our study is the Malware dataset prepared by [DGS*22]. The very
large number of features (24222), most of which are involved in each constraint,
make this dataset challenging to attack. URL [HY21] is a dataset comprising both
legitimate and phishing URLs. Featuring only 14 linear domain constraints and
63 features, it represents the simplest case in our study. The WiDS [LRG"20]
includes medical data on the survival of patients admitted to the ICU, with only
31 linear domain constraints.

Our datasets include varying complexity in terms of number of features and
constraints and diverse class imbalance intensity. We summarize the datasets and
their relevant properties in Table 6.1 and provide more details in Appendix 10.3.1.

6.4.2 Architectures

We consider five state-of-the-art deep tabular architectures from the survey
by [BLST21]: TabTransformer [HKC"20] and TabNet [AP21], are based on
transformer architectures. RLN [SS18] uses a regularization coefficient to minimize
a counterfactual loss, STG [YLNT20] improves feature selection using stochastic
gates, while VIME [YZJ*20] depends on self-supervised learning. We provide in
Appendix 10.3.1 the details of the architectures and the training hyperparameters.
These architectures are on par with XGBoost, the top shallow machine-learning
model for our applications.

6.4.3 Metrics

The models are fine-tuned to maximize cross-validation AUC. This metric is
threshold-independent and is not affected by the class unbalance of our dataset.

We only attack clean examples that are not already misclassified by the model
and from the critical class, that is respectively for each aforementioned dataset
the class of phishing URLs, rejected loans, malwares, botnets, and not surviving
patients. Because we consider a single class, the only relevant metric is robust
accuracy on constrained examples, which corresponds to the recall. Unsuccessful
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Table 6.2: Clean and robust performances across all architectures in the form
XX/YY. XX is the accuracy with standard training, and Y'Y is the accuracy with
adversarial training.

Dataset Accuracy TabTr. RLN VIME STG TabNet
CTU ID 95.3/95.3 97.8/97.3 95.1/95.1 95.3/95.1  96.0/0.2
Robust 95.3/95.3 94.1/97.1 40.8/94.0 95.3/95.1 0.0/0.2
LCLD ID 69.5/73.9 68.3/69.5 67.0/65.5 66.4/15.6  67.4/0.0
Robust 7.9/70.3 0.0/63.0 2.4/104 53.6/12.1 0.4/0.0
ID 95.0/95.0 95.0/96.0 95.0/92.0 93.0/93.0 99.0/99.0
MALWARE Robust 94.0/95.0 94.0/96.0 95.0/92.0 93.0/93.0 97.0/99.0
URL ID 93.6/93.9 94.4/95.2 92.5/93.4 93.3/94.3 93.4/99.5
Robust 8.9/56.7 10.8/56.2 49.5/69.8 58.0/90.0 11.0/91.8
WIDS ID 75.5/77.3 77.5/78.0 72.3/72.1 77.7/62.6 79.8/98.4

Robust 45.9/65.1 60.9/66.6 50.3/52.1 50.3/45.2  5.3/58.4

adversarial examples count as correctly classified when measuring robust accuracy.
We only consider examples that respect domain constraints to compute robust
accuracy. If an attack generates invalid examples, they are defacto considered
unsuccessful and are reverted to their original example (correctly classified).
We report in the Appendix 10.13 all the remaining performance metrics, includ-
ing the recall, the precision, and the Matthew Correlation Coefficient (MCC).

6.5 Empirical evaluation

We provide multiple figures to visualize the main insights. We only report
scenarios where data augmentation and adversarial training do not lead to perfor-
mance collapse. We report in Appendix 10.3.2 all the results and investigate the
collapsed scenarios.

6.5.1 Adversarial Training

We report the ID and robust accuracies of our architectures prior to data
increase in Table 6.2.

Adversarial training alone is not enough to robustify models. AT
improves adversarial accuracy for all the cases, but AT alone is not sufficient to
completely robustify the models on LCLD, URL, and WIDS datasets. For CTU,
adversarial training the maximum drop of accuracy with adversarial training is
1.1% for VIME, when adversarial training does not break clean performance (clean
accuracy of 0% for TabNet). All malware classification models are completely
robust with and without adversarial training; hence, we will restrict the study of
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Table 6.3: CAA performances against Madry Adversarially Trained (AT) model.
Adv. Tr. + Augmentation correspond to the best robust accuracy of AT in
combination with a Data augmentation among Cutmix, TVAE, WGAN, TableGAN,
CT-GAN and GOGGLE.

Dataset Training TabTr. RLN VIME STG TabNet
URL Adversarial Training 56.7 56.2  69.8 90.0 91.8
Adv. Tr. + Augmentation 66.0 66.1  73.7 85.6 89.9
LCLD Adversarial Training 70.3 63.0 104 12.1 0.0
Adv. Tr. 4+ Augmentation 78.5 64.3 76.8 81.2  100.0
CTU Adversarial Training 95.3 97.1  94.0 95.1 0.2
Adv. Tr. + Augmentation 98.3 97.5 100.0 98.3 100.0
WIDS Adversarial Training 65.1 66.6  52.1 45.2 584

Adv. Tr. + Augmentation 68.1 100.0 100.0 73.8 100.0

improved defenses with augmentation in the following sections to the remaining
datasets.

6.5.2 Evaluation of adversarial training in combination with
data augmentation

Adversarial training with data augmentation outperforms adversarial
training alone.

Table 6.3 reports the robust accuracy of adversarial training alone and the best
robust accuracy of adversarial training in combination with data augmentation. We
observe that combining adversarial training with data augmentation systematically
outperforms adversarial training alone except for URL with STG and TabNet. Note
that in these two cases, the robust accuracy is greater than 85.6%. For instance, for
LCLD, the VIME architecture’s robust accuracy augments from 10.4% to 76.8%.
Overall, all architectures can benefit from at least one data augmentation technique
with adversarial training; however, standard training with data augmentation
can outperform adversarial training without data augmentation (for e.g., on URL
dataset using GOGGLE or CTGAN augmentations).

No single data augmentation method consistently outperforms the
others.

In Figure 6.1, we show on the Y axis, the robustness against constrained
adversarial examples. In blue, we report adversarial training methods. We observe
that the most effective augmentation method (represented with symbols) varies
depending on the architecture and models. For instance, in LCLD case, TVAE is
most effective for RLN architecture but CTGAN is better for STG TabTransformer
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Figure 6.1: Robust performance while considering domain constraints (ADV+CTR
Y-axis) and without (ADV: X-axis) on all our use cases confirms the relevance of
studying constrained-aware attacks.
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Figure 6.2: Impact of attack budget on the robust accuracy for URL dataset.

and VIME. Similarly, For URL-RLN, the most effective augmentation method is
GOGGLE while it is TVAE for LCLD.

AT+ Augmentations models remain robust even under stronger at-
tacks.

We evaluated each robustified model against variants of the CAA attack, varying
the Lo distance of the perturbation e from 0.5 to {0.25, 1,5}, the gradient iterations
from 10 to {5,20,100}, and the search iterations from 100 to {50,200, 1000}. We
report per architecture for each dataset the most robust model with AT and
augmentation, and the robust model with AT only. We present in Fig. 6.2 the
results for the URL dataset and refer to Appendix 10.3.2 for the other use cases.
Our results show that the best defenses with AT+Augmentations (continuous lines)
remain robust against increased gradient and search iteration budgets and remain
more robust than AT alone (dashed lines) for VIME, RLN, and Tabtransformer
architectures. Against an increase in perturbation size ¢, AT+Augmentations
is more robust than AT alone for TabNet, TabTransformer, VIME, and RLN
architectures. In particular, for € = 5, the robust accuracy of TabNet architectures
remains above 40% with AT+Augmentations while the robust accuracy with AT

76



10

15

20

25

30

35

alone drops to 0%.

With data augmentation and AT, ID and robust performances are
correlated. Although there is no trend of relationship between ID performance
and robust performance in standard training, our study shows that robustness and
ID performance are correlated after adversarial training. This trend is depicted in
Figure6.3. For example, the Pearson correlation between ID and robust performance
increases from 0.15 to 0.76 for LCLD. All correlation values are in Appendix 10.3.2.

6.5.3 Using only data augmentation

No data augmentation consistently outperforms the baselines with AT.
Among the 20 scenarios in Fig. 6.1, the original models achieve better constrained
robustness than augmented models with adversarial training only for 4 scenarios:
TabNet architecture on URL, LCLD and WIDS, and STG architecture on URL
datasets. No data-augmentation technique consistently outperforms the others
across all architectures. Cutmix, the simplest data augmentation, is often the best
(in 7/20 scenarios).

Adversarial training with data augmentations outperforms data aug-
mentation alone.

Figure 6.1 shows that in 19 cases over 20, adversarial training with data
augmentation outperforms data augmentation alone. Only in the case of URL-
TabNet, WGAN alone (95.2%) outperforms the best adversarial training method
(91.8%).

With data augmentation alone, ID and robust performances are not
aligned. In Figure 6.3 we study the impact of data augmentation on ID and robust
performance, both in standard and adversarial training. With standard training,
ID performance is misleading in CTU and URL datasets. Although all models
exhibit similar ID performance, some of the augmentations lead to robust models,
while others decrease it. CTGAN data augmentation is the best data augmentation
for ID performance in all use cases, both with standard and adversarial training.

6.5.4 FEvaluation with unconstrained attacks

In Figure 6.1 we study the robustness of each architecture with different defense
mechanisms. We report both the robustness against unconstrained attacks (attacks
unaware of domain knowledge) and attacks optimized to preserve the feature
relationships and constraints.

Evaluation with unconstrained attacks is misleading. Under standard
training (orange scatters in Fig. 6.1), there is no relation between robustness to
unconstrained attacks and the robustness when domain constraints are enforced.
There is, however, a linear relationship under adversarial training with data aug-
mentation only for STG, Tabstransformer, and VIME architectures. These results
show that nonconstrained attacks are not sufficient to reliably assess the robustness
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of deep tabular models. Detailed correlation values are in the Appendix 10.3.2.

6.6 Discussion: application to BGL dataset and
models

Our industrial partner BGL BNP Paribas Luxembourg, a major actor in the
financial industry in Luxembourg, has leveraged the capabilities of machine learning
to automate services. Conceptually BGL develops ML systems to classify financial
data into binary classes. It remains essential to measure its robustness to adversarial
examples.

We verify the most important claims of Section 6.3:

1. CAA is an effective method to generate constrained adversarial examples.
2. Adversarial training alone is not enough to robustify models.

3. Adversarial training with data augmentation outperforms adversarial training
alone.

4. Adversarial training with data augmentations outperforms data augmentation
alone.

6.6.1 Empirical settings

Dataset

We apply the benchmark to the data available to BGL BNP Paribas. The
objective of the ML model is to classify this data into binary classes. For simplicity,
we refer to these classes as “accepted” and “rejected”. The dataset contains 1,093,587
labeled inputs.

Model architecture

We consider the same architectures and hyperparameters search as for the
defenses evaluation in Section 6.3. TabTransformer[HKC*20] and TabNet[AP21]
are both built on transformer architectures. RLIN[SS18| employs a regularization
coefficient to reduce counterfactual loss, STG[YLNT20] enhances feature selection
through stochastic gates, and VIME [YZJ"20] leverages self-supervised learning.
The architectural details and training hyperparameters can be found in Appendix
10.3.1.

Defenses

We evaluate defense mechanisms based on adversarial training and data aug-
mentation following the methods we propose in Section 6.3. We use the data
augmentation methods, except for GOGGLE which was not evaluated in our
partner settings due to resource limitations on our partner premises.
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Table 6.4: Clean and robust performances across all architectures in the form
XX/YY. XX is the accuracy of the clean examples before attack, and Y'Y is the
accuracy on their adversarial counterparts. AT: Adversarial Training, DA: Data
Augmentation.

Training RLN STG TabNet TabTr. VIME
Standard  74.3 /43.3 73.4 /730 783 /262 23.6/19.2 73.9/08.1
AT 75.8 /75,5 T77.5 /774 00.8 /008 13.6 /105 72.7/01.2
DA 779 /720 85.2/71.6 60.2/60.2 62.0/09.6 77.0/02.5

AT + DA 774 /748 39.2/39.2 00.3/00.3 72.5/70.2 74.3/31.9

GGGGGGGGGGGGGGGGGGG
08
» o o 07 +

eeeee

Figure 6.4: Summary of our main experiments; Y-axis: Robust Accuracy, X-axis

IID MCC

Metrics

The models are fine-tuned to maximize the AUC using cross-validation. We only
attack examples that belong to the critical class of rejected transactions to evaluate
the robustness of the model. We use robust accuracy to evaluate the robustness of
the models. That is the accuracy of examples after the attack regardless if they
were correctly classified prior to perurbation.

To measure the clean performance of the models, we use Matthew’s Correlation
Coefficient which is not sensitive to class imbalance. We observed the limitation
of accuracy in practice. STG standard training had an accuracy of 66.2% with a
precision of 52.0% and a recall of 74.6% while STG WGAN and adversarial training
had a higher accuracy of 66.3% with a precision of 68.5% and a recall of 11.5%.

6.6.2 Results

Table 6.4 shows the clean accuracy of examples and the robust accuracy of their
respective adversarial examples. For Data Augmentation (DA) methods, we report
the accuracy of the method that achieves the highest robust accuracy.

Claim 1: CAA is an effective method to generate constrained adver-
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sarial examples.

The first line of Table 6.4 shows that CAA successfully generates adversarial
examples in 4/5 cases. For VIME, the accuracy drops from 73.9% to 8.1%. For the
most robust architecture. For STG, the model remains robust as the success rate
only drops from 73.4% to 73.0%. We observe that STG remains the most robust
architecture.

Claim 2: Adversarial training alone is not enough to robustify models.

Table 6.4 reveals that our second claim does not hold for all models. Adversarial
training completely robustifies RLN as the accuracy only drops by 0.3%. STG is
robust in clean training (0.4% drop) and remains robust with adversarial training
(0.1%). Adversarial training does not robustify VIME and actually worsens the
robust accuracy.

Figure 6.4 shows that adversarial training breaks the clean performance of the
model for TabNet (MCC of 0.03) and TabTransformer (0.15).

Claim 3: Adversarial training with data augmentation outperforms
adversarial training alone.

Our third claim does not hold for all models. The effectiveness of adversarial
training with data augmentation depends on the architecture. For RLN, the
robust accuracy of adversarial training remains similar with (74.8%) and without
(75.5%) data augmentation. For, STG using data augmentation and adversarial
training hurts the robust accuracy from 77.4% to 39.2% and the MCC from 0.35
to 0.23 for CTGAN Madry, which robust accuracy is reported in Table 6.4. For
VIME, adversarial training in combination with data augmentation (31.9%) clearly
outperforms adversarial training alone (1.2%).

Claim 4: Adversarial training with data augmentations outperforms
data augmentation alone.

This claim holds true when none of the methods degrades clean performance.
For STG, adversarial training with data augmentation decreases STG MCC from
0.35 to 0.23. For RLN, data augmentation with adversarial training increases the
robust accuracy, from 72.0% to 74.8%. Similary VIME robust accuracy reaches
31.9% from 2.5%.

Overall, CAA is an effective method to generate constrained adversarial examples
for our industrial application. However, the main claims of our defense study are
not consistently verified across all model architectures. The degradation of the clean
performance of the models when using adversarial training and data augmentation
contributes to the degradation of robust accuracy.

6.7 Conclusion

In this chapter, we proposed a method to integrate synthetic examples in the
Madry adversarial training in tabular deep learning. We proposed six novel defenses
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based on six data augmentations proposed in or adapted from the literature.

We conducted a large-scale empirical study showing that adversarial training
alone is not enough to robustify tabular deep learning models, as CAA (our attack
from Chapter 5) successfully generates adversarial examples against adversarially
trained models. Our key finding is that adversarial training with data augmentation
outperforms adversarial training alone, resulting in robust models, even against
large attack budgets.

Additionally, we apply our defense mechanisms to a real use case of BGL BNP
Paribas. We confirmed that CAA is an effective method to generate constrained
adversarial on a real use case. Plus, we increase the robustness of our partner’s
model using data augmentation and adversarial training, effectively increasing the
robust accuracy from 43.3% to 75.5% while maintaining the clean performance
(from an MCC of 0.418 to 0.415).

We believe our work serves as a foundation for further research in developing
defenses against adversarial attacks on tabular models. To support this effort, we
introduce TabularBench, the first benchmark designed to evaluate the robustness
of deep learning models on tabular data (see Chapter 7).
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TabularBench: Benchmarking Adversarial

Robustness for Tabular Deep Learning in
Real-world Use-cases

Building on the attacks and defenses presented in Chapter 4 to 6, we propose
TabularBench, the first benchmark specifically designed for evaluating adversarial
attacks and defenses within a constrained feature space. With this benchmark, we
aim to support research in developing robustification methods against constrained
adversarial examples.

Contents
7.1 Introduction ... ... ... ..., 84
7.2 TabularBench: Adversarial Robustness Benchmark
for Tabular Data . . . . .. ... ... ........... 85
7.3 Limitations . ... .. ... ... . 00000 89
7.4 Conclusion . .. ... ... ... 90
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Table 7.1: Existing related benchmarks and their differences with ours

Benchmark Domain Metric Reallst.lc
evaluation
Tabsurvey [BLS™21] Tabular ID performance No
Tableshift [GPS23] Tabular OOD performance No
ARES [DFY*20] CV Adversarial performance No
Robustbench [CAST20] CV Adversarial performance Yes
DecodingTrust [WCP*23] LLM Trust (incl adversarial) Yes
OURS Tabular ~ Adversarial performance Yes

7.1 Introduction

In this chapter, we leverage the strong and effective attack CAA proposed in
Chapter 5 and the novel defenses introduced in Chapter 6 to create an online
benchmark on the clean and robust accuracy of 5 architectures from different
mechanisms families and 14 training methods across 5 datasets.

Despite the widespread use of tabular data and the maturity of Deep Learning
(DL) models for this field, the impact of evasion attacks on tabular data has not
been thoroughly investigated. Although there are existing benchmarks for in-
distribution (ID) tabular classification [BLS*21], and distribution shifts [GPS23],
there is no available benchmark of adversarial robustness for deep tabular models,
in particular in critical real-world settings. We summarize in Table 7.1 these related
benchmarks.

The need for dedicated benchmarks for tabular model robustness is enhanced
by the unique challenges that tabular machine learning raises compared to com-
puter vision and NLP tasks. The most important challenge comes from feature
constraints, which are relationships and interactions between features that are (1)
hard to satisfy for an attacker but (2) can give a false sense of robustness to the
defender. Attacks designed specifically for tabular data often overlook feature-type
constraints [BAL'19] or, at best, consider categorical features without accounting
for feature relationships [WHB'20; XHR23; BHZ"23|. Furthermore, the different
approaches also use different threat models and attacker capabilities assumptions.
This limitation restricts the evaluation and comparison of attacks and defenses
proposed in the literature.

Thus, the machine learning research community currently lacks a reliable and
high-quality benchmark to enable the investigations of attacks and robustification
mechanisms on tabular data.

Such a benchmark for tabular adversarial attacks should feature deployable
attacks and defenses that reflect as accurately as possible the robustness of models
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within a reasonable computational budget. A reliable benchmark should also con-
sider recent advances in tabular deep learning architectures and data augmentation
techniques, and tackle realistic attack scenarios and real-world use cases considering
their domain constraints and realistic capabilities of an attacker.

To address this gap, we propose TabularBench, the first comprehensive bench-
mark of the robustness of tabular deep learning classification models. We use
Constrained Adaptive Attack (CAA) introduced in Chapter 5, a combination of
gradient-based and search-based attacks that have recently been shown to be the
most effective against tabular models.

Our contributions to this benchmark can be summarized as follows:

o Leaderboard (https://serval-uni-lu.github.io/tabularbench): a web-
site with a leaderboard based on more than 200 evaluations to track the
progress and the current state of the art in adversarial robustness of tabular
deep learning models for each critical setting. The goal is to clearly iden-
tify the most successful ideas in tabular architectures and robust training
mechanisms to accelerate progress in the field.

o Dataset Zoo : a collection of real and synthetic datasets generated with
and without domain-constraint satisfaction, over five critical tabular machine
learning use cases.

e« Model Zoo : a collection of the most robust models that are easy to use for
any downstream application. We pre-trained these models in particular on
our five downstream tasks and we expect that this collection will promote the
creation of more effective adversarial attacks by simplifying the evaluation
process across a broad set of over 200 models.

7.2 TabularBench: Adversarial Robustness Bench-
mark for Tabular Data

In Appendix 10.3.1 we report the detailed evaluation settings such as metrics,
attack parameters, and hardware. We focus below on the datasets, classifiers, and
synthetic data generators.

7.2.1 Tasks

We curated datasets meeting the following criteria: (1) open source: the
datasets must be publicly available with a clear definition of the features and
preprocessing, (2) from real-world applications: datasets that do not contain
simulated data, (3) binary classification: datasets that support a meaningful
binary classification task, and (4) with feature relationships: datasets that
contain feature relationships and constraints, or they can be inferred directly from
the definitions of features.

After an extensive review of tabular datasets, only the following five datasets
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Table 7.2: Properties of the use cases of our benchmark.

Dataset Domain Output to flip Total size  # Features # Ctrs Inbalance
CTU Botnet detection Malicious connections 198 128 756 360 99.3/0.7
LCLD Credit scoring Reject loan request 1 220 092 28 9 80/20

Malware = Malware detection Malicious software 17 584 24 222 7 45.5/54.5
URL Phishing Malicious URL 11 430 63 14 50/50
WIDS ICU survival Expected survival 91 713 186 31 91.4/8.6

match our requirements.

