
Socio-Technical Formal Analysis of TLS
Certificate Validation in Modern Browsers

Giampaolo Bella∗, Rosario Giustolisi† and Gabriele Lenzini†
∗Dipartimento di Matematica e Informatica

Università di Catania, Italy
†Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg

Abstract—Authenticating a web server is crucial to the se-
curity of web browsing. It relies on TLS certificate validation,
a property whose enforcement may require getting the user
involved. Thus, certificate validation is a socio-technical property
— it relies on traditional security technology as well as on social
elements such as cultural values, trust and human-computer
interaction. Hence the need for an appropriate methodology to
study certificate validation from a socio-technical perspective.
Certificate validation as carried out through today’s most popular
browsers — Chrome, Internet Explorer, Firefox and Opera Mini
— is first represented by means of UML activity diagrams.
It is then translated into CSP#, and expanded with the LTL
formalization of four socio-technical properties pivoted on user
involvement with certificate validation. The properties are then
checked automatically using the PAT model checker. The findings
turn out to be far from straightforward and, most importantly,
allowed for prototyping a basic methodology for the socio-
technical formal analysis of security properties.

I. INTRODUCTION

The cryptographic protocol in support of HTTPS security
is TLS. It enforces confidentiality and integrity by combining
symmetric and asymmetric cryptography, as it is fully docu-
mented in the specification of TLS [1]. TLS also allows authen-
tication between clients and servers, although servers are com-
monly requested for authenticating. While we can reasonably
assume that TLS provides confidentiality and integrity as it
uses robust cryptographic schemes, we should be more careful
in assuming the same for authentication. Its implementation
is less standardised, and its practical functioning depends, to
various degrees, on trust. One element of trust comes from the
web-of-trust concept, thus from the public-key infrastructure.
Those solutions should reassure browsers of the identity of
the owner of the public key contained in a TLS certificate,
which plays a fundamental role during TLS authentication.
A trustworthy certificate is expected to be signed by a trusted
authority, whose signature a browser should be able to validate,
that is, to recognize and accept as reliable.

But when this validation fails, or when the certificate is
somehow ill-formed, what is ultimately responsible for how
authentication ends is user trust. This is implicit in the TLS
specification, which says that: “If the hostname does not match
the identity in the certificate, user oriented clients MUST either
notify the user (clients MAY give the user the opportunity to
continue with the connection in any case) or terminate the
connection with a bad certificate error.” [2]. So, once notified,
the user can choose. And this scenario occurs frequently,
for example when an intruder replaces the server’s certificate

with his own, attempting to masquerade as the server, or
when institutions self-issue their own certificates rather than
purchase them regularly from accredited authorities. Therefore,
a premise of the present research is the realisation that the
authentication of a server with a browser requires special
attention. This attention does not intend to contribute to the
long-established debate on the interpretation of the technical
meaning of authentication [3] but, rather, intends to substan-
tiate our observation that server authentication with modern
browsers is a socio-technical property as this paper seeks to
explain. More precisely, authentication depends on technical
factors such as networking, cryptography and certification, but
also on social factors such as user skills, education and trust.

Because the TLS specification leaves browsers some free-
dom on how to involve users, the way this socio-technical
authentication is accomplished varies among browsers. This
variety motivates a number of research questions. What are
the differences in terms of user involvement in how modern
browsers implement authentication? Which browsers reduce
the risks of server authentication failure? Could browsers
involve the user more profitably than they do at present
in support of server authentication? This list of questions,
purposely truncated to length three here, arises when server
authentication, and TLS certificate validation in particular, is
assessed from a socio-technical standpoint.

Contribution: This paper continues our informal presen-
tation of the problem statement in a short paper [4] with the
full formal treatment in UML and CSP#. Browser security
has been studied variously (Sect. II), for example to avoid the
user’s oversight of warning messages [5], or to improve the
readability of their contents [6]. The most relevant existing
work seems positioned over the cognitive aspects of human-
computer interaction with the browsers. To position our work,
it is useful to note that we see the socio-technical system
consisting of a web server, a computer network, a browser,
a user and possibly an intruder as a ceremony in the sense
of Ellison [7]. The various technical and social layers of a
ceremony have been recently identified [8], with a practically
useful suggestion that certain layers can be neglected, namely
virtually compressed, during the analysis to sharpen the anal-
yser’s focus on other layers.

