
PhD-FSTM-2024-062

The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 04/10/2024 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

FLAVIENE SCHEIDT DE CRISTO
Born on 22 November 1991 in Curitiba, Brazil

IMPROVING SCALABILITY AND

OPTIMIZING MESSAGE DISSEMINATION ON

THE XRP LEDGER

Dissertation defence committee

Dr Radu State, dissertation supervisor
Professor, Université du Luxembourg, Luxembourg

Dr Jacques Klein, Chairman
Professor, Université du Luxembourg

Dr. Eduardo Cunha de Almeida, Vice Chairman
Associate Professor, Universidade Federal do Paraná

Dr. Mats Brorsson
Research Scientist, Université du Luxembourg

Dr. Omar Cherkaoui
Associate Professor, Université du Québec à Montréal

”Knowing was a barrier which prevented learning.”

Frank Herbert in Children of Dune

Abstract

Blockchains have become crucial in numerous fields, notably within financial applications.

The advent of Bitcoin coincided with the emergence of a global economy highly dependent

on digital transactions, stimulating the development of numerous blockchains that aim to ad-

dress different challenges. The XRP Ledger (XRPL) is an example of a blockchain designed

to address cross-currency payments. Unlike its counterparts, the XRPL does not employ

resource-intensive consensus mechanisms such as Proof of Work (PoW), employing in-

stead a Federated Byzantine Agreement consensus protocol, in which subnets of validators

vote to determine the next version of the ledger.

The XRPL network allows any node to act as a validator, but its consensus mechanism

relies on a trusted group of validators called the Unique Nodes List(UNL). In its current im-

plementation, the XRPL relies on a single UNL, curated by the XRP Ledger Foundation

(XRPLF). The dependence on this centrally managed UNL raises issues regarding authority

distribution and network scalability. Although the XRPL is decentralized in terms of com-

munication, it does not feature dynamic trust overlay rearrangement, resulting in limited

authority dispersion and possible performance problems as the network grows.

This thesis investigates ways to enhance the dispersion of authority and node-wise scal-

ability of the XRPL. First, we explore a tool that has the potential of diversifying UNLs to

achieve higher trust autonomy, we then propose the use of pubsub dissemination to reduce

message overhead and improve scalability. The research also addresses key questions on

the impact of pubsub mechanisms on the performance of the XRPL, aiming to provide insight

into tuning parameters for optimal network efficiency. The ultimate goal is to determine how

pubsub dissemination can enhance the scalability and performance of blockchains using

FBA consensus, specifically within the context of the XRPL.

3

Acknowledgements

Throughout this journey, I was fortunate to meet and collaborate with many people who not

only provided assistance and support, but also honored me by sharing their knowledge.

I start by thanking Radu State, my supervisor, for the opportunities and guidance. Jorge

Augusto Meira, for building the bridge that allowed me to be here and for all the work we did

together. Also, thanks to my other coauthors, Jean-Philippe Eisenbarth, Lucian Trestioreanu,

Wazen Shbair, and Arno Geimer for all we shared.

I am also immensely grateful for the UBRI sponsorship, without which I would not be

able to gather so much knowledge around the world. Special thanks to Lauren Weymouth,

Director of this amazing program, who always received us and our ideas with enthusiasm.

Still from Ripple, I would like to thank Marco Neri for the fruitful discussions about the ledger

decentralization and Aanchal Malhotra for all the guidance.

I also would like to thank XRPL Commons, especially David Bchiri, Mathilde Morineaux,

Cassie Hirsh, Zsofi Borsi, and Vera Radeva for all the efforts to build a global XRPL commu-

nity and the doors they opened for me.

To the members of the CET, Eduardo Almeida and Mats Brorsson for their time and

guidance, and the other members of the jury, Jacques Klein and Omar Cherkaoui, for their

valuable time and effort.

I am also grateful to my colleagues at the SEDAN group, former and current, starting with

Farouk and Lujun for the crazy brainstorming conversations. But also to Christof, Antonio,

Lama, Nino, Patricia, Oceane, Andres, Robert, Ramiro, Mary, Sean, Ilias, Grabriel, Jeovane,

Tatiana, Bahareh, Beltran, Francisco, and Kyo. Also, a very special thanks to Valerie, for

being there to help all the times (and there were many) I had bad luck during my trips and

Jessica Giro for the prompt responses whenever I needed some help.

Special thanks to my friends Ricardo, Alexandre, Eveline, Raquel, Tom, and Doro. Also,

4

a thank you to my dance squad for making the studio my safe place, especially Sarah,

Coralie, Steh, Carolina, the other Carolina, and Moni.

And finally, to Carolina and Monica for the professional psychological help, Francesco

for the patience and for not letting me quit, and my family for the emotional and financial

support. I cannot express how important you all were during this voyage.

5

Index

Introduction 1

1 Background 11

1.1 The XRP Ledger . 11

1.1.1 The XRP Ledger in the Literature . 13

1.1.2 The XRP Ledger Consensus Protocol 16

1.1.3 The Trust Overlay . 20

1.1.4 Unique Nodes Lists . 20

1.1.5 UNL Overlap . 21

1.1.6 The XRPL Main Network . 22

1.2 GossipSub . 23

1.2.1 GossipSub in the Literature . 24

1.2.2 GossipSub Mesh Structure . 26

I Increasing Scalability on the XRP Ledger 30

2 Building and Maintaining UNLs 31

2.1 Introduction . 31

2.2 Proposal . 32

2.2.1 Properties . 32

2.2.2 Architecture . 34

2.3 Membership . 35

2.3.1 Token-Curated Registries . 35

2.3.2 UNL Membership . 36

6

2.4 Classification . 38

2.5 Grouping . 40

2.5.1 Mathematical Model . 41

2.6 Experimental Evaluation . 42

2.7 Discussion . 43

3 Measuring and Improving Message Overhead on the XRP Ledger 45

3.1 Flexi-Pipe . 46

3.1.1 Architecture . 46

3.2 Testbed . 48

3.3 Measuring Message Overhead . 49

4 PubSub Dissemination on the XRP Ledger 52

4.1 Introduction . 52

4.2 Proposal . 53

4.3 Methodology . 55

4.4 Evaluation . 56

4.5 Discussion . 59

II Tunning GossipSub Parameters for Increased Scalability and Perfor-

mance 60

5 Dimensional Analysis of GossipSub over The XRP Ledger 61

5.1 Introduction . 61

5.2 Methodology . 62

5.2.1 Data science methodology . 64

5.3 Evaluation . 66

5.3.1 Impact on the Consensus . 66

5.3.2 The Dimensions . 66

5.3.3 The Clusters . 68

7

5.3.4 Decision Tree . 71

5.4 Discussion . 72

6 Causal Analysis for GossipSub Configuration 74

6.1 Introduction . 74

6.2 Limitations . 75

6.3 Related Work . 75

6.4 Steps for the Causal Analysis . 77

6.5 Methodology . 78

6.6 Observational Analysis . 81

6.7 Interventional Analysis . 82

6.7.1 Refuting Causal Graphs . 85

6.7.2 Performance Evaluation of the Graphical Causal Models 88

6.7.3 Selecting a Graphical Causal Model 89

6.8 Counterfactual Analysis . 90

6.8.1 Simulated Interventions . 92

6.9 Evaluation . 96

6.10 Discussion & Future Perspectives . 96

Discussion and Future Perspectives 98

Main Publications 103

Publications as 2nd Author 104

Non Related Publications 105

References 106

8

List of Figures

1 Simplified schematics of a Blockchain. Each block contains a hash of itself, a

hash from the previous block, a timestamp, and transactions 2

2 Simplified schematics of the thesis structures, with the main issues linked to

the causes and the related questions answered 8

1.1 Timeline with the main works and technologies related to the XRPL 14

1.2 Simplified State Machine for the XRP LCP with the three main phases 18

1.3 State Machine of the XRP LCP, demonstrating the internal states of each

phase with the respective transitions and its triggers 19

1.4 Representation of the UNLs in a network with 5 validators. Arrows represent

the directional trust relationship between two nodes. 21

1.5 Simplified timeline of academic works and technologies related to GossipSub 25

1.6 GossipSub mesh schematics. From the original GossipSub paper[46] 27

2.1 DAG proposed to represent the Unique Nodes List (UNL) space of the XRPL 32

2.2 NLAC Modules Architecture . 34

2.3 States machine of the membership assertion process 37

2.4 States machine of the classification process 39

3.1 Architecture of Flexi-Pipe showing the two overlays: rippled and dissemination 47

3.2 Frequency of duplicated messages on a testnet with 24 nodes fully connected

without enabling Squelching . 50

3.3 Frequency of duplicated messages on a testnet with 24 nodes fully connected

with Squelching enabled . 51

9

4.1 Diagram of the communication between two nodes using GossipSub plugged

through gRPC to disseminate validations. 56

4.2 Comparison of the frequency of replicated messages on vanilla rippled in a

fully connected structure and GossipSub using a 2-topics setup 57

4.3 Comparison of the frequency of replicated messages on vanilla rippled in a

16-degree structure and GossipSub using a 1-topic/validator and 1-topic/UNL

setups . 58

5.1 Step 1: Feature engineering; Step 2: Clustering; Step 3: Decision tree and

explainability . 64

5.2 Correlation between Bandwidth (in messages/second) and Message Overhead 67

5.3 Propagation time in milliseconds . 68

5.4 Number of messages received . 68

5.5 Number of graft events . 68

5.6 Number of Prune events . 68

5.7 Number of iwant messages . 68

5.8 Number of ihave messages . 68

5.9 Heatmap of the correlation between every two dimensions 69

5.10 Decision Tree . 72

6.1 The causation ladder . 77

6.2 Steps for the Causal Analysis . 79

6.3 Causal Graph generated with observational data and domain knowledge . . . 82

6.4 Structural Causal Graph generated by the GES algorithm 84

6.5 Falsification summary of the graph generated with observational data 87

6.6 Causal strength of parameters over metrics, with messageOverhead as target 90

6.7 Causal Influence of parameters over metrics 91

6.8 Causal strength of parameters over metrics, with messageReceived as target 91

6.9 Simulated results for messageOverhead when intervening on topicSize and

number of topics . 92

10

6.10 Simulated results for messageOverhead when intervening on D with 8 topics

of size 16 . 94

6.11 Simulated results for messageOverhead when intervening on D with 2 topics

of size 24 . 95

6.12 Causal strength of parameters over metrics, with messageOverhead as tar-

get. Generated using the simulated dataset 96

11

List of Tables

1.1 Top 10 Blockchains by Market Capital . 12

1.2 The XRPL Network in 2021[14] . 23

1.3 GossipSub Mesh Parameters . 28

2.1 Trust Optimization Evaluation . 43

3.1 UNL structures . 48

5.1 GossipSub Mesh Parameters with Default Values 63

5.2 Parameters testing ranges . 64

5.3 Clusters voting phase . 65

5.4 Clusters Sizes and Labels . 69

6.1 Structures of Topics . 80

6.2 gCastle Evaluation of Discovery Algorithms 86

6.3 Falsification Summary of Discovery Algorithms 87

6.4 DoWhy Evaluation of Causal Discovery Algorithms 88

6.5 Distribution Functions of the GCM variables 89

6.6 Default and Ethereum Configuration for GossipSub 93

12

Acronymns and Abbreviations

AC Agglomerative Clustering. 65

CRPS Continuous Ranked Probability Score. 88, 89

DAG Direct Acyclic Graph. 9, 32, 33, 35, 78, 83, 85, 90, 99

DHT Distributed Hash Table. 15, 52

FBA Federated Byzantine Agreement. 2, 7, 10–12, 15, 98, 100

FTP File Transfer Protocol. 76

GCM Graphical Causal Model. 78, 79, 85, 88, 90, 93, 101

GML Graph Modeling Language. 78

IPFS The Interplanetary File System. 6, 23, 53, 61

KM K-Means. 65

LMC Local Markov Condition. 85, 86, 88

NDN Named Data Networks. 46, 47

NLAC Nested, Layered, Autonomous, Continuous. 98, 99

nUNL Negative UNL. 3, 38

p2p peer-to-peer. 1, 3, 6, 10, 14, 23, 34, 52, 53, 61, 73

13

PoS Proof of Stake. 2, 4, 5, 11, 12

PoW Proof of Work. 1–5, 11, 12, 31

pubsub publisher/subscriber. 6, 7, 9, 10, 23, 24, 29, 46, 52–55, 59, 62, 98–100, 102

RPC Remote Procedure Call. 46

SCM Structural Causal Model. 78, 79, 82, 85, 87, 90, 92, 93, 101

TCP Transmission Control Protocol. 76

TCR Token-Curated Registry. 9, 32–35, 38, 44, 99

TPS transactions per second. 5, 12, 45

UNL Unique Nodes List. 3–7, 9, 11–13, 15, 16, 20–23, 29, 31–38, 40–44, 48–50, 54–56,

59, 62, 64, 75, 93, 97–99, 102

XRP LCP XRP Ledger Consensus Protocol. 2, 4–7, 9, 11, 12, 29, 32, 43, 44, 46, 48, 51,

53–55, 59, 62–64, 66, 73, 75, 97–99

XRPLF XRP Ledger Foundation. 3, 9, 12, 13, 21, 22, 31, 33, 36, 45, 98

14

Introduction

Blockchains have become prominent in the development of solutions in multiple domains,

predominantly in financial applications. Bitcoin[1] was introduced amid the rise of a more

global and connected economy, in which digital payments became more and more common.

Following the initial success of digital currencies, various blockchains started to appear, fo-

cusing on different sets of problems. The XRP Ledger (XRPL)[2] was a pioneer in this land-

scape, initially proposed to solve the issue of cross-currency payments in this fast growing

global environment.

Blockchains are decentralized systems in which groups of machines collaborate to vali-

date and record transactions in a permanent ledger structure. In this context, trust is given

to a collective of computers, instead of being in the hands of institutions or human actors[3].

The process through which nodes in the networks collaborate to validate transactions is

called consensus. The concept of consensus itself is not new to the domain of distributed

systems, especially in the area of peer-to-peer (p2p) networks. Bitcoin introduced the idea

of using Proof of Work (PoW)[4] to achieve consensus, ensuring the security and validity of

the transactions recorded in the ledger, even in an environment where any device can join

the network, thus establishing the concept of collective trust.

A ledger is a record of financial transactions performed by a set of accounts. A ledger

can be as simple as a book summarizing debits and credits, ending with the monetary bal-

ance of each account involved in the transactions recorded. Blockchains store their financial

transaction records in a permanent distributed ledger format. The data structure is said to

be permanent because no modification can be done in previous entries, similar to how an

append-only database works. The distributed nature comes from the fact that the record is

replicated and shared among the network participants. Bitcoin updates its ledger by gen-

erating blocks of transactions that are validated using PoW and added to a temporal chain;

1

thus, the name blockchain. Each new block carries a hash of the previous one, as shown

in Figure 1, ensuring that no prior block can be modified without spending the resources to

recalculate and revalidate all subsequent blocks.

Block n+1Block nBlock n-1

Hash n-2

Hash

Timestamp

Transactions

Hash n-1

Hash

Timestamp

Transactions

Hash n

Hash

Timestamp

Transactions

Figure 1: Simplified schematics of a Blockchain. Each block contains a hash of itself, a hash
from the previous block, a timestamp, and transactions

To validate new blocks of transactions, Bitcoin applies a consensus algorithm called

PoW, which is based on the idea of selecting a validator in each round who will decide the

next block to be added to the chain. This idea was carried over to other types of consensus

protocols, such as Proof of Stake (PoS)[5]. However, these strategies are expensive, either

in terms of computational or financial resources. In the case of PoS, the validator is chosen

from a list of stakers, while in PoW, the validator is chosen based on the amount of computing

power they possess.

The XRPL, in turn, uses an alternative consensus protocol based on Federated Byzan-

tine Agreement (FBA)[6]. Still carrying the idea of collective trust introduced by Bitcoin, the

XRP Ledger Consensus Protocol (XRP LCP) uses the federation between subnets to reach

consensus and validate the legitimacy of transactions. Rather than issuing new blocks dur-

ing each consensus round, the XRP LCP generates new versions of the ledger. Although

at first glance voting seems to be a more convoluted and slower process than selecting one

validator per pound, in reality, the XRPL shows a better throughput than its counterparts.

Being a public blockchain, in the XRPL any node can join the network and become a

validator, capable of casting votes and proposing new versions of the ledger. However, not

all validators have their positions considered during the consensus process. Each node ac-

2

knowledges solely the positions of a set of entrusted validators to cast its own votes, trusting

that this set will not collude to manipulate or break the ledger[7]; this set is called a Unique

Nodes List (UNL). Although every validator must denote their trust set by selecting a UNL,

certain overlap conditions between sets are necessary to avoid excessive disagreements

during the consensus process[8]. A higher overlap guarantees faster and safer convergence

to consensus, whereas a more relaxed overlap may cause delays and forks in the ledger.

To avoid such cases the XRP Ledger Foundation (XRPLF) advises all validators to use the

same UNL. This UNL is curated and maintained by the XRPLF and, while at first glance it

may seem to bring improvements in performance and safety, it also raises concerns about

how the authority is distributed in the XRPL network and how sustainable its growth is in

terms of new nodes joining the network.

On the subject of the distribution of authority, we can start by looking at the works of

Vergne et al.[9], which present a discussion on the concept of dispersion of authority by

breaking it into two definitions: decentralization and distribution. While decentralization is

defined as the dispersion of coordinated communications, distribution is characterized by the

diffusion of the decision-making process among stakeholders. Applying those definitions to

the proposed scenario, decentralization tells us how the network is structured and how the

communication between nodes occurs, while distribution is about who has the power to

make decisions.

The XRPL network is built upon an unstructured p2p system, duly considered decen-

tralized since there is no central authority coordinating the way information is exchanged

between participants. However, it does not have robust means to dynamically rearrange its

trust overlay. The trust overlay comprises all trust relationships present in the XRPL, defined

by the UNLs declared by all validators. The solution adopted in the event of a partial outage

is the Negative UNL (nUNL)[10], which places trusted validators that are believed to be mal-

functioning in a list of nodes that will be ignored during the consensus process. The nUNL

is designed to handle limited disruptions, and the addition and removal of nodes from the

nUNL still require manual intervention. This notion opposes what is commonly agreed on in

terms of decentralization, derived from the work of Baran[11], which points out the ability of a

3

network to delegate routing decisions under adverse conditions. The trust overlay lacks the

ability of self-arrangement, leaving the decision to reroute the trust in the hands of human

actors.

There are two instances in which the XRPL network presents low degrees of distribution;

first, in the manner that the trust overlay is currently structured in the XRPL network, hav-

ing a single UNL consisting of 35 nodes1. This structure has been proposed by Chase and

McBrough[8] to avoid stalls caused by excessive disagreement between the subset of valida-

tors. Those 35 nodes do not delegate decision-making and listen only to themselves. This

closed system allows non-UNL nodes solely to transmit transactions and to relay propos-

als and validations generated by trusted validators. The second instance is in the curation

of this main UNL, relying on a central authority to decide who are the trustable nodes and

how many of them are necessary to keep the network alive and safe while maintaining good

performance.

We can then argue that the trust overlay of the XRPL has a low dispersion and could

benefit from higher decentralization. In addition to the overlapping issue, these characteris-

tics also arise from the lack of appropriate tools and techniques that allow the automatic and

safe generation and maintenance of trusted validator lists. Such techniques would support

the implementation of a model closer to what is conceptually described in the XRP LCP

specifications[7], providing a higher authority dispersion in the consensus process.

In addition, the nodes in the XRPL do not have incentives to be part of the main UNL and

behave correctly. Unlike other consensus mechanisms, such as PoW and PoS[5], the XRPL

does not issue rewards for validating ledgers. The only incentive a node has to become a

validator is to help keep the network secure and the ledger progressing without forks. How-

ever, the requirements to become a trusted validator are expensive in terms of computational

resources[12][13]2. Therefore, even trusted nodes have no incentive to continue to behave

in the best interest of the ledger.

The distribution of authority is not the only concern raised about the current implementa-
1As of July 2024, according to https://livenet.xrpl.org/network/validators
2The required resources to run an XRPL validator are still less than the ones of a Bitcoin miner, but the lack

of benefits in running an XRPL validator turns the operation costly

4

https://livenet.xrpl.org/network/validators

tion of the XRPL network. As the adoption of the XRPL as a platform for financial solutions

grows, the number of participants in the network also tends to scale up. Scalability is a

crucial topic in blockchains, as increased adoption demands more resources to validate new

blocks or new ledger versions. The concept of scalability can be defined in two different

domains. First, we can think about the throughput; a blockchain needs to be able to scale

with regard to the number of transactions it can validate per second. We define a blockchain

as well-provisioned in terms of throughput when it is capable of handling an increase in

the number of arriving transactions[14]. For example, Ethereum is well-provisioned for a

throughput of 45 transactions per second (TPS). The second domain is the scalability with

respect to the number of nodes, in which a blockchain is said to be well provisioned if the

increase in the number of nodes in the network does not affect performance and safety.

Blockchains that employ consensus based on PoW and PoS usually deal well with node-

wise scalability, while they struggle to scale their throughput, resulting in transactions being

queued and delayed.

It is desirable for a blockchain to be scalable both node-wise and throughput-wise, so it

can guarantee healthy growth. The XRPL is not scalable node-wise, not because of its con-

sensus algorithm, but because of the way certain messages are disseminated. Validators

in the XRPL disseminate proposals and validations by flooding the network; i.e., a node will

send their proposals and validations to all the nodes it is connected; the same way, a node

will relay those messages to all of their peers. This mechanism guarantees that all nodes on

the network will receive proposals and validations in a fast way, which is necessary for the

consensus process, since delays and interruptions can cause excessive disagreement and

stall the progress of the ledger[15]. However, this technique can cause a paradoxical effect

as the number of nodes starts to grow.

In the XRP LCP, a node will only acknowledge proposals and validations from peers

present in its UNL. However, due to the use of flood publishing, each node will receive mes-

sages from all nodes on the network. Even a validator that is not trusted by any other node

will still have its messages broadcast, creating several ineffective replicas and increasing the

message overhead. A higher message overhead means that more resources will be needed

5

to propagate and validate messages.

The logical takeaway is that an increase in the number of nodes will increase the band-

width required to transmit messages, leading to higher latency, reducing performance, and

increasing the risk of stalling or forking the ledger. Now, considering how validators only

acknowledge the positions of peers they have in their UNLs, it is trivial to think that a so-

lution lies in transmitting messages in a more targeted fashion. However, in the present

implementation, the nodes do not know in which UNLs they are present (if they are).

To disseminate messages in a more targeted way, we can abstract the UNLs as pre-set

topics. Nodes that are part of a UNL publish messages on the respective topic, while nodes

that trust said UNL can subscribe to the topic to receive the messages. This model is called

a publisher/subscriber (pubsub) system and serves to decrease the number of replicated

messages transiting through the network, while guaranteeing that all nodes subscribed to a

topic will receive the published messages.

Looking from this pubsub perspective, we can then say that validators publish their pro-

posals and validations and the other validators subscribe to receive messages from the

peers they trust. The UNLs are the mechanisms through which the nodes subscribe to

receive proposals and validations from other nodes. With that in mind, we can explore

pubsub mechanisms for disseminating messages looking at reducing message overhead to

increase the node-wise scalability of the XRPL. In addition, we can research ways to tune

those mechanisms for the particular characteristics of the XRP LCP by identifying how the

configuration of the pubsub system can impact the general performance of the network.

However, the pubsub characteristics of XRP LCP are diminished by the current deploy-

ment of the main XRPL network (mainet). Returning to the problem of the distribution of

authority, the presence of a single UNL also diminishes the pubsub characteristics of the

XRP LCP, considering that in this case only one topic is present and every node in the net-

work is subscribed to this topic. In this case, pubsub dissemination can still be employed in

the network to reduce message overhead by abstracting message types as topics. Similar

to how other p2p systems, such as Ethereum[16], FileCoin[17] and The Interplanetary File

System (IPFS)[18] employ pubsub dissemination. However, the use of multiple UNLs is still

6

a more interesting scenario for exploring targeted message delivery.

