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Abstract

Determining whether genes are expressed or not remains a challenge in single-cell RNAseq experiments due to their different
expression spectra, which are influenced by genetics, the microenvironment and gene length. Current approaches for addressing this
issue fail to provide a comprehensive landscape of expressed genes, since they neglect the inherent differences in the expression ranges
and distributions of genes. Here, we present scGeneXpress, a method for detecting expressed genes in cell populations of single-cell
RNAseq samples based on gene-specific reference distributions. We demonstrate that scGeneXpress accurately detects expressed cell
markers and identity genes in 34 human and mouse tissues and can be employed to improve differential expression analysis of single-
cell RNAseq data.
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Introduction
Multicellular organisms are composed of diverse cellular phe-
notypes displaying different morphologies and specialized func-
tions, which are controlled by specific gene expression programs.
In this regard, the advent of single-cell RNAseq (scRNAseq) tech-
nologies has offered an unprecedented view on the cellular phe-
notypes that led to the generation of large-scale cellular atlases
[1, 2]. Characterizing the observed expression programs, including
the detection of expressed genes, is crucial to understand which
genes play critical roles in cell type specific cellular processes,
disease progression, or development. However, the detection of
expressed genes is impeded by the different expression ranges
of each gene, which is influenced by the genetic composition of
their regulatory regions such as promoters and enhancers, the
extracellular cues received from the microenvironment as well as
their lengths [3–5].

Currently, two types of methodologies are employed to detect
expressed genes in scRNAseq data, namely absolute and com-
parative approaches. Absolute approaches consider all genes to
be expressed whose transcript count is above a fixed threshold.
Although the choice of this threshold is arbitrary, most stud-
ies set it to one transcript in lieu of sound alternatives [6, 7].
Moreover, for a gene to be expressed in a cell population, it has
to be expressed in a predefined fraction of cells. As a result,
absolute approaches neglect the specific expression ranges of
each gene and is in most cases too restrictive or too permissive
in the determination of expressed genes. On the other hand, in
the absence of specific absolute thresholds, researchers revert to

comparative approaches to identify significant changes in expres-
sion with respect to a baseline [8, 9]. In the context of scRNA-seq
data, comparison is carried using differential expression analysis
where the baseline and consequently the detected expressed
genes depend on what cell populations are compared, which lim-
its the interpretability of the results. Moreover, when comparing to
two or more populations, a pooling approach is typically followed
in which a population of interest is contrasted with a baseline
composed of all other cells in the dataset. However, this renders
the results to be dependent on the fractions of each population
in the sample, which does not necessarily resemble the true
composition in the tissue.

To address this issue, we developed scGeneXpress, a computa-
tional method for detecting expressed genes in cell populations
of scRNAseq samples. In contrast to existing approaches,
scGeneXpress detects expressed genes in a statistical framework
based on gene-specific reference distributions to derive individual
thresholds above/below which a gene can be considered to be
expressed/not expressed. As a result, scGeneXpress is, to our
knowledge, the first method that provides gene-specific thresh-
olds for detecting whether a gene is expressed or not, without
the need for comparing to other cell populations in a scRNAseq
sample. We demonstrate that the detected expressed genes
are biologically meaningful and that leveraging this statistical
framework improves the recovery of known marker as well as
cell identity genes across 73 human and 32 mouse cell types
from Tabula Sapiens and Tabula Muris [1, 2]. Moreover, we show
that scGeneXpress can be employed to more accurately detect
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differentially expressed genes when compared to widely-used
traditional approaches. In summary, we demonstrate that
scGeneXpress is a versatile tool for detecting expressed genes
in scRNAseq datasets that overcomes the limitations of current
approaches.

Materials and Methods
scGeneXpress workflow
We developed scGeneXpress to detect expressed genes and quan-
tify gene expression in low, medium and high levels. The quan-
tification strategy is based on RefBool [10] and was adapted for
single-cell UMI data. scGeneXpress takes as an input the single
cell UMI matrix of a cell population and a reference dataset to
estimate the expression thresholds for a gene to be expressed. In
particular, the quantification strategy is composed of two main
parts: (i) the construction of threshold distributions for each gene
and (ii) the gene quantification of a query cell population. In fact,
the construction of threshold distributions is optional as we built
pre-compiled backgrounds for mouse and human in this study to
detect expressed genes in a query cell population.

