
PhD-FSTM-2024-051
Faculty of Science, Technology and Communication

DISSERTATION

Defence held on July 26, 2024 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Aleksandar Matović
Born on 29th of March 1996 in Nikšić, Montenegro

CYBERSECURITY OF CRITICAL INFORMATION
INFRASTRUCTURE AND CONTROL:

APPLICATION-AWARE RESILIENCE MECHANISMS

Dissertation defence committee
Dr Marcus Völp, dissertation supervisor
Associate Professor, Université du Luxembourg

Dr Martina Maggio, Member
Professor, Lund University

Dr Gerhard Fohler, Member
Professor, Technische Universität Kaiserslautern-Landau

Dr Gilbert Fridgen, Chairman
Professor, Université du Luxembourg

Dr Gabriele Lenzini, Vice Chairman
Associate Professor, Université du Luxembourg

"Три сам земље прелазио,
и три горе прегазио,

и три мора препловио –
док га нисам уловио.

Плавог зеца,
чудног зеца,

јединог на свету!"

Душко Радовић, “Плави зец”

Хвала мом оцу, Жељку Матовићу,
на подршци у слободи избора.

Acknowledgements
It’s no exaggeration to say that reaching this stage has felt like navigating through
stormy seas, with relentless waves of challenges and moments when the shore
seemed impossibly far. Yet, as I write these words, I stand as proof that resilience
and determination have carried me through. However, this achievement is far from
mine alone. I am deeply grateful to those who believed in me, offering unwavering
support and guidance when I needed it most. Without them, I might still be
wandering, searching for direction.

First and foremost, I extend my sincerest gratitude to my professor and men-
tor, Marcus Völp. His vast knowledge and profound insights have shaped my
path, both academically and personally. His guidance consistently pushed me to
rethink complex problems, explore new ideas, and challenge my own limits. More
than that, anyone fortunate enough to be invited to one of dinner nights at his
home knows the genuine warmth and generosity he and his family extend. Those
evenings left a lasting impression on me, and for that, I am deeply grateful.

Just as a ship relies on both a skilled captain and strong sails to navigate
the vast ocean, my journey would not have reached its full potential without the
balanced guidance and encouragement of my co-supervisor, Rafal Graczyk. Our
countless discussions have been a truly character-building experience.

Throughout this journey, I was fortunate never to walk alone. Always by
my side was my dear friend (brat) Wassim Yahyaoui. From our daily walks and
deep conversations to shared adventures across Europe. Whether at parties or
during quiet moments over lunch, his companionship made every challenge more
meaningful. He helped me find beauty even in the toughest moments, which have
now become cherished memories.

Just as every great movie is elevated by the presence of an unforgettable Italian
character, I want to extend my gratitude to Federico Lucchetti, for his incredible
charisma and positivity he so generously shared. Our recitations of iconic movie
lines made some days so much better. So now, I’m taking this opportunity to
admit that I’m still wondering, ”how can a person buy a fish and not know what
kind it was?”1

I would like to thank all the past and present members of the CritiX research
group. Your daily conversations have added so much value to my experience. I’ve
also had the privilege of meeting so many amazing people in Luxembourg, I’m
deeply grateful for the unforgettable moments shared with Jovan Fodor, Amir
Strukan, Bogdan Paločević, Leo Fel, Stefan Marković, Adam Levai, and Paola
Reberšak.

1”What kind of fish?”, The Irishman (2019), dir. Martin Scorsese.

Yet, above all, my deepest gratitude belongs to my family. Starting with my
father, Željko Matović, whose intellectual conversations, wisdom, and guidance
have shaped me into the person I am today. Our countless talks, deep analyses, and
shared moments of reflection are gifts I will always treasure. Equally, my deepest
appreciation goes to my mother, Žana Matović, for her endless care, concern, and
tireless efforts over the years. I want her to know how much her dedication has
been recognized and how deeply I appreciate it.

To my younger brother, Vukan Matović, I owe deep thanks for his constant
support, curiosity, and the respect he always shows me. His readiness to engage
in my hours-long rants about society, success, and building character has been a
constant source of connection.

I am also grateful to my grandfather, Vukašin Matović, whose guidance from
an early age opened my eyes to what is possible in life. I feel that much of what I
pursue today follows the path he laid out. My grandmother, Aleksandra Matović,
continues to be a source of comfort, as memories of her often come to me in
moments when I need them the most.

I extend my gratitude to my uncle, Željko Cupara, whose unwavering belief in
me from a young age and constant positivity in the face of challenges have always
uplifted my spirit. I also deeply value the love and support of his family, as well as
my grandparents, Jagoš and Olga, whose enduring affection has given me lasting,
treasured memories. I am equally grateful to my aunt, Vesna Matović, whose love
and support have been with me from childhood, through my first summer job, and
remain constant to this very day.

To my closest friend, Marko Jovanović, I am deeply grateful for a lifetime of
friendship. We’ve walked thousands of kilometers together (literary), conceiving
and analyzing countless ideas. Your companionship has been a constant source of
support. I look forward to what’s ahead, knowing the best is yet to come.

Big thanks to two dear friends: Željko Janjić, for the memories we’ve shared
since the first day of our studies and everything that followed, and Rajan Sundić,
for his talks and support from the US. Finally, I would like to express my thanks
to my primary school teacher, Branka Nikolić, whose influence helped shape the
foundations of my education.

iii

Declaration
the work presented therein are my own. I confirm that:

• this work was done wholly or mainly while in candidature for the degree
Docteur de l’Université du Luxembourg;

• where any part of this thesis has previously been submitted for a degree or
any other qualification at this university or any other institution, this has
been clearly stated;

• where I have consulted the published works of others, these are clearly at-
tributed;

• where I have quoted from the works of others, the sources are always given;

• where the work presented in this thesis is based on work done by myself
jointly with others, I have clearly outlined what was done by others and
what I contributed;

• with the exception of such quotations, this is entively my own work; and

• I have acknowledged all main sources of help.

Signed:

Date:

iv

Abstract
In an era of growing cyber threats, where critical infrastructure such as power
grids, healthcare systems, and transportation networks are increasingly targeted
by sophisticated attacks, the urgency of designing resilient cyber-physical sys-
tems (CPS) has never been more pressing. Cyber-physical systems form the very
backbone of our modern society, and their disruption can have catastrophic con-
sequences, ranging from economic losses to threats to human life. Against this
background, this thesis addresses two fundamental challenges in the field of CPS:
firstly, enhancing resilience against a wide range of threats by leveraging appli-
cation knowledge to improve on the costs of resilience, ranging from accidental
system failures to carefully coordinated cyber-attacks, and secondly, ensuring the
adaptability of these systems in the face of dynamic and unpredictable operational
environments.