The CTU [CO22] includes legitimate and botnet traffic from CTU University.
Its challenge lies in the extensive number of linear domain constraints, totaling 360.
LCLD [Geol8§] is a credit-scoring containing accepted and rejected credit requests.
It has 28 features and 9 non-linear constraints. The most challenging dataset of
our benchmark is the Malware dataset prepared by [DGST22]. The very large
number of features (24222), most of which are involved in each constraint, make
this dataset challenging to attack. URL [HY21] is a dataset comprising both
legitimate and phishing URLs. Featuring only 14 linear domain constraints and 63
features, it represents the simplest case in our benchmark. The WiDS [LRG120]
includes medical data on the survival of patients admitted to the ICU, with only
31 linear domain constraints.

Our datasets include varying complexity in terms of number of features and
constraints and diverse class imbalance intensity. We summarize the datasets and
their relevant properties in Table 7.2 and provide more details in Appendix 10.3.1 .

7.2.2 Architectures

We consider five state-of-the-art deep tabular architectures from the survey
by [BLS*21]: TabTransformer [HKC"20] and TabNet [AP21], are based on
transformer architectures. RLIN [SS18] uses a regularization coefficient to minimize
a counterfactual loss, STG [YLN'20] improves feature selection using stochastic
gates, while VIME [YZJ120] depends on self-supervised learning. We provide in
Appendix 10.3.1 the details of the architectures and the training hyperparameters.
These architectures are on par with XGBoost, the top shallow machine-learning
model for our applications.

7.2.3 Data Augmentation

Our benchmark considers synthetic data augmentation using five state-of-the-art
tabular data generators. These generators were pre-trained to learn the distribution
of the training data. Then, we augmented each of our datasets 100-fold (for example,
for URL dataset, we generated 1.143.000 synthetic examples). Appendix 10.3.1
details the generator architectures and the training hyperparameters.

WGAN [ACBL17] is a typical generator-discriminator GAN model using Wasser-
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stein loss. We follow the implementation of [SDC*24| and apply a MinMax trans-
formation for continuous features and one-hot encoding for categorical to adapt
this architecture for tabular data.

TableGAN [PMGT18] is an improvement over standard GAN generators
for tabular data. It adds a classifier (trained to learn the labels and feature
relationships) to the generator-discriminator setup to improve semantic accuracy.
TableGAN uses MinMax transformation for features.

CTGAN [XSC'19a] uses a conditional generator and training-by-sampling
strategy in a generator-discriminator GAN architecture to model tabular data.

TVAE [XSC*19a] is an adaptation of the Variational AutoEncoder architecture
for tabular data. It uses the same data transformations as CTGAN and training
with ELBO loss.

GOGGLE [LQB723] is a graph-based model that learns relational and func-
tional dependencies in data using graphs and a message passing DNN, generating
variables based on their neighborhood.

Cutmix [YHO'19] In computer vision, patches are cut and pasted among
training images where the labels are also mixed proportionally. We adapted the
approach to tabular ML and for each pair of rows of the same class, we randomly
mix half of the features to generate a new sample.

For training, each batch of real examples is augmented with a same-size random
synthetic batch (without replacement). However, the evaluation only runs on real
examples. In AT, we generate adversarials from half of the real examples randomly
selected and half of the synthetic examples.

7.2.4 TabularBench API

To encourage the wide adoption of TabularBench as the go-to place for Tabular
Machine Learning evaluation, we designed its API to be modular, extensible, and
standardized. We split its architecture into three independent components. More
details of each component are provided in Appendix 10.4.1.

A dataset Zoo For each dataset in this study, we have collected, cleaned, and
pre-processed the existing raw dataset. The processed datasets are loaded with a
Dataset factory, and then the user gets their associated meta-data and pre-defined
constraints. The datasets are automatically downloaded when not found.

1 ds = dataset_factory.get_dataset("lcld_v2_iid")

352 metadata = ds.get_metadata()

40

Constraints handling One of the features of our benchmark is the support of
feature constraints, in the dataset definition and in the attacks.

Boundaries, mutability, and type constraints are defined in a CSV file, and the
corresponding pandas DataFrame can be accessed via:

1  metadata = ds.get_metadata(only_x=True)
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We implemented a novel Constraint Parser where the user can write the relations
in a natural human-readable format to describe the relationships between features.
Relation constraints are defined using Python, offering a high-level language that
also provides linting and type-checking to minimize errors.

5 For example the following constraint:

wi = fo=fi+ fo (7.1)

is expressed as:

1 from tabularbench.constraints.relation_constraint import Feature

w2 constraintl = Feature(0) == Feature(l) + Feature(2)

Features can also be accessed by names, increasing readability:

1 [from tabularbench.constraints.relation_constraint import Feature
2 constraint2 = Feature(3) <= Feature(4)
153 |constraint3 = Feature("open_acc") <= Feature("total_acc")

Here, constraints 2 and 3 are equivalent. We support the following operators:

« Base operators: Pre-built numeric operations (+,-,*,/, 4Ae).
« Safe operators: SafeDivision and Log allow a fallback value if the denominator
20 is 0.
o Constraints operators: Pre-built operator that returns a BaseRelationCon-
straint: OrConstraint, AndConstraint, LessConstraint, LessEqualConstraint
o Tolerance-aware constraint operators: EqualConstraint allows a tolerance
value in assessing the equality constraint. == can also be used for no-tolerance
2 equalities.

Constraints of existing datasets can be retrieved with:
1  constraints = ds.get_constraints()

302 relation_constraints = constraints.relation_constraints

We provide two executor backends that take a set of examples and a constraint
as input and return their corresponding penalty function values. NumpyBackend
uses a Numpy array representation and Pytorch backend uses a PyTorch tensor
representation, hence preserving the gradient if required. The set of supported

35 constraints and their translation to a penalty function can easily be extended.
Our benchmark implementation uses object-oriented programming and the visitor
design pattern for the executor backends.

A model Zoo Our API supports five architectures, and for each, six data
augmentation techniques (as well as no data augmentation) and two training

w0 schemes (standard training and adversarial training). Hence, 70 pre-trained models
for each of our five datasets are accessible. Below, we fine-tune with CAA AT and
CTGAN augmentation a pre-trained Tabtransformer with Cutmix augmentation:
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scaler = TabScaler (num_scaler="min_max", one_hot_encode=True)

scaler.fit(x, metadatal["type"]l)

model = TabTransformer("regression", metadata, scaler=scaler,pretrained="
LCLD_TabTr_Cutmix")

train_dataloader = CTGANDatalLoader(dataset=ds, split="train", scaler=scaler,
attack="caa"

model.fit(train_dataloader)

A standarized benchmark To generate our leaderboard, we offer a one-line
command that loads a pre-trained model from the zoo, and reports the clean
and robust accuracy of the model following our benchmark’s setting (taking into
consideration constraint satisfaction and L2 minimization):

clean_acc, robust_acc = benchmark(dataset='LCLD', model="TabTr_Cutmix",
distance='L2', constraints=True)

7.3 Limitations

While our benchmark is the first to tackle adversarial robustness in tabular
deep learning models, it does not cover all the directions of the field and focuses
on domain constraints and defense mechanisms. Some of the orthogonal work is
not addressed:

Generalization to other distances: We restricted our study to the Lo
distance to measure imperceptibility. Imperceptibility varies by domain, and
several methods have been proposed to measure it [BALT19; KKT22; DGS*22].
These methods have not been evaluated against human judgment or compared with
one another, so there is no clear motivation to use one or another. In our research,
we chose to use the well-established Ly norm (following [DGS*22]). Our algorithms
and benchmarks support other distances and definitions of imperceptibility. We
provide in Appendix 10.3.2 an introduction to how our benchmark generalizes to
other distances.

Generalization to non-binary classification: We restricted our study to
binary tabular classification as it is the only case where we identified public datasets
with domain constraints. The attacks used in our benchmark natively support
multi-class classification. Our live leaderboard welcomes new datasets and will be
updated if relevant datasets are designed by the community.

Generalization to other types of defenses: We only considered defenses
based on data augmentation with adversarial training. Adversarial training based
defenses are recognized as the only reliable defenses against evasion attack [TCB*20;
Car23]. All other defenses are proven ineffective when the attacker is aware of
them and performs adaptive attacks.
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7.4 Conclusion

In this work, we introduce TabularBench, the first benchmark of adversarial
robustness of tabular deep learning models against constrained evasion attacks.
We leverage Constrained Adaptive Attack (CAA), the best constrained tabular
attack, to benchmark state-of-the-art architectures and defenses.

We provide a Python API to access the datasets, along with implementations of
multiple tabular deep learning architectures, and provide all our pretrained robust
models directly through the API.

This benchmark was used to conduct the empirical study of Chapter 6 that
constitutes the first large-scale study of tabular data model robustness against
evasion attacks. Our study covers five real-world use cases, five architectures, and
six data augmentation mechanisms totaling more than 200 models. Our study
identifies the best augmentation mechanisms for IID performance (CTGAN) and
robust performance (Cutmix), and provides actionable insights on the selection of
architectures and robustification mechanisms.

We are confident that our benchmark will accelerate the research of adversarial
defenses for tabular ML and welcome all contributions to improve and extend our
benchmark with new realistic use cases (multiclass), models, and defenses.

This chapter concludes our research on robustness against adversarial examples.
In Chapter 8 we propose a protocol to evaluate the robustness of MLL models and
retraining methods to distribution shift under industrial constraints.
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On the Impact of Industrial Delays when
Mitigating Distribution Drifts: an Empirical
Study on Real-world Financial Systems

Research has developed drift detectors as a means to decide when to trigger
model retraining to mitigate degradation of performance over time. Previous
studies do not consider the industrial constraints facing ML systems in production.
In this chapter, our objective is to uncover the capabilities of retraining strategies to
mitigate the effect of drifts in the presence of labeling and deployment delays.
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8.1 Introduction

This chapter addresses the third and last challenge of this thesis, which is the
realistic evaluation of performance drift mitigation techniques for ML systems in
production.

Industry players exploit Machine Learning (ML) technologies to leverage an
increasingly large amount of data and reduce operational costs, develop new
disruptive products, and deliver personalized services to their customers. Therefore,
ML is a significant contributor to the digitalization of the industry.

Our industrial partner, the Data Science Lab of BGL BNP Paribas Luxem-
bourg (henceforth referred to as BGL BNP Paribas) is an important actor in the
financial industry in Luxembourg. The company has many operational benefits
from automated services built using ML technologies, including scalability at low
costs and the ability to process large amounts of data efficiently and flexibly.

However, the wide dissemination of ML technologies within industrial software
systems is hindered by their high maintenance costs [ABB*19]. Our partner has
observed that the effectiveness (e.g. prediction accuracy) of their ML systems
declines over time due to changes in data distribution [WHC*16].

The usual solution to mitigate the effect of drifts on ML systems is to retrain
the ML model periodically (periodic retraining) or continuously (online learning).
In our partner’s case, online learning is prohibited by stringent security policies,
which prevent feeding models with live data without manual checks. Thus, our
partner relies on periodic retraining. The critical questions they face are how often
and how they should retrain their model.

Alternatively, research has developed drift detectors as a better means to decide
when to trigger model retraining [LLD*19]. A drift detector is a statistics-based
method that takes as input a stream of samples. After each sample, it returns
whether the observed distribution has shifted or not compared to previous samples.
Using drift detectors to trigger retraining at the most appropriate times can reduce
the cost of periodic retraining and increase its effectiveness (in improving model
performance in spite of drifts).

Although the use of periodic retraining and drift detectors has been intensively
investigated in the literature [LLDT19; PCvD*22; BG0O7h], previous studies do not
consider the industrial constraints facing ML systems in production. In particular,
two types of delay inhibit the retraining process. First, labeling delay implies a
temporal distance between the time at which new data reaches the system and
the time at which its ground truth label is retrieved. Second, deployment delay
is inherent to the strict quality assurance and manual validation processes that
financial institutions (and other critical institutions) impose on their software
systems. This implies that there is a significant time gap between when a software
system is fully engineered (or updated) and when it is running in production. In
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our experiments, we set the labeling delay to 10 days and the deployment delay to
28 days.

In this chapter, our objective is to uncover the capabilities of retraining strategies
to mitigate the effect of drifts in presence of labeling and deployment delays.
Therefore, we conduct an empirical study involving one real-world financial system
of our partner, two publicly available datasets, and covering 16 retraining scheduling
methods (based on periodic retraining or drift detectors). We measure the capability
of these strategies to retrain models efficiently (minimizing the number of retraining)
and effectively (maximizing performance over time). We specifically investigate
the impact that the aforementioned delay has on existing retraining practices.

Our contributions can be summarized as follows:

1. We formulate the problem of retraining against distribution drifts in the
presence of labeling and deployment delays.

2. We propose a novel step-by-step protocol for ML practitioners to diagnose
distribution drifts with deployment delays and identify the best retraining
strategies that fit their case.

3. We report on an empirical study of the effectiveness and efficiency of retraining
strategies. We notably shed light on the impact of window size of retraining,
the importance of drift detector tuning, and how the delay affects the Pareto-
optimal retraining strategies.

Through our study, we highlight the importance that labeling and deployment
delays have on the predictive maintenance of machine learning-based systems, and
the scale at which these delays impact the solutions to combat distribution drifts
in the real world. By providing a proper definition and evaluation protocol of this
industry-relevant problem overlooked by the literature, we hope to inspire future
research on designing effective and efficient solutions.

8.2 Problem

Without loss of generality, we consider a classification problem defined on a n
dimensional feature space X C R"™ and a binary label space ) = {0,1}. We assume
that the samples come as a time series S where each sample (z;,y;) € X x Y is
indexed by a discrete time parameter ¢;, such that ¢; represents the time at which
the input x; reached the system. The labeling delay of x; is the time between ¢,
and the moment x; receives its true label y;. For simplicity, we assume that this
delay is constant across the inputs, that is, y; is received at time t; + 9;.

Let hs, : X — ) be the classification model trained at time ¢;. Then h;; can
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only be trained on inputs {z;} such that t; + 4§, < t;." Furthermore, the deployment
delay of hy; is the time needed to deploy it in production. As before, we assume
that this delay dq is constant. Thus, any model ;; can only make predictions on
inputs that arrive in the system after it is deployed, that is, on inputs {z}} such
that tj + 5d S tk.

We define a retraining schedule as a totally ordered sequence of times sched =
{ty...t,} that determines when a model should be re-trained. For example, periodic
retraining yields such a sequence in which all elements are exactly separated by a
constant period p, that is, t;41 = t; + p. By contrast, drift detectors decide the
schedule on the fly based on their statistical analysis of the data and the model.
Any retraining schedule determines a sequence of models H = {hy, ... h;,} with hy,
defined as above. Then, any input example x; observed at time t; is predicted by
the latest available model, that is, the predicted label for z; is given by ¢; = hy, (x;)
where t, = max{t; € sched s.t. ti + Oproa < t;}.

A retraining schedule can be evaluated based on its effectiveness and efficiency.
Effectiveness is defined as the correctness of predictions made by the sequence of
models H, calculated by an arbitrary scoring function score(Y,Y), with ¥ = {g;}.
Efficiency measures the overall cost of model retraining. For simplicity, in our study,
we assume this cost to be constant across models (all other things being equal)
and compute it as the number n = |H| of retraining. This assumption makes sense
in the context of our partner, where the cost of deploying models in production
largely surpasses the computational cost to retrain the model and the data labeling
cost (since labels are obtained through a later automated financial analysis).

8.3 Methodology

We propose a novel experimental protocol to thoroughly evaluate retraining
scheduling techniques under realistic industrial constraints (labeling and deployment
delays). These constraints have been overlooked by previous studies. We do so,
moreover, while carefully and empirically considering alternative design decisions
that affect model performance (incl. hyperparameter tuning and training window
size).

Our protocol starts from an initial model my trained on an initial training set
Strain =|do, dn,,,;, ], which contains the first Ny, example of the time series S.
The protocol evaluates this model on the remaining samples of the time series
Stest = AN, 0im»> d)s|[ using an arbitrary score function, which takes as input the
prediction of the model and the true label. The objective of the subject scheduling
techniques is to increase the score function of a set of models on this test set.

INote that we define here which data are available to train the model. The actual choice of
which data to use for retraining is a different topic on its own that we partly address in our first
series of experiments.
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8.3.1 Model hyperparameter tuning

The very first part of our protocol investigates whether we can improve the
baseline model via hyperparameter tuning and whether repeating this tuning
process at each retraining can improve the model’s effectiveness.

We select the best hyperparameter tuning strategy across three strategies. “No
tuning” means that we reuse the hyperparameters provided by our industrial partner.
“Initial tuning” means that, before any evaluation, we train the baseline model
from scratch on the training set Sy, While applying hyperparameters tuning on
the baseline model. Afterward, the hyperparameters remain the same throughout
the evaluation process. “Re-tuning” means that we tune the hyperparameters each
time the model is retrained (based on the data available for re-training at this
time).

To tune the hyperparameters, we use K-fold validation with time series splits
and Bayesian search with the objective of maximizing the average score function
over the folds. Compared to random or stratified K-fold splits, time series splits
have the advantage of evaluating the model generalization to future samples instead
of identically distributed samples. This validation process is especially more suitable
for data drift scenarios as this better measures the model robustness to drifts and,
therefore, leads to better tuning.

We identify the best tuning strategy and reuse it for the rest of our protocol.

8.3.2 Training window size

We next need to use an appropriate window size, i.e. how many of the most re-
cent data model retraining should use. Training with the maximum amount of data
does not always produce the best model, according to the dilemma between model
plasticity (learning new information) and stability (retaining previous knowledge)
[LHO3; GBB14].

We thus compare the effectiveness achieved by different window sizes that
range from a fraction of the data up to all the available data. We select the
best window size with periodic retraining schedules with different periods ranging
from a period as short as the label delay up to a period corresponding to a single
retraining across the entire time series. We consider scenarios without and with
delays. An evaluation without delays measures maximal potential performance
improvements of alternative window sizes, whereas an evaluation with delays
measures the improvement in a realistic context. Thanks to this protocol, we select
the best window size and use it to evaluate retraining schedules.

8.3.3 Drift detector evaluation

We propose a protocol to evaluate a drift detector and its parameters in a
realistic scenario. To evaluate a drift detector and its parameters, we start from an
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initial model myq trained on the training set S;..;, with the best tuning strategy
and window size (as explained before).

Once a new sample d; = x;, t;, y; arrives in the system, we use the initial model
mg to predict a label §; for x;. We then feed our drift detectors with the feature x;,
the time ¢;, the label y;, and/or the prediction §;, depending on what the detector
needs. If the detector does not detect a drift, we do nothing and wait for the next
samples to arrive and be processed.

If the detector detects a drift, we retrain a model with the data |dy —window size, d;),
such that d; such that d; is d; rounded up to the closest multiple of k. We round
up d; to the closest multiple of k£ to limit the computational cost when evaluating
a large amount of retraining strategy. This enables us to reuse models when the
detector being evaluated triggers model retraining at the same time as another
detector (or periodic retraining) did before. This also prevents worst-case scenarios
where a detector is too sensitive and attempts to retrain too frequently.

The newly trained model will become available for prediction after a delay
0 = 0; + 04 with regard to t;. Between the detection of drift in ¢; and the model
being available in time ¢, 4+ §, we continue to predict the samples with m.

Whether we continue to detect drift or not depends on the type of drift detector.
If the drift detector is data-based, we continue to detect drift. Indeed, these
detectors do not depend on the model and can continue to trigger model retraining
during this time window. On the other hand, error-based and predictive-based
detectors observe distributions that are dependent on the model such as the error
rate or the uncertainty. Therefore, after detecting a drift, they need to wait for the
new model and the new distribution to be available.

After the first drift has occurred, for the remainder of the sample d;, j > i we
use the latest available model to make the prediction and follow the same process
as in mg. A model m; is available at time t,,, if and only if it has been trained
with data older than ¢,, — d; — d4.

Thanks to this protocol, we can evaluate the drift detectors effectiveness
(according to the score function) and efficiency (number of retraining).

8.3.4 Comparing drift detectors and periodic retraining

To evaluate the periodic retraining strategy, we use the same protocol as for
the drift detectors and instantiate a drift detector that is equivalent to periodic
retraining. The detector counts the number of samples it receives and does not
return drift until it has seen the number of samples corresponding to the desired
period. In this case, it triggers a drift and resets its counter. Note that this detector
behaves like a data drift detector and can detect drift before the latest available
model is used.

For periodic retraining schedules, we assume that the more often we retrain, the
more effective our set of models will be at testing. Hence, we evaluate the periodic
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schedule protocol with different periods to have different points of comparison on
the efficiency (number of models) and effectiveness (ML metric) Pareto front.

For each detector, we tune its parameters using Bayesian search with the
objective of minimizing the number of models used and maximizing the ML
effectiveness (using the same score function as for the model’s hyperparameters
tuning) on the test set. To avoid information leakage, we split the S.q;n set into
K-fold of (S¢rain, Svar) using the time series split. For each fold, we evaluate the
effectiveness and efficiency of the drift detector parameters using the protocol of
Section 8.3.3. For each detector individually, we select the evaluated parameters
that are on the Pareto front of efficiency and effectiveness.