Constructing threshold distributions for each
gene
The construction of threshold distributions for each gene con-
stitutes the initial step of scGeneXpress. These distributions are
later used to quantify gene expression of a query cell population.
However, the first step of scGeneXpress is to remove all genes with
non-zero UMI counts in less than 10 cells as well as low quality
cells using the strategy provided in the Scuttle R package. In
addition, cell populations with less than 50 cells are removed. Sub-
sequently, the single cell matrix is normalized using scTransform
[11, 12]. In fact, normalization factors used for each gene are saved
and re-used to normalize query samples. After normalization,
the expression of each gene in the reference dataset is scaled to
the unit interval. Then, lower and upper-threshold distributions
were computed using optimization functions combined with a
bootstrap approach. In particular, scGeneXpress performs the
following steps:

1) Bootstrapping. Given a normalized reference expression
dataset G ∈ R

n x m with n genes and m cells, scGeneXpress
creates for each gene Gi,·a set of 1000 random samples
Grand

i = {
g′ = c

(
g′

1, . . . , g′
100

)∣∣∀j∈[1,..,100]g′
j ∈ Gi,· ∧ g′

j �= 0}.
These samples will be used in the following steps to assess
the variability of the derived gene expression thresholds
for considering a gene to be expressed or not expressed,
respectively.

2) Creation of empirical distribution functions. For each ran-
dom sample g′ ∈ Grand

i of gene Gi,·, an empirical cumulative
distribution function is created (ecdfg′ ). It is important to note
that ecdfg′ (1) = 1 and ∀x<1ecdfg′ (x) < 1, since all genes are
scaled to the unit interval.

3) Identification of lower and upper expression thresholds.
scGeneXpress identifies thresholds for a gene to be in one
of three expression levels, namely not expressed (denoted
‘0’), mediumly expressed (‘0.5’) and highly expressed (‘1’).
For that, two thresholds are being derived to separate not
expressed and mediumly expressed genes as well as medi-
umly expressed and highly expressed genes, respectively. For
the sake of brevity, we refer to these thresholds as ‘lower’ and
‘upper’ expression thresholds. For a gene Gi,·, both thresholds

are derived for all g′ ∈ Grand
i by solving the following optimiza-

tion problems:

trlow = argmax
0≤x≤1

(
x· (1 − ecdfg′ (x)

))

trhigh = argmax
0≤x≤1

(
(1 − x) · (ecdfg′ (x)

))

Thus, the lower threshold represents an optimal point for call-
ing a gene not expressed whereas the upper threshold represents
an optimal point for calling a gene highly expressed.

Following the three previous steps results in the required
threshold distributions Tlower and Tupper, which are composed of
the thresholds trlow and trhigh for each bootstrapping sample,
respectively. From a conceptual point of view, it is impossible
to determine whether a gene should be considered expressed (‘1’)
if it is expressed at the mean level across cells without additional
information. Therefore, we aim to derive step functions that
best approximate the actual expression distribution across cell
types. For instance, deriving the threshold trlow can be viewed as
defining a step-function with jump discontinuity at an expression
value of trlowwhich minimizes the error with the actual probability
distribution from the left side of the mean. Conversely, deriving
the threshold trhigh can be viewed as defining a step-function
with jump discontinuity at an expression value of trhighwhich
minimizes the error with the actual probability distribution from
the right side of the mean.

Gene level quantification
scGeneXpress quantifies the gene expression of a query cell pop-
ulation into three levels of expression: low, medium and high
compared to a reference. Like in the case of the reference data, low
quality cells and underrepresented genes are removed from the
query data using the same strategy. Next, each gene is normalized
and scaled using the corresponding factors from the reference
dataset (c.f. sub-section ‘Constructing Threshold Distributions for
each Gene’). Using this pre-processed data, the method computes
p-values for each gene in each cell to determine in which category
its expression falls, i.e., not expressed, mediumly expressed or
highly expressed, based on the derived threshold distributions
and the genes expression of the query cell population. In this
regard, for gene i in cell c, two p-values are computed based on
the lower and upper expression threshold distributions Tlower, and
Tupper namely:

plower
i,c = ecdfTlower

(
Gi,c

)

pupper
i,c = 1 − ecdfTupper

(
Gi,c

)