Along these lines, our work complements traditional
human-computer interaction studies by advancing what seems
to be the first formal analysis of properties of certificate valida-
tion that are not only logically conditioned on the technology
but also on user actions — while the details of the human-



computer interaction layer are abstracted away. More precisely,
we outline TLS certificate validation (Sect. III), and assess it
from a socio-technical standpoint.

To address the questions that arise, such as those made
above, we study four main properties. Each property is studied
over four of the leading browsers at present [9]: Chrome, Inter-
net Explorer, Firefox and Opera Mini. This analysis therefore
evaluates sixteen corresponding socio-technical properties, all
related to TLS certificate validation, of modern browsers. In
particular, it is found that when Firefox cannot validate the
certificate of an honest server, it allows the user to store it;
even if the user stores it, if Firefox cannot validate a different
certificate for the same server in a second session, it allows the
user to store it again, remarkably, without checking that one
was already stored. This missing check allows the certificate
of the second session to come from an intruder, who could
then masquerade as the server.

The contribution of this paper exceeds the formal analysis
of the sixteen properties. This formal analysis was not carried
out using a known methodology. By contrast, it was not
obvious how to represent (portions of) the functioning of a
browser in order for the analyser to quickly get to grasps with
its properties without reading long prose. Various graphical
notations were tried out, and finally we found UML activity
diagrams [10] to bear the necessary flexibility (Sect. IV).
Building these diagrams was a major hallmark in our un-
derstanding of the technicalities of the browsers. However,
they are only semi-formal and not directly executable, while
a formal model was needed for our aim of fully automatic
analysis. We therefore decided to use the UML diagrams to
derive a CSP# model, then extended with a Linear Temporal
Logic (LTL) specification of the properties of interest. This
process formed the inputs to the Process Analysis Toolkit
(PAT) model checker [11], which yielded the findings reported
below. After a summary of the findings, some conclusions can
be derived (Sect. VI).

II. RELATED WORK

Browser security has been tackled in a number of ways
and from a variety of standpoints. Our work lies in the area
of browser security as a whole, but does not seem strictly
related to anything that exists so far. It therefore seems fair to
consider it the first socio-technical formal analysis of server
authentication with a user via a browser and TLS certificates.

Other work has focused on certificate validation issues
before. Georgiev et al. [12] analyse the SSL certificate val-
idation carried out by a number of applications, such as
integrated shopping carts or those for transmitting details of
customer payments from merchants to payment gateways. By
manual inspection of source code, they find a number of
software vulnerabilities due to bad API design. However, these
applications never involve browsers. Flinn et al. [13] point
out that different user perceptions of the term “secure Web
site” lead to different levels of trust in a site. By contrast,
our formal analysis does not pertain to user perception and
investigates the various ways in which a user may influence
authentication. Akhawe et al. [14] introduce a formal model
of web security with three distinct attacker models. They
analyse five security mechanisms, which do not cover TLS

or certificate validation. Groß et al. [15] propose a model
of an ideal browser with the aim to analyse browser-based
protocols. Instead of designing a new browser, we tackle and
assess the most popular existing ones. It would be interesting
to apply the prototype methodology that we develop below
to their ideal browser. Jøsang et al. [16] point out that TLS
does not provide semantic server authentication, and can be
easily exploited by semantic attacks. However, web browsers
can only do syntactic server authentication, while complex user
models are needed to deal with semantic attacks. Our work
focuses on browsers, and aims at analysing how they help users
to avoid authentication attacks. Gajek et al. [17] formalise a
specific user behaviour capable of recognising the so called
human-perceptible indicators such as pictures and sounds. In
contrast, we are not interested in the cognitive aspects, and
shall make the minimum possible assumptions about the user
by defining a non-deterministic one. Kaminsky et al. [18] point
out that a subject name in an X.509 certificate can be easily
misinterpreted by browsers because of lack of standardisation,
which often invites ambiguity. To confirm this, a recent update
of the X.509 standard [19] provides some clarifications, which,
however, do not impact our work.