We evaluate the effectiveness and efficiency of the kept parameters of all drift
detectors on the complete dataset. We build the Pareto front of all the detectors’
efficiency and effectiveness and compare them with the effectiveness and efficiencies
we obtain with periodic retraining schedules.

Thanks to this protocol, we identify the best drift detectors’ and its best
parameters.

8.4 Experiments

We describe below the protocol of our empirical study, then assess the impact
of each step of our protocol.

8.4.1 Dataset, model and metrics

We apply our empirical study to the transaction system of BGL BNP Paribas.
The objective of the ML model is to classify a transaction as accepted or refused
based on the recent transaction of a particular client. The dataset contains
1,093,587 labeled inputs from transactions that occurred over a 5.6-year period.
The timestamps associated with inputs are precise for a single day.

The classifier previously developed by our partner is a random forest. To
comply with the regulation, our partner must have the capacity to interpret the
automated decision made by the model; and tree-based models are interpretable
by design and, therefore, we use a random forest architecture like our partner. Due
to the sensitivity of the system, we did not work with the real model in production
but have created a baseline model with the support of our partner’s instructions.
Therefore, we built a random forest classifier with 100 estimators up to 8-level
deep.

We trained the baseline model with 400,000 samples, following our partner’s
recommendations. The minimum period for periodic retraining corresponds to the
average label delay, which is 5,293. For simplicity, we round it down to 5,000 in
our experiments.

We use Matthew’s correlation coefficient (MCC) to score the prediction of our
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models which is well suited for unbalanced datasets. It is important to note that,
in our partner’s case, even small differences in MCC correspond to a significant
business impact. For example, during our experiments we noticed that a difference
in 0.01 MCC corresponds to 3,000 transactions on average.

Figure 8.1 (blue curve) shows the performance of the baseline model over time,
without retraining. This reveals that the model performance is not stable over
time and tends to degrade after a certain point due to distribution drifts. On the
first 20,000 samples, our model has an MCC of 0.5595. Later, the MCC score
ranges between 0.5169 and 0.6099, which is a significant difference business-wise
and alerts our partner. We observe a peak performance on the batch [740, 760].
After this peak, performance tends to degrade until an MCC of 0.5443 for the
last batch of our evaluation. The orange curve shows the performance of the best
model we could find in our study; this shows the potential benefits that appropriate
retraining can produce.

—— Current strategy

0.62 Proposed strategy

0.56
0.54

0.52

400 500 600 700 800 900 1000
Evaluation batch (starting index x1,000)

Figure 8.1: Evolution of ML effectiveness (Matthews correlation coefficient) with
time (in batches of 20,000 inputs) in a scenario without retraining.
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8.4.2 Results

Benefits of hyperparameter tuning

Table 8.1: ML effectiveness (MCC) of different training strategies for different
testing windows. For not retrained models, the data used are the same as the initial
model. For retrained model, we use the data that directly precede the test window.

Model MCC on [T, T + 20k[ at T =
Retrained Hyperparameters 400k 440k 660k 980k
No No tuning 0.5596 0.5295 0.5169 0.5344
Initial tuning 0.5776 0.5416 0.5433 0.5503
No tuning - 0.5331 0.5290 0.5552
Yes Initial tuning - 0.5454 0.5440 0.5718
Re-tuning - 0.5464 0.5448 0.5689

Table 8.2: Impact of Retraining period on ML effectiveness.

Model Retraining period
hyperparameters | 20,000 50,000 100,000 200,000 400,000
No tuning 0.5678  0.5656  0.5648  0.5627  0.5616
Initial tuning 0.5887 0.5877 0.5864 0.5855 0.5842
Re-tuning 0.5882 0.5867 0.5862 0.5848 0.5837

We first investigate the benefits of re-tuning the model hyper-parameters over
time. We consider three different scenarios: 1) the baseline model of our partner is
used throughout (“no tuning”); 2) we tune the model based on a time split? (“initial
tuning”); and 3) the model is re-tuned each time it is re-trained (“re-tuning”).
Since we want to assess the potential of model tuning to get better models over
time, we ignore labeling and deployment delays at this stage.

Table 8.1 shows the best-case scenario when tuning occurs right after the model
is deployed (7" = 400k) and right before the three most important performance
drifts (7" = 440k, 660k and 980k). We provide the MCC of all these models in the
case where they are re-trained and in which they are not. We observe, at T" = 400k,
that our initial tuning already improves over the baseline model (“no tuning”) and
this improvement remains throughout the batches, regardless of whether we retrain
the models or not. Moreover, even without retraining, our initially tuned model

2By contrast, the baseline model of our partner is tuned based on non-time-sensitive k-fold
validation.
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outperforms the baseline model retrained right before the different drifts. This
demonstrates that proper model tuning has an even greater impact than retraining
with recent data. On the contrary, re-tuning the model each time it is retrained
offers little to no benefit compared to the initial tuning.

We repeat our comparison between no tuning, initial tuning, and re-tuning but
this time associated with periodic retraining (using different periods). Our results —
refer to Table 8.2 — confirm that initial model tuning yields significant improvements
but that re-tuning at each retraining is not necessary. These conclusions are observed
in all the retraining periods considered. For our study, this means that we may
proceed with a careful initial tuning and skip re-tuning the model each time we
retrain it.

Impact of the training window on periodic retraining.

Table 8.3: Impact of window size on ML effectiveness.

Window Size
Delays  Period | 50,000 100,000 200,000 400,000 All

5,000 | 0.5753  0.5842 0.5898 0.5908 0.5896

10,000 | 0.5744  0.5826  0.5882 0.5895 0.5884

20,000 | 0.5728  0.5822 0.5878 0.5887 0.5877

Yes 50,000 | 0.5733  0.5815 0.5868 0.5877 0.5870
100,000 | 0.5702  0.5821 0.5861 0.5864 0.5849

200,000 | 0.5747  0.5817 0.5856 0.5855 (.5833

400,000 | 0.5749  0.5793 0.5827 0.5842  (.5810

5,000 | 0.5709  0.5804 0.5861 0.5871 0.5854

10,000 | 0.5720  0.5808 0.5859 0.5868 0.5855

20,000 | 0.5715  0.5809 0.5859 0.5866 0.5854

No 50,000 | 0.5728  0.5799  0.5849 0.5859 0.5852
100,000 | 0.5698  0.5814 0.5849 0.5851  0.5840

200,000 | 0.5740  0.5804 0.5844 0.5845 0.5823

400,000 | 0.5748  0.5789 0.5821 0.5836 0.5806

We evaluate the impact of the retraining window on the ML effectiveness when
using the simple periodic retraining strategy. As before, we study this impact in
the ideal scenario without delay to measure the maximum potential gains and in a
realistic scenario with our partner delays. Table 8.3 reveals that using the 400,000
most recent samples to retrain is always among the 2 best solutions (in bold)
without delay and the best solution with delays, independently of the retraining
period. With delays, we observe that the difference in ML effectiveness between

100



10

15

A A
59 59
0.590 0.590 AA A A
AX A
0.588 0.588 X
- * * x
0.586 ® X 0.586 *
@) o @]
Sost Soss  ®
0.582 x  Baseline 0.582 x  Baseline
Data » Data
0.580 0.580
A Error A Error
0578 o ®  Predictive 0578 ®  Predictive
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
# Train # Train
(a) With delays 6; = 10 days, 64 = 4 weeks (b) Without delays

Figure 8.2: Pareto front of drift detectors, no retraining and periodic retraining
schedules.

400,000 samples and 200,000 samples is small (up to 0.0015 of MCC) and that both
settings are acceptable. However, as the size of the window decreases further, the
effectiveness is also such that for a period of 5,000 the difference between 400,000
and 50,000 is 0.0162. We also observe that using all the available data is only
the third best solution — for all periods except 50,000 — and is therefore not the
optimal solution. Consequently, we empirically set the retraining window used in
our experiments at 400,000 examples. Beyond our study, these experiments show
that the training window size can have a drastic impact on model effectiveness and
therefore deserves careful consideration.

Conclusion: Tuning the hyperparameters of the initial model has a positive
impact that even surpasses that of retraining. However, re-tuning at each
retraining does not bring additional improvement. Training with all available
data is counterproductive; empirically, we determined that the ideal window
size is 400,000 samples.

Comparison of scheduling methods

We investigate the effectiveness and efficiency of different retraining schedules.
In particular, we compare retraining schedules based on drift detectors with periodic
retraining. Here we focus on the realistic scenario with delays of BGL BNP Paribas.

Figure 8.2a and Table 8.4 compare the efficiency (number of retraining) and
effectiveness (MCC) of the different methods. In Figure 8.2a, each data point is
a particular method setting, ie a scheduling method (periodic retraining or drift
detector) with given parameter values. A method setting dominates another if it is
higher and/or more to the left. In Table 8.4, for each method the right number
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Table 8.4: For each schedule, we report the number of parameter settings (A) / (B).
(A) are the settings on the efficiency/effectiveness Pareto front across all methods.
(B) are the settings on the Pareto front local to the method.

Delay

0, = 10 days

Type Schedule No 5, = 4 weeks
: No detection 1/1 1/1
Baseline Periodic 4/ 7 4/7
Databased St.atlstlcal test 0/25 0/25
detoctor Divergence 1/4 2/6
PCA-CD 0/3 0/4

ADWIN (CE) 3/9 1/4

ADWIN (PE) 1/9 1/3

DDM 0/4 0/3

EDDM 0/3 0/4

Error-based HDDM-A 5/6 10 / 12
detector HDDM-W 2/2 17 /17
KSWIN (CE) 1/8 0/7

KSWIN (PE) 1/3 1/3

Page-Hinkley (CE) | 2 /8 1/3

Page-Hinkley (PE) | 0/ 3 0/2

Predictive-based Uncertainty 1/14 1/11
detector Aries ADWIN 0/4 1/4

shows the number of parameter settings that are Pareto-optimal within this method
(i.e., the best settings of this particular method); the left number shows the number
of these settings that are Pareto-optimal across all methods. In this section, we
consider only the second column (with delay).

We first notice that all types of scheduling methods (periodic and the three
types of detectors) are on the Pareto front. By definition, the no-retraining strategy
is also on the Pareto front, since it is inherently the most efficient. We filtered
out drift detector schedules that were equivalent to “no retraining” or “always
retraining”.

Periodic retraining and error-based detectors together offer a flexible compromise
between effectiveness and efficiency. Figure 8.2a shows that for a retraining budget
greater than 22, error-based detectors are at least as effective as periodic retraining
with less retraining. For example, the HDDM-W detector (rightmost triangle)
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can achieve better performance with only 32 retraining than the most effective
periodic retraining strategy that uses 136 retraining. Similarly, Page-Hinkley
(CE) (third triangle from the left) obtains slightly better performance using 26
retraining than periodic retraining every 20,000 samples and using 34 retraining.
Until seven retrainings, periodic retraining remains the most effective retraining
strategy. Between 7 and 22 retraining, there is no clear advantage of effectiveness
and efficiency of using drift detectors over periodic retraining schedules.

The second column of Table 8.4 shows that within a type of drift detector,
the capacity of each detector to land on the effectiveness/efficiency Pareto front
varies. The statistical test and PCA-CD detector fail to generate a single detector
setting on the Pareto front, whereas the divergence detector does. For error-based
detectors, DDM, EDDM, KSWIN (CE), and Page-Hinkley (PE) also fail to reach
the Pareto front in any setting. Both predictive-based detectors reach the Pareto
front.

Conclusion: Periodic retraining and error-based detectors together offer a
flexible compromise between effectiveness and efficiency. Periodic retraining is
most effective for lower numbers of retraining (up to 22). For a higher number
of retrains (224), error-based detectors are the only retraining schedule on the
Pareto front; with only 32 retraining, they achieve better performance than
any schedule including periodic retraining with 136 training.

8.4.3 Generalization study
Without delays

To emphasize the importance of considering the delay in the evaluation of
retraining schedules, we compare the drift detector and periodic retraining schedules
with and without delay. We find that not considering delay overestimates the
effectiveness/efficiency trade-off of retraining schedules. Indeed, comparing Figure
8.2a (with delays) with Figure 8.2b (without delays), we observe that the Pareto
front lies systematically higher when there is no delay. For example, the most
effective strategy without delays has an MCC of 0.5909 for Page-Hinkley (CE),
while with delays, the most effective strategy has an MCC of 0.5871 for HDDM-W.

The relative ranking between the methods also changes, indicating that the
optimal drift detection method without delay does not remain optimal if delays
occur. Table 8.4 compares the number of method settings (for each method) that
are on the Pareto front, in the cases without delays (left column) and with delays
(right column). We see that the scheduling method settings on the Pareto front
are different in the two cases. For instance, KSWIN (CE) had one setting on the
Pareto front without delay, but this setting disappears from the front when there is
delay. Hence, not only are the expected effectiveness and efficiency overestimated
but also which method settings are Pareto-optimal.
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Conclusion: Not considering delay overestimates the effectiveness/efficiency
trade-off of retraining schedules. The relative ranking between the methods
also changes, indicating that the optimal drift detection method without delay
does not remain optimal if delays occur.

Impact of delays

We study the impact of varying delays on the effectiveness and efficiency of
retraining scheduling methods. More precisely, we simulate the scenario where
the deployment delay is increased or decreased after the methods are tuned and
running. We tune the detectors based on the previously used delays ¢; and d; and
then evaluate them in the cases where §, is halved or doubled.
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Figure 8.3: Pareto front of retraining schedule with same parameters and different
deployment delays.

Figure 8.3 compares the Pareto fronts in the cases where d, is halves, unchanged,
and doubled. We observe that the ¢,/2 front dominates the d,4 front, which itself
dominates the 2§, one. This indicates that a reduction in deployment delay (com-
pared to the delay considered when tuning the drift detectors) yields improvement,
whereas an augmented delay incurs a loss in the effectiveness/efficiency trade-off.
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Table 8.5: Parameters on the Pareto front with delay d, that remains on the Pareto
front for delays d4/2 and 24,.

Type Detector da/

Delay

2

0d

No detection

Baseline ..
Periodic

Statistical test
Divergence

PCA-CD

Data-based
detector

ADWIN (CE)
ADWIN (PE)
DDM
EDDM
Error-based HDDM-A
detector HDDM-W
KSWIN (CE)
KSWIN (PE)
Page-Hinkley (CE)
Page-Hinkley (PE)
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Table 8.6: Summary of the generalization study. v'means the claim holds, X means

the claim does not hold, and v'* means the claim holds in some cases.

Claim BGL LCLD Electricity
Tuning hyperparameters has a positive impact on performance v v v
Model Tuning hyperparameters outperforms model retraining v V& X
Re-tuning does not bring additional improvements v v X
Training with all available data is counterproductive v v v
Periodic retraining + error based offer flexible compromise v X Ve
Detector  Periodic retraining is effective for low retraining budgets v X X
selection  Error-based detectors are best for high retraining budgets v v v
In lower budgets, error-based detectors outperforms periodic v v v
Not considering delays overestimates the trade-off v v v
Impact Enabling delay disrupt the ranking of drift detectors v v v
of delay Change in delay has an inverse effect on efficiency/effectiveness v/ v v
Change in delay disrupts the ranking of drift detectors v v v
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Table 8.5 shows the number of schedules (method settings) that are on the
Pareto front for the original delay ;4 (central column) and how many of these exact
schedules remain on the front for delays §/2 (left column) and 2§ (right column).
A retraining schedule generalizes if it remains on the Pareto front in spite of the
delay change. We observe that only three methods generalize to the halved and
doubled delays: periodic retraining, HDDM-W, and divergence. For HDDM-W,
the parameters that generalize when augmenting the delay are different than the
ones when reducing the delay. Apart from periodic retraining, the divergence-based
detector is the only one that generalizes to both augmentation and reduction of
the deployment delay. The uncertainty detector only generalizes to a reduction of
the delays. All other methods do not generalize.

Conclusion: Changes in deployment delay have an opposite effect on the
effectiveness/efficiency Pareto front. Such changes also disrupt the relative
ranking of the retraining scheduling methods, such that only periodic retraining
and divergence-based detection remain Pareto-optimal across the different delay
values.

Generalization to public datasets and models

We evaluated our protocol on two publicly available datasets, a credit scoring
dataset — the Lending Club Loan Data (LCLD)[Kagl9] and the widely used
Electricity [Har99]. The description of the datasets and the complete generalization
study can be found in Appendix 10.5.1.

We summarize the generalization of our claims in Table 8.6. Our generalization
study confirms that driving the retraining with drift detectors yields better efficien-
cy/effectiveness trade-off than periodic retraining and our protocol leads to the
optimal drift detectors and retraining strategies for unseen datasets. We provide
the implementation of our protocol and its application on our two public datasets
to facilitate and encourage research in the direction of distribution drift mitigation
in a realistic context.

8.5 Conclusion

In this chapter, we studied the problem of maintaining the performance of ML
models with drift detector triggered retrain in the presence of delays. We considered
an industrial use case where the label arrives ten days after the prediction and
the model goes through a four-week validation phase before deployment. To this
end, we evaluated 15 drift detectors in three different scenarios: the ideal scenario
without delay, a realistic scenario with delays, and finally a scenario with varying
delays. We show that drift detector evaluation without delays tends to overestimate
its capability to mitigate the model performance drift. We also show that although
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periodic retraining is effective in the absence of delays, drift detectors are more
effective in a realistic scenario. Finally, we showed that error-based detectors
remain effective even though they are a reactive approach that needs the latest
model to predict drift, hence being more impacted by the delay. Through this

s work, we aim to encourage future research to develop advanced drift mitigation
techniques, including, but not limited to, drift detectors that consider realistic
scenarios. Such an approach is essential for ensuring the practical applicability of
these techniques in industrial contexts.
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Conclusion

This chapter proposes the overall conclusion of this dissertation and suggests
potential future research direction.
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9.1 Summary of contributions

The main objective of this thesis was to enhance the robustness of critical
industrial systems to adversarial examples and distribution drift. We presented
methods, tools, and empirical evaluations that contribute to properly evaluating
the robustness of critical systems.

The first contribution shed light on the importance of considering domain
constraints when evaluating the robustness of critical industrial systems. Our
analysis demonstrated that not considering these constraints leads to adversarial
attacks generating unfeasible examples. Hence, using such evaluations introduces
a bias in the robustness evaluation. We lay out a framework to express domain
constraints as a penalty function and develop adversarial attacks that respect
domain constraints. We instantiated our framework with two attacks: CPGD,
a gradient attack, and MOEVA, a strong search-based attack using a genetic
algorithm. Such attacks allow the correct evaluation of critical industrial systems
in the constrained feature space. We showed that such attacks can fool shallow
models in the financial and cybersecurity domains. With the second contribution,
our objective was to better understand the robustness of deep learning models to
constrained adversarial attacks. Inspired by mechanisms developed in computer
vision, we improved our gradient attack and proposed CAPGD by integrating step
size selection, multiple initialization, and gradient step momentum. Additionally,
we added a generic repair operator for equality constraints. We demonstrated
the benefits and complementarity of these mechanisms. We demonstrated that
CAPGD subsumes all other gradient attacks in generating constrained adversarial
examples. Then, we showed the complementarity of CAPGD and MOEVA and
that their combination subsumes all other searched-based methods. Therefore, we
proposed CAA, the sequential application of CAPGD and MOEVA. We showed
this attack to outperform all other attacks (by up to 96.1% for CAPGD and 21.9%
for MOEVA) while being up to five times faster than MOEVA. We aim for CAA
to become the standard for adversarial testing of critical systems under domain
constraints.

Our second contribution tackles the problem of enhancing the robustness of
critical systems to constrained adversarial examples. We showed that adversarial
training alone, although effective in augmenting the robustness, is not enough to
fully robustify models. Learning from the computer vision literature, we built a
collection of defenses based on the combination of synthetic data augmentation
with adversarial training. We show these methods to outperform adversarial
training. We validated our main claims on a real-world use case with BGL BNP
Paribas. We showed that CAA is effective in evaluating the robustness of domain-
constrained systems, that adversarial training alone is not sufficient but that its
combination with synthetic data generation can produce robust models, depending
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on the architecture. We released TabularBench, a benchmark to systematically
track progress in adversarial attacks and defenses in the constrained feature space.
Notably, we publicly release 5 datasets with their associated domain constraints, 5
model architecture implementations, 14 training methods, and a model zoo of over
200 pre-trained-models. An important technical contribution of this benchmark
is the release of a Python-based API to define constraints, a parser to translate
these constraints into an Abstract Syntax Tree (AST), and a visitor to translate
this AST into a penalty function that can be integrated into constrained attacks.

For our third and last contribution, we studied the problem of maintaining the
performance of ML models over time, under real-world constraints. We demon-
strated the importance of considering real-world delays, introduced by the complex
lifecycle of ML models when deployed in critical contexts. Indeed, in such a con-
text, validation often includes manual testing to verify the correct behavior of
the systems, which creates a delay. Additionally, the data collection process, in
particular acquiring labels for recent examples is another source of delays. We
demonstrated that overlooking such delays when designing a maintenance strategy
based on retraining, can lead to the selection of a suboptimal strategy. For example,
on BGL BNP Paribas’s system, we showed that although simple periodic retraining
is effective without delays, a strategy based on drift detection in the error rate of
models should be favored in the presence of delays.