The first challenge addressed is the improvement of system resilience. We intro-
duce novel Consensual Resilient Control (CRC) method to systematically convert
stateful control tasks into statelessly recoverable ones, by leveraging consensually
updated shared state introduced in the thesis is central to this challenge. CRC
significantly improves the performance of control task replication by exploiting
the inherent stability of many systems to tolerate occasional missed control task
deadlines. This approach rejuvenates replicas within each control cycle, improving
system resilience and operational efficiency. This not only enables rapid recovery
but also significantly reduces the overheads associated with traditional replication
methods, particularly in environments prone to cold start effects. The effectiveness
of CRC is not just theoretical, but demonstrated through practical applications,
such as our implementation in the custom-built inverted pendulum system, which
demonstrates the robustness of the CRC in unpredictable environments and its
ability to efficiently maintain system resilience with fewer resources.

The second challenge is to ensure system adaptability in the face of changing
operational conditions. To this end, the thesis presents the AεGIS architecture, a
solution that seamlessly integrates dual control systems to optimise performance
while maintaining safety. The adaptive nature of AεGIS is particularly beneficial
in open environments where CPSs are exposed to a wide range of disturbances.
The architecture’s minimal switching overhead and its utility in complex tasks
such as environmental monitoring illustrate its practical importance in enhancing
system robustness.

v

Contents

Abstract v

1 Introduction 1
1.0.1 Acknowledgments of Contributions 6
1.0.2 Publications . 7
1.0.3 Thesis outline . 7

2 Background and Related Work 9
2.1 Critical information infrastructures (CII) 9
2.2 Cyber Physical Systems . 10
2.3 Evolution of Resilience: From Threats to Safeguards 12
2.4 Comprehensive Cybersecurity and Resilience Overview 13
2.5 Fault tolerance and recovery . 15

2.5.1 Byzantine fault tolerance . 17
2.6 Shared State . 18

3 From Instability to Reliability: Fault Tolerance in an Inverted Pendulum 19
3.1 Why the Inverted Pendulum: Key Considerations 19

3.1.1 Linear Time-Invariant System 20
3.1.2 System dynamics . 21

3.1.2.1 System assumption 21
3.1.2.2 State parameters 21

3.1.3 Linearization . 23
3.2 Choosing the control algorithm . 25

3.2.1 Linear Quadratic Regulator (LQR) 25
3.2.2 Proportional Integral Derivative (PID) 28

3.2.2.1 Tuning and Optimization 28
3.2.3 Comparing stateless and stateful control tasks 29

3.3 Custom made inverted pendulum 30
3.3.1 Final version of inverted pendulum 31

vi

4 Consensual Resilient Control 33
4.1 System and Fault Model . 35

4.1.1 Converting stateful replicas into statelessly-recoverable in-
stants . 40

4.1.2 Sensing and control-task invocation 42
4.1.2.1 Hosted environments 43
4.1.2.2 Bare metal . 45

4.1.3 Replicas execution time . 45
4.1.4 Voting on state updates and actuation 46
4.1.5 Bringing it all together . 49
4.1.6 Safe Deployment . 49
4.1.7 Distributed Control . 50

4.2 Evaluation . 51
4.2.1 Overhead . 52
4.2.2 Breakdown of Voting Overheads 53
4.2.3 Actuation Signals . 55
4.2.4 Rejuvenation costs . 57
4.2.5 Replicas Synchronization Costs 57

4.3 Checkpoint Recovery . 59

5 Aεgis: Dependable Simplex-Complex Control 61
5.0.1 The Simplex architecture . 61
5.0.2 Stability Considerations of Simplex and its Switching System 63
5.0.3 Dependability . 65
5.0.4 Problem Formulation . 66
5.0.5 Operational Mode Switching 67
5.0.6 AεGIS Control Architecture 68
5.0.7 Bare Metal AεGIS . 72
5.0.8 Safety Voter . 72
5.0.9 Practical Matters . 76

5.0.9.1 Timing of Simplex Control and Decision Module
Execution . 76

5.0.9.2 Preventing the Complex Subsystem from Equivo-
cating . 77

5.0.9.3 Loosely Coupled Systems 77
5.0.10 Summary . 77
5.0.11 Experimental Setup . 78
5.0.12 Ramp-up and Switching Overheads 79
5.0.13 Crazyflie Case Study - Performance evaluation 81
5.0.14 Voter Complexity . 84
5.0.15 Summary . 85

vii

6 Discussion: CRC + Aegis integration 86
6.1 Conceptual Integration . 86

7 Conclusions and Future Work 88

A Consensual Resilient Control API 90
A.0.1 Interactive User Menu . 90

A.1 API . 91
A.1.1 Control configuration . 91

A.1.1.1 uint8_t readEncoders() 91
A.1.1.2 uint8_t read_cart_encoder() 91
A.1.1.3 uint8_t read_penudulum_encoder() 92
A.1.1.4 reset_button() . 92
A.1.1.5 void cart_encoder_ISR_simplex(int gpio, int level,

uint32_t tick) . 93
A.1.1.6 void pendulum_encoder_ISR_simplex(int gpio, int

level, uint32_t tick) 93
A.1.1.7 static void toggle_lights(int yellow, int green, int

red) . 94
A.1.1.8 void cart_encoder_ISR_simplex(int gpio, int level,

uint32_t tick) . 94
A.1.1.9 void pendulum_encoder_ISR_simplex(int gpio, int

level, uint32_t tick) 95
A.1.1.10 static void turn_off_buttons() 95
A.1.1.11 void delayMicroseconds (unsigned int howLong) . . 96
A.1.1.12 static void turn_off_buttons() 96
A.1.1.13 void cancel_dep_encoder() 96
A.1.1.14 void initial_i2c_oled_sequence() 97
A.1.1.15 static void reset_button() 97
A.1.1.16 static void rotary_setup(uint8_t gpioA, uint8_t

gpioB, gpioISRFunc_t isr_f) 97
A.1.1.17 void pendulum_encoder_ISR_complex(int gpio, int

level, uint32_t tick) 98
A.1.1.18 void cart_encoder_ISR_complex(int gpio, int level,

uint32_t tick) . 98
A.1.1.19 static inline void debounce_reset(void) 99
A.1.1.20 static inline void buttons_debounce_magic(void) . 99
A.1.1.21 uint8_t read_dep_encoder()) 99
A.1.1.22 void dep_encoder(int dir)) 100

A.2 Replicas . 100
A.2.0.1 Class Replica . 100

viii

A.2.0.2 run() . 100
A.2.0.3 int generate_random() 101

A.3 Voter . 101
A.3.1 Class Voter . 101
A.3.2 init(unsigned long f, unsigned long n) 102
A.3.3 server_loop_voter() . 102
A.3.4 check_incoming() . 102