In conclusion, the current implementation of the XRPL presents a low degree of author-

ity dispersion and low node-wise scalability. Both are intertwined and can affect the per-

formance, liveness, and safety of the ledger. The use of a single centralized UNL not only

leads to a clustering of authority in the hands of some players, but also aggravates the mes-

sage overhead issue and weakens the possibility of using strategies for targeted message

dissemination. Currently, new ledger versions are validated by a cluster of 35 nodes that

form a fully connected graph regarding the trust overlay. This structure reduces the pubsub

characteristics of the XRPL, which could be better explored to increase the scalability.

The research questions that drive this thesis are derived from the issues presented. First,

we ask (1) if it is possible to have a higher dispersion of authority by building and maintaining

more diversified UNLs, creating a space of trusted validators that is autonomous and auto-

matic. The diversification of UNLs helps us to also explore the pubsub characteristics of the

XRP LCP, and so we can ask (2) if the employment of a framework for message dissemina-

tion based on pubsub can decrease the message overhead and thus increase the scalability

of the network.

Having explored these two questions, we proceed to ask (3) how can we exploit pubsub

mechanisms for better performance using the XRPL as a foundational layer. In other words,

we seek to analyze a pubsub-based dissemination framework and understand how we can

tune it to better suit the characteristics of the XRPL. For that, we ask the question of (4)

which are the parameters we can tune to better performance and how are they related

to performance metrics. Knowing which are the parameters, we can ask (5) how those

parameters impact the performance of the network considering the concrete case of the

XRPL.

Finally, we consider all those inquiries presented to derive the main question that this

thesis seeks to answer: How can pubsub dissemination increase the scalability and perfor-

mance of blockchains based on FBA consensus? Figure 2 shows a simplified diagram of

how each question relates to the issues and causes cited, also pointing out which chapters

discuss and answer the research questions presented, culminating in the main question,

7

which the answer is better discussed in the last chapter, Discussion and Future Perspec-

tives.

Questions

Causes

Main
Issues Scalability Performance

Message
Overhead

Dispersion of
Authority

Single UNLManual
curation

Helps answering
Question 1

Reduces pubsub characteristics

Question 2

Question 3

Helps answering
Question 4 Question 5

Main
Question

Chapter 5 Chapter 6

PubSub
Dissemination

Chapter 2

NLAC

Chapter 4

GossipSub

Chapter 3

Flexi-PipeAnalysis Causal Analysis

Discussion

Authority
Dispersion

Parameters

Figure 2: Simplified schematics of the thesis structures, with the main issues linked to the
causes and the related questions answered

8

The structure of this thesis comprises three parts. First, we present the broad panorama

of the main technologies we are tackling, starting with the XRPL and then GossipSub. The

second part comprises the enhancements on message dissemination, made by means of

enhancing the pubsub characteristics of the XRPL. Finally, the third part analyzes how the

parameterization of the GossipSub mesh can impact performance and scalability, suggest-

ing methods to better configure the GossipSub parameters for optimal functioning of the

mesh.

We start the second part by answering question 1 in Chapter 2, proposing a novel frame-

work to automatically create and maintain the XRPL trust overlay, employing mechanisms

such as Token-Curated Registries (TCRs) and mathematical optimization to create a Direct

Acyclic Graph (DAG) to represent the entire space of UNLs in the XRPL. We call our solution

NLAC, meaning that it is nested, layered, autonomous, and continuous, and show how it can

be used to create UNLs while maximizing the total trust of the system.

After proposing a method to enhance the pubsub characteristics of the XRPL, in Chap-

ter 3 we present a quantitative analysis of the problem of excessive message overhead

caused by flood publishing. To study the problem and propose solutions, we introduce a

tool called Flexi-pipe. Flexi-pipe creates an overlay on an XRPL testnet in which we kidnap

different types of message to study their behavior. This overlay also gives us the possibility

to plug different types of message dissemination into the XRPL testnet without the need to

modify the validator code, giving us flexibility in integrating and analyzing different message

propagation mechanisms. We also look at a solution previously proposed by the XRPLF to

diminish the message overhead.

After better introducing the problem and the tool used throughout this work, and having

proposed a solution to enhance the pubsub characteristics of the XRP LCP, in Chapter 4

we address question 2 by integrating GossipSub into XRPL. We show that even without

considering the strong pubsub characteristics of the XRPL, GossipSub can still diminish

message overhead, using structures of topics similar to Ethereum and FileCoin, but also

using the structure of UNLs created by NLAC, and structuring the topics in a more naive

way, by abstracting every validator as a topic.

9

Going beyond just the use of GossipSub as a dissemination technique in the XRPL, in

Chapter 5 we go further into the mechanism, analyzing its characteristics with the aim of

better integration, enhancing not only scalability, but also performance to able to answer

questions 3 and 4. In this chapter, we dive into the GossipSub parameters using data

science techniques to study the correlation between parameterization and some metrics of

performance, such as average propagation time, bandwidth used, and message overhead.

The aim of this analysis is to better understand how we can better utilize the GossipSub

parameterization to enhance the XRPL performance and scalability and, as a by-product, to

present a methodology to tune GossipSub for use in different unstructured p2p systems.

After analyzing and understanding which GossipSub parameters are related to perfor-

mance metrics, in Chapter 6 we go a step further to understand the causal mechanisms that

exist between these dimensions, tackling questions 3 and 5. We start by employing causal

discovery algorithms and the domain knowledge on GossipSub and the XRPL acquired in

the previous chapters to model causal graphical models presenting the causal relationships

between the GossipSub mesh parameters and message overhead. Having created a model

that identifies causal relationships, we then quantified the causal influences of parameters

on the target scalability metric and then simulated interventions in the causal model. The

causal analysis helps us better understand how the modification of a parameter can impact

the overall behavior of the system and helps us to study the system in possible scenarios

that cannot or are hard to observe in real-life, providing us with the knowledge to better

adapt the mesh parameters of GossipSub for different types of system. However, in gen-

eral, it gives us the knowledge to exploit pubsub dissemination to achieve optimal message

overhead on the XRPL, increasing its overall performance and scalability.

Finally, in the last chapter, we present a summary of the discoveries made throughout

the thesis. This final chapter brings together all the answers and insights gained by tackling

questions 1 to 5 to answer the main question proposed: How can pubsub dissemination

increase the scalability and performance of blockchains based on FBA consensus?

10

Chapter 1

Background

1.1 The XRP Ledger

The foundation layer for the trustable functioning of the XRPL is the consensus; a process in

which a subset of nodes participating in the network must agree upon a set of transactions

that will form the next ledger version. We can formally describe it as ”the state in which the

nodes in a network reach the correct agreement”[2]. The concept is not only important in

the context of a blockchain, but is also a topic of discussion on the matter of p2p networks

in general, with a wide range of proposed solutions, such as Paxos[19], W-MSR[20] and

PBFT[21]. However, traditional consensus algorithms do not usually consider permission-

less environments, leading to the need to create new mechanisms or adapt existing ones.

When analyzing the top 10 crypto tokens in terms of market capital1 in Table 1.1 we

can observe that most of them uses either Proof of Work (PoW)[4] or variations of Proof of

Stake (PoS)[5]. We then encounter an unusual element in the ranking, the XRPL, using a

Federated Byzantine Agreement (FBA) type of consensus. FBA means that the XRPL does

not select a unique validator per round; instead, it uses quorum-based voting to deliberate

on the next version of the ledger. In this context, any node on the network can proclaim itself

a validator, but not every node is included in the voting process.

The XRP Ledger Consensus Protocol (XRP LCP) uses quorums of trusted subnets to

authenticate the ledger. In this context, a validator node must declare a Unique Nodes List
1Generated over the coin ranking by market capital on 12/February/2024 available at https://cryptoslate.

com/coins/, excluding stablecoins and non-native tokens

11

https://cryptoslate.com/coins/
https://cryptoslate.com/coins/

(UNL), comprising a list of peers trusted not to collude to defraud the ledger. Although every

node has the power to choose its own trusted list, in reality, some scenarios may cause the

ledger to fork or stall[7] and a minimum overlap between two or more lists is necessary to

ensure safety and liveness of the network. By safety, we mean that nothing bad will happen,

while liveness ensures that something good will eventually happen[7].

Table 1.1: Top 10 Blockchains by Market Capital

Token Market Capital Consensus Type
Bitcoin BTC $939.82B PoW
Ethereum ETH $298.71B PoS
BinanceChain BNB $47.41B PoS
Solana SOL $45.52B dPoS
XRPL XRP $28.21B FBA
Cardano ADA $18.92B PoS
Avalanche AVAX $14.17B PoS
Dogecoin DOGE $11.414B PoW
TRON TRX $11.02B dPoS
Polkadot DOT $8.96B dPoS

At first glance, the strategy adopted by the XRP LCP does not seem to provide many

improvements in transaction speed since it relies on quorum voting. However, the reality

is that it presents advantages over schemes such as PoW and PoS in terms of transaction

speed and resources consumption. On average, XRPL publishes a new version of the ledger

every 3 seconds, handling 27 transactions per second (TPS)[22], with a reported capacity

of 1.5k TPS[23]. Whereas Bitcoin generates new blocks every 10 minutes with a maximum

throughput of 7 TPS[24]. As for Ethereum after the migration to PoS, the average block time

is 12 seconds with 11 TPS[25], being the maximum throughput reported to be between 15

and 45 TPS[26].

However, the XRP LCP is not without flaws. There is an ongoing discussion on how to

structure UNLs in ways that can prevent forking or stalling. This problem led to the XRP

Ledger Foundation (XRPLF) to advise the use of a single UNL, curated and maintained by

the entity. The next big issue is a direct product of that, putting in question how decentralized

12

and distributed the XRPL is in reality. In addition, the XRPL also suffers from a problem

endemic to blockchains; The use of flooding to broadcast messages and blocks leads to

an increase in message overhead, directly impacting the required bandwidth. This problem

not only refers to performance and scalability, but can also be a safety issue for the entire

system. The next section discusses some related works that present and attempt to find

solutions to these and other challenges present on the XRPL.

1.1.1 The XRP Ledger in the Literature

Several works analyze and discuss the characteristics of the XRP LCP, as can be seen in

the timeline presented on Figure 1.1. Schwartz et al.[2] present the first official whitepaper

describing the XRP LCP algorithm. This work is considered outdated by the XRPLF[27],

which recommends Chase and McBrough[8] as the official whitepaper, better formalizing

the algorithm and presenting a deeper analysis of safety and liveness, inferring that at least

90% of agreement between the validators is needed to ensure network safety. The authors

conclude that, in general, even a minor disagreement may cause the ledger to stop mak-

ing forward progress. However, the analysis takes into account any two overlapping UNLs,

which leaves open the question of the minimum overlap required when considering a more

complex scenario with more than two UNLs of varying sizes. The authors also suggest

that the underlying message dissemination pattern may have the potential to leverage some

safety concerns. McBorugh also proposed later Cobalt[28], a novel atomic broadcast al-

gorithm. Unlike our work, Cobalt requires changes in the consensus fabric, whereas our

proposal changes only the way messages are broadcast during two specific states of the

consensus process.

Subsequent works by Armknecht et al.[29], Mauri et al.[15] and Amores-Sesar et al.[7]

walk in the direction of more formal descriptions and bring new cases that may cause the net-

work to break or stop making forward progress, violating safety and liveness. Christodolou[30]

brings a different approach to the UNL overlapping problem, with an empirical approach,

showing that the minimum UNL overlap can be relaxed when there are less than 20% of

malicious nodes present. The work suggests space for optimizations on the minimum UNL

13

overlap, also suggesting the necessity of a malicious node estimator.

Other works dive into different kinds of analysis of the XRPL and its validators. Tumas et

al.[31] show a study of the topology of the underlying peer-to-peer (p2p) network that pow-

XRPL AnalysisConsensus XRPL UNL
Overlap

XRPL
Improvements

2005

2010

2015

2020

2008
Bitcoin[1]

2012
XRPL[126]

2015
Stellar[6]

2018
Cobalt[28]

1990 1992
PoW[4]

2013
PoS[5]

2022
ETH 2.0[81]

2014
Schwartz et al.[2]
2015
Armknecht et al.[29]

2018
Chase & MacBrough[8]

2020
Mauri et al.[15]
Amores-Sesar et al.[7]
Christodoulou et al.[30]

2020
Roma et al.[34]
Roelvink et al.[36]

2021
Aoyama[33]

2023
Tumas et al.[31,32]
van Meerten et al.[35]

2020
SISSLE[38]

2022
Ripple+[37]
Pemcast[39]

1998
Paxos[19]
1999
PBFT[21]

Figure 1.1: Timeline with the main works and technologies related to the XRPL

14

ers the XRPL, showing that there are some vulnerabilities still to be addressed. Later, the

author also presents an analysis of the robustness of the FBA Protocol applied to the XRP

LCP, introducing a new robustness metric and a mitigation strategy based on inbound and

outbound connections between validators[32]. Aoyama[33] applies Flow Index to analyze

the XRPL network from the point of view of the data flow of transactions on the ledger. In

terms of the operation of single validators, Roma et al.[34] present an analysis of the en-

ergy consumption of the XRPL validators. On the other hand, van Meerten et al.[35] and

Roelvink et al.[36], focus on validating the implementation of the rippled software using both

log-inference and evolutionary approach for concurrency tests.

The works presented until now mainly address the problem of ensuring liveness and

safety. There are two main studies that aim to provide the XRPL with more flexibility and

decentralization targeting the UNL structure, targeting methods to relax the minimum over-

lap required. Ripple+[37] provides a mechanism for selecting UNLs based on a structure

of core and leaf nodes, also proposing changes in the consensus process by allowing for

weak synchronicity between nodes. On the other hand, SISSLE[38] addresses the problem

by suggesting the use of Distributed Hash Tables (DHTs) to build UNLs, also presenting

a study of the overlap problem as a function of information propagation and node reputa-

tion. However, both works suggest considerable modifications to the core of the consensus

algorithm. In this work, we also address the UNL construction and maintenance, using a

structure similar to Ripple+, but employing self-curated mechanisms to guarantee dispersion

of authority, looking to keep core structures intact, providing tools for the XRPL to become

more scalable and decentralized.

In this work, we also tackle the issue of mitigating the message overhead on the XRPL.

To our knowledge, only one other work tries to solve this issue. Pemcast[39] uses probabilis-

tic multicast routing to mitigate the number of duplicate messages that transit the network.

However, the work does not consider important characteristics of the XRP LCP, and does

not guarantee a 100% delivery rate for broadcast messages.

15

1.1.2 The XRP Ledger Consensus Protocol

The XRP LCP uses a federated consensus process in which nodes vote to reach consensus,

working with the idea of subjective validators instead of relying on established models for

Byzantine Agreement and Byzantine fault-tolerance[7], meaning that each participant takes

into account the position of its trusted peers to cast its votes.

To better understand the proper functioning of the XRP LCP, we need to take into account

the following concepts:

• rippled: Official C++ implementation of the XRPL validator2.

• Unique Nodes List (UNL): Static list containing the validators that a node trusts will

not collude. A validator trusts its UNL collectively, and not each validator separately.

• Node: A participant in the network. A machine that runs the rippled code as a server.

Nodes can play different roles in the XRPL, in this work, we consider only one role:

validator.

– Validator: A node that votes. In the literature, a validator can also be called a

Proposer [2].

– Peer: A node to which a given node is connected, at any overlay level. For the

XRP LCP we consider a peer to be any validator contained in the UNL of a given

node.

• Ledger: The record of all transactions on the network[2]. Formally, for the XRP LCP,

the ledger also represents the shared distributed state[40].

– Last-closed Ledger or Previous Ledger: The last shared state recorded locally.

– Preferred ledger: The last closed ledger agreed upon network-wise. While the

previous ledger refers to the last state recorded locally by a node, the preferred

ledger denotes the actual shared state.
2Available at https://github.com/XRPLF/rippled

16

https://github.com/XRPLF/rippled

– Open Ledger: The ledger a given node is working upon on a given consensus

round. None of the transactions contained in this ledger are final, as they did not

pass through the consensus mechanism entirely.

• Message: Any message sent or received by a node.

– Transaction: Any message that may cause a change in the shared state. For-

mally, a transaction is any instruction that causes changes in the ledger, such as

payments, bidding, checks, and escrows.

– Proposal: A proposal is a set of transactions that a given node proposes to apply

to the open ledger.

– Validation: The final set of transactions reached by a node after multiple consen-

sus rounds.

• Position: The current proposal of a given node. In other words, the belief a given

node has of which transactions should or should not be applied to the ledger.

– Vote: The position of a node in a given transaction.

– Dispute: A transaction that is present in the position of a node but not in the

position of one or more of its peers - or vice versa.

• Consensus round: A consensus round comprises a full cycle of the state machine

presented on Figure 1.2, from the open phase until reaching the closed phase.

– Proposal round: An internal cycle of the distributed states machine, comprising

the establish phase of the protocol. This is the phase in which ledger proposals

are exchanged.

The Distributed States Machine

The XRP LCP works as a synchronous state machine. Transactions, however, are sent

and received asynchronously and stored in a buffer until a new consensus round begins.

17

Figure 1.2 shows a simplified view of each phase, while Figure 1.3 shows a more detailed

picture, with its internal states and transitions considering only the states related to voting

and ledger creation, abstracting all the states related to synchronization and ledger closing

times, as those are beyond the scope of this work.

Open Establish Accept

Figure 1.2: Simplified State Machine for the XRP LCP with the three main phases

The open phase is a period in which the new open ledger is created and the first position

is generated. The node keeps adding transactions received during this time to a buffer. As

soon as the time reaches half of the time spent on the previous consensus round, the ledger

is closed locally and a proposal is formed.

The protocol then enters the establish phase incorporating a new component: the thresh-

old. Given a dispute, the threshold is the minimum number of positions in which the disputed

transaction must be present, so the node will cast a “yay” vote. The threshold changes dur-

ing each establish round, starting at 50% and increasing until it reaches 80%.

During the establish phase, the proposal formed previously is transmitted to the entire

network through flooding. At the same time, the node receives proposals from its peers;

if there is a dispute and the threshold is lower than 80%, the validator starts to update its

position by creating a new proposal. If the total time elapsed during the establish phase is

lower than the time of the previous consensus round the node initiates a new proposal; if

not, it closes the ledger and moves on to the next phase. First, the threshold is recalculated

on the basis of the time left, and then the voting starts: For each transaction in the disputed

set, the node will consider the position of each of its peers. If the percentage of peers that

contain the dispute on its position (yay vote) is higher than the threshold, then the node adds

the transaction to its proposal; if it is lower, the disputed transaction is ignored.

With the new proposal formed, the ledger is closed locally; If the threshold reaches 80%

18

PreviousLedger !=
PreferredLedger Ledger

Check OpenLostSync

PreviousLedger =
PreferredLedger

Close
Locally

TimeOpen =
(TimePrevious/2)+1
&& Buffer not empty

Proposal
Transmission
& Reception

New
Proposal

∃ Dispute
&& Threshold < 80%

EstablishDuration <
PreviousDuration

Add
Yay Votes >=

Threshold
Change

Threshold

Close ledger
Broadcast
Validation

Threshold = 80%

Execute

Open

Establish

Accept

EstablishDuration >= PreviousDuration

Figure 1.3: State Machine of the XRP LCP, demonstrating the internal states of each phase
with the respective transitions and its triggers

or there is no dispute, the accept phase starts by transforming the proposal into a validation,

then exchanging the validation by flood publishing. The nodes must now agree on which

validation to apply. Taking into account a given node, if 80% of its peers have the same final

position, the node applies the transactions contained in the validation to the ledger; if there

is less than 80%, it means that the node is out of sync and must start the syncing process

again.

19

1.1.3 The Trust Overlay

The idea behind the XRP LCP is that “a little trust goes a long way”[41]. This notion led

to the creation of the concept of collectively trusted lists. Shifting the trust to these sets of

validators, instead of trusting a unique or a set of participants selected based on a predefined

criterion3, means that the XRP LCP needs a tightly connected trust overlay to avoid forks,

stalls, and possible malicious manipulation of the ledger.

We call trust overlay the entire space of trust relationships between nodes established

by the declared UNLs. Certain overlap conditions must be met between trusted sets to guar-

antee the liveness, safety, and performance of the ledger. With a loosely connected trust

overlay, validators would take longer to agree on a final ledger version due to clustering and

the difficulty of transactions reaching distant nodes. A highly connected network, however,

has the disadvantage of high message overhead, increasing latency, and, as a result, land-

ing on the same problem of increasing the time needed to agree on closing a ledger or even

increasing the possibility of a stall or fork[42].

1.1.4 Unique Nodes Lists

The XRPL uses quorum-based voting to deliberate on the next version of the ledger. In

this context, any node on the network can proclaim itself a validator, but not every node is

included in the voting process. Each validator has a list of trusted peers, the UNL[2], which

means that the vote of a validator is only taken into consideration if it is present in a UNL.

Consider Figure 1.4, where we have the representation of a network with five validators: A,

B, C, D and F. Let UA be the UNL of node A, so UA = {C,D, F}, which means that the

validator A trusts the votes of the nodes C, D and F. Following the example, UB = {A,F},

UC = {A,D,F}, UD = {A,C} and UF = {A,C,D}.

Let us take a look inside the validator A, presenting the same process described in

Section 1.1.2 from the point of view of the trust overlay. A receives transactions from different

sources asynchronously and stores them in a buffer. At the start of a new consensus round,
3Computational proof in PoW and random selection on PoS

20

A

F

D C

B

A

F

D C

B

A

F

D C

B

A

F

D C

B

A

F

D C

B

Figure 1.4: Representation of the UNLs in a network with 5 validators. Arrows represent the
directional trust relationship between two nodes.

A forms its first proposal, which is transmitted to the network at the same time that A receives

proposals from all other nodes. A then compares its own proposal to the ones received from

C, D and F. If a discrepancy is encountered, a dispute is formed. For each dispute, A

will count the number of trusted validators that included that transaction in their proposals

if it is present in more than 50%, A will include the transaction in its new proposal. After

forming a new proposal, it is transmitted to the network and the process repeats, increasing

the inclusion threshold at each interaction until no dispute is found or the threshold reaches

80%.

In the scenario presented, all validators cast their votes by generating proposals and

adjusting them according to the positions of their trusted peers. A well-trusted node, such

as A has more influence on the network than nodes not so trusted, such as C and D. As

for B, the node is casting its votes the same as the others; however, it does not actually

participate in the consensus process, since it does not belong to any UNL; that is, it is not

trusted by any of the other nodes and therefore does not have a voice in the voting process.

1.1.5 UNL Overlap

We presented the trust overlay and briefly discussed the density of trust connections within

this layer, then showing how these relationships are defined and their impact on the con-

sensus process. Taking into account that, the density is given by the intersections that exist

between all UNLs declared in the network. The minimum overlap required is still an open

question, and the current solution is to employ a unique UNL curated by the XRPLF.

As shown in Section 1.1.1, four primary works address the issue of the minimum inter-

21

section area between UNLs required to ensure safety and liveness. The first whitepaper

published[2] presented the following formulation for the minimum overlap required (wi,j) be-

tween two UNLs i and j:

|UNLi ∩ UNLj | ≥ wi,jmax(|UNLi|, |UNLj |)∀i, j

This work concludes wi,j >= 0.2, which means that the overlap should be greater than

20% of the size of the largest UNL, assuming 0.2 ∗ ntotal to be the minimum UNL size,

being ntotal the total number of nodes participating in the network. Later, an independent

analysis by Armknecht et al.[29] showed that the 20% overlap may not be sufficient to reach

consensus, increasing the minimum required overlap to 40%.

The current whitepaper[8] was released in 2018, stating that the intersection area be-

tween two UNLs should be superior to 90%, also pointing out a specific case where even

with a 99% overlap, the ledger progress could stall. This work was the first to propose

the use of a single UNL. Another independent analysis by Christodoulou et al.[30] tackles

the UNL overlapping problem using an empirical approach, showing that the minimum UNL

overlap can be relaxed when there are fewer than 20% malicious nodes present. This work

suggests space for optimizations on the minimum UNL overlap, also suggesting the need

for a malicious node estimator to relax the overlap.

1.1.6 The XRPL Main Network

Based on the studies presented, the XRPLF curates and maintains a main UNL, advising

all participants to trust this list. Given these guidelines, as of July 2024, these main UNL

contained 35 validators. Considering that all validators trust the same UNL, the center of the

XRPL comprises a complete graph of 35 nodes that use flooding to disseminate proposals

and validations. The centralized structure grows with the increase in the adoption of the

XRPL, leading to latency issues. These issues may cause the validators to act at fault and

increase the possibility of a stall on the ledger progress.