9.2 Perspectives

In the following, we discuss potential future research that follows the contribu-

tions and ideas presented in this dissertation:

« Threat models beyond L, norms. In future work, it would be valuable to
expand the study of adversarial examples by exploring alternative approaches
to measuring imperceptibility, beyond the L, norm used in our research.
Imperceptibility is domain-specific, and various methods have been proposed
to quantify it [BAL119; KKT22; DGS™22]. However, these methods have
yet to be thoroughly evaluated against human judgment or compared to one
another, leaving the choice of metric unclear. Alternatively, approaches that
emphasize cost and utility rather than semantic similarity, have recently been
proposed [BDF*24; KKT22|. For instance, [BDF*24] considers the cost of
modifying each feature as a metric to minimize through adversarial search.
In addition to this cost, [KKT22] considers the utility (financial benefits) of
modifying a feature and aims at finding an optimal trade-off between cost
and utility. These methods enable a more accurate quantification of the risk
posed by adversarial examples. We can anticipate that the likelihood of a
costly but low-utility adversarial example reaching the system will be lower
than that of a cheaper but highly useful example. Future research could
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involve systematically assessing these methods, in combination with complex
domain constraints, to determine their capability to generate increasingly
realistic examples. Our current algorithms and benchmarks support multiple
distance metrics and definitions of imperceptibility, and an overview of how
our benchmark can be generalized to other distances is provided in Appendix
10.3.2. Further investigation into these aspects could significantly enhance the
robustness and applicability of adversarial example studies across different
domains.

Towards more realistic attacker capabilities: attacking the system
as a whole. In this dissertation, we focused on the robustness of individual
models against constrained adversarial examples. While considering the
domain constraints is a first step towards considering the integration of the
model in a broader system, defended by a validity gate, it is not sufficient to
evaluate the robustness of the system as a whole. For instance, we assumed
that the attacker had full knowledge of the domain constraints, which may not
be the case in practice. To address this issue, we could limit the capabilities
of the attacker to query the system, returning rejected if the constraints are
not satisfied or if the ML model predicts the example as rejected and accepted
otherwise. From this perspective, the attacker would have to query the system
to gain information about the constraints and the model, making the attack
more realistic but also more challenging to execute. Another assumption we
made regards the availability of the models. We assume that the attacker has
access to the model, which may not hold in practice. To address this issue,
we could limit the attacker’s capabilities to query the system, either by the
number of queries or by the types of queries allowed (e.g. constraints queries,
ML model queries). Later, evaluating the robustness of the model, given a
query budget for the attacker in scenarios where they conduct a query attack
or attempt to build a surrogate model, would be a valuable research direction.
These research directions would increase the realism and relevance of the
evaluation of the robustness of critical systems to adversarial examples.
Exploring the interaction between adversarial examples and distri-
bution drift. In this dissertation, we independently studied the robustness
of critical ML models against adversarial examples and distribution drift. For
future work, it would be valuable to explore the interaction between these
two phenomena. For example, it would be interesting to investigate whether
realistic adversarial examples could assist in detecting distribution drift. A
first step could involve examining whether it is easier to generate realistic
adversarial examples from in-distribution samples or out-of-distribution sam-
ples. Alternatively, other metrics, such as aggressiveness [DGS™22], could
be studied to differentiate between in-distribution and out-of-distribution



samples. The second step would involve distinguishing (based on adversarial
metrics) between shifted examples, with respect to the input distribution,
that causes misclassification and those for which the model successfully gen-
eralizes. If a correlation exists, it could lead to the development of a metric
that estimates the likelihood of an example causing misclassification, thus
enabling the creation of a drift detector that does not require true labels.
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10.1 A Unified Framework for Adversarial At-
tacks in Constraint Feature Space

10.1.1 Extension to multi-class classification tasks

To simplify, we limited the definition of the problem and its solutions to binary
classifiers. We propose an extension of the problem to multi-class classification tasks
and show how MOEVA can be extended to handle these use cases. We consider a
n-dimensional feature space X’ over the feature set F' = {fi, fo,..fn}. For simplicity,
we assume X to be normalized such that X C [0,1]". Let Y = {1,2,..., K} be
the set of labels of a K-class classification task. Let a function H : X — ) be a
K-class classifier and hy : X — [0, 1] be a single output predictor that predicts
a continuous probability score of x to belong to class k. We can induce H from
h with H(z) = argmax({hx(x)|k € Y}). For multi-class classification tasks, one

k

must consider the targeted and untargeted scenarios.
Given an original example x classified as ¢ and a X, the subset of X that
satisfies the set €2 of domain constraints the attack objective of

1. a targeted attack towards class j # y is to generate an adversarial example
x + 0 such that H(x +0) =7, 0 <€

2. an untargeted attack is to generate an adversarial example x + 0 such that
H(xz+0)#y, d<e

for a maximal perturbation threshold € under a given p — norm, and x + § € Xg.
These 2 types of attack can be solved by updating the objective functions of
MOEVA. One can update the objective functiong; (z) as follows:

1. targeted attack towards class § # y: g1(x) = 1 —hy(x) (as we aim to maximize
the probability hy(x), we use 1 — hy(x) to obtain a minimization towards 0
problem)

2. untargeted attack: g(x) = hy(x)

while the objective functions gy (perturbation) and g3 (constraints penalty) remain
unchanged.

10.1.2 Experimental settings

Dataset and models

We evaluate CPGD and MOEVA on four datasets of different sizes, number of
features, and types (and number) of constraints: Botnet attacks detection, credit
scoring, malware detection, and URL phishing detection.
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[CO19b], [AGM™*20] and [HY21] showed that Random Forest is the most effective
model architecture to correctly classify respectively, botnet attacks, malwares, and
phishing attacks on our datasets. [GCGT20] demonstrated that Random Forest
for a credit scoring task is among the most effective techniques. As they point
out, this model architecture is particularly interesting for its performance while
maintaining interpretability, a common requirement in the financial domain.

Credit scoring - LCLD: We engineer a dataset from the publicly available
Lending Club Loan Data (https://www.kaggle.com/wordsforthewise/lending-club).
This dataset contains 151 features, and each example represents a loan that was
accepted by the Lending Club. However, among these accepted loans, some are
not repaid and charged off instead. Our goal is to predict, at the request time,
whether the borrower will be repaid or charged off. This dataset has been studied
by multiple practitioners on Kaggle. However, the original version of the dataset
contains only raw data and to the extent of our knowledge, there is no featured
engineered version commonly used. In particular, one shall be careful when reusing
feature-engineered versions, as most of the versions proposed present data leakage
in the training set that makes the prediction trivial. Therefore, we propose our
own feature engineering. The original dataset contains 151 features. We remove
the example for which the feature “loan status” is different from “Fully paid” or
“Charged Off” as these represent the only final status of a loan: for other values,
the outcome is still uncertain. For our binary classifier, a ‘Fully paid” loan is
represented as 0 and a “Charged Oftf” as 1. We start by removing all features that
are not set for more than 30% of the examples in the training set. We also remove
all features that are not available at loan request time, as this would introduce
bias. We impute the features that are redundant (e.g. grade and sub-grade) or
too granular (e.g. address) to be useful for classification. Finally, we use one-hot
encoding for categorical features. We obtain 47 input features and one target
feature. We split the dataset using random sampling stratified on the target class
and obtain a training set of 915K examples and a testing set of 305K. They are
both unbalanced, with only 20% of charged-off loans (class 1). We trained a neural
network to classify accepted and rejected loans. It has 3 fully connected hidden
layers with 64, 32, and 16 neurons. Our model achieved an AUROC score of 0.7236
Our random forest model with 125 estimators reaches an AUROC score of (.72

For each feature of this dataset, we define boundary constraints as the extremum
value observed in the training set. We consider the 19 features that are under the
control of the Lending Club as immutable. We identify 9 relationship constraints
(3 linear, and 6 non-linear ones).

Botnet attacks - CTU-13: This is a feature-engineered version of CTU-13
proposed by [CO19b]. It includes a mix of legit and botnet traffic flows from the
CTU University campus. Chernikova et al. aggregated the raw network data related
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to packets, duration, and bytes for each port from a list of commonly used ports.
The dataset is made of 143K training examples and 55K testing examples, with
0.74% examples labeled in the botnet class (traffic that a botnet generates). Data
have 756 features, including 432 mutable features. We trained a neural network
to classify legitimate and botnet traffic. It has 3 fully connected hidden layers
with 64, 64, and 32 neurons. Our model achieved an AUROC score of 0.9967. We
identified two types of constraints that determine what feasible traffic data is. The
first type concerns the number of connections and requires that an attacker cannot
decrease it. The second type is inherent constraints in network communications (e.g.
maximum packet size for TCP/UDP ports is 1500 bytes). In total, we identified
360 constraints.

In addition, we build and train a random forest classifier to detect botnet
attacks. Our model reaches an AUROC score of 0.9925

Malware detection - AIMED: Malwares are a major threat to I'T systems
security. With the recent improvement of machine learning techniques, practition-
ers and researchers have developed ML-based detection systems to discriminate
malicious software from benign software [UAB19]. Such systems are vulnerable to
adversarial attacks as shown by [CSD19] with the AIMED attack: they successfully
evade the classifier without reducing the malicious effect of the software. We use
the dataset of benign and malicious portable executable provided in [AGMT20]. In
the same paper, the authors showed that including packed and unpacked benign
executables with malicious ones is less biased towards detecting the packing as
a sign of maliciousness. Therefore, we select 4396 packed benign, 4396 unpacked
benign, and 8792 malicious executables. As in [AGM*20], we extract a set of
static features: PE headers, PE sections, DLL imports, API imports, Rich Header,
File generic. In total, we obtain a dataset of 17 584 samples and 24 222 features.
We use 85% of the dataset for training and validation and the remaining 15% for
testing and adversarial generation. The trained random forest classifier reaches a
test AUROC of 0.9957.

From the 24 222 features, we identify 88 immutable features based on the PE
format description from Microsoft. We also extract feature relation constraints
from the original PE file examples we collected and those generated by AIMED.
For example, the sum of binary features set to 1 that describe API imports should
be less than the value of features api_nb, which represents the total number of
imports on the PE file.

URL Phishing - ISCX-URL2016: Phishing attacks are usually used to conduct
cyber fraud or identity theft. This kind of attack takes the form of a URL that
reassembles a legitimate URL (e.g. user’s favorite e-commerce platform) but
redirects to a fraudulent website that asks the user for their personal or banking
data. [HY21] extracted features from legitimate and fraudulent URLs as well as
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external service-based features to build a classifier that can differentiate fraudulent
URLs from legitimate ones. The feature extracted from the URL includes the
number of special substrings such as “www", “&", “.", “$", "and", the length of the
URL, the port, the appearance of a brand in the domain, in a subdomain or in
the path, and the inclusion of “http" or “https". External service-based features
include the Google index, the page rank, and the presence of the domain in the
DNS records. The complete list of features is present in the replication package.
[HY21] provide a dataset of 5715 legit and 5715 malicious URLs. We use 75%
of the dataset for training and validation and the remaining 25% for testing and
adversarial generation. The random forest model obtains an AUROC score of
0.9676.

We extract a set of 14 relation constraints between the URL features. Among
them, 7 are linear constraints (e.g. length of the hostname is less or equal to the
length of the URL) and 7 are Boolean constraints of the type ifa > 0 then b > 0
(e.g. if the number of http > 0 then the number slash “/" > 0).

Experimental setup and parameters

We propose to study the effectiveness of MOEVA attack against 4 models per
dataset: the first one is trained with clean samples only, the second one with
adversarial examples generated on the training set using MOEVA in addition to
the clean samples, the third by augmenting the features and constraints of the
clean samples and the fourth by combining adversarial retraining and constraints
augmentation. CPGD requires a gradient-based model which is not the case of
random forests therefore we do not evaluate this attack on the random forest
models.

For the LCLD and CTU-13 datasets, we reuse the same maximum perturbation
threshold as for the neural network. That is 0.05 in defense and 0.2 in attack for
LCLD, and 1.0 in defense, and 4.0 in attack for CTU-13. For Malware and URL,
we use the same threshold as LCLD. As for the original study, the budget of the
attack is set to 1000 generations for CTU-13, as our preliminary study showed
that the attack was not effective with a limited budget on CTU-13. We use 100
generations for the other datasets and obtain a similar success rate as for LCLD.
We discuss the choice of these parameters in the next section.

Implementation and hardware

We implement MOEVA as a framework using Python 3.8.8. We use Pymoo’s
implementation of genetic algorithms and operators. Our models are trained using
Tensorflow 2.5. Moreover, MOEVA is compatible with any classifier that can return
the prediction probabilities for a given input x, no matter the framework used to
train it. For the CPGD approach, we extend the implementation of PGD proposed
by Trusted Al in the Adversarial Robustness Toolbox [NST*18]. We also extend
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the Papernot attack implementation from the safe toolbox to support random
forests. We run our experiments with neural networks on 2 Xeon E5-2680v4 @
2.4GHz for a total of 28 cores with 128 GB of RAM. The ones with random forests
are run on 2 AMD Epyc ROME 7TH12 @ 2.6 GHz for a total of 128 cores with
256GB of RAM.

10.1.3 Hyper-parameters evaluation

Our approaches present a large number of hyper-parameters. We hypothesize
that two of them have a direct impact on the success rate. First, as commonly
admit, the maximum allowed perturbation e. Given a large enough perturbation e,
an attack shall always be able to find an adversarial, as even a legit input from the
target class becomes an “adversarial”. Second, we hypothesize that the number of
iterations given to the CPGD attack impacts the success rate. Concerning MOEVA,
and as commonly admitted for genetic algorithms, the number of generations shall
have an impact on the success rate of the attack. Preliminary experiments gave
us an approximation of what would be a good value for these parameters. We
chose an € value of 0.2 and 4, respectively, for the LCLD and CTU-13 projects.
Note that the maximum perturbation for normalized features between [0, 1] and
L, distance is y/n where n is the number of features, which is 6.86 and 27.48
for LCLD and CTU-13 respectively. With MOEVA attack, we use 100 and 1000
generation for LCLD and CTU-13 respectively. We started by using the same
budget for both datasets. We found on a trial run on CTU-13 that, with only
100 generation, the objective function g; (misclassification probability) was slowly
decreasing over the generation, but was not able to reach the threshold. Therefore,
we attempted to augment the budget to 1000. We propose to study the impact of
e and the number of generations/iterations on the success rate C&M. We study
the variation of the success rate of our four attacks for e € [0.025,0.5,0.1,0.2,0.4]
(LCLD) and € € [0.5,1,2,4,8] (CTU-13) with the aforementioned number of
generations/iterations.

Figure 10.1 shows the success rate of our four attacks for different ¢ budgets
on the LCLD use case. We see that CPGD reaches a plateau for € = 0.1, while
MOEVA does not show any significant improvement after ¢ = 0.2. We want to have
a high success rate on both attacks for our main experiments to properly assess
the impact of our defense methods. Therefore, we chose € = 0.2. For the CTU-13
use case, we obtained similar results for all € and for both CPGD and MOEVA.

We also study the impact of the number of generations/iterations on the success
rate, with € fixed to the aforementioned values.

Table 10.1 shows that MOEVA requires different budgets depending on the use
case to reach a similar success rate. Additionally, we observe a high success rate
from 50 generations and from 500 generations for LCLD and CTU-13 respectively.
To properly assess the effectiveness of the defense, and not be limited by the
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Figure 10.1: Success rate M&C of different attacks over € budget on LCLD. The
curves for PGD and PGD+SAT overlap on the value 0.

Table 10.1: Success rate (C&M) in % of MOEVA, for different numbers of genera-
tions.

Number of Generations C&M

50 9545

LCLD 100 97.48
200  98.45

100 12.92

CTU-13 200  99.48
1000  100.00
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Table 10.2: Success rate (C&M) in % of CPGD, for different numbers of iterations.

Number of Generations C&M

500  8.88

LCLD 1000 9.85
2000 10.75

500 0.00

CTU-13 1000 0.00
2000  0.00

number of generations, we chose to keep 100 and 1000 values as our default budget
throughout the paper.

Table 10.2 shows that the effect of the number of iterations given to CPGD
does not influence significantly the success rate of the attack. Moreover, we see
that no matter the iteration budget, CPGD is incapable of generating a single
adversarial example against the CTU-13 model. The same experiment (omitted
from the table) reveals that the classic PGD and PGD coupled with a SAT solver
fail to generate a single constrained adversarial example against both models no
matter the number of iterations.

10.1.4 Combining constraints engineering and adversarial
retraining to defend against search-based attacks.

Our previous results imply that both adversarial retraining using MOEVA and
constraint augmentation improve the robustness of CML models. We argue that the
two mechanisms are complementary and can be combined for improved robustness.

To evaluate the effectiveness of combining constraints engineering with adversar-
ial retraining to defend our model, we compare the robustness of 4 defense scenarios
against MOEVA attack: the first one is no defense and is equivalent to Section 7.1.
The second approach uses adversarial retraining, the third approach uses constraint
augmentation, and the last is adversarial retraining on a constraint-augmented
model.

For a fair comparison, both the constraint-augmented and the original model
are adversarially retrained with the same amount of inputs, even if the success
rate of MOEVA on the constrain-augmented model is significantly lower, and thus
generates fewer adversarial examples to train with. Using this protocol, we use
94K examples generated by MOEVA to retrain. That is about 3 times more than
in Section 7.2. Therefore, we expect the success rate of the attack to be different
from the success rate in Section 7.2 even though we use the same algorithm to
generate the adversarial examples.
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Table 10.3: Success rate (%) of MOEVA against different defense strategies accord-
ing to 3 objectives, C for constraints satisfaction, M for misclassification, and C&
M for both constraints satisfaction and misclassification for the same generated
example.

Defense C M C&M
None 100.00 99.90 97.48
Augment 100.00 93.33 80.43
MOEVA 100.00 &89.00 82.00

MOEVA + Augment 100.00 89.23 77.23

Table 10.4: Success rate MOEVA after adversarial retraining and constraint aug-
mentation.

Defense LCLD C(CTU-13 Malware URL
None 41.51 541 39.30 31.89
Augment 19.73 6.63 28.5 20.99
MOEVA 3.90 4.67 3769 22.14

MOEVA + Augment  00.77 4.67 28.98 15.94

Table 10.3 presents the results for the credit-scoring task. We show in Section 7.2,
that constraint augmentation alone is sufficient to protect the model against botnet
detection adversarials, a combination of the two defenses is therefore superfluous.

Starting from a constrained success rate of 97.48% on a defenseless model, the
adversarial retraining lowers it to 82% while attacks against a constraint augmented
model yield an 80.43% success rate. Combining adversarial retraining on top of a
constraint augmentation defense leads to a success rate of 77.23%, improved from
using only one or the other technique.

Conclusion: Combining constraint augmentation and adversarial retraining
reduces the success rate of constrained adversarial attacks MOEVA by about
20% compared to unprotected models.

10.1.5 Evaluation of Random Forest Classifiers

Table 10.4 shows the success rate of MOEVA against 3 models (clean, adver-
sarially retrained and constraints augmented). First, we observe that MOEVA
successfully generates adversarial examples for all 4 datasets on the clean random
forest, although we noticed that the success rate is significantly lower for the

CTU-13 dataset.
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10.2 Constrained Adaptive Attack: Effective Ad-
versarial Attack Against Deep Neural Net-
works for Tabular Data

10.2.1 Experimental protocol
CAPGD Algorithm

Algorithm 2 CAPGD

Input: £, h, S, Q, 29 v, 1, Nier, W = {wo, ..., w,}
Output: Ty, Lmax
2 Ps (20 4 VL (2®))
Lonax + max{L (), £'(zM)}
if Loy = L£'(2(?) then
Tamax — 0
else
Tomax — M
end if
for £ =1 to Nye,—1 do
2550 Py (o) 4 VL (2 0)))
z* ) P (x(k) + a(z® D — ) 1 (1 — a)(z® — x("‘_l)))
2D Ro(x(+1)
if £'(z*+1)) > L.« then
Tomax — x(k—l—l)
Lonax < L' (xF+1)
end if
if £k € W then
if Condition 1 or Condition 2 then
n < 1n/2
end if
22: end if
23: end for

— =
—= O

.—
2

N N = = = = = e

CAA Algorithm

Algorithm 3 summarizes the process of CAA. The algorithm takes as input the
clean examples X, their associated labels Y, the model H (including its weights,
loss function and probability function), © the set of domain constraints, and e the
maximum perturbation. We start by creating the mask of examples that are already
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Algorithm 3 CAA

e e S e e
© X NP TR

N DN
N =

o
T

Input: XY, H,Q. €
Output: X’
adv_mask < is_adv(X, XY, H,Q, ¢)
X'+ X[adv_mask]
X, + X[—adv_mask]
Y. < Y[-adv_mask]
for Attack in {CAPGD, MOEV A} do
X; « Attack(X., Y., H,Q,¢€)
adv_mask < is_adv(X;, X, Y., H,Q, ¢€)
X'+ X'U X;[adv_mask]
X, + X [—adv_mask]
Y. < Y.[nadv_mask]
: end for
X'+ X'UX,
: procedure 1SADV(X;, X, Y., H, (), €)

adv_mask < {}
for k =1 to | X| do

adv < (X;[k] = Q) A (H(XG[K]) # Ye[k]) A (Lyp(Xi[k], Xe[k]) <€)

adv_mask < adv_mask U adv
end for
return adv_mask

: end procedure
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Table 10.5: The datasets evaluated in the empirical study, with the class imbalance
of each dataset.

