
Accordion mode based on Hash-Encrypt-Hash∗

Hieu Nguyen Duy2, Pablo García Fernández2, Aleksei Udovenko2, Alex
Biryukov1,2

1 FSTM, University of Luxembourg
2 SnT, University of Luxembourg

first-name.last-name@uni.lu

Abstract. NIST is planning a call for a tweakable variable-input-length strong
pseudorandom permutation (VIL-SPRP), coined as “an Accordion mode”. In this
paper, we survey tweakable VIL constructions, specially focusing on those based on
the Hash-Encrypt-Hash paradigm (including HCTR and similar designs) in terms of
their applicability as an Accordion mode, and discuss their efficiency and shortcomings.
Furthermore, we also introduce an improved version that achieves Beyond Birthday
Bound (BBB) security.

Keywords: Hash-Encrypt-Hash · Accordion Mode · HCTR · ACCOR

Contents
1 Introduction 2

2 The Hash-Encrypt-Hash paradigm 5
2.1 HCTR . 5
2.2 Survey of results . 6

3 ACCOR-HEH 7

4 ACCOR-S 8
4.1 Security . 11
4.2 Efficiency . 12

5 ACCOR-L 12

6 Application modes 13
6.1 Authenticated Encryption with Associated Data 13
6.2 Tweakable Encryption . 14
6.3 Deterministic Authenticated Encryption 14
6.4 Double block size of the underlying block cipher 14
6.5 Improved efficiency . 14

∗This research was funded by the Luxembourg National Research Fund (FNR), project CryptoFin
C22/IS/17415825. For the purpose of open access, and in fulfilment of the obligations arising from the
grant agreement, the authors have applied a Creative Commons Attribution 4.0 International (CC BY
4.0) license to any Author Accepted Manuscript version arising from this submission.

mailto:first-name.last-name@uni.lu

2 Accordion mode based on Hash-Encrypt-Hash

7 Additional security properties 14
7.1 Tweak size . 14
7.2 Message lengths . 15
7.3 Multi-user security . 15
7.4 Key and Context Commitment . 15
7.5 Key-Dependent Input Security . 16
7.6 Nonce-misuse resistance . 16
7.7 Nonce hiding . 16
7.8 Padding attacks . 16
7.9 Known/Chosen Key security . 16

Appendices 21

A ACCOR-HEH construction 21
A.1 Preliminaries . 21
A.2 The scheme . 23
A.3 Security . 23

B ACCOR-S’ 26

C ACCOR-L’ 27

1 Introduction
Awareness about the need for a new mode for block ciphers has risen recently. It would
be crucial for some applications to have a mode that is more flexible and robust than
existing modes such as AES-GCM. Concretely, NIST is calling for the development of a
tweakable variable-input-length strong pseudorandom permutation (VIL-SPRP), coined as
“an Accordion mode”.

In this work, we survey related constructions, focusing on those based on the Hash-Encrypt-
Hash paradigm, and present three instantiations of an accordion mode following it. We
evaluate their flexibility and robustness according to the NIST’s criteria.

Previous work We briefly mention previous constructions relevant to our work. HCTR is
a construction proposed in 2005 [WFW05], and is used as the main basis of inspiration for
our construction. It is closely related to other constructions such as HCH [CS06], HSE
[MM07], OCB1 ([Rog04]), and XCB [MF04]. Based on these ideas, some generalizations
were presented in 2011, remarkably LBC1 (see [MI11]).

Other variants of HCTR have already been developed. In 2018, a tweakable version
that achieves beyond birthday bound (BBB) security was proposed, THCTR ([DN18]).
Furthermore, another efficient construction was created that year, Adiantum, based on
HBSH ([CB18]). Also, a similar 3-round construction achieving BBB security which is
based on tweakable block-cipher calls was published that same year, ZCZ (see [BLN18]).

Additionally, other interesting proposals for tweakable block ciphers have been developed.
From the original version of tweakable encryption, LRW, several improvements have
appeared in the recent years, although they do not have the required properties to be
viable candidates for the accordion mode. Other schemes based on deck constructions were
proposed ([GDM19]), as well as another one using masking functions, TIE-plus ([Zha23]).

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 3

Tables 1 and 2 summarizes all of these constructions (this is a working draft, we welcome
feedback and any corrections or typos).

In section 2.2, we have presented another survey, in this case relating those tweakable
block ciphers that could be used as primitives for the accordion constructions.

Our contribution After presenting a survey of the most relevant projects in the literature,
we focus our attention into three different instantiations of a common scheme. The first
one is an ideal construction, used to study theoretical security bounds; the second one is a
version of high efficiency, but limited security; the last one, although slightly less efficient,
increases greatly the security bound of the second construction.

Outline In Section 2, we explain the HEH paradigm, give a brief introduction to HCTR,
and survey the other main results in the area of tweakable block ciphers. The following
three sections present our main contributions. Section 3 is about ACCOR-HEH, a general
view of the scheme. Section 4 is devoted to ACCOR-S, a concrete instantiation of the
general blueprint that achieves great efficiency. The following section, number 5, explains
ACCOR-L, a more powerful realization that achieves BBB security, although with a slightly
worse perfomance. Afterwards, in Section 6, we show the derived functions and applications
associated with this scheme, as well as alternative methods of using it. Then, in Section 7,
we comment on the specific security requirements expected of an accordion mode.

In the appendices we give a detailed proof of the security bound of the ideal construction,
as well as additional suggestions to improve the flexibility, and details about security
characteristics of the other schemes.

4 Accordion mode based on Hash-Encrypt-Hash

Ta
bl

e
1:

Su
m

m
ar

y
of

th
e

m
ai

n
V

IL
(t

we
ak

ab
le

)
bl

oc
k

ci
ph

er
s

in
th

e
lit

er
at

ur
e

N
am

e
Ye

ar
Se

cu
rit

y
Ty

pe
of

ha
sh

Effi
ci

en
cy

O
th

er
ch

ar
ac

te
ris

tic
s

EM
E

[H
R

04
]

20
03

7q
2 a

2 /
2n

(2
m

+
2)

BC
C

M
C

[H
R

03
]

20
03

7q
2 a

2 /
2n

(2
m

+
1)

BC
X

C
B

[M
F0

4]
20

04
8q

2 a
2 /

2n
Po

ly
no

m
ia

l
(m

+
1)

BC
+

2H
F

O
C

B1
[R

og
04

]
20

04
9.

5q
2 a

2 /
2n

+
2n
−

τ
/
2n

(m
+

2)
BC

H
C

T
R

[W
FW

05
]

20
05

q3 a
2 /

2n
Po

ly
no

m
ia

l
m

BC
+

2H
F

H
C

H
[C

S0
6]

20
06

7q
2 a

2 /
2n

Po
ly

no
m

ia
l

(m
+

3)
BC

+
2H

F
H

SE
[M

M
07

]
20

07
5q

2 a
2 /

2n
ϵ-

A
X

U
m

BC
+

2H
F

LB
C

1
[M

I1
1]

20
11

3q
2 a

2 /
22n

Po
ly

no
m

ia
l,

ϵ-
A

X
U

,
ϵ
≈

2−
2n

(m
−

1)
(n

,n
)−

T
BC

+
4H

F
T

C
T

2
[S

T
13

]
20

13
qa

2 /
2n

+
6a

3 q
3 /

(2
2n
−

2
−

a
3 q

3)
+

12
96

q3 /
(2

2n
−

2
−

21
6q

3)

Po
ly

no
m

ia
l,

ϵ-
A

U
/

ϵ
−

A
X

U
2

(6
m

+
6)

BC
+

(7
m

+
7)

H
F

Tw
o

di
ffe

re
nt

ha
sh

fu
nc

tio
ns

ZM
A

C
[IM

PS
17

]
20

17
2.

5q
2 a

2 /
2n

+
m

in
{s

,n
}

+
4q

/2
n

(6
+

m
)T

BC
T

he
re

is
an

un
kn

ow
n

co
ns

ta
nt

in
th

e
se

cu
-

rit
y

bo
un

d
A

di
an

tu
m

[C
B1

8]
20

18
q2 a

/
211

6
Po

ly
no

m
ia

l,
ϵ-

∆
U

BC
+

SC
(o

ut
pu

t:
m
−

1
bl

oc
ks

)+
2H

F
SC

:X
C

ha
C

ha
12

ZC
Z

[B
LN

18
]

20
18

3q
2 a

2 /
22n

+
1

Po
ly

no
m

ia
l

(2
m

+
6

+
m

/
n

)T
BC

+
4H

F
M

ix
tw

ea
k

an
d

ke
y

T
H

C
T

R
[D

N
18

]
20

18
2q

a
/2

n
+

2q
a

2 /
2n

+
s

∗
n

-b
it

ke
ye

d
A

X
U

+
(n

+
s∗

)-
bi

t
ke

ye
d

pA
X

U
m

T
BC

+
3H

F
H

as
he

d
tw

ea
k.