Trestioreanu et al.[14] shows a picture of how the underlying network that powers the

22

Table 1.2: The XRPL Network in 2021[14]

Nodes Validators UNL Size Avg distance Avg Degree Diameter
892 152 35 2.37 20.62 5

XRPL was structured in 2021, Table 1.2 summarizes these numbers. Furthermore, this work

points out one of the main issues caused by the use of flooding, concluding that the present

implementation of the XRPL suffers from a lack of node-wise scalability. The 152 nodes that

declare themselves validators flood the network with their proposals and validation in each

consensus round, with the proposals being broadcast several times per round, as explained

in Section 1.1.2. As the network grows, the problem may become more prominent, as it has

already been identified on other blockchains, such as Bitcoin[43]. The next section presents

the state-of-the-art in message dissemination on blockchains as a possible solution.

1.2 GossipSub

GossipSub is a modern communication system within blockchains, serving as a more effi-

cient alternative to the less optimal flooding method observed in earlier blockchains. While

flood publishing ensures reliable message delivery in unstructured p2p networks, it also

leads to redundancy and delays[44]. GossipSub addresses this challenge by introducing a

solution rooted in publisher/subscriber (pubsub) systems. These systems consist of pub-

lishers and subscribers, where subscribers express interest in specific topics and publishers

share related messages, called events; the act of expressing interest in a topic is called

subscription[45].

However, implementing pubsub systems in unstructured p2p networks presents a com-

plex task. The GossipSub protocol is particularly prominent in this area, originally intended

for integration with platforms such as The Interplanetary File System (IPFS)[18], FileCoin[17]

and Ethereum[46]. GossipSub introduces a gossip-driven pubsub protocol to enable efficient

message dissemination in p2p overlays[46] and is distributed as an extensible component

within libp2p[47].

23

GossipSub is built by a mesh - employing eager push, lazy pull and a score function

- interlaced with a set of mitigation strategies. The mesh is the component that makes the

solution feasible for employment on blockchains given that its low fanout balances bandwidth

consumption and performance, while the lazy pull employed guarantees that messages will

be successfully propagated even to distant nodes[46]. The score function evaluates peers

based on their network behavior and identifies any malicious actions. All nodes on the

network observe the nodes to which they are connected and act accordingly in terms of

routing messages. The mitigation strategies act upon these flagged events to protect the

system against malicious activity.

Regarding the structure of GossipSub topics in blockchains, both Ethereum and File-

Coin adopt similar strategies, although with nuanced differences[48]. FileCoin employs a

dual-topic structure, with one topic for message dissemination and another for block prop-

agation. On the other hand, Ethereum uses a more intricate arrangement, featuring five

global topics, including two main and three secondary. The first main topic, known as the

beacon, broadcasts newly signed blocks to the entire network. The second facilitates the

dissemination of aggregated attestations to subscribing validators. Furthermore, Ethereum

employs three secondary topics to propagate different types of information: voluntary exit,

proposer slashing, and attester slashing.

1.2.1 GossipSub in the Literature

GossipSub is not the first gossip-based pubsub protocol to be proposed, as can be seen

in the literature review timeline present in Figure 1.5. Other solutions such as Bayeux[49],

Scribe[50], Meghdot[51], Tera[52], Rappel[53], Stan[54], Vitis[55] and Poldercast[56] have

been previously implemented. However, none of those solutions was designed to be Sybil-

resistant. Vyzovitis et al.[48] proposed a protocol called GossipSub as a replacement for

the Ethereum message dissemination protocol, SQRT(N)[16], by closing the gap on Sybil-

resistance left by previous works without sacrificing system performance.

Remarkably, the performance and scalability of GossipSub have not been addressed in

academic research. A single non-academic investigation[57], conducted by the Whiteblock

24

Blockchain Block
Propagation

PubSub
Dissemination

GossipSub GossipSub
Evaluation

2000

2005

2010

2015

2020

2008
Bitcoin/Flooding[1]

2001
Bayeux[49]
2002
Scribe[50]

2004
Meghdot[51]
2007
Tera[52]
2009
Rappel[53]
2010
Stan[54]
2011
Vitis[55]
2012
Poldercast[56]

2018
episub/GossipSub 1.0[47]
2019
Vyzovitis et al.[46,48]
2020
GossipSub 1.1[123]

2012
XRPL/Flooding[2]

2014
Ethereum/
SQRT(N)[16]

2022
Ethereum 2.0[81]

2020
Protocol Labs/
Whiteblock[57-59]

2023
Kumar et al.[60]

2021
Squelching[78]

Figure 1.5: Simplified timeline of academic works and technologies related to GossipSub

company4, offers an assessment of the performance and safety of GossipSub[58]. This

study revealed lost messages and inconsistent delays, which were attributed to the specifics

of the Golang implementation. Moreover, they evaluated the time it takes for messages to
4Which received a joint grant from the Ethereum Foundation and ConsenSys for this work

25

disseminate under a 400ms latency delay, concluding that it is suitable for Ethereum 2.0

deployment, despite the irregular intervals between message arrivals caused by the Golang

implementation.

In a different perspective, the original GossipSub authors[46] also provided an in-depth

examination of the resistance to Sybil and Eclipse attacks in distributed systems that em-

ploy GossipSub[59]. Their findings indicated that performance may decline under certain

conditions, but the protocol remains functional. They suggested three countermeasures:

flood publishing, opportunistic grafting, and increased gossip propagation. These methods

markedly improve the performance of the protocol in the most adversarial environments.

This research also elaborates on each mesh parameter and offers some recommendations

for selecting values that align with the desired performance results. The default parameters

are configured to maintain a low fan-out and minimize bandwidth usage while still ensuring

an acceptable message propagation time. However, there is a limited sensitivity analysis of

the potential impact of some mesh parameters on network performance. In this work, our

aim is to close this gap by expanding the analysis with different sets of values, including

also more parameters, and employing data science and causal analysis techniques. More

recently, Kumar et al.[60] performed an analysis of the robustness of the protocol against

attacks by misbehaving peers using the ACL2 prover, finding a particular case where peers

are not flagged as malicious when misbehaving by not forwarding topic messages. The

work suggests three concrete steps through which developers can harden GossipSub from

specific attacks.

1.2.2 GossipSub Mesh Structure

We can abstract the GossipSub mesh as consisting of two layers, the first one being a full-

message overlay, in which each node has a local view of the mesh. The local view of a

node comprises the set of peers with which it is directly connected. Here, messages are

sent directly to peers according to some parameters that control the fanout. The second

layer can be called the gossiping overlay, employing lazy pull to guarantee that a message

will reach all its targets. Nodes can communicate with other nodes outside their local view

26

by gossiping. In this scenario, in the gossiping overlay nodes exchange metadata as well as

announcements such as ”I have message x” (ihave) and ”I want message x” (iwant) and full

messages are then exchanged, working as a reconciling phase.

Figure 1.6: GossipSub mesh schematics. From the original GossipSub paper[46]

Figure 1.6 presents the original diagram published by Vyzovits et al.[46] showing the

GossipSub mesh construction. We can see that each node has its local mesh, denoted

by the full lines. The full message overlay is depicted as the gray area comprising all local

meshes, using eager push to send messages through direct connections formed by the lo-

cal view of the mesh of each node. The gossiping overlay is depicted by the dashed lines

connections, this layer employs gossiping to reach distant nodes using lazy pull. The forma-

tion and maintenance of these two mesh components are controlled by a set of parameters

presented in Table 1.3.

The number of peers to which a node is connected is given by three parameters: D,

Dlo, and Dhi. D represents the desired number of peers to which a node should be directly

27

Table 1.3: GossipSub Mesh Parameters
Parameter Concept

D Desired number of peersa

Dlo Minimum number of peersa

Dhi Maximum number of peersa

Dscore Number of high-scored peers to
keep when prunning

Dout Number of outbound connections
to keep when prunninga

Gossip
Factor

Factor (%) of how many peers to
emit gossipb

Dlazy
Minimum number of peers to

emit gossipb

Interval Heartbeat for prune, graft,
and gossiping events

aFor each subscribed topic
bFor connections outside of the meshes of the topics

connected, defining the average fanout of the network. In Figure 1.6, for example, the node

A has the value of D set to 5, being connected to 5 peers, forming its local view of the

mesh. Dhi and Dlo are parameters to relax the fanout, Dhi being the ceiling, and Dlo the

floor. These parameters trigger two types of events within the local mesh: prune and graft.

The first is a disconnection that occurs when the number of peers of a node grows above

Dhi for each subscribed topic. Similarly, the second is a new connection and occurs when

the number of peers falls below Dlo. The node chooses how many and to which peers to

disconnect/connect based on two parameters: Dscore and Dout. Dscore sets the number

of peers with the highest performance, according to the scoring function, to which a node

must connect, the remaining being randomly selected. When a pruning event occurs, the

node should retain at least Dout number of peers (greedy pushing).

The main parameters related to lazy pull are Dlazy and GossipFactor, both control-

28

ling the number of peers to which the node should emit gossip. The gossip is emitted to

GossipFactor ∗ (#non mesh peers) or Dlazy, whichever is bigger. The gossip emission

occurs between time intervals, set by the HeartbeatInterval (or simply interval) parameter.

D, Dlo, Dhi, Dscore, and Dout are all linked to the full message overlay, being defined

per topic, dictating how each node will construct its own view of the mesh, resulting in prune

and graft events. GossipFactor and DLazy are used for the second overlay and control

gossiping, which occurs through iwant and ihave messages. HeartbeatInterval defines the

interval in which the four cited events may occur.

Chapters 5 and 6 show respectively a correlational and a causal analysis of how the

parameters presented impact the overall performance of the underlying network, in our case,

the XRPL. However, before diving into the integration between GossipSub and the XRPL,

we first need to propose a way to enhance the pubsub characteristics of the XRP LCP so

we can better explore different configurations for optimal pubsub dissemination. The next

chapter presents NLAC, a tool to automatically generate and maintain UNL space, creating

more diversified lists while seeking to maintain the maximum trust of the system.

29

Part I

Increasing Scalability on the XRP

Ledger

30

Chapter 2

Building and Maintaining UNLs

2.1 Introduction

Since the release of Bitcoin[1] several blockchains have been proposed in different shapes

and flavors. Being one of the first, the XRPL is now well established in this middle. Its unique

consensus mechanism[2] also makes the XRPL a faster and less resource-intensive system,

breaking away from the traditional Proof of Work (PoW). However, there is a discussion about

how much permissionless and distributed the validation process is.

By definition, in the XRPL, each node in the network must declare trust in a Unique

Nodes List (UNL), even those that do not proclaim themselves as validators. Given that, it

is straightforward to think that certain conditions must be met on the trust overlay to avoid

forks and stalls caused by the formation of clusters. Such conditions have been studied by

some authors, and a quick discussion of them is presented in Section 1.1.5.

In practice, the XRP Ledger Foundation (XRPLF) curates and maintains a main UNL,

advising all participants to put their trust in this list[61]. Given these guidelines, as of July

2024, the trust overlay of the XRPL network comprises a core of 35 validators connected

in a complete graph. This structure and governance method leads to some considerations

about the dispersion of authority in the current implementation of the XRPL.

In this chapter, we propose NLAC (nested, layered, automatic, continuous)[62], a frame-

work not only for automatically generating single trusted UNLs, but also for creating, man-

aging, and maintaining the entire UNL space. NLAC comprises three modules that manage

the membership, classification and grouping of nodes into trusted lists without human inter-

31

vention by using layered Token-Curated Registries (TCRs) and mathematical optimization to

achieve maximum trust in the UNL space while guaranteeing a better dispersion of authority.

2.2 Proposal

2.2.1 Properties

Nested

Since UNL overlap is still an open topic in XRP Ledger Consensus Protocol (XRP LCP)

research, and a crucial requirement for the trust overlay, we propose a solution that allows

nesting. When several lists of nodes are picked from a random graph, representing each

set as a linear structure may not satisfy the overlapping requirement. In addition, it does not

give control over the number of nodes at the intersection of such sets.

A nested structure as a tree is more suitable for this representation, as we may express

every UNL as a tree and the set of all UNLs as a forest. Overlapping this forest gives us

a Direct Acyclic Graph (DAG) as shown in Figure 2.1. This structure provides flexibility in

choosing the size of the intersection between two or more UNLs and the general percentage

of overlap of the entire space.

Roots

Layer 1

Layer 2

Layer 3 Low Trust

High Trust

Figure 2.1: DAG proposed to represent the UNL space of the XRPL

32

Layered

The nodes in the XRPL network do not have direct incentives to become validators[63].

Consequently, there is no mechanism to incentivize validators to behave in the best interest

of the network once they are added to the main UNL. We propose a reputation-based sys-

tem comprising layers of trust. This structure is the foundation for developing an awarding

system that gives monetary incentives to nodes to grow their good reputations.

Taking the DAG proposed previously, we have an inherently layered structure. New

validators are added as leaves and may progressively rise in the tree as their good reputation

increases. This model ensures that each list will have reputable nodes, being able even to

control the number of nodes at each level to keep the current trust threshold at 80%.

Autonomous

The curation and maintenance of the main UNL are manual, with nodes sending their can-

didacy to the XRPLF for consideration. We need a solution able to self-curate to ensure

more reliability and greater authority dispersion and autonomy. We then need a solution that

can control the amount of overlap between the lists and the mobility between layers with-

out human intervention. To tackle this issue, we propose the use of TCRs[64]. TCRs are

lists curated in a decentralized way, using tokens to reward curators and incurring monetary

penalties for low-quality content and bad curation.

TCRs allow us to have an automatic and transparent process for generating, curating,

and maintaining UNLs. It also gives us tools to control layers, using some smarter imple-

mentations, such as Nested and Layered TCRs[65][66]. Another advantage is the possibility

of implementing a rewarding system based not only on good behavior but also on good cu-

ration. However, some adaptations are needed to meet the requirements to generate UNLs,

as described in this work.

33

Continuous

The XRPL is built on top of an unstructured peer-to-peer (p2p) network. As such, it com-

prises a dynamic system with nodes joining and leaving at any moment. Participants may

also suffer from malicious intrusions, bad network conditions, and a variety of other byzan-

tine behaviors. To account for this dynamic scenario, UNLs must adapt flexibly without

compromising safety and liveness.

Nodes must be continuously observed and easily removed from trusted positions, pro-

viding the trust overlay the ability to self-arrange. We propose the use of continuous TCRs,

giving token holders the ability to challenge validators that perform below the threshold of

their layers[67]. This ability requires the use of a scoring system capable of detecting a

change in the environment and in the attitude of the nodes. Integration between XRPL and

GossipSub[68] - discussed in Chapter 4 - is the key to implementing this system, as the

framework already provides a scoring system used for pruning and grafting connections.

Being GossipSub a modular framework, the scoring system can be adjusted to better suit

the characteristics of the network.

2.2.2 Architecture

To achieve the desired properties described above, we propose a solution based on the

architecture shown in Figure 2.2. This section briefly describes each component and the

interaction between them. We further expand on how they work and their concepts in the

three following sections.

Membership GroupingClassification

Figure 2.2: NLAC Modules Architecture

The first component, called Membership, comprises a layer in which the validators are

34

selected to be part of the UNL space. The UNL space encompasses all validators consid-

ered trustworthy by the network. Currently, the XRPL network already has the UNL space

created, with 35 nodes manually selected to be part of the trusted set. In this work, we

propose the use of TCRs[64] to create the UNL space without human interference.

After defining the membership in the set, we move on to the next component: Classifica-

tion. The idea is to classify all validators present in the UNL space into trust levels according

to a score obtained by their peers. Nodes at higher levels are said to be more reliable than

the nodes at lower levels. These higher-level nodes have fewer chances to behave in a

byzantine way.

Having the UNL space classified in layers of trust, we need to group the validators into

lists to guarantee the dispersion of authority; hence the Grouping module. NLAC organizes

lists as trees, taking advantage of the trust layers generated in the above component. These

trees overlap each other, forming a DAG in the form of a forest, as shown in Figure 2.1,

which means that some nodes will be part of two or more lists. To ensure reliability, highly

trustable nodes are near the roots, and less trustable nodes stay in the leaves.

Consider the current structure of the XRPL trust overlay. Since there is already a space

with 35 trusted nodes, we can consider that the first module already exists. Although not

fulfilling the autonomous property, we will take this structure to explain how the components

interact.

2.3 Membership

2.3.1 Token-Curated Registries

In its most naı̈ve form, TCRs are simple publicly curated lists. Listees have no direct mon-

etary reward, but indirect gains for figuring on high-quality lists. Take the example of a list

of the best European universities in a certain field. Figuring on this list may ensure the

universities a higher number of applications and higher investments in the particular field.

Each list usually has an associated token. To participate in the curation, one needs to

possess a certain amount of tokens. Token holders can vote and challenge candidacies. To

35

apply to the list, a user 1 needs to stake a certain amount of tokens, which are held in a pool

associated with the candidate and are untouched until the candidacy process is over.

During the candidacy period, any token holder can challenge the entry if they judge the

candidate as not suitable for the list. To issue a challenge, the holder must stake tokens

within the pool. All holders can vote to accept or reject the challenge. If the majority votes

to accept the challenge, the challenger receives the staked tokens back, plus a reward for

good curation. The candidate, for its part, loses its staked tokens and is not included in the

list. However, if the holders vote to reject the challenge, the challenger is the one who loses

the stake. In this situation, the conclusion is the same as if no challenge has been issued

during the candidacy period: the candidate receives their tokens back and gets included in

the list.

2.3.2 UNL Membership

Figure 2.3 shows the process to include a new node in the UNL space. To figure in the

space of trusted validators, a node must stake a minimum amount of tokens within a token

pool; then a candidacy period starts. During this period, the node is evaluated by its peers,

who will construct the first reliability score. The proposals formed by this node are only

observed for scoring and will not be taken into consideration until the node is included in the

NLAC structure. The scoring comprises the same guidelines used by the XRPLF to evaluate

candidates[12].

At the end of the evaluation period, the upper layer nodes can challenge the candidate if

the guidelines[12] were not met or if the reliability score is lower than a certain threshold. All

the nodes that were observing the candidate can vote to reject or accept the challenge. Note

that it is not reasonable to have all validators in the trust overlay evaluating a candidate. This

approach would require candidates to transmit their messages to the entire network, causing

a high message overhead. The proposal for NLAC is that only a subset of validators observe

and evaluate the candidate, choosing the evaluators using a peer-prediction mechanism

similar to the one used in CitedTCR[69].
1Here “user” has the broad sense of a person, an entity, or a generic computational system.

36

Application
Token
staking

(candidate)

End of period

Evaludation/
scoring

End of
period

Candidacy
period

Challenge
 issued

Token
staking

(challenger)

Challenge accepted

Voting Challenge rejected

Token
release

(candidate)
Inclusion

Token
release

(challenger)

Issue reward
(challenger)

Figure 2.3: States machine of the membership assertion process

If not challenged, the candidate receives the staked tokens back and is included as a

leaf, considering the balance of the tree, so UNLs have approximately the same size. If

a challenge is issued, the appointed curators vote to determine the outcome. In case of

dismissal, the challenger loses their tokens; the candidate receives their tokens back and is

included as a leaf. In case of acceptance, the challenger receives their tokens plus a reward

and the candidate is not included in any list, losing the stake.

After inclusion, the new listee will continue to be observed by the appointed peers. These

peers may change as the tree adapts to the conditions of the network. If the validator

starts presenting byzantine behavior, if the guidelines cease to be followed, or in case of

complete disconnection, any appointed peer may issue a challenge. Acceptance of the

challenge means complete removal of the validator from the DAG, which means that there is

no downward movement. A node in a higher position has more to lose than a node present

37

at a lower level, guaranteeing that highly trusted validators will continue to act honestly on

behalf of the ledger.

2.4 Classification

The Classification module serves not only as a necessary step for guaranteeing minimal

levels of trust in each UNL but also as a mechanism to reward trustable nodes. The idea is

to employ a Layered TCR[65] to incentivize the nodes to behave honestly to be promoted to

higher levels, resulting in monetary rewards for curating lower levels.

In its current implementation, the XRPL network employs a Reliability Measurement

mechanism to identify faulty nodes that should be added to the Negative UNL (nUNL).

This measurement comprises the percentage of times a validator issued a validation that

is agreed upon by the network to be true, considering the last 256 ledger versions. Each

node computes the reliability score for each of its peers using the following equation[70]:

Reliability = Va ÷ 256

Being Va the total number of validations received from a given peer that a node considers

true considering its ledger versions. When the reliability score of a peer falls below 50%, the

node can submit a proposal to add the said peer to the nUNL. The network must reach a

consensus on adding or removing validators from the nUNL.

Although this mechanism works well for temporary disruptions, it does not permanently

remove or add validators to the UNL space; its sole purpose is to tell the network to tem-

porarily ignore proposals and validations coming from faulty nodes. We propose an exten-

sion of the nUNL, in which we use a measurement similar to the reliability score to classify

the nodes into layers of trust, with more trustable nodes placed in higher layers.

Movement between layers can only happen upward, to guarantee that nodes that be-

come untrustworthy for a prolonged time are automatically removed from the UNL space,

so nodes have an extra incentive to behave in the best interest of the ledger. The upward

movement occurs in two instances, first when a node applies to be promoted to higher lev-

38

Challenge issued

Score
observation

Token
staking

(challenger)

Challenge accepted

Challenge
rejected

Voting

Challenge
accepted

Token
release

(challenger)

Issue reward
(challenger)

Stake lost

Remove
node

Figure 2.4: States machine of the classification process

els, and second when a high-level node is removed or promoted, and there is a node in the

immediate level below that fulfills the minimum score required.

When a node applies for promotion, as shown in Figure 2.4, it must stake tokens within

the pool and go through the same process described in the previous section. In the event

that another node is removed or promoted, another node can propose a validator that it

believes to be the best candidate for promotion. Again, by staking tokens within the pool and

going through the curation process. In the same way, if the score of a node falls below the

threshold set for the layer it sits on, a node on the levels above can propose its removal by

staking tokens and going through the same process.

The reason why nodes are not automatically promoted as soon as they reach the min-

imum score required for a given layer is to promote rewards for nodes at higher levels to

39

curate the UNL space. Every proposal to modify the space in any way requires tokens to be

staked, and, safe from unchallenged additions, rewards to be issued. This method rewards

good curation and monetizes the participation of nodes in the UNL. It also provides incen-

tives for nodes to behave correctly to maintain higher levels, where they can receive rewards

for curating lower levels.

The number of levels and minimum score required, as well as a more in-depth study on

the most suitable way to score nodes, is not the focus of this work. Further work on this topic

is still necessary, considering the underlying characteristics of the XRPL network.

2.5 Grouping

The final module comprises the most important part of the NLAC framework. It is where

trustable validators are combined into lists with the goal of better distributing the decision

power while maintaining the maximum possible trust in the system. To achieve that, we

employ optimization methods to maximize the total trust of the system, considering each

layer of trust generated in the previous module.

Figure 2.1 shows the structure that we aim to achieve after optimizing the set. The black

circle represents the root of the forest from which all lists derive. In the illustration, we show

four lists, each of them rooted in what we represent as black squares. Each trusted validator

is represented by a white circle. By traversing each tree, we obtain the UNLs we seek

to represent. The entire forest shows how the lists overlap each other to create a tightly

connected space while maintaining a certain degree of dispersion.

There are three layers of trust represented, with the higher levels closer to the root. The

closer a node is to the leaves, the lower its reliability score. To avoid low-trust nodes being

the majority in a list or being in too many lists at once, NLAC limits the maximum number of

low-trust nodes in each UNL, meaning that the number of leaf nodes should also be limited,

so we can avoid the scenario of low-trust nodes massively skewing the total trust of the

system. It is important to note that we use this DAG to visualize how the NLAC space is

constructed. This data structure is not directly implemented, being the lists represented by

40

adjacence matrices.

2.5.1 Mathematical Model

We generated a mathematical model for grouping the validators according to the trust layers

fulfilling some conditions modeled as constraints while trying to achieve the maximum total

trust in the system. We modeled the structure representing the UNL memberships as the

matrix X with

xij =


1 if nodei ∈ UNLj

0 otherwise
(2.1)

Thus, the row i represents the node i and the column j represents the UNL j, i ∈

{1, ..., N} and j ∈ {1, ...,M} with N the number of nodes in the UNL space and M the

number of UNLs to be generated by the optimizer. Let K be the maximum number of layers

generated in the previous module. Consider the trust vector y with yi ∈ {1, ...,K}, where

node i belongs to trust level k.