A.4 Message . 103
A.4.1 void propose(Message volatile * m, unsigned long op, un-

signed int epoch, T val, bool flag) 103
A.4.2 void propose_time(TimePassing volatile * tp, int start_time))103

A.5 Hardware configuration . 104
A.5.1 static void motor_setup() 104

ix

List of Figures

2.1 Depicting the Evolution from Threats to Safeguards 13
2.2 Source: Adopted from Jay Lala Autonomous Panel DSN19 14
2.3 Example of replication without the presence of error 16

3.1 Parameters that govern the pendulum’s equations of motion. 22
3.2 State feedback control . 25
3.3 Early Prototype and Preliminary PCB Layout 31
3.4 Final version with integrated parts 32

4.1 High-level overview of the Consensual Resilient Control architecture 33
4.2 Example illustrating how f + 1 agreement can be achieved despite

replicas failing. Shown is a scenario with f = 1 and n = k =
f + 1 = 2 over three epochs. In the first, correct replicas agree.
In the second epoch, no agreement can be reached due to replica
R1 failing. In epoch 3, the voter is able to collect f + 1 matching
proposals after R1 rejuvenates, even if this time R2 fails. 34

4.3 Replicated control architecture. Control task replicas sense the
plant and have read-only access to shared state. They propose an
actuation signal and state update, which the voter applies after
reaching consensus. 36

4.4 Address space layout of a control task replica. Shared state, code,
and data are mapped read-only into the address space. Dashed
lines indicate the data flow for variables in the consensually updated
shared memory. Upon the first write, a copy is created on the stack
and finally proposed to update the state after reaching a consensus.
After reset, the instruction pointer (IP) is reset to the control loop
function (fn_ctl) and the stack pointer (SP) to the beginning of the
stack. 42

4.5 Interrupt handler for decoding rotary controller interrupts from the
rotary encoder sensors of our pendulum into angular values (See
also the pendulum in Section 3). 43

x

4.6 Ring buffer data structure used to refer back to previous plant states
in case the previous epoch was not successful. 44

4.7 Controller function fn_ctl . 44
4.8 Layout of one of the voter buffers. The size s of the proposal and

its inner structure in the form of m address, size, value triples are
stored consecutively for easier comparisson. 46

4.9 Voter internal structure. The voter provides one buffer per replica
and epoch, which the replica can access through a channel. The
proposal communicated through the channel is copies into the cor-
responding buffer of this replica for the current epoch. The voter
reveals as well the current epoch and the last epoch where f + 1
agreement could be reached and allows k, f and n to be reconfigured
by a trusted replica manager (if necessary). 48

4.10 Overhead of consensual resilient control (in µs) broken down into
the overhead on the replica side to propose the actuation value and
update of the state that should be preserved for the next epoch and
into the voter overhead of applying this update and the actuation
signal. Shown is the scenario for f = 1, n = 2. 53

4.11 Voting overhead for the constant invocation of T = 25ms. 54
4.12 Continuous PWM signal generation in static rotary encoder chan-

nels: enhancing motor readiness for improved stability 55
4.13 Sensor and actuation signals of the pendulum were evaluated us-

ing a logic analyzer. Shown are the points in time of actuation
(vertical lines) for three epochs (marked on the top as 4, 5 and 6).
The individual channels show DC motor actuation (1), encoded as
a pulse-width modulated signal, the two channels of the rotary en-
coder which measures the angle of the pendulum (2) and (3), as
well as the two channels measuring the position (4) and (5). 56

4.14 Cost of synhconization for the voter 58
4.15 Synchronization cost with the respect of the scaling replicas 59

5.1 Simplex architecture, adopted from [Sha01]. A complex, high-performance,
controller operates the plant in normal situations, while a simple,
high-assurance controller guarantees safety. A decision module im-
plements the switch between both for optimizing the control perfor-
mance (complex controller) while maintaining safety (simplex con-
troller). 62

xi

5.2 Schematic representation of the AεGIS featuring a complex subsys-
tem to generate best-effort, high-performance control signals uCk+1

and a simplex subsystem to either guarante e the safety of the pro-
posed signal or calculate a corrected, safe control signal uk+1 to be
passed to the plant P . 68

5.3 The complex subsystem is comprised of multiple complex controllers
CCi that are optimized for varying operational envelops. The per-
formance manager implements a complex-to-complex switch by ac-
tivating the complex controller matching the current operational
envelop best. 68

5.4 The simplex subsystem receives the best-effort control signal uCk+1

from the complex subsystem as well as current sensor observations
yk. These inputs are passed to the currently active simplex con-
troller that is replicated n = 2f + 1 times in its replication group.
The safety voter consolidates the control signals proposed by the
replicas into a single control signal uk+1 that is passed to the plant
P and decides about the switching between simplex controllers, that
is, executing the simplex-to-simplex switch. 69

5.5 The simplex controller implements the high-assurance simplex al-
gorithm CSi

and guarantees safety of the calculated control signal
USk+1

using the decision module D. It implement the Simplex ar-
chitecture as proposed by Sha [Sha01] and therefore provides the
complex-to-simplex and simplex-to-complex switches. They are de-
noted Complex-Simplex Switch in the figure for simplicity. 70

xii

5.6 Trusted hardware voter for consolidating proposals of safe control
actions uSik+1 from the currently active replica group Si into a sin-
gle control signal uk+1. Replicas obtain access to a channel through
which they propose the control action, but also changes to the ac-
tivation vector ~av and possibly also the fault threshold f in case
the Simplex Manager seeks to change the replica group as part of a
simplex-simplex switch. Otherwise, they repeat the previous value.
A monotonic sequence number seq ensures that the voter only con-
siders current vote and prevents faulty replicas from reaching agree-
ment with lagging replicas on outdated control signals. The voter
seeks agreement among f + 1 out of the n = 2f + 1 replicas of the
current replica group, ignoring the proposals of all those replicas
that may already have access to a channel (due to their ramp-up
process), but to which the Simplex Manager did not yet switch.
Once agreement is reached, the voter increments seq , updates f
and ~av and provides the plant’s actuators with the control action
uk+1. 73

5.7 Simplex-simplex switch. After the replica group for the new simplex
controller is ramped up. The current simplex controller votes on
changing av to relinquish its responsibility and put the new replica
group in charge. 75

5.8 Scheduling options for complex, simplex and the decision module.
Shown is the tradeoff between granting the complex subsystem less
time to safe resources and execute the simplex controller only after
the decision module found the complex control output unsafe (left)
and of executing the simplex controller in parallel to the complex
subsystem, deciding upon and selecting the result only after both
finished (right). The latter allows granting more time to the com-
plex subsystem, since, after it completes, only the decision module
must execute before the end of the control period. 76