III. BASICS OF TLS CERTIFICATE VALIDATION

This section outlines the main concepts in support of the
subsequent treatment, that is, the form of TLS certificates, how
browsers validate them, and the mechanisms put in place when
certificate validation fails.

A. TLS Certificates

A TLS certificate is an X509 certificate [20] and it consists
of a numbers of fields. Many of them are irrelevant to the
focus of this manuscript and shall be ignored. Keeping the
fields that are relevant for authentication purposes, a TLS
certificate associates an identity with a specific public key,
and 〈ID ,PK ID , I ,SIG〉 is its custom representation. Here,
ID stands for the certificate subject, the entity to whom
the certificate was issued (e.g., its URL). Then, PK ID is
ID’s public key, and I is the entity who has issued the
certificate. The issuer I checked ID’s identity off-line and
vouches that PK ID is ID’s public key by affixing I’s digital
signature SIG to the certificate. The digital signature is built
by means of I’s private key, KI . Signing also preserves the
integrity of a certificate during its transmission, preventing
anyone who forges a certificate to be able to sign it on
I’s behalf. Therefore, an integral certificate takes the form
〈ID ,PK ID , I ,Enc(Hash(ID ,PK ID , I ))KI 〉.

B. Certificate Validation

The main validation checks for authentication are trusted
issuer verification and domain verification.

Trusted issuer verification: It aims at verifying that the
certificate issuer is a trusted Certification Authority (CA). This
is done by querying a sequence of CAs (up to a root) stored
by the operating system or by the browser itself. Note that
knowing which CAs are trusted may vary from browser to
browser, so this check is browser-dependent.

Failure: Legitimate and honest servers do not always
purchase expensive certificates that are signed by a trusted



issuer. Although that is not a guarantee of security, the use
of trusted certificates minimises the user involvement during
the validation process. However, self-issuing a certificate can
be done quickly and at no expense — the server signs a
certificate for each of its sub-domains by using an arbitrarily-
generated private key, and then transmits the certificate to
calling browsers. Such self-issued certificates are widespread
through a large number of public institutions, such as the
authors’ Universities, or the US Army [21]. However, using
self-issued certificates is risky, at least because they could
be created by anyone, and could be replaced by man-in-the-
middle intruders acting in intermediate routers. These risks are
relevant for the goal of this paper.

Domain name verification: This aims at verifying whether
the URL requested by the user matches the ID in the server
certificate. Although the server certificate is trusted, it may
happen that the requested URL does not match the ID in the
certificate.

Failure: This commonly occurs when an institution needs
to secure its own sub-domain (e.g., www.my.example.com),
but it does not want to purchase a large number of certificates,
one per sub-domain, to reduce expenditure. According to a
recent large-scale survey on web certificates [22], domain
mismatch is the most common case of certificate validation
failure. Note that a failure of this check may be risky. A domain
verification failure may conceal a man-in-the-middle attack.
An intruder could simply create a certificate for a domain that
he owns, then get it signed by a trusted issuer, and bundle it
with the traffic for the user.

C. Managing Failed Certificate Validations

When the validation process described in the X.509 stan-
dard fails, browsers may adopt certain mechanisms to decide
whether the requested server can be authenticated. There are
three main such mechanisms. The first two are inherently
socio-technical due to the human intervention, the third is
purely technical. Notably, with the aim of circumventing the
limitations of certification seen above, Chrome implements
public key pinning [23] coming with a pre-installed whitelist
of servers and their public keys. However, the whitelist is
static, hence it can never be changed while the browser collects
history. This makes it trivial from the analysis standpoint, and
so it shall be ignored below.