Maximizing the total trust of the system amounts to finding Xopt with

Xopt = argmax
X∈{0,1}N×M

||yTX||2 (2.2)

To simplify the model, we do not employ the reliability score generated internally by each

node for their peers because different nodes may have different scores for each validator.

The average score of a node is already reflected in the level they occupy, which is agreed

upon by the entire network.

The trivial solution for this objective function is Xopt being the matrix of ones. This,

however, does not fulfill the dispersion requirement imposed previously. For this reason, we

impose the following constraints:

First, we want to enforce a minimum size U for each UNL:

||Xej ||1 ≥ U ∀j ∈ {1, ...,M} (2.3)

41

with || . ||1 being the L1-norm and ej ∈ RM the j-th basis vector.

We want to guarantee that any two UNLs have a minimum overlap P :

(Xep)
TXeq = eTpX

TXeq ≥ P ∀ p, q ∈ {0, ..,M} (2.4)

Considering that all nodes have the same voting power, to guarantee that low trust nodes

will not be part of too many UNLs and skew the power balance, we limit the number of

UNLs a node can be part of based on the trust level it is part of. Let Lk be the parameter

that identifies the maximum number of UNLs a node at the trust level k can be part, with

k ∈ {0..K}.

||eTjkX||1 ≤ Lk, jk ∈ {1, ..., N} (2.5)

Another important limitation is the maximum number of nodes in a given layer a UNL can

have. Let Qk be the maximum number of nodes of trust level k the UNL j may have, then:

||vTk Xej ||1 ≤ Qk ∀k ∈ {1, ...,K} (2.6)

where

(vk)i =


1 if Node i belongs to trust level k

0 otherwise

2.6 Experimental Evaluation

We tested2 the above formulation using Pyomo[71][72] with the cplex solver[73] on a Core™

i7-8665U CPU@1.90GHz × 8 machine with 16GB of RAM running Ubuntu 22.04.2 LTS. We

fixed the values of U = N ∗ (1/3) and K = 4, also distributing the nodes randomly through

the layers. The values for the vectors L and Q were L = [16, 8, 4, 2] and Q = [12, 8, 4, 2].

These values were empirically obtained on a testnet of 24 nodes and 8 UNLs.

Table 2.1 shows the results of six combinations of M , N , and P , considering that these
2Code available at https://github.com/FlavScheidt/NLACOptimization

42

https://github.com/FlavScheidt/NLACOptimization

Table 2.1: Trust Optimization Evaluation

N M P Total Trust Constraints Variables Time
24 8 80% 280 121 193 0.05s
24 16 90% 280 193 385 0.05s
32 16 80% 436 209 513 0.39s
32 24 90% 436 281 769 4.38s
64 16 80% 712 273 1025 0.55s
64 32 90% 872 417 2049 18.47s

values can change depending on the state of the network. The goal of the optimization is to

group N validators into M lists respecting the previous constraints while maximizing the trust

of the system. The table also shows how many constraints and variables were generated by

the model and the solution time.

The total trust of the system naturally grows as a function of N , however, it does not

seem to be affected by M when N < 64. The total solution time is also not affected by M

when M < 24. It is important to note that for N = 64 and M = 32 the solution time may

be longer than is feasible for a distributed solution based on the XRP LCP. However, when

M > 2 the complex scenario needs a deeper analysis. That being said, our tool provides

means for maximizing trust, but some parameters require a more in-depth analysis.

The lower bound for U was kept constant, being experimentally verified to be enough

to keep a testnet of 24 validators synchronized and alive when no byzantine behavior oc-

curs. The value of P was also constant and determined based on the works presented in

Section 1.1.3.

2.7 Discussion

The XRP LCP works on the assumption of collectively trusted sets of validators. The amount

of overlap required between these sets to keep the ledger from forking or stalling is not

yet a solved question. This characteristic, plus the lack of proper tools for curating and

maintaining UNLs, led to the creation of the manually maintained main list. NLAC aims to

43

solve this issue by taking a broader view of the entire space of UNLs, proposing a framework

for automatic curation and self-arrangement, and giving the trust overlay a mechanism for

self-maintenance.

NLAC comprises three main modules, all with tunable parameters, leaving space for

further improvements as the network evolves. These modules were constructed based on

four desirable properties derived from the characteristics of the XRPL trust overlay: nesting,

layering, autonomy, and continuity. The first module uses TCRs to establish membership in

the UNL space, followed by the second module, which uses layered TCRs to create levels of

trust. These levels are then used in the last module, where nodes are grouped into different

lists, following guidelines to achieve maximum trust while guaranteeing a better dispersion

of authority.

Overall, NLAC represents an important step forward in the development of the XRPL.

By providing a framework for automatic curation and self-arrangement, NLAC enhances the

unique features of the XRP LCP, while addressing key issues related to trust and dispersion

of authority, and delineating a mechanism for implementing a rewarding system on the net-

work. With ongoing research and development, NLAC has the potential to become a key

tool for building secure, decentralized networks that can scale to meet the needs of a rapidly

evolving digital economy.

44

Chapter 3

Measuring and Improving Message Over-

head on the XRP Ledger

Consensus leans on how efficiently the nodes can communicate with each other. Given that

poor network performance can facilitate double-spend attacks[42] and even lead to forks or

stalls in ledger progress. Flood publishing is a straightforward strategy to propagate mes-

sages; however, it causes excessive message overhead, increasing the required bandwidth,

and possibly clogging the network with redundant messages. Increased bandwidth can also

affect the propagation time of blocks, negatively affecting the number of transactions per sec-

ond (TPS) that a blockchain can perform. This is an issue that has already been reported in

Bitcoin[24] and Ethereum[74].

In the XRPL different dissemination strategies are used for different types of messages.

Flood publishing is used to propagate proposals and validations, with any node in the net-

work being able to proclaim itself a validator, and thus flood the network with proposals and

validations each consensus round.

To better understand how flooding impacts the scalability and performance of the XRPL

network, we present Flexi-Pipe, a tool that allows the analysis of targeted message types on

an XRPL testnet. Providing also the capability of plugging different dissemination techniques

into the rippled validator code. We first used this tool to study the validation dissemination

pattern, counting the number of duplicate messages that a single node may receive in a

given time frame. We then discuss a mitigation strategy proposed by the XRP Ledger Foun-

dation (XRPLF): squelching. In the following chapters, Flexi-pipe is also used as a tool and

45

methodology to study the use of publisher/subscriber (pubsub) dissemination in the XRPL,

helping also to tune the state-of-the-art dissemination technique in blockchains for the spe-

cific requirements of the XRP Ledger Consensus Protocol (XRP LCP).

3.1 Flexi-Pipe

As part of our research, our aim is to isolate message types that create bottlenecks on the

network to investigate dissemination techniques that might mitigate those specific points. To

evaluate the performance of different dissemination techniques, we created a tool - Flexi-

Pipe1 - that allows us to plug different broadcasting mechanisms into the validator code.

In this work, Flexi-pipe is used to assess flood bottlenecks and assess Gossipsub perfor-

mance, as well as in other studies to investigate different dissemination techniques, such as

Named Data Networkss (NDNs)[75]. In this section, we focus on the identification of mes-

sage exchange patterns, according to the distributed states machine presented in Section

1.1.2. The next chapters explore the use of a pubsub overlay to disseminate messages on

the XRPL using the Flexi-Pipe architecture as a methodology for tests and evaluations.

3.1.1 Architecture

The idea behind Flexi-Pipe is to create an overlay where only targeted message types transit

to identify dissemination patterns and evaluate different solutions. This means that from the

point of view of implementation, we have two layers: the rippled overlay and the dissem-

ination overlay. The rippled overlay is the existing layer in which the validator exchanges

messages with its peers and the entire network. In contrast, the dissemination overlay is the

novelty we add, showing only the targeted messages, such as validations and proposals.

The communication between both layers is done by Remote Procedure Calls (RPCs).

Figure 3.1 shows the schematics used to implement Flexi-Pipe. Each big rectangle repre-

sents a node, inside of them we have the two layers: rippled and dissemination.

The bottom layer is the version 1.7 rippled code, written in C++, and comprises the
1Available at https://github.com/FlavScheidt/flexi-pipe

46

https://github.com/FlavScheidt/flexi-pipe

ServerClient
gRPC

Server Client

rippled overlay
gRPC

Other Messages

Validations

ServerClient
gRPC

Server Client

gRPC

Dissemination
mechanism

dissemination overlay
Dissemination

mechanism

Figure 3.1: Architecture of Flexi-Pipe showing the two overlays: rippled and dissemination

rippled overlay. We changed the code to include a gRPC[76] node that contains a client and

a server. We also deactivated the node’s ability to send and relay messages of a certain

type - namely, proposals and/or validations - but kept all other functions intact. Therefore,

all other types of messages still transit at this level, adding also a new logging feature to

the rippled code2. The goal of this feature is to provide meanings for better analyzing - and

debugging - the integration of the two overlays.

The dissemination overlay is the top layer containing the broadcast mechanism con-

nected to the validator. This layer contains a component that controls the creation and

maintenance of the overlay. Flexi-pipe is agnostic, meaning that any mechanism can be

plugged and serve as a dissemination overlay. Chapter 4 explores the integration between

rippled and GossipSub, while other works[75] also use Flexi-pipe to integrate NDNs into the

XRPL.
2Modified code available at https://github.com/FlavScheidt/sntrippled

47

https://github.com/FlavScheidt/sntrippled

3.2 Testbed

The experimental setup used throughout this thesis encompasses a cluster of 24 virtual

machines with 31.25GiB of RAM, 64GB of disk, and 4 sockets with 2 cores each, running

Ubuntu 20.04.4 LTS. We used two versions of rippled, one modified to only write logs for

analytics - which we call vanilla - and another modified to work with Flexi-pipe. We also use

two control nodes with similar configurations running instances of the Flexi-Pipe maestro.

Table 3.1: UNL structures

UNLs Avg UNL size Mean UNL size Min UNL size Max UNL size
1 1 24 24 24 24
2 24 16,25 16 15 18
3 8 16,37 16 16 18

We considered three structures for the trust overlay which are summarized in Table 3.1.

In the first one, we connected all nodes in a complete graph to emulate the current structure

of the core of the XRPL network. The second category mirrors the way the XRP LCP was

first conceptualized[2], with every node choosing its own Unique Nodes List (UNL). However,

instead of relying on a minimum overlap, we created every UNL so that each node would

listen to at least 60% of the network. This percentage was obtained experimentally and was

shown to be enough to stabilize the network, considering the absence of malicious nodes.

The third structure considers the UNL overlap issue and explores the pubsub characteristics,

simulating a scenario where preset UNLs exist, created by applying a method similar to the

one described in Chapter 2. This structure was created using NLAC and comprises 8 UNLs

that were randomly assigned to the 24 nodes so that each UNL was assigned to at least 22

nodes, with the average overlap between every two nodes being 75%.

These three structures are used extensively in the next chapters to evaluate the XRPL

behavior within different trust overlay structures. Partial disruptions are expected, but the

assumptions do not include malicious activities. In this chapter, we analyze solely the first

structure to better understand how the message overhead issue affects the current state

48

of the XRPL network. The previous chapter presented a tool that may enable the XRPL

to relax its minimum overlap requirement by increasing the total trust of the system; Next

chapters take advantage of this to analyze different scenarios that may improve the liveness

and performance of the XRPL.

3.3 Measuring Message Overhead

The states machine presented in Section 1.1.2 highlights the two states in which messages

are propagated by flooding: Proposal Transmission & Reception and Close ledger & Broad-

cast Validation, both of them represented by dashed lines. The idea is that transactions are

spread through gossiping[77], without the need for a strong assurance of delivery, since they

will later be grouped into proposals. The use of flooding to disseminate proposals works as

a reconciliation phase, guaranteeing that all nodes will see all transactions at least once.

The problem is that not all nodes are actively considering the positions of all validators

in the network, but all of them are receiving proposals and validations repeatedly from these

nodes. A validator only considers the position of the nodes present on their UNL, but flood-

ing dictates that a node must always send messages to all of their peers, those peers will

also relay the messages through all of their connections, causing exponential growth on the

number of messages with the growth of connections between nodes. In a highly connected

network, such as the XRPL, excessive traffic caused by message overhead leads to higher

latency and higher bandwidth usage of individual nodes.

Tsipenyuk et al.[78] first introduced this problem by presenting how the number of pro-

posals and validations accounts for 72% of all messages. The proposed solution - called

Squelching - focuses on diminishing the number of vertices in the dissemination graph.

Each node selects a subset from which it chooses to listen regarding a particular validator

and tells the other nodes to squelch the connection for a given amount of time.

Squelching works by allocating slots to manage the relaying of proposals and validations

on the network. Each node maintains a list of validators from which it is relaying messages.

When a second node, directly connected to the first one receives enough copies of a given

49

message, it tells the first node to squelch the relaying for the source, meaning that the relay

should be disabled for a given period of time. In the default configuration, a node keeps 5

connections for each source.

The authors evaluated this method using a simulated graph structure that shows a reduc-

tion of 76% in the total number of messages on the network. Subsequent work[14] evaluated

the impact of the technique on the connectivity of a single node on the mainnet, also measur-

ing the bandwidth in messages per second. This study concludes that squeaking presented

a 28.9% improvement in bandwidth over flood publishing. To date, there has been no work

addressing the robustness and safety of the XRP LCP in the presence of squelching.

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Replicas

0

2000

4000

6000

Nu
m

be
r o

f M
es

sa
ge

s

Distribution of Replicated Messages

Figure 3.2: Frequency of duplicated messages on a testnet with 24 nodes fully connected
without enabling Squelching

We used Flexi-pipe to measure message overhead from a different angle by counting

the frequency of reception of replicated validations on a single node. We connected 24

validators using vanilla rippled without and with squelching enabled. The nodes form a

complete graph to emulate the current state of the XRPL, in which 34 nodes comprise the

core of the network. This arrangement helps us isolate the problem. However, it is important

to note that in the mainnet the problem can be ever bigger, considering that several nodes

declare themselves as validators but are not part of the main UNL. These nodes broadcast

their proposals and validations even if they are not actively participating in the consensus

process.

50

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Replicas

0

1000

2000

3000

4000

5000

6000
Nu

m
be

r o
f M

es
sa

ge
s

Distribution of Replicated Messages

Figure 3.3: Frequency of duplicated messages on a testnet with 24 nodes fully connected
with Squelching enabled

Figure 3.2 shows the results obtained without enabling squelching. The x-axis repre-

sents every possible number of replicas3 that a node can receive for a single message.

Since the node analyzed has 23 connections, the minimum number for a replica is 1 and the

maximum is 23. The y-axis presents the number of single messages received, which means

that around 6000 messages were received 23 times, as indicated by the red arrow. In terms

of enabling squelching, Figure 3.3 shows a higher concentration of messages in the area

between 4 and 8 replicas, which means that the node received most of the messages repli-

cated between 4 and 8 times. This concentration is due to the default setting of squelching,

which maintains at least five connections for each source.

What we take from this experiment is that flooding is a reliable method for disseminat-

ing messages but causes the distribution of the number of replicas to be far from ideal.

There needs to be a trade-off between the delivery assurance and the number of replicas

to guarantee the scalability of the network. Squelching presents a good solution for the

dissemination of messages. However, more efficient methods have been studied[75][68],

including GossipSub, which has been introduced in Section 1.2. The next Chapter explores

the use of GossipSub to disseminate proposals in the XRPL network, exploring the pubsub

characteristics of the XRP LCP to diminish the message overhead on the network.

3A replica is a message that is received more than once, relayed from different peers.

51

Chapter 4

PubSub Dissemination on the XRP Ledger

4.1 Introduction

Message propagation is a crucial aspect in a blockchain. Without fast and reliable prop-

agation of messages and blocks, the entire network becomes vulnerable to several types

of attacks. Flood publishing is the most straightforward method to guarantee the delivery

of messages, relying on redundancy. It is used on the Bitcoin blockchain as well as on

the XRPL[40]. However, it is not scalable, since the number of redundant messages grows

exponentially when new nodes join the network.

In the previous chapter, we presented the message overhead issue, also showing the so-

lution proposed by the XRPLF: squelching. Squelching seems to experimentally be a good

solution for the problem; however, another answer could lie in the use of publisher/subscriber

(pubsub) dissemination. At a high level, these systems are composed of, as the name sug-

gests, publishers and subscribers, being the first role played by the nodes that declare in-

terest in a given topic and the second, the nodes that publish messages on these topics. In

pubsub systems, messages are also called events, and the declaration of interest on a topic

a subscription[45].

Pubsub systems are difficult to implement in unstructured peer-to-peer (p2p) networks.

The most notable work on this matter is GossipSub, originally proposed to be incorporated

into FileCoin and Ethereum[48], and although both could be considered structured due to

the use of Distributed Hash Tables (DHTs), in reality they behave as unstructured p2p net-

works, using DHTs solely as a peer discovery mechanism[79]. GossipSub is a gossip-based

52

pubsub protocol for message dissemination in p2p overlays[46] and is distributed as an ex-

tensible component within libp2p[47].

Gossipsub has two main characteristics that make it highly suitable for the XRPL, as

they guarantee fast and lighter dissemination while being attack-resistant. First is the way it

constructs the mesh in which messages transit and second is the employment of a scoring

function to help identify byzantine behavior.

The mesh construction employs eager push, keeping the fan-out low to balance band-

width usage, also maintaining strong assurance of delivery by employing lazy pull. For the

two models to work properly, the protocol specifies the creation of two meshes; the first,

used for eager push, is a full message logic network specified as a local mesh. Each node

has its own local mesh formed by bidirectional links to nodes subscribed to the same topic.

The second is the global mesh, where nodes exchange meta-data solely with nodes inside

and outside their local mesh using gossiping[80].

GossipSub employs a scoring function to help identify byzantine behavior. The scoring

is local, which means that every node maintains an internal score of its peers and makes

routing and relay decisions based on these scores[46]. However, the scoring function is

beyond the scope of this work.

More detailed analysis of attack resilience can be found in Vyzovitis et al.[46], and a

performance benchmark in the Whiteblock study[58][57]. In the next section, we discuss

how we mapped the XRP Ledger Consensus Protocol (XRP LCP) mechanism to GossipSub,

explaining our design choices.

4.2 Proposal

GossipSub is the state-of-the-art solution for efficient message dissemination on blockchains.

In addition to being used by The Interplanetary File System (IPFS), it is also used by File-

coin and was deployed on Ethereum in September 2022[81]. Both systems employ the

framework similarly; Filecoin uses two topics: one to propagate messages and another to

propagate blocks. Ethereum structure the topics in a more sophisticated manner, with five

53

global topics, two primary, and three secondary[82].

The use of Unique Nodes Lists (UNLs) in the XRP LCP allows some interesting forms to

use pubsub to disseminate messages. We present three set-ups based on how the network

is structured in production and how it has been conceptualized. We propose to look at the

XRPL as a pubsub system, creating a pubsub overlay based on the existing trust overlay.

Thus, we can keep the XRP LCP algorithm as is, changing only the abstract layer that

creates trust relationships between nodes.

First, we use GossipSub with 2 topics, in a similar way to Filecoin and Ethereum, keeping

the current XRPL network structure. The idea is to have two topics according to the types of

messages that must be transmitted across the network; the first topic refers to proposals and

the second to validations. Creating a parallel view with Ethereum, validations are similar to

a signed block, while proposals can work as aggregated attestations. This approach keeps

the trust overlay as it is, with a fully connected core of validators, while reducing the amount

of replicated messages and thus making the structure more scalable.

However, the XRP LCP has some characteristics that allow for more sophisticated topic

arrangements. In particular, the way nodes select sets of validators to trust works naturally

as a pubsub system. That is, we can understand an UNL as a list of topics to which a node

listens. Each validator is then abstracted directly as a topic, replicating the structure of the

trust overlay. In this configuration, called 1 topic per validator (1-topic/validator), it does not

make much sense to keep a fully connected mesh of validators, as it would create a similar

structure as seen in the 2-topic approach.

The previous approach may cause some problems, as the XRP LCP has a condition to

keep liveness related to the minimum required UNLs overlap. Considering that all nodes

on the network can choose their own UNL, not all can agree on a minimum number of

common nodes. Under this condition, the ledger would not be able to make any progress,

as proved in the previous works discussed in Section 1.1.5. We can find another solution

that maintains the liveness of the network while also maintaining the pubsub characteristics

of the XRP LCP. This solution is called 1 topic per UNL(1-topic/UNL) and involves having

several predefined UNLs from which nodes can choose and structuring the pubsub overlay

54

to abstract each UNL as a topic.

The 1-topic/UNL solution is a hybrid of the two setups presented above. While the 2-

topic solution maintains liveness, it also keeps the pubsub characteristics of the XRP LCP

from working. Similarly, the 1-topic/validator keeps the XRP LCP characteristics but is a

weak solution that allows a break in liveness. By subscribing to predefined UNLs, the nodes

ensure that there is a minimum overlap, allowing the ledger to progress. In our proposal, this

structure appears to be the most suitable, blending the characteristics of the current XRPL

trust overlay infrastructure with the concept of the XRP LCP.

4.3 Methodology

To validate our proposition, we plugged GossipSub into the rippled validator using Flexi-pipe,

which was presented in Chapter 3. Similarly to the previous analysis, we chose to study how

validations are exchanged on the trust overlay. We opted for this approach to simplify our

analysis, considering that validations are exchanged only once per consensus round, while

proposals are exchanged several times during the same round, thus generating a heavier

workload for the pubsub overlay.

As shown in Figure 4.1, we use GossipSub as a module inside libp2p1. The reason is

that GossipSub acts as a router for messages using pubsub and does not have the means to

create and maintain an overlay. It is possible to use GossipSub directly inside the validators

without the overhead of maintaining a second overlay. However, this work aims to evaluate

how GossipSub can mitigate the message overhead and does not intend to change the

rippled code for a production environment. The libp2p and GossipSub components2 used

are the reference implementations, written in go without modifications. These were the

implementations chosen because they are better documented and reported as the most

stable[83].

We separated the experiments into two categories: First, we considered the 2-topic ap-

proach using a fully connected structure for the trust overlay. However, to simplify our anal-
1Available at https://github.com/libp2p/go-libp2p
2Module available at https://github.com/FlavScheidt/gossipGoSnt

55

https://github.com/libp2p/go-libp2p
https://github.com/FlavScheidt/gossipGoSnt

Server Client

GossipSub

ServerClient

rippled
gRPC

libp2p

gRPC

Server Client

GossipSub

ServerClient

rippled
gRPC

libp2p

gRPCValidations

Other Messages

Figure 4.1: Diagram of the communication between two nodes using GossipSub plugged
through gRPC to disseminate validations.

ysis we considered only validations, thus making it a 1-topic approach. We compared the

results against vanilla rippled with the same structure and also against vanilla with squelch-

ing enabled, using the default configuration.

The second category compares the 1-topic/validator and 1-topic/UNL against vanilla and

squelching. In this setup, 1-topic/validator, vanilla, and squelching use the same trust overlay

structure, with the first replicating this structure into its pubsub overlay. The trust overlay

was generated based on the framework presented in Chapter 2 and comprises a randomly

generated graph with a median degree of 16 and a maximum degree of 18 so that every

node listens to at least 60% of the network. We built this structure in this form to maintain

the liveness property. We kept the same characteristics for the 1-topic/UNL experiments,

generating 8 UNLs randomly, each list containing at least 16 nodes.

4.4 Evaluation

In this chapter, we focus on minimizing the overhead generated by the message dissem-

ination strategy used on the XRPL. To evaluate our proposal, we analyzed the number of

56

replicated validations received by one particular node.

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Replicas

0

2000

4000

6000

Nu
m

be
r o

f M
es

sa
ge

s

Distribution of Replicated Messages
GS 1 topic
Vanilla
Squelching

Figure 4.2: Comparison of the frequency of replicated messages on vanilla rippled in a fully
connected structure and GossipSub using a 2-topics setup

Figures 4.2 and 4.3 present the amount of replicated messages received by a node

during 30 minutes of synchronized execution. This amount of time was chosen to give the

nodes enough time to run at least 600 consensus rounds. Both graphs should be read

similarly to the one presented in Figure 3.2. The x-axis presents the number of duplicates,

meaning the number of times the node received the same message. Meanwhile, the y-axis

shows the number of times the node has received a message. And so the graphs say that

the node received y messages x times. As an example, in Figure 4.2, in vanilla rippled, the

node received 7000 different validations 24 times.