5.9 Cost of handing over control and for voting on the control signal,
broken down into the decision module costs (DM) and replica-to-
voter synchronization costs (SYNC), as well as for our software-
implementation of the voter the time to propose (PROP) and to
check for agreement (AGREE) in the voter. 80

5.10 Simplex PID Controllers in Wind and No-Wind environments. . . . 81
5.11 Analyzing the performance of the optimized simplex controllers

within the AεGIS architecture. We observe the combination of both
optimized controllers outperforms single PID controller optimized
for both environments. 83

xiii

A.1 User menu for the options . 92

xiv

Chapter 1

Introduction

At a time when the backbone of our society - critical infrastructures such as power
grids, healthcare systems and transport networks - are increasingly interconnected
with digital technologies, the concept of Cyber-Physical Systems (CPS) has be-
come central to our daily lives [BG11]; [MSF16].These systems are essential to
maintaining the rhythm of modern society. Yet, their critical nature, complex-
ity, and extensive interconnectivity render them vulnerable to an array of security
threats and challenges. Inherent system faults, such as hardware failures and soft-
ware bugs, can disrupt their seamless operation, leading to cascading effects across
interconnected services and infrastructures. There are many reasons why failures
can occur. In addition to faults inherent in their design, which are covered by
existing standards such as ISO 26262 [Sta18] and DO-178B [Joh+98], the growing
dependence on digital technologies has made CPS vulnerable to advanced cyber-
attacks. These attacks exploit system vulnerabilities and take advantage of the
interconnected nature of CPS, causing severe damage. For instance, malware can
target the control systems of electric grids, while ransomware can attack hospital
networks. The current threat landscape is diverse and constantly evolving.

Historically, safety-critical systems were structured as isolated entities, built
using components with predictable behavior and implementing fault tolerance
strategies like triple-modular redundancy (TMR)[LV62], with the time-triggered
architecture (TTA) [KB03] being a notable implementation. Current standards
recommend adding redundancy to critical components to enhance their reliability
and ability to tolerate faults. The formula for determining the necessary number
of redundant replicas, n = 2f + 1, is based on the number of faults, f that the
system is designed to withstand in synchronous environments. For example, the
Boeing 777 flight control system effectively implements triple modular redundancy
to ensure hardware reliability [Yeh95]. Provided they are not defective, redundant
components should produce identical (or nearly identical) outputs, like control sig-
nals, for the same inputs, such as sensor signals. This principle allows the use of

1

majority voting to agree on correct results, concealing up to f faults by ensuring
that the majority of outputs can determine the accurate response.

Correia et al. [CNV13a] and Verissimo et al. [PNM03] have shown that it is
possible for systems to achieve consensus even in the presence of security breaches.
However, CPS typically depend on monitoring tools to supervise communication
and identify intrusions, often lacking the ability to withstand attacks, especially
those that go undetected. These monitoring tools use different strategies, like
anomaly detection and signature-based methods, to spot abnormal behaviors that
could indicate a security breach [Nwe21]; [Han+14]. Fault and intrusion detection,
paired with a mechanism to recover and re-execute faulty tasks (see, e.g., Zou
et al. [ZCJ16]), as well as fault-masking through voting has been proposed as
application-agnostic techniques to mitigate accidental and intentionally-induced
malicious faults.

However, these techniques come at high costs, in particular, due to cold-start
effects when running recovered tasks from their initial state or from a checkpoint.
As control systems become more complex, we observe recovery effects become
more prominent. For example, stopping and restarting (from its initial state) the
perception module of an autonomous driving stack may well lead to cold-start
effects that require the vehicle to stop for several seconds before environmental
perception gets restored1.

As a first contibution we address the performance problems of recovering tasks
from a cold state to allow them to rejuvenate each time the control task is in-
voked. We utilize this possibility to rejuvenate to operate control with a quorum
that is just large enough to detect faults. We then leverage recent results from
Maggio et al. [Mag+20] and Vreman et al. [VCM21], which state conditions under
which a controlled system can tolerate missing up to m subsequent actuations, to
reach consensus over time. More precisely, in case the detection quorum is not
able to reach consensus immediately (which is the case if a fault manifests in a
disagreement of votes), we rejuvenate and re-execute control task replicas in the
subsequent control periods — which we call epochs. Rejuvenated tasks re-execute
the original problem (i.e., sensor inputs and state) to collect over up to k epochs
the matching proposals we need to reach consensus. We do so while ensuring k is
bounded from above by the missable deadlines (i.e., k ≤ m).

More precisely, Maggio et al. [Mag+20] identified an inherent stability of many
plants that allows them to tolerate several deadline misses in a row without los-
ing said stability, provided no wrong actuator signal reaches the plant. Vreman
et al. [VCM21], further found that an even larger number of deadline misses can
be tolerated, provided the controller enters a subsequent no-miss phase in which
deadlines can be guaranteed to be met. Whereas the first result allows operat-

1Observation from injecting crash faults into Apollo’s perception system [Fan+18].

2

ing the controller just with a detection quorum, reaching an agreement over time,
the latter gives rise to adjust the system’s resilience by switching from a detec-
tion to a masking quorum, by adjusting its resilience to adapt to more critical
failures [Sil+21] or by engaging in more elaborate recovery actions.

The prerequisite for applying any of these techniques is the system’s ability
to recover faulty replicas extremely fast to allow rejuvenating them after each
invocation. Naive recovery would require creating a new instance of the control
task, bringing it up to speed with the state of its peers (e.g., by resuming it from
a checkpoint and by replaying previous requests), and configuring its privileges to
participate in the consensus decisions instead of the faulty task it replaces. The
costs of these operations are high and challenging to bind from above.

In other words, such a recovery method is not suitable to be applied in between
any two invocations of the control task. Imagine instead the task would be stateless
in the sense of observing all required information by reading out the plant’s sensors.
It would need to maintain no other state from one invocation to another. Then,
rejuvenation would amount to a trivial reset of the task, its control flow and
stack to the beginning of its control loop. Unfortunately, most control tasks are
not stateless and even seemingly stateless control algorithms, such as the Linear
Quadratic Regulator (LQR), may become stateful in case, not all values can be
directly observed from the plant.

To demonstrate how stateful tasks can be systematically transformed into in-
stances that can be recovered like stateless ones we present the Consensual Re-
silient Control (CRC) approach. This way, recovery becomes fast enough to be
executed before every invocation. We show how consensual memory [GVE22] helps
protect any state that needs to be maintained across control-task invocations.