Given these p-values, gene i in cell c is quantified as follows:

di,c =

⎧⎪⎨
⎪⎩

1, pupper
i,c ≤ 0.05

0.5, pupper
i,c < 0.05 ∧ plower

i,c > 0.05
0, otherwise

Of note, the significance threshold may be changed by the user.
Finally, scGeneXpress identifies the overall expression of each
gene in the query cell population. For that, the number of cells
in which each gene has been classified to be not expressed (‘0’) is
determined and compared it to a binomial distribution with mean
n∗p, where n is the number of cells in the query sample and p
is the fraction of expressed genes over all possible genes across
cells. In this context, we assume independence of genes such that
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the binomial distribution signifies the number of cells in which
a gene is expected to be expressed when randomly re-assigning
the discretized expression values of the query population. Genes
that have been determined to be not expressed in more than

2·
√

n· p· (1 − p
)+n∗p cells are considered to be not expressed at the

population level. Otherwise, the classification will be performed
based on whether the gene is mediumly or highly expressed in the
majority of cells. Importantly, for the purpose of this manuscript,
we subsumed both mediumly and highly expressed genes as being
expressed.

Differential expression analysis
Differential expression analysis was performed for all tissues in
the Tabula Muris and Tabula Sapiens cell atlases using Seurat
v4 [9]. In particular, the FindAllMarkers function was employed
to detect significantly upregulated genes in each cell population
compared to the other cell populations in a tissue. The function
was invoked with default parameters, i.e., the minimum number
of cells expressing a gene must amount to at least 10% of all cells
(‘min.pct = 0.1’) and the log-fold change must be larger than 0.25
to be tested for differential expression (‘logfc.threshold = 0.25’).

Results
Building gene-specific reference distributions for
discretizing scRNAseq data
Estimating gene-specific reference distributions is the corner-
stone of scGeneXpress (Fig. 1a). For that, we leveraged the large-
scale scRNAseq expression atlases Tabula Sapiens and Tabula
Muris for human and mouse that contain samples from 22 and
12 organs, respectively [1, 2]. Next, we sampled cells from every
cell type such that an equal number of cells from all organs in
which a cell type is present is selected and all cell types are equally
represented. Subsequently, we applied variance-stabilizing trans-
formations and normalized the expression of each gene by its
maximum observed value to estimate empirical cumulative dis-
tribution functions for each gene. The thresholds for classifying
each gene as expressed is then determined by minimizing the
theoretical rate of false positive and false negative categorizations
(see Methods for details).

Before assessing the performance of scGeneXpress, we set out
to confirm its underlying hypothesis that different genes have
different expression ranges and distributions. In this regard, we
first observed that the maximum expression in the reference
distributions, i.e., after applying variance-stabilizing transforma-
tions to the raw scRNAseq data, differs widely between genes
ranging from 0.69 to 9.26 (average: 2.89) for human and from 0.69
to 8.71 (average: 2) for mice, respectively (Fig. 1b). Similarly, dis-
persion estimates of the reference distributions underscores this
observation (Fig. 1c). The dispersion for human genes ranges from
8.7∗10∧-6 to 16 (average: 0.05) whereas a significantly larger range
can be observed for mouse genes (range: 6.2∗10∧-5–14783.39; aver-
age: 3.93) (Fig. 1c). In summary, we indeed observed a high level
of heterogeneity in both the expression ranges and distributions
of genes in human and mouse, which supports the hypothesis
scGeneXpress is built upon.

scGeneXpress recovers known cell markers and
identity genes
To demonstrate that scGeneXpress accurately detects expressed
genes, we first set out to assess its ability to detect the expression
of known marker genes. In this regard, we obtained all human