1) Warnings: Many browsers warn the user when they
receive a certificate containing an untrusted issuer or the
domain verification fails. They may allow the user to abort
or continue with their requested server despite the contents
of the warnings. Browsers warn their users in various ways,
such as by pop-up windows, open padlocks or red address
bars; because the present work is not concerned with interface
layouts, no difference will be made. Warnings are relevant
to the present work because they fundamentally influence
server authentication when it is addressed as a socio-technical
property. As we shall see below, such influence comes from
the number and type of warnings, from the point in time at
which they come during the authentication process, as well as
from the options they give.

2) Storing Server Certificates: When validation of a cer-
tificate fails, it may still be the case that the user opts to trust

the certificate, namely to accept its contents as trustworthy.
Browsers may support this scenario by allowing a user to store
the server certificates the user decides to trust. In consequence,
when the server is accessed next, its certificate validation
will be immediate because its certificate is found in a trusted
store. An obvious drawback is that this store is normally static
and, as such, opaque to dynamic information that may come
from the Internet, such as revocation lists. It is clear that
server authentication as established in this scenario is a socio-
technical property because it is mostly based on the user’s trust
in the certificate rather than on objective support provided by
the technology.

3) HTTP Strict Transport Security (HSTS): It is a security
mechanism that was conceived to thwart SSL stripping attacks,
whereby an intruder fools a user into an HTTP connection
to a server although the server is also HTTPS compliant. In
short, HSTS compliant browsers prevent “unsecured” HTTP
connections to HSTS compliant servers. The server transmits
its HSTS compliancy to a calling browser via a special header
during a secured TLS session. HSTS avoids user intervention
in favour of a purely technical enforcement of security. Let
us consider an HSTS compliant browser-server pair. When a
user requests access to the server via the browser, if the server
sends a valid certificate, then the browser whitelists the server.
This means that authentication of that server succeeded once
and shall not fail in the future.

IV. MODELLING BROWSERS

Our first contribution is to model how four relevant
browsers implement the full TLS certificate validation. The
standard notation for the semi-formal description of security
protocols is the so called Alice-and-Bob notation [24]. In
tackling browsers, we observe that there appears to be no
standard notation to describe them. Our choice is to describe
how browsers function by means of UML activity diagrams.
This choice will be demonstrated below over the main target
of this paper, which is how browsers verify TLS certificates.

The contribution of activity diagrams is threefold. First,
they give an intuitive representation of a TLS session, high-
lighting the validation mechanism of each browser. Second,
they can represent parallel actions (fork/join) and multiple
choices (branching), while other notations such as Flow Charts
or the Alice-and-Bob notation, cannot. Third, they can be
easily translated in a fully formal language, thanks to their
semi-formal semantics. In particular, we translate activity
diagrams to CSP#, which is then fed to an automatic tool.
The complete CSP# treatment can be found in [25].

A. Description of Browsers in UML Activity Diagram

We select the four browsers that are market leaders:
Chrome, Internet Explorer, Firefox and Opera Mini. They
expose a variety of combinations of the mechanisms seen in
the previous Section. For example, Chrome declares HSTS
support, Internet Explorer uses warnings extensively, Firefox
may seem most complete, and Opera Mini clearly aims at
being lightweight. We present an activity diagram per browser
(see Fig. 1 - Fig. 4). Each diagram does not intend to describe
the full browser functionalities but is limited to how the
browser treats certificate validation. Every diagram has four



Fig. 1: Activity diagram for certificate validation in Chrome

Fig. 2: Activity diagram for certificate validation in Internet Explorer



columns each representing communicating elements. Three
are entities: User, Browser, and Server. Browser distinguishes
two standard sub-entities: User Interface and Engine. Entities
have a begin circle that points to their own first activity.
Thick arrows depict the flow of activities among different
entities, while thin arrows stand for the internal entity flow.
Arrow labels define the objects that are exchanged between
activities. Some activities need to access datastores, which
are linked to activities via dashed arrows. Most activities are
self-explanatory and common to all browser diagrams, such
as Display Webpage and Type/Click URL. To keep the focus
on the browser, the server activities are reduced to Init. TLS,
whereby the server starts the TLS handshake on its side, and
Finish TLS, where it concludes the handshake.