Dataset Properties

Task Size # Features Balance (%)
LCLD [Geol8] Credit Scoring 1220 092 28 80/20
URL [HY21] Phishing URL detection 11 430 63 50/50
CTU-13 [CO22] Botnet Detection 198 128 756 99.3/0.7
WIDS [LRGT20] ICU patient survival 91 713 186 91.4/8.6

adversarial (i.e. misclassified by the model) (1.3). We then split the clean examples
that are already adversarial X’ (1.4), and the candidates X on which we will
execute the attacks. For each of our attacks (1.6), we generate a set of potentially
adversarial examples from the candidate clean examples (1.7). Once again, we
compute the mask of examples that are adversarial according to the subprocedure
is__adv described below. According to the mask, we add the successful attack to
the output X’ (1.8) and remove the associated clean examples from the candidate
set X¢. Hence, for a given example, the next attack is only executed if no attack
has been successful, reducing the overall cost of CAA. At the end of CAA, we had
the remaining candidates, for which we have not found adversarial examples to the
output set of potentially adversarial examples X', to ease the calculation of robust
accuracy (e.g. in transferable settings).

The subprocedure is_adv goes through all the examples X;[k] € X; and adds
True to the mask, if all of the following conditions hold:

o X;[k] respects the domain constraints,

o X;[k] classification by His different from its true label Y.[k],

« X;[k] pertubation w.r.t to X [k] is lower or equal to e.

Datasets

Our dataset design followed the same protocol as in Chapter 4. We present
in Table 10.5 the attributes of our datasets and the test performance achieved by
each of the architectures.

Credit scoring - LCLD (licence: CCO: Public Domain) We engineer a dataset
from the publicly available Lending Club Loan Data'. This dataset contains 151
features, and each example represents a loan that was accepted by the Lending
Club. However, among these accepted loans, some are not repaid and charged off
instead. Our goal is to predict, at request time, whether the borrower will be repaid
or charged off. This dataset has been studied by multiple practitioners on Kaggle.

thttps:/ /www.kaggle.com/wordsforthewise/lending-club
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However, the original version of the dataset contains only raw data and to the
extent of our knowledge, there is no featured engineered version commonly used. In
particular, one shall be careful when reusing feature-engineered versions, as most
of the versions proposed present data leakage in the training set that makes the
prediction trivial. Therefore, we propose our own feature engineering. The original
dataset contains 151 features. We remove the example for which the feature “loan
status” is different from “Fully paid” or “Charged Off” as these represent the only
final status of a loan: for other values, the outcome is still uncertain. For our
binary classifier, a ‘Fully paid” loan is represented as 0 and a “Charged Off” as
1. We start by removing all features that are not set for more than 30% of the
examples in the training set. We also remove all features that are not available at
loan request time, as this would introduce bias. We impute the features that are
redundant (e.g. grade and sub-grade) or too granular (e.g. address) to be useful
for classification. Finally, we use one-hot encoding for categorical features. We
obtain 47 input features and one target feature. We split the dataset using random
sampling stratified on the target class and obtained a training set of 915K examples
and a testing set of 305K. They are both unbalanced, with only 20% of charged-off
loans (class 1). We trained a neural network to classify accepted and rejected loans.
It has 3 fully connected hidden layers with 64, 32, and 16 neurons.

For each feature of this dataset, we define boundary constraints as the extremum
value observed in the training set. We consider the 19 features that are under the
control of the Lending Club as immutable. We identify 9 relationship constraints
(3 linear, and 6 non-linear ones):

ratex (1+rate)ter™

1. installment = loan amount x “frate)em—1

2. open_ acc < total acc
3. pub_rec bankruptcies < pub_ rec

4. (term = 36) V (term = 60)

loan__amnt

5. ratio loan amnt annual inc = .
annual inc

open_ acc
total acc

6. ratio_open_acc_total acc =

pub__rec
month_ since earliest_ cr_line

7. ratio_pub_rec_month since earliest cr line =

pub_ rec_ bankruptcies

8. ratio_pub_rec bankruptcies month_since earliest cr line =

9. ratio_pub_rec_ bankruptcies pub_ rec = p“b—rec—bankmpmes,if, pub_rec #

pub__rec
0,else, —1
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URL Phishing - ISCX-URL2016 (license CC BY 4.0) Phishing attacks are
usually used to conduct cyber fraud or identity theft. This kind of attack takes the
form of a URL that reassembles a legitimate URL (e.g. user’s favorite e-commerce
platform) but redirects to a fraudulent website that asks the user for their personal
or banking data. [HY21] extracted features from legitimate and fraudulent URLs
as well as external service-based features to build a classifier that can differentiate
fraudulent URLs from legitimate ones. The feature extracted from the URL includes
the number of special substrings such as “www", “&", “.,", “$", "and", the length of
the URL, the port, the appearance of a brand in the domain, in a subdomain or in
the path, and the inclusion of “http" or “https". External service-based features
include the Google index, the page rank, and the presence of the domain in the
DNS records. [HY21] provide a dataset of 5715 legit and 5715 malicious URLs.
We use 75% of the dataset for training and validation and the remaining 25% for
testing and adversarial generation.

We extract a set of 14 relation constraints between the URL features. Among
them, 7 are linear constraints (e.g. length of the hostname is less or equal to the
length of the URL) and 7 are Boolean constraints of the type ifa > 0 then b > 0
(e.g. if the number of http > 0 then the number slash “/" > 0).

Botnet attacks - CTU-13 (license CC BY NC SA 4.0) This is a feature-
engineered version of CTU-13 proposed by [CO19b]. It includes a mix of legit and
botnet traffic flows from the CTU University campus. Chernikova et al. aggregated
the raw network data related to packets, duration, and bytes for each port from a
list of commonly used ports. The dataset is made of 143K training examples and
55K testing examples, with 0.74% examples labeled in the botnet class (traffic that
a botnet generates). Data have 756 features, including 432 mutable features. We
identified two types of constraints that determine what feasible traffic data is. The
first type concerns the number of connections and requires that an attacker cannot
decrease it. The second type is inherent constraints in network communications (e.g.
maximum packet size for TCP/UDP ports is 1500 bytes). In total, we identified
360 constraints.

WiDS (license: PhysioNet Restricted Health Data License 1.5.0 ?) [LRG20]
dataset contains medical data on the survival of patients admitted to the ICU. The
goal is to predict whether the patient will survive or die based on biological features
(e.g. for triage). This very unbalanced dataset has 30 linear relation constraints.

Model architectures

Table 10.6 summarizes the family, model architecture, and hyperparameters
tuned during the training of our models.

https://physionet.org/content /widsdatathon2020/view-license/1.0.0/
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Table 10.6: The three model architectures of our study.

Family Model Hyperparameters

hidden__dim, n__layers,
learning_rate, norm, 0

n_d, n__steps,

Transformer TabNet v, cat__emb__dim, n__independent,
n__shared, momentum, mask_ type
hidden__dim, depth,

Transformer TabTransformer

Regularization RLN heads, weight_decay,

learning_rate, dropout
Regularization STG hidden__dims, learning _rate, lam
Encoding VIME Pm, @, K, B

TabTransformer is a transformer-based model [HKC*20]. It uses self-attention
to map the categorical features to an interpretable contextual embedding, and the
paper claims this embedding improves the robustness of models to noisy inputs.

TabNet is another transformer-based model [AP21]. It uses multiple subnetworks
that are used in sequence. At each decision step, it uses sequential attention to
choose which features to reason. TabNet aggregates the outputs of each step to
obtain the decision.

RLN or Regularization Learning Networks [SS18] uses an efficient hyperparameter
tuning scheme in order to minimize a counterfactual loss. The authors train a
regularization coefficient to weights in the neural network in order to lower the
sensitivity and produce very sparse networks.

STG or Stochastic Gates [YLN'20] uses stochastic gates for feature selection
in neural network estimation problems. The method is based on probabilistic
relaxation of the [y norm of features or the count of the number of selected features.

VIME or Value Imputation for Mask Estimation [YZJ*20] uses self and then
semi-supervised learning through deep encoders and predictors.

Attacks parameters

For existing attacks, we reuse the hyperparameters proposed in their respective
papers. For LowProFool, we use a small step size of n = 0.001, A\ = 8.5 rade
off factor between fooling the classifier and generating imperceptible adversarial
example, and run the attack for Nj., = 20,000 iterations. All other gradient
attacks run for Ny, = 10 iterations. The schedule of decreasing steps of CPGD
uses M = 7. In CAPGD, we fix the checkpoints as w; = [p; Niter| < Niter, with
p; € [0,1] defined as py = 0, p; = 0.22 and
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Pj+1 = DPj + max{pj —Pj-1— 003, 006} (101)

The influence of the previous update on the current update is set to o = 0.75,
and p = 0.75 for the halving of the step. MOEVA runs for ny.,, = 100 iterations
generating n,rr = 100 offspring per iteration. Among the offspring, n,,, = 200
survive and are used for mating in the next iteration. With BF*, we discretize

numerical features in ny;, = 150 bins. We run the attack for a maximum of Ny, =
100 iterations. CAA applies CAPGD and MOEVA with the same parameters.

Hardware

We run our experiments on an HPC cluster node with 32 cores and 64GB of
RAM dedicated to our task. Fach node consists of 2 AMD Epyc ROME TH12 @
2.6 GHz for a total of 128 cores with 256 GB of RAM.

Reproduction package and availability

The source code, datasets and pre-trained models to reproduce the experiments
of this paper are available at https://github.com/serval-uni-lu/tabularbench.

10.2.2 Additional results

Budget of attacker

In this section, we study the impact of CAA’s budget on its effectiveness. We
consider 3 budgets: the maximum perturbation e allowed, the number of iterations
in the gradient attack CAPGD (without changing MOEVA’s budget), and the
number of iterations in the search attack MOEVA (without changing CAPGD’s
budget).

For each budget, we provide figures and detailed numerical results in tables,
corresponding to the same experiment.

Maximum perturbation ¢ Figure 10.2 (numerical results in Table 10.7) reveals
that increasing the maximum perturbation € for CAA reduces the robust accuracy
of the model in 16/20 cases.

Number of CAPGD iterations Figure 10.3 (numerical results in Table 10.8)
reveals that increasing the number of iterations for the gradient attack component
have a limited impact on the success rate of CAA. The maximum drop of accuracy
is 3.5% points between 10 and 100 iterations for WIDS/TabNet.

Number of MOEVA iterations Figure 10.4 (numerical results in Table 10.9)
reveals that increasing the number of iterations for the search attack component only
reduces the robust accuracy in 4/20 cases (URL/VIME, URL/STG, CTU/VIME,
and CTU/RLN).
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Table 10.7: Robust accuracy with CAA with varying maximum perturbation e
budget. The lowest robust accuracy is in bold.

Maximum perturbation e
Dataset Model 0.25 0.5 1.0 5.0

TabTr. 31.5+01 8.9+0.2 0.6+01 0.0=x0.0
RLN 36.5+04  10.8+0.2 2.T+0.2 2.3+00
URL VIME 69.7x02 495405 15.9:01  0.4z0s
STG 81.4+02 58.0x0s 16.1+s1 0.0x0.0
TabNet | 21.9+07 11.0z0s 2.3+04 1.6203
TabTr. 23.8x0.7 7.9+0.6 22103 T.1x09
RLN 0.0:00  0.0x00 0.0x00 0.1x0.0
LCLD VIME 17.0x0.2 24101 0.3x01 2.2+0.2
STG 59.5+03  53.6+01 38.5t02  48.9+0s
TabNet 0.7+0.2 0.4+01 0.4+01 0.3+01
TabTr. 95.3x0.0 95.3+0.0 95.1202 86.5+1.9
RLN 95.2+03 94.0+02 94.0z02 94.0x02
CTU VIME 56.1+34 40.8+a7 34.0t40 34.0:40
STG 95.3:00 95.3100 95.3100 95.3z00
TabNet 0.0+0.0 0.0=x0.0 0.0x0.0 0.0x0.0
TabTr. 61.9+0.3 45.9+0.3 22.6x0.7 2.6+05
RLN 69.8+02  60.9t02 41.5+0s 22104
WIDS VIME 61.4+01  50.3x02 27.8+05 8.4+05
STG 70.3+01  63.8x02  50.2+0.1 7.8+1.0
TabNet | 29.440. 5.3+0.4 1.9:04 5.2x05
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Table 10.8: Robust accuracy with CAA with varying gradient attack iterations in
CAPGD. The lowest robust accuracy is in bold.

# iterations CAPGD
Dataset Model 5 10 20 100

TabTr. 11.4+05 8.9+0.2 84101 8.3+01
RLN 12.2404  10.8z0.2 7. T+01 7.9+0.2
URL VIME 52.3x06 495105 47.0:02 46.3x03
STG 58.0:08 58.0x0s8 58.0:0s 5H8.0zxo0s
TabNet | 13.8:04 11.0z0s 9.3+03 10.5+03
TabTr. 9.0x0.5 7.9x06 6.5+04 6.9105
RLN 0.0+00  0.0x0.0 0.0+00  0.0z00
LCLD VIME 3.2+0.3 2.410.1 1.2101 1.1:00
STG 54.5+01 53.6+01 53.4+102 53.6:+02
TabNet 0.5+0.2 0.4+0.1 0.3+01 0.1x01
TabTr. 95.3:00 95.3100 95.3100 95.3z00
RLN 94.0:02 94.0:02 94.0:02 94.0z02
CTU VIME 40.8:47 40.8:t27 40.8+ta7 40.81a7
STG 95.3:00 95.3100 95.3100 95.3z00
TabNet 0.0+0.0 0.0=x0.0 0.0x0.0 0.0x0.0
TabTr. 49.6+0.2 45.9+03 42.8+103 42.4+0-2
RLN 64.1+02  60.9+02 58.8+t00 5HT7.8x02
WIDS  VIME 52.9+03 50.3+02 48.3+02 47.7T+o01
STG 67.1+01  63.8+02 62.5t02 61.8+01
TabNet 8.9x0.4 5.3+0.4 3.3+0.5 1.6202
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Figure 10.4: Robust accuracy with CAA with varying search attack iterations in
MOEVA.
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Table 10.9: Robust accuracy with CAA with varying search attack iterations in
MOEVA. The lowest robust accuracy is in bold.

# iterations MOEVA
Dataset Model 50 100 200 1000

TabTr. 9.3+0.0 8.9+0.2 7.0+0.2 3.8+01
RLN 11.3402  10.8z0.2 9.9+0.1 91104
URL VIME 53.8x02 495105 34.7+04 28.5102
STG 64.5+1.7  58.0x0s 48.2+10 43.T:os
TabNet | 14.0t02 11.0x0s 95.9+06  0.3+01
TabTr. 10.6+0.6 7.9:06 8.3+05 10.5+11
RLN 0.0+00  0.0x0.0 0.0+00  0.0z00
LCLD VIME 23101 2.4:01  2.5z01 2.6+0.1
STG 53.7+01 53.6+01 53.5:102 53.6204
TabNet 0.8+0.2 0.4+01 0.3+01 0.7+0.3
TabTr. 95.3:00 95.3100 95.3100 95.1z02
RLN 95.8204  94.0+02 24.1i6a 0.0z01
CTU VIME 76.0£27  40.8+47 6.0+1.5  0.220.0
STG 95.3:00 95.3100 95.3100 95.3z00
TabNet 0.1x01 0.0=x0.0 0.0+o01 0.0x0.0
TabTr. 46.5+0.5 45.940.3 44.8+02 41.2+05
RLN 61.7+02 60.9+02 60.2+03 56.7x04
WIDS  VIME 50.5+02  50.3+02  49.9+02 48.7T+04
STG 63.9+02 63.8+02 63.2+03 61.6+03
TabNet 6.9+0.4 5.3+0.4 2.5x04 0.9101
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Table 10.10: The datasets evaluated in the empirical study, with the class imbalance
of each dataset.

Dataset Properties

Task Size # Features Balance (%)
LCLD [Geol8] Credit Scoring 1220092 28 80/20
URL [HY21] Phishing URL detection 11 430 63 50/50
CTU-13 [CO22] Botnet Detection 198 128 756 99.3/0.7
WIDS [LRG*20] ICU patient survival 91 713 186 91.4/8.6
Malware [AGM120] | Malware detection 17 584 24 222 45.5/54.5

10.3 Defending Against Adversarial Attacks in
Tabular Deep Learning

10.3.1 Experimental protocol

Datasets

Our dataset design followed the same protocol as in Chapter 4. We present in
Table 10.10 the attributes of our datasets and the test performance achieved by
each of the architectures.

Credit scoring - LCLD (licence: CCO: Public Domain) We engineer a dataset
from the publicly available Lending Club Loan Data3. This dataset contains 151
features, and each example represents a loan that was accepted by the Lending
Club. However, among these accepted loans, some are not repaid and charged off
instead. Our goal is to predict, at request time, whether the borrower will be repaid
or charged off. This dataset has been studied by multiple practitioners on Kaggle.
However, the original version of the dataset contains only raw data and to the
extent of our knowledge, there is no featured engineered version commonly used. In
particular, one shall be careful when reusing feature-engineered versions, as most
of the versions proposed present data leakage in the training set that makes the
prediction trivial. Therefore, we propose our own feature engineering. The original
dataset contains 151 features. We remove the example for which the feature “loan
status” is different from “Fully paid” or “Charged Off” as these represent the only
final status of a loan: for other values, the outcome is still uncertain. For our
binary classifier, a ‘Fully paid” loan is represented as 0 and a “Charged Off” as
1. We start by removing all features that are not set for more than 30% of the
examples in the training set. We also remove all features that are not available at

3https://www.kaggle.com /wordsforthewise /lending-club
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loan request time, as this would introduce bias. We impute the features that are
redundant (e.g. grade and sub-grade) or too granular (e.g. address) to be useful
for classification. Finally, we use one-hot encoding for categorical features. We
obtain 47 input features and one target feature. We split the dataset using random
sampling stratified on the target class and obtained a training set of 915K examples
and a testing set of 305K. They are both unbalanced, with only 20% of charged-off
loans (class 1). We trained a neural network to classify accepted and rejected loans.
It has 3 fully connected hidden layers with 64, 32, and 16 neurons.

For each feature of this dataset, we define boundary constraints as the extremum
value observed in the training set. We consider the 19 features that are under the
control of the Lending Club as immutable. We identify 9 relationship constraints
(3 linear, and 6 non-linear ones):

rate x (1+rate)ter™

1. installment = loan amount X (Trato)erm—1

2. open_ acc < total acc
3. pub_rec_bankruptcies < pub_ rec

4. (term = 36) V (term = 60)

loan__amnt

5. ratio_loan amnt annual inc = :
annual inc

open_ acc
total acc

6. ratio_open_acc_ total acc =

pub_ rec
month_since earliest_cr_line

7. ratio_pub_rec_month_since earliest cr_line =

pub__rec_ bankruptcies

8. ratio_ pub_rec_bankruptcies month since earliest cr line =

pub_ rec_ bankruptcies

9. ratio_pub_rec bankruptcies pub_rec = b rec ,if, pub_rec #
0,else, —1

URL Phishing - ISCX-URL2016 (license CC BY 4.0) Phishing attacks are
usually used to conduct cyber fraud or identity theft. This kind of attack takes the
form of a URL that reassembles a legitimate URL (e.g. user’s favorite e-commerce
platform) but redirects to a fraudulent website that asks the user for their personal
or banking data. [HY21] extracted features from legitimate and fraudulent URLs
as well as external service-based features to build a classifier that can differentiate
fraudulent URLs from legitimate ones. The feature extracted from the URL includes
the number of special substrings such as “www", “&", “,", “$", "and", the length of
the URL, the port, the appearance of a brand in the domain, in a subdomain or in
the path, and the inclusion of “http" or “https". External service-based features
include the Google index, the page rank, and the presence of the domain in the
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DNS records. [HY21] provide a dataset of 5715 legit and 5715 malicious URLs.
We use 75% of the dataset for training and validation and the remaining 25% for
testing and adversarial generation.

We extract a set of 14 relation constraints between the URL features. Among
them, 7 are linear constraints (e.g. length of the hostname is less or equal to the
length of the URL) and 7 are Boolean constraints of the type ifa > 0 then b > 0
(e.g. if the number of http > 0 then the number slash “/" > 0).

Botnet attacks - CTU-13 (license CC BY NC SA 4.0) This is a feature-
engineered version of CTU-13 proposed by [CO19b]. It includes a mix of legit and
botnet traffic flows from the CTU University campus. Chernikova et al. aggregated
the raw network data related to packets, duration, and bytes for each port from a
list of commonly used ports. The dataset is made of 143K training examples and
55K testing examples, with 0.74% examples labeled in the botnet class (traffic that
a botnet generates). Data have 756 features, including 432 mutable features. We
identified two types of constraints that determine what feasible traffic data is. The
first type concerns the number of connections and requires that an attacker cannot
decrease it. The second type is inherent constraints in network communications (e.g.
maximum packet size for TCP/UDP ports is 1500 bytes). In total, we identified
360 constraints.

WiDS (license: PhysioNet Restricted Health Data License 1.5.0 4) [LRGT20]
dataset contains medical data on the survival of patients admitted to the ICU. The
goal is to predict whether the patient will survive or die based on biological features
(e.g. for triage). This very unbalanced dataset has 30 linear relation constraints.