CRC is designed to enhance the resilience of control systems by effectively
masking up to f accidental faults, as well as certain maliciously-induced faults,
during each control period, referred to as an epoch. The method relies on trans-
forming stateful control tasks into versions that can be recovered in a stateless
manner, allowing for replication with a minimal detection quorum of n = f + 1
replicas. The system is designed to switch between the current and previous states
of the plant, allowing for consensus-building when agreement cannot be reached
in a single epoch. A trusted voter is central to our system, which is optimized for
hardware or possible FPGA implementations, and aims to achieve a zero-defect
target. The voter is critical in both activating the plant after an agreement is
reached and storing essential data in consensual memory for subsequent control-
task invocations.

As the openness of the operational environments for CPS expands, the model
of the system’s foundational workflow may need to change. This requires the sys-
tem to be functionally adaptable to adjust to varying environmental conditions

3

and non-functionally adaptable to maintain resilience against disturbances. Such
adaptability might conflict with the assumptions made by monitoring tools regard-
ing cyberattacks, especially if these tools rely on a static model of the system’s
workflow. To support functional adaptation, control architectures often include a
set of controllers and switches between them during normal operation. For exam-
ple, an aircraft may include separate controllers for taxiing, take-off, flight, and
landing. Taxiing takes the aircraft to the runway. Take-off brings the aircraft
quickly to the cruising altitude, stabilizing the plane and rejecting disturbances
due to variable winds. Flight adjusts the trajectory to avoid bad weather, main-
tains altitude, and optimizes fuel consumption. Finally, landing uses beacons to
align the airplane to the runway and minimizes the aircraft’s touch-down force.

Orthogonal to these functional adaptations, varying disturbances caused by
open environments require adaptation to achieve robustness. For example, switch-
ing between linear and non-linear versions of active disturbance rejection control
can leverage the advantages of both methods [Li+16]. Similarly, control param-
eters and control goals may be adapted with respect to the type and magnitude
of detected disturbances [Bra+14]. Balancing and incorporating the requirements
of adaptability in functionality and robustness, resiliency to cyberattacks, and
redundancy-based fault-tolerance for safety and dependability is challenged be-
yond the state-of-the-art, in particular when deploying CPS in open environments,
tasking them with complex missions. Mirco- and macro logistics in urban and rural
areas, environmental monitoring, as well as search and rescue will greatly benefit
from autonomous CPS.

The required attributes have to be taken into account right from the design of
the control architecture. To address the above attributes more deeply we present
AεGIS a control architecture that leverages redundancy for fault and intrusion
tolerance while requiring only a single, trusted component — the Safety Voter —
which we design to be simplistic in functionality and implementable in hardware, to
bring it to a zero-defect target. Building up on this central element, our approach
facilitates the seamless adjustment of functionality and enhancement of robustness
securely and reliably. Simultaneously, it strengthens the system against malicious
cyberattacks, particularly those designed to disrupt services, manipulate controller
outputs, or tamper with control periodicity. We take into account the listed at-
tributes to arrive at an effective architecture that we evaluate by simulating a
quad-copter.

This thesis addresses the urgent need to improve the resilience and adaptability
of CPS in a world where threats are not only diverse but also unpredictable. By
exploring innovative strategies and technologies, this research aims to strengthen
these systems against disruptions that can have catastrophic consequences, ranging
from significant economic losses to threats to human safety [CAS08]; [Alu15].

4

The focus of this thesis is twofold: first, it seeks to strengthen the resilience
of CPS against a range of threats, ensuring that they can withstand and recover
from adverse events. This involves exploring advanced methodologies such as fault-
tolerant design, real-time threat detection and automated response mechanisms.
Secondly, the thesis emphasises the critical need for adaptability in CPS. In rapidly
evolving operational environments, these systems must be able to adapt to new
challenges and conditions, requiring the integration of adaptive algorithms and
flexible architectures. Through this dual focus, the thesis aims to make a significant
contribution to the development of CPS that are not only robust in the face of
existing threats, but are also equipped to adapt to the unforeseen challenges of
tomorrow.

5

1.0.1 Acknowledgments of Contributions
• Gelmar Luiz DA COSTA contributions to the thesis included quantifying the

complexity of the voter and implementing it on an FPGA (Section 5.0.14).
He implemented the voter in VHDL, demonstrated it with 148 lines of code,
and synthesised it for an UltraScale+ ZU9EG-1E MPSoC FPGA. His work
provided a clear view of the resource requirements and performance implica-
tions of the voter, and demonstrated its feasibility and minimal complexity,
which is essential to ensure the reliability of the trusted device.

• Georg Jäger - contributed to the thesis by evaluating and optimising the
performance aspects of the Crazyflie flight control system (Section 5.0.13).
He focused on quantifying the performance impact of the decision module
and demonstrated the benefits of fine-tuning different controllers within the
AGIS architecture. His work highlights that the decision module incurs most
of the overhead, while replication of the simplex subsystem adds minimal cost
on modern multi-core systems

• Martina Maggio: Chapters 4 and 5 build upon the stability analysis by
Maggio et al. [Mag+20], which I repeat in Section 4.1.1 and Section 5.0.2 for
the thesis to be self-contained. Her work was fundamental in understanding
the conditions under which a controlled system can tolerate missing up to m
subsequent actuations, providing a crucial foundation for the development
of Consensual Resilient Control (CRC) and the AGIS architecture

6

1.0.2 Publications
1. Accepted:

• Consensual Resilience Control: Aleksandar Matovic, Rafal Graczyk,
Federico Lucchetti, and Marcus Völp at 35th Euromicro Conference on
Real-Time Systems (ECRTS 2023)

2. Ongoing:

• Aegis: Dependable Simplex-Complex Architecture: Aleksandar Ma-
tovic, Georg Jäger, Gelmar Luiz da Costa, José Cecílio, Antonio Casimiro,
Martina Maggio, Marcus Völp

• CRC + Aegis (Journal version): Aleksandar Matovic, Georg Jäger,
Gelmar Luiz da Costa, José Cecílio, Antonio Casimiro, Martina Maggio,
Marcus Völp

1.0.3 Thesis outline
• Chapter 2: This section provides the foundation and rationale for this thesis

by first presenting the core concepts and previous studies that support our
research.

• Chapter 3: This chapter introduces the basic concepts of proportional (P),
integral (I) and derivative (D) control components and their role in system
stability. The chapter details the step-by-step of the LQR equations, includ-
ing linearisation of the system, formulation of the state space model and
calculation of the feedback gain matrix. It also compares LQR with stateful
PID controllers, emphasising the need for state information even in seem-
ingly stateless systems. Finally, it describes the design, development and
final version of a custom-built inverted pendulum system, demonstrating
the practical application of the control theories discussed.

• Chapter 4: This section introduces our Consensual Resilient Control (CRC)
approach. The core of the system is a control algorithm that processes inputs
from the plant to generate control signals. To ensure fault tolerance, multiple
replicas of the control algorithm are maintained, with a voter aggregating
their outputs based on majority consensus. The framework includes fault
injection mechanisms to test resilience and recovery mechanisms to reset the
replicas between control cycles. This approach can tolerate up to f faults
with n f + 1 replicas, ensuring robust and reliable control.