N
o

re
us

ed
tw

ea
k

D
ec

k-
ba

se
d

[G
D

M
19

]
20

19
q2 /

212
7

ϵ-
X

U
2V

IL
−

SC
+

2H
F

B
et

te
r

se
cu

rit
y

if
no

re
us

ed
tw

ea
k

H
C

T
R

2
20

21
1.

5q
2 a

2 /
2n

Po
ly

no
m

ia
l,

A
X

U
m

BC
+

2H
F

T
IE

-p
lu

s
[Z

ha
23

]
20

22
q2 a

2 /
2n

ℓ
+

q2 a
2 (

1
−

1/
ℓ)

/
2n

+
2q

2 a
/
2n

(ϵ
,µ

,δ
)-

m
as

ki
ng

fu
nc

tio
n

2m
M

F
+

m
P

Pr
ov

ab
le

m
ul

ti-
ke

y
se

-
cu

rit
y

H
F:

H
as

h
Fu

nc
tio

n,
B

C
:B

lo
ck

C
ip

he
r,

T
B

C
:T

w
ea

ka
bl

e
B

lo
ck

C
ip

he
r,

SC
:S

tr
ea

m
C

ip
he

r,
V

IL
-S

C
:V

ar
ia

bl
e-

In
pu

t-
Le

ng
th

St
re

am
C

ip
he

r,
P

:P
er

m
ut

at
io

n,
M

F:
M

as
ki

ng
Fu

nc
ti

on
,A

X
U

:A
lm

os
t

X
O

R
U

ni
ve

rs
al

,A
U

:A
lm

os
t

U
ni

ve
rs

al
,∆

U
:A

lm
os

t
∆

U
ni

ve
rs

al
,p

A
X

U
:p

ar
ti

al
A

X
U

,X
U

:X
O

R
U

ni
ve

rs
al

,n
:

bl
oc

k
siz

e,
a:

m
ax

im
um

m
es

sa
ge

le
ng

th
in

bl
oc

ks
,q

:
nu

m
be

r
of

qu
er

ie
s,

s:
tw

ea
k

le
ng

th
,s

∗
:

tw
ea

k
le

ng
th

af
te

r
ha

sh
in

g,
m

:
nu

m
be

r
of

bl
oc

ks
of

a
sp

ec
ifi

c
m

es
sa

ge
,ℓ

:
nu

m
be

r
of

ke
ys

,τ
:

ta
g

le
ng

th

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 5

2 The Hash-Encrypt-Hash paradigm
One of the methods used in the past to design tweakable block ciphers consist on this
three-layered scheme known as HEH.

In this scheme, first there would be a hash of some or all of the input message and the
tweak. This hashed value would be later used in the encryption of the message, via a block
cipher, a stream cipher, or some combination.

This idea, while very basic, allows for great flexibility. In future sections we will show how
it can be used to construct a secure tweakable block cipher without losing efficiency.

2.1 HCTR

Figure 1: Scheme of the HCTR construction (This image comes from [CN08])

This construction, one of the most basic constructions following the HEH paradigm, is
based on the next scheme ([WFW05]):

1. Divide the plaintext in one first block M , and the rest of the blocks N

2. Hash N together with the tweak

3. XOR the result with M to obtain M ′

4. Encrypt M ′, and XOR the result with it to obtain S

5. Use S as the counter for a counter mode

6. XOR the resulting stream with N to obtain all the ciphertext blocks, except for the
first one

7. Use again the same hash function with the tweak and the last part of the ciphertext,
and XOR the result with the encryption of M ′ to obtain the first block of the
ciphertext

The hash function proposed is polynomial, AXU, and considers the length of the input as

6 Accordion mode based on Hash-Encrypt-Hash

one of the coefficients. As the underlying block cipher, we could use AES256 or AES128.
Furthermore, the tweak length is fixed.

The security of this construction is below the BBB, and it is affected greatly by the
maximum message length allowed. It is important to remark that, at least partially, this
is due to the fact that E and the counter mode use the same key.

2.2 Survey of results

Table 2: Summary of the main tweakable block ciphers in the literature
Name Year Security Efficiency

Custom construction
Threefish [FLS+09] 2009 256 bits 72P + 288MIX
PRINCE [BCG+12] 2012 q/2126 12SB + 11LL
TWEAKEY [JNP14] 2014 64 bits (at least) rP + rTSUP
SKINNY [BJK+16] 2016 88.5 bits 40 rounds AES-like
QARMA [Ava17] 2017 176 bits 46P + 24SB + 23MC +

22LFSR
PRINCEv2 [BEK+20] 2020 112 bits 12SB + 11LL

Block Cipher based
LRW0 [LRW02] 2002 q2/2n 2BC
LRW1 [LRW02] 2002 3q2/2n 1BC + 2HF
SBC [MI11] 2011 6.5q2/2n+s 2(n, s)− TBC + 2HF
XHX [JLM+17] 2017 3(s + 2)q2/2n+k + 4q/2k 1BC + 3HF
XHX2 [LL18] 2018 1364q3/2/22n +4096q3/24n 2BC + 4HF
LRW2 [JN20] 2020 3q2/2n 1BC + 2HF
CLRW2 [JN20] 2020 54q4/23n + 2q2/23n/2 2BC + 4HF
TNT [JKNS24] 2023 q2/2n 3BC
LRW+ [JKNS24] 2023 2q2/23n/2 + 32q4/23n 2BC + 2HF

P: Permutation, SB: S-Box, MC: MixColumns-like function, MIX: non-linear Mixing function,
TSUP: Tweakey State Update function, LL: Linear Layer, LFSR: Linear-Feedback Shift Register,
BC: Block Cipher, TBC: Tweakable Block Cipher, HF: Hash Function, q: number of queries, n:
input length of the underlying block cipher, s: tweak length, r: number of rounds, k: key length

We provide a summary of similar HEH constructions in Table 1. As we can see, there are
several constructions that achieve BBB security, although they lack in efficiency. From
these constructions, the most efficient seems to be ZCZ [BLN18], which employs adequately
chosen primitives to obtain the best balance between security and performance.

Regarding those that do not achieve BBB security, LBC1 [MI11] seems interesting, as well
as Adiantum [CB18]. The former employs a polynomial hash function and maintains good
efficiency, while the latter presents an interesting scheme that combines three fundamental
components of symmetric cryptography: hash functions, stream ciphers, and block ciphers.

Additionally, we have surveyed some tweakable block ciphers proposed in the literature
that could work as primitives inside the variable-input-length constructions. These are
summarized in table 2. The first part of the table includes those that developed their own
encryption system, while the other ones use an underlying block cipher, like AES. We are
more interested in the latter. The best security comes from those based in cascading LRW.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 7

3 ACCOR-HEH
In this section, we are going to present the general idea of our scheme, the ideal theoretical
construction, presented in Fig. 2. In following sections, we will present two specific
instantiations, one of them achieving BBB security.

P1 T P2, P3, ...

h

⊕

⊕

PRP

⊕ h

TC1 C2, C3, ...

PRF⊕

Figure 2: Scheme of ACCOR-HEH

Encryption algorithm:

1. Hash together the tweak and all the plaintext, except for the first block

2. XOR the resulting hashed value with the first plaintext block to obtain P ′

3. Pass P ′ through a PRP (later instantiated by a block cipher) to calculate a new
value, C ′

4. XOR P ′ and C ′ to find S

5. Input S (possible truncated to an appropriate size) into a PRF (later instantiated by
a stream cipher) to obtain a stream, which is XORED with all the plaintext, except
for the first block, to find the corresponding, second part of the ciphertext

6. Hash together the tweak with all of this ciphertext, and XOR the resulting hashed
value with C ′ to obtain the first ciphertext block

This scheme is symmetric. Therefore, the decryption function is equivalent to this algorithm.
It is important to remark that the corresponding key associated with the block cipher
must be different to the one used in the stream cipher.

In case the input is not a multiple of the input size of the underlying hash function, we
would create an internal padding just for the hash. However, the ciphertext would maintain
the original size of the plaintext.

With respect to the security of this construction, we have the following theorem:

8 Accordion mode based on Hash-Encrypt-Hash

Theorem 1. Considering an adversary that performs q queries, with a total (padded)
message length in blocks σ, and in a time at most t,

AdvTVPERM
ACCOR-HEH(q, σ, t) ≤ q2

2 (2
2n

+ 1
2nI

) +
∑

1≤i<j≤q

ϵi,j

+ PRFAdvFUNCnI ,nO
SC (q, σ − q, t + O(σ))

+ SPRPAdvPERMn
BC (q, t + O(σ))

(1)

where n is the size of the block cipher input, nI is the size of the stream cipher input, nO

the size of the stream cipher output, and ϵi,j is an upper bound on the probability of hash
collision guaranteed by an almost universal hash family.

More details can be found in the Appendix A.