Malware (licence MIT) Malwares are a major threat to IT systems security.
With the recent improvement of machine learning techniques, practitioners and
researchers have developed ML-based detection systems to discriminate malicious
software from benign software [UAB19]. Such systems are vulnerable to adversarial
attacks as shown by [CSD19] with the AIMED attack: they successfully evade
the classifier without reducing the malicious effect of the software. We use the
dataset of benign and malicious portable executable provided in [AGM*20]. In
the same paper, the authors showed that including packed and unpacked benign
executables with malicious ones is less biased towards detecting the packing as
a sign of maliciousness. Therefore, we select 4396 packed benign, 4396 unpacked
benign, and 8792 malicious executables. As in [AGM™20], we extract a set of
static features: PE headers, PE sections, DLL imports, API imports, Rich Header,
File generic. In total, we obtain a dataset of 17 584 samples and 24 222 features.
We use 85% of the dataset for training and validation and the remaining 15% for
testing and adversarial generation.

“https://physionet.org/content /widsdatathon2020/view-license/1.0.0/
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Table 10.11: The three model architectures of our study.

Family Model Hyperparameters

hidden__dim, n__layers,
learning_rate, norm, 6

n_d, n__steps,

Transformer TabNet v, cat__emb__dim, n__independent,
n__shared, momentum, mask_ type
hidden__dim, depth,

Transformer TabTransformer

Regularization RLN heads, weight_decay,

learning__rate, dropout
Regularization STG hidden__dims, learning _rate, lam
Encoding VIME Pm, @, K, B

From the 24 222 features, we identify 88 immutable features based on the PE
format description from Microsoft. We also extract feature relation constraints
from the original PE file examples we collected and those generated by AIMED.
For example, the sum of binary features set to 1 that describe API imports should
be less than the value of features api_nb, which represents the total number of
imports on the PE file.

Model architectures

Table 10.11 provides an overview of the family, model architecture, and hyper-
parameters adjusted during the training of our models.

TabTransformer is a transformer-based model [HKC"20]. It employs self-
attention to convert categorical features into an interpretable contextual embedding,
which the paper asserts enhances the model’s robustness to noisy inputs.

TabNet is another transformer-based model [AP21]. Tt utilizes multiple subnet-
works in sequence. At each decision step, it applies sequential attention to select
which features to consider. TabNet combines the outputs of each step to make the
final decision.

RLN or Regularization Learning Networks [SS18] employs an efficient hyper-
parameter tuning method to minimize counterfactual loss. The authors train a
regularization coefficient for the neural network weights to reduce sensitivity and
create very sparse networks.

STG or Stochastic Gates [YLN'20] uses stochastic gates for feature selection
in neural network estimation tasks. The technique is based on a probabilistic
relaxation of the [y norm of features or the count of selected features.
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VIME or Value Imputation for Mask Estimation [YZJ*20] employs self-supervised
and semi-supervised learning through deep encoders and predictors.

Evaluation settings

Metrics The models are fine-tuned to maximize cross-validation AUC. This
metric is threshold-independent and is not affected by the class unbalance of our
dataset.

We only attack clean examples that are not already misclassified by the model
and from the critical class, that is respectively for each aforementioned dataset
the class of phishing URLSs, rejected loans, malwares, botnets, and not surviving
patients. Because we consider a single class, the only relevant metric is robust
accuracy on constrained examples, which corresponds to the recall. Unsuccessful
adversarial examples count as correctly classified when measuring robust accuracy.

We only consider examples that respect domain constraints to compute robust
accuracy. If an attack generates invalid examples, they are defacto considered
unsuccessful and are reverted to their original example (correctly classified).

We report in the Appendix 10.13 all the remaining performance metrics, includ-
ing the recall, the precision, and the Mattheu Correlation Coefficient (MCC).

Attacks parameters CAA applies CAPGD and MOEVA with the following
parameters.

CAPGD uses Ny, = 10 iterations. The step reduction schedule for CPGD
uses M = 7. In CAPGD, checkpoints are set as w; = [p; X Niter| < Niter, with
p; € [0, 1] defined as py = 0, p; = 0.22, and

Pj+1 =Py + maxp; — pj—1 — 003, 0.06.

The influence of the previous update on the current update is set to a = 0.75,
and p = 0.75 for step halving. MOEVA runs for ng.,, = 100 iterations, generating
nors = 100 offspring per iteration. Among the offspring, n,,, = 200 survive and
are used for mating in the subsequent iteration.

Hardware Our experiments are conducted on an HPC cluster node equipped
with 32 cores and 64GB of RAM allocated for our use. Each node is composed of 2
AMD Epyc ROME 7H12 processors running at 2.6 GHz, providing a total of 128
cores and 256 GB of RAM.

Generator architectures

In our experimental study, we use the same five generative models as [SDC*24]:

GOGGLE, TVAE, WGAN, TableGan, CTGAN.
The hyperameters for training these models is based on [SDC*24] as well:
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For GOGGLE, we employed the same optimizer and learning rate configuration
as described in [LQB23]. Specifically, ADAM was used with five different learning
rates: {1 x 1072,5 x 1073,1 x 1072}.

For TVAE, ADAM was utilized with five different learning rates: {5 x 107%,1 x
10751 x 1074,2 x 1074, 1 x 1073},

For the other DGM models, three different optimizers were tested: ADAM,
RMSPROP, and SGD, each with distinct sets of learning rates.

For WGAN, the learning rates were {1 x 1074, 1x 1073}, {5 x107°, 1 x 1074, 1 x
1073}, and {1 x 107, 1 x 1073}, respectively.

For TableGAN, the learning rates were {5 x 1075, 1 x 107%,2 x 10741 x 1073},
{1 x107,2x 10741 x 1073}, and {1 x 107, 1 x 1073}, respectively.

For CTGAN, the learning rates were {5 x 1075, 1x107*,2x 1074}, {1 x1074,2x
10741 x 1073}, and {1 x 10741 x 1073}, respectively.

For each optimizer-learning rate combination, three different batch sizes were
tested, depending on the DGM model: {64, 128,256} for WGAN, {128, 256,512}
for TableGAN, {70, 280,500} for CTGAN and TVAE, and {64, 128} for GOGGLE.
The batch sizes for CTGAN are multiples of 10 to accommodate the recommended
PAC value of 10 as suggested in [LKFT18], among other values.

Reproduction package and availability

The source code, datasets, and pre-trained models required to replicate the
experiments in this paper are publicly accessible under the MIT license on the
repository https://github.com/serval-uni-lu/tabularbench.

10.3.2 Detailed results

Baseline models performances

We compare in 10.12 the ID performance of XGBoost and our deep learning
models under standard training. We confirm that DL models are on par with the
performances achieved by shallow models.

Data augmentation detailed results

Clean performance after data augmentation We report in Table 10.13 the
clean performances of our models under all the trianing scenarios. Notably, few
training combinations lead to a collapse of performance (MCC = 0). It is the case
on CTU dataset for all data augmentations with adversarial training, and CTGAN,
Cutmix, and TVAE with standard training.

Table 10.13: Detailed results of clean performance for our augmented models
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Dataset Arch

Training Augment AUC Accuracy Precision Recall Mcc

URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL

TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
RLN
RLN
RLN
RLN
RLN

Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std

None
None
ctgan
ctgan
cutmix
cutmix
goggle
goggle
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
goggle
goggle
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
goggle
goggle
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix

0.981
0.974
0.976
0.963
0.968
0.956
0.974
0.964
0.980
0.970
0.975
0.967
0.978
0.969
0.973
0.949
0.967
0.959
0.960
0.954
0.962
0.954
0.970
0.963
0.968
0.956
0.969
0.961
0.986
0.947
0.951
0.943
0.947
0.935
0.934
0.939
0.946
0.956
0.938
0.929
0.949
0.942
0.984
0.977
0.980
0.973
0.983

0.940
0.931
0.933
0.916
0.930
0.900
0.931
0.915
0.934
0.921
0.928
0.919
0.937
0.925
0.920
0.862
0.910
0.895
0.867
0.842
0.903
0.882
0.913
0.896
0.908
0.888
0.913
0.889
0.946
0.700
0.699
0.853
0.860
0.860
0.851
0.868
0.612
0.853
0.858
0.504
0.861
0.864
0.945
0.933
0.939
0.925
0.944

0.943
0.923
0.927
0.903
0.954
0.937
0.932
0.913
0.934
0.916
0.955
0.935
0.925
0.917
0.908
0.812
0.898
0.863
0.924
0.909
0.876
0.842
0.903
0.862
0.933
0.862
0.892
0.843
0.954
0.626
0.625
0.819
0.802
0.815
0.803
0.880
0.564
0.821
0.830
1.000
0.813
0.817
0.945
0.917
0.938
0.914
0.945

0.937 0.880
0.941 0.862
0.941 0.866
0.932 0.832
0.905 0.862
0.857 0.803
0.930 0.862
0.918 0.830
0.934 0.869
0.927 0.843
0.899 0.858
0.900 0.839
0.950 0.873
0.934 0.850
0.934 0.839
0.943 0.734
0.925 0.820
0.940 0.794
0.800 0.741
0.760 0.694
0.940 0.809
0.941 0.770
0.926 0.826
0.943 0.796
0.878 0.817
0.923 0.777
0.940 0.827
0.956 0.786
0.937 0.892
0.994 0.495
0.994 0.493
0.905 0.709
0.958 0.735
0.934 0.729
0.932 0.712
0.852 0.736
0.997 0.352
0.901 0.709
0.899 0.718
0.008 0.063
0.939 0.731
0.940 0.737
0.946 0.891
0.953 0.867
0.941 0.878
0.939 0.851
0.942 0.887
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None
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0.978
0.969
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wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix

0.706
0.706
0.722
0.656
0.687
0.695
0.700
0.638
0.673
0.683
0.665
0.688
0.689
0.652
0.667
0.696
0.719
0.716
0.709
0.704
0.715
0.706
0.717
0.710
0.712
0.705
0.712
0.704
0.717
0.708
0.714
0.713
0.706
0.701
0.710
0.701
0.714
0.703
0.708
0.699
0.708
0.696
0.714
0.705
0.979
0.985
0.630
0.627
0.977

0.652
0.625
0.656
0.799
0.785
0.799
0.799
0.799
0.799
0.201
0.799
0.799
0.793
0.732
0.799
0.799
0.641
0.628
0.620
0.582
0.633
0.683
0.648
0.644
0.644
0.646
0.642
0.629
0.633
0.635
0.645
0.651
0.571
0.535
0.710
0.682
0.666
0.685
0.648
0.660
0.676
0.677
0.654
0.628
1.000
1.000
0.044
0.045
1.000

0.319
0.307
0.326
0.000
0.270
0.000
1.000
0.000
0.000
0.201
0.000
0.000
0.255
0.225
0.248
0.000
0.318
0.309
0.306
0.290
0.313
0.334
0.321
0.317
0.317
0.316
0.316
0.308
0.314
0.312
0.318
0.321
0.287
0.275
0.353
0.332
0.328
0.334
0.318
0.320
0.332
0.327
0.322
0.308
0.982
0.982
0.008
0.008
0.982

0.645 0.244
0.687 0.239
0.668 0.262
0.000 0.000
0.042 0.031
0.000 0.000
0.000 0.003
0.000 0.000
0.000 0.000
1.000 0.000
0.000 0.000
0.000 0.000
0.016 0.015
0.137 0.023
0.000 0.002
0.000 0.000
0.685 0.255
0.693 0.245
0.703 0.242
0.749 0.232
0.693 0.250
0.580 0.243
0.672 0.255
0.666 0.247
0.668 0.248
0.653 0.241
0.672 0.249
0.679 0.239
0.697 0.253
0.676 0.244
0.671 0.251
0.657 0.250
0.766 0.231
0.803 0.220
0.528 0.249
0.575 0.239
0.633 0.253
0.569 0.239
0.658 0.247
0.618 0.237
0.606 0.249
0.574 0.232
0.657 0.252
0.684 0.240
0.953 0.967
0.953 0.967
1.000 0.017
1.000 0.017
0.953 0.967

145



146

CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU

TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
VIME
VIME
VIME
VIME
VIME
VIME

Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv
Std
Adv

cutmix
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix

0.980
0.982
0.984
0.978
0.979
0.977
0.974
0.988
0.986
0.990
0.986
0.986
0.985
0.986
0.985
0.986
0.984
0.984
0.981
0.996
0.978
0.986
0.977
0.982
0.982
0.983
0.987
0.980
0.993
0.987
0.976
0.991
0.990
0.994
0.992
0.989
0.987
0.991
0.990
0.992
0.990
0.988
0.988
0.987
0.983
0.972
0.741
0.991
0.976

1.000
1.000
1.000
1.000
1.000
0.943
0.609
1.000
1.000
0.999
0.930
1.000
1.000
1.000
1.000
1.000
1.000
0.890
0.436
0.999
0.993
0.993
0.016
0.993
0.993
1.000
0.993
1.000
0.993
0.993
0.007
0.998
0.999
0.986
0.985
1.000
1.000
0.999
0.999
0.999
0.999
0.987
0.986
1.000
1.000
0.007
0.007
1.000
1.000

0.982
0.982
0.982
0.987
0.987
0.111
0.018
0.982
0.992
0.890
0.092
0.982
1.000
0.982
0.982
0.982
1.000
0.061
0.013
0.958
0.500
0.000
0.007
0.000
0.000
0.985
0.000
0.982
1.000
0.000
0.007
0.819
0.904
0.338
0.327
0.987
1.000
0.887
0.923
0.880
0.896
0.362
0.338
0.997
0.997
0.007
0.007
0.997
0.997

0.953 0.967
0.953 0.967
0.953 0.967
0.951 0.969
0.953 0.970
0.963 0.317
0.983 0.103
0.953 0.967
0.951 0.971
0.956 0.922
0.961 0.286
0.953 0.967
0.946 0.972
0.953 0.967
0.953 0.967
0.953 0.967
0.951 0.975
0.963 0.227
0.983 0.072
0.961 0.959
0.002 0.035
0.000 0.000
1.000 0.008
0.000 0.000
0.000 0.000
0.951 0.967
0.000 0.000
0.953 0.967
0.015 0.121
0.000 0.000
1.000 0.000
0.978 0.894
0.973 0.937
0.975 0.570
0.975 0.561
0.953 0.970
0.953 0.976
0.966 0.925
0.975 0.949
0.975 0.926
0.975 0.934
0.973 0.589
0.975 0.570
0.951 0.974
0.951 0.974
1.000 0.000
1.000 0.000
0.951 0.974
0.951 0.974



CTU

CTU

CTU

CTU

CTU

CTU

WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS

VIME Std
VIME Adv
VIME Std
VIME Adv
VIME Std
VIME Adv
TabTr Std
TabTr Adv
TabTr Std
TabTr Adv
TabTr Std
TabTr Adv
TabTr Std
TabTr Adv
TabTr Std
TabTr Adv
TabTr Std
TabTr Adv
TabTr Std
TabTr Adv
STG  Std
STG  Adv
STG  Std
STG  Adv
STG  Std
STG  Adv
STG  Std
STG  Adv
STG  Std
STG  Adv
STG  Std
STG  Adv
STG  Std
STG  Adv
TabNet Std
TabNet Adv
TabNet Std
TabNet Adv
TabNet Std
TabNet Adv
TabNet Std
TabNet Adv
TabNet Std
TabNet Adv
TabNet Std
TabNet Adv
TabNet Std
TabNet Adv
RLN  Std

wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
goggle
goggle
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
goggle
goggle
wgan
wgan
tablegan
tablegan
tvae
tvae
None
None
ctgan
ctgan
cutmix
cutmix
goggle
goggle
wgan
wgan
tablegan
tablegan
tvae
tvae
None

0.977
0.979
0.984
0.979
0.950
0.727
0.874
0.869
0.868
0.859
0.866
0.851
0.873
0.853
0.866
0.864
0.869
0.858
0.871
0.858
0.866
0.865
0.852
0.841
0.863
0.851
0.851
0.837
0.863
0.855
0.861
0.853
0.857
0.845
0.870
0.835
0.853
0.863
0.866
0.859
0.856
0.862
0.865
0.855
0.864
0.860
0.857
0.864
0.869

1.000
1.000
1.000
1.000
0.008
0.007
0.810
0.794
0.799
0.769
0.835
0.867
0.805
0.784
0.797
0.788
0.808
0.806
0.801
0.790
0.782
0.875
0.638
0.668
0.885
0.880
0.780
0.727
0.800
0.855
0.846
0.829
0.776
0.807
0.777
0.104
0.090
0.090
0.910
0.090
0.090
0.090
0.795
0.090
0.090
0.090
0.104
0.090
0.796

1.000
0.997
0.997
0.997
0.007
0.007
0.287
0.272
0.279
0.249
0.314
0.358
0.285
0.261
0.273
0.264
0.284
0.277
0.280
0.264
0.260
0.381
0.183
0.193
0.400
0.380
0.253
0.218
0.274
0.334
0.326
0.302
0.252
0.271
0.259
0.090
0.090
0.090
0.000
0.090
0.090
0.090
0.275
0.090
0.090
0.090
0.090
0.090
0.274

0.953 0.976
0.953 0.975
0.951 0.974
0.951 0.974
1.000 0.001
1.000 0.000
0.755 0.383
0.772 0.373
0.780 0.383
0.782 0.349
0.708 0.395
0.601 0.395
0.784 0.392
0.764 0.357
0.763 0.371
0.764 0.361
0.748 0.378
0.724 0.363
0.776 0.383
0.747 0.356
0.776 0.361
0.627 0.424
0.878 0.285
0.851 0.293
0.567 0.414
0.530 0.385
0.742 0.342
0.787 0.310
0.744 0.366
0.625 0.384
0.676 0.396
0.688 0.376
0.758 0.345
0.678 0.341
0.796 0.365
0.984 0.003
1.000 0.000
1.000 0.000
0.000 0.000
1.000 0.000
1.000 0.000
1.000 0.000
0.787 0.381
1.000 0.000
1.000 0.000
1.000 0.000
0.984 0.003
1.000 0.000
0.774 0.376
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15

WIDS RLN  Adv None 0.867 0.789 0.268 0.779 0.370
WIDS RLN  Std ctgan 0.862 0.788 0.264 0.761 0.360
WIDS RLN  Adv ctgan 0.425 0.090 0.090 1.000 0.000
WIDS RLN  Std cutmix  0.870 0.802 0.280 0.769 0.381
WIDS RLN  Adv cutmix  0.859 0.834 0.307 0.681 0.379
WIDS RLN  Std goggle  0.864 0.797 0.276 0.774 0.378
WIDS RLN  Adv goggle  0.857 0.777 0.256 0.782 0.358
WIDS RLN  Std wgan 0.866 0.782 0.260 0.774 0.359
WIDS RLN  Adv wgan 0.858 0.770 0.249 0.776 0.347
WIDS RLN  Std tablegan 0.868 0.773 0.254 0.785 0.356
WIDS RLN  Adv tablegan 0.860 0.797 0.273 0.760 0.370
WIDS RLN  Std tvae 0.868 0.776 0.259 0.803 0.367
WIDS RLN  Adv tvae 0.854 0.756 0.237 0.774 0.332
WIDS VIME Std None 0.865 0.823 0.298 0.721 0.384
WIDS VIME Adv None 0.858 0.817 0.291 0.720 0.376
WIDS VIME Std ctgan 0.482 0.090 0.090 1.000 0.000
WIDS VIME Adv ctgan 0.482 0.090 0.090 1.000 0.000
WIDS VIME Std cutmix  0.857 0.833 0.309 0.697 0.387
WIDS VIME Adv cutmix  0.849 0.878 0.374 0.543 0.385
WIDS VIME Std goggle  0.849 0.812 0.280 0.700 0.358
WIDS VIME Adv goggle  0.840 0.802 0.268 0.700 0.346
WIDS VIME Std wgan 0.861 0.796 0.270 0.753 0.365
WIDS VIME Adv wgan 0.845 0.791 0.259 0.715 0.339
WIDS VIME Std tablegan 0.864 0.828 0.305 0.716 0.389
WIDS VIME Adv tablegan 0.853 0.882 0.388 0.553 0.399
WIDS VIME Std tvae 0.858 0.808 0.280 0.726 0.367
WIDS VIME Adv tva 0.846 0.787 0.256 0.721 0.339

For LCLD dataset only Goggle and WGAN data augmentations lead to MCC = 0. To
uncover what happens with some generated data, we study the distribution of artificial examples
on the LCLD dataset for 3 cases: Two cases where performance did not collapse: TableGAN and
CTGAN and one problematic case WGAN.

Kernel Density Estimation. We first compare the artificial examples distributions in
Figure 10.5. The results show that the labels and the main features of TableGAN, a "healthy"
generator are closer to the distribution of the "problematic' generator WGAN than to the
distribution of CTGAN, another "healthy" generator. Feature and label distributions are not
problematic.

Statistical analysis. We perform the following statistical tests to compare the distributions
quantitatively between the examples generated by the three generators. Kolmogorov-Smirnov
test, t-test, or MWU test. We report the results in Table 10.14. Across all statistical tests, there
is no specific pattern to the faulty generator "WGAN" compared to CTGAN and TableGAN.

Classification performance. We build a new classifier to identify examples generated
by WGAN and by TableGAN. We leverage Oodeel®, a library that performs post-hoc deep OOD
(Out-of-Distribution) detection.

The classifier reaches achieves a random accuracy (0.5) confirming that no specific features
are sufficient to distinguish both generators.

