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The Artificial Intelligence Satellite Telecommunications
Testbed (AISTT), part of the ESA project SPAICE, is fo-
cused on the transformation of the satellite payload by
using artificial intelligence (AI) and machine learning
(ML) methodologies over available commercial off-the-
shelf (COTS) AI-capable chips for onboard processing.
The objectives include validating artificial intelligence-
driven SATCOM scenarios such as interference detection,
spectrum sharing, radio resource management, decoding,
and beamforming. The study highlights hardware selec-
tion and payload architecture. Preliminary results show
that ML models significantly improve signal quality, spec-
tral efficiency, and throughput compared to conventional
payload. Moreover, the testbed aims to evaluate the perfor-
mance and the use of AI-capable COTS chips in onboard
SATCOM contexts.

1 Introduction

Artificial intelligence (AI) is experiencing significant
advancements, spreading throughout our daily lives
to the most complex and technical domains. The bene-
fits of automated tasks, enhanced efficiency, increased
precision, and innovation, coupled with predictive
analysis features, can significantly improve the effec-
tiveness of traditional methods.

AI, especially machine learning (ML), is used in
space for navigation, surveillance, remote sensing,
and satellite communication, among others [1]. In the
specific area of satellite communications, AI can solve
complex tasks in a reasonable time, while traditional
optimization methods are computationally expensive.
This capability is important in the highly dynamic en-
vironment of low-earth orbit (LEO) satellites.

Very high-throughput satellites (VHTS) face incon-
sistent coverage, leading to a deficit in the necessary
capacity in certain beams that do not meet the traf-
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fic demand while exceeding it in others [2, 3]. This
issue can be addressed by integrating ML with other
methods, such as flexible payload, and adaptive beam-
forming, which facilitate the allocation of payload re-
sources according to the capacity requirements [4].

Although AI can be executed on several devices,
the processor architecture determines the inference’s
performance. Current onboard processing uses space-
certified general purpose processors (GPPs), costly
application-specific integrated circuits (ASICs), or
field-programmable gate arrays (FPGAs). Space-
certified components, such as radiation hardness by
design (RADHAR) or radiation tolerant (RT) devices,
are specifically designed to overcome radiation. They
undergo a highly stringent certification process that
spans several years, leading to the use of legacy com-
ponents [1, 5–7]. The increased performance demands
of onboard processors to satisfy the accelerated data
rates and autonomy requirements have rendered cur-
rent space-graded processors obsolete [8].

Exploring non-qualified commercial off-the-shelf
(COTS) devices in space offers access to advanced fea-
tures despite radiation challenges [5, 8–10]. In light
of the anticipated mass production of LEO constella-
tions in the future, there has been a surge of interest
in the research into COTS chipsets [1]. This is due to
their potential to lower the cost of SATCOM process-
ing, their availability on the market, and their ability
to shorten the development time.

The Graphic Processing Unit (GPU) for Space
(GPU4S) project [11, 12] is an example of the inter-
est of AI-capable COTS devices for onboard space ap-
plications. The study shows NVIDIA Xavier NX and
TX2 results in complex workloads due to their supe-
rior performance and efficiency [13–15]. Furthermore,
research suggests that embedded GPUs are suitable
for infrared detector algorithms on board [8].

Works presented by Steenari et al. and Marques et al.
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analyze high-performance processors and FPGAs for
onboard processing and ML applications. The chal-
lenges include the gap between the processing power
of COTS devices and radiation-hardened options and
the longer support times required for COTS, which
can impact the mission reliability [6, 16].

In this context, this paper introduces a platform
for testing artificial intelligence and machine learn-
ing in satellite communication payloads utilizing
readily available AI-capable consumer chipsets. The
Artificial Intelligence Satellite Telecommunications
Testbed (AISTT) is the development of the ESA project
Satellite Signal Processing Techniques using a Com-
mercial Off-The-Shelf AI Chipset (SPAICE) [17]. It
also examines the selection of hardware and its ap-
plication, along with a detailed explanation of the
ML payload design. Furthermore, the outcomes of the
AI/ML onboard payload integration are explained.

2 Testbed description

The use of a partially regenerative satellite payload,
implemented as a low-PHY layer onboard, motivates
the use of flexible payload and beam management al-
gorithms accelerated with AI on the satellite. Regen-
erative payloads can handle inter-satellite links to re-
lay connectivity to multiple gateways, increasing the
link budget at the user link and spectral efficiency at
the feeder link and simplifying the implementation of
user and gateway handover. The chosen application
for the SPAICE project involves a versatile software-
controlled satellite payload linked to a multibeam
Direct Radiating Array (DRA) antenna with hybrid
beamforming capabilities where the payload adjusts
the bandwidth, power, and width of the beams [18,
19].

In general, integrating ML techniques into the on-
board payload involves training and validating the
payload model offline with a set of input/output val-
ues, as depicted in Figure 1. This model is then incor-
porated into the satellite payload processor to carry
out the inference process. The feeder uplink signals
are processed onboard depending on the demand re-
quirements for the satellite’s coverage area. This will
adapt the signals based on the model, generating con-
trol instructions for the low physical layer, improv-
ing transmission efficiency, managing network conges-
tion, and optimizing bandwidth and power.