The optimal behavior regarding performance is to have no replication, with all messages

being received only once. However, this pattern causes reliability issues in the presence of

byzantine behavior or network failures, so we tolerate a certain amount of replication.

In both setups, vanilla presents a behavior that is suboptimal due to its conservative ap-

proach - especially in the fully connected structure of Figure 4.2. Vanilla with squelching

enabled shows a better tendency, accumulating most of the distribution around 5 to 6 repli-

cas, which is expected, considering that each node always keeps 5 connections for each

57

2 4 6 8 10 12 14 16 18
Number of Replicas

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f M
es

sa
ge

s
Distribution of Replicated Messages

GS 1 topic/validator
GS 1 topic/UNL
Vanilla
Squelching

Figure 4.3: Comparison of the frequency of replicated messages on vanilla rippled in a
16-degree structure and GossipSub using a 1-topic/validator and 1-topic/UNL setups

node on the UNL at each squelching round. The behavior is better than pure vanilla, but it

is still sub-optimal when compared to the results obtained with GossipSub.

The 1-topic approach suggests a tendency closer to the optimal, but the curve still has

a more even distribution than the one presented by the 1-topic/validator setup in Figure 4.3,

being this the curve that gets closer to the optimal. The 1-topic/UNL has a similar tendency,

demonstrating a smaller number of total messages compared to its counterpart. This is a

consequence not of the setup itself, but of how Flexi-pipe works. Due to the requirement of

the rippled validator for bilateral connections and because not all trust relations in this sce-

nario are bilateral, the node ends up connecting to peers it does not trust, but that subscribe

to it. Flexi-pipe does not listen to most of those peers at the GossipSub level, so the consen-

sus rounds take longer since the process considers the number of connected peers. This

limitation would not exist with GossipSub being implemented directly inside of the validator.

We conclude that the use of GossipSub to disseminate validations on the XRPL net-

work would be beneficial for the general performance. The overhead caused by flooding

decreased, while the ledger continued to progress successfully. From the experiments, the

most beneficial setup was the one in which the pubsub characteristics were enhanced by

58

the use of the structure generate by NLAC. The scenario that more closely simulates the ac-

tual structure of the XRPL network presented a good improvement, showing that GossipSub

may be a good alternative for improving performance.

4.5 Discussion

Leveraging the inherent pubsub properties of the XRPL, we integrated GossipSub into the

validator through Flexi-Pipe. GossipSub is the state-of-the-art for message dissemination

on blockchains. The results presented by the experiments show that we correctly identified

the bottlenecks and that GossipSub mitigated the message overhead in the network, thus

improving the scalability of the XRP LCP.

However, this work does not take into account safety considerations, and further anal-

ysis of threats in the proposed scenarios is necessary. Considerations about UNL overlap

in more complex scenarios are also of importance for the continuity of this work. The sec-

ond proposed scenario is straightforwardly a pubsub network, presenting the best results

regarding message overhead.

The next chapters seek to analyze how GossipSub can be parameterized to better suit

the characteristics of the XRPL. Having successfully integrated GossipSub as an overlay for

transmitting certain types of message, and having proved that GossipSub can improve mes-

sage overhead, we can now analyze how validations are exchanged, and which GossipSub

parameters can be better tuned for optimal performance and increased scalability.

59

Part II

Tunning GossipSub Parameters for

Increased Scalability and

Performance

60

Chapter 5

Dimensional Analysis of GossipSub

over The XRP Ledger

5.1 Introduction

The previous chapter explored the use of GossipSub as a dissemination layer for proposals

and validations in the XRPL. In this chapter, we dive deeper into the GossipSub mesh con-

struction and management, presenting a dimensional analysis to understand the behavior of

GossipSub according to different parameterizations. To support our analysis, we use data

science techniques to group sets of parameters into clusters according to their behavior,

find correlations between dimensions and, finally, generate a decision tree to support the

identification of sets of parameters according to the desired behavior and performance of

the network.

The clustering of sets of parameters, according to performance and behavior, and fea-

ture correlation heatmap were the tools used to draw several remarks about the impact of

parameterization and the correlation between dimensions. These remarks, together with a

decision tree based on parameterization, are crucial to better understand how GossipSub

can be configured to different types of systems, with different requirements.

The GossipSub protocol has been implemented and used in practice by popular dis-

tributed systems such as Ethereum, Filecoin, and the The Interplanetary File System (IPFS)

peer-to-peer (p2p) network. Although Ethereum and IPFS have been widely studied in gen-

eral, to the best of our knowledge, the underlying GossipSub protocol has not been widely

61

addressed by academic research. GossipSub was first presented by Dimitris Vyzovitis and

Yiannis Psaras from Protocol Labs in 2019[48]. This work establishes the basis for this new

content-based publisher/subscriber (pubsub) protocol. GossipSub aims to enhance pubsub

dissemination while minimizing bandwidth usage and avoiding peer overload. To achieve

this, the authors propose a bounding between the degree of each peer and a global control

of the amplification factor. Graft and prune messages are used to control a given mesh link

according to a periodic stabilization algorithm using predefined parameters, whose functions

are explained in Section 1.2.2.

5.2 Methodology

For this work, we considered two topologies for the XRPL trust overlay. The first topology

comprises a fully connected set of nodes that mimics the current core of the main XRPL

network. In this topology, we have a unique topic for all proposals, similar to how Ethereum

exchanges blocks. The second involves a predetermined set of Unique Nodes Lists (UNLs)

that each node can choose from. Each UNL is represented by a topic in the GossipSub

overlay.

As discussed in Chapter 1, there are two instances in which the XRP Ledger Consensus

Protocol (XRP LCP) uses flood publishing: to disseminate ledger proposals and to dissemi-

nate validations at the end of the consensus round. In this evaluation, we target proposals,

since they may be exchanged several times during a round, whereas validations are ex-

changed solely at the end of the round. Each round of the XRP LCP takes on average 3

seconds, which means that a new version of the ledger is published on average every 3

seconds[84]. To simulate a heavier workload, Flexi-pipe can also shoot transactions every

2 seconds to each node in the network, performing simple random payments between two

accounts. The XRPL mainnet performs an average of 50 transactions per ledger version1.

We used two different structures of topics: one with 8 different UNLs (called unl on our

analysis) and a core of validators connected as a complete graph (called general). The
1As of October 2023, according to https://xrpscan.com/metrics

62

https://xrpscan.com/metrics

first configuration represents the ideal structure for the XRPL network according to how the

XRP LCP has been previously formalized and is also the instance in which the pubsub

characteristics of the consensus protocol are more evident. The second reflects the current

state of the XRPL mainnet and also mimics how blocks are disseminated on Ethereum.

Table 5.1: GossipSub Mesh Parameters with Default Values
Parameter Concept Default Eth2

D Desired number of peersa 6 8

Dlo Minimum number of peersa 5 6

Dhi Maximum number of peersa 12 12

Dscore Number of high-scored peers to
keep when prunning

4 4

Dout Number of outbound connections
to keep when prunninga 2 2

Gossip
Factor

Factor (%) of how many peers to
emit gossipb 0.25 0.25

Dlazy
Minimum number of peers to

emit gossipb 6 8

Interval Heartbeat for prune, graft,
and gossiping events

1s 1s

aFor each subscribed topic
bFor connections outside of the meshes of the topics

Table 5.1 shows the main mesh parameters with which we experimented, also showing

the default values and the values currently used by Ethereum. Each parameter has been

explained in Section 1.2.2. For each set of parameters, we performed three tests of 30 min-

utes, so nodes would have sufficient time to sync and perform enough consensus rounds.

We gathered data from the trace of events generated by GossipSub and the consensus re-

port from the rippled logs, disregarding a 7.5-minute warm-up and a 7.5-minute cool-down

period, and also ignoring faulty executions. We consider faulty executions the ones in which

the number of events falls below a z-score of 0, 15 ∗ standard deviation.

63

Table 5.2: Parameters testing ranges
parameter minimum maximum
D 6 20
Dlo 4 16
Dhi 8 24
Dscore 2 16
Dlazy 2 16
Dout 2 8
gossipFactor 0.25 0.5
Interval 0.25 3

We tested 14 sets of parameters for each topology, totaling 28 sets of experiments. The

reference set used the default values specified for Ethereum. Eight sets had their values

chosen by assumptions made considering the underlying characteristics of the XRP LCP.

The remaining five had values randomly chosen, still observing the constraints set by the

definition of each parameter[46]. The values were selected according to the configuration of

24 nodes and 8 UNLs and the ranges used are shown in Table 5.2.

5.2.1 Data science methodology

In order to facilitate the evaluation of our experiments, we employ data science method-

ologies to group the outcomes and dive deeper into the effects of parameterization. Our

approach consists of three stages (Figure 5.1): feature engineering, unsupervised learning

(clustering), and supervised learning (classification), which is used for explainability.

Figure 5.1: Step 1: Feature engineering; Step 2: Clustering; Step 3: Decision tree and
explainability

Feature engineering prepares the experimental data for analysis. We first aggregate

64

the relevant data from each experiment (bandwidth, propagation time, overhead, number of

events prune/graft/iwant/ihave/message received/message duplicate) and subsequently ap-

ply standardization preprocessing. This preprocessing adjusts the data values so that they

have a mean of 0 and a standard deviation of 1. Standardization is especially important

when employing clustering algorithms, as these algorithms are based on distance, and un-

processed data with extensive ranges can introduce unwanted distortions to the outcomes.

When aggregating the data, we use two clustering algorithms – namely K-Means (KM)[85]

and Agglomerative Clustering (AC)[86] – to categorize data points with similar characteristics

and uncover intrinsic patterns. These algorithms partition the data into groups, assigning a

specific label to the elements of each cluster, which are fundamentally groups of data points

that possess mutual attributes in n dimensions. In our evaluation, we consider nine dimen-

sions linked to the aggregated data as previously stated. The selection of these two algo-

rithms was based on their distinct approaches to the clustering problem. KM presumes that

clusters are spherical and uniformly sized, whereas AC is equipped to handle non-spherical

clusters of diverse sizes. The final clustering labels are determined by a voting mechanism

among these two clustering algorithms. In summary, for this analysis, we empirically set

the number of clusters to four for both algorithms and, after the voting phase (Table 5.3) we

obtained five final clusters.

Table 5.3: Clusters voting phase

Final clusters 0 1 2 3 4
KM clusters 0 1 1 2 3
AC clusters 2 0 3 1 0

Following the clustering process, a decision tree is used to facilitate the interpretation

and extraction of valuable knowledge. Decision trees create a hierarchy of decision rules

based on data attributes and are beneficial for probing relationships between elements from

distinct classes by offering easily interpretable rules. For our evaluation, we adjusted a

decision tree using the configuration parameters of each experiment and the labels provided

by the clustering algorithms. It is crucial to note that the decision tree does not consider

65

aggregated data from experiments, unlike the clustering algorithms. The idea behind this

approach is to discover the relationships of the clusters created using the aggregated data

and the parameters used in each experiment. Therefore, the output of the decision tree is the

correlation between the parameterization and the performance/behavior of each experiment.

5.3 Evaluation

5.3.1 Impact on the Consensus

The first analysis we perform is to determine how the different sets of parameters can affect

the convergence time for the consensus rounds. According to the closing times for each new

ledger version, gathered from the rippled logs, all the sets show an average of 3 seconds

for closing, with a standard deviation of 0.01. The average closing time for each new ledger

version on the mainnet is also 3 seconds. Therefore, we conclude that the parameterization

of the GossipSub mesh has no impact on the average convergence time of the XRP LCP.

5.3.2 The Dimensions

By applying the clustering algorithms, we found a configuration of 5 groups of sets of pa-

rameters2. Figures 5.2 to 5.8 show the distribution of each dimension for each cluster.

MessageOverhead refers to how many duplicate messages traversed the network and was

acquired by counting the number of times each message was received by each node on

the network. Bandwidth is the bandwidth consumed measured in messages per second,

obtained by counting the number of messages each node receives divided by the total ex-

ecution time, considering full messages and gossiping. PropagationTime is expressed in

milliseconds and measures the average time it takes for a message to reach the destination.

MessageReceived accounts for the number of full messages received by all nodes. Graft

and Prune represent the number of times these events occurred in the network. And finally,

iwant and ihave are the number of ihave and iwant messages that transited through the
2Complete experiment data available at https://github.com/FlavScheidt/flexi-pipe/blob/main/data/

DimensionalAnalysis/CorrelationAnalysis/votingCuster_KM-AC-B.xlsx

66

https://github.com/FlavScheidt/flexi-pipe/blob/main/data/DimensionalAnalysis/CorrelationAnalysis/votingCuster_KM-AC-B.xlsx
https://github.com/FlavScheidt/flexi-pipe/blob/main/data/DimensionalAnalysis/CorrelationAnalysis/votingCuster_KM-AC-B.xlsx

network.

0.00

0.25

0.50

0.75

1.00

1.25

m
e
ss
a
g
e
O
v
e
rh
e
a
d

1e6

0 1
messageOverhead

1e6
0

500

1000

1500

b
a
n
d
w
id
th

0 1000 2000
bandwidth

cluster

0

1

2

3

4

Figure 5.2: Correlation between Bandwidth (in messages/second) and Message Overhead

We suppressed from the graphs the dimension covering the number of messages re-

ceived more than once (DuplicatedMessage). This metric is important because message

duplication ensures delivery in adversary scenarios. This suppression is due to the fact that

the correlation between MessageReceived and DuplicatedMessage is 1, as shown in Fig-

ure 5.9, which means that all messages on the network have at least one duplicate. This

metric is not the same as the message overhead, since the MessageOverhead dimension

accounts for how many replicas of messages transited on the network.

MessageOverhead and Bandwidth are represented together in Figure 5.2 because they

also have a strong correlation between them, 0.99 according to the correlation heatmap

on Figure 5.9. The correlation between the two dimensions was previously discussed by

Vyzovitis et al.[46] and is used in this work as a metric of the accuracy of the methodology.

As stated above, some pairs of metrics have a strong correlation. Figure 5.9 shows the

correlation matrix as a heatmap. It is interesting to see that prune and graft are also strongly

correlated; this may be due to the fact that when pruning occurs, only Dout connections

are kept and therefore a certain number of grafts may be necessary to maintain the number

of connections between Dhi and Dlo. It is important to remember that we do not consider

67

0 5000 10000

propTime [ms]

d
is

tr
ib

u
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Propagation
time in milliseconds

500 1000 1500

Messages Received

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Number of
messages received

0 20 40

Graft

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: Number of
graft events

0 20 40
Prune

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.6: Number of
Prune events

0 20
iwant

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.7: Number of
iwant messages

0 2000
ihave

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.8: Number of
ihave messages

the bootstrap of the network for our analysis, so all the initial grafting events are not taken

into account. There is also a relatively high correlation between these two events and the

PropagationTime, which means that the rearrangement of the mesh impacts this dimension

but curiously has no impact on Bandwidth and MessageOverhead.

The dimensions that appear to be more correlated with MessageOverhead and Band-

width are iwant, DuplicatedMessage and MessageReceived. Although the correlations are

not strong, it is natural that the number of messages circulating in the network will affect the

Bandwidth, but in the end, it can also depend on the mesh topology.

5.3.3 The Clusters

Using Figures 5.2 to 5.8 as references, we can analyze the characteristics of each group in

relation to the nine dimensions discussed in Section 5.3.2. Each graph shows the distribution

68

of sets for each range of values, with the clusters being represented by colors, the legend of

which can be seen in Figure 5.2 and in Table 5.4, which also shows the size of each cluster.

We begin by analyzing the characteristics of each cluster and then present the decision tree

for the parameters based on these clusters, which may be used as a tool to select suitable

sets of parameters depending on the desired behavior of the network.

Table 5.4: Clusters Sizes and Labels

cluster 0 1 2 3 4
size 5 10 2 9 2
color blue orange green red purple

Cluster 0 (blue) shows a decent PropagationTime, with a quantity of MessagesReceived

and a Bandwidth in the middle range. It is interesting to see that it has by far the highest

D
u
p
lic
a
te
d

M
e
ss
a
g
e

M
e
ss
a
g
e

R
e
ce
iv
e
d

G
ra
ft

P
ru
n
e

iw
a
n
t

ih
a
v
e

P
ro
p
a
g
a
ti
o
n

Ti
m
e

M
e
ss
a
g
e

O
v
e
rh
e
a
d

B
a
n
d
w
id
th

Duplicated
Message

Message
Received

Graft

Prune

iwant

ihave

Propagation
Time

Message
Overhead

Bandwidth

1 1 0.1 0.053 -0.1 0.13 -0.14 0.35 0.35

1 1 0.11 0.053 -0.1 0.13 -0.13 0.35 0.35

0.1 0.11 1 0.96 -0.0093 -0.25 0.56 -0.15 -0.085

0.053 0.053 0.96 1 0.095 -0.13 0.56 -0.13 -0.068

-0.1 -0.1 -0.0093 0.095 1 0.51 -0.083 0.34 0.39

0.13 0.13 -0.25 -0.13 0.51 1 -0.31 0.052 0.064

-0.14 -0.13 0.56 0.56 -0.083 -0.31 1 -0.09 -0.058

0.35 0.35 -0.15 -0.13 0.34 0.052 -0.09 1 0.99

0.35 0.35 -0.085 -0.068 0.39 0.064 -0.058 0.99 1

0.20.00.20.40.60.81.0

Figure 5.9: Heatmap of the correlation between every two dimensions

69

amount of ihave messages being exchanged, which means that it emits a high amount

of gossip, with the amount of iwant messages also slightly higher than the average. The

difference between the amount of iwant and ihave messages is, however, quite high, so the

parameters related to gossiping could be better tuned for this particular group. All sets of

this group were executed over the general topology, in which we have a smaller number of

topics with all the nodes subscribed to them. By the number of iwant messages, we can infer

that the full-message overlay does not reach the entire network, which is expected behavior

for GossipSub and not a derogatory feature.

Cluster 1 (orange) has the lowest values for the Bandwidth and also the lowest quantity

of iwant messages. In general, it seems to aggregate most of the sets executed on the

general topology that did not fall on cluster 0, with some exceptions. The lower Bandwidth

in this group is mainly due to the topology, considering that it is more densely connected,

and so it needs fewer hops to reach the destination.

Cluster 2 (green) shows a higher concentration of prune and graft messages, encom-

passing only sets executed over the unl topology, where we have more topics with fewer

subscribed nodes. As stated previously, there is a strong correlation between graft, prune

and PropagationTime. The distributions for this set demonstrate that this correlation is di-

rectly proportional and, in this case, seems to be derogatory to the performance of the

network. The sets in this group are generally voted outliers by the clustering algorithms,

having only two members, as can be seen in Table 5.4.

Cluster 3 (red) shows the highest Bandwidths of the entire set, as well as the highest

amount of MessagesReceived. With few exceptions, the sets in this cluster were executed

over the unl topology, which leads us to conclude that topologies with a higher amount of

smaller topics have higher Bandwidth than topologies with fewer big topics.

Cluster 4 (purple) also concentrates sets executed over the unl topology. As in the

previous group, the Bandwidth is also on the higher side, although the amount of Messages-

Received shows to be low. Interestingly, the number of iwant messages seems to be on the

average higher side, while the number of ihave messages is consistent with clusters 0, 2,

and 3.

70

With that in mind, we may conclude that topologies with smaller but more varied topics

have a wider variation in behaviors and performance. Sets executed over the general topol-

ogy tend to fall into two quite stable clusters with lower Bandwidth, while those over the unl

topology show more variation, by being sorted into three highly variable clusters. We also

corroborated some of the correlations presented in Section 5.3.2.

5.3.4 Decision Tree

Now that we have analyzed the clusters for their behavior and performance, we can classify

the sets of parameters based on the desired behavior of the network. To do this, we use a

decision tree, shown in Figure 5.10. As a decision tree performs a classification task, here

we rename each cluster from the previous section as the corresponding class, for which the

decision tree will find a set of rules that can identify the elements of that class based on the

parameterization. Thus, the idea is to link the clusters created on the basis of the perfor-

mance/behavior of each experiment run with its parameterization. We can immediately see

that the topology is the first parameter considered for the classification, with 0 representing

the unl and 1 representing the general topology. In both branches, the next parameter used

is the interval, with the Dlo immediately separating two classes in one of the unl branches.

In all, the gossiping parameters seem to be the ones that have less impact on the classi-

fication task. Dlazy does not appear in the tree at all, while GossipFactor seems only to be a

determinant factor for classification on the unl branch, and even then it is only present once

near the leaves. Dout and Dscore appear to be the most determinant factors in the general

branch, while the unl branch seems to be more tied to the three primary D parameters (D,

Dlo and Dhi).

The decision tree itself may not provide many insights about how parameters and di-

mensions relate to each other, but presents a tool for informed parameter selection. While

the clustering and the correlation heatmap give us an understanding of the behavior and

performance of different groups of sets of parameters, the decision tree is the last piece

that provides a way to facilitate the parameterization of GossipSub to meet specific network

requirements.

71

topology <= 0,5

interval <= 0.75

dlo <= 7 dhi <= 10

dout <= 3

cluster 3
samples = 4

dhi <= 14

cluster 3
samples = 2

d <= 12

cluster 4
samples = 1

dscore <= 5

cluster 3
samples = 1

gossipFactor <=
0.375

cluster 4
samples = 1

cluster 1
samples = 2

cluster 2
samples = 2

cluster 3
samples = 1

interval <= 0.75

cluster 1
samples = 3

dscore <= 12

dlo <= 5 cluster 3
samples = 1

cluster 1
samples = 1

dout <= 6

dscore <= 7 cluster 1
samples = 1

dscore <= 5 cluster 0
samples = 1

dout <= 3 cluster 1
samples = 1

dhi <= 14

cluster 0
samples = 3

interval <= 2

cluster 1
samples = 1

cluster 0
samples = 1

cluster 1
samples = 1

Figure 5.10: Decision Tree

5.4 Discussion

In this work, we presented a 9-dimensional analysis of the behavior and performance of

GossipSub over an alternative consensus algorithm for blockchains. We plugged GossipSub

into the XRPL and tested 13 sets of mesh parameters over two different topologies. We used

data science tools to analyze nine dimensions of GossipSub and learn how it behaves and

performs with different sets. These tools showed us how we can group different sets of

parameters according to their behavior, how the dimensions correlate to each other, and

finally, we provided a decision tree as a tool to select sets of parameters based on the

behavior/performance of the clusters presented.

The nine dimensions studied were MessageReceived, DuplicatedMessage, Bandwidth,

72

MessageOverhead, PropagationTime, graft, prune, iwant and ihave, while the mesh param-

eters were D, Dlo, Dhi, Dout and Dscore for the eager push transmission, as well as Dlazy

and GossipFactor for lazy pull, and finally, the HeartBeatInterval, that dictates the frequency

of synchronous events on the network.

We used the clustered data and the correlation heatmap to draw remarks about the

general behavior of GossipSub and also about how the dimensions relate to each other.

We were able to trace a profile of the behavior of each cluster. Finally, we analyzed the

decision tree generated over the parameterization. This tree was generated regarding the

parameters, without considering the dimensions used for the clustering and the heatmap,

and gave us insights into how to parameterize GossipSub according to the desired behavior

and performance of the network as a whole.

We were also able to show that the underlying way messages are disseminated on the

p2p network did not affect the convergence time of the XRP LCP. Thus, the GossipSub

parameterization did not affect the consensus mechanism that lies upon the unstructured

p2p network used by the XRPL blockchain.

In the next chapter, we go a step further and try to identify causal relationships between

parameters and performance metrics. We use the findings of this chapter to select a target

metric, identifying which variables are related to this measurement. The causal analysis

helps us to gain more insight on how the alteration on the value of a parameter can impact

on the behavior of the network, being able to even quantify the causal relationship.

73

Chapter 6

Causal Analysis for GossipSub Con-

figuration

6.1 Introduction

As discussed in Chapters 1 and 5, GossipSub has tunable parameters related to its mesh

construction and its score function, meaning that it is possible to configure it for better perfor-

mance depending on the kind of system on which it is being used. Unfortunately, not much

effort has been put into understanding how this configuration can affect the performance

of the network. The configuration of Ethereum has been performed through extensive em-

pirical tests on simulated networks[57]. However, in several scenarios, extensive empirical

tests as the ones performed in Chapter 5 may not be feasible.