4 ACCOR-S
In this section, we present the full construction of our main idea, ACCOR-S. We will be
working over the finite field F2128 represented by F2[x]/(p(x)), with

p(x) = x128 + x7 + x2 + x + 1

being the irreducible polynomial over F2 used, in particular, in the AES-GCM (see [Ser98],
[MV05]). Most computations with numbers in this work have to be considered over this
field. For brevity, while abusing the notation, we represent the elements of F2128 by
integers, whose binary representation describes the coefficients of the respective polynomial
in F2/⟨p(x)⟩. For example, given ω a root of p(x) and, therefore, a generator of F∗2128 ,

5 = (101)2 = ω2 + 1.

We denote the block cipher AES encryption (resp. decryption) of a plaintext x with ℓ-bit
key K by AESE

ℓ (K, x) (resp. AESD
ℓ (K, x)).

The method that we are going to use to initiate the appropriate sub-keys is the following:

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 9

Key schedule

INPUT: 256-bit master key KI

OUTPUT: 128-bit key Kx, 256-bit key Ky, 256-bit key Kz

1. Compute
Kx = AESE

256(KI, 1).

For security, we require that KI leading to Kx = 0 is not allowed.

2. Compute
Ky = AESE

256(KI, 2)||AESE
256(KI, 3).

3. Compute
Kz = AESE

256(KI, 4)||AESE
256(KI, 5).

Before seeing the encryption method, to improve the security against tweak-related attacks,
we propose the option to convert the potentially long variable length tweak into a fixed
length tweak. One could either encrypt a non-zero constant 256-bit message (for example,
derived from the digits of Pi) with the long tweak using the same scheme and to treat the
resulting 256-bit ciphertext as a new fixed length tweak, or to use a secure 256-bit output
MAC(KI, T).

Also, given such hashed tweak T = (Th, Tl), |Th| = |Tl| = 128, an alternative way of
producing sub-keys from the master key KI would be as follows:

Kx = AESE
256(KI, Th + 1) (2)

Ky = AESE
256(KI, Th + 2)||AESE

256(KI, Tl + 3) (3)
Kz = AESE

256(KI, Th + 4)||AESE
256(KI, Tl + 5). (4)

This way the keys depend on the tweak as well. This might be one of the ways to go
towards BBB security, and against context commitment attacks.

P2P1 . . . Pm

H

Kx(128) T

⊕

AESKy(256)
⊕ Counter

Mode

Kz(256)

⊕ ⊕

H

C2 . . . CmKx(128) TC1

⊕

Figure 3: Scheme of ACCOR-S

10 Accordion mode based on Hash-Encrypt-Hash

Encryption function

INPUT: Plaintext P , Tweak T , XUH Key Kx, Block Cipher Key Ky, Stream Cipher Key
Kz

OUTPUT: Ciphertext C

1. Divide the plaintext in blocks of size 128 bits. The last block will be (internally)
padded. Then, we append the bit-length of the plaintext as an additional block. We
require that the tweak has a fixed size. Now, we have the plaintext as

P = P1||P2|| · · · ||Pm−1||P ∗m,

and the tweak as
T = T1||T2|| · · · ||Ts,

where each block has size 128 bits, and P ∗m = Pm||r, with r a random string of bits
of the appropriate size.

2. Hash the tweak and all except the first block of the plaintext in the following way:

P ′ = P1 ⊕

(
s⊕

i=1
TiK

i+m
x ⊕

m⊕
i=2

Pi ·Ki
x ⊕ bitsize(P ||T) ·Kx

)
.

Here the tweak length is fixed after hashing the variable length tweak, so there is no
ambiguity on where the message ends and where the tweak starts.

3. Compute
C ′ = AESE

256(Ky, P′).

4. Now, let
S = P ′ ⊕ C ′.

5. Use the counter mode with AES256, and the counter given by S, to create m − 1
blocks of random bits:

Xi = AESE
256(Kz, S + i),

for i from 2 to m.

6. As in a one-time pad, XOR the random blocks Xj with the plaintext blocks to find
the ciphertext,

Cj = Xj ⊕ Pj ,

for j from 2 to m− 1, and
Cm = Xm[0 : len(Pm)]⊕ Pm,

where Xm[0 : len(Pm)] consists of the first part of Xm, of length the same as Pm.

7. To compute the first ciphertext block, just calculate

C1 = C ′ ⊕

(
s⊕

i=1
TiK

i+m
x ⊕ C∗m ·Km

x ⊕
m−1⊕
i=2

Ci ·Ki
x ⊕ bitsize(C||T) ·Kx

)
,

where C∗m = Cm||r, with r of the needed length to form a full block.

Since the scheme is symmetric, the decryption function coincides with the previous
algorithm.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 11

4.1 Security
According to the paper [CN08], if we have an adversary A making q queries of plaintext-
ciphertexts blocks, either to the encryption or to the decryption function (the adversary
could even query both in a given attack), having at most qa many blocks queried, trying
to distinguish this construction from a random permutation, and running in time at most
D, then there is another adversary B over AES256, making q queries to AES256 in the
same conditions as A, running in time at most D′ = D + O(qa), that satisfies

AdvHCTR[AES256](A, a, D) ≤ AdvAES256(B, a, D′) + 4.5 · q2a2

2n .

As can be seen in Appendix A, this parameter can be improved by a constant factor.

Specific parameters Assuming an adversary that does q queries to the accordion scheme
(possibly with varying tweaks), and limiting each message length to 220 128-bit blocks, we
have that the advantage is, at most,

AdvAES256(B, a, D′) + 4.5 · q2 · 240

2128 ≈ q2

285.83 + AdvAES256 .

For a concrete example, if q = 225 queries (i.e. 245 128-bit blocks) under the same key are
made, and AES256(k, .) is indistinguishable from a random permutation, the attacker will
have little chance (bounded by 2−35) to break the construction.

Importance of the specific details of the scheme We present a possible attack that
could be performed against similar constructions where the hash function has an ambiguous
behaviour, although it is not applicable to our scheme, thanks to our special treatment of
the tweak.

Let us suppose that the adversary asks for the encryption of both P 1 = 0||0, T = 0; and
P 2 = 0||0||0 (no tweak). Then, since, in both cases, P ′ = 384Kx, we have the same C ′ and
S, which implies that P 1

2 = X2 = P 2
2 . Thus, the adversary can distinguish this scheme

from a variable-input-length, tweakable family of random permutations.

Furthermore, we also have that

P 2
3 = X3,

P 1
1 = AES(384Kx)⊕X2K2

x ⊕ 384Kx,

P 2
1 = P 1

1 ⊕X3K3
x.

Therefore,

Kx = 3

√
P 2

1 ⊕ P 1
1

X3
,

which is easily computable by the adversary.

Another way to avoid this attack consists in using a different hash function that handles
the length of both tweak and message in a unique way (for example, considering the
coefficient bitsize(P)||bitsize(T)).

12 Accordion mode based on Hash-Encrypt-Hash

4.2 Efficiency
This construction has a similar performance to the GCM mode of AES. In fact, for a given
input size, it uses the same number of AES encryptions, as well as two hash function calls
in total.

Furthermore, this method is highly parallelizable. After computing the first encryption of
the secret parameter P ′ (which can also be parallelized), one can make all the other calls
to the AES function in parallel. Nevertheless, it cannot be computed on the fly (which
probably has to be a property of any accordion scheme acting as a large-block block-cipher
where every bit of output should depend on all the bits of the input) because it requires
seeing all the blocks to compute P ′. Thus, it is not optimal for some applications like
streaming.

5 ACCOR-L

H

T Kx(256) P2 P3. . . PnP1P0

⊕ ⊕

AES

AES

K3
y(128)

K1
y(128)⊙⊕
⊙ ⊕

K2
y(128)

K2
y(128)⊕⊙
⊙⊕

K1
y(128)

Kz(128) (Nonce)

⊕

⊕

Counter
Mode

Key

(256)

⊕ ⊕ ⊕

H

T Kx(256) C2 C3 Cn
. . .C0 C1

⊕⊕

Figure 4: Scheme of ACCOR-L. The dashed rectangle corresponds to the PRP part of
ACCOR-HEH.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 13

To increase the security of the scheme, we proposed the construction given in figure 4.
Here, the hash function acts over blocks of size 2n, which forces its output to be divided
before later use. Furthermore, we force the key of the counter mode to depend in both
the plaintext and the tweak. Therefore, we reduce greatly the probability of unwanted
collisions in its output.

The block cipher part of the construction is composed of a first round where a pair of keys
are multiplied with each one of the first two plaintext blocks, and the result xored with
the other; an AES256-round; and a final round symmetrical to the first one.

The stream cipher is based on a counter mode with AES256, where the key is the concate-
nated outputs of the block cipher, and the nonce is an extra key. Additionally, each 16
blocks, the key of the counter mode is changed by adding one, which allows to extend
greatly the functionality of the cipher, since we increase the security of the system by
making the cipher to behave in a more similar way to an SPRP.

As in the previous constructions, the plaintext does not need to have as size a multiple
of the input size of the underlying functions. The last block is only padded internally to
be used in the hash function. Moreover, the ciphertext has the same size as the original
plaintext.