Figures from Fig. 1 to Fig. 4 show respectively the activity
diagrams for Chrome, Internet Explorer, Firefox and Opera
Mini. We build the diagrams of Chrome and Firefox by
looking at their official documentation and code. The others are
built empirically, supported also by network analysers, because
Internet Explorer and Opera Mini are closed source.

There is no room to describe the diagrams fully here,
but they can be easily read with some UML background. In
particular, it can be seen that Chrome supports HSTS and
adopts different certificate stores depending on the operating
system underlying the browser; Internet Explorer resorts to
the Microsoft Windows store to verify the server certificate;
Firefox has its own certificate store, supports HSTS policies,
and allows users to store server certificates; Opera Mini is
unsurprisingly the simplest one, with its Engine activities being
executed on a remote Opera server.

V. SOCIO-TECHNICAL SECURITY ANALYSIS

We refer to socio-technical analysis since we focus on the
technical aspects of TLS certificate validation as well as the
role of the user. Activity diagrams show that browsers validate
TLS certificates differently. As analysers, we question whether
such differences entail different security, and addressing this
question is the focus of the present work.

A. A Prototype Methodology

Although activity diagrams are semi-formal and permit a
quick glance at the niceties of browsers, they are not practical
for formal verification. Aiming at automatic analysis, it is
appropriate to use them to write a formal model on which
a formal encoding of the properties of interest can be verified
quickly. Also, as it can be expected, the formal browser model
shall be augmented with models for the other relevant actors,
that is an intruder and a user. We have taken advantage of the
user-friendliness of CSP#, a formal modelling language based
on the process algebra Communicating Sequential Processes
(CSP) [26], and of the flexibility of LTL to formulate the
relevant properties. These form the input to the PAT model
checker, which over our experiments has computed outputs
within seconds (Sect. V-D). Our prototype methodology for
the socio-technical security analysis of how browsers treat
certificate validation is as follows: (i) describe the browser
under study as UML activity diagrams; (ii) use these diagrams
to write a formal model; (iii) extend it with additional models,
respectively for an honest server, an intruder and a user; (iv)

encode the properties of interest in a formal language; (v)
execute the extended formal model and the encoded properties
in an automatic tool to assess the validity of the properties.

It is worth remarking that our current choices of formal
languages and supporting tools are not meant to be binding;
rather, they aim at demonstrating the prototype methodology.
Also, we are currently working on reproducing the experiments
described below on different tools. Not only does this aim at
confirming the findings by an alternative verification means,
but in particular at finding the most convincing route to
translate UML activity diagrams automatically to a formal,
executable language. This would make the methodology de-
scribed above more mechanical, and there already exists work
that can be leveraged upon [27].

B. Additional models

When writing the formal encoding we were obliged to
make choices, such as defining the attacker model (thus
distinguishing between the honest and the dishonest server (the
intruder), and the user’s behaviour. We describe our choices
informally, their encoding in CSP# can be found in [25].

Honest server model: It is a server that never cheats about
its identity. However, it may choose to self-issue its certificate.

Intruder model: It is an intruder who owns a server,
partially controls the network, and may divert the browser’s
“Init.TLS” request to his server. He may attempt a man-in-
the-middle attack aimed at camouflaging his server as the
potential victim’s. So, the intruder can build a self-issued
certificate, namely a new one that is signed by himself, and
may possess a valid certificate for its server, namely one signed
by a certification authority. To attempt his attack, the intruder
interposes between the browser and the honest server that a
user requests through the browser, and replaces the server
certificate with his self-issued one. Certificate validation will
then fail, but if the browser still concludes the transaction,
perhaps due to some interaction with the user, then the man-
in-the-middle attack succeeds.

User Model: It is the user who interacts with a browser
may be variously skilled and educated, and may be influenced
by a huge variety of local or global cultural values. Further,
some may exhibit a cautious attitude, others a curious one
while they engage with a browser. Capturing the complexities
of user behaviour by a formal model is in fact an open issue,
and its feasibility is often questioned. As the best approxima-
tion that we can envisage at present, a user is modelled as a
non-deterministic entity. CSP# exhibits appropriate constructs
to easily support this choice. This means that the user may
potentially choose any of the paths of interaction that the
browser offers. It logically follows that this is the weaker
assumption about the user skills, and a ceremony that is secure
for a non-deterministic user, will also be secure for any user.