Considering a scenario where we have few means to extensively test and analyze the

network according to its configuration, we propose the use of graphical causal tools to an-

alyze the system from a causal point of view. Causal analysis can give us insight into how

each parameter can affect a target performance measurement, also giving us tools to quan-

tify those influences.

In this study, we focus on the parameters that GossipSub uses to generate its mesh. We

base our methodology on the ideas presented by Judea Pearl[87] on the steps for causal

inference, explained in Section 6.4. In Section 6.6 we find the causal relationships in the form

of a graph, we then discover the distribution functions for each variable to form a causal

model in Section 6.7. Finally, in Section 6.8, we quantify the relationships and simulate

74

interventions using the causal model created in the previous steps, seeking to answer the

following questions:

• Which parameters are more likely to affect the performance of the network?

• How these parameters affect the performance of the network?

6.2 Limitations

As discussed in Chapter 1, the XRP Ledger Consensus Protocol (XRP LCP) works on the

basis of quorum voting, with nodes casting votes according to the position of trusted peers.

Each node maintains a Unique Nodes List (UNL), trusting that the peers on that list will not

collude to defraud or stop the ledger. To converge into agreement, there needs to be a

minimum overlap between all UNLs in the network, otherwise, the excessive disagreement

may lead to a stall in the progress of the ledger[15][29][8][7], considering that the XRPL has

fork prevention mechanisms.

The overlap required between the lists limits our evaluation when considering different

combinations of number of topics and topic size. In most of the model-scenarios presented,

there is an impossibility for the XRPL network to bootstrap, given that the UNLs will not

have enough overlap between themselves for the consensus process to converge into a

single ledger version. This characteristic of the XRPL limits our ability to directly evaluate

the results obtained in the simulated interventions. Nevertheless, this work has the goal

to better understand how the GossipSub mesh parameters impact the performance of the

network, and not to directly find the ideal values for each parameter. This analysis seeks

to understand the causal relationships between parameters and metrics, so we can better

parameterize GossipSub for different scenarios than the ones it is already employed.

6.3 Related Work

Causal analysis is a tool used in several areas such as social sciences, biology, and medical

sciences. It is not a new concept, but it has gained traction in recent years. It has also

75

been widely deployed in software engineering to study and solve problems related to fault

localization, testing, and performance modeling[88].

To our knowledge, currently, there is no work that addresses causal analysis for study-

ing the parameterization of networks; however, the use of causal analysis to study network

performance is not completely new; Hours et al.[89] present the first study to make the case

for the use of graphical causal methods to analyze network performance. The work focuses

on data collected from an emulated Transmission Control Protocol (TCP) network, by mea-

suring File Transfer Protocol (FTP) traffic, and on subsequent measurements obtained from

a single FTP server connected to the Internet. In the first step, a causal graph is generated

from the data collected in the emulated network, after causal inference methods are applied

to get some predictions, which are validated based on the data collected by the real FTP

server.

This study used the Tetrad[90] suite, concluding that constraint-based algorithms gen-

erated more informative graphs, based on knowledge of the TCP domain. The particular

constraint-based algorithm used to subsequently predict network performance was the PC

algorithm[91]. However, at the time of the study, Tetrad assumed either normality or linear-

ity on the data. In our work, we considered four classes of discovery algorithms, including

gradient-based ones that were not yet available at the time of the Hours et al. study. In

addition, we used implementations that allowed us to make more assumptions about the

distribution of the data.

In the domain of log analysis on distributed systems, Neves et al.[92] present Horus,

a tool that uses graph databases to store causal graphs obtained from causally consistent

aggregation of distributed systems. More specifically on the analysis of network events

logs, we can cite Kobayashi et al.[93], which presents a methodology for the comparative

analysis of two networks using causal graphs obtained from log data. The study focused

on comparing logs from different sources by reconciling the generated causal graphs. In

parallel, Jarry et al.[94] apply MixedLinGaM to the problem, generating weighted graphs

with more causal relationships than the baseline given in the previous study. Regarding

the use of causal analysis in network management, we can highlight Kim et al.[95], which

76

proposes an algorithm for Alarm Correlation based on root cause analysis without the need

for domain knowledge.

6.4 Steps for the Causal Analysis

Association

Intervention

Counterfactual

Figure 6.1: The causation ladder

In this section, we present the foundational theory on causality used to analyze the im-

pact of the GossipSub mesh parameters on message overhead in the XRPL. This approach

was pioneered by Judea Pearl[87] and uses a ladder to abstract the levels of relationships

between variables. Figure 6.1 shows the Ladder of Causation with its three rugs, or steps.

The higher we climb the ladder, the better our understanding of the causal relationships

between the variables and the metrics studied.

In the first step, we have Association, in which we observe the system and try to un-

derstand how a change in an input can affect a possible output. Observations allow us to

generate predictions that can be made from the perspective of conditional probability [96].

However, this mathematical formulation may not be able to fully express the causal relation-

ships.

The association step may not give us information about causal associations, but gives

us a good foundation to find correlations between variables. So we now climb to the second

step, where we perform interventions. Interventions are made to observe how a modification

in an element can impact an outcome. Mathematically, interventions can be expressed by

77

do-calculus.

Interventions help us find causal relationships between components of a system and

how they impact certain outcomes; the next step of the ladder, counterfactuals, extrapolates

the insights acquired to answer hypothetical questions. Counterfactuals can be seen as

simulated or hypothetical interventions, where we try to emulate a state of the system that

has never been observed in the real world.

In a broad view, we can consider observation the step where we start formulating a

view of the system and identify correlations between variables and ask how those variables

causally interact with each other. Intervention is where we can start answering the questions

by means of experimentation. And finally, counterfactuals helps us answer hypothetical

questions about the behavior of the modeled system.

6.5 Methodology

In this work, we opt for graphical tools to help us model and analyze causal relationships.

The first tool used are Structural Causal Models (SCMs), which use Direct Acyclic Graphs

(DAGs) to represent the causal relationships between variables. However, SCMs can only

represent the causal relationships and their directions, without any information about the

distribution of the data. To encode distributions, we need Graphical Causal Models (GCMs),

which are sets consisting of a graph and a group of functions that can represent the distri-

bution of the data for each variable in the model[97].

SCMs can be expressed as normal DAGs that can be represented using Graph Modeling

Languages (GMLs) such as NetworkX[98] and GraphViz[99]. GCMs are more complex to

represent and analyze, requiring more specific tools, such as DoWhy[100], a Python library

for DAG-based causal inference. There is also the need to discover the causal relationships

to obtain the SCM, to do that we employ both a manual domain knowledge-based approach

and an algorithm for causal discovery, implemented in another Python library called gCas-

tle[101].

Figure 6.2 presents a more detailed diagram of how we use the ladder of causation to

78

Influx

Dataset

NOTEARS

Interventional
Causal Graph

Counterfactual
Simulated

interventions

Causal
Influences

Observational
Causal Graph

Experiments

Figure 6.2: Steps for the Causal Analysis

discover and analyze causal relationships between the GossipSub mesh parameters and

the target metric. We start by generating a SCM based on observational data and domain

knowledge. The observational data were collected from the results presented in Chapters 4

and 5.

In the next step, we perform interventions on the GossipSub mesh parameters and use

the data generated to create a second SCM using an algorithm for causal discovery. We

then create a GCM using DoWhy to fit the distributions of the variables into the model. For

this, we conducted randomized experiments using a testnet of 24 nodes running instances

of Flexi-pipe[68]. We use GossipSub to propagate proposals, randomly selecting 44 sets of

79

parameters using three structures of topics. The previous chapters, used for the observa-

tional phase, did not consider how the topics were structured in quantitative terms, instead

focusing on the structure of the trust overlay of the XRPL and how it can be mapped to

GossipSub topics for optimal message overhead.

Table 6.1: Structures of Topics

ID Topics Subscriptions per node Topics Size
1 1 1 24
2 24 µ = 16 1
3 8 1 µ = 16

Table 6.1 shows the three topic structures used in this phase from a quantitative point of

view. Structure 1 uses one global topic to disseminate validations, with all nodes publishing

on this topic and all nodes also subscribed to this topic. Structure 2 has 24 topics of size 1,

with each node subscribed to 16 nodes on average, with a maximum of 18 and a minimum

of 15 subscriptions, abstracting each node as a topic. The last structure, 3, uses eight

predefined topics, each node subscribed to 1 topic, the smallest topic having 16 nodes and

the largest 18 nodes.

Structures 2 and 3 were previously used[102] to enhance the pubsub characteristics of

the XRPL, while structure 1 is similar to how the XRPL mainnet is currently implemented,

with a unique UNL to guarantee safety and liveness[8], also similar to how Ethereum dis-

seminates blocks[46]. Here, the three of them serve a quantitative purpose, abstracted as

two variables for the causal analysis: topic size and number of topics. The three structures

also allow us to make focused interventions by varying either the topic size or the number of

topics. Following this idea, each set of parameters was tested on each of the structures.

Having climbed the ladder, we get to the third step. We start by quantifying the strength of

the causal relationships and determining which variables had the biggest causal influence

on the chosen metric: message overhead. We then proceed to make interventions into

some variables to analyze which set of parameters would create the desired behavior in the

system.

80

This phase requires us to push the system to behave in ways that have not been previ-

ously observed. This is done by hypothetical or simulated interventions[96]. Those interven-

tions are different from the ones described previously, in a way that they are not interventions

done in the system, but in model-scenarios created in the two previous steps. First, we use

causal graph tools to find quantitatively which are the variables that most influence the tar-

get measurement, we then proceed to use DoWhy to make simulated interventions to qualify

these influences.

6.6 Observational Analysis

We used observational data and domain knowledge to generate an initial causal graph for

GossipSub, considering parameters related to the mesh construction. Our initial goal was

to model the entire system using the 9 dimensions presented in Chapter 5: messageRe-

ceived, duplicatedMessage, prune, graft, ihave, iwant, bandwidth, propagationTime and

messageOverhead and the 8 parameters used to tune the mesh construction: D, Dhi, Dlo,

Dscore, Dout, Dlazy, GossipFactor, Heartbeat Interval. However, this approach resulted in

an overly complicated graph that hindered subsequent analysis of causation between vari-

ables.

Our next step was to simplify the graph for a more targeted analysis. For that, we chose

a target measurement: messageOverhead. We then recreated the causal graph – Figure

6.3 – to express only the relationships that impact the target, namely most of the parameters

related to the full-message overlay. Considering that most of the parameters that impact

messageOverhead are defined per topic, we added two variables related to the number of

topics and topic size, respectively topics and topicSize. In this scenario, the parameters are

D, Dlo, Dhi, Dout, Topics and TopicSize.

The correlation heatmap presented in Chapter 5 helped us identify the variables to be

used in our causal model. Considering the importance that messageOverhead has for the

scalability and performance of the XRPL, we use this metric as a target in our model. We

then identified which parameters and events showed the highest correlation with our target

81

Figure 6.3: Causal Graph generated with observational data and domain knowledge

measurement and used domain knowledge to model the SCM shown in Figure 6.3.

D dictates the ideal number of connections per topic on the full message overlay and

is more likely to affect the number of grafts and prunes. It may also cause the number of

messagesReceived to increase and decrease; as for the messageOverhead, D influences

the number of replicas a given node receives, forwarded by their direct peers. Dhi influences

the prune of the connections, since it dictates the limit of the number of connections per topic.

When a prune occurs, only Dout outbound connections of high-scoring peers are kept, so

new connections must graft, therefore, prune events generally cause graft events, which

are also bound to Dlo. The number of topics also affects messageReceived and affects

messageOverhead, since each d-value is defined per topic. The topicSize affects the total

number of messageReceived, directly affecting the messageOverhead.

6.7 Interventional Analysis

To gather interventional data, we set up an XRPL testnet with 24 nodes using GossipSub to

disseminate proposals. We chose 43 sets of parameters and ran tests over three different

structures of topics, each emulating different configurations for the XRPL trust overlay, as

82

shown in Table 6.1. Each set of parameters was used 3 times for 30 minutes in each of the

structures, totaling 387 executions. We gathered data on the executions from the Gossip-

Sub tracer and loaded them into a timeseries database. The tracer provides time-stamped

information about events on the network, both on full message and gossip overlays. After

that, the data were aggregated per number of events in 5-second time chunks, excluding

faulty executions from the dataset. The faulty executions are the ones in which the z-score

falls below 0, 15 ∗ standard deviation, considering the total number of data points recorded

on the database for each execution.

We used the gCastle[101] library to perform causal discovery in the dataset obtained1.

gCastle is a Python toolbox for learning causal structures, implementing 19 algorithms

from different categories, and also providing evaluation metrics for the generated graphs.

From the algorithms provided, we chose 4: PC[91][90], LiNGAM[103], GES[104][105] and

NOTEARS[106]. We chose these algorithms to test the different categories of causal dis-

covery: constraint-based (PC), function-based (LiNGAM), score-based (GES) and gradient-

based (NOTEARS).

Experimentally, GES resulted in a convoluted graph that showed too many spurious

causal relationships, as can be seen in Figure 6.4. We chose to exclude GES from further

analysis because the graph would require pruning too many edges to make sense according

to the domain knowledge; we also found cycles in the resulting graphs, which violates the

concept of a DAG.

PC has the advantage of being the only algorithm implemented in gCastle that accepts

the input of prior knowledge in the causal discovery in the form of required and forbidden

edges. It works by forming a complete undirected graph and removing edges following a set

of constraints that aim to discover independence[107]. We applied the three variants of PC

available in gCastle: classical[108], parallel[109] and stable[110], inputting prior knowledge

in the form of forbidden edges, preventing the algorithm from trying to find relationships

between the parameters and in a reverse causal way, meaning that we prevent the creation
1Code and graphs available at https://github.com/FlavScheidt/causalGossipSub/tree/main/1_

Discovery

83

https://github.com/FlavScheidt/causalGossipSub/tree/main/1_Discovery
https://github.com/FlavScheidt/causalGossipSub/tree/main/1_Discovery

Figure 6.4: Structural Causal Graph generated by the GES algorithm

of edges from metrics resulting in parameters. We did not input any required edge so as to

keep external interferences to a minimum.

LinGaM and NOTEARS do not accept prior knowledge; both found relationships between

parameters that are true from a correlational point of view, considering that some d-values

are constrained by the value of D. LinGaM also found spurious causal relationships between

topicSize and topics. We pruned these edges for subsequent evaluations, as they are not

truly causal relationships. The algorithms did not find any reverse causal connection; that is,

in NOTEARS and LinGaM, the parameters always cause the metrics and not vice versa.

LinGaM uses the non-Gaussianity assumption to break the symmetry between causal

and anti-causal models[96]. We used two variations for our analysis: ICA[111] and Di-

84

rect[112]. NOTEARS works with the idea of continuous optimization, employing a differen-

tiable function that ensures that the optimized graph is acyclic[96]. We used two variations

of NOTEARS: pure NOTEARS LowRank[113] and GOLEM[114].

Having obtained a SCM in the form of a causal DAG, we now go one step further and

assign causal mechanisms to each of the variables in the model to generate a GCM. This

assignment is made by assuming a distribution for the variables based on a correlation

matrix. DoWhy also gives the possibility of automatically assigning causal mechanisms. We

chose the second approach, with the automatic assignment assuming Discrete Addictive

Noise distributions for all the nonroot nodes of the graph.

6.7.1 Refuting Causal Graphs

Having generated SCMs using the algorithms supplied by gCastle, we now need to evaluate

the models to determine which one provides a better representation of the real-world sys-

tem. For this analysis, we first employ gCastle to measure the distance between the models

generated by interventional data and the one extrapolated from observational data and do-

main knowledge. We then proceed to use DoWhy, which provides tools to analyze both the

fitting and performance of the models according to the training dataset provided.

Table 6.2 shows the evaluation metrics obtained by gCastle for the graphs generated

by each method. However, these evaluation metrics are generated on the basis of the

underlying truth, which is represented by the causal graph generated during the observation

phase (Figure 6.3). The metrics in Table 6.2 then give us the distance between the model

generated with observational data using domain knowledge and the model generated by

interventional data using discovery algorithms.

The metrics in Table 6.2 are only sufficient to evaluate the effectiveness of the discovery

algorithms if we assume that the graph generated using observational data is true in repre-

senting the causal relationships of the system. At this point, we do not know whether the

observational graph is consistent with the interventional data. This question cannot yet be

answered directly. However, we have tools to refute a certain causal graph if it does not sat-

isfy some conditional independence statements on its nodes called Local Markov Conditions

85

Table 6.2: gCastle Evaluation of Discovery Algorithms

Precision Recall F1
PC Classical 0.42 0.69 0.52
PC Stable 0.42 0.69 0.52
PC Parallel 0.42 0.69 0.52
D LinGaM 0.31 0.38 0.34
ICA LinGaM 0.43 0.53 0.48
NOTEARS 0.41 0.53 0.46
NOTEARS LowRank 0.21 0.38 0.27
NOTEARS GOLEM 0.2 0.23 0.21

(LMCs)[115]. We use another Python package, DoWhy[100], to refute the generated graphs.

DoWhy provides tools to abstract the causal reasoning process, making it more accessible

to nonexperts. One of the key features of the package is the ability to evaluate models,

providing an overview of different metrics that provide information on the performance of the

causal model[116].

DoWhy can perform independence tests on separate sets of variables, but given the

size and amount of graphs we wish to evaluate, we chose to use another tool from the

package: graph falsification2[117]. The falsification tool gives us the summary of two tests,

represented by the p-value of each metric. The first compares the number of LMCs violated

compared to randomly generated graphs, and the second, TPa, verifies whether a graph is

falsifiable. A graph is falsifiable if there is a randomly generated graph with the same number

of LMC violations[118].

Figure 6.5 shows the histogram with the falsification summary of the graph generated

with the observational data. We do not refute the graph, instead using it as a baseline for

the evaluation of the causal discovery methods in Section 6.7; the p-value for LMC being

0.1 and the p-value for TPa 0 meaning that the graph is better than 90% of the random

graphs generated, and the graph is not falsifiable. To evaluate the performance and fitness

of the causal models generated by observational and interventional data, we first generated
2Code and evaluation reports available at https://github.com/FlavScheidt/causalGossipSub/tree/

main/2_ModelEvaluation

86

https://github.com/FlavScheidt/causalGossipSub/tree/main/2_ModelEvaluation
https://github.com/FlavScheidt/causalGossipSub/tree/main/2_ModelEvaluation

Figure 6.5: Falsification summary of the graph generated with observational data

the falsification summaries for the SCMs, shown in Table 6.3. We did not consider the TPa

value, since all graphs showed to not be falsifiable.

Table 6.3: Falsification Summary of Discovery Algorithms

LMC LMC Violations LMC Violations Rate
Observational 0.10 23/52 0.44
PC Classical 0.65 21/45 0.47
PC Stable 0.20 18/45 0.40
PC Parallel 0.35 22/45 0.49
D LinGaM 0.05 31/68 0.46
ICA LinGaM 0 29/64 0.45
NOTEARS 0.10 29/66 0.44
NOTEARS LowRank 0.05 37/64 0.42
NOTEARS GOLEM 0.05 42/78 0.54

87

DoWhy uses a threshold of 0.05 for the LMC p-value to refute graphs. By this estimation,

only Direct LinGaM, ICA LinGaM, NOTEARS LowRank, and NOTEARS GOLEM would not

be rejected. However, this threshold can be arbitrary in a real-world scenario, and so we

do not assume any threshold to refute graphs, using the LMC p-value as a comparison

metric, instead. We can see that ICA LinGaM has the ideal LMC p-value but still shows LMC

violations, with PC Stable having the lowest rate of violations. We consider these violations

to be present because of latent variables, that is, variables that cannot be observed but have

a greater impact than some observed variable[89].

6.7.2 Performance Evaluation of the Graphical Causal Models

DoWhy can also evaluate GCMs to verify how well the models perform, if the assumption of

the addictive noise model is correct, and how well the GCM captures the joint distribution of

the observed data[116]. We chose two metrics in our evaluation, shown in Table 6.4. First,

we look at the overall average KL-divergence (KL-Div in the table) between the generated

and the observed distributions, the lower the KL-divergence, the better the model fits the

observed data distribution. The second metric is obtained by nonroot node, evaluating the

accuracy of the causal mechanisms expressed in the model, and is measured by the nor-

malized Continuous Ranked Probability Score (CRPS); the closer this value is to zero, the

better the precision of the causal mechanism for that given node.

Table 6.4: DoWhy Evaluation of Causal Discovery Algorithms

CRPS
KL-Div graft prune messageReceived messageOverhead

Observational 4.88 0.14 0.88 0.35 0.18
PC Classical 5.06 0.15 0.06 0.11 0.35
PC Stable 5.07 0.15 0.06 0.11 0.35
PC Parallel 5.07 0.15 0.06 0.11 0.35
D LinGaM 3.78 0.25 - 0.35 0.13
ICA LinGaM 3.61 0.25 - 0.37 0.18
NOTEARS 3.62 0.25 - 0.37 0.13
NOTEARS LowRank 2.50 - - 0.33 0.13
NOTEARS GOLEM 2.51 - - 0.35 0.14

88

It is important to note that the results for LinGaM and NOTEARS – including all variations

– had bigger KL-divergences before the pruning of the edges that represented relationships

between the parameters. The values were around 7 before pruning and then decreased

to around 3.7 to 2.5 afterward. We suppressed this analysis from this work for the sake

of brevity, but it shows once again the importance of domain knowledge in the modeling of

causal structures.

From the metrics represented in Table 6.4, we can see that NOTEARS LowRank and

GOLEM have the smallest KL-divergence. However, both models ended up excluding graft

and prune events, which may indicate that these events have little to no effect on mes-

sageOverhead. GOLEM has a high CRPS for messageReceived, making LowRank a better

candidate. Nonetheless, we need to consider that both algorithms have low F1 scores (Ta-

ble 6.2) when considering the domain knowledge model. So we turn our attention to the

LinGaM variations and pure NOTEARS.

From Table 6.3, ICA LinGaM showed to better fit the data, also showed decent KL-

divergence while having good or very good CRPS for the nonroot nodes, however showing

a worst CRPS for messageOverhead compared Direct LinGaM and NOTEARS. Between

those last two, NOTEARS showed a lower CRPS for the target measurement, keeping a

KL-divergence close to ICA LinGaM and an acceptable F1 score. Therefore, using the

evaluation tools and domain knowledge, NOTEARS generated a suitable causal model for

the proposed scenario.

6.7.3 Selecting a Graphical Causal Model

Table 6.5: Distribution Functions of the GCM variables

Distibution Function
graft Discrete LinearRegression
messageReceived Discrete HistGradientBoostingRegressor
messageOverhead Discrete HistGradientBoostingRegressor

Domain knowledge is a crucial aspect of causal analysis, but it cannot find all the causal

89

relationships between variables. As a result, we analyze the resulting graphs for each cate-

gory of discovery algorithms and select the SCM generated by pure NOTEARs that is most

similar to the SCM generated with the observational data.

Having the SCM and the interventional dataset in hands, we can now generate a GCM

by fitting distribution functions for each variable. For that, we use the DoWhy automatic

assignment. The distribution functions attributed to each non-root node can be seen in

Table 6.5.

6.8 Counterfactual Analysis

Counterfactuals can help us answer questions in the form of what would have happened

with variable x had I assigned the value y’ to the variable y. It helps us evaluate possible

outcomes from states that were never observed or cannot be observed in the real world. But

first, we must identify which variables are more likely to impact the outcome.

Figure 6.6: Causal strength of parameters over metrics, with messageOverhead as target

Figure 6.6 shows the causal strength of each variable in our target measurement, the

values in the edges being the percentage of causal strength of each variable over the target.

The graph was obtained again using the direct strenght arrow algorithm[119], provided by

DoWhy. This algorithm tries to quantify causal relationships by abstracting the edges of

the causal DAG as communication channels that can be corrupted by interventions. Those

interventions cause new distributions on the data, the causal strength is then measured by

the relative entropy distance between the two distributions.