The security of this method is better than that of ACCOR-S. Given the same parameters
as in subsection 4.1, the advantage of any adversary should be

AdvACCOR−L(A) ≤ qa
2124 · (1 + q

2132) + AdvRK
AES256

,

where a is the maximum message length in blocks, and AdvRK
AES256

is the related-key security
of AES256. Thus, up to 284/a queries (possibly under different tweaks) can be done while
keeping success probability of the adversary below 2−40.

If we increment the key of CTR every step, the security bound improves to:

AdvACCOR−L(A) ≤ q2a
2256 + AdvRK

AES256
.

Such scheme would be less efficient, but closer to SPRP if the underlying cipher was
ideal. However simple tweaks to AES master keys need to be carefully checked in light of
weak-key schedule and related key attacks on AES.

6 Application modes
6.1 Authenticated Encryption with Associated Data
We can make this construction into an AEAD by treating the tweak as a combination of
the nonce and the associated data, and including a last block in the plaintext that ends in
the message 10τ . Due to the security properties of the accordion mode, we know there
is no loss of security due to a misuse of the nonce. Furthermore, since the ciphertexts
are almost indistinguishable from random, an adversary would need around 2τ+1 different
ciphertexts until finding one that succeeds in decrypting into a valid plaintext.

In the original HCTR-like scheme this method could not be used because the tweak had
to have a fixed size.

14 Accordion mode based on Hash-Encrypt-Hash

6.2 Tweakable Encryption
This method works efficiently for tweakable encryption. Changing the tweak is highly
efficient (you only need to do a few new multiplications), unless you decide to use the
option of pre-encrypting the tweak, or considering tweakeys. Anyway, changing the tweak
for long messages is amortized due to fixed cost of rekeying. Furthermore, there does not
seem to be any security flaw with respect to chosen tweak attack due to KDF usage.

6.3 Deterministic Authenticated Encryption
As done in subsection 6.1, we can create DAE by, after padding the plaintext, adding a
block ended in the sequence 10τ , where τ is the authentication security parameter.

This application, which does not require any tweak, is easily introduced in such scheme
since eliminating the tweak is not only easy but improves the method’s performance
slightly.

6.4 Double block size of the underlying block cipher
As in the construction of subsection 5, we can easily accommodate the system to allow an
underlying block cipher that accepts 256-bit inputs.

6.5 Improved efficiency
One way to improve the scheme’s efficiency is to change the polynomial hash function for
a faster, while still secure, version. For example, Poly-1305 ([Ber05]) with AES, or NH
([BHK+99]), could be used instead.

7 Additional security properties
Table 3: Main additional properties of our three schemes
Property ACCOR-HEH ACCOR-S ACCOR-L
TS UL UL UL
Min ML 1 block 1 block 2 blocks
Max ML UL 220 blocks 230 blocks
MKS Yes Yes Yes
CtxCom Yes Yes Yes
KDIS Yes Yes Yes
NMR Yes Yes Yes
NH Yes Yes Yes
PAS Yes Yes Yes
KCKS ? ? ?

TS: Tweak Size, ML: Message Length, MKS: Multi-key Security, CtxCom:
Context Commitment Security, KDIS: Key-Dependent Input Security, NMR:
Nonce-misuse resistance, NH: Nonce Hiding, PAS: Padding Attacks’ Security,
KCKS: Known/Chosen Key Security, UL: Unlimited

7.1 Tweak size
These three construction allow any size for the tweak, preferably multiples of 128 bits.

The AEAD method does not change the requirements on this parameter, even if we include
the additional data as part of the tweak. Other option consists in hashing this data into
the fixed-length tweak.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 15

7.2 Message lengths
We propose a minimum message length of 128 bits (a = 1) for the first two constructions,
256 bits (a = 2) for the last one. In ACCOR-HEH, we do not establish a maximum for
this parameter, since the security depends only slightly on it. However, in ACCOR-S, this
is a key parameter for the security of the system. Therefore, we set a maximum message
length given by b = 220 blocks (16.78 megabytes). Other maxima could also be valid,
although it is important to realize the close relationship between the message length and
the encryption’s security.

Due to the relationship of this parameter with the security of ACCOR-L, we establish the
maximum for it in b = 230 blocks (137.44 gigabytes).

7.3 Multi-user security
According to Theorem 1, and Lemma 3 of [LMP17], we can prove that the polynomial
hash function does not exhibit multi-key security degradation.

We believe this result can be extended to the rest of the scheme, and to the three variants.

7.4 Key and Context Commitment
When using one of the authenticated modes, we have to be careful due to the possibility
that there are some ways of finding specific keys or tweaks that allow an adversary to
create a valid ciphertext.

Let us consider the following attack: given

C1, . . . , Cm = HCTR(T, Kx, Ke, P1, . . . , Pm),

given Q1, . . . , Qm a different plaintext, find T ′, K ′x, K ′e such that

HCTR(T′, K′x, K′e, Q1, . . . , Qm) = C1, . . . , Cm.

Let us suppose that AES is resistant against these attacks: given B = AES(K, A), there is
no feasible way to find a different plaintext A′, and a key K ′, such that B = AES(K′, A′).

Thanks to this property of AES, to find Cj , for j > 1, since

Cj = Pj + Xj = Pj + AES256(Ke, S + j),

we need the same Ke and S, which, in turn, fix Pj for j > 2.

Now, to find S, since S = P ′+ AES256(Ke, P′), the adversary just have to find appropriate
tweak and key that lead to the same P ′. Let us see how this can be done.

We have to solve the system of equations:

f(K ′x, T ′) + g(K ′x, Q) =P ′

f(K ′x, T ′) + g(K ′x, C) =C ′,

with both f and g polynomials. Therefore, we just have to find a root for the polynomial

p(K ′x) = g(K ′x, Q)− P ′ + C ′ − g(K ′x, C).

16 Accordion mode based on Hash-Encrypt-Hash

Once this is done, the solution is found by solving the linear equation

f(K ′x, T) = P ′ − g(K ′x, Q),

where K ′x, P ′ and Q are fixed.

To sum up, a forgery can be done, but only affecting the first plaintext block. This forgery
is feasible due to the polynomial structure of the hash function. A different type of hash
function would probably solve this issue.

Fortunately, this attack is prevented by the improved Key Derivation Protocol explained
in section 4.

7.5 Key-Dependent Input Security
Unless the adversary asks to encrypt the decryption of some keys, any other key func-
tion should give no information, since the corresponding ciphertext is computationally
indistinguishable from random.

There is some sense in which this construction does not achieve this property. For example,
if the message to be encrypted is a function of the key such that the corresponding Xj , for
some index j, is a clear invertible function of some key, we can recover that key.

7.6 Nonce-misuse resistance
Since the nonce would be inside the tweak, which is considered in the same way as the
plaintext, both P ′ and Kx are secure as long as the adversary cannot recover the plaintext.
Therefore, there is no security problem if the same tweak is used more than once, apart
from the fact that encrypting twice a message with the same tweak produces the same
ciphertext.

7.7 Nonce hiding
Since, in this construction, the nonce is considered part of the tweak, this can easily be
hidden (by treating it as plaintext), and the security of this encryption is the same as that
of any other plaintext block.

7.8 Padding attacks
In the basic method, there is no wrong ciphertext, which ensures resistance against this
type of attack. In the authenticated method could be some problems, none that we know
about.

7.9 Known/Chosen Key security
The scheme is easy to distinguish from an ideal cipher if the adversary can know or
even choose the keys. This is expected since this is just a 3-round unbalanced Feistel
scheme. This can be improved by altering the structure and adding more rounds, but
losing efficiency.

References
[Ava17] Roberto Avanzi. The qarma block cipher family. almost mds matrices over rings

with zero divisors, nearly symmetric even-mansour constructions with non-

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 17

involutory central rounds, and search heuristics for low-latency s-boxes. IACR
Transactions on Symmetric Cryptology, pages 4–44, 2017. URL: https://tosc.
iacr.org/index.php/ToSC/article/view/583, doi:10.13154/tosc.v2017.
i1.4-44.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
Prince – a low-latency block cipher for pervasive computing applications.
Advances in Cryptology – ASIACRYPT 2012. Lecture Notes in Computer
Science, 7658:208–225, 2012. URL: https://link.springer.com/chapter/
10.1007/978-3-642-34961-4_14, doi:10.1007/978-3-642-34961-4_14.

[BEK+20] Dušan Božilov, Maria Eichlseder, Miroslav Kneževic, Baptiste Lambin, Gregor
Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh, Yosuke
Todo, and Friedrich Wiemer. Princev2 - more security for (almost) no overhead.
Cryptology ePrint Archive, Paper 2020/1269, 2020. URL: https://eprint.
iacr.org/2020/1269.

[Ber05] Daniel J. Bernstein. The poly1305-aes message-authentication code. Fast soft-
ware encryption: 12th international workshop. Lecture Notes in Computer Sci-
ence, 3557:32–49, 2005. URL: https://cr.yp.to/mac/poly1305-20050329.
pdf.