C. Socio-Technical Security Properties

We describe four different security properties. Each prop-
erty focuses on the behaviour of the browser, which is triggered
by both user and server input. They bind elements that span
from TLS session to user choices, and we thus define them
as socio-technical security properties. The four properties are



not intended to be comprehensive. They rather aim to provide
an overview on how technical mechanisms implemented in
browsers affect the human user. They are described in English,
while their version as LTL formulas can be found in [25].

Property 1 (Warning Users): A user whose browser re-
ceives an invalid certificate on a TLS session is warned about
this by the browser before the browser completes the session.

As explained in Sect. III-B a certificate is invalid if either
trusted issuer verification or domain name verification fail. We
remarked that this can be the case in a variety of scenarios,
more ore less risky for the user. For example, some scenarios
conceal an intruder who attempts a man-in-the-middle attack
inserting a fake certificate of his own; others see a server
self-issue a certificate for itself. By this property, we thus set
out to assess whether browsers warn the user that certificate
validation was not smooth.

Property 2 (Storing Server Certificates): A user who
stores a certificate that associates an honest server to its public
key on a TLS session via a browser is protected from man-in-
the-middle attacks on future sessions with the same server via
the same browser.

When browsers receive an invalid certificate, they may still
allow the user to store it. If one assumes that a certificate in
fact is trustworthy because it contains a correct association
between an honest server and the public key that legitimately
belongs to it, one could expect that future sessions with the
same server will be protected from man-in-the-middle attacks.
We shall see in the discussion that follows that this is not true
for all browsers.

Property 3 (Applying HSTS User Security): A user
who accesses a server that sends an HSTS header on a TLS
session via a browser that receives a valid certificate about the
server is protected from man-in-the-middle attacks on future
sessions with the same server via the same browser.

This property stands on a different scenario from that of
the previous one, although their conclusions are equal. This
scenario sees an HSTS compliant server who sends a valid
certificate to the browser that the user is using. However, it
remains to be checked whether the browser is HSTS compliant
too, in which case it whitelists the server because its certificate
is validated once.

Property 4 (Learning from Server Certificate History):
A user who completes a TLS session with a server via a
browser receiving an invalid certificate, and then completes
another session with the same server via the same browser
receiving a valid certificate is warned by the browser about
the risk of man-in-the-middle attack.

This property aims at checking whether the browser in-
forms the user that a man-in-the-middle attack might have oc-
curred in a previous TLS session. For example, let us consider a
session where the browser receives an invalid certificate from
an intruder who is shading the required server; the browser
may warn the user about this (according to Property 1). If in
a subsequent session the browser receives a valid certificate
about the same server, it may be taken as an additional
indication that something went wrong in the former session
— hence the check on whether the browser reinforces the

warning to the user that she risked a man-in-the-middle attack
in the former session. (Of course, the value of the additional
indication is inversely proportional to the likeliness that an
honest server that used a self-issued certificate on the former
session purchases, at some point, a valid one and uses it on
the latter session.)

D. Results and Discussion

We have run the tool on each of our four browsers,
and on each of our four target properties, reaching sixteen
interesting findings. It was possible to encode the properties
without incurring into state explosion. Over today’s standard
workstation, an Intel I7 processor running Microsoft Windows
8 with 4GB RAM, PAT outputs in a few seconds on each of the
sixteen experiments. The longest runtime is for Property 3 over
Firefox, 14.5 seconds. These runtimes are encouraging that our
prototype methodology to tackle socio-technical properties is
practical and can be usefully boosted further.

Interpreting the tool output required some effort, and
Table I summarises the findings. It can be seen that the browser
that verified the highest number of properties is Chrome,
scoring three ticks, then comes Internet Explorer, with two,
and Firefox, with one. However, this numerical classification
is not sufficiently meaningful without a glimpse at why the
properties are verified or not. This turns out to be particularly
important for Property 2.