and mouse markers from Cellmarker 2.0 [13] and selected those
that were obtained from reviews, low throughput experiments
or have been suggested by companies. Since scGeneXpress is
not exclusively designed to predict markers but more generally
detect expressed genes, we assessed the fraction of recovered
markers across 73 human and 32 mouse cell types (Fig. 2a, b).
As a result, scGeneXpress was able to recover on average 51.5%
(SD: 23.9) and 46.5% (SD: 23.4) of human and mouse marker
genes, respectively. Importantly, we compared the performance of
scGeneXpress against three widely employed statistical differen-
tial expression tests implemented in Seurat [9] and observed that
scGeneXpress recovered significantly more known marker genes
than any other method (Fig. 2a, b). In particular, scGeneXpress
showed equal or better performance across cell types in 79.3%,
79.3% and 93.1% of cases compared to Poisson-, Wilcox- and T-
test (Supplementary Fig. 1a). Finally, we interrogated the relation
between the number detected expressed genes by scGeneXpress
and differentially expressed genes computed by other methods.
Due to the inherent conceptual difference between differential
expression analysis and the detection of expressed genes, we
unsurprisingly found that scGeneXpress generally considers more
genes to be expressed than there are differentially expressed
genes (Supplementary Fig. 1b). Only the Poisson-test resulted
in a higher number of differentially expressed genes in six cell
types. Nevertheless, exemplified by Keratinocytes of the tongue,
the higher number of differentially expressed genes does not
necessarily translate into a better recovery of known marker
genes. Moreover, the number of genes detected to be expressed is
significantly smaller compared to the use of ad hoc thresholding
approaches (Supplementary Fig. 1c). Interestingly, in some cases,
only a low number of genes where detected to be differentially
expressed. Since differential expression methods rely on the com-
parison with other cell populations in the same sample, they
fail in cases where the majority of cells is similar, such as in
the thymus (Supplementary Fig. 1b). As another independent
validation strategy, we collected identity genes, i.e., genes that
have been linked to the function of a cell type, from AmiGO [14]
and compared the performance of scGeneXpress to differential
expression-based methodologies. As a result, we again observed a
significantly better performance of scGeneXpress recovering on
average 27.8% (SD: 15.2) and 32.9% (SD: 19.5) of known mouse
and human identity genes (Fig. 2c, d). Like in the case of recovered
markers, scGeneXpress is performing equal or better in every cell
type, which cannot solely be explained by the higher number of
detected expressed genes (Supplementary Fig. 2a, b). In addition,
the number of detected expressed genes is again significantly
lower compared to an ad hoc thresholding approach.

scGeneXpress detects functionally relevant genes
and improves differential expression analysis
Encouraged by the recovery of known marker and cell iden-
tity genes, we sought to interrogate the relationship between
the detected expressed genes by scGeneXpress and differentially
expressed genes obtained using the Wilcox-test, the best perform-
ing differential expression method, in 73 human cell types. As
we expected, scGeneXpress considered differentially expressed
genes to be expressed (Fig. 3a). However, in a few cases, more
than 50% and up to 96% of differentially expressed genes were
not found to be expressed. Coincidentally, these cases occurred
in cell populations having only a low number of cells, which
indicates that statistical significance could not be achieved for
most cases. For instance, there were only 10 myofibroblasts in
the lung and 10 Schwann cells in the tongue, which hindered
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Figure 1. scGeneXpress workflow and validation. (a) Overview of the scGeneXpress workflow. Given an expression matrix of a single population from
an scRNAseq sample, scGeneXpress detects whether expressed genes in each cell by comparing their expression to gene-specific reference distributions
generated from tabula Muris and tabula sapiens. Finally, a population-level assessment of the expression of the gene is obtained. (b) Histogram of the
maximum observed expression values in the tabula Muris (yellow) and tabula sapiens (blue) atlases for all genes after variance-stabilizing transform.
Genes have been divided into 30 bins. (c) Histogram of the dispersion parameters of fitted negative binomial distributions for each gene after normalizing
gene expression data in the tabula Muris (yellow) and tabula sapiens (blue) atlases. Genes have been divided into 30 bins. Both x- and y-axis are on
log-scale.

the detection of significantly expressed genes (see Methods for
details). Nevertheless, Gene Ontology (GO) enrichment of detected
expressed genes by scGeneXpress shows high cell type specificity.
In particular, we collected GO term-gene-cell relationships from
AmiGO and performed GO enrichment of expressed genes for
all cell types in all tissues of the Tabula Sapiens atlas [1, 14].
Subsequently, we selected significantly enriched GO terms that
are specific to the respective cell types. For instance, in the case
of liver hepatocytes, we identified five terms that correspond to
key cell type functions, such as lipid metabolism, response to fatty
acids and iron homeostasis (Fig. 3b). This pattern appeared to be

consistent across cell types and tissues (Supplementary Figs. 3-
24). In addition, as expected, we also found GO terms corre-
sponding to general cellular functions carried out by many or all
cell types, such as RNA splicing, protein localization or protein
complex assembly, when considering all significantly enriched
categories.