[BHK+99] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. Umac:
Fast and secure message authentication. Advances in Cryptology –
CRYPTO’99. Lecture Notes in Computer Science, 1666:216–233, 1999.
URL: https://link.springer.com/chapter/10.1007/3-540-48405-1_14,
doi:10.1007/3-540-48405-1_14.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
skinny family of block ciphers and its low-latency variant mantis. Ad-
vances in Cryptology – CRYPTO 2016. Lecture Notes in Computer Science,
9815:123–153, 2016. URL: https://link.springer.com/chapter/10.1007/
978-3-662-53008-5_5, doi:10.1007/978-3-662-53008-5_5.

[BLN18] Ritam Bhaumik, Eik List, and Mridul Nandi. Zcz – achieving n-bit sprp
security with a minimal number of tweakable-block-cipher calls. Advances
in Cryptology – ASIACRYPT 2018. Lecture Notes in Computer Science,
11272:336–366, 2018. URL: https://link.springer.com/chapter/10.1007/
978-3-030-03326-2_12, doi:10.1007/978-3-030-03326-2_12.

[CB18] Paul Crowley and Eric Biggers. Adiantum: length-preserving encryption
for entry-level processors. Cryptology ePrint Archive, 2018. URL: https:
//eprint.iacr.org/2018/720.

[CDD+24] Yu Long Chen, Michael Davidson, Morris Dworkin, Jinkeon Kang, John
Kelsey, Yu Sasaki, and Meltem Sönmez Turan. Proposal of requirements for
an accordion mode. Discussion Draft for the NIST Accordion Mode Workshop
2024, 2024. URL: https://csrc.nist.gov/files/pubs/other/2024/04/
10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/

https://tosc.iacr.org/index.php/ToSC/article/view/583
https://tosc.iacr.org/index.php/ToSC/article/view/583
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://link.springer.com/chapter/10.1007/978-3-642-34961-4_14
https://link.springer.com/chapter/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://eprint.iacr.org/2020/1269
https://eprint.iacr.org/2020/1269
https://cr.yp.to/mac/poly1305-20050329.pdf
https://cr.yp.to/mac/poly1305-20050329.pdf
https://link.springer.com/chapter/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://link.springer.com/chapter/10.1007/978-3-662-53008-5_5
https://link.springer.com/chapter/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://link.springer.com/chapter/10.1007/978-3-030-03326-2_12
https://link.springer.com/chapter/10.1007/978-3-030-03326-2_12
https://doi.org/10.1007/978-3-030-03326-2_12
https://eprint.iacr.org/2018/720
https://eprint.iacr.org/2018/720
https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf
https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf
https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf

18 Accordion mode based on Hash-Encrypt-Hash

proposal-of-requirements-for-an-accordion-mode-discussion-draft.
pdf.

[CN08] Debrup Chakraborty and Mridul Nandi. An improved security bound
for hctr. Fast Software Encryption. Lecture Notes in Computer Science,
5086:289–302, 2008. URL: https://link.springer.com/chapter/10.1007/
978-3-540-71039-4_18, doi:10.1007/978-3-540-71039-4_18.

[CS06] Debrup Chakraborty and Palash Sarkar. Hch: A new tweakable encipher-
ing scheme using the hash-encrypt-hash approach. INDOCRYPT 2006. Lec-
ture Notes in Computer Science, 4329:287–302, 2006. URL: https://link.
springer.com/chapter/10.1007/11941378_21, doi:10.1007/11941378_21.

[DN18] Avijit Dutta and Mridul Nandi. Tweakable hctr: A bbb secure tweakable
enciphering scheme. Progress in Cryptology – INDOCRYPT 2018. Lecture
Notes in Computer Science, 11356:47–69, 2018. URL: https://eprint.iacr.
org/2019/1324.pdf, doi:10.1007/978-3-030-05378-9.

[FLS+09] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, , and J. Walker. The skein hash function family.
2009. URL: https://www.schneier.com/academic/archives/2009/09/the_
skein_hash_funct.html.

[GDM19] Aldo Gunsing, Joan Daemen, and Bart Mennink. Deck-based wide
block cipher modes and an exposition of the blinded keyed hashing
model. IACR Transactions on Symmetric Cryptology, 2019(4):1–22,
2019. URL: https://repository.ubn.ru.nl/bitstream/handle/2066/
221667/221667.pdf?sequence=1, doi:10.13154/tosc.v2019.i4.1-22.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. Ad-
vances in Cryptology – CRYPTO 2003. Lecture Notes in Computer Science,
2729:482–499, 2003. URL: https://link.springer.com/chapter/10.1007/
978-3-540-45146-4_28, doi:10.1007/978-3-540-45146-4_28.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. Top-
ics in Cryptology – CT-RSA 2004. Lecture Notes in Computer Science,
2964:292–304, 2004. URL: https://link.springer.com/chapter/10.1007/
978-3-540-24660-2_23, doi:10.1007/978-3-540-24660-2_23.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin. Zmac:
A fast tweakable block cipher mode for highly secure message authentication.
Advances in Cryptology – CRYPTO 2017. Lecture Notes in Computer Science,
10403:34–65, 2017. URL: https://link.springer.com/chapter/10.1007/
978-3-319-63697-9_2, doi:10.1007/978-3-319-63697-9_2.

[JKNS24] Ashwin Jha, Mustafa Khairallah, Mridul Nandi, and Abishanka
Saha. Tight security of tnt and beyond. Advances in Cryp-
tology – EUROCRYPT 2024. Lecture Notes in Computer Science,
14651:249–279, 2024. URL: https://link.springer.com/chapter/10.1007/
978-3-031-58716-0_9, doi:10.1007/978-3-031-58716-0_9.

[JLM+17] Ashwin Jha, Eik List, Kazuhiko Minematsu, Sweta Mishra, and Mridul Nandi.

https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf
https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf
https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf
https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-requirements-for-an-accordion-mode-discussion-draft.pdf
https://link.springer.com/chapter/10.1007/978-3-540-71039-4_18
https://link.springer.com/chapter/10.1007/978-3-540-71039-4_18
https://doi.org/10.1007/978-3-540-71039-4_18
https://link.springer.com/chapter/10.1007/11941378_21
https://link.springer.com/chapter/10.1007/11941378_21
https://doi.org/10.1007/11941378_21
https://eprint.iacr.org/2019/1324.pdf
https://eprint.iacr.org/2019/1324.pdf
https://doi.org/10.1007/978-3-030-05378-9
https://www.schneier.com/academic/archives/2009/09/the_skein_hash_funct.html
https://www.schneier.com/academic/archives/2009/09/the_skein_hash_funct.html
https://repository.ubn.ru.nl/bitstream/handle/2066/221667/221667.pdf?sequence=1
https://repository.ubn.ru.nl/bitstream/handle/2066/221667/221667.pdf?sequence=1
https://doi.org/10.13154/tosc.v2019.i4.1-22
https://link.springer.com/chapter/10.1007/978-3-540-45146-4_28
https://link.springer.com/chapter/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-45146-4_28
https://link.springer.com/chapter/10.1007/978-3-540-24660-2_23
https://link.springer.com/chapter/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://link.springer.com/chapter/10.1007/978-3-319-63697-9_2
https://link.springer.com/chapter/10.1007/978-3-319-63697-9_2
https://doi.org/10.1007/978-3-319-63697-9_2
https://link.springer.com/chapter/10.1007/978-3-031-58716-0_9
https://link.springer.com/chapter/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-031-58716-0_9

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 19

Xhx – a framework for optimally secure tweakable block ciphers from classical
block ciphers and universal hashing. Progress in Cryptology – LATINCRYPT
2017. Lecture Notes in Computer Science, 11368:207–227, 2017. URL: https:
//link.springer.com/chapter/10.1007/978-3-030-25283-0_12, doi:10.
1007/978-3-030-25283-0_12.

[JN20] Ashwin Jha and Mridul Nandi. Tight security of cascaded lrw2. Journal of Cryp-
tology, 33:1272–1317, 2020. URL: https://link.springer.com/article/10.
1007/s00145-020-09347-y, doi:10.1007/s00145-020-09347-y.

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block
ciphers: The tweakey framework. Advances in Cryptology – ASIACRYPT
2014. Lecture Notes in Computer Science, 8874:274–288, 2014. URL: https:
//link.springer.com/chapter/10.1007/978-3-662-45608-8_15, doi:10.
1007/978-3-662-45608-8_15.

[LL18] ByeongHak Lee and Jooyoung Lee. Tweakable block ciphers secure
beyond the birthday bound in the ideal cipher model. Advances in
Cryptology – ASIACRYPT 2018. Lecture Notes in Computer Science,
11272:305–335, 2018. URL: https://link.springer.com/chapter/10.1007/
978-3-030-03326-2_11, doi:10.1007/978-3-030-03326-2_11.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-
key security degradation. Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, pages 575–605, 2017. URL: https://link.springer.
com/chapter/10.1007/978-3-319-70697-9_20#author-information, doi:
10.1007/978-3-319-70697-9_20.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ci-
phers. Advances in Cryptology – CRYPTO 2002. Lecture Notes in Computer
Science, 2442:31–46, 2002. URL: https://link.springer.com/chapter/10.
1007/3-540-45708-9_3, doi:10.1007/3-540-45708-9_3.