90

We can see that the greatest influence on the messageOverhead variance comes from

messageReceived and, on a minor scale, from D, Dhi and Dout. The causal relationship

between messageReceived and messageOverhead is trivial, since more messages will al-

ways generate more duplicates.

d
dh

i
dl

o
do

ut

m
es

sO
ve

rh
ea

d

m
es

sR
ec

ei
ve

d

pr
un

e

to
pi

cS
ize

to
pi

cs
0

10

20

30

40

50

V
a
ri

a
n
ce

 a
tt

ri
b
u
ti

o
n
 i
n
 %

Figure 6.7: Causal Influence of parameters over metrics

Figure 6.8: Causal strength of parameters over metrics, with messageReceived as target

We also ask what factors influence messageOverhead the most. This question can

be answered by applying the intrinsic causal contribution method[120], which recursively

rewrites each node as a function of its ancestors to make interventions that do not change

the observed joint distribution. Figure 6.7 shows a bar graph that summarizes the results

91

obtained. We can now see that, in addition to messageReceived, D and Dhi, TopicSize and

Topics also influence messageOverhead, in fact they have the highest influence.

Since we cannot capture much causal strength from topicSize directly in messageOver-

head, we analyze the strength of causal relationships using messageReceived as the target

measurement. Since the intrinsic causal contribution represents a node as a function of its

ancestors, the previous results may imply that there are indirect causal effect that could not

be captured by the direct strength arrow algorithm. Figure 6.8 shows the resulting SCM.

topicSize and topics are indeed the variables with higher causal strength over messageRe-

ceived, confirming that the variables have an indirect causal effect over messageOverhead.

6.8.1 Simulated Interventions

After identifying the parameters that mostly affect our target measurement, we can now

make interventions in the model-scenarios created in the previous steps of the ladder. Sim-

ulating interventions helps us better understand the impact that a certain value change in

one variable can have on the target measurement. Here, we try to answer the questions in

the form of What happens to variable x if we change the value of variable y.

0 5 10 15 20 25 30 35
0

250

500

750

1000

1250

M
e
ss

a
g
e
O

v
e
rh

e
a
d

topics = 1
topics = 2

topics = 8
topics = 12

topics = 16
topics = 18

topics = 22
topics = 24

Topic Size

Figure 6.9: Simulated results for messageOverhead when intervening on topicSize and num-
ber of topics

We previously identified topicSize and topics as variables with a higher causal influence

92

over messageReceived, also causing a high indirect causal influence in messageOverhead.

So, we selected these two variables for the first counterfactual analysis. It is hard to separate

the two variables from each other, considering that the growth in the number of participants

in the network may affect both dimensions.

In Ethereum and FileCoin, the number of topics remains constant no matter the size of

the network, with only the size of the topics growing. The XRPL gives us the opportunity to

try different arrangements for topics so that we can analyze how the network may behave in

the case of a dynamic arrangement of topics. Consider the case in which UNLs can vary in

number and sizes; Would this arrangement have any advantages over the approach where

we mimic the structure used on Ethereum, with fixed topics always varying in size?

We try to answer this question by first simulating interventions on the number of topics to

which each node is subscribed, with values ranging from 1 to 24. We use DoWhy to gener-

ate a dataset with simulated interventional samples, we then fit this dataset into a new GCM,

again using the automatic distribution assignment capabilities, and the same SCM gener-

ated using NOTEARS. Since DoWhy uses the distribution functions previously assigned to

the model to generate the simulated interventional samples, the same distribution functions

were assigned to the GCM. We then used the GCM generated with the simulated interven-

tional data for topics to simulate interventions in topicSize, with a range of 1 to 35.

Table 6.6: Default and Ethereum Configuration for GossipSub

D Dlo Dhi Dout
Ethereum 8 6 12 2
Default 6 5 12 2

Figure 6.9 shows a graphical representation of the dataset generated by the two subse-

quent simulated interventions in topics and topicSize. In order to isolate the two variables

we are looking to analyze, we fixed the values of D, Dhi, Dlo and Dout using the Ethereum

configuration, shown in Table 6.6. The graph shows that a smaller number of topics leads

to a higher message overhead. When associated with the number of topics, topicSize does

not appear to impact the target measurement as much as expected by the intrinsic causal

93

contribution of topicsSize in messageOverhead.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D

120

130

140

150

160
M
e
ss
a
g
e
O
v
e
rh
e
a
d

Figure 6.10: Simulated results for messageOverhead when intervening on D with 8 topics of
size 16

What we can take from these results is that more varied topics can optimize message

overhead. The size of the topics has less influence, and so a dynamic arrangement of topics

according to the size of the network could be marginally beneficial for the performance of

the system. It is important to note that in this study we do not consider the qualitative

nature of topics, but we solely look at them from a quantitative point of view, not making any

considerations about the difference between the nature of the messages published in each

topic.

Going a step further, we simulate interventions in the next variable that shows to have

the largest direct impact on messageOverhead : D. To isolate the variable being studied, we

fixed the number of topics in 8 and the size of the topics in 16, using the dataset generated by

performing simulated interventions in topics and topicSize according to the values indicated.

We did not fix the values for Dhi and Dlo as they are dependent on D. We then simulated

interventions in D, varying its values from 1 to 24.

Figure 6.10 represents the dataset generated by the simulated interventions in D. We

can see that the smallest message overhead occurs in the region where D is between 3

and 4. Since the value of D can be relaxed from Dlo to Dhi, we consider it more suitable to

refer to the ranges rather than to absolute values directly. After the optimal region, there is

a natural increase in message overhead as the number of connections per topic increases,

94

except for a slight decrease in the region where D is equal to 16, which may be related to

the size of the topics being also 16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
D

175

200

225

250

M
es

sa
ge

Ov
er

he
ad

Figure 6.11: Simulated results for messageOverhead when intervening on D with 2 topics of
size 24

It is important to note that the values of D are bound to the number of topics to which a

node is subscribed. With that in mind, we repeat the analysis fixing the number of topics to 2

and the topic size to 24, similar to how we simulated the current structure of the XRPL.

Figure 6.11 represents the resulting dataset, showing that, however smaller than in the

previous simulation, there is still a valley where the values of D are optimal, in this case

in the region between 2 and 3. There is again a slight decrease around 21 and 24, similarly

to the previous analysis, and it may be due to the value of D being closer to the size of the

topics.

This counterfactual analysis shows the importance of the structure of topics for optimal

message overhead on GossipSub. First, direct strength arrow algorithm and the intrinsic

causal contribution calculated using DoWhy showed a strong indirect influence of topics and

topicSize on messageOverhead, and also the direct influence of D on the target measure.

Then, the simulated interventions showed how topics and topicSize work together to influ-

ence the outcome and how important they are for the proper configuration of the d-values,

which are bound to the value of D.

95

6.9 Evaluation

As stated in Section 6.2, the quorum-based nature of the XRPL hinders our ability to empiri-

cally evaluate our methodology. Most of the scenarios simulated cause excessive disagree-

ment, which causes the network to not produce a valid ledger.

Figure 6.12: Causal strength of parameters over metrics, with messageOverhead as target.
Generated using the simulated dataset

Instead of an empirical evaluation of the results obtained with the simulated interven-

tions, we opted to evaluate our methodology by comparing the graph generated by the direct

strength arrow algorithm in the interventional data (Figure 6.6) with the one generated by the

simulated interventions (Figure 6.12). The two graphs are similar with regard to the strength

of the causal influences calculated, from which we can say that the dataset generated by

the simulated interventions is representative of the data distribution observed on the inter-

ventional dataset, and thus our methodology is consistent for the data distribution and to the

causal relationships and strengths observed.

6.10 Discussion & Future Perspectives

In this Chapter, we presented a causal analysis of the GossipSub mesh parameters in re-

lation to message overhead to understand how parameterization affects the performance of

the dissemination system. We used graphical causal tools, establishing our methodology on

the ideas presented by Judea Pearl[87] about how to understand causality.

96

In all, this study helped us to better understand the causal relationships between the

parameterization of the network and its behavior. The visual causal tools and techniques

helped us to reach conclusions that would not be possible simply by observing the system.

However, domain knowledge played a huge role in making sense of the results given by

graphical tools. In a more empirical sense, we could observe how strong the influence of the

topic structure is, even impacting the optimal values for the third most influential variable: D.

However, we still have limited understanding of how the parameters related to the gos-

siping layer impact the overall performance of the system. Future work can move in the

direction of a more complete analysis of the entire mesh of GossipSub, encompassing both

the full message and gossip layers in the same model. This study was also limited by the

necessity for XRP LCP to have overlapping sets of UNLs on a tightly connected trust overlay.

A validation of our methodology in a broader scenario can also be achieved in the future.

97

Discussion and Future Perspectives

In this work, we explored enhancements in scalability and performance on blockchains by

employing publisher/subscriber (pubsub) dissemination to reduce message overhead on

Federated Byzantine Agreement (FBA)-based blockchains, instead of the more common

proof-based consensus. The research was done using the concrete case of the XRPL,

which uses subsets of validators to reach an agreement over multiple voting rounds.

Although the XRPL is a well-established and widely used blockchain, some scalability

and performance issues may become more noticeable with growing adoption. The main

problem is the lack of node-wise scalability, given the use of flood publishing, as well as

the centralization of power in the hands of a few participants. In Chapter 3 we measure

the problem of message overhead caused by message flooding, presenting a tool called

Flexi-pipe, which we used throughout this work. Our analysis showed that the use of flood

publishing is, in fact, a bottleneck that harms the scalability of the network in terms of the

number of nodes.

We then made a case for treating the XRP LCP as a pubsub system, given its charac-

teristic of using lists of trusted nodes to create what we call a turst overlay. Considering that

every node only trusts a subset of the network, we abstract UNLs as topics since the trust

put in each UNL is collective. However, the current implementation of the XRPL works with

a single list, maintained and curated by the XRP Ledger Foundation (XRPLF). This structure

is ideal to maintain network safety, but causes some problems concerning the distribution of

power in the network, and also diminishing the pubsub characteristics of the XRPL.

We started by proposing a framework to give the XRPL tools to create and maintain

more diversified UNLs to better disperse the authority and take the curation out of the hands

of human actors. Our proposal, called Nested, Layered, Autonomous, Continuous (NLAC),

was presented in Chapter 2 and encompasses three modules that can be used together or

98

separately. The first module uses Token-Curated Registries (TCRs) to determine member-

ship in the space of trusted nodes; The second creates layers of trust using a variation of

TCRs to rank nodes according to their reliability, giving nodes in higher layers more power to

determine who can be part of the trusted space, using game theory to diminish the probabil-

ity of malicious behavior. Finally, the third module uses optimization to separate the nodes

in the network into balanced lists that overlap each other while maximizing the total trust of

the system.

By applying the three of them in sequence, we could achieve a forest in the form of a DAG

in which we can guarantee a minimum overlap between each list, keeping the trust overlay

tightly connected. NLAC not only provides means to better disperse the authority between

the network participants but also gives us the ability to enhance the pubsub characteristics of

the XRPL. This enhancement allows us to better explore the use of pubsub dissemination to

address another issue present in the current implementation of the XRPL: the high message

overhead caused by the use of flood publishing.

After improving the pubsub characteristics of the XRPL, we could test our hypothesis

that pubsub dissemination could reduce the message overhead caused by the use of flood

publishing. We again used Flexi-pipe to create an overlay over the XRPL to isolate the

dissemination of proposals, also using the tool to plug GossipSub into the XRPL.

We tested three ways of mapping GossipSub to the XRPL, the first using the same struc-

ture as Ethereum, which also complies with the current implementation of the XRPL, with

different topics for different types of messages. We then took advantage of the pubsub

characteristics of the XRPL and tried two scenarios, the first in which each node publishes

proposals and validations on its own topics and the nodes subscribe to those topics, map-

ping the UNLs into lists of subscribed topics. The second takes advantage of the structure

created previously by NLAC, with predefined sets of UNLs, mapping each UNL as a topic,

with each node subscribing to a unique topic.

GossipSub improved the message overhead in the three proposed schemes. However,

the best results were obtained in the scenarios in which we treated the XRP LCP as a pub-

sub system, mapping its trust overlay into topics. The results corroborated our proposition

99

of treating the XRPL as a pubsub system. After this, we jumped into the second part of this

work, which focuses on deepening our understanding of how the GossipSub parameteriza-

tion works, facilitating the portability of the dissemination system into other platforms than

the ones it was originally proposed for (ie. IPFS and Ethereum), specially for FBA consensus

blockchains.

To start understanding how to configure GossipSub for use in different platforms, we per-

formed an analysis of the tunable parameters used for the mesh construction. Since there

was no previous academic research focused on parameter tuning, we turned to empirical

studies made to configure GossipSub for the particular demands of Ethereum. From these

studies and from our understanding of how GossipSub constructs the mesh, we selected

eight parameters regarding both the full message and the gossip overlay. We then chose

three performance metrics to study: bandwidth, message overhead, and propagation time,

also identifying some network events that can affect these metrics: graft, prune, iwant, and

ihave.

With the three metrics and the four types of events accounting for nine dimensions,

we then used data science techniques to find relationships between the dimensions and

the parameters. Once more we used Flexi-pipe to perform experiments, collecting metrics

directly from the GossipSub tracer. We started by using unsupervised learning to cluster

the metrics gathered from the executions, looking to identify patterns between them. We

then generated a correlation heatmap between the dimensions to understand which events

may impact the most on the performance metrics. Lastly, we used supervised learning to

generate a decision tree based on the parameters values of each cluster, to help in the

decision of sets of parameters according to the desired behavior of the network.

The dimensional analysis using data science tools gave us insight on how parameters,

network events, and metrics relate to each other, and how parameters can affect network

performance. However, we still lacked a deeper understanding of how different parameters

caused different behaviors. We then took a step further and used the acquired knowledge to

perform a causal analysis, seeking to understand causal relationships between parameters

and metrics, and also to quantify said relationships to aid in the parameterization of the

100

GossipSub mesh.

We started our analysis by observing the behavior of GossipSub based on the findings

of previous chapters and applying domain knowledge. This phase resulted in the selection

of the parameters used for our analysis, as well as the selection of the target measurement.

The final product was an SCM, which laid the foundation for the subsequent steps.

We then moved to the second phase, which involves making interventions in the sys-

tem and analyzing the results to answer questions about what happens to a certain variable

when we change the values of another variable. We made interventions and measured

results on an XRPL testnet, using the XRPL as a concrete case for the usage of Gossip-

Sub to disseminate messages on blockchains. From the data gathered on these interven-

tional experiments, we generated a new SCM, this time using a causal discovery algorithm,

NOTEARS in three variations. To choose which graph would better represent the model, we

compared the results of the three variants with the SCM obtained with observational data

and domain knowledge and selected the one with the lowest distance. We then used DoWhy

to fit the distribution of each variable into distribution functions. The outcome of this phase

was a more refined understanding of the causal relationships present in the system, as well

as insights on the data distribution of the dataset obtained by making interventions in the

real-world system, culminating in a model represented by a GCM.

The final step is the one that gave us the most insight into how the parameters relate

causally to the target measurement. To start the analysis, we asked which parameters had

the greatest influence on message overhead, by applying two causal influence algorithms.

We discovered that the number of topics, the size of the topics, and D were the parameters

with a higher causal influence on the message overhead. We then proceeded to perform

simulated interventions in the model to be able to visually study the impact of the simulations

on message overhead.

With the causal analysis we learned that the arrangement of topics is the factor that

causes the most variation in the message overhead. D also played a role in influencing the

target measurement. Events such as graft and prune showed to have little to no causal

influence. We also discovered that values of D close to the number of topics showed a lower

101

message overhead. However, our analysis was limited by the impossibility of the XRPL to

form a trust overlay and produce ledger versions for certain configurations, which made it

harder evaluate our methodology.

In all, this work made the case for treating the XRPL as a pubsub system, proposing

tools to enable the creation and maintenance of UNLs automatically, presenting GossipSub

as an alternative to flood publishing and showing a deep analysis of the GossipSub con-

figuration for improved scalability and performance. We showed how our tool for creating

and maintaining UNLs can increase the dispersion of authority and enhance the pubsub

characteristics of the XRPL. We also showed that pubsub dissemination is a viable option to

decrease message overhead without harming the ledger, even when we maintain the current

single UNL strategy.

Therefore, we were able to answer the general question presented, providing concrete

results for the use of pubsub techniques, which showed to decrease the message overhead

in different scenarios. We were also able to answer the more specific question of how

the mesh parameters related to pubsub dissemination correlate to the performance and

scalability metrics proposed, by employing data science and graphical causal tools to find

inferential and causal relationships between the parameters and the metrics. However, this

work does not make any considerations about the safety and resilience against byzantine

faults in the network. We considered the previous studies into the GossipSub and XRPL

sturdiness to be enough, but further studies may be necessary in this area. We also had

limitations in validating the causal models used to study the causal relationships; studies in

more diverse scenarios may be required in this sense.

102

Main Publications

[62] F. Scheidt de Cristo, A. Geimer, and R. State, “Nlac: A self-maintained trust overlay

for the xrp ledger,” in 2023 IEEE Latin-American Conference on Communications

(LATINCOM), IEEE, 2023.

[68] F. Scheidt de Cristo, W. M. Shbair, L. Trestioreanu, and R. State, “Pub/sub dissemina-

tion on the xrp ledger,” in 2023 IEEE Latin-American Conference on Communications

(LATINCOM), Best Paper Award, IEEE, 2023.

[102] F. Scheidt de Cristo, J.-P. Eisenbarth, J. A. Meira, and R. State, “A 9-dimensional

analysis of gossipsub over the xrp ledger consensus protocol,” in NOMS 2024 IEEE/IFIP

Network Operations and Management Symposium, IEEE, 2024.

103

Publications as 2nd Author

[14] L. A. Trestioreanu, F. Scheidt de Cristo, W. Shbair, J. Francois, D. Magoni, et al.,

“To squelch or not to squelch: Enabling improved message dissemination on the xrp

ledger,” in NOMS 2024 IEEE/IFIP Network Operations and Management Sympo-

sium, IEEE, 2024.

[75] L. Trestioreanu, W. M. Shbair, F. Scheidt de Cristo, and R. State, “Xrp-ndn overlay:

Improving the communication efficiency of consensus-validation based blockchains

with an ndn overlay,” in NOMS 2023 IEEE/IFIP Network Operations and Management

Symposium, IEEE, 2023.

104

Non Related Publications

[124] F. Scheidt de Cristo, W. M. Shbair, L. Trestioreanu, R. State, and A. Malhotra, “Self-

sovereign identity for the financial sector: A case study of paystring service,” in 2021

IEEE International Conference on Blockchain (Blockchain), IEEE, 2021, pp. 213–

220.

[125] F. Scheidt de Cristo, W. M. Shbair, L. Trestioreanu, A. Malhotra, and R. State, “Privacy-

preserving paystring service,” in 2021 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC), IEEE, 2021.

105

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. [Online]. Avail-

able: www.bitcoin.org.

[2] D. Schwartz, N. Youngs, and A. Britto, The ripple protocol consensus algorithm,

2014. [Online]. Available: https://ripple.com/files/ripple_consensus_whitepaper.

pdf.

[3] M. Becker and B. Bodó, “Trust in blockchain-based systems,” Internet Policy Review,

vol. 10, 2 2021, ISSN: 21976775. DOI: 10.14763/2021.2.1555.

[4] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Annual

international cryptology conference, Springer, 1992, pp. 139–147.

[5] V. Buterin, “What proof of stake is and why it matters,” Bitcoin Magazine, vol. 26,

2013.

[6] D. Mazieres, “The stellar consensus protocol: A federated model for internet-level

consensus,” Stellar Development Foundation, vol. 32, pp. 1–45, 2015.

[7] I. Amores-Sesar, C. Cachin, and J. Mićić, “Security analysis of ripple consensus,” in

24th International Conference on Principles of Distributed Systems, OPODIS 2020,

December 14-16, 2020, Strasbourg, France (Virtual Conference), ser. LIPIcs, vol. 184,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, ISBN: 978-3-95977-176-4.

[Online]. Available: https://www.dagstuhl.de/dagpub/978-3-95977-176-4.

[8] B. Chase and E. MacBrough, Analysis of the xrp ledger consensus protocol, 2018.

DOI: 10.48550/ARXIV.1802.07242. [Online]. Available: https://arxiv.org/abs/

1802.07242.

106

www.bitcoin.org
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://doi.org/10.14763/2021.2.1555
https://www.dagstuhl.de/dagpub/978-3-95977-176-4
https://doi.org/10.48550/ARXIV.1802.07242
https://arxiv.org/abs/1802.07242
https://arxiv.org/abs/1802.07242

[9] J.-P. Vergne, “Decentralized vs. distributed organization: Blockchain, machine learn-

ing and the future of the digital platform,” Organization Theory, vol. 1, 4 Oct. 2020,

ISSN: 2631-7877. DOI: 10.1177/2631787720977052.

[10] Xrpl negative unl, Accessed: 2023-02-14. [Online]. Available: https://xrpl.org/

negative-unl.html.

[11] P. Baran, “On distributed communications networks,” IEEE transactions on Commu-

nications Systems, vol. 12, no. 1, pp. 1–9, 1964.

[12] Xrpl - the foundation unique node list, Accessed: 2023-03-31. [Online]. Available:

https://foundation.xrpl.org/unl/.

[13] Xrpl - system requirements, Accessed: 2023-03-31. [Online]. Available: https://

xrpl.org/system-requirements.html.

[15] L. Mauri, S. Cimato, and E. Damiani, “A formal approach for the analysis of the xrp

ledger consensus protocol,” SciTePress, 2020, pp. 52–63, ISBN: 9789897583995.

DOI: 10.5220/0008954200520063.

[16] V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1, pp. 22–23, 2013.

[17] Message propagation — filecoin spec, Accessed: 2022-07-19, 2020. [Online]. Avail-

able: https://spec.filecoin.io/systems/filecoin_blockchain/message_pool/

message_syncer.

[18] Libp2p - publish/subscribe, Accessed: 2023-09-12. [Online]. Available: https : / /

docs.ipfs.tech/concepts/libp2p/#publish-subscribe.

[19] L. Lamport, “The part-time parliament,” pp. 277–317, 2019, ACM SIGOPS Hall of

Fame Award in 2012.

[20] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic

consensus in robust networks,” IEEE Journal on Selected Areas in Communications,

vol. 31, no. 4, pp. 766–781, 2013.

[21] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OsDI, vol. 99,

1999, pp. 173–186.

107

https://doi.org/10.1177/2631787720977052
https://xrpl.org/negative-unl.html
https://xrpl.org/negative-unl.html
https://foundation.xrpl.org/unl/
https://xrpl.org/system-requirements.html
https://xrpl.org/system-requirements.html
https://doi.org/10.5220/0008954200520063
https://spec.filecoin.io/systems/filecoin_blockchain/message_pool/message_syncer
https://spec.filecoin.io/systems/filecoin_blockchain/message_pool/message_syncer
https://docs.ipfs.tech/concepts/libp2p/#publish-subscribe
https://docs.ipfs.tech/concepts/libp2p/#publish-subscribe

[22] Xrpl charts, Accessed: 2023-01-26. [Online]. Available: https://livenet.xrpl.

org/.

[23] Xrp: Utility for the new global economy, Accessed: 2023-01-26. [Online]. Available:

https://ripple.com/xrp/.

[24] K. Croman, C. Decker, I. Eyal, et al., “On scaling decentralized blockchains: (a po-

sition paper),” in Financial Cryptography and Data Security: FC 2016 International

Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,

2016, Revised Selected Papers 20, Springer, 2016, pp. 106–125.

[25] Ethereum average block time chart, Accessed: 2023-01-26. [Online]. Available: https:

//etherscan.io/chart/blocktime.

[26] The ethereum vision: Understanding the ethereum vision, Accessed: 2023-01-26.

[Online]. Available: https://ethereum.org/en/upgrades/vision/.

[27] Xrpl consensus research, Accessed: 2024-01-18. [Online]. Available: https://xrpl.

org/consensus-research.html.

[28] E. MacBrough, Cobalt: Bft governance in open networks, Feb. 2018. [Online]. Avail-

able: http://arxiv.org/abs/1802.07240.

[29] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner, “Ripple: Overview

and outlook,” vol. 9229, Springer Verlag, 2015, pp. 163–180, ISBN: 9783319228457.

DOI: 10.1007/978-3-319-22846-4_10.

[30] K. Christodoulou, E. Iosif, A. Inglezakis, and M. Themistocleous, “Consensus crash

testing: Exploring ripple’s decentralization degree in adversarial environments,” Fu-

ture Internet, 2020. DOI: 10.3390/fi12030053. [Online]. Available: www.mdpi.com/

journal/futureinternet.