2.1 Mission scenario

The mission scenario imposes constraints on the
AISTT due to the type of signal, bandwidth, and
power required for data communication. The refer-

Figure 1: Onboard AI Payload application.

ence mission scenario includes the onboard payload
design for 12U CubeSat providing coverage to Eu-
rope in LEO sun-synchronous orbit (SSO), featuring
a high-duty cycle (>50%) and maximum power out-
put (<100 W). The design specifically considers an
altitude of 600 km and coverage of seven beams [19],
although only two user equipment located on two dif-
ferent beams are emulated for testbed simplification.
These payload requirements can be escalated to other
mission scenarios.

2.2 AI onboard payload architecture

AI onboard payload includes the inference system,
the software-defined radio (SDR) RF front-end, the
firmware, and the configuration software, forming a
platform capable of assessing and enhancing the mis-
sion payload.

Identifying a device with sufficient computing
power, appropriate energy usage, and the ability to
meet the standards for onboard and standalone appli-
cations is crucial. Studies published in [9] and [10]
revealed that the AMD/XILINX Versal ACAP AI Core
and Edge series are good candidates for the implemen-
tation of AI algorithms for standalone applications
with strong constraints on size, power consumption
and sufficient performance per watt. Unfortunately,
no Versal ACAP with radio frequency capabilities is
on the market.

Based on the evaluation of existing COTS, a feasible
implementation separates the inference process and
radio frequency operation into two different chipsets,
interconnecting them with a high-speed serial in-
terface. This approach enables using an AI-capable
chipset in conjunction with an SDR, thus isolating the
inference procedure from the low physical layer, and
the RF front-end. It offers greater versatility and per-
formance and provides a comprehensive solution that
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combines powerful AI processing capabilities with
readily available RF interfaces.

Taking into account the available Versal AI COTS
boards, two exponents from different families have
been summarized in Table 1. The AMD VCK190 Eval-
uation Kit is powered by a Versal AI Core chip with a
dual-core Computing Processing Unit (CPU), a dual-
core Real-Time Processing Unit (RTPU), 400 AI En-
gines (AIE), 1968 Digital Signal Processing Engines
(DSPE), and 1968 k Logic Blocks (CLB). It can exe-
cute floating point operations up to 8 TFLOPs with a
maximum efficiency of 91.9 GFLOPs/W. On the other
hand, the iWave Systems iW-RainboW-G57D Devel-
opment Kit, which hosts a Versal AI Edge SoC with 34
AI Engines ML (AIE-ML), 324 DPSE, and 329 k CLBs,
is designed for edge processing with lower computer
capacity (up to 1.9 TFLOPs) but better performance
(up to 95 GFLOPs/W). This is achieved thanks to the
chip’s reduced power consumption (around 20 W) and
the optimized AI Engines for machine learning opera-
tions.

COTS AI/ML VCK190 iW-G57D

AI Chip VC1902 VE2302
Family ACAP AI Core ACAP AI Edge

CPUs Cortex A72×2 Cortex A72×2
RTPUs Cortex R5F2×2 Cortex R5F2×2
AIEs 400 34 (AIE-ML)

DSPEs 1968 324
CLBs 1968 k 329 k

Chip power ≈ 87 W ≈ 20 W

CC INT8 13.6− 133 T 3.2− 23 T
OPs/W 156G − 1.53 T 160G − 1.15 T

CC FP32 3.2− 8 T 0.7− 1.9 T
FLOPs/W 36.8− 91.9 G 35− 95 G

Type Dev. Kit SoM + Carrier
Expansion FMC+, SFP+ FMC+

Power supply 180 W 60 W
Board Size 24× 19 cm2 12× 12 cm2

Table 1: Considered AI/ML-Capable COTS boards.

The power supply and size of the board are con-
straints that define the selection of the development
kit. The proposed reference scenario makes the AMD
VCK190 an infeasible solution.

A similar analysis has been performed for the SDR.
The HiTech Global ZRF-FMC-4A4D, with an FMC+
VITA 54.7 interface, has been selected. This small
form-factor addon board powers a third-generation

AMD radio frequency SoC (RFSoC) with four 14-bit
RF ADCs and DACs, consuming up to 45 W.

Figure 2 shows the onboard satellite payload
firmware, highlighting the ML models implemented
using Versal AI Engines. The payload receives the traf-
fic demand (R), beam pointing angles (Az, El), and
beamforming coefficients phasors (ejθW ).

The Flexible Payload Conf. module, a trained ML
model, processes traffic demand and outputs the
bandwidth (BW ) for the uplink feeder signal (f ULnk),
as well as the equivalent isotropically radiated power
(EIRP ) per beam to the Adaptive Beamformer module,
which is also an ML model that uses the beam point-
ing angles in addition to the EIRP . The inference
process generates the coefficients module vector (|W |),
which, with the coefficients phasors, is modified to ob-
tain the beamforming coefficients (W ) on the Coef. gen
module.