Finally, we interrogated whether our method can also improve
the performance of traditional differential expression methods.
To do so, we collected a gold standard dataset of naïve and
specialized T cells for which the transcriptional landscape was
profiled at the bulk and single-cell level [15]. When applying
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Figure 2. Detection of cell markers and identity genes using scGeneXpress. (a, b) Dotplot of the fraction of recovered marker genes for 73 and 32
(c) human and (b) mouse cell types for scGeneXpress and three differential expression-based methods. Significant differences in the average recovery
were assessed using a paired t-test (significance levels: ∗: P < 0.01; ∗∗: P < 0.001; ∗∗∗: P < 0.0001) (c, d) Ridgeplot of the fraction of recovered functional
identity genes for 73 and 32 (c) human and (d) mouse cell types for scGeneXpress and three differential expression-based methods. Vertical lines in each
distribution indicate the mean. scGeneXpress recovers significantly more identity genes than any other differential expression-based method (paired
t-test, P < 0.0001).

scGeneXpress as well as traditional differential expression
methods on the single-cell data, we observed wide discrepancies
in the number of detected differentially expressed genes (Fig. 3c).
Generally, scGeneXpress and a poison test detected the highest
number of differentially expressed genes across comparisons.
However, when compared to differential expression analysis
results on bulk data, the number of detected genes was signif-
icantly lower in almost all cases. Especially when unstimulated
T cells were involved, at most 50% of genes detected in bulk
RNA-seq have been found in the single-cell samples. We then
set out to quantify the concordance between the differentially

expressed genes detected by single-cell methods, including
scGeneXpress, and in the bulk gold standard analysis (Fig. 3d).
Strikingly, we observed that scGeneXpress showed the highest
performance with an average Cohen’s Kappa of 0.189 whereas
the Wilcox test, which showed the best performance of the
traditional differential expression methods in recovering identity
and marker genes, performed worst (Average Kappa: 0.145).
Moreover, especially in cases where Th2 cells were involved,
scGeneXpress has a demonstrably higher concordance with bulk
data than any other method. Moreover, when comparing the
differentially expressed genes of all methods, we observed that
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Figure 3. Detection of functional genes and improvement of differential expression analysis. (a) Histogram of the fraction of genes uniquely detected
to be differentially expressed. (b) Top enriched cell type specific GO terms resulting from the expressed genes in liver hepatocytes as detected by
scGeneXpress. The size of each circle is proportional to the number of overlapping genes and the color encodes the false discovery rate (FDR). (c)
Number of differentially expressed genes in a dataset of human T cells based on bulk gold standard data (‘bulk’), traditional single cell RNA-seq
differential expression tests and scGeneXpress. (d) Concordance of differential expression analysis in a dataset of human T cells between a bulk gold
standard, traditional single-cell RNA-seq differential expression tests and scGeneXpress. Concordance was measured using Cohen’s kappa. Each dot
represents the computed kappa value and the depicted interval corresponds to the 95% confidence interval.

more than 48% of genes are uniquely detected by scGeneXpress
(Supplementary Table S1). In contrast, only up to 3.8% of differ-
entially expressed genes are uniquely detected by other methods.
Thus, we conclude that detecting expressed genes in cell pop-
ulations of single-cell RNA-seq experiments using scGeneXpress
can significantly improve the detection of differentially expressed
genes.

Computational requirements of scGeneXpress
We evaluated the runtime and memory requirements of scGen-
eXpress. Since the quantification of query samples is conducted
within seconds, we specifically assessed the computational
requirements for computing the threshold distributions depend-
ing on the size and composition of the reference data as well as the
number of bootstrap samples. For this task, we employed heart

tissue data from Tabula Sapiens [1] and varied (i) the number of
initial cells per cell type while selecting a total of 2000 cells (with
replacement), (ii) the number of total cells, and (iii) the number
of bootstrap samples. In addition, for the first two cases, 1000
bootstrap samples were drawn whereas in the third case a total
of 2000 cells were considered. All assessments have been carried
out on a High-Performance Computing cluster using 15 cores on
Intel Xeon CPU. As expected, the number of cell types has little
influence on the runtime and memory usage, which only increase
slightly after 50 cells per cell type (Fig. 4a, b). The reason for the
abrupt increase in runtime and memory usage between 10 and 50
cells per cell type is due to the number of genes passing the filter
of being expressed in at least 10 cells. In contrast, the number of
total cells is almost linearly related to peak memory consumption
and sub-additively to runtime (Fig. 4c, d). Finally, increasing the
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Figure 4. Computational resources required by scGeneXpress. Runtime and peak memory usage for generating threshold distributions in three
scenarios: (i) varying the number of cells per cell type, subsequently sub-sampling to 2000 total cells and 1000 bootstrap samples (a, b), (ii) 1000 cells
per cell type, varying the number of totals cells and 1000 bootstrap samples (c, d) and (iii) 2000 total cells and varying the number of bootstrap samples
(e, f).

number bootstrap samples is linearly increasing peak memory
consumption and sub-exponentially runtime (Fig. 4e, f).