Property 1 is found valid over Chrome and Internet Ex-
plorer. By contrast, the model checker shows traces that falsify
it over Firefox and Opera Mini. With Firefox, the trace reports
a sequence of two TLS sessions both with a man-in-the-middle
attack. In the first session, Firefox warns the user, who chooses
to store the intruder certificate anyway. In the second session,
the user tries to access the same server, but this time Firefox
has the intruder server certificate stored, and completes the
session without warning the user. This is due to the drawbacks
of storing server certificates, which Firefox allows its users to
do. The trace that falsifies the property with Opera Mini is
rather trivial because the browser does not involve the user at
all. Opera Mini in fact shows a padlock when the certificate
is valid, but even if the certificate is invalid, the browser
completes the TLS session anyway, without informing the user.

Property 2 turns out the most tricky. It is found that all
browsers verify the property except Firefox, although Firefox
is the only one that allows a user to store server certificates.
This is because the property is a logical implication whose
precondition is trivially falsified by the browsers that do no
store server certificate. Surprisingly, the property does not
hold on Firefox, which does not falsify the precondition. The
user can in fact replace a server certificate as many times
as she wishes to, while Firefox does not inform her that a
server certificate was already stored. In support of this, the
tool exhibits the following counterexample. In one session,
the user engages with an honest server that transmits a self-
issued certificate; the browser warns the user about this invalid
certificate; the user decides to store the certificate and continue;
in a second session, the user engages with the intruder who
sends a self-issued certificate that mentions the honest server
(thus without domain name verification failure); the browser
warns the user also about this second invalid certificate and



Fig. 3: Activity diagram for certificate validation in Firefox

Fig. 4: Activity diagram for certificate validation in Opera Mini



Browser Property 1 Property 2 Property 3 Property 4

Firefox × × X ×
Chrome X X X ×

Internet Explorer X X × ×
Opera Mini × X × ×

TABLE I: Four socio-technical properties studied over the four
leader browsers. An X indicates that the property holds, an ×
indicates that it does not.

fails to check that another certificate was already stored for
the same server; the user decides to store also this certificate
and continue.

Property 3 is found to be valid with the browsers that
support HSTS, whereas the tool outputs counterexamples with
the others. Finally, checking Property 4 fails on all browsers.
This denounces the stateless philosophy whereby browsers do
not record warnings they may have given in the past, hence
they cannot leverage upon them at present. In fact, browsers
should maintain a cache of invalid certificate hashes. In doing
so, it would be possible for browsers to strongly warn users
when a different invalid certificate is presented by a server
with which the browser has communicated in the past. It is
worth noting that looking at past interactions is the strategy
that Session Description Protocol [28] advances to strengthen
the management of self-issued certificates. Surprisingly, it has
not been used in HTTPS.

VI. CONCLUSIONS AND FUTURE WORK

The socio-technical analysis of the security of modern
browsers is yet to be considered innovative at present. It
combines traditional analysis of the technologies underlying
browsers on one hand, with elements of user participation on
the other. By doing so, it is oriented at characterising security
properties also in terms of what the user may accomplish, with
the ultimate aim of building browsers that are secure in the
presence of humans.

This paper described our work in this area. It focused on
server authentication with the user via the browser and, more
specifically, on TLS certificate validation and the various sce-
narios where this validation fails. Analysing this property from
a socio-technical standpoint inspires a number of questions,
and we concentrated on three (cf. Sect. I). To address these
questions we formulated four properties that tackle how users
are involved in TLS certificate validation.

A major hallmark throughout our work was the adoption
of UML activity diagrams as a semi-formal language to
represent portions of browser functioning compactly, so that
the human analyser could quickly get to grasps with their
niceties. However, aiming at automatic formal analysis, the
diagrams were used to build a formal model in CSP# to input
to the PAT model checker together with an LTL specification
of the properties. These are the main steps of our prototype
methodology for the socio-technical formal analysis of the
security of browsers. The current findings encourage us to
develop this methodology further, for example by automating
it more fully, and by trying it out on additional socio-technical
properties.