[31] V. Tumas, S. Rivera, D. Magoni, and R. State, “Topology analysis of the xrp ledger,”

in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 2023,

pp. 1277–1284.

108

https://livenet.xrpl.org/
https://livenet.xrpl.org/
https://ripple.com/xrp/
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://ethereum.org/en/upgrades/vision/
https://xrpl.org/consensus-research.html
https://xrpl.org/consensus-research.html
http://arxiv.org/abs/1802.07240
https://doi.org/10.1007/978-3-319-22846-4_10
https://doi.org/10.3390/fi12030053
www.mdpi.com/journal/futureinternet
www.mdpi.com/journal/futureinternet

[32] V. Tumas, S. Rivera, D. Magoni, and R. State, “Federated byzantine agreement proto-

col robustness to targeted network attacks,” in 2023 IEEE Symposium on Computers

and Communications (ISCC), IEEE, 2023, pp. 443–449.

[33] H. Aoyama, “Xrp network and proposal of flow index,” in Proceedings of Blockchain

in Kyoto 2021 (BCK21), 2021.

[34] C. A. Roma and M. A. Hasan, “Energy consumption analysis of xrp validator,” in 2020

IEEE International Conference on Blockchain and Cryptocurrency (ICBC), IEEE,

2020, pp. 1–3.

[35] M. van Meerten, B. K. Ozkan, and A. Panichella, “Evolutionary approach for con-

currency testing of ripple blockchain consensus algorithm,” in 2023 IEEE/ACM 45th

International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), IEEE, 2023, pp. 36–47.

[36] M. Roelvink, M. Olsthoorn, and A. Panichella, “Log inference on the ripple protocol:

Testing the system with an empirical approach,” 2020.

[37] C. Ma, Y. Zhang, B. Fang, H. Zhang, Y. Jin, and D. Zhou, “Ripple+: An improved

scheme of ripple consensus protocol in deployability, liveness and timing assump-

tion,” CMES - Computer Modeling in Engineering and Sciences, vol. 130, pp. 463–

481, 1 2022, ISSN: 15261506. DOI: 10.32604/cmes.2022.016838.

[38] M. Mundhra and C. Rebeiro, “Sissle in consensus-based ripple: Some improvements

in speed, security, last mile connectivity and ease of use,” CoRR, 2020.

[39] V. Tumas, S. Rivera, D. Magoni, and R. State, “Probabilistic edge multicast routing

for the xrp network,” in GLOBECOM 2022-2022 IEEE Global Communications Con-

ference, IEEE, 2022, pp. 5129–5134.

[40] M. Ellery and I. Ashimine, Xrpl - consensus and validation, Accessed: 2021-10-14.

[Online]. Available: https://github.com/ripple/rippled/blob/develop/docs/

consensus.md.

109

https://doi.org/10.32604/cmes.2022.016838
https://github.com/ripple/rippled/blob/develop/docs/consensus.md
https://github.com/ripple/rippled/blob/develop/docs/consensus.md

[41] Xrpl introduction to consensus - trust-based validation, Accessed: 2022-09-13. [On-

line]. Available: https://xrpl.org/intro-to-consensus.html#trust-based-

validation.

[42] W. Hao, J. Zeng, X. Dai, et al., “Towards a trust-enhanced blockchain p2p topology

for enabling fast and reliable broadcast,” IEEE Transactions on Network and Service

Management, vol. 17, pp. 904–917, 2 Jun. 2020, ISSN: 19324537. DOI: 10.1109/

TNSM.2020.2980303.

[43] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin network,” in

IEEE P2P 2013 Proceedings, IEEE, 2013, pp. 1–10.

[44] H. Barjini, M. Othman, H. Ibrahim, and N. I. Udzir, “Shortcoming, problems and an-

alytical comparison for flooding-based search techniques in unstructured p2p net-

works,” Peer-to-Peer Networking and Applications, vol. 5, pp. 1–13, 2012.

[45] R. Baldoni, L. Querzoni, and A. Virgillito, “Distributed event routing in publish/subscribe

communication systems: A survey,” in H. Miranda, L. Rodriguez, and B. Garbinato,

Eds. Springer Berlin Heidelberg, 2009.

[46] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, “Gossipsub: Attack-

resilient message propagation in the filecoin and ETH2.0 networks,” 2020. [Online].

Available: https://arxiv.org/abs/2007.02754.

[47] Gossipsub v1.0: An extensible baseline pubsub protocol, Accessed: 2022-03-01.

[Online]. Available: https://github.com/libp2p/specs/blob/master/pubsub/

gossipsub/gossipsub-v1.0.md.

[48] D. Vyzovitis and Y. Psaras, Gossipsub: A secure pubsub protocol for unstructured,

decentralised p2p overlays, 2019. [Online]. Available: https://research.protocol.

ai/blog/2019/a-new-lab-for-resilient-networks-research/PL-TechRep-

gossipsub-v0.1-Dec30.pdf.

[49] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz, “Bayeux:

An architecture for scalable and fault-tolerant wide-area data dissemination,” in Pro-

110

https://xrpl.org/intro-to-consensus.html#trust-based-validation
https://xrpl.org/intro-to-consensus.html#trust-based-validation
https://doi.org/10.1109/TNSM.2020.2980303
https://doi.org/10.1109/TNSM.2020.2980303
https://arxiv.org/abs/2007.02754
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md
https://research.protocol.ai/blog/2019/a-new-lab-for-resilient-networks-research/PL-TechRep-gossipsub-v0.1-Dec30.pdf
https://research.protocol.ai/blog/2019/a-new-lab-for-resilient-networks-research/PL-TechRep-gossipsub-v0.1-Dec30.pdf
https://research.protocol.ai/blog/2019/a-new-lab-for-resilient-networks-research/PL-TechRep-gossipsub-v0.1-Dec30.pdf

ceedings of the 11th international workshop on Network and operating systems sup-

port for digital audio and video, 2001, pp. 11–20.

[50] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. Rowstron, “Scribe: A large-scale

and decentralized application-level multicast infrastructure,” IEEE Journal on Se-

lected Areas in Communications, vol. 20, pp. 1489–1499, 8 Oct. 2002, ISSN: 07338716.

DOI: 10.1109/JSAC.2002.803069.

[51] A. Gupta, O. D. Sahin, D. Agrawal, and A. El Abbadi, “Meghdoot: Content-based

publish/subscribe over p2p networks,” in ACM/IFIP/USENIX International Conference

on Distributed Systems Platforms and Open Distributed Processing, Springer, 2004,

pp. 254–273.

[52] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-Piergiovanni, “Tera:

Topic-based event routing for peer-to-peer architectures,” in ACM International Con-

ference Proceeding Series, vol. 233, 2007, pp. 2–13, ISBN: 1595936653. DOI: 10.

1145/1266894.1266898.

[53] J. A. Patel, É. Rivière, I. Gupta, and A. M. Kermarrec, “Rappel: Exploiting interest

and network locality to improve fairness in publish-subscribe systems,” Computer

Networks, vol. 53, pp. 2304–2320, 13 Aug. 2009, ISSN: 13891286. DOI: 10.1016/j.

comnet.2009.03.018.

[54] M. Matos, A. Nunes, R. Oliveira, and J. Pereira, “Stan: Exploiting shared interests

without disclosing them in gossip-based publish/subscribe.,” in IPTPS, 2010, p. 9.

[55] F. Rahimian, S. Girdzijauskas, A. H. Payberah, and S. Haridi, “Vitis: A gossip-based

hybrid overlay for internet-scale publish/subscribe enabling rendezvous routing in un-

structured overlay networks,” in 2011 IEEE International Parallel & Distributed Pro-

cessing Symposium, IEEE, 2011, pp. 746–757.

[56] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris, “Poldercast: Fast, robust, and

scalable architecture for p2p topic-based pub/sub,” in Middleware 2012: ACM/IFIP/USENIX

13th International Middleware Conference, Montreal, QC, Canada, December 3-7,

2012. Proceedings 13, Springer, 2012, pp. 271–291.

111

https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1145/1266894.1266898
https://doi.org/10.1145/1266894.1266898
https://doi.org/10.1016/j.comnet.2009.03.018
https://doi.org/10.1016/j.comnet.2009.03.018

[57] T. Van Epps, Testing gossipsub with genesis, Accessed: 2022-02-01. [Online]. Avail-

able: https://medium.com/whiteblock/testing- gossipsub- with- genesis-

6f89e845b7c1.

[58] Eth2 - libp2p gossipsub testing, Accessed: 2022-03-01. [Online]. Available: https:

//github.com/whiteblock/gossipsub-testing.

[59] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, Gossipsub-v1.1 eval-

uation report, 2022.

[60] A. Kumar, M. von Hippel, P. Manolios, and C. Nita-Rotaru, “Formal model-driven

analysis of resilience of gossipsub to attacks from misbehaving peers,” in 2024 IEEE

Symposium on Security and Privacy (SP), Los Alamitos, CA, USA: IEEE Computer

Society, 2024, pp. 21–21. DOI: 10.1109/SP54263.2024.00017. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00017.

[61] Run rippled as a validator, Accessed: 2022-07-28. [Online]. Available: https://

xrpl.org/run-rippled-as-a-validator.html.

[63] Xrpl - introduction to consensus, Accessed: 2022-09-13. [Online]. Available: https:

//xrpl.org/intro-to-consensus.html.

[64] M. Goldin, Token-curated registries 1.0, Accessed: 2022-09-13, 2017. [Online]. Avail-

able: https://medium.com/@ilovebagels/token- curated- registries- 1- 0-

61a232f8dac7.

[65] M. Lockyer, Token curated registry (tcr) design patterns, Accessed: 2022-10-19,

2018. [Online]. Available: https://hackernoon.com/token-curated-registry-

tcr-design-patterns-4de6d18efa15.

[66] D. de Jonghe and F. Gong, The layered tcr, Accessed: 2022-10-19, 2018. [Online].

Available: https://blog.oceanprotocol.com/the-layered-tcr-56cc5b4cdc45.

[67] S. de la Rouviere, Continuous token-curated registries: The infinity of lists, Accessed:

2023-02-15, 2017. [Online]. Available: https://shorturl.at/bAISZ.

112

https://medium.com/whiteblock/testing-gossipsub-with-genesis-6f89e845b7c1
https://medium.com/whiteblock/testing-gossipsub-with-genesis-6f89e845b7c1
https://github.com/whiteblock/gossipsub-testing
https://github.com/whiteblock/gossipsub-testing
https://doi.org/10.1109/SP54263.2024.00017
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00017
https://xrpl.org/run-rippled-as-a-validator.html
https://xrpl.org/run-rippled-as-a-validator.html
https://xrpl.org/intro-to-consensus.html
https://xrpl.org/intro-to-consensus.html
https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7
https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7
https://hackernoon.com/token-curated-registry-tcr-design-patterns-4de6d18efa15
https://hackernoon.com/token-curated-registry-tcr-design-patterns-4de6d18efa15
https://blog.oceanprotocol.com/the-layered-tcr-56cc5b4cdc45
https://shorturl.at/bAISZ

[69] K. Ito and H. Tanaka, “Token-curated registry with citation graph,” arXiv preprint

arXiv:1906.03300, 2019.

[70] Negative unl - reliability measurement, Accessed: 2023-02-14. [Online]. Available:

https://xrpl.org/negative-unl.html#reliability-measurement.

[71] M. L. Bynum, G. A. Hackebeil, W. E. Hart, et al., Pyomo–optimization modeling in

python, Third. Springer Science & Business Media, 2021, vol. 67.

[72] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: Modeling and solving mathe-

matical programs in python,” Mathematical Programming Computation, vol. 3, no. 3,

pp. 219–260, 2011.

[73] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business Machines Cor-

poration, vol. 46, no. 53, p. 157, 2009.

[74] C. Zhao, T. Wang, and S. Zhang, “Lightblock: Reducing bandwidth required to syn-

chronize blocks in ethereum network,” in 2021 International Conference on Com-

munications, Information System and Computer Engineering (CISCE), IEEE, 2021,

pp. 868–874.

[76] Introduction to grpc, Accessed: 2022-09-13. [Online]. Available: https://grpc.io/

docs/what-is-grpc/introduction/.

[77] A. Demers, D. Greene, C. Hauser, et al., “Epidemic algorithms for replicated database

maintenance,” in Proceedings of the sixth annual ACM Symposium on Principles of

distributed computing, 1987, pp. 1–12.

[78] G. Tsipenyuk and N. D. Bougalis, Message routing optimizations, pt. 1: Proposal

& validation relaying, Accessed: 2023-01-26, Mar. 2021. [Online]. Available: https:

//xrpl.org/blog/2021/message- routing- optimizations- pt- 1- proposal-

validation-relaying.html.

[79] J.-P. Eisenbarth, T. Cholez, and O. Perrin, “Ethereum’s peer-to-peer network moni-

toring and sybil attack prevention,” Journal of Network and Systems Management,

vol. 30, no. 4, p. 65, 2022.

113

https://xrpl.org/negative-unl.html#reliability-measurement
https://grpc.io/docs/what-is-grpc/introduction/
https://grpc.io/docs/what-is-grpc/introduction/
https://xrpl.org/blog/2021/message-routing-optimizations-pt-1-proposal-validation-relaying.html
https://xrpl.org/blog/2021/message-routing-optimizations-pt-1-proposal-validation-relaying.html
https://xrpl.org/blog/2021/message-routing-optimizations-pt-1-proposal-validation-relaying.html

[80] A. de la Rocha, Playing with gossipsub, Accessed: 2022-02-01. [Online]. Available:

https://adlrocha.substack.com/p/adlrocha-playing-with-gossipsub.

[81] Ethereum upgrades, Accessed: 2023-01-26. [Online]. Available: https://ethereum.

org/en/upgrades/.

[82] Ethereum 2.0 networking specification, Accessed: 2022-07-19. [Online]. Available:

https://github.com/goerli/eth2.0- specs/blob/dev/specs/phase0/p2p-

interface.md.

[83] Libp2p implementations, Accessed: 2022-03-01. [Online]. Available: https://libp2p.

io/implementations/.

[84] What is xrp? - overview, Accessed: 2023-10-05. [Online]. Available: https://xrpl.

org/xrp-overview.html.

[85] J. Hartigan, “Asymptotic distributions for clustering criteria,” The Annals of Statistics,

pp. 117–131, 1978.

[86] P. H. Sneath, “Numerical taxonomy,” in Bergey’s manual® of systematic bacteriology,

Springer, 2005, pp. 39–42.

[87] J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect.

Basic books, 2018.

[88] J. Siebert, “Applications of statistical causal inference in software engineering,” Infor-

mation and Software Technology, p. 107 198, 2023.

[89] H. Hours, E. Biersack, and P. Loiseau, “A causal approach to the study of tcp per-

formance,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 7,

no. 2, pp. 1–25, 2015.

[90] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search. MIT

press, 2000.

[91] P. Spirtes and C. Glymour, “An algorithm for fast recovery of sparse causal graphs,”

Social science computer review, vol. 9, no. 1, pp. 62–72, 1991.

114

https://adlrocha.substack.com/p/adlrocha-playing-with-gossipsub
https://ethereum.org/en/upgrades/
https://ethereum.org/en/upgrades/
https://github.com/goerli/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/goerli/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://libp2p.io/implementations/
https://libp2p.io/implementations/
https://xrpl.org/xrp-overview.html
https://xrpl.org/xrp-overview.html

[92] F. Neves, N. Machado, R. Vilaça, and J. Pereira, “Horus: Non-intrusive causal analy-

sis of distributed systems logs,” in 2021 51st Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks (DSN), IEEE, 2021, pp. 212–223.

[93] S. Kobayashi, K. Shima, K. Cho, O. Akashi, and K. Fukuda, “Comparative causal

analysis of network log data in two large isps,” in NOMS 2022 IEEE/IFIP Network

Operations and Management Symposium, IEEE, 2022.

[94] R. Jarry, S. Kobayashi, and K. Fukuda, “A quantitative causal analysis for network log

data,” in 2021 IEEE 45th Annual Computers, Software, and Applications Conference

(COMPSAC), IEEE, 2021, pp. 1437–1442.

[95] D. S. Kim, H. Shinbo, and H. Yokota, “An alarm correlation algorithm for network

management based on root cause analysis,” in 13th International Conference on

Advanced Communication Technology (ICACT2011), IEEE, 2011, pp. 1233–1238.

[96] A. Molak, Causal Inference and Discovery in Python: Unlock the secrets of modern

causal machine learning with DoWhy, EconML, PyTorch and more. Packt Publishing

Ltd, 2023.

[97] J. Peters, D. Janzing, and B. Schölkopf, Elements of causal inference: foundations

and learning algorithms. The MIT Press, 2017.

[98] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and

function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United

States), Tech. Rep., 2008.

[99] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—open

source graph drawing tools,” in Graph Drawing: 9th International Symposium, GD

2001 Vienna, Austria, September 23–26, 2001 Revised Papers 9, Springer, 2002,

pp. 483–484.

[100] A. Sharma and E. Kiciman, “Dowhy: An end-to-end library for causal inference,” arXiv

preprint arXiv:2011.04216, 2020.

115

[101] K. Zhang, S. Zhu, M. Kalander, et al., Gcastle: A python toolbox for causal discovery,

2021. arXiv: 2111.15155 [cs.LG].

[103] P. O. Hoyer and A. Hyttinen, “Bayesian discovery of linear acyclic causal models,”

ArXiv, vol. abs/1205.2641, 2009. [Online]. Available: https://api.semanticscholar.

org/CorpusID:11717717.

[104] D. M. Chickering, “Optimal structure identification with greedy search,” Journal of

machine learning research, vol. 3, no. Nov, pp. 507–554, 2002.

[105] D. Chickering, “Learning equivalence classes of bayesian-network structures,” The

Journal of Machine Learning Research, vol. 2, pp. 445–498, 2002.

[106] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “Dags with no tears: Contin-

uous optimization for structure learning,” Advances in neural information processing

systems, vol. 31, 2018.

[107] C. Glymour and K. Zhang, “Review of causal discovery methods based on graphical

models,” Frontiers in genetics, vol. 10, p. 418 407, 2019.

[108] M. Kalisch and P. Bühlman, “Estimating high-dimensional directed acyclic graphs

with the pc-algorithm.,” Journal of Machine Learning Research, vol. 8, no. 3, 2007.

[109] T. D. Le, T. Hoang, J. Li, L. Liu, H. Liu, and S. Hu, “A fast pc algorithm for high

dimensional causal discovery with multi-core pcs,” IEEE/ACM transactions on com-

putational biology and bioinformatics, vol. 16, no. 5, pp. 1483–1495, 2016.

[110] D. Colombo, M. H. Maathuis, et al., “Order-independent constraint-based causal

structure learning.,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3741–3782, 2014.

[111] S. Shimizu, P. O. Hoyer, A. Hyvärinen, A. Kerminen, and M. Jordan, “A linear non-

gaussian acyclic model for causal discovery.,” Journal of Machine Learning Research,

vol. 7, no. 10, 2006.

[112] S. Shimizu, T. Inazumi, Y. Sogawa, et al., “Directlingam: A direct method for learn-

ing a linear non-gaussian structural equation model,” Journal of Machine Learning

Research-JMLR, vol. 12, no. Apr, pp. 1225–1248, 2011.

116

https://arxiv.org/abs/2111.15155
https://api.semanticscholar.org/CorpusID:11717717
https://api.semanticscholar.org/CorpusID:11717717

[113] Z. Fang, S. Zhu, J. Zhang, Y. Liu, Z. Chen, and Y. He, “On low-rank directed acyclic

graphs and causal structure learning,” IEEE Transactions on Neural Networks and

Learning Systems, 2023.

[114] I. Ng, A. Ghassami, and K. Zhang, “On the role of sparsity and dag constraints for

learning linear dags,” Advances in Neural Information Processing Systems, vol. 33,

pp. 17 943–17 954, 2020.

[115] D. Janzing and B. Schölkopf, “Causal inference using the algorithmic markov con-

dition,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 5168–5194,

2010.

[116] Dowhy: Evaluate a gcm, Accessed: 2024-03-20. [Online]. Available: https://www.

pywhy.org/dowhy/v0.11.1/user_guide/modeling_gcm/model_evaluation.html.

[117] E. Eulig, A. A. Mastakouri, P. Blöbaum, M. Hardt, and D. Janzing, “Toward falsify-

ing causal graphs using a permutation-based test,” arXiv preprint arXiv:2305.09565,

2023.

[118] Dowhy: Graph refutations, Accessed: 2024-03-20. [Online]. Available: https://www.

pywhy.org/dowhy/v0.11.1/user_guide/modeling_causal_relations/refuting_

causal_graph/refute_causal_structure.html.

[119] D. Janzing, D. Balduzzi, M. Grosse-Wentrup, and B. Schölkopf, “Quantifying causal

influences,” The Annals of Statistics, vol. 41, no. 5, Oct. 2013, ISSN: 0090-5364. DOI:

10.1214/13- aos1145. [Online]. Available: http://dx.doi.org/10.1214/13-

AOS1145.

[120] D. Janzing, P. Blöbaum, A. A. Mastakouri, P. M. Faller, L. Minorics, and K. Budhathoki,

Quantifying intrinsic causal contributions via structure preserving interventions, 2024.

arXiv: 2007.00714 [cs.AI].

[121] X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. Xing, “Learning sparse non-

parametric dags,” in International Conference on Artificial Intelligence and Statistics,

Pmlr, 2020, pp. 3414–3425.

117

https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_gcm/model_evaluation.html
https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_gcm/model_evaluation.html
https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_causal_relations/refuting_causal_graph/refute_causal_structure.html
https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_causal_relations/refuting_causal_graph/refute_causal_structure.html
https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_causal_relations/refuting_causal_graph/refute_causal_structure.html
https://doi.org/10.1214/13-aos1145
http://dx.doi.org/10.1214/13-AOS1145
http://dx.doi.org/10.1214/13-AOS1145
https://arxiv.org/abs/2007.00714

[122] Dowhy: Modeling graphical causal models (gcms), Accessed: 2024-04-23. [Online].

Available: https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_gcm/

index.html.

[123] Gossipsub v1.1: Security extensions to improve on attack resilience and bootstrap-

ping, Accessed: 2024-07-25. [Online]. Available: https://github.com/libp2p/

specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.md.

[126] J. McCaleb, Bitcoin without mining, Accessed: 2024-03-11, 2011. [Online]. Available:

https://bitcointalk.org/index.php?topic=10193.0.

118

https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_gcm/index.html
https://www.pywhy.org/dowhy/v0.11.1/user_guide/modeling_gcm/index.html
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.md
https://bitcointalk.org/index.php?topic=10193.0

	Introduction
	Background
	The XRP Ledger
	The XRP Ledger in the Literature
	The XRP Ledger Consensus Protocol
	The Trust Overlay
	Unique Nodes Lists
	UNL Overlap
	The XRPL Main Network

	GossipSub
	GossipSub in the Literature
	GossipSub Mesh Structure

	I Increasing Scalability on the XRP Ledger
	Building and Maintaining UNLs
	Introduction
	Proposal
	Properties
	Architecture

	Membership
	Token-Curated Registries
	UNL Membership

	Classification
	Grouping
	Mathematical Model

	Experimental Evaluation
	Discussion

	Measuring and Improving Message Overhead on the XRP Ledger
	Flexi-Pipe
	Architecture

	Testbed
	Measuring Message Overhead

	PubSub Dissemination on the XRP Ledger
	Introduction
	Proposal
	Methodology
	Evaluation
	Discussion

	II Tunning GossipSub Parameters for Increased Scalability and Performance
	Dimensional Analysis of GossipSub over The XRP Ledger
	Introduction
	Methodology
	Data science methodology

	Evaluation
	Impact on the Consensus
	The Dimensions
	The Clusters
	Decision Tree

	Discussion

	Causal Analysis for GossipSub Configuration
	Introduction
	Limitations
	Related Work
	Steps for the Causal Analysis
	Methodology
	Observational Analysis
	Interventional Analysis
	Refuting Causal Graphs
	Performance Evaluation of the Graphical Causal Models
	Selecting a Graphical Causal Model

	Counterfactual Analysis
	Simulated Interventions

	Evaluation
	Discussion & Future Perspectives

	Discussion and Future Perspectives
	Main Publications
	Publications as 2nd Author
	Non Related Publications
	References