7

• Chapter 5: This chapter introduces our AGIS approach, designed for adapt-
able and resilient systems in dynamic environments. AGIS combines a com-
plex controller for performance and a simple controller for safety, managed
by a decision module. Our approach enhances adaptability with complex-to-
complex and simplex-to-simplex switches. It ensures fault tolerance through
redundancy with replication groups and a safety voter, maintaining robust
and secure control.

• Chapter 6: discusses integrating the solutions presented by Chapters 3 and
4

• Chapter 7: In conclusion, this thesis presents a detailed overview of the
challenges encountered and the outcomes of our research. We analyze the
implications and potential impact of our work

8

Chapter 2

Background and Related Work

This chapter reviews the foundational literature relevant to this thesis, focusing
on several critical areas: Critical Information Infrastructure (CII), Cyber-Physical
Systems (CPS), resilience evolution, common attacks on CPS, fault tolerance and
recovery, and Byzantine Fault Tolerance (BFT). Each section summarises the main
contributions and highlights key findings.

2.1 Critical information infrastructures (CII)
The concept of Critical Information Infrastructures (CII) has developed with the
rise of digital technology and the Internet. Initially, concerns were focused on phys-
ical security and hardware protection. However, as societies became more reliant
on information systems for daily operations, the scope expanded to include cyber
security threats, data integrity and the continuity of digital services [HM19]. The
formalization of CII protection strategies in the late 20th and early 21st centuries
was a response to the recognition of cyber threats to national and international
security [Ass08]. CII systems, networks, and assets are indispensable to the secu-
rity, economic well-being, and public health and safety of a society. They include
sectors such as telecommunications [ORe+06], energy [Wil14], finance [Ang+12],
health services [HM19], and government services [Abe06]. The importance of CIIs
is not limited to their services but also extends to the crucial role they play in the
operation of other critical infrastructures, highlighting the need for their resilience
and security to be of the highest priority.

The complexity and scale of cybersecurity threats have necessitated a shift in
focus to include the integrity of data, the confidentiality of information, and the
availability of digital services. These threats encompass a wide array of malicious
activities, such as hacking, malware, ransomware attacks, and other forms of cyber
espionage and sabotage [Cav07]; [Rud13]. The interconnectivity brought by the

9

Internet means that vulnerabilities in one part of the network can have cascading
effects, potentially disrupting critical services on a global scale [EV10].

The significance of CIIs extends beyond the individual services they provide
to the crucial role they play in supporting the operation of other critical infras-
tructures. For instance, the reliability of the energy sector is fundamental to the
functionality of telecommunications, healthcare, and transportation systems. This
interdependence means that a failure in one sector can have ripple effects across
others, illustrating the necessity for a holistic approach to CII protection [LHS15].

2.2 Cyber Physical Systems
Cyber-Physical Systems (CPS) are real-time systems that are often essential for
safety. They engage with their environment by monitoring, through either built-
in sensors or external sources like remote sensing technologies [Cas+19]. This
interaction allows them to determine and execute control actions through their
actuators. Any disruption in their service can lead to improper control actions,
posing significant risks to the safety of their environment.

There are multiple reasons why failures may occur. In addition to faults
inherent in their design, which are covered by existing standards such as ISO
26262 [Sta18] and DO-178B [HB07], the enhanced connectivity of CPS exposes
them to cyberattacks and disruptions from their operating environments. Various
studies have investigated attacks on CPSs, including sensor [Su18], GPS spoofing
[Tip+11]; [Hum+08], and AI-related attacks [Gue+22].

While these aspects are critical to the system’s reliability and safety, they are
often dealt with separately. This approach leads to designs that may still leave
the systems susceptible to various other causes of failure.

The integration of real-time systems and control theory in (CPS) has been
a critical research area due to the necessity of maintaining precise and timely
responses within these systems [KS22]. Real-time control involves ensuring that
the computational processes can interact with the physical components within
strict timing constraints, thereby maintaining system stability and performance
[BA07].

The convergence of the Internet of Things (IoT) with CPS represents a evo-
lution in the capabilities and functionalities of CPS [ASR22]. IoT integration
involves embedding sensors, actuators, and communication devices into physical
objects, enabling them to collect and exchange data over the internet [Khu+21].
This interconnected network allows for real-time monitoring, control, and opti-
mization of CPS operations. For instance, in smart cities, IoT-enabled CPS can
manage traffic flow, monitor environmental conditions, and optimize energy con-
sumption [KRM17]; [Moh+21]. In industrial settings, the integration of the Inter-

10

net of Things (IoT) enhances predictive maintenance, supply chain management,
and operational efficiency [HS20]. The application of artificial intelligence (AI) and
machine learning in CPS represents a paradigm shift in the field [FP18]. These
technologies enable CPS to learn from data, adapt to new conditions, and op-
timise performance autonomously [Rad+21]; [Lv+21]. Key applications include
predictive maintenance, where AI analyses sensor data to predict equipment fail-
ures and reduce downtime, and anomaly detection, where AI identifies deviations
from normal behaviour to flag potential security threats or malfunctions.

CPS is also of importance in healthcare, where it is a fast-growing area with
significant potential for improving remote monitoring and patient care systems
[HAR14]. The application of CPS in healthcare includes advances in diagnosis,
treatment and monitoring, leading to more efficient and personalised care [TA22];
[SAM22]. These systems enable continuous patient monitoring, real-time data
analysis and timely medical intervention, which are critical for managing chronic
diseases and improving overall patient outcomes.

In power systems, CPS is vital to the development of smart grids. These sys-
tems integrate traditional power grids with digital communication technologies and
advanced computing [Yoh+20]. CPS enables control and optimisation of energy
distribution, improving the efficiency and reliability of power supply [Dib+19].
The integration of CPS in smart grids allows for better management of renewable
energy sources, load balancing and rapid response to faults or outages, ultimately
leading to more sustainable and resilient energy infrastructures [JR18].

In the field of autonomous vehicles and robotics, CPS is crucial for integrating
sensors, developing control algorithms and ensuring safety [Guo+22]. Autonomous
vehicles rely on CPS to process data from various sensors, such as cameras, LIDAR
and radar, to navigate and make decisions in real time [Che+17]. CPS facilitates
the coordination and control of robotic systems, enabling them to perform complex
tasks autonomously.