REFERENCES

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246, 2008.

[2] E. Rescorla, “HTTP Over TLS,” RFC 2818, 2000.
[3] D. Gollmann, “What do we mean by Entity Authentication?” in Proc.

of IEEE SSP’96, 1996, pp. 46–54.
[4] G. Bella, R. Giustolisi, and G. Lenzini, “A Socio-Techinical Un-

derstanding of TLS Certificate Validation,” in Proc. of IFIPTM ’13.
Springer, (to appear).

[5] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of SSL warning effectiveness,” in
Proc. of USENIX’09, 2009.

[6] R. Biddle, P. C. van Oorschot, A. S. Patrick, J. Sobey, and T. Whalen,
“Browser interfaces and extended validation SSL certificates: an empir-
ical study,” in Proc. of the ACM CCSW’09. ACM, 2009, pp. 19–30.

[7] C. Ellison, “Ceremony design and analysis,” IACR eprint, 2007.
[8] G. Bella and L. Coles-Kemp, “Layered Analysis of Security Cere-

monies,” in Information Security and Privacy Research SE-23, ser. IFIP
Advances in ICT. Springer, 2012, vol. 376, pp. 273–286.

[9] [Online]. Available: http://gs.statcounter.com/
[10] [Online]. Available: http://www.omg.org/spec/UML/2.4.1/
[11] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards Flexible

Verification under Fairness,” in Proc. of CAV’09, ser. LNCS, vol. 5643.
Springer, 2009, pp. 709–714.

[12] M. Georgiev, S. Iyengar, S. Jana, R. A., D. Boneh, and V. Shmatikov,
“The most dangerous code in the world: validating SSL certificates in
non-browser software,” in Proc. of ACM CCS’12, 2012, pp. 38–49.

[13] S. Flinn and J. Lumsden, “User perceptions of privacy and security on
the web,” in Proc. of PST ’05, 2005.

[14] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards
a Formal Foundation of Web Security,” IEEE CSF’10, pp. 290–304.

[15] T. Groß, B. Pfitzmann, and A.-R. Sadeghi, “Browser model for security
analysis of browser-based protocols,” in Proc. of ESORICS’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 489–508.

[16] A. Josang, K. A. Varmedal, C. Rosenberger, and R. Kumar, “Service
provider authentication assurance,” in Proc. of PST ’12. IEEE
Computer Society, 2012, pp. 203–210.

[17] S. Gajek, M. Manulis, A. Sadeghi, and J. Schwenk, “Provably secure
browser-based user-aware mutual authentication over TLS,” Proc. of
ACM ASIACCS ’08, p. 300, 2008.

[18] D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI layer cake: new
collision attacks against the global x.509 infrastructure,” in Proc. of the
FC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 289–303.

[19] P. Yee, “Updates to the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List Profile,” RFC 6818, 2013.

[20] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, 2008.

[21] [Online]. Available: https://akologin.us.army.mil
[22] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux, “The In-

convenient Truth About Web Certificates,” in Economics of Information
Security and Privacy III, B. Schneier, Ed. Springer, 2013.

[23] [Online]. Available: http://blog.chromium.org/2011/06/
new-chromium-security-features-june.html

[24] [Online]. Available: http://www.lsv.ens-cachan.fr/Software/spore/
[25] [Online]. Available: https://sites.google.com/site/sarogiustolisi/cabinet/

PST2013 CSP code.tar.gz
[26] C. A. R. Hoare, “Communicating Sequential Processes,” Commun.

ACM, vol. 21, no. 8, pp. 666–677, 1978.
[27] I. Abdelhalim, S. Schneider, and H. Treharne, “An integrated framework

for checking the behaviour of fUML models using CSP,” Int. J. on
Software Tools for Technology Transfer, 2012.

[28] J. Lennox, “Connection-Oriented Media Transport over the Transport
Layer Security (TLS) Protocol in the Session Description Protocol
(SDP),” RFC 4572, 2006.