Shttps://github.com/deel-ai/oodeel
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Table 10.12: AUC In-distribution performance of models

Dataset | CTU LCLD MALWARE URL WIDS

RLN 0.991 0.719 0.993 0.984  0.869
STG 0.988 0.709 0.991 0.973  0.866
TabNet | 0.996 0.722 0.994 0.986 0.870
TabTr | 0.979 0.717 0.994 0.981 0.874
VIME | 0.987 0.714 0.989 0.974  0.865

XGBoost ‘ 0.994 0.723 0.997 0.993 0.887

Histogram and Density Plot for charged_off
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Figure 10.5: Impact of attack budget on the robust accuracy for LCLD dataset.
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Table 10.14: Statistical tests between the distributions of the 3 generators:
W:WGAN, T:TableGAN, C:CTGAN, MWU:Mann-Whitney U

GAN Test Amount Term Rate Installment  Sub-grade Label
(W/T) KS Statistic 0.047 0.120 0.055 0.046 0.031 0.095
(W/T) KS p-value 0.000 0.000 0.000 0.000 0.000 0.000
(W/T) t-test Statistic ~ 35.923 10.782 -7.687 40.512 0.224 140.654
(W/T)  t-test p-value 0.000 0.000 0.000 0.000 0.823 0.000
(W/T) MWU Statistic 1.3 x 1011 1.2 x 1011 1.2 x 10t 1.3 x 10! 1.2 x 10 1.3 x 10!
(W/T) MWU p-value  0.000 0.000 0.000 0.000 0.000 0.000
(W/C)  KS Statistic 0.112 0.056 0.105 0.089 0.037 0.194
(W/C) KS p-value 0.000 0.000 0.000 0.000 0.000 0.000
(W/C)  t-test Statistic =~ 80.112 -21.286 40.896 61.097 30.043 -221.351
(W/C)  t-test p-value 0.000 0.000 0.000 0.000 0.000 0.000
(W/C) MWU Statistic 1.3 x 1011 1.2x 101 1.2x 10" 1.3 x 10%! 1.2 x 10t 9.8 x 1010
(W/C) MWU p-value  0.000 0.002 0.000 0.000 0.000 0.000
(T/C)  KS Statistic 0.079 0.070 0.093 0.044 0.027 0.289
(T/C)  KS p-value 0.000 0.000 0.000 0.000 0.000 0.000
(T/C)  t-test Statistic ~ -43.986 31.467 -51.028 -20.991 -30.376 364.250
(T/C)  t-test p-value 0.000 0.000 0.000 0.000 0.000 0.000
(T/C) MWU Statistic 1.2 x 10'* 1.2 x 10! 1.2x 1011 1.2 x 10%! 1.2 x 1011 1.6 x 10!
(T/C) MWU p-value  0.000 0.000 0.000 0.000 0.000 0.000

Next, we evaluate the Maximum Logit Score (MLS) detector and report the histograms and
AUROC curve of the detector in Figure 10.6.
Both the ROC curves and the histograms confirm that WGAN and TableGAN are not
distinguishable.

Conclusion:

From all our analysis, we confirm that the collapse of performance of training

with WGAN data augmentation is not due to some evident properties in the generated examples.

Robust performance after data augmentation We report below the robustness
of our 270 models trained with various combinations of arhcitecture, data augmentation, and
adversarial training.

Table 10.15: Detailed results of Adv robustness with constrained (CTR) and
unconstrained attacks (ADV) across our 5 seeds.

Dataset Arch

Training Augment ID,,cqn CTRimean ADViean IDstqg CTRgtq ADVgig

CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
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STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Std

STG Std

None 0.951
ctgan 0.961
cutmix 0.946
tablegan  0.951
tvae 0.983
wgan 0.953
None 0.953
ctgan 0.956

0.951
0.960
0.945
0.951
0.983
0.953
0.953
0.953

0.951 0.000
0.959 0.000
0.946 0.000
0.951 0.000
0.982 0.000
0.953 0.000
0.953 0.000
0.956 0.000

0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.000

0.000
0.002
0.000
0.000
0.001
0.000
0.000
0.000



CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU
CTU

STG
STG
STG
STG
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
VIME
VIME
VIME
VIME
VIME
VIME
VIME
VIME
VIME

Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std

cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix
tablegan
tvae
wgan
None
ctgan
cutmix

0.953
0.953
0.963
0.953
0.002
1.000
0.000
0.015
1.000
0.000
0.961
0.000
0.000
0.953
0.000
0.951
0.953
1.000
0.953
0.953
0.983
0.953
0.953
1.000
0.953
0.951
0.963
0.953
0.973
0.975
0.953
0.975
0.975
0.975
0.978
0.975
0.953
0.975
0.973
0.966
0.951
1.000
0.951
0.951
1.000
0.953
0.951
1.000
0.951

0.953
0.953
0.961
0.953
0.002
1.000
0.000
0.014
1.000
0.000
0.000
0.000
0.000
0.953
0.000
0.951
0.953
0.944
0.953
0.953
0.983
0.953
0.953
0.944
0.949
0.939
0.961
0.953
0.971
0.967
0.953
0.975
0.968
0.974
0.940
0.956
0.953
0.814
0.932
0.950
0.940
1.000
0.943
0.855
1.000
0.952
0.408
1.000
0.350

0.953 0.000
0.953 0.000
0.963 0.000
0.953 0.000
0.002 0.000
1.000 0.000
0.000 0.000
0.014 0.000
1.000 0.000
0.000 0.000
0.961 0.000
0.000 0.000
0.000 0.000
0.953 0.000
0.000 0.000
0.951 0.000
0.953 0.000
1.000 0.000
0.953 0.000
0.953 0.000
0.983 0.000
0.953 0.000
0.953 0.000
1.000 0.000
0.953 0.000
0.951 0.000
0.963 0.000
0.953 0.000
0.973 0.000
0.975 0.000
0.953 0.000
0.975 0.000
0.975 0.000
0.975 0.000
0.978 0.000
0.975 0.000
0.953 0.000
0.975 0.000
0.973 0.000
0.966 0.000
0.942 0.000
1.000 0.000
0.947 0.000
0.894 0.000
1.000 0.000
0.953 0.000
0.951 0.000
1.000 0.000
0.951 0.000

0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.010
0.000
0.001
0.000
0.000
0.000
0.005
0.003
0.001
0.000
0.000
0.000
0.001
0.000
0.001
0.002
0.001
0.003
0.002
0.000
0.026
0.011
0.001
0.005
0.000
0.004
0.016
0.000
0.001
0.049
0.000
0.029

0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.006
0.000
0.002
0.008
0.000
0.000
0.000
0.000
0.000
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CTU

CTU

CTU

LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
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VIME
VIME
VIME
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
RLN
RLN
RLN
RLN

Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv

tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle

0.951
1.000
0.953
0.156
0.820
0.376
0.694
0.627
0.689
0.613
0.664
0.833
0.352
0.577
0.510
0.649
0.614
0.000
0.000
0.000
1.000
0.116
0.000
0.000
0.674
0.029
0.000
0.000
0.013
0.000
0.000
0.739
0.795
0.725
0.636
0.608
0.687
0.665
0.695
0.724
0.677
0.689
0.693
0.703
0.701
0.695
0.737
0.581
0.678

0.670
1.000
0.229
0.121
0.812
0.362
0.682
0.601
0.678
0.597
0.536
0.595
0.222
0.433
0.442
0.505
0.377
0.000
0.000
0.000
1.000
0.114
0.000
0.000
0.004
0.021
0.000
0.000
0.010
0.000
0.000
0.703
0.785
0.710
0.605
0.564
0.665
0.628
0.079
0.081
0.073
0.079
0.101
0.048
0.055
0.630
0.543
0.470
0.320

0.951 0.000
1.000 0.000
0.953 0.000
0.156 0.000
0.820 0.000
0.376 0.000
0.694 0.000
0.627 0.000
0.689 0.000
0.613 0.000
0.664 0.000
0.833 0.000
0.352 0.000
0.577 0.000
0.510 0.000
0.649 0.000
0.614 0.000
0.001 0.000
0.001 0.000
0.001 0.000
1.000 0.000
0.117 0.000
0.001 0.000
0.001 0.000
0.674 0.000
0.030 0.000
0.001 0.000
0.001 0.000
0.014 0.000
0.001 0.000
0.001 0.000
0.739 0.000
0.795 0.000
0.725 0.000
0.636 0.000
0.608 0.000
0.687 0.000
0.665 0.000
0.695 0.000
0.724 0.000
0.677 0.000
0.689 0.000
0.693 0.000
0.703 0.000
0.701 0.000
0.695 0.000
0.737 0.000
0.581 0.000
0.678 0.000

0.021
0.000
0.022
0.001
0.001
0.000
0.000
0.001
0.000
0.000
0.001
0.004
0.002
0.002
0.001
0.001
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.000
0.000
0.001
0.000
0.000
0.001
0.001
0.001
0.002
0.003
0.001
0.002
0.006
0.004
0.008
0.004
0.005
0.003
0.005
0.001
0.001
0.003
0.005

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000



LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
LCLD
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL

RLN  Adv
RLN  Adv
RLN  Adv
RLN  Std
RLN  Std
RLN  Std
RLN  Std
RLN  Std
RLN  Std
RLN  Std
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Std
VIME Std
VIME Std
VIME Std
VIME Std
VIME Std
VIME Std
STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Adv
STG  Std
STG  Std
STG  Std
STG  Std
STG  Std
STG  Std
STG  Std
TabNet Adv
TabNet Adv
TabNet Adv
TabNet Adv
TabNet Adv
TabNet Adv
TabNet Adv
TabNet Std
TabNet Std
TabNet Std
TabNet Std

tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle

0.688
0.670
0.661
0.683
0.705
0.689
0.673
0.693
0.700
0.679
0.655
0.789
0.570
0.568
0.563
0.678
0.617
0.670
0.773
0.523
0.644
0.607
0.668
0.659
0.943
0.939
0.755
0.939
0.921
0.957
0.942
0.933
0.922
0.794
0.939
0.876
0.941
0.925
0.995
0.901
0.930
0.848
0.008
0.940
0.898
0.934
0.994
0.954
0.932

0.479
0.643
0.402
0.000
0.001
0.000
0.000
0.001
0.000
0.005
0.104
0.768
0.529
0.532
0.537
0.661
0.530
0.024
0.018
0.020
0.005
0.005
0.007
0.007
0.900
0.798
0.427
0.856
0.809
0.795
0.812
0.580
0.693
0.397
0.745
0.469
0.688
0.655
0.918
0.899
0.897
0.665
0.000
0.872
0.896
0.110
0.948
0.893
0.896

0.688 0.000
0.670 0.000
0.661 0.000
0.683 0.000
0.705 0.000
0.689 0.000
0.673 0.000
0.693 0.000
0.700 0.000
0.679 0.000
0.655 0.000
0.789 0.000
0.570 0.000
0.568 0.000
0.563 0.000
0.678 0.000
0.617 0.000
0.670 0.000
0.773 0.000
0.523 0.000
0.644 0.000
0.607 0.000
0.668 0.000
0.659 0.000
0.903 0.000
0.803 0.000
0.422 0.000
0.860 0.000
0.816 0.000
0.804 0.000
0.813 0.000
0.596 0.000
0.770 0.000
0.444 0.000
0.759 0.000
0.575 0.000
0.733 0.000
0.752 0.000
0.919 0.000
0.899 0.000
0.896 0.000
0.666 0.000
0.000 0.000
0.870 0.000
0.896 0.000
0.299 0.000
0.948 0.000
0.894 0.000
0.896 0.000

0.004
0.000
0.004
0.000
0.001
0.000
0.000
0.001
0.000
0.002
0.002
0.000
0.001
0.002
0.000
0.001
0.002
0.001
0.002
0.001
0.001
0.001
0.001
0.002
0.001
0.012
0.032
0.010
0.004
0.017
0.003
0.008
0.008
0.009
0.005
0.005
0.002
0.007
0.002
0.000
0.001
0.022
0.000
0.018
0.000
0.005
0.002
0.001
0.001

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.014
0.032
0.008
0.003
0.015
0.003
0.007
0.006
0.010
0.006
0.008
0.006
0.006
0.001
0.000
0.001
0.019
0.000
0.018
0.000
0.004
0.001
0.001
0.000
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URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
URL
WIDS
WIDS
WIDS
WIDS
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TabNet Std
TabNet Std
TabNet Std
TabTr Adv
TabTr Adv
TabTr Adv
TabTr Adv
TabTr Adv
TabTr Adv
TabTr Adv
TabTr Std
TabTr Std
TabTr Std
TabTr Std
TabTr Std
TabTr Std
TabTr Std
RLN  Adv
RLN  Adv
RLN  Adv
RLN  Adv
RLN  Adv
RLN  Adv
RLN  Adv
RLN  Std
RLN  Std
RLN  Std
RLN  Std
RLN  Std
RLN  Std
RLN  Std
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Adv
VIME Std
VIME Std
VIME Std
VIME Std
VIME Std
VIME Std
VIME Std
STG  Adv
STG  Adv
STG  Adv
STG  Adv

tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle

0.896
0.938
0.998
0.939
0.930
0.850
0.917
0.898
0.934
0.927
0.936
0.942
0.904
0.930
0.899
0.952
0.936
0.952
0.938
0.943
0.939
0.913
0.941
0.933
0.944
0.942
0.941
0.936
0.910
0.942
0.935
0.934
0.910
0.920
0.919
0.887
0.899
0.897
0.925
0.927
0.925
0.893
0.875
0.909
0.922
0.626
0.853
0.532
0.788

0.878
0.891
0.952
0.567
0.660
0.403
0.541
0.409
0.612
0.569
0.089
0.253
0.018
0.049
0.020
0.168
0.200
0.562
0.625
0.608
0.661
0.555
0.598
0.547
0.108
0.219
0.086
0.039
0.039
0.081
0.214
0.698
0.669
0.686
0.737
0.645
0.636
0.650
0.495
0.548
0.467
0.445
0.430
0.444
0.519
0.452
0.738
0.412
0.660

0.875 0.000
0.892 0.000
0.953 0.000
0.578 0.000
0.664 0.000
0.404 0.000
0.554 0.000
0.421 0.000
0.615 0.000
0.580 0.000
0.825 0.000
0.880 0.000
0.687 0.000
0.051 0.000
0.020 0.000
0.901 0.000
0.887 0.000
0.566 0.000
0.628 0.000
0.609 0.000
0.665 0.000
0.557 0.000
0.602 0.000
0.552 0.000
0.901 0.000
0.855 0.000
0.926 0.000
0.039 0.000
0.039 0.000
0.912 0.000
0.911 0.000
0.727 0.000
0.690 0.000
0.707 0.000
0.749 0.000
0.652 0.000
0.711 0.000
0.705 0.000
0.533 0.000
0.910 0.000
0.913 0.000
0.857 0.000
0.750 0.000
0.886 0.000
0.905 0.000
0.626 0.000
0.853 0.000
0.523 0.000
0.788 0.000

0.010
0.002
0.002
0.009
0.004
0.011
0.006
0.010
0.008
0.008
0.002
0.006
0.000
0.001
0.000
0.002
0.006
0.007
0.005
0.003
0.008
0.009
0.003
0.002
0.002
0.005
0.002
0.000
0.000
0.002
0.002
0.006
0.005
0.010
0.013
0.005
0.004
0.004
0.005
0.004
0.004
0.003
0.005
0.005
0.008
0.002
0.002
0.001
0.002

0.011
0.003
0.001
0.009
0.004
0.012
0.007
0.011
0.003
0.010
0.001
0.005
0.000
0.001
0.000
0.002
0.002
0.006
0.007
0.007
0.006
0.005
0.003
0.005
0.001
0.001
0.002
0.000
0.000
0.002
0.002
0.004
0.007
0.012
0.011
0.004
0.004
0.004
0.003
0.001
0.001
0.001
0.003
0.003
0.003
0.000
0.000
0.003
0.000



WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS
WIDS

STG
STG
STG
STG
STG
STG
STG
STG
STG
STG
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabNet
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
TabTr
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN
RLN

Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std
Std
Std
Std
Adv
Adv
Adv
Adv
Adv
Adv
Adv
Std
Std
Std
Std

tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle
tablegan
tvae
wgan
None
ctgan
cutmix
goggle

0.689
0.677
0.626
0.776
0.878
0.567
0.742
0.677
0.759
0.746
0.984
1.000
1.000
1.000
1.000
1.000
1.000
0.797
1.000
0.000
1.000
1.000
0.984
0.786
0.773
0.781
0.600
0.765
0.726
0.747
0.765
0.755
0.780
0.710
0.786
0.750
0.776
0.763
0.780
1.000
0.681
0.783
0.760
0.775
0.776
0.775
0.762
0.770
0.773

0.566
0.598
0.464
0.638
0.712
0.385
0.572
0.498
0.621
0.583
0.584
1.000
0.374
1.000
1.000
1.000
0.992
0.053
1.000
0.000
1.000
1.000
0.406
0.000
0.651
0.681
0.508
0.675
0.622
0.667
0.652
0.459
0.441
0.434
0.383
0.376
0.493
0.376
0.666
1.000
0.599
0.691
0.661
0.711
0.676
0.609
0.472
0.587
0.525

0.688 0.000
0.677 0.000
0.623 0.000
0.773 0.000
0.877 0.000
0.559 0.000
0.739 0.000
0.671 0.000
0.755 0.000
0.744 0.000
0.825 0.000
1.000 0.000
0.671 0.000
1.000 0.000
1.000 0.000
1.000 0.000
0.996 0.000
0.731 0.000
1.000 0.000
0.000 0.000
1.000 0.000
1.000 0.000
0.475 0.000
0.456 0.000
0.767 0.000
0.776 0.000
0.599 0.000
0.755 0.000
0.724 0.000
0.743 0.000
0.759 0.000
0.746 0.000
0.776 0.000
0.705 0.000
0.733 0.000
0.750 0.000
0.763 0.000
0.763 0.000
0.773 0.000
1.000 0.000
0.675 0.000
0.774 0.000
0.754 0.000
0.772 0.000
0.776 0.000
0.771 0.000
0.759 0.000
0.767 0.000
0.750 0.000

0.003
0.001
0.002
0.002
0.003
0.004
0.003
0.004
0.003
0.002
0.002
0.000
0.003
0.000
0.000
0.000
0.004
0.004
0.000
0.000
0.000
0.000
0.001
0.000
0.002
0.003
0.003
0.002
0.002
0.002
0.002
0.003
0.005
0.003
0.004
0.008
0.003
0.005
0.002
0.000
0.002
0.003
0.002
0.003
0.003
0.002
0.007
0.002
0.001

0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.007
0.000
0.000
0.000
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.003
0.000
0.001
0.001
0.001
0.001
0.001
0.002
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.001
0.001
0.001
0.002
0.001
0.000
0.000
0.000
0.000
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WIDS RLN  Std tablegan  0.788 0.589 0.786 0.000 0.004 0.000

WIDS RLN  Std tvae 0.802 0.621 0.796 0.000 0.004 0.000
WIDS RLN  Std wgan 0.775 0.574 0.775 0.000  0.002  0.000
WIDS VIME Adv None 0.721 0.521 0.721 0.000 0.003  0.000
WIDS VIME Adv ctgan 1.000 1.000 1.000 0.000  0.000  0.000

WIDS VIME Adv cutmix 0.543 0.435 0.535 0.000 0.002  0.001
WIDS VIME Adv goggle 0.702 0.592 0.699 0.000 0.002 0.001
WIDS VIME Adv tablegan  0.553 0.423 0.553 0.000 0.002  0.000

WIDS VIME Adv tvae 0.721 0.618 0.721 0.000 0.001  0.000
WIDS VIME Adv wgan 0.715 0.606 0.715 0.000  0.002  0.000
WIDS VIME Std None 0.723 0.503 0.713 0.000 0.002  0.000
WIDS VIME Std ctgan 1.000 1.000 1.000 0.000  0.000  0.000

WIDS VIME Std cutmix 0.699 0.476 0.694 0.000 0.002  0.000
WIDS VIME Std goggle 0.702 0.491 0.697 0.000 0.003  0.000
WIDS VIME Std tablegan  0.718 0.501 0.718 0.000 0.004  0.000
WIDS VIME Std tvae 0.726 0.506 0.726 0.000 0.004  0.000
WIDS VIME Std wgan 0.755 0.512 0.754 0.000 0.001  0.000

Correlations between ID and robust performances
Impact of budgets, detailed results

Generalization to other distances

We define for all attacks a distance function. This method is used for MOEVA (the evolution
attack) to measure the fitness value related to the distance objective, and in the evaluation
method to validate the correctness of the adversarial examples.

By default, it supports Lo, and Ly distances 6:

from tabularbench.utils.typing import NDBool, NDInt, NDNumber

def compute_distance(x_1: NDNumber, x_2: NDNumber, norm: Any) -> NDNumber:
if norm in ["inf", np.inf, "Linf", "linf"]:
distance = np.linalg.norm(x_1 - x_2, ord=np.inf, axis=-1)
elif norm in ["2", 2, "L2", "12"]:
distance = np.linalg.norm(x_1 - x_2, ord=2, axis=-1)
else:
raise NotImplementedError

return distance

One can define any new distance metric, like structural similarity index measure (SSIM), or
some semantic measure after embedding the features x1 and x5. The distance used here does not
need to be differentiable and is not backpropagated in the gradient attacks.

Hence, for CAPGD component of the benchmark attack, we need to define a custom
project mechanism for each distance. We implemented a projection over sphere of L., and
L, distances https://github.com/serval-uni-lu/tabularbench/blob/main/tabularbench/
attacks/capgd/capgd.py#L196.

Shttps://github.com/serval-uni-lu/tabularbench/blob/main/tabularbench/
attacks/utils.py
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https://github.com/serval-uni-lu/tabularbench/blob/main/tabularbench/attacks/capgd/capgd.py#L196
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Figure 10.6: Performance of the OOD detector on the WGAN samples.