[MF04] David A. McGrew and Scott R. Fluhrer. The extended codebook (xcb) mode
of operation. Cryptology ePrint Archive, 2004. URL: https://eprint.iacr.
org/2004/278.

[MI11] Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweak-
able blockcipher: Extending fse 2009 proposal. IMA International Con-
ference on Cryptography and Coding. Lecture Notes in Computer Science,
7089:391–412, 2011. URL: https://link.springer.com/chapter/10.1007/
978-3-642-25516-8_24, doi:10.1007/978-3-642-25516-8_24.

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enci-
phering schemes from hash-sum-expansion. INDOCRYPT 2007. Lec-
ture Notes in Computer Science, 4859:252–267, 2007. URL: https:
//link.springer.com/chapter/10.1007/978-3-540-77026-8_19, doi:10.
1007/978-3-540-77026-8_19.

[MV05] David A. McGrew and John Viega. The galois/counter mode of operation (gcm).
2005. URL: https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/

https://link.springer.com/chapter/10.1007/978-3-030-25283-0_12
https://link.springer.com/chapter/10.1007/978-3-030-25283-0_12
https://doi.org/10.1007/978-3-030-25283-0_12
https://doi.org/10.1007/978-3-030-25283-0_12
https://link.springer.com/article/10.1007/s00145-020-09347-y
https://link.springer.com/article/10.1007/s00145-020-09347-y
https://doi.org/10.1007/s00145-020-09347-y
https://link.springer.com/chapter/10.1007/978-3-662-45608-8_15
https://link.springer.com/chapter/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://link.springer.com/chapter/10.1007/978-3-030-03326-2_11
https://link.springer.com/chapter/10.1007/978-3-030-03326-2_11
https://doi.org/10.1007/978-3-030-03326-2_11
https://link.springer.com/chapter/10.1007/978-3-319-70697-9_20#author-information
https://link.springer.com/chapter/10.1007/978-3-319-70697-9_20#author-information
https://doi.org/10.1007/978-3-319-70697-9_20
https://doi.org/10.1007/978-3-319-70697-9_20
https://link.springer.com/chapter/10.1007/3-540-45708-9_3
https://link.springer.com/chapter/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://eprint.iacr.org/2004/278
https://eprint.iacr.org/2004/278
https://link.springer.com/chapter/10.1007/978-3-642-25516-8_24
https://link.springer.com/chapter/10.1007/978-3-642-25516-8_24
https://doi.org/10.1007/978-3-642-25516-8_24
https://link.springer.com/chapter/10.1007/978-3-540-77026-8_19
https://link.springer.com/chapter/10.1007/978-3-540-77026-8_19
https://doi.org/10.1007/978-3-540-77026-8_19
https://doi.org/10.1007/978-3-540-77026-8_19
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf

20 Accordion mode based on Hash-Encrypt-Hash

proposedmodes/gcm/gcm-revised-spec.pdf.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers
and refinements to modes ocb and pmac. Advances in Cryp-
tology – ASIACRYPT 2004. Lecture Notes in Computer Science,
3329:16–31, 2004. URL: https://link.springer.com/chapter/10.1007/
978-3-540-30539-2_2, doi:10.1007/978-3-540-30539-2_2.

[Ser98] Gadiel Seroussi. Table of low-weight binary irreducible polynomi-
als. 1998. URL: https://shiftleft.com/mirrors/www.hpl.hp.com/
techreports/98/HPL-98-135.pdf.

[ST13] Thomas Shrimpton and R. Seth Terashima. A modular framework for building
variable-input-length tweakable ciphers. Advances in Cryptology – ASIACRYPT
2013. Lecture Notes in Computer Science, 8269:405–423, 2013. URL: https:
//link.springer.com/chapter/10.1007/978-3-642-42033-7_21, doi:10.
1007/978-3-642-42033-7_21.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. Hctr: A variable-input-length
enciphering mode. International Conference on Information Security and Cryp-
tology, pages 175–188, 2005. URL: https://link.springer.com/chapter/10.
1007/11599548_15, doi:10.1007/11599548_15.

[Zha23] Ping Zhang. Universal tweakable even-mansour cipher and its applica-
tions. Frontiers of Computer Science, 17(174807), 2023. URL: https://
link.springer.com/article/10.1007/s11704-022-1466-1, doi:10.1007/
s11704-022-1466-1.

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://link.springer.com/chapter/10.1007/978-3-540-30539-2_2
https://link.springer.com/chapter/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://shiftleft.com/mirrors/www.hpl.hp.com/techreports/98/HPL-98-135.pdf
https://shiftleft.com/mirrors/www.hpl.hp.com/techreports/98/HPL-98-135.pdf
https://link.springer.com/chapter/10.1007/978-3-642-42033-7_21
https://link.springer.com/chapter/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://link.springer.com/chapter/10.1007/11599548_15
https://link.springer.com/chapter/10.1007/11599548_15
https://doi.org/10.1007/11599548_15
https://link.springer.com/article/10.1007/s11704-022-1466-1
https://link.springer.com/article/10.1007/s11704-022-1466-1
https://doi.org/10.1007/s11704-022-1466-1
https://doi.org/10.1007/s11704-022-1466-1

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 21

Table 4: A summary of ACCOR-HEH benefits compared to the original HCTR.
HCTR ACCOR-HEH

Security 4.5σ2/2128 Dominated by 0.5σ2/2128 (when
PRF is instantiated with CTR)

Flexibility Hard-coded primitives and
fixed-length tweak.

Varying primitives and
variable-length tweak.

Efficiency Lower security hash primitives scale
up (a dominant term of) the
security bound linearly.

It is possible to use hash primitives
with higher efficiency (see Appendix
B).

Appendices

A ACCOR-HEH construction
In this part, we briefly introduce the general construction called ACCOR-HEH, seen in section
3, which follows the Hash-Encrypt-Hash paradigm. It can be thought of as a generalization
of HCTR, with two main differences:

1. Variable-length tweak is allowed. This adds greater flexibility as the accordion mode
can be used as an AEAD scheme where variable-length associated data acts as (part
of) the tweak.

2. The block cipher used to transform the first block (EK in Figure 1), and the
pseudorandom generator (CTRK), are separated (they are not allowed to share the
same key as in HCTR). This brings several benefits:

• A better security bound: HCTR has a bound of 4.5σ2/2128, while ACCOR-HEH,
with CTR as a pseudorandom function, has a bound of approximately 0.5σ2/2128.
This means the only dominant term in the security bound of ACCOR-HEH comes
from the pseudorandom function. In fact, this should be the case as it processes
most of the input. Saving a factor of 9 in the security bound triples the life of
an accordion key.

• Again, flexibility: ACCOR-HEH allows plugging in/out different components of
the construction easily for different applications. Most parts of the security
proof of ACCOR-HEH are reusable.

• Efficiency: By making the probability of collision after the hash-then-xor part
non-dominant in the final security bound, it is possible to plug-in a different,
almost-universal hash family with lower security guarantee but higher efficiency.

A summary of ACCOR-HEH benefits is given in Table 4.

A.1 Preliminaries

Distinguishing advantage When an adversary A tries to distinguish between 2 similar
systems SX and SY implementing the same interface IF consisting of the prototypes of

22 Accordion mode based on Hash-Encrypt-Hash

functions that A may invoke, the distinguishing advantage IFAdvSY
SX(A)1 is defined to be

|Pr[ASX → 1] − Pr[ASY → 1]|. Written this way, SY is usually the ideal version of SX
associated with IF. Note that the interface can be omitted if it is clear from context.

In order to denote the maximum distinguishing advantage for a class of resource-limited
adversaries, the notation AdvSY

SX(limits) is used. Only deterministic adversaries are consid-
ered in this case (since a probabilistic adversary’s advantage must be bounded by one of
some deterministic version with fixed randomness). It is also safe to assume adversaries
to use all allowed resources (since they can simply waste unused ones without advantage
loss). Note that the limits may also be omitted if they can be deduced from a context.

Block cipher A block cipher BC is used as a pseudorandom permutation in ACCOR-HEH.
Let n,KBC, encBC, decBC denote its block size in bits, its key space, its encryption, and its
decryption functions, respectively.

BC has good security if it is hard to distinguish from a truly random permutation. This
property is represented by SPRPnAdvPERMn

BC (q, t), where SPRPn is an interface allowing an
adversary to access a permutation over n-bit strings and its inverse; PERMn implements
SPRPn by sampling a truly random permutation, while BC (the implementation) initializes
BC (the block cipher) with a random key; q, t represent the number of queries made by the
adversary and its computational time, respectively.

Stream cipher A stream cipher SC is used as a pseudorandom function in ACCOR-HEH.
Let nI , nO,KSC, genSC denote the sizes in bits of its input and output, its key space, and
the output generation function, respectively.