Discussion & Conclusion
In this study, we have developed scGeneXpress, a computational
method for quantifying single-cell RNAseq expression. One of
the key aspects of scGeneXpress is its reliance on data-derived
reference distributions for each gene, which allow the identifi-
cation of gene-specific thresholds to determine whether a gene
can be considered to be expressed or not. The method offers
several advantages compared to traditional differential expres-
sion testing. Namely, using these gene-specific reference distri-
butions allows to account for the individual expression ranges of

each gene and considers their usual expression across cell types.
Consequently, genes that are specifically expressed in only a few
cell types will have lower thresholds to consider them expressed
compared to, for instance, housekeeping genes. Moreover, our
reference-based approach is resilient to variation in the cell type
composition of a query sample, since cell types are treated inde-
pendently. In fact, all cell types together are only considered for
estimating the parameter of a binomial distribution that is used
to assess whether a gene can be considered to be expressed at
the cell type level. In addition, our approach is agnostic of cluster
annotations in the query data as long as the clusters have been
correctly identified. Another important aspect of scGeneXpress
is its generality. Although we have created the reference dis-
tributions across different cell types in this study, it can work
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with any background dataset. For instance, reference distribu-
tions based on subtypes of the same cell type would enable
the detection of expressed genes in a subtype specific man-
ner. Despite the theoretical framework behind scGeneXpress, we
demonstrated that the use of gene-specific reference distributions
improves multiple aspects of single-cell data analysis, includ-
ing marker gene detection and differential expression analysis.
Although scGeneXpress offers a wide range of advantages over
traditional differential expression testing, it has some limitations.
In particular, its performance depends on the clustering of the
data that is used to assemble the reference distributions for each
gene. While it is not necessary to annotate the identified clusters
to cell types or subtypes a priori, they need to have the right
granularity. In particular, clusters with varying granularity, i.e.,
belonging to both cell types and subtypes, could introduce biases
towards certain cell types. Similarly, inaccurately clustered query
samples, in which cells of different types are grouped together,
adversely affect the detection of expressed genes for each cluster.
Indeed, since statistical significance is assessed by comparing
the number of cells expressing a gene in a given cluster against
random permutations of the query data, grouping different cell
types will eventually lead to insignificant results at the cluster
level. Nevertheless, it should be noted that the obtained result is
valid given the data provided to scGeneXpress. Moreover, although
scGeneXpress can effectively remove batch effects characterized
by mean shifts by leveraging scTransform [12], it may be affected
by complex batch effects. In particular, SCTransform normalizes
data using a generalized linear model, which relates sequencing
depth to gene expression counts. This method computes Pear-
son residuals, providing a variance-stabilized measures of gene
expression. The main idea is to reduce the dependency between a
gene’s average expression and its variability across cells, cutting
down on technical noise while preserving the biological signal
[12]. scGeneXpress keeps a record of the normalization factors
derived for each gene after normalizing the single-cell matrix with
SCTransform. These factors are then used to normalize query
datasets, ensuring that different datasets remain consistent and
comparable. This approach effectively handles mean-shift batch
effects, a common issue in single-cell RNA sequencing experi-
ments. However, we acknowledge that our method might not fully
address more complex batch effects, which often arise in the
analysis of complex experimental designs, such as those involving
multiple sample categories or matched samples [16, 17]. Given
this limitation, we suggest that users who think their datasets
might have these complex batch effects take extra pre-processing
steps. Specifically, they should consider correcting batch effects
in both the background and query datasets to suit their unique
needs before applying our method.

In summary, we expect that scGeneXpress will be a useful tool
to obtain insights into key cellular processes in a wide variety
of research domains including the study of development and
disease progression that can be incorporated into existing single-
cell analysis workflows.

Key Points

• scGeneXpress is a novel method for quantifying single-
cell gene expression data without the need to compare
against other cell populations contained in the same
dataset

• scGeneXpress considers real gene expression distribu-
tions as background references, thus accounting for the
different expression scales of genes

• Expression data quantified with scGeneXpress improves
differential expression analysis and marker gene detec-
tion

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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