Table 10.16: Pearson correlations between constrained robust accuracy and: ID

accuracy (ID), and non constrained-accuracy (ADV)

Robust Accuracy
o I g 4 =
v R > o o

=4
=)

Dataset Training | ID(corr) ID(p-val) | ADV(corr) ADV(p-val)
CTU Adversarial 1 1.4e-26 1 1.9e-31
CTU Standard 0.22 0.28 0.22 0.28
LCLD Adversarial 0.76 1.8e-06 0.76 1.8e-06
LCLD Standard 0.15 0.39 0.15 0.39
URL Adversarial 0.7 3.6e-06 1 7.2e-37
URL Standard 0.19 0.26 0.46 0.0053
WIDS Adversarial 0.79 1e-06 0.91 Te-11
WIDS Standard 0.031 0.87 0.62 0.00025
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Figure 10.7: Impact of attack budget on the robust accuracy for LCLD dataset.
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To extend the projected gradient attacks to other distances, custom projection mechanisms
are then needed.

10.4 TabularBench: Benchmarking Adversarial
Robustness for Tabular Deep Learning in
Real-world Use-cases

10.4.1 API

The library https://github.com/serval-uni-lu/tabularbench is split into 4 main com-
ponents. The test folder provides meaningful examples for each component.

Datasets

Our dataset factory supports 5 datasets: CTU, LCLD, MALWARE, URL, and WIDS. each
dataset can be invoked with the following aliases:

from tabularbench.datasets import dataset_factory

dataset_aliases= [
"ctu_13_neris",
"lcld_time",
"malware",
"url",
"wids",

]

for dataset_name in dataset_aliases:

dataset = dataset_factory.get_dataset(dataset_name)
x, _ = dataset.get_x_y()

metadata = dataset.get_metadata(only_x=True)

assert x.shape[l] == metadata.shape[0]

Each dataset can be defined in a single .py file (example: https://github.com/serval-uni-
lu/tabularbench/blob/main/tabularbench/datasets/samples/url.py).

A dataset needs at least a source (local or remote csv) for the raw features and a definition
of feature constraints. The said definition can be empty for non-constrained datasets.

Constraints

One of the features of our benchmark is the support of feature constraints, but in the dataset
definition and in the attacks.

Constraints can be expressed in natural language. For example, we express the constraint
Fy = Fy + F5 such as:

from tabularbench.constraints.relation_constraint import Feature
constraintl = Feature(0) == Feature(1l) + Feature(2)

Given a dataset, one can check the constraint satisfaction over all constraints, given a
tolerance.
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from tabularbench.constraints.constraints_checker import ConstraintChecker
from tabularbench.datasets import dataset_factory

dataset = dataset_factory.get_dataset("url")
X, _ = dataset.get_x_yQO

constraints_checker = ConstraintChecker (
dataset.get_constraints(), tolerance

)

out = constraints_checker.check_constraints(x.to_numpy())
In the provided datasets, all constraints are satisfied. During the attack, Constraints can be
fixed as follows:

import numpy as np
from tabularbench.constraints.constraints_fixer import ConstraintsFixer

x = np.arange(9) .reshape(3, 3)

constraints_fixer = ConstraintsFixer(
guard_constraints=[constraintl],
fix_constraints=[constraintil],

)
x_fixed = constraints_fixer.fix(x)
x_expected = np.array([[3, 1, 2], [9, 4, 5], [15, 7, 811)
assert np.equal(x_fixed, x_expected).all()

Constraint violations can be translated into losses and one can compute the gradient to repair
the faulty constraints as follows:

import torch

from tabularbench.constraints.constraints_backend_executor import (
ConstraintsExecutor,

)

from tabularbench.constraints.pytorch_backend import PytorchBackend
from tabularbench.datasets.dataset_factory import get_dataset

ds = get_dataset("url")
constraints = ds.get_constraints()
constraintl = constraints.relation_constraints[0]

x, ¥y = ds.get_x_y(O

x_metadata = ds.get_metadata(only_x=True)
x = torch.tensor(x.values, dtype=torch.float32)
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constraints_executor = ConstraintsExecutor(

constrainti,

PytorchBackend(),
feature_names=x_metadata["feature"].to_list(),
)

x.requires_grad = True

loss = constraints_executor.execute(x)
grad = torch.autograd.grad(
loss.sum(),

x_1,

) [0]

Models

All models need to extend the class BaseModelTorch” . This class implements the definitions,
the fit and evaluation methods, and the save and loading methods. Depending of the architectures,
scaler and feature encoders can be required by the constructors.

So far, our API nateively supports: multi-layer preceptrons (MLP), RLN, STG, TabNet,
TabTransformer, and VIME. Our implementation is based on Tabsurvey [BLST21]. All models
from this framework can be easily adapted to our API.

Benchmark

The leaderboard is available on https://serval-uni-lu.github.io/tabularbench/.

This leaderboard will be updated regularly, and all the models listed in the leaderboard are
downloadable using our API

The benchmark leverages Constrained Adaptive Attack (CAA) by default and can be extended
for other attacks.

clean_acc, robust_acc = benchmark(dataset='LCLD', model="TabTr_Cutmix",
distance='L2', constraints=True)

The model attribute refers to a pre-trained model in the relevant model folder. The API
infers the architecture from the first term of the model name, but it can be defined manually. In
the above example, a TabTransformer architecture will be initialized.

10.5 On the Impact of Industrial Delays when
Mitigating Distribution Drifts: an Empirical
Study on Real-world Financial Systems

10.5.1 Generalization study

In the following, we will assess the validity of each of our claims across our three datasets. We
summarize in Table 10.17. In this generalization study we evaluate two variants for the electricity
dataset when studying the impact of detectors and delay. A scenario where the total delay is 10
days and a scenario where the delay is 28 days.

"https://github.com/serval-uni-lu/tabularbench/blob/main/tabularbench/models/
torch_models.py
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TabularBench

TabularBench: Adversarial robustness benchmark for tabular data

Leaderboard
CTU Search: |STG
architecture training augmentation ID ADV+CTR v ADV auc accuracy precision recall mcc

STG adversarial ~ tvae 0.982801 0.982801 0.98231  0.981094 0.435641 0.0127069 0.982801  0.0717109
STG standard tvae 0.963145 0.960688 0.963145 0.984115 0.890109 0.0609642 0.963145 0.227425
STG adversarial  ctgan 0.960688 0.960197  0.959214 0.986319 0.929578 0.0919135  0.960688 0.285528
STG adversarial  wgan 0.953317 0.953317  0.953317 0.984742 0.999528 0.982278 0.953317 0.967453
STG standard None 0.953317 0.953317  0.953317 0.988398 0.999528 0.982278  0.953317 0.967453
STG standard ctgan 0.955774 0.953317  0.955774 0.990381 0.998802 0.89016 0.955774 0.92179
STG standard cutmix 0.953317 0.953317  0.953317 0.986111 0.999528 0.982278  0.953317 0.967453

Figure 10.11: Screenshot of the TabularBench leaderboard on 12/06/2024

Table 10.17: Summary of the generalization study (Extended). v'means the claim
holds, X means the claim does not hold, and v'* means the claim holds in some
cases.

Claim BGL LCLD Elec. A Elec. B
Tuning hyperparameters has a positive impact on performance v v v v
Model Tuning hyperparameters outperforms model retraining v vE X X
Tuning Re-tuning does not bring additional improvements v vE X X
Training with all available data is counterproductive v v v v
Periodic retraining + error-based offer flexible compromise v X X Ve
Detector Periodic retraining is effective for low retraining budgets v X X X
selection Error-based detectors are best for high retraining budgets v v X v
In lower budgets, error-based detectors outperforms periodic v v X v
Not considering delays overestimates the trade-off v v - v
Impact Enabling delay disrupt the ranking of drift detectors v v - v
of delay Change in delay has an inverse effect on efficiency/effectiveness v v - v
Change in delay disrupts the ranking of drift detectors v v - v
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Overall, our study confirms that the use of all available training data is not necessary and even
counter-productive, that the best detectors can notably vary across datasets and need specific
evaluation, and that introducing the delay in the evaluation pipeline significantly impacts which
detectors and retraining strategies are on the Pareto-front to achieve the best trade-off between
effectiveness and efficiency. We will detail each of the claims in the following subsections.

Datasets

Lending Club Loan Data (LCLD) We apply our study to the LCLD dataset [Kag19]
which is the public counterpart of BGL BNP Paribas’ dataset. The objective of the ML model is to
classify loan requests as accepted (high probability of reimbursement) or refused (low probability
of reimbursement) based on information provided by the client (e.g. age, purpose of the loan,
duration), publicly available data (e.g. credit score) and computed feature (e.g. installment in
the case the loan would be accepted). By default, the LCLD dataset contains features that are
not available at the time of the request. We ignored these features to avoid data leakage and
use the remaining 28 features. The dataset contains 1,124,606 labeled inputs from transactions
that occurred over a 5-year period. The timestamps associated with inputs are precise for a
month. For each month, we uniformly distribute the inputs of that month on the weekdays
and associate them with a new timestamp. The dataset is similar in size and time span to our
partner’s. Therefore, we reuse our partner parameters and constraints to conduct our experiment.
The delays remain 10 days for labeling and four weeks for deployment. We trained the baseline
model with 400,000 samples. The minimum period of retraining corresponds to the average label
delay which is 5,000 samples.

Electricity Electricity [Har99] is a widely used dataset in the distribution shift on tabular
data literature as shown in [LLDT19]. The classification task is to determine at any point in
time, if the electricity price is going up or down. The 6 features include the day of the week, the
current price, the electricity demand, as well as the price, demand, and transfer of the adjacent
geographical region. This dataset is smaller than the two others. The dataset contains 45,312
labeled inputs that occur over 943 days with exactly one input recorded every 30 minutes. The
dataset is precise to 30 minutes. This dataset is small than the two others, spans over a shorter
period of time, and is drawn from another domain. Hence the labeling and deployment delays
may differ in a real-world system. We started with our partner’s delay. The minimum period of
retraining corresponds to the average label delay, which is 480 samples. We trained the baseline
model with one year of data. We round up to the next multiple of 480 to facilitate model reuse
during the experiments and obtain 17760 inputs. With such high delays, we found that none of
the schedules, including retraining every 10 days, can outperform the baseline. In fact, as shown
in our experiments in Appendix 10.5.1 not retraining and keeping the original model is the most
effective strategy with such delays. This confirms the importance of considering the delay in the
evaluation of retraining schedules. We also consider a scenario with shorter delays. We conserve
a total delay of 10 days corresponding to our previous label delay. We assume that at any given
time the electricity price of the previous day is available. Hence, we split this total delay into 1
day for labeling and 9 days for production.

The metric (MCC for unbalanced data) and classifier (Random Forest for interpretability)
remain unchanged for both datasets.

Model tuning

In Table 10.18 and Table 10.19, we compare the effectiveness of various training strategies
when the model is deployed right before the three most important drifts, on LCLD and Elec-
tricity datasets respectively. Both retraining and hyper-parameter tuning yield improvements
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in performance, however in the case of Electricity, retraining yields better improvements than
hyper-parameter tuning.

Table 10.20 and table 10.21 confirm that hyper-parameter tuning remains relevant in the
periodic training scenarios.

Table 10.18: ML effectiveness (MCC) of different training strategies for different
testing windows for LCLD dataset. For not retrained models, the data used are
the same as the initial model. For retrained model, we use the data that directly
precede the test window.

Model MCC on [T, T + 20k[ at T =
Retrained Hyperparameters 400k 420k 600k 940k
No No tuning 0.2791 0.2609 0.2691 0.2165
Initial tuning 0.2820 0.2606 0.2798 0.2213
No tuning - 0.2583 0.2743 0.2249
Yes Initial tuning - 0.2650 0.2789 0.2290
Re-tuning - 0.2616 0.2831 0.2240

Table 10.19: ML effectiveness (MCC) of different training strategies for different
testing windows for the Electricity dataset. For not retrained models, the data
used are the same as the initial model. For retrained model, we use the data that
directly precede the test window.

Model MCC on [T, T + 480[ at T =
Retrained Hyperparameters | 20160 22560 32160
No Initial tuning 0.1281 0.0 0.0
Ves Initial tuning 0.1900 0.2415 0.2807
Re-tuning 0.2162 0.3597 0.4633

Next, when assessing which retraining window is the best for each dataset (Table 10.22 for
LCLD and Table 10.23 for Electricity), we confirm our previous insights that reusing all the
training data is not always the best. 200k examples are generally sufficient for LCLD and a
retraining window of 4440 is sufficient for the Electricity dataset. For the Electricity dataset,
increasing the period of retraining requires a larger window size. In four over six periodic
schedules, the best window size is 4400, while for the two remaining larger periods, retraining
with a window size larger than 35520 achieves the best effectiveness. Overall for each scenario,
the best effectiveness regardless of the period is achieved with the smallest window size. This
confirms that retraining with all data is counterproductive for periodic retraining.

Drift detectors

Our evaluation on LCLD (Fig 10.12) and on Electricity (Fig 10.13) confirms that driving the
training with error-based detectors is a relevant strategy both in low and high retraining budgets.
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Table 10.20: ML effectiveness (MCC) of periodic retraining strategies for LCLD
dataset.

Model Retraining period
hyperparameters | 20,000 50,000 100,000 200,000 400,000
No tuning 0.2691 0.2688  0.2681 0.2678  0.2669
Initial tuning 0.2742 0.2737 0.2725 0.2723 0.2709
Re-tuning 0.2751 0.2744 0.2734 0.2711 0.2685

Table 10.21: ML effectiveness (MCC) of periodic retraining strategies for Electricity
dataset.

Model Retraining period
hyperparameters 480 960 1920 3840 7680 15360

Initial tuning 0.3908 0.3800 0.3564 0.3346 0.3160 0.3174
Re-tuning 0.4266 0.4132 0.3950 0.3565 0.3386 0.3125

These error-based detectors outperform the other type of detectors under high retraining budgets.
In addition, under limited retraining budgets, retraining with error-based detectors is always
more effective than periodic retraining. Contrary to our industrial partner’s setting, periodic
retraining is not effective for low training budgets in the cases of LCLD and Electricity datasets.
Finally, Our evaluation of Electricity A, which has high labeling and deployment delays, shows
that no retraining strategy is better than the baseline. It is only when we reduce the delays (such
as in Scenario Electricity (B) where error-based detectors outperform the baseline.

Delays

We do not evaluate the impact of delay for the scenarios Electricity A as none of the detectors
outperforms the baseline (as studied in the previous section).

When comparing the occurrences on the Pareto-front of each schedule strategy between the
scenario with and without delays (Table 10.24 for LCLD and Table 10.25 for Electricity), we
confirm that the optimal schedule varies. KSWIN becomes optimal with delay for LCLD and
Electrictity, while HDDM-A and ADWIN become relevant for Electricity. Similarly, changing
the delay as shown in Table 10.26 for LCLD and Table 10.27 for Electricity has an impact on
which schedule strategy remains optimal. ADWIN and KSWIN are no longer on the Pareto-front
when halving the delay for Electricity and HDDM-A is no longer on the front when we double
the delay.

Overall, doubling or halving the delay can have a significant impact on the Pareto-front of
drift detectors. In Figure 10.13, the MCC drops by more than 5% between the scenarios d,4/2
and 264.
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Table 10.22: ML effectiveness (MCC) of periodic retraining schedules for LCLD
dataset.

Window Size
Delays  Period | 50,000 100,000 200,000 400,000 All

5,000 | 0.2730 0.2740 0.2746 0.2736 0.2739

10,000 | 0.2730 0.2740 0.2745 0.2735 0.2739

20,000 | 0.2730 0.2738 0.2743 0.2735 0.2737

Yes 50,000 | 0.2728 0.2740 0.2739 0.2732 0.2732
100,000 | 0.2728  0.2728 0.2731 0.2725 0.2729

200,000 | 0.2712  0.2718 0.2720 0.2716 0.2723

400,000 | 0.2691  0.2696  0.2700 0.2704 0.2709

5,000 | 0.2736  0.2745 0.2756 0.2747 0.2742

10,000 | 0.2737 0.2744 0.2758 0.2743  0.2742

20,000 | 0.2732 0.2747 0.2751 0.2742 0.2741

No 50,000 | 0.2737 0.2748 0.2750 0.2737 0.2739
100,000 | 0.2726 0.2733 0.2737 0.2725 0.2730

200,000 | 0.2716  0.2722 0.2725 0.2722 0.2726

400,000 | 0.2697  0.2703  0.2707 0.2709 0.2712
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Figure 10.14: Pareto front of retraining schedule with same parameters and different
deployment delays.
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Table 10.23: ML effectiveness (MCC) of periodic retraining schedules for Electricity
dataset.

‘ Window Size
Delays Period ‘ 4440 8880 17760 35520 All

480 0.4243 0.3879 0.3531 0.3848  0.3827
960 0.4169 0.3793 0.3442 0.3801 0.3806
1920 0.3920 0.3603 0.3289 0.3663 0.3645
3840 0.3483 0.3246 0.3114 0.3438 0.3538
7680 0.2914 0.2926 0.3126 0.3352 0.3377
15360 | 0.2090 0.2271  0.2977 0.3064 0.3064

480 0.4818 0.4551 0.4032 0.4224 0.4121
960 0.4684 0.4458 0.3915 0.4211 0.4125

Scenario A
0; = 10 days
04 = 4 weeks

?lcin?rg); 1920 | 0.4376 0.4247 0.3753 0.3968  0.3923
S —0days 310 | 0.4066 03661 03317 03725 0.3762
7680 | 0.3457  0.3340 0.3293 0.3615 0.3634
15360 | 0.2217  0.2378  0.3060 0.3153 0.3153
480 | 0.5045 0.4818 0.4266 0.4385 0.4288
960 | 0.4902 0.4713 04132 0.4260 0.4175
Nome 1920 | 0.4705 0.4480 0.3950 0.4102  0.4042

3840 0.4329 0.3899 0.3565 0.3859 0.3872
7680 0.3628  0.3531 0.3386¢ 0.3723 0.3738
15360 | 0.2276  0.2470 0.3125 0.3228 0.3228
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Table 10.24: Evaluation of the Pareto-front of different schedules on LCLD dataset.
For each schedule, we report the number of parameter settings (A) / (B). (A) are
the settings on the efficiency/effectiveness Pareto front across all methods. (B) are
the settings on the Pareto front local to the method.

Delay

0; = 10 days

Type Schedule No 5, = 4 weeks
: No detection 1/1 1/1
Bascline Periodic 5/7 1/7
Databased St.atistical test 0/9 0/9
dotect Divergence 1/4 1/5
erector PCA-CD 1/2 1/2
ADWIN (CE) 1/3 3/6

ADWIN (PE) 0/5 0/5

DDM 0/5 0/2
EDDM 0/6 0/6
Error-based HDDM-A 0/19 0/4
detector HDDM-W 0/1 0/17
KSWIN (CE) 0/7 2/5
KSWIN (PE) 0/4 2 /4
Page-Hinkley (CE) | 0 /1 0/2

Page-Hinkley (PE) | 0/ 1 0/1
Predictive-based Uncertainty 0/3 0/5
detector Aries ADWIN 1/5 1/3
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Table 10.25: Evaluation of the Pareto-front of different schedules on Electricity B
dataset. For each schedule, we report the number of parameter settings (A) / (B).
(A) are the settings on the efficiency /effectiveness Pareto front across all methods.
(B) are the settings on the Pareto front local to the method.

Delay

51 =1 day

Type Schedule No 5y = 9 days
. No detection 1/1 1/1
Bascline Periodic 1/7 1/7
Databased St.atistical test 2/9 6/7
detector Divergence 1/4 0/5
erecto PCA-CD 0/0 0/0
ADWIN (CE) 0/ 10 3/4

ADWIN (PE) 0/4 3/4

DDM 1/3 0/3
EDDM 0/4 0/4
Error-based HDDM-A 0/23 T/7
detector HDDM-W 1/2 0/2
KSWIN (CE) 0/5 3/5

KSWIN (PE) 0/9 1/2

Page-Hinkley (CE) | 0/ 2 0/2

Page-Hinkley (PE) | 1/ 1 0/1
Predictive-based Uncertainty 1/4 4/ 4
detector Aries ADWIN 1/4 1/3
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Table 10.26: Parameters on the Pareto front with delay d4 that remains on the
Pareto front for delays d4/2 and 26, on LCLD dataset.

Delay
Type Detector da/2  ba

No detection

Baseline ..
Periodic

Statistical test

Divergence
PCA-CD

ADWIN (CE)
ADWIN (PE)
DDM
EDDM
Error-based HDDM-A
detector HDDM-W
KSWIN (CE)
KSWIN (PE)
Page-Hinkley (CE)
Page-Hinkley (PE)

Data-based
detector

Predictive-based Uncertainty

detector Aries ADWIN
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Table 10.27: Parameters on the Pareto front with delay ¢4 that remains on the
Pareto front for delays d4/2 and 26,4 on Electricity B dataset.

Delay
Type Detector da/2  Oq4

No detection

Baseline ..
Periodic

Statistical test

Divergence
PCA-CD

ADWIN (CE)
ADWIN (PE)
DDM
EDDM
Error-based HDDM-A
detector HDDM-W
KSWIN (CE)
KSWIN (PE)
Page-Hinkley (CE)
Page-Hinkley (PE)

Data-based
detector

Predictive-based Uncertainty

detector Aries ADWIN
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