Overall, CPS is central to the transformation of these areas, providing the
technological foundation for advanced systems

11

2.3 Evolution of Resilience: From Threats to
Safeguards

When a system is compromised by a malicious attack, whether from external
threats or internal vulnerabilities, it poses a significant challenge to the integrity
and functionality of the system [SM10]. These attacks exploit existing weaknesses,
such as software bugs or configuration errors, and trigger a cascade of events that
escalate the level of risk. This risk is not just theoretical; it has the potential
to cause significant damage or loss and can be assessed both qualitatively and
quantitatively [KK20]. Critical assets that are essential to the functioning and
objectives of the organisation are at risk. The concept of assets extends beyond
material or financial resources to include critical aspects such as data integrity and
system availability, which are of particular interest of this thesis.

As shown in Figure 2.1, the exposure resulting from these events indicates a
state in which the system is more vulnerable to damage, which, if not addressed,
could lead to significant consequences [MSG19]. To protect the system and its
assets, it is essential to implement safeguards or protective measures. These safe-
guards should be adapted to the specific nature of the threat and the vulnerabilities
of the system and form the basis of resilient computing. The design of the system
aims not only to counter immediate threats, but also to improve its overall ability
to anticipate, absorb, recover from and adapt to future malicious disruptions.

This evolution from threat to protection, while a specific segment of our broader
investigation into resilient computing, highlights the critical steps involved in
recognising, responding to and recovering from the challenges posed by malicious
failures [WIR13]. It emphasises the importance of a proactive and comprehensive
approach to security and resilience in computing systems. This proactive strategy
involves continuous monitoring, regular updates to security measures, and the use
of advanced technologies such as machine learning to predict and mitigate potential
threats [SK22]. By doing so, the system can maintain its reliability and integrity,
ensuring it can withstand and adapt to the evolving landscape of cybersecurity
threats.

In summary, the approach outlined in Figure 2.1 underscores the need for a
structured response to cybersecurity threats. By focusing on both immediate pro-
tective measures and long-term resilience, organisations can protect their critical
assets, maintain business continuity, and build a robust defence against future
attacks [PB20].

12

Figure 2.1: Depicting the Evolution from Threats to Safeguards

2.4 Comprehensive Cybersecurity and Resilience
Overview

This subsection provides a detailed, step-by-step description of the cybersecurity
resilience framework depicted in the Figure 2.2 This comprehensive strategy consist
of the following stages: Prevent Intrusions, Detect Intrusions and Limit Damage,
Tolerate Attacks, and Restore System. Each stage is crucial for ensuring the
security, resilience, and integrity of the systems.

The first level, Prevent Intrusions, focuses on proactive measures to prevent
unauthorised access and maintain system integrity. This stage employs several key
techniques, including the use of strong passwords, robust encryption protocols and
multi-layered security architectures. Ensuring hardware integrity is also a critical
component [Vil11]. By implementing these preventative measures, organisations
can reduce the risk of cyber threats and create a strong first line of defence aimed

13

Figure 2.2: Source: Adopted from Jay Lala Autonomous Panel DSN19

at stopping malicious activity before it can cause damage.
Once preventive measures are in place, the strategy moves to the second stage:

Detect intrusion and mitigate damage. This stage involves the use of advanced
tools and technologies such as firewalls, intrusion detection systems (IDS), secure
communication channels, virtual private networks (VPNs) and secure authentica-
tion mechanisms. These tools work together to monitor and identify any unautho-
rised access or suspicious activity. Early detection enables an immediate response
to potential threats, effectively containing and managing any damage.

The third level, Tolerate Attacks, recognises the reality that some intrusions
will inevitably bypass initial defences, no matter how robust they are. This phase
is concerned with ensuring that the system remains operational and resilient even
when under active attack. The implementation of robust fault tolerance mech-
anisms is imperative at this stage. These mechanisms involve creating strategic
redundancies within the system so that if one component fails, others can take
over gracefully without disrupting overall functionality.

Strategic planning for continuity is the foundation of this phase. It involves
the development of comprehensive disaster recovery plans and business continuity
strategies that outline specific actions to be taken in the event of an attack. These
plans ensure that essential operations can continue with minimal disruption. Re-
dundancy plays an important role in fault tolerance. By replicating critical system

14

components, organisations can ensure that there is always a backup to take over in
the event of a failure. This can occur at different levels, including data redundancy,
server redundancy and network redundancy [Kos+22]; [LCJ18].

Finally, the Restore System phase focuses on recovering and restoring normal
operations after an attack. This phase includes performing repairs, performing sys-
tem diagnostics, training users, and learning from the incident to prevent future
occurrences. The goal is to quickly return the system to a secure and functional
state, ensuring resilience and trustworthiness. Real-time recovery tools and strate-
gies are used to speed up the recovery process and minimise downtime. Recovery
not only addresses immediate issues, but also reinforces the overall security posture
by incorporating lessons learned from the incident.

In summary, these stages form a comprehensive cybersecurity overview that
addresses prevention, detection, tolerance and recovery. Each stage builds on
the previous one, creating a robust and layered defence system. By integrating
these stages into a cohesive strategy, organisations can effectively defend against
potential threats, respond quickly to incidents, and ensure the ongoing resilience
and integrity of their information systems. This holistic approach to cybersecurity
is critical in order to protect sensitive data and ensure the continued operation of
critical services.

2.5 Fault tolerance and recovery
Fault tolerance is a critical aspect of system design, particularly in safety-critical
environments where maintaining correct operation in the presence of faults is of
the utmost importance. The primary objective is to ensure that the system con-
tinues to function correctly even if components fail. This is often achieved through
techniques such as Dual Modular Redundancy (DMR) and Triple Modular Redun-
dancy (TMR). In Figure 2.3 replication of the control algorithm can be observed.

One of the most popular methods used in fault tolerance is TMR [LV62], an in-
stance of active replication. Its purpose is to improve the reliability of a system by
using three (or, in general, n) functionally equivalent components to perform the
same function, with the system’s output being the majority vote of the three (n).
TMR is commonly used in safety-critical systems, such as aerospace [Yan+19],
nuclear power plants [WHC10], and medical devices [Fra+10], where a single fail-
ure could result in severe harm or damage. The idea behind TMR is that the
probability of all three components failing simultaneously is extremely low, so the
system is highly reliable. While effective in improving system reliability, there are
some downsides such as increased cost, power consumption, and complexity, which
may make it less practical for some applications.

The Time-Triggered Architecture (TTA) [KB03] is among the most advanced

15

and elaborate bodies of work developed to tolerate faults in safety-critical systems.
TTA ensures message exchange in non-overlapping message slots and provides
membership, fault tolerance, and actuation voting by leveraging apriori knowl-
edge about the messages that replicas should send in the individual slots. TTA
and its time partitioning are required in many standards, including ISO 26262 (au-
tomotive), IEC 61508 (industrial control), and DO-178C (avionics), and adopted
by prominent industrial players, such as Audi, Volkswagen, and Honeywell [Rus01].
The fault tolerance layer [BK00] is based on cold restart from the ground state
(g-state) or history states (h-state). TTA is often used in conjunction with other
methods for fault tolerance, such as redundancy, re-execution, and self-healing, to
build robust and reliable real-time systems.