In the low PHY layer, the two uplink modulated
feeder signals (f ULnkchx) are processed using cyclic
prefix orthogonal frequency division multiplexing
(CP-OFDM) by fast Fourier transformation (FFT ).
Subsequently, the time domain beamforming is per-
formed by applying the channel matrix to the signal
vector multiplication by the embedded multipliers in
the RFSoC (DSP48E2).

The digital front-end interfaces the digital and ana-
log RF signals, applying frequency division multiplex-
ing (FDM) and digital up-conversion (DUC) to the 64
antenna signals before transforming them into four
analog downlink RF signals (IFDLnk). At the same
time, the two analog RF channel signals emulating
the return link (IFULnk) are digitized and sent back
to the signal source without processing. For simplicity,
the low PHY layer in the return link is omitted.

2.3 AISTT integration

The Artificial Intelligence Satellite Telecommunica-
tion Testbed (AISTT) architecture integrates the pay-
load, scenario generation, base station emulator, chan-
nel emulation, and user equipment to create a compre-
hensive platform for evaluating and optimizing the
mission payload performance. Figure 3 depicts the
AI/ML onboard payload integration with the other
parts of the auxiliary subsystems.

The Scenario Generator is a MATLAB script within
the payload control center. It produces the inputs for
the ML algorithm, including traffic demand (R), beam
pointing angles (Az, El), and beamforming coefficient
phasors (ejθW ) every second. New traffic demand is
generated every 37 s depending on the time of day,
population density, and air and maritime traffic.

The Base Station Generators are two Next Generation
NodeB distributed units (gNB-DU) running OpenAir-
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Figure 2: Onboard Payload Firmware Diagram.

Figure 3: AISTT Functional Diagram.

Interface (OAI) that generate the feeder link signals
and receive the return links. For implementation pur-
poses, the partially regenerative functions running on
the satellite payload are the ones on the feeder link
low PHY layer, maintaining the rest of the functional-
ities on the OAI side. The MAC scheduler on the OAI
adapts the beam beamwidth based on the results of
the flexible payload.

On the other hand, the channel emulator (ChEM)
receives the RF signal from the payload, applying
adjustable channel effects such as delay, Doppler,
and noise, and regenerates them for the user’s equip-
ment. It receives the signals from the 64 antennas of
the satellite DRA [19] downlink signal multiplexed
through four RF connectors that are demultiplexed
in the ChEM and converted to two beams using chan-
nel matrix multiplication with the information of the
beams of interest.

In the final stage, two user equipment (UE) capture
the two beams from the ChEM. Such UEs are placed
in different satellite beams, aggregating all the traffic
demand corresponding to all the users served by each
beam. At the same time, the OAI UE generates user
information that will be retransmitted to the gNB-DU
(ULnk) to modify downlink requirements.

3 Preliminary results

Figure 4 shows the coverage zone, focusing on a part
of Europe of a CubeSat with seven-beam coverage.
The alignment of these beams depends on the satel-
lite’s orbital location. Additionally, the figure under-
scores the seven beams provided for the current time
step and the particular orbital transit of the CubeSat
relevant to our analysis.

Table 2 presents the performance results achieved
by the payload for the reference LEO scenario. The
resulting values exceed the SPAICE performance re-
quirements, such as the signal-to-interference-plus-
noise ratio (SINR), the average spectral efficiency, and
the throughput. The demand match is quantified by
the normalized mean square error (NMSE) of the re-
sulting inference demand and the input capacity, con-
sidering the scenario’s reference capacity. The maxi-
mum energy/power usage, the complexity of imple-
mentation, and the rapid response to modifications
are presented in relation to both ML-based and non-
ML-based solutions, showing favorable outcomes. The
implementation complexity evaluates how fast the
ML-based solution is compared to the non-ML-based
solution, while the response time to modifications is
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Figure 4: Functional Diagram.

presented as the speed increment percentage.

Description Req. AI/ML Payload

SINR [dB] >6 7
Aver. SE [b/s/Hz] >1.5 2.1

Throughput [Mbps] >18 53.6
Demand Match. <0.4 0.07

Max. Pwr. <40% 6.3%
Imp. Compl. [sec] <60 3.3

Response time >90% >97.58%

Table 2: SPAICE performance requirements and implemen-
tations results.

4 Conclusions

The AISTT is a useful tool for evaluating various on-
board payload scenarios and the effectiveness of ML
techniques in satellite communication systems. With
the use of COTS AI chipsets, the testbed offers a flex-
ible and cost-effective solution to improve payload
management and performance compared to space-
qualified devices. The results show significant im-
provements in signal quality, spectral efficiency, and
throughput, underscoring the potential for the inte-
gration of AI in space applications. The AISTT’s abil-
ity to simulate different mission scenarios and hard-
ware configurations provides valuable insights, ensur-
ing that future satellite missions can be optimized for
performance and efficiency.
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