In our case, the security of SC is represented by PRFnI ,nO
AdvFUNCnI ,nO

SC (q, σ, t), where
PRFnI ,nO

is an interface allowing an adversary to see the truncated output of a function for
some input (exactly nI -bit long) and output size (up to nO bits) chosen by the adversary;
FUNCnI ,nO

implements PRFnI ,nO
by sampling a truly random function, while SC (the

implementation) initializes SC (the stream cipher) with a random key; q, σ, t represent the
number of queries, the total (padded) queried blocks (

∑
Loutput)2, and the computational

time of the adversary, respectively.

Almost-universal hashing ACCOR-HEH uses an ϵ-almost-universal hash family H. Each
member of H takes as input 2 variable-length bit strings and produces an element of an
additively-written group G. It is required that for every tuple m1, t1, m2, t2, ∆ such that
(m1, t1) ̸= (m2, t2) and ∆ ∈ G, we have Prh∈H[h(m1, t1)− h(m2, t2) = ∆] ≤ ϵ. Note that
ϵ may depend on the sizes of the hash inputs.

In ACCOR-HEH, all hash outputs will be later fed into the block cipher, so it is required
that |G| = 2n, for example, F2n or Z2n . Converting between an element of G and an n-bit
string is implicitly taken.

Transcript and trace A transcript contains communication data (queries and answers)
observed on an interface when an adversary interacts with a system. A trace τ extends the
transcript to include all internal values of the system. Since only a deterministic adversary

1We use this slightly different notation from the literature since it allows us to easily write the
distinguishing advantage between two intermediate systems. In the usual notation, e.g., Adv±prp

AES , ±prp
describes an interface while SY is implied to be the associated ideal implementation.

2One can also define σ in term of bits. However, subsequent analyses are only for block-cipher-based
stream ciphers, so it is more convenient to work with sizes in blocks.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 23

is considered, each trace is one-to-one corresponding to a tuple of the system’s internal
coin tossing results. It forks whenever a coin is tossed.

In order to refer to the value of a variable V during the i-th query execution, we use the
notation τ [i].V. When τ is clear from a context, Vi is used instead. Note that a special
variable called func is used to represent the name of the function being invoked during a
query execution.

Other notations The following notations will be used for the rest of this section:

• P, Ṗ , P̄ : plaintext, first plaintext block and plaintext without first block.

• C, Ċ, C̄: ciphertext, first ciphertext block and ciphertext without first block.

• T : tweak.

• RAND: an implementation to some interface that always ignores its input and returns
truly random bits of appropriate size.

• |X|, LX : length of X in bits and blocks, respectively (LX = ⌈|X|/n⌉).

A.2 The scheme
The overview of the construction is depicted in Figure 2 while its detailed pseudocode is
given in Algorithms 1, 2, 3. The size of plaintext (or ciphertext) is always required to be
at least 1 block.

As mentioned earlier, here we have the CTRK component of HCTR generalized to PRF,
which works independently from PRP (the EK component). We also have a variable-length
tweak fed into the hash function, without affecting the overall security of the scheme much.

Algorithm 1 Initialization
and sub-functions

h
$←− H

kBC
$←− KBC

function PRP(x)
return encBC(kBC, x)

function IPRP(y)
return decBC(kBC, y)

kSC
$←− KSC

function PRF(x, l)
return genSC(kSC, x, l)

Algorithm 2 Encryption
function ENC(T, P)

P ′ ← h(T, P̄)⊕ Ṗ
C′ ← PRP(P ′)
S ← P ′ ⊕ C′

S′ ← truncate(S, nI)
K ← PRF(S′, |P̄ |)
C̄ ← P̄ ⊕K
Ċ ← h(T, C̄)⊕ C′

return C

Algorithm 3 Decryption
function DEC(T, C)

C′ ← Ċ ⊕ h(T, C̄)
P ′ ← IPRP(C′)
S ← P ′ ⊕ C′

S′ ← truncate(S, nI)
K ← PRF(S′, |C̄|)
P̄ ← C̄ ⊕K
Ṗ ← P ′ ⊕ h(T, P̄)
return P

A.3 Security
Let TVSPRP (tweakable variable-length strong pseudorandom permutation) be the interface
which exposes the functions ENC and DEC of ACCOR-HEH, and TVPERM be the interface’s
ideal implementation which samples a truly random permutation per pair of T, |P | to
answer its queries.

24 Accordion mode based on Hash-Encrypt-Hash

To prove the security of ACCOR-HEH, TVSPRPAdvTVPERM
ACCOR-HEH(q, σ, t) must be given [CDD+24],

where q, σ, t refer to the number of queries, the total number of (padded) message blocks
(
∑

LP), and the computational time of an adversary, respectively.

Since ACCOR-HEH and TVPERM both act as a set of permutations, a pointless query (a
query whose answer is already determined, e.g., repeating a past query) does not give the
adversary any extra advantage. As a result, only adversaries that do not make such a type
of query are considered.

Distinguishing RAND from TVPERM To be identical with TVPERM, RAND needs to output a
fresh value per pair of tweak, input-length. So, the most optimal distinguishing attack
in this case should be sending a nonce of minimum supported size as message with the
same tweak for each query, and waiting until a collision is found. The probability for the
success of this attack is bounded by the birthday bound:

AdvTVPERM
RAND ≤ q2

2 ·
1

2|P |min
≤ q2

2 ·
1
2n

Distinguishing ACCOR-HEH[PERMn, FUNCnI ,nO] from RAND In Algorithm 4, the original im-
plementation of ACCOR-HEH initialization and sub-functions in Algorithm 1 is modified. Note
that DPRP, RPRP and DPRF are dictionaries acting as caches in order to maintain a truly ran-
dom permutation and a truly random function in a lazy approach. When Algorithm 4 is com-
bined with the unchanged Algorithms 2 and 3, we have the ACCOR-HEH[PERMn, FUNCnI ,nO

]
construction.

One might notice that if the re-assignations of x (or y) at lines 6, 7, 13, 14, 21 are not
carried out, we will obtain the ACCOR-HEH[RAND, RAND] construction which is equivalent to
a single RAND. As a result, the two constructions will be the same as long as the bad events,
B{inP, outP, inF} set to 1, never happen. Therefore, in this case, we have:

AdvRAND
ACCOR-HEH[PERMn,FUNCnI ,nO

](A) ≤ Pr
τ←Traces(ARAND)

[
q⋃

i=1
(BinP;i = 1 ∪BoutP;i = 1 ∪BinF;i = 1)]

Note that the probability is taken over a distribution of traces. We can also have τ ←
Traces(AACCOR-HEH[PERMn,FUNCnI ,nO

]) since the probability of a good trace is the same in both
cases. However, it is more convenient to work with the more ideal system (e.g., trace
distribution is uniform for ARAND).

Let an adversary run and interact with RAND but interpreted as ACCOR-HEH[RAND, RAND].
Suppose that the system is about to execute the i-th query, let us group all possible
traces so far by their transcripts. For each group, there should be exactly one trace τ
corresponding to one h ∈ H (since given any τ, h pair, one can uniquely solve for the
outputs of the RAND sub-components during the past i − 1 queries), and the i-th query
should already be determined (since only a deterministic adversary is considered). For
now, let us fix a group of traces and assume that funci = ENC.

Let us consider Pr[BinP;i]. Since pointless query is not allowed, we have Ti, Pi /∈ {Tj , Pj}j<i.
For every index j, there are two cases:

• Ti, P̄i = Tj , P̄j : This implies Ṗi ̸= Ṗj , which results in P ′i ̸= P ′j (Pr[P ′i = P ′j] = 0).

• Ti, P̄i ≠ Tj , P̄j : The probability Pr[P ′i = P ′j] = Prh[h(Ti, P̄i)⊕ h(Tj , P̄j) = P̄j ⊕ P̄i]
will be bounded by ϵi,j because of the almost-universality property of the hash family.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 25

Algorithm 4 ACCOR-HEH[PERMn, FUNCnI ,nO
] Initialization and sub-functions

1: h
$←− H

2: DPRP,RPRP ← {}, {}
3: function PRP(x)
4: BinP, BoutP ← 0, 0
5: y

$←− {0, 1}n

6: if y ∈ RPRP then BoutP ← 1; y
$←− {0, 1}n \ RPRP ▷ Bad PRP output

7: if x ∈ DPRP then BinP ← 1; y ←− DPRP[x] ▷ Bad PRP input
8: DPRP[x] = y; RPRP[y] = x;
9: return y

10: function IPRP(y)
11: BinP, BoutP ← 0, 0
12: x

$←− {0, 1}n

13: if x ∈ DPRP then BoutP ← 1; x
$←− {0, 1}n \ DPRP ▷ Bad IPRP output

14: if y ∈ RPRP then BinP ← 1; x←− RPRP[y] ▷ Bad IPRP input
15: DPRP[x] = y; RPRP[y] = x;
16: return x

17: DPRF ← {}
18: function PRF(x, l)
19: BinF ← 0
20: y

$←− {0, 1}nO

21: if x ∈ DPRF then BinF ← 1; y ← DPRF[x] ▷ Bad PRF input
22: DPRF[x] = y
23: return truncate(y, l)

26 Accordion mode based on Hash-Encrypt-Hash

Therefore, Pr[BinP;i] ≤
∑i−1

j=1 ϵi,j .

On the other hand, Pr[BoutP;i] = Pr[C ′i ∈ {C ′j}j<i] ≤ (i−1)/2n, while Pr[BinF;i] = Pr[S′i ∈
{S′j}j<i] ≤ (i−1)/2nI since C ′i and S′i have uniform distributions over {0, 1}n and {0, 1}nI ,
respectively, and there are at most i− 1 different C ′j or S′j .

Similar arguments can be applied to any other group of traces with either funci = ENC or
DEC. We conclude that:

AdvRAND
ACCOR-HEH[PERMn,FUNCnI ,nO

] ≤
q∑

i=1
(

i−1∑
j=1

ϵi,j + i− 1
2n

+ i− 1
2nI

)

≤ q2

2 (1
2n

+ 1
2nI

) +
∑

1≤j<i≤q

ϵi,j

Distinguishing ACCOR-HEH[PERMn, SC] from ACCOR-HEH[PERMn, FUNCnI ,nO] Given any
distinguisher for these two systems, one can always derive a distinguisher for SC and
FUNCnI ,nO

with the same advantage by executing in-the-head the logic of ACCOR-HEH
excluding the PRF part. As a result:

AdvACCOR-HEH[PERMn,FUNCnI ,nO
]

ACCOR-HEH[PERMn,SC] (q, σ, t) ≤ PRFAdvFUNCnI ,nO
SC (q, σ − q, t + O(σ))

Where O(σ) refers to the time spent on executing the shared steps of the two ACCOR-HEH
systems, provided that the cost for processing the tweaks is insignificant compared to the
messages.

Distinguishing ACCOR-HEH[BC, SC] from ACCOR-HEH[PERMn, SC] With a similar argument,
we have:

AdvACCOR-HEH[PERMn,SC]
ACCOR-HEH[BC,SC] (q, σ, t) ≤ SPRPAdvPERMn

BC (q, t + O(σ))

Overview Finally, by summing up all the above bounds, we have:

AdvTVPERM
ACCOR-HEH(q, σ, t) ≤ q2

2 (2
2n

+ 1
2nI

) +
∑

1≤j<i≤q

ϵi,j

+ PRFAdvFUNCnI ,nO
SC (q, σ − q, t + O(σ))

+ SPRPAdvPERMn
BC (q, t + O(σ))

(5)

The security of ACCOR-HEH has been reduced to its underlying primitives.

In order to demonstrate the flexibility of ACCOR-HEH, in addtition to the constructions in
the main sections, two more approaches are given.

B ACCOR-S’

This section describes a concrete instantiation of ACCOR-HEH called ACCOR-S’. The primi-
tives are instantiated as follows.

Block cipher AES-256 is used. The block size n is 128 bits.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 27

Stream cipher CTR[AES-256] is used. Let the counter size c be equal to 32 bits, and
the PRF input size nI be equal to n− c = 96 bits. We have the maximum PRF output
size, nO = 2cn = 239 bits, which corresponds with 64GB.

The security bound of CTR is known to be the birthday bound:

PRFAdvFUNCnI ,nO

CTR[AES256](q, σ, t) ≤ σ2

2129 + PRPAdvPERM128
AES256

(σ, t + O(σ))

Almost universal hash POLY1305 [Ber05] is used. Since POLY1305 takes a sequence of
128-bit blocks as input while h described in the generic construction has two arguments,
an unambiguous encoding scheme is needed to convert two bitstrings into a single block
sequence. Inspired by GCM’s GHASH [MV05], in ACCOR-S’, the following encoding format
is used: padded tweak (LT blocks), padded message without first block (LP − 1 blocks),
tweak length (half block), message length (half block). This results in a sequence of
LT + LP blocks.

For POLY1305, we have:

ϵi,j =
max(Linputi

, Linputj
)

2103 =
max(LTi + LPi , LTj + LPj)

2103

≤
LT ;max + LPi

+ LPj

2103

Therefore: ∑
1≤j<i≤q

ϵi,j ≤
q2LT ;max

2104 +
∑

1≤j<i≤q(LPi
+ LPj

)
2103

≤ q2LT ;max

2104 + qσ

2103

Note that the last inequality is due to each of LP1 , LP2 , ... appearing less than q times in
the sum.

Overview Substituting these into 5, we have:

AdvTVPERM
ACCOR-S’(q, σ, t) ≤ q2

2 (2
2128 + 1

296) + q2LT ;max

2104 + qσ

2103

+ σ2

2129 + PRPAdvPERM128
AES256

(σ − q, t + O(σ))

+ SPRPAdvPERM128
AES256

(q, t + O(σ))

For a concrete example, let q ≤ 224 (about 16 million queries), σ ≤ 248 (about 9000 TB of
total data), and LT ;max ≤ 224 (about 537MB of maximum tweak size). The probability
that an adversary can break ACCOR-S’ is bounded by 2−30.19, provided that AES-256 is
indistinguishable from a random permutation.

C ACCOR-L’

This section attempts to achieve BBB security, i.e., having σ larger than 2n while keeping
the distinguishing advantage insignificant. It is important to note that if we keep obtaining
randomness from a single permutation, the birthday bound can not be avoided. Therefore,
block cipher re-keying must happen inside the PRF of ACCOR-HEH as it processes most of
the input.

28 Accordion mode based on Hash-Encrypt-Hash

.

Figure 5: The ideal and actual implementations of the PRF of ACCOR-L’. In the ideal
implementation, FF refers to a function factory that samples and returns a random function
for each unique FF input. In the actual implementation, an AES instantiated with a random
key (obtained from encrypting the FF input) is returned instead. Note that 2AES means 2
parallel AES while input|{0, 1} = {input|0, input|1}

Block cipher ACCOR-L’ also uses AES-256 as block cipher.

Stream cipher ACCOR-L’ uses a custom construction in order to enforce that no single
permutation is used to draw more than l blocks of randomness. Inside the PRF, it uses
outputs from CTR as keys (two 128-bit CTR output blocks for one 256-bit key) for
instantiation of AES whenever necessary, and constants (0, 1, 2, ..., l) as inputs to these
instantiated ciphers for the actual output randomness (see Figure 5). The security now
relies on the multi-key security of the block cipher (it is hard to distinguish a set of
block ciphers instantiated with independent random keys from a set of truly random
permutations) [LMP17]. Omitting the advantage related to distinguishing (set of) AES
from (set of) random permutation, the advantage bound for this PRF is expected to be:

(2f)2

2129 + fl2

2129 ,

where f denotes the number of calls to FF. Note that both terms are caused by using
permutations as sources of randomness. (2f)2/2129 refers to the 2f calls to AES to produce
random keys, while fl2/2129 refers to l calls to each of f instantiated permutations.

Almost universal hash ACCOR-L’ uses GHASH [MV05], which has a similar behaviour
to POLY1305 except for a constant factor of 225 reduction to ϵ. The encoding scheme is
kept unchanged (in fact, GHASH is already defined to accept two inputs). With similar
arguments in the ACCOR-S’ section, we have in this case:∑

1≤j<i≤q

ϵi,j ≤
q2LT ;max

2129 + qσ

2128

Overview Substituting these into 5 while dropping all bounds related to distinguishing
AES from a random permutation, we have a bound for the security gap between breaking
ACCOR-L’ and breaking AES:

q2

2 (2
2128 + 1

296) + q2LT ;max

2129 + qσ

2128 + (2f)2

2129 + fl2

2129

Note that f =
∑q

i=1 ⌈(LPi − 1)/l⌉ <
∑q

i=1 (LPi/l + 1) = σ/l + q.

Hieu Nguyen Duy, Pablo García Fernández, Aleksei Udovenko, Alex Biryukov 29

For a concrete example, let q ≤ 230 (around one billion queries), σ ≤ 270 (37.78ZB),
LT ;max ≤ 230 (34.36GB), and l = 230, the probability that an adversary can break ACCOR-L’
is bounded by, approximately, 2−27.41, provided that AES-256 is indistinguishable from a
random permutation.

	Introduction
	The Hash-Encrypt-Hash paradigm
	HCTR
	Survey of results

	ACCOR-HEH
	ACCOR-S
	Security
	Efficiency

	ACCOR-L
	Application modes
	Authenticated Encryption with Associated Data
	Tweakable Encryption
	Deterministic Authenticated Encryption
	Double block size of the underlying block cipher
	Improved efficiency

	Additional security properties
	Tweak size
	Message lengths
	Multi-user security
	Key and Context Commitment
	Key-Dependent Input Security
	Nonce-misuse resistance
	Nonce hiding
	Padding attacks
	Known/Chosen Key security

	Appendices
	ACCOR-HEH construction
	Preliminaries
	The scheme
	Security

	ACCOR-S'
	ACCOR-L'