Figure 2.3: Example of replication without the presence of error

Re-execution [Zho+17]; [HYT14] is a fault recovery technique used to improve
the reliability of tasks by executing them multiple times and by selecting the
correct output from multiple executions. It uses slack time on the processor to
detect faults locally at the end of task execution and re-execute the task when a
fault is detected. A faulty task can either be re-executed from the start or restored
from the most recent checkpoint before the fault occurred [RS13].

16

Other recent works in the intersection of fault tolerance and real-time systems
include [Kri14]; [Pat14]; [Che+20]; [EA21]; [A+21]; [HCC21].

2.5.1 Byzantine fault tolerance
Byzantine fault tolerance (BFT) techniques, particularly Byzantine fault toler-
ant state-machine replication (BFT-SMR), offer a robust promise of automated
and unattended resilience during system attacks, even when traditional intrusion
detection and prevention mechanisms fail [LSP82]; [CL+99]; [Ver06b]; [Ver+11];
[Chu+07]; [Aub+15]; [CNV04]; [Lev+09]; [Kap+12]. These protocols are designed
to mask the actions of a minority of compromised replicas behind a healthy major-
ity operating in consensus, ensuring system integrity and continuity. Rejuvenation
techniques play a crucial role in maintaining this majority over extended periods,
thereby enhancing the system’s resilience.

BFT-SMR is based on the principle that both accidental and malicious failures
can induce failure characteristics that appear almost maliciously induced. This
observation supports the design and application of BFT algorithms to defeat ad-
versaries by tolerating intrusions. BFT-SMR protocols such as Paxos [Abr+06]
and Byzantine classes promote resilience by extending fault tolerance to a wide
range of applications, particularly in loosely coupled distributed systems [Bou+22].
As such, it comes with little surprise that BFT algorithms are also used to fend off
adversaries by tolerating intrusions [CNV13b]; [Pla+14]. Like TMR, BFT-SMR
operates with n = 2f +1 replicas in synchronous settings and n = 3f +1 in asyn-
chronous ones, but proposals have also been made to operate through error-free
phases with just a detection quorum of f+1, respectively 2f+1 replicas [Kap+12];
[DCK15].

A central concept in BFT-SMR is the use of Byzantine dissemination quorums,
which ensure that any two quorums intersect with at least one correct replica in
common and always have an available quorum [MR98]. Requests and messages are
authenticated using Message Authentication Codes (MACs), which are periodically
updated to prevent impersonation by attackers [CL+99]. The primary goal of
these protocols is to achieve consensus on the order of client operations, ensuring
that all correct replicas perform the same operations in the same order through a
deterministic process.

Homogeneous BFT-SMR protocols, such as the seminal protocol PBFT [CL+99],
tolerate up to f faulty or compromised replicas by masking their behavior behind
a healthy majority of n − f replicas, where n ≥ 3f + 1. Architectural hybridiza-
tion [Ver06b], that is, the inclusion of trusted-trustworthy components, allows
reducing n to n ≥ 2f + 1 replicas [Ver+11]; [Chu+07]; [CNV04] and optimistic
protocols [Lev+09]; [Kap+12] operate through error-free phases with just n − f
active replicas, responding to faults by activating the remaining f passive replicas.

17

2.6 Shared State
Replicated systems are typically constructed to avoid shared state due to the vul-
nerabilities entailed with this state failing. However, since recent microcontroller
product families for safety-critical systems [Teca] offer ECC and RAID-protected
shared memory [Ham50]; [TEM05], we will leverage such memory to allow control
replicas to maintain state across epochs. In particular, we will turn this memory
into consensual memory, as exemplified by Gouveia et al. [GVE22]. Read-only
shared memory is commonly used in hypervisor-based systems to isolate VMs
[Mvo+20] (e.g., when deduplicating pages in their memory image). Our solution
works in a hypervisor or RTOS setup, but equally well also on a bare-metal config-
uration where replicas receive read-only access to their shared memory. Read-only
access suffices because, as we shall see, updates are performed consensually through
a voter.

ECC embeds the possibility to tolerate faults without exposing them to the
application and its state. It encodes values (e.g., into a hamming code) to tolerate
a certain number of bit flips by correcting them when reconstructing the original
value. The same coding can further be used to detect additional bit flips. As
bit flips accumulate over time when unhandled, ECC should be frequently be
overwritten with a technique called scrubbing to restore its tolerance capabilities.
Scrubbing overwrites the memory with the same value to restore non-stuck bits to
their correct encoding of the value, which allows tolerating the original number of
bit flips minus those that got stuck. In Section 4 shall use ECC memory to protect
state in consensual memory.

18

Chapter 3

From Instability to Reliability:
Fault Tolerance in an Inverted
Pendulum

This chapter presents the methodology employed to transform the classic inverted
pendulum problem into a fault-tolerant control system, which serves as a running
example throughout the thesis. The introduction of redundancy, fault detection,
and recovery mechanisms enhances the system’s reliability and robustness. The
process involves replicating control algorithms, using voting mechanisms to en-
sure correct actuation signals, and implementing fault injection techniques to test
system resilience. This practical example serves as a tutorial on the implemen-
tation of fault-tolerant control systems, demonstrating the necessary steps and
considerations to maintain functionality despite faults.

3.1 Why the Inverted Pendulum: Key Consid-
erations

The inverted pendulum serves today as the text-book example in control-theory
[And89]. It lies at the heart of many control theory problems ranging from self-
balancing hover-boards to stabilizing rocket propulsion systems. Indeed the in-
verted pendulum is investigated throughout the scientific literature as a minimum-
viable benchmark to study a myriad of control problems present in neural-network
based controllers [WM91], complex-simplex control systems [Moh+13b], and works
in the real-time systems domain [SS99]. The simplicity of the inverted pendulum,
particularly in its one-dimensional form, makes it an ideal candidate for our study.
This model strikes a balance between theoretical tractability and practical com-
plexity, allowing for in-depth exploration of control strategies without overwhelm-

19

ing computational demands. Thus, we have selected the one-dimensional inverted
pendulum model as the continuous thread running through this thesis.

In essence, the inverted pendulum surpasses its mere role as a theoretical con-
struct; it embodies the tangible, real-world challenges inherent in control theory.
Its diverse applications range from basic educational tools in the classroom [Isr+23]
to sophisticated, critical technologies in aerospace [Mac+18] and robotics [Bou12].
By adopting this model in our research, we aim to demonstrate the construction
of a fault-tolerant and robust system that is able to withstand and adapt to dis-
turbances over long periods of time.

3.1.1 Linear Time-Invariant System
The study of linear time-invariant (LