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Data quality is crucial in modern software systems, like data-driven decision support systems. However, data
quality is affected by data anomalies, which represent instances that deviate from most of the data. These
anomalies affect the reliability and trustworthiness of software systems, and may propagate and cause more
issues. Although many anomaly detection approaches have been proposed, they mainly focus on numerical
data. Moreover, the few approaches targeting anomaly detection for categorical data do not yield consistent
results across datasets.

In this paper, we propose a novel anomaly detection approach for categorical data named LAFF-AD (LAFF-
based Anomaly Detection), which takes advantage of the learning ability of a state-of-the-art form filling
tool (LAFF) to perform value inference on suspicious data. LAFF-AD runs a variant of LAFF that predicts
the possible values of a suspicious categorical field in the suspicious instance. LAFF-AD then compares the
output of LAFF to the recorded values in the suspicious instance, and uses a heuristic-based strategy to detect
categorical data anomalies.

We evaluated LAFF-AD by assessing its effectiveness and efficiency on six datasets. Our experimental results
show that LAFF-AD can accurately determine a high range of data anomalies, with recall values between 0.6
and 1 and a precision value of at least 0.808. Furthermore, LAFF-AD is efficient, taking at most 7000 s and
735 ms to perform training and prediction, respectively.
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1 INTRODUCTION

Data plays a central role in modern software systems, which are very often powered by machine
learning (ML) and used in critical domains of our daily lives, such as finance, health, and transporta-
tion [49]. However, the effectiveness of ML-intensive software applications highly depends on the
quality of the data [44]. When data quality is poor, the output of these systems cannot be trusted.
This makes data quality of utmost importance since it impacts how trustworthy and reliable these
applications are (e.g., decision support systems).

Data quality is affected by data anomaly. An anomaly is defined as data instances that deviate
from other data instances [17]. Data anomalies can arise in many practical situations, such as wrong
values entered by users during the data entry process through form filling (e.g., typos) and errors
made during data management (e.g., faulty sources of data) or data integration [32].

Data anomalies need to be detected; once detected, they have to be fixed or excluded from
the data used in ML-intensive applications. If the anomalies are not detected in a timely fashion,
they may propagate and cause more data quality issues, leading to serious problems that affect
decision-making [44]. For example, one study showed that the financial loss because of fraud, a kind
of data anomaly in the financial domain, has increased by almost 56.6% since 2009. The value of this
loss was estimated to be 5.1 trillion USD in 2018 [15]. Another study revealed that the average cost
of network downtime resulting from data anomalies is 100 000 USD per hour; this value can grow
as more people are using or become dependent on web applications [27]. This explains the fact
that anomaly detection has been applied in several critical domains such as fraud detection [39],
health care [12], and network intrusion identification in computer science [23].

To detect data anomalies, many approaches have been proposed. However, their focus has
been mainly on numerical data. The main idea is to define a proximity measure between data
instances [22], and use this measure to detect data instances that deviate from the majority of
the data. In contrast, fewer studies attempt to detect anomalies for categorical data [48]. Since in
practice data is often described by categorical attributes [22], we focus in this article on detecting
anomalies in categorical data.

There are two reasons to motivate this work. First, categorical data anomaly is more challenging
to detect [22]. The fundamental issue is to define a proximity measure over categorical values [41];
however, it is not easy to devise a criterion to separate between anomalous and non-anomalous
categorical data [2]. Second, empirical studies show that more than 50% of anomalies in critical
applications (e.g., medical records) are in categorical fields [40].

Although anomaly detection for categorical data has been investigated in the literature (e.g.,
with frequency-based approaches [35, 37], clustering-based approaches [46, 47], semi-supervised
approaches [34]), our preliminary experiments show that the effectiveness of these approaches is
not stable across datasets. More specifically, especially since these approaches include different
parameters to be tuned, one technique can perform greatly in terms of accuracy on one dataset but
poorly on another.

To detect data anomalies effectively, one intuitive solution is to infer the correct value in a
categorical dataset; then, an anomaly can be detected by comparing the inferred correct value with
the recorded one. Using such inferred values, data anomalies can also be easily fixed. Since one
of the main sources of data anomaly are wrong values entered by users during form filling [45],
in the literature many form filling approaches [7, 30] have been proposed to accurately predict
the correct value to be filled in a data entry form. For example, the state of the art (SOTA) form
filling approach LAFF (Learning-based Automated Form Filling) [7], relies on multiple Bayesian
networks and a heuristic-based endorser to suggest a ranked list of candidate values to fill in a

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2024.



Automated anomaly detection for categorical data by repurposing a form filling recommender system 1:3

categorical field in the data entry form. The suggestions made by LAFF allow users, in between
79.0% and 90.1% of the cases, to find the correct value among the 5% top-ranked suggested values.

Driven by the high accuracy of existing form filling tools such as LAFF, in this article we propose
a LAFF-based Anomaly Detection approach (“LAFF-AD” in short) to effectively detect categorical
data anomalies. The basic idea of LAFF-AD is to take advantage of the learning ability of LAFF to
perform value inference on suspicious data. The output of such inference is used by LAFF-AD to
determine the presence of anomalies in data.

LAFF-AD includes three main phases: LAFF offline prediction, anomaly detection, and threshold
determination. Similar to LAFF, LAFF-AD starts by learning Bayesian network models on a clean
set of data. Given a set of suspicious data, LAFF-AD runs a variant of LAFF that handles offline
prediction (i.e., in contrast to real-time during the data entry process) to predict the value of a
categorical field in a suspicious instance. This variant returns a ranked list of possibly correct values
for the suspicious instance, the probability of each value in the ranked list, and a flag indicating
whether the prediction comes with high confidence. In the next phase, LAFF-AD leverages the
output of LAFF to detect data anomaly with a heuristic-based strategy. LAFF-AD analyzes the
outputs of LAFF by checking three heuristics. The first one checks if LAFF has enough confidence
to make a prediction (i.e., the prediction is endorsed). The second one checks if the suspicious value
is ranked to the top in the list predicted by LAFF. The third heuristic checks if the anomaly score
of the suspicious value is higher than a certain anomaly score threshold. The anomaly score is
computed based on the probability of the suspicious value in the ranked list predicted by LAFF.
According to the three heuristic rules, LAFF-AD determines the presence of a data anomaly. In
the threshold determination phase, LAFF-AD automatically determines the value of the “anomaly
score threshold” used in the anomaly detection phase for each dataset; this phase minimizes the
influence of selecting appropriate parameters for anomaly detection approaches.

We evaluated LAFF-AD using six anomaly detection datasets, with different characteristics. The
experimental results show that LAFF-AD can accurately detect a high range of data anomalies,
with a precision value of at least 0.808.

To summarize, the main contributions of this paper are:

e The LAFF-AD approach, which addresses the problem of anomaly detection for categorical
data. To the best of our knowledge, LAFF-AD is the first work to repurpose a form filling
recommender system to detect data anomalies. LAFF-AD provides effective data anomaly
detection results without the need for manual tuning.

e An extensive evaluation assessing the effectiveness and efficiency of LAFF-AD, including a
comparison with SOTA approaches. Our evaluation shows that LAFF-AD yields stable results
outperforming SOTA algorithms for most datasets.

The rest of the paper is organized as follows. Section 2 provides a motivating example and
presents the concept of data anomaly detection and its challenges. Section 3 reviews the SOTA and
its limitations. Section 4 introduces the LAFF approach that underlies our approach for anomaly
detection. Section 5 describes the core phases of LAFF-AD. Section 6 reports on the evaluation
of LAFF-AD. Section 7 discusses the usefulness of LAFF-AD, taking into account the practical
implications of the experimental results. Section 8 concludes the paper.

2 DATA ANOMALY DETECTION
2.1 Motivating example

Real-world data contains data anomalies that affect data quality. These anomalous data can have
severe consequences, especially in critical domains such as finance and health care. Let us assume
a dataset for an energy provider contains the following columns “Tariff plan”, “Customer segment”,
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“Fixed fees”, and “Consumption average” (as shown on the right of Figure 1). “Tariff plan” and
“Customer segment” are two categorical columns with the following values (“Standard”, “Time of
use”, “Renewable energy”) and (“Residential”, “Commercial”, “Non-profit organization”,
“Industrial”), respectively. The remaining columns “Consumption average” and “Fixed fees” are
numerical columns. Based on this information, the energy provider relies on an ML-based bill
calculator to decide the “Rate per kWh” according to the needs and the tariff plan of different
customers. After a certain period of time, some customers with a standard tariff plan started
complaining about extra charges even though their consumption of energy had not increase.

The energy provider team decided to investigate the reason behind this problem. The inves-
tigations showed that the main reason for the extra charges is that the bill calculator relied on
bad quality data containing some anomalies. The decisions were based on anomalous instances
having “Tariff plan” equal to “Standard”, “Customer segment” equal to “Industrial”, “Average
consumption” equal to “400”, and “Fixed Fees” equal to “20”. These instances deviate from the
normal data instances since “Tariff plan” equal to “Standard” is usually associated with “Customer
segment” equal to “Residential” and “Average consumption” equal to “100”. These anomalous
instances misled the bill calculator, which used a high “Rate per kWh” equal to “0.5” instead of
“0.1” for residential customers. Indeed, residential customers pay fewer taxes for energy since
they use it for personal reasons; on the opposite, industrial customers need to pay more. These
anomalies in the data can be introduced in different ways such as during data entry (e.g., typos), data
management (e.g., faulty data source), and data integration (when assembling data from different
sources) [32].

To solve this problem, the energy provider decides to do an audit on the dataset to check the data
quality of different data instances, and to apply anomaly detection in order to detect anomalous
instances that affect the data and decision quality.

2.2 Problem Definition

In this paper, we deal with the problem of anomaly detection for categorical data in relational
databases. This problem can be informally defined as the problem of deciding whether the value of
a target column in a given suspicious instance is anomalous or not.

In this work, we target categorical columns since in practice data is often described with cate-
gorical attributes [22]. This type of column is subject to anomalous values since, for example, the
filling process of categorical attributes is error-prone and time-consuming [7]. Another reason is
that identifying anomalies in such kinds of columns is difficult since it is not easy to devise criteria
to separate between anomalous and non-anomalous data [2].

We define the anomaly detection problem as follows. Let D be a dataset composed of a set of
n columns C = {cy, ¢y, ..., cn}. Let C° C C be the set of categorical columns. Each column ¢; can
take a value from a certain domain V;. D can be partitioned into datasets CD and SD, representing
respectively clean data and suspicious data possibly containing data anomalies; we have CDUSD = D
and CDN SD = (. During the anomaly detection process, the columns are partitioned in two groups,
i.e., a set of features C/ and one target column C* € C¢; we have that C/ U C* = Cand Cf N C* = 0.
Let 0f° € V; be the correct value that the target column C* should have for a given instance, and
09 € V; be the observed value. In other words, ¢ is the observed value of the column C’ in the
suspicious instance. In our definition, we define an anomaly when the observed value is different
from the correct value, i.e., when v{° # v{. Given a clean subset of the data CD, a set of features cf,
and a target column C’, we want to build a model M that can predict if the observed value of the
target is anomalous or not (i.e., v5° # v7) based on ¢f and CD.
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Suspicious data Clean data
Tariff  Fixed Average Customer Tariff Fixed Average Customer
Plan Fees  Consumption Segment Plan Fees  Consumption Segment
Standard 20 400 Industrial Standard 20 400 Residential
Standard 20 150 Residential
Features Anomaly: Yes / No
Renewable 50 850 Industrial
Energy
Model M Tlgl:e()f 30 650 Commercial

Fig. 1. Running example for problem definition

Application to the running example. Figure 1 shows an example illustrating the anomaly detection
problem. We have a dataset of an energy provider with four columns, ¢;: “Tariff plan”, ¢,: “Fixed
Fees”, c3: “Average consumption”, and c4: “Customer Segment”. Among the columns, “Tariff plan”
and “Customer Segment” are categorical columns C¢ = {cy, c4}. The table on the right-hand side of
the figure represents the clean data CD and the small table in the left represents the suspicious data
SD. Using the clean data, we want to build a model M to learn relationships between columns c; to
¢4 in the clean data. This model is then used to check any instance on the suspicious data. Going
back to the example, let us assume that we want to check if the value of the “Customer Segment”
column in the suspicious test instance is an anomaly or not (i.e., C' = “Customer Segment”). In this
case, as shown in the figure, the rest of the columns are considered as features, i.e., cf = {c1,¢2,¢3}.
Our goal is to use the model M to predict whether the observed value of “Customer Segment” (i.e.,
v = “Industrial”) represents an anomaly or not based on the values of Cf = {c1, ¢z, ¢35} and the
clean data CD.

3 STATE OF THE ART

The approach proposed in this paper is related to anomaly detection for categorical data. Many
research works tried to tackle this problem. The proposed approaches can be classified based on
different aspects. In this section we followed the classification proposed by Taha and Hadi [48]:
frequency-based, Bayesian/conditional frequency-based, density-based, clustering-based, distance-
based, information-theoretic, and unsupervised/semi-supervised.

Frequency-based approaches [35, 37] rely on the frequency of categories to detect data anomalies.
Less frequent categories are more likely to be anomalies. A typical frequency-based method is
CBRW [35], which relies on two kinds of distributions (i.e., “intra-feature” and “inter-feature”
distributions) to detect anomalies. The first one computes the frequency of categories on the target
column, while the second one analyzes the distributions of categories in different columns. Based
on these two distributions, CBRW computes an outlier score, and returns M instances with the
highest outlier score as anomalies.

Bayesian/conditional frequency-based approaches [13, 33, 42] follow another definition of anom-
alies: no matter whether the categories are frequent or not, an infrequent combination of categories
is considered as an anomalous instance. These approaches compute a rareness score between
categorical values in an instance. Instances with a rareness value less than a certain threshold are
considered anomalous.
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Density based approaches detect anomalies in subgroups of data (referred as “local area”) that
share similar characteristics. A typical density-based method is WATCH [28]. WATCH detects
anomalies in two phases, feature grouping and anomaly detection. First, it regroups related columns
(i.e., features) having the same meaning or correlated to each other in the same group. Then, in the
second phase, it detects anomalies in these groups by computing an anomaly score for each instance
in each feature group. A higher anomaly score indicates a higher probability that an instance is
anomalous regarding a feature group. WATCH declares the M instances with the highest anomaly
score in each group as anomalies. The algorithm takes the union of anomalies sets in all feature
groups to determine the anomalous instances. WATCH determines at most M X g instances as
outliers, where g represents the number of features groups.

Clustering-based approaches [46, 47] define anomalous instances as the ones located in a sparse
region from other clusters. For example, ROAD [46] determines k clusters on the data using the
k-mode algorithm. Then it defines a set of big clusters having a number of instances higher than a
certain threshold. To detect anomalies, ROAD computes the distance between the test instance and
different clusters. A test instance has a higher chance to be an anomalous instance, if it has a larger
distance with the nearest big cluster. ROAD finishes by providing M instances with the highest
distances.

Distance-based approaches regard data instances far from the majority of instances as anomalies.
An example of distance-based method is ORCA [6]. ORCA computes the distance between two
categorical data instances using the Hamming distance, which measures the number of mismatches
between them. For each instance i, ORCA computes an outlying score that is the average Hamming
distance between i and its k-nearest neighbors. ORCA declares a parameter m, which is used to
select the top-m instances with the highest outlying scores as anomalous instances.

Information theoretic approaches transform the problem of anomaly detection into an optimization
problem [18, 19]. These approaches use information entropy to detect anomalous instances. One
instance is considered to be an anomaly if the entropy of the dataset exhibits a large decrease after
removing the instance. Specifically, these approaches first compute the entropy of the original
dataset. Then, for each instance, they remove it in the dataset, compute a new entropy value of
the dataset, and finally determine the difference between the original entropy value and the one
obtained after removing the instance. The k instances with the highest difference in entropy value
are selected, and returned as anomalous instances.

Unsupervised and semi-supervised approaches work as follows. The former are used when there
is no information about the anomaly labels (i.e., anomalous or non-anomalous) of data instances.
The baselines iForest, LOF, and EMAC are traditional unsupervised anomaly detection approaches.
iForest [29] relies on an ensemble of decision trees to detect data anomalies where it decides
instances with shorter average paths as anomalous. LOF [10] compares the density of one instance
with its k nearest neighbors. Then it classifies the instances with lower density values when
compared to neighbors as anomalies. EMAC-SCAN [51] is another unsupervised method, that takes
advantage of embedding-based approaches to capture the relationship between categorical features
and use them for anomaly detection.

Semi-supervised approaches take advantage of existing non-anomalous instances. In the training
phase, they create a novelty model over data instances. Any test instance that deviates from normal
data is considered anomalous. Our baseline OCSVM [11] uses the training data to find a hyperplane
separating between anomalous and normal data; this hyperplane is used during the anomaly
detection phase where all instances with a high distance to the hyperplane are considered as
anomalous. Frac [34] uses non-anomalous instances to build an ensemble of classification models;
during the test phase, Frac uses the predictions of previously trained models to determine anomalies.
A test instance is considered as anomalous if there is a disagreement among the outputs of the
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different models. However, Frac is not designed for categorical data. To detect categorical anomalies
with Frac, it should rely on any algorithm that can deal with categorical variables.

Limitations. Our preliminary experiments on commonly-used anomaly detection datasets show that
the effectiveness of the SOTA approaches is unstable. For example, the precision of both iForest [29]
and OCSVM [11] can vary between 0.03 and 0.9 depending on the datasets. Moreover, existing
approaches are highly sensitive to the configuration parameters [52]. These algorithms include
different parameters (e.g., OCSVM has two parameters) which need to be carefully chosen. In this
work, we address these challenges and improve the anomaly detection precision. To detect data
anomalies effectively, an intuitive solution is to infer the correct value in a categorical column;
then, data anomaly can be detected by comparing the inferred correct value with the observed one.
Another advantage is that, using such inferred value, a data anomaly can also be easily fixed.

Data Anomaly and Form Filling. Since one of the main sources of data anomaly is the wrong values
entered by users during form filling [45], in the literature many form filling approaches [7, 30]
have been proposed to accurately predict the correct value to be filled in a data entry form. In this
work, we repurpose an automated form-filling approach to detect data anomalies. To do so, we
need first to adapt these approaches to perform predictions offline instead of online (during the
form-filling process). Moreover, form-filling approaches typically return to the user a ranked list of
items. In order to detect anomalies, we need to fully take advantage of all this information. The
main challenge is how to fully leverage the characteristics and outputs of form-filling approaches
to effectively perform data anomaly detection.

4 PRELIMINARIES

In this section, we explain LAFF [7], a learning-based automated form filling suggestion tool, which
provides the basic information for LAFF-AD to detect anomalies. LAFF is designed to suggest a
ranked list of the most probable values to be selected by users for a categorical field during form
filling.

LAFF has two main phases: model building and form filling suggestion. During the first phase,
LAFF learns the relationship between different columns in the dataset where each column represents
a field in the data entry form. LAFF builds a set of Bayesian network (BN) models over the training
instances in the dataset. Specifically, LAFF learns one BN over the entire training set. This model is
called “global model”, which represents the general dependencies between columns. In order to
capture fine-grained dependencies, LAFF applies the k-mode algorithm to cluster the data into k
similar groups of instances. LAFF then applies a local modeling strategy by building a BN model
on each cluster of data. At the end of this phase, LAFF builds k+1 BN models.

In the form filling phase, LAFF tries to select one of the models built in the previous phase to
make a prediction. The model is selected based on the values of the filled fields by the user during
the form filling process.

The selected model corresponds to the cluster with a minimal distance to the test instance. The
global model is used in the case where there is no single model that can be selected. After the
selection of the appropriate model, LAFF predicts a ranked list of the top values that are likely to
be correct based on their probabilities. In order to avoid providing inaccurate suggestions, LAFF
includes a heuristic-based endorser, which decides if the prediction is accurate enough or not. LAFF
analyzes the dependency between the filled fields and the target, and the probabilities of the top-n
suggested values. If there is a direct dependency between the target and the filled fields, or the sum
of the probabilities of the top n values is higher than a certain threshold, then LAFF suggests the
list to users.
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Hlstorlcal Features Target
instances
8 B
LAFF model |BNs| LAFF prediction || LAFF suggestions Anomaly Prediction :
building phase phase J detection H—> Anomaly (Yes or No)
module Anomaly score

l

{ Threshold determination

A ) LAFF Prediction Phase, B Anomaly Detection Phase, and (C Threshold Determination Phase

Fig. 2. Main Steps of LAFF-AD

5 APPROACH

In this section, we show how to repurpose an automated form filling approach LAFF for performing
anomaly detection of categorical data; we call the resulting approach LAFF-AD (LAFF-based
Anomaly Detection).

As shown in Figure 2, LAFF-AD includes three phases: LAFF offline prediction, anomaly detection,
and threshold determination. LAFF-AD starts by running a variant of LAFF on historical instances
to train BN models. Then LAFF is used to predict the values of the target on suspicious data.
In the second phase, based on LAFF’s prediction, LAFF-AD uses a heuristic anomaly detection
strategy to predict if there is an anomaly or not for a given test instance. LAFF-AD uses a threshold
determination phase to automatically decide the values of its parameters.

In the rest of the section, we illustrate the three main phases of LAFF-AD.

5.1 LAFF offline prediction

LAFF is mainly designed to predict a ranked list of values for a categorical field during the form-
filling process. LAFF-AD repurposes LAFF and takes advantage of it to detect data anomalies in
categorical columns. The main reason behind repurposing LAFF to detect data anomalies is the
high ability it has shown to correctly provide suggestions during form filling [7].

In the context of anomaly detection, LAFF needs to perform predictions offline on suspicious
data that may contain anomalies. This means that LAFF-AD runs a variant of LAFF that handles
offline prediction. This variant considers a special case during the form filling process, where all
fields are filled except the target field. The model building phase is the same as in the original
definition of LAFF. LAFF starts by preprocessing the historical instances and then creates different
BN models (i.e., global and local models).

During the prediction phase, LAFF considers each instance in the suspicious data as data entered
by a user. Since we aim to detect anomalies for a given categorical column (i.e., the target column)
based on the values of other columns (i.e., the features), we consider the features as filled fields and
use LAFF to predict the value of the target column on each suspicious instance. As we mentioned
before, LAFF first tries to select one model to predict. This model is selected based on the feature
values of the suspicious data. LAFF then makes predictions and returns a ranked list of values
based on their probability. Thanks to its endorser module, LAFF has the ability to avoid inaccurate
suggestions: it can label a suggestion as not endorsed if it has no sufficient confidence in the
suggestion.
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Tariff Fixed Average Customer Observed Ranked Probability
. . . Endorsed
Plan Fees Consumption Segment value list list
Standard 20 400 Industrial Industrial [Residential, Influstrlal, [0.75,0.15,0.05,...] True
Commercial]
Input: Suspicious data Output: Extended LAFF output
Filled fields Value Prob.
fi:Tariff plan = Standard Model _—
f>Fixed fees= 20 selection Remden.tla.L 0.75 Endorsed:
f3:Avg. consumption = 400 and Industrlal: 0.15 ndorser True or False
Target prediction Commercial. 0.05
fi:Customer segment = ?
Preprocessed input Probability table Endotrsetr s
(Ideal filling scenario) outpu

Fig. 3. LAFF prediction phase

Since LAFF-AD repurposes LAFF to detect data anomalies, the output of LAFF needs to be
adapted to our context. Our variant of LAFF transforms the output of LAFF into a table representing
a summary of the prediction result. This table contains the following information: “Observed value”
representing the original value in the suspicious data, “Ranked list” representing the candidate
values in the order suggested by LAFF, “Probability list” containing the probability of each value
in the ranked list, and a Boolean column “Endorsed” that records whether the prediction of the
current test instance is endorsed.

Application to the running example. Let us consider a suspicious test instance identified by domain
experts. As shown on the left-hand side of Figure 3, this table contains the following values: “Tariff
plan”= “Standard”, “Fixed fees” = 20, “Average consumption”= 400, and “Customer segment” =
“Industrial”. This instance is considered to be anomalous because it deviates from the normal data
instances, in which the value “Standard” for “Tariff plan” is usually associated with the value
“Residential” for “Customer segment” and the value 100 for “Average consumption” (see Section 2.1).
Let us assume that we want to check whether the “Customer segment” value is correct. In this
case, the “Customer segment” column is the target and the remaining columns are features. LAFF
preprocesses these values and uses them as input for model selection and prediction. Let us assume
that LAFF predicts the following values “Residential”, “Industrial”, “Commercial” with the probability
values 0.75, 0.15, 0.05, respectively; the predicted list is checked by the endorser module of LAFF. Let
us assume that the endorser threshold is equal to 0.8; in this case, the prediction should be endorsed
since the sum of the top n values (0.75+0.15+0.05 = 0.95) is higher than the endorser threshold. The
detailed output of this variant of LAFF is shown in the top-right part of the figure, in the form of a
table. The original value in the suspicious data (“Industrial”) is shown in column “Observed value”;
the candidate values (in the order suggested by LAFF) and the corresponding probability values
are shown in the second and third columns; the last column indicates the output of the endorser
module (“True”).

5.2 Anomaly detection phase

This is the main phase to detect data anomalies. It assumes that LAFF made a prediction over
an instance from the suspicious data. LAFF-AD takes the output of LAFF as determined in the
previous phase and uses it to detect anomalies based on a heuristic. The main steps of the anomaly
detection algorithm are shown in Algorithm 1. The inputs of the algorithm are the output of LAFF
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Algorithm 1: Anomaly detection

Input: Triple of ranked values, probability list, endorser decision (rv, pl, endorsed)
Target column C*
The value of C? in the suspicious data: v
Threshold 6,
Output: A flag checkERR;, representing the decision to label the suscpicious value ¢ as an anomaly
Boolean checkEndorsed; < isEndorsed(endorsed);
topRankedValues (rviop, plyy,) < getTopNpRanked (rv, pl);
Boolean checkNotTop, < isNotInTopNp(rviep, vy);
4 Float anomalyScore « 1 — getProb(vy, pl);

-

N

@

5 Boolean checkProb; « (anomalyScore > 0;);
6 checkERR; « False;

7 if checkEndorsed; then

8 if checkNotTop; and checkProb; then

9 ‘ checkERR; < True

10 end

11 else

12 ‘ checkERR; « Not Conclusive

13 end

14 return checkERR;;

(consisting of the ranked values, the probability list, and the endorser decision), the target column
C', its observed value in the suspicious data o?, and the anomaly detection threshold 6,. This
threshold is used to predict the existence of data anomalies; its value is automatically determined
(see Section 5.3).

Based on the output of LAFF, LAFF-AD collects three Boolean flags needed for anomaly detection:
checkEndorsed;, checkNotTop,, and checkProb;. First, LAFF-AD checks if the LAFF’s prediction was
endorsed, and saves the value to the Boolean flag checkEndorsed; (line 1). In order to assign a value
to the checkNotTop, flag, LAFF-AD collects the list of the top-n ranked values by LAFF (line 2).
Then, it checks if the observed value in the suspicious data v} is not present in the top-ranked list
(line 3). If so, the value of checkNotTop, is set to True. After that, LAFF-AD computes an anomaly
score based on the probability of the observed value in the suspicious data v in LAFF’s prediction
(line 4) and saves the value in the variable anomalyScore. LAFF-AD checks if the value of the
anomalyScore is higher than the anomaly detection threshold 0;, and saves the value in the Boolean
flag checkProb; (line 5).

After obtaining these three Boolean flags, LAFF-AD determines the existence of an anomaly
based on the following three conditions. The first condition checks if LAFF’s prediction is endorsed
or not. The second condition checks whether the observed value of the target in the suspicious
data is in the “top-n” values predicted by LAFF. The third condition checks if the anomaly score
(ie., 1 — getProb(vy, pl) ) is higher than the anomaly detection threshold, where getProb(v;, pl)
represents the probability of the observed value of the target in the ranked list. If the first condition
is satisfied, it means that LAFF has enough confidence to predict and thus LAFF-AD can confidently
detect anomalies. Regarding the second condition, any observed target value in the suspicious
data that does not exist in the ranked list predicted by LAFF represents a potential anomaly, since
LAFF usually predicts correct values at the top of the ranked list. As for the third condition, if the
anomaly score (1 — getProb(vy, pl)) is higher than the anomaly score threshold, this means that the
observed value of the target represents a potential anomaly, since the probability of the observed
value to be the correct one is very low.
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Top n:
p  Observed Ranked Probability o4 Residential 0.5 checkEndorsed;: True
value fist tist —» | Industrial 0.2 | | checkProb,: True | | Anomaly: Yes
1 Commercial [Rcs'gi';:;’]l’e:z‘l’]s"ml' [0.75,0.15,0.05....] True Commercial 0.05 checkNotTop,:  True
Top n:
D OI:Isael:;ed Ral?sl:ed Prol:?sbtility Endorsed Residential 0.30 c:ecl]zf)nd;rsed,: iaise Anomaly: Not
—| Industrial 0.25 | — | CNECKLTOD;: alse |, conclusive
2 Industrial [Res‘g:::“:é‘:i‘l’]s"‘“l’ [0.30,0.25,0.25....] False Commercial 0.25 checkNotTop,:  False
Top n:
1 Observed Ranked Probability o Residential 0.75 checkEndorsed;: True
value fist fist —» | Industrial. 0.15 | — | checkProb;: False|_,| Anomaly: No
3 Residential [Res‘ie;::;:'ez‘i‘l’]s"‘“l’ [0.75.0.15,0.05,...] True Commercial 0.05 checkNotTop,: ~ False

Fig. 4. Examples of LAFF-AD predictions

In Algorithm 1, LAFF-AD first checks if the LAFF prediction is endorsed (line 7). If the value
of this flag is True, LAFF-AD checks the values of flags checkProb; and checkNotTop,. If both
checkProb; and checkNotTop, evaluate to True, LAFF-AD predicts there is an anomaly and sets the
flag checkERR to True (line 10). If the LAFF’s prediction is not endorsed, this means that we do
not have enough information to make a prediction. We assign the value “Not conclusive” to the
decision flag checkERR (line 12). The algorithm ends with returning the value of the checkERR flag.

Application to the running example. Figure 4 shows three instances that need to be checked by LAFF-
AD. For each instance, we have the output from the LAFF offline prediction step (see section 5.1),
which is the input for anomaly detection.

For the first suspicious instance in Figure 4, LAFF provides an endorsed prediction (checkEndorsed;=
True). In this case, LAFF-AD therefore has enough confidence to make a decision on the existence
of an anomaly. LAFF predicts Residential, Industrial, and Commercial with the following probability
list 0.5, 0.2, and 0.05, respectively. If we assume that the value of the anomaly score threshold for the
“Customer segment” column is equal to 0.9, LAFF-AD then predicts the existence of an anomaly
since the checkProb; flag is evaluated to True ((1-0.05)> 0.9) and the observed value Commercial is
not in the top-n values predicted by LAFF (i.e., checkNotTop,= True).

The second case illustrates the scenario when LAFF-AD does not have the confidence to determine
the existence of an anomaly. Specifically, even though the observed value in the suspicious instance
is predicted in the top-n (checkNotTop,=False) and the anomaly score is less than the threshold
(checkProb,;= False), LAFF-AD decides to set the value of checkERR to Not conclusive since the
prediction of LAFF is not endorsed.

The last case shows the scenario when a suspicious instance should not be treated as an anomaly.
In fact, as shown in the figure, the prediction is endorsed by LAFF (checkEndorsed;= True) and
the observed value of the target is predicted at the top of the ranked list (i.e., checkNotTop,=False).
Concerning the flag checkProb,, as shown in the figure, the probability of the observed value is
very high (equal to 0.75) which leads to a low anomaly score (i.e., checkProb;=False). Since both of
the flags evaluate to False, LAFF-AD can confidently predict that this instance is normal.

5.3 Threshold tuning phase

In this phase, we aim to automatically determine the value of the anomaly score threshold for
each target, in each dataset. This value is used in the anomaly detection algorithm and plays a
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Algorithm 2: Threshold determination

Input: Set of pre-processed historical instances I (#) sy for tuning
LAFF’s predictions on historical instance for tuning: list of triples of ranked values, pl, endorser decision
(rv, pl, endorsed) yyn,
Output: Dictionary of thresholds 6
1 6 «—empty dict;
2 List of targets targets «— getTargets(I'1 (t)une);

3 foreach target t; € targets do

4 tempy, <—empty dictionary;

5 for n=0to 1 (step 0.05) do

6 predictedAnomalyAll = predictAnomalyAllInstances(IH(t)mnei, (rv, pl, endorsed) yyne, n);
7 score = evaluate(I (%) tune;» predictAnomalyAll);

8 tempy,[n] = score;

9 end

10 0[i] = getBestScore(tempyy);
11 end

12 return 0;

determinant role. This step assumes that LAFF was executed on a set of historical instances for
tuning and that the LAFF predictions are available.

The basic idea is that, for a given dataset and target column, we try to detect anomalies in each
instance of the tuning data set by varying the anomaly detection threshold 6;. Then, for each
threshold, we measure the prediction accuracy on the tuning set instances. The threshold on which
LAFF-AD yields the highest accuracy is set as the target threshold.

The main steps of our threshold determination phase are shown in Algorithm 2. First, as inputs,
the algorithm takes the set of preprocessed historical instances for tuning TH (1) 1une and LAFF
predictions on these historical instances (rv, pl, endorsed) .

For each target t; in the list of targets extracted from I (¢) . (line 2), based on LAFF predictions,
we check the different tuning instances and analyze the existence of anomalies using the approach
explained in section 5.2 (line 6). For the purpose of anomaly detection, we try different thresholds,
ranging from 0 to 1 with steps equal to 0.05. For each threshold value, we compare predicted
anomalies with actual anomalies of the target ¢; in each input instance of " (t) tune; to calculate the
prediction accuracy (line 7). LAFF-AD selects the value of 0; that leads to the highest prediction
accuracy value for a target t; in I (t),y, as the value of its threshold (line 10). The algorithm ends
by returning a dictionary containing the thresholds of all targets.

6 EVALUATION

In this section, we report on the evaluation of our anomaly detection approach. We focus on

two aspects, effectiveness and efficiency, which we compare with SOTA approaches. Efficiency is

defined in terms of training and prediction time, to understand the suitability of an approach for

practical applications. Moreover, we investigate the ratio of non-conclusive instances determined

by LAFF-AD, and the impact of the Boolean flags used within the core LAFF-AD algorithm, as

well as the percentage of anomalous instances on the accuracy. More specifically, we evaluated

LAFF-AD by answering the following research questions (RQs):

RQ1 Can LAFF-AD accurately detect data anomalies on categorical columns and how does it compare
with existing anomaly detection approaches?

RQ2 Is the performance of LAFF-AD, in terms of training and prediction time, suitable for practical
applications and how does it compare with existing approaches?
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Table 1. Description of Datasets

# of # of # of Range of Ratio of
Dataset . . . .
columns instances categorical columns candidate values anomalous instances

NCBI-E 25 74105 5 3-84 n/a
U2R 7 60821 7 2-23 0.003
Probe 7 64759 7 2-47 0.064
CelebA 40 202599 40 2 0.022
Covertype 45 581012 45 2 0.004
Census 34 299285 34 2-47 0.062

RQ3 What is the ratio of non-conclusive instances for which LAFF-AD does not yield an anomaly
detection prediction?

RQ4 What is the impact of the Boolean flags used within the core LAFF-AD algorithm on its accuracy?

RQ5 What is the impact of the percentage of anomalous instances on the effectiveness of LAFF-AD?

6.1 Dataset and Settings

Datasets. Table 1 shows an overview of the datasets used in our evaluation, including the total
number of columns (# of columns), the number of instances (# of instances), the number of categor-
ical columns (# of categorical columns), the range of the number of possible values across these
columns (Range of candidate values), and the ratio of anomalous instances.

The first dataset is NCBI-E, which is a variation of the public dataset NCBI from the biomedical
domain. The original NCBI dataset contains data for different types of biological samples from
multiple species [5]. The main reason to use this dataset is that it was used to evaluate LAFF [7].
Similar to LAFF, we considered a sub-sample of the data related to the species “Homo Sapiens”. In
our evaluation, we created NCBI-E by removing the column ethnicity from the NCBI dataset, since
as shown in the existing study [7] only 15.6% of instances are non-empty in this column, which
leads to incorrect suggestions from LAFF.

The remaining datasets are from the publicly-available benchmark that is commonly used to
evaluate anomaly detection approaches for categorical columns [36]. The original benchmark has
12 datasets. Based on guidelines provided in our previous work [7], only the datasets with more
than 56 000 instances available for training were selected for our evaluation, since LAFF achieves
accurate suggestions only in this context: U2R, Prob, CelebA, Covertype, and Census. We therefore
excluded the remaining datasets: Bank (41188), AID (4279), W7A (49749), CMC (1473), APAS (12695),
Chess (28056), AD (3279), Solar (1066), and R10 (12897).

As shown in Table 1, the number of instances in these datasets varies from 60 821 (U2R) to
581012 (Covertype). These datasets feature at least 7 columns, with more than 5 being categorical.
The number of candidate values for these categorical columns varies significantly. For example,
in the NCBI-E dataset, categorical columns feature between 3 and 84 candidate values, whereas
the Covertype dataset contains only binary categorical columns. The ratio of anomalous instances
varies from 0.003 to 0.064.

Dataset preparation. For the NCBI-E dataset, we considered all the categorical columns as possible
targets. This dataset is not mainly designed to evaluate anomaly detection algorithms since anoma-
lous values are not labeled. To solve this issue, we adopted an anomaly injection strategy which
has been used to evaluate anomaly detection algorithms [1].
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Tariff Fixed Average Customer
Plan Fees  Consumption Segment
Standard 20 400 Residential
Standard 20 150 Residential Forbidden values: —
andar eoidentia « RN Values that can be injected:
— “Commercial”: Original - .
Renewable . . Candidate values — Forbidden values
50 850 Industrial 1 test set —
Energy value in test se . .
PR . = { Industrial, Non-profit organisa-
Time of Residential”: clean .
30 650 Commercial ) L tion }
Use value in training set
L Randomly inject one value
Training instances
Tariff Fixed Average Customer Tariff Fixed Average Customer
! . Anomaly
Plan Fees  Consumption Segment plan fees  consumption segment
Standard 20 400 Commercial Standard 20 400 Commerical — Industrial yes
Test instance Test instance with injected errors

Fig. 5. Error injection example

Following the methodology used by Das and Schneider [13], we injected synthetic anomalies in
the NCBI-E dataset by randomly flipping the values of a target column. Specifically, we partitioned
the NCBI-E dataset into three subsets of 80%, 10%, and 10% of instances, used for training, testing,
and tuning, respectively. For each target, we created a separate test set where we kept the values in
the feature columns the same and injected errors in the target column. We randomly selected a
value that is different from the original value in the target column from candidate values. We then
replaced the original value with the selected value to inject anomalies, and labeled the instance as
anomalous.

For the other datasets, as mentioned by Pang et al. [36], each dataset has one target column that
contains an anomalous value. Similar to NCBI-E, we split the datasets into three subsets containing
80%, 10%, and 10% of instances used respectively for training, testing, and tuning.

As suggested in different studies [22, 35, 47], and also visible in the last column of Table 1,
there is usually a small ratio of anomalous instances in real-world data. For example, the ratio of
anomalous instances used by Suri et al. [47] ranged from 10% to 16%. We followed the methodology
used by Ienco et al. [22], setting the ratio of anomalous instances to 10% of instances for the
NCBI-E dataset. For the other five benchmark datasets, which already contain different percentages
of manually labeled anomalous instances, we used the original datasets without changing their
percentage of anomalous instances. We analyze the impact of the percentage of anomalous instances
on the effectiveness of LAFF-AD as part of RQ5 (Section 6.6).

Dataset preparation Example of Application. Figure 5 show an example of our error injection process.
Let us consider the two tables on the left of the figure as the training (top left) and testing (bottom
left) sets. Following our running example, the columns “Tariff plan”, “Fixed fees”, and “Average
consumption” represent the features and the column “Customer segment” represents the target
(where we want to inject errors).

Given the training and test instances, we need first to determine the set of forbidden values that
should not be injected in the target column of the current test instance. This set should obviously
contain the values Commercial, representing the original value of the test instance. But since we
assume that the training set is clean, if there is any training instance with the same feature column
values, the value of the target column in this instance must also be part of the forbidden values.
For example, based on Figure 5, the value Residential should also not be injected to avoid having
instances that are considered clean during training but anomalous during testing. After determining
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forbidden values, the remaining candidate values for the target (i.e., “Industrial” and “Non-profit
organisation” in our example) can be injected into the test instance. In our example, we randomly
select the value “Industrial” to be injected. After injection, this instance is considered “Anomalous”
and we label it as such (i.e., filling ‘yes’ in the column Anomaly in the table on the right).

Implementation and Setting. LAFF-AD is implemented as a Python program. In order to run LAFF on
different datasets, we used its default configurations mentioned in [7]. We performed experiments
with a computer running macOS 10.15.5 with a 2.30 GHz Intel Core i9 processor with 32 GB memory.

6.2 Effectiveness (RQ1)

To answer RQ1, we analyzed anomaly detection with LAFF-AD for each of the targets in different
datasets. We compared LAFF-AD with iForest (Isolation Forest) [29], LOF (Local Outlier Factor) [10],
OCSVM (One Class SVM) [11], and EMAC-SCAN (Embedding-based coMplex vAlue Coupling
learning framework) [51]. These approaches are commonly used as baselines to evaluate categorical
data anomaly detection approaches [22, 37]. Moreover, there are publicly available replication
packages including their implementations.

LOF uses the distance between instances to detect data anomalies. Given a data instance, LOF
compares the distance between the instance and its nearest neighbors to assess density, which
measures how closely packed the data instances among those neighbors. A data instance is
considered an anomaly if it has a lower density value compared to its neighbors. In other
words, anomalous data instances are relatively far from local groups.

OCSVM uses the training instances to iteratively find a hyperplane that separates normal
instances from anomalies. In order to detect anomalous instances, OCSVM computes the
distance between new instances and the hyperplane. Instances with high distances are marked
as anomalous.

iForest builds an ensemble of decision trees over a given dataset. These decision trees are
used to detect anomalous instances based on the number of splits needed to separate data
instances. The intuition behind this algorithm is that anomalous data instances can be easily
separated from normal instances. Based on this intuition, iForest classifies instances with a
smaller average number of splits as anomalous.

EMAC-SCAN starts by embedding values of categorical features into continuous vectors by
employing a skip-gram architecture (i.e., node2vec). These vectors represents the relationships
between different categorical values. Then, the algorithm learns a coupling function that
assigns an anomaly score to each vector. The algorithm considers instances with an error
score higher than a certain threshold as anomalies.

We did not compare with other categorical data anomaly detection approaches such as WATCH [28]
and ROAD [46] since the corresponding articles do not include any link to a replication package;
moreover, we could not find any third-party implementation of these approaches on open-source
platforms (e.g., GitHub).

Effectiveness metrics. In order to select the evaluation metric, we checked around 25 papers included
in a recent survey [48] on anomaly detection algorithms for categorical data. We also checked other
recent papers citing these papers.

Table 2 presents a summary of our literature review. This table contains three columns, showing
the metrics, their description, and the number of papers using each metric. As shown in the
table, seven metrics have been commonly used. Precision, Recall, AUC (Area under Curve), and
ROC (Receiver Operator Characteristic) curve are the most used ones. AUC is based on the ROC
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Table 2. Main metrics used in the area of anomaly detection for categorical fields

Metric Description Cited papers

Precision The fraction of correctly detected anomalies among all the pre- 5
dicted anomalies [42].

Recall The fraction of correctly detected anomalies among all the anoma- 7
lous instances [42].

Accuracy The fraction of correctly predicted anomalies among the total 3
number of predictions. [42]

Number of de- The number of correctly detected anomalies. 2
tected anomalies

Fy-score The harmonic mean of precision and recall [4]. 1

ROC curve ROC plots the true positive rate and false positive rate of a classi- 4
fication model [21].

AUC The ability of a binary classifier to distinguish between classes; 9
it is used as a summary of the ROC curve [9].

curve, which is usually used to evaluate the performance of a classification model under different
thresholds. Therefore, we use precision, recall, Fi-score, and AUC as evaluation metrics.

Methodology. We assessed the accuracy of different algorithms using Precision (Prec), Recall
(Rec), Fi-score (F;), and AUC, which are computed from the confusion matrix summarizing the
classification outputs. The confusion matrix includes True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). In our context, TP are correctly classified as an anomaly,
FP are wrongly classified as an anomaly, TN are correctly predicted as not anomalous, and FN

are misclassified as not anomalous. Based on the confusion matrix, we have Prec = TPTFP and
_ TP 1
Rec = 75,7y

Precision is the ratio of correctly detected anomalies over all the values classified as anomalies.
Recall is the ratio of correctly predicted anomalies over all actual anomalies. High values of precision
and recall imply that an algorithm can correctly detect most anomalies. In the scenario of anomaly
detection, the main goal is to successfully detect all the anomalies in a dataset, while avoiding
predicting non-anomalous values as anomalies. In other words, our approach needs to have both
high precision and recall values.

To measure the overall accuracy, F;-score and AUC can be used. The F;-score is the harmonic
mean between precision and recall, i.e., F; = %. AUC is computed based on the area under
the ROC curve. ROC stands for Receiver Operating Characteristic and is the plot of the false positive
rate % against the true positive rate (i.e., Recall). AUC is distributed between zero and one.
The higher the value, the better the performance of an anomaly detection approach. A value of 0.5
indicates that the performance is roughly equal to random guessing.

Regarding the four baselines, OCSVM, LOF and iForest are used to detect anomalies in numerical
data [37]. To be able to run these algorithms on our categorical data, it is necessary to convert
categorical columns into numerical ones. One common conversion method used in categorical

anomaly detection is 1-of- [16]. This method converts a categorical column with [ candidate values

I'We note that LAFF-AD can label a data instance as “non-conclusive”; in this case, the instance does not belong to any class
of the confusion matrix. Therefore, we removed “non-conclusive” predictions when computing the confusion matrix.
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Table 3. Main parameters used in each anomaly detection approach

Alg. Parameter Dataset
NCBI-E U2R  Probe CelebA Covertype Census

LOF n_neighbors 130 10 20 130 10 20
contamination 0.01 0.01 0.01 0.01 0.01 0.01
Y 0.001 0.001 0.001 0.001 0.001 0.001

OCSVM nu 0.1 0.4 0.3 0.1 0.1 0.1
n_estimators 80 60 80 60 70 80

iForest contamination 0.01 0.01 0.01 0.01 0.01 0.01
max_samples 256 256 256 256 256 256

EMAC-SCAN n/a * * * * * *
LAFF-AD 0 0.10 0.10 0.70 0.10 0.75 0.10

to I binary columns representing each categorical value. Such a column can take the values “1” or
“0”, representing respectively if the categorical value associated with the column is selected or not.
Further, these algorithms have different parameters to set, which may affect their effectiveness.
Since the values of these parameters may vary from one dataset to another, in order to ensure a
fair comparison, we explored the settings used for these parameters in related works [11, 29, 50].
For each algorithm, if there is only one parameter value used in different papers, we consider it
as default value for this parameter. If a parameter was set with different values in related works,
we tune this parameter using grid search. The tuning follows this strategy: for each parameter we
explore a tuning range from the minimum to the maximum values reported in the literature in
steps of 10 or 0.1; for each algorithm we then use the parameter values with the highest accuracy
for a given dataset.

Table 3 lists the main parameters used for each anomaly detection approach, on each dataset.
For example, the threshold 6 of LAFF-AD was set, after the threshold tuning phase, to 0.10 on the
NCBI-E dataset. Since we used the implementation of LOF, OCSVM, and iForest provided by the
sklearn library, the name of parameters in the table follows the naming conventions of sklearn.
We note that the implementation of these techniques has numerous parameters in sklearn; for
instance, LOF contains parameters such as leaf_size, metric, and novelty. We only set the parameters
listed in Table 3, since they are frequently tuned in previous studies [11, 29, 50]; we did not specify
the values of other parameters, and relied on their default values. For EMAC-SCAN, we directly
used the publicly available replication package, which did not require to set any parameter.

Results. Table 4 shows the results of the various algorithms on the different datasets used in our
evaluation; the highest value of each evaluation metric on each dataset is set in bold. Column Alg
indicates the algorithm, while columns Prec, Rec, F;, and AUC indicate the precision, recall, F;-score,
and AUC values, respectively.

Starting with the results on the NCBI-E dataset where anomalies are randomly injected, LAFF-AD
outperforms baselines in terms of all four evaluation metrics, ranging from +59 pp to +64 pp for
Prec, +4.5 pp to +26.3 pp for Rec, +54.3 pp to +60.3 pp for F;-score, and +22.8 pp to +50.1 pp for
AUC. When we compare the recall value of LAFF-AD and LOF, both approaches have similar recall
value but LAFF-AD performs much better in terms of Prec (0.808 vs. 0.164).

Looking at the results on the benchmark datasets, LAFF-AD substantially outperforms the
baselines for the U2R, CelebA, Covertype, and Census datasets when we compare the F;-score
of these approaches. More in detail, LAFF-AD outperforms all the baselines on these datasets in
terms of precision by at least 43.8 pp; in terms of recall, LAFF-AD outperforms the other baselines
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Table 4. Anomaly Detection Effectiveness

Accuracy Train Predict (ms)
Alg.
Prec Rec Fy AUC (s) avg min-max
OCSVM 0.202 0.707 0.314 0.666 21 3 3-3
LOF 0.164 0.925 0.279 0.734 61177 33 27-57
NCBI-E iForest 0 0 0 0.461 264 36 30-64
EMAC-SCAN 0.213 0.828 0.339  0.651 0 1 0.767-2
LAFF-AD 0.808 0.970 0.882 0.962 1522 14.81 6-37
OCSVM 0.016 1 0.031 0.928 10585 5 4-9
LOF 0.384 0333 0.357 0.699 24813 0.6 8-13
U2R iForest 0.169 0.733  0.275 0.862 43 23 23-23
EMAC-SCAN  0.562 0.6 0.58 0.799 0 0.74 0.71-0.75
LAFF-AD 1 1 1 1 535 6 5-15
OCSVM 0.183 1 0.309  0.928 2136 3 3-3
LOF 0.770  0.241 0367 0.619 14330 7 7-7
Probe iForest 0.940 0.892 0.915 0.945 52 27 23-48
EMAC-SCAN 0.864 0.851 0.857 0.894 0 0.864  0.860-0.868
LAFF-AD 0.981 0.266 0.419 0.623 984 8 5-37
OCSVM 0.052 0.535 0.095 0.72 709 2 2-2
LOF 0.005 0.005 0.005 0.503 10359 10 9-14
CelebA iForest 0.134 0.153 0.143 0.572 204 18 17-22
EMAC-SCAN 0.112 0.295 0.162 0.663 0 21 18-25
LAFF-AD 1 1 1 1 6187 479 443-712
OCSVM 0.003 1 0.006 0.815 3085 2 2-2
LOF 0.107 0.085 0.095 0.542 9630 12 11-16
Covertype iForest 0.124 0554 0.203 0.773 643  21.172 20-25
EMAC-SCAN 0.036 0.973 0.069 0.600 0 95 93-97
LAFF-AD 1 0.570 0.726 0.782 4450 476 425-735
OCSVM 0.062 0.211 0.096 0.559 10916 5 5-5
LOF 0.008 0.002 0.003 0.497 18208 74 63-105
Census iForest 0.047 0.015 0.023 0.503 1504 30 24-38
EMAC-SCAN 0.054 0.649 0.100 0.676 0 74 74 - 80
LAFF-AD 0.970 0.928 0.949 0.961 6710 186 27-330

by at least 26 pp, except for the Covertype dataset where the recall of EMAC-SCAN is higher
than LAFF-AD by around 40 pp. In this last case, we remark that, even though the recall value of
EMAC-SCAN is very high compared to LAFF-AD, the precision value is very low (Prec=0.036).
This means EMAC-SCAN always predicts instances as anomalous. On the contrary, LAFF-AD can
accurately detect almost 60% of the anomalous instances with a precision equal to 1. Regarding
AUC, LAFF-AD outperforms the baselines on three out of the four datasets (i.e., U2R, CelebA, and
Census); on Covertype, the difference in terms of AUC value with respect to OCSVM is only 3.3 pp.
Looking at the results of the Probe dataset, we can notice that both baselines iForest and EMAC-
SCAN outperform LAFF-AD in terms of Rec by almost 60 pp. Also, these baselines provide accurate
suggestions with F1-score equal to 0.915 and 0.857 for iForest and EMAC-SCAN, respectively. We
analyze the reasons of the weak results of LAFF-AD on the Probe dataset in § 6.2.1 below.
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Table 5. Maximum Carmér’s V for different datasets

Dataset  Max Carmér’s V Column
U2R 0.664 Service
Probe 0.848 Flag, Service
CelebA 0.223 Att13
Covertype 0.275 Dim-17
Census 0.438 Att4

Comparing the results of the baselines between (Probe, U2R) and (Census, Covertype and CelebA),
we notice that the results of the baselines are very low for Census, Covertype and CelebA, especially
in terms of Prec. One possible reason can be the values of the parameters used in these baselines;
however, we have tried to use tuning to solve this problem. Besides, we believe that the high
number of columns in the dataset (34 and 45 columns) may be the reason of the low precision [26].
High-dimensional datasets (i.e., with high number of columns) are challenging ML algorithms [3].
High dimensionality can make it difficult for machine learning algorithms to learn information
from observed data, a problem referred to as the curse of dimensionality [43]. For example, the
Census dataset is composed of 34 categorical columns where the range of number of candidate
values varies from 2 to 47. As we mentioned before, we need to transform these columns to binary
columns in order to run our baselines. The number of columns in the transformed Census dataset
is equal to the sum of the number of candidate values of each categorical column in the dataset;
this value may affect the ability of our baselines.

The results in terms of Precision and Recall values achieved by LAFF-AD show that it can help
correctly (prec > 0.808) detecting a high ratio of data anomalies in different datasets with a recall
ranging from 0.570 to 1. The values of F;-score and AUC also confirm this conclusion.

6.2.1 Error analysis. As presented in Table 4, the recall value of LAFF-AD for the Probe dataset
is low compared to the results of LAFF-AD on other benchmark datasets. In order to understand
the reason, we checked the prediction details of LAFF-AD in Probe and found that all the missed
anomalies predicted by LAFF-AD have an anomaly score (as defined in § 5.2) of 0. This means that
the form filling tool LAFF predicts the anomalous values in the top first position of the ranked list
with a prediction confidence of 100%. Here the anomalous values represent values or dependencies
that seldom occur in the data. LAFF-AD cannot detect the anomaly because the anomalous values are
predicted in the top of the ranked list (leading to checkNotTop = False when executing Algorithm 1)
and with low anomaly score (leading to checkProb = False).

We further analyze the reason behind the high confidence of the prediction of the anomalous
values. To do so, we performed the Chi-square test [14] and use Carmér’s V [25] to compute the
association between all the features and the target class for each dataset. Carmér’s V is a typical
measurement to compute the association of two categorical columns.

The results of this test are presented in Table 5 where we show the maximum Carmér’s V value
and the name of columns having this value for each dataset. As shown in the table, the Probe
dataset contains two strongly dependent features (“flag” and “service”) with the target class where
both of them have a Carmér’s V equal to 0.844. However, for other datasets, there are no fields with
such strong dependencies to the target class. A strong association between two categorical columns
means that the value of one column depends on the value of another column [24]. Since we have
strong association between the “service” or “flag” column and the target class, the value of the
latter is related to the value of the former. LAFF is a form filling recommender system completely
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Table 6. Results on Probe variations

Prec  Rec Fq AUC

Probe 0981 0.266 0.419 0.623
Probe-S  0.935 0.295 0.448 0.630
Probe-F  0.857 0.215 0.344 0.607

Probe-SF 1 1 1 1

agnostic to anomaly detection; it learns the dependencies between the columns and use them to
perform prediction of the target class. In the Probe dataset, LAFF uses the dependencies between
“flag”, “service”, and the target class to perform prediction. Since these dependencies are strong (due
to the strong association), LAFF always returns a high confidence value for each prediction. This
occurs even if the predicted value turns out to be anomalous. Hence, during the anomaly detection
phase, the anomaly score is low, and the flag checkProb; in Algorithm 1 evaluates to false. As a
result, LAFF-AD is not able to detect these anomalies.

In order to check if the strong dependency between “service” and “flag” features and the target
class is the reason behind the inability of LAFF-AD to detect data anomalies (resulting in a low
recall value), we ran LAFF-AD on four variations of the Probe dataset. We created the following
datasets “Probe-S”, “Probe-F”, and “Probe-SF” representing the Probe dataset after removing the
“service” column, the “flag column”, and both of them from the dataset, respectively. The results
of this experiment are presented in Table 6, where we computed the precision, recall, F;-score,
and AUC of LAFF-AD on the four variations. As shown in the table, removing only one of the
columns “service” and “flag” does not affect the results of LAFF-AD. In fact, the results of LAFF-AD
on Probe-s and Probe-F are quite similar to those obtained on the original Probe dataset. For the
third variation, when we remove both columns, we can see that LAFF-AD can accurately detect
all the anomalous instances (i.e., achieving a recall value of 1) with a precision value equal to 1.
These results confirm our hypothesis that the strong association (dependency) with the “flag” and
“service” columns leads LAFF to learn rare behaviors and predict the anomalous class with high
confidence. This problem can be easily addressed during preprocessing, by removing columns that
have degree of association higher than a certain threshold [31].

The answer to RQ1 is that LAFF-AD performs better than SOTA baselines on five datasets out of six
used in our evaluation by at least 43.8 pp and 26 pp in terms of precision and recall, respectively. The
Fy-score and AUC of LAFF-AD are also higher than the baselines on the majority of datasets. LAFF-AD
can detect at least 26% of data anomalies with a precision above 0.8.

6.3 Performance (RQ2)

To answer RQ2, we measured the time needed to perform model training (considered as training
time) and the time needed to predict anomalies (considered as prediction time). Training time
reflects the feasibility of using LAFF-AD in contexts where the training set is regularly updated
with new instances. Prediction time indicates the ability of LAFF-AD to detect anomalies in a short
period of time, for example as new data is acquired.

Methodology. In this RQ, we followed the same settings as RQ1, where we compared the time
needed by LAFF-AD to train and predict with the same baselines that we used in RQ1. Training
time measures the time to learn from the training data in order to detect data anomalies. Prediction
time represents the average time needed by an algorithm to perform prediction for one suspicious

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2024.



Automated anomaly detection for categorical data by repurposing a form filling recommender system 1:21

instance. LAFF-AD’s prediction time is measured as the sum of the prediction time taken by LAFF
and the time taken by our anomaly detection algorithm.

Results. The results of this RQ are presented in the last two columns, Train and Predict, in Table 4.
The Train column reports the training time in seconds whereas the Predict column contains
two subcolumns indicating the average prediction time and the minimum/maximum time (in
milliseconds).

As expected, training time for an algorithm varies from one dataset to another. LOF has the
highest training time across datasets with a minimum of 9630 s. EMAC-SCAN and iForest are the
fastest algorithms: EMAC-SCAN does not require training while for iForest the training time is at
most 1504 s. As for LAFF-AD, the training time is less than 7000 s.

In terms of prediction time, LAFF-AD has the highest prediction time when compared to all
the baselines. As we mentioned before, LAFF-AD’s prediction time is the sum of the prediction
time taken by LAFF and the time taken by our anomaly detection algorithm. As shown in Table 4,
LAFF-AD takes on average at least 6 ms to perform prediction and at most 479 ms. The reason
behind the high prediction time for Covertype and CelebA is that the prediction relies on complex
BNs. The complexity of the BN is defined in terms of the number of nodes (one node corresponds
to one column) and the number of dependencies between different columns. As shown in Table 1,
Covertype and CelebA have the highest number of columns among datasets.

These results need to be interpreted in our context. The training for the anomaly detection
process is done offline and periodically. A training time of at most 7000 s is acceptable from a
practical standpoint. This training time allows LAFF-AD to be trained daily if needed, especially
when the training data is updated daily with thousands of instances.

Since anomaly detection is an offline process, a prediction time of at most 735 ms is fast enough. It
can even enable online anomaly detection during the form filling process. Indeed, human-computer
interaction standards [20] indicate that a seamless interaction between a user and a data entry form
can be ensured with a prediction time below 1 s. Since the prediction time proposed by LAFF-AD is
comparable with the results of LAFF [7], this further confirms the possibility of using LAFF-AD to
perform online data anomaly detection.

The answer to RQ2 is that the performance of LAFF-AD, with a training time below 7000 s (less than
2 hours) and a prediction time of at most 735 ms, is suitable for practical applications. The training
time of LAFF-AD usually lies between that of EMAC-SCAN and LOF. Concerning prediction time,
LAFF-AD has a higher time compared to baselines but the difference has no practical implications
since anomaly detection is an offline process.

6.4 Ratio of Non-Conclusive Prediction (RQ3)

The output of LAFF-AD is different from existing anomaly detection approaches, because LAFF-AD
includes a “non-conclusive” label, which indicates that LAFF-AD does not have enough information
to make an anomaly detection prediction on a data instance. Since it may affect the usability of
LAFF-AD in practical scenarios, this RQ investigates the ratio of non-conclusive predictions.

Methodology. We ran LAFF-AD on the testing instances of the six datasets used in our evaluation
and counted the number of instances labeled as “non-conclusive” by LAFF-AD. We then computed
the ratio p,. of non-conclusive instances in these datasets by dividing this number with the total
number of testing instances.

Results. As shown in Table 7, for four out of the six datasets, LAFF-AD did not label any testing
instance as “non-conclusive”. This means that LAFF-AD was able to perform the anomaly detection
task on all the data instances. For the Probe dataset, there was only one non-conclusive instance,
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Table 7. Ratio of non-conclusive predictions

Dataset # of Non-Conclusive  pp¢
NCBI-E 1058 0.174
U2ZR 0 0

Probe 1 0.00016
CelebA 0 0
Covertype 0 0
Census 0 0

resulting in p,. = 0.00016. However, the ratio of non-conclusive instances is relatively higher in the
NCBI-E dataset (pp. = 0.174), where LAFF-AD labeled 1058 instances as non-conclusive.

We believe the main reason behind this difference is the quality of the training sets. As discussed
in our previous work [8], NCBI is a public dataset where anyone can submit data using the
corresponding data entry form. Users do not follow any rule to submit data, potentially leading
to a low-quality dataset (e.g., with wrong or empty values). When training LAFF-AD on such a
dataset, LAFF-AD may not have enough knowledge to learn the pattern of normal data instances.
Consequently, during the anomaly detection phase, LAFF-AD labels many non-conclusive instances
to avoid providing misleading predictions. In contrast, the other five datasets used in this study are
commonly used to evaluate anomaly detection approaches [36]; these are high-quality datasets,
whose data have been manually examined and labeled. The number of non-conclusive instances
reported by LAFF-AD on such datasets can be expected to be negligible.

The inclusion of the non-conclusive label in LAFF-AD was influenced by our previous work [7],
in which we noted that users might be reluctant to use an automated tool if it provides many
inaccurate predictions. From a practical standpoint, when the ratio of non-conclusive instances is
low (as it is the case in most of the datasets considered in this work), users can manually check these
instances in practice. On the other hand, when LAFF-AD labels many non-conclusive instances on
a dataset (as it did in the case of the NCBI-E dataset), this can indicate a quality problem with the
dataset and makes the application of LAFF-AD less beneficial, though still useful. Other means to
analyze non-conclusive instances should be investigated in the future.

The answer to RQ3 is that, on five out of six datasets, LAFF-AD vyields only one non-conclusive
instance, leading to a negligible ratio of non-conclusive instances (0.00016) for one dataset. On the
NCBI-E dataset, due to the low quality of the data, the ratio of non-conclusive instances rises to 0.174.
We therefore expect LAFF-AD to be highly applicable in many practical situations.

6.5 Impact of Boolean Flags (RQ4)

LAFF-AD uses two Boolean flags, namely checkNotTop, and checkProb;, to determine whether an
endorsed (conclusive) data instance is an anomaly or not (see Algorithm 1). checkNotTop, indicates
whether the observed value in the suspicious data is not present in the top-ranked list; checkProb;
indicates whether the value of the anomalyScore of the suspicious data is higher than the anomaly
detection threshold. One could wonder whether these two flags are redundant. In this RQ, we assess
the impact of these two flags on the effectiveness of LAFF-AD.

Methodology. We measured the effectiveness of LAFF-AD considering two additional variants
representing alternative configurations of LAFF-AD: LAFF-AD;,, and LAFF-AD . LAFF-ADy,,
represents the configuration where only the checkNotTop, flag is used to detect data anomalies;
dually, LAFF-AD,,,; denotes the configuration where LAFF-AD only uses the checkProb; flag. We
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Table 8. Effectiveness of LAFF-AD with different Boolean flags

LAFF-ADyop LAFF-AD pop LAFF-AD

Dataset
Prec  Rec Fq AUC Prec Rec Fq AUC Prec Rec Fq AUC

NCBI-E 0.782 0970 0.866 0.960 0.512 0.996 0.676 0.886 0.808 0.970 0.882 0.962

U2R 1 1 1 1 1 1 1 1 1 1 1 1
Probe 0.867 0.287 0.431 0.633 0.896 0.354 0.507 0.676 0.981 0.266 0.419 0.623
CelebA 1 1 1 1 1 1 1 1 1 1 1 1

Covertype 0.294 0.676 0.423 0.704 1 0.570 0.726 0.782 1 0.570 0.726 0.782
Census 0.970 0.928 0.949 0.961 0970 0.928 0.949 0.961 0.970 0.928 0.949 0.961

run LAFF-AD and the two additional variants using the same settings and evaluation metrics as in
RQ1 to analyze the impact of these flags.

Results. As shown in Table 8, on the U2R, CelebA, and Census datasets, there is no difference in
terms of the four evaluation metrics when the different flags are used. This means that both flags
can be used to accurately identify data anomalies on the endorsed data instances. On the Covertype
dataset, checkProb; is more important than checkNotTop,, since the accuracy of LAFF-AD,,; is the
same as LAFF-AD (LAFF-ADy,, returns many false positives). On the NCBI-E and Probe datasets,
using both flags largely reduces the number of false positives in LAFF-AD. For example, on the NCBI-
E dataset, the precision values of LAFF-AD;,, and LAFF-AD,,; are 0.782 and 0.512, respectively;
after enabling both flags, LAFF-AD increases the precision to 0.808.

The impact of the two flags on the NCBI-E and Probe dataset can be explained by the charac-
teristics of the two datasets. On the one hand, the quality of the training sets for NCBI-E is poor,
since NCBI-E is a public dataset where anyone can submit data through the corresponding data
entry form without further data validation check (as shown in RQ3). On the other hand, there
are strong dependencies between the columns of Probe (as shown in RQ1). On such two datasets,
LAFF-AD may not have enough knowledge to correctly learn data anomaly patterns, leading to
similar probability values for different suggestions. In this case, both the position (i.e., checkNotTop,)
and probability (i.e., checkProb;) of the suggestions should be checked to avoid providing users
with many incorrect and misleading results.

The answer to RQ4 is that, the two flags can improve the overall accuracy of LAFF-AD. On the
NCBI-E and Probe datasets, using both flags together can reduce false positives. On other datasets,
using both flags has no impact; any of them can be used.

6.6 Impact of the Percentage of Anomalous Instances (RQ5)

To answer RQ5, we assess the impact of the percentage of injected anomalous instances on the
effectiveness of LAFF-AD. As discussed in Section 6.1, five out of the six benchmark datasets used in
this work (U2R, Probe, CelebA, Covertype, Census) contain manually labeled and verified anomalies
(see also Table 1). We did not vary the percentage of anomalous instances in these five datasets, as
there is no guidance (in the benchmark description) to automatically create additional anomalous
instances that follow the same data characteristics as the existing anomalies. Therefore, to answer
this RQ, we only considered the NCBI-E dataset, which does not contain any labeled anomalous
instance.

Methodology. We evaluated LAFF-AD by varying the percentage p of injected anomalous instances
from 1% to 20 % in the NCBI-E dataset, with a step of 5% (i.e., p = 1%, 5%, 10%, 15%, 20%). We
did not go beyond 20% since there is usually a small ratio of anomalous instances in real-world
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Fig. 6. Impact of the percentage (p = 1%, 5%, 10%, 15%, 20%) of anomalous instances on the effectiveness of
LAFF-AD

data [22, 35, 47]. For each dataset variant associated with a given percentage value, we adopted the
same settings as in RQ1 to assess the effectiveness of LAFF-AD.

Results. As shown in Figure 6, the percentage of injected anomalous instances affects the accuracy
of LAFF-AD. As p increases, the precision and F;-score of LAFF-AD also increase, stabilizing
after p > 10%. For example, the F-score is only 0.286 when p = 1% but increases to 0.882 when
p = 10%. On the other hand, the AUC values are almost stable, ranging from 0.941 (p = 5%) to
0.968 (p = 20%). The difference in trend between F;-score and AUC can be explained by the fact
that a small percentage of injected anomalous instances in the dataset (i.e., tuning set) makes it
difficult for LAFF-AD to find the best threshold for anomaly detection, thus resulting into many
false positives.

The answer to RQ5 is that the accuracy, in terms of F-score, increases when more anomalous
instances are present in a dataset, while the AUC remains stable.

6.7 Threats to Validity

The size of the training sets is a common threat to all machine learning-based approaches. LAFF-AD
is mainly designed to be used on datasets related to enterprise software systems, these datasets
usually contain enough data for training LAFF-AD. In addition, these systems are often updated
daily with thousands of new instances, which makes this limitation not particularly relevant.

To increase the generality of our results, LAFF-AD needs to be evaluated on different datasets
from different domains. To deal with this issue, we evaluated LAFF-AD using benchmark datasets
that have been previously used to evaluate anomaly detection approaches for categorical fields.
Moreover, we selected datasets from different domains (e.g., biomedical, security, and finance). As
shown in Table 1, these datasets also have different characteristics with respect to the number of
rows, columns, and the range of categorical data. Also, we tried to evaluate LAFF-AD on different
kinds of datasets, including datasets with synthetically-injected anomalies through our error
injection strategy (i.e., the NCBI-E dataset) and benchmark datasets with real anomalies.

The implementation of the baselines can be considered an external threat. To minimize this
threat, we used the official implementation of LOF and iForest in the sklearn library [38]. As for
EMAC-SCAN, we used the available implementation provided by Xu et al. [51]. All the scripts used
to get the results were double-checked by the first two authors of the article.

Another threat is the choice of parameter values of the baselines (i.e., iForest, OCSVM, and LOF).
The value of the parameters depends mainly on the dataset because some values can work with one
dataset but yield poor results on another dataset. In order to mitigate this threat, we checked the
literature to identify possible ranges of values for each parameter in these baselines. We performed
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parameter tuning using grid search to select optimal parameter values for each baseline on each
dataset.

6.8 Data Availability

The implementation of LAFF-AD, the different datasets, and the scripts used for the evaluation are
available at https://doi.org/10.6084/m9.figshare.24648387.

7 DISCUSSION
7.1 Usefulness

The main goal of LAFF-AD is to detect data anomalies in a suspicious data set. In order to evaluate
the anomaly detection ability of LAFF-AD, we applied it on 6 datasets from different domains
with varying characteristics, such as the number of rows and columns. Five out of six of these
datasets are commonly used to evaluate existing anomaly detection methods and one of them (i.e.,
“NCBI-E”) was used to evaluate LAFF, on which we build here.

Our results show that LAFF-AD outperforms different baselines on nearly all datasets (except
Probe, see section 6.2) with a recall value of at least 0.570 and a precision higher than 0.808. In the
context of anomaly detection, these results indicate that LAFF-AD can accurately detect at least
57% of the anomalous instances in the data, which is of practical significance. The high precision
(Prec > 0.808) also suggests a low number of false alarms). For some datasets (NCBI-E, Census,
U2R, and CelebA), very high Recall imply that LAFF-AD can detect almost all the anomalies.

Regarding performance, LAFF-AD performs training in less than 6710 s (less than 2 hours) and
has a prediction time of at most 735 ms. These results suggests we can deploy LAFF-AD during
the form-filling process as an additional step for data quality check. In other words, LAFF-AD can
be useful to check if the data filled by the user is correct in real time. Further, applying LAFF-AD
during the form-filling process can reduce the cost of fixing the detected anomalies [32] because it
can provide a list of suggested values directly to the user. Also, anomaly detection during form
filling can prevent error propagation, since if errors may affect subsequent decisions if they are not
quickly fixed [44].

7.2 Practical Implications

This subsection discusses the practical implications of LAFF-AD for different stakeholders: Data
quality engineers, researchers, and software developers.

7.2.1 Data quality engineers. LAFF-AD is a data anomaly detection approach that can be easily
used by data quality engineers. To be able to run LAFF-AD, data engineers need one training set
and one dataset with suspicious instances that need to be checked. LAFF-AD does not require data
engineers to tune any parameter. Another advantage of LAFF-AD is that it can prevent providing
data quality engineers with many misleading predictions by adding a “non-conclusive” label. This
could be useful in practice, since engineers might be reluctant to use such a tool if it provides many
inaccurate predictions.

7.2.2  Researchers. In this paper, we repurpose a form-filling recommender system to detect data
anomalies in categorical fields. To the best of our knowledge, our approach is the first approach that
uses the output and characteristics of an automated form-filling tool like LAFF for anomaly detection.
We speculate that our proposed solution can inspire researchers to use other recommender systems
to extend our approach, or to repurpose similar automated form-filling tools for similar tasks such
as anomaly detection for numerical fields.
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7.2.3  Software Developers. Thanks to its short prediction time, LAFF-AD can be used as a data
quality check step during the data entry process. After filling the fields in a form or a page, the
user can run LAFF-AD to check the filled value before submission. Since LAFF-AD is based on a
form-filling recommender system, LAFF-AD can be integrated as a stand-alone tool to perform
online anomaly detection. Similar to LAFF, deploying LAFF-AD needs only a mapping between
columns in the dataset and the data entry form fields. This mapping can be found in software
documentation such as the database schema and the description of the Ul widgets in the data entry
forms [7].

8 CONCLUSION

In this paper we have proposed LAFF-AD, an approach to automatically detect categorical data
anomalies. LAFF-AD runs an adaptation of a form filling approach (LAFF) to predict the value of a
suspicious categorical field in an input instance. LAFF-AD leverages the output of LAFF to detect
data anomaly with a heuristic-based anomaly detection module. We evaluated LAFF-AD using six
datasets with different characteristics. Experimental results show that LAFF-AD can accurately
detect a high range of data anomalies, with recall values between 0.6 and 1 and a precision value of
at least 0.808. Further, note that accuracy increases when more anomalous instances are present in a
dataset. The results also show that LAFF-AD is fast enough to be applied to detect data anomalies in
practice: LAFF-AD takes at most 7000 s and 735 ms to perform training and prediction, respectively.

As part of future work, we plan to conduct a study to analyze the impact of LAFF-AD on reducing
the time of manual data anomaly detection by users. We also plan to investigate the possibility
to deploy LAFF-AD during the form filling process as an online anomaly detection technique for
categorical fields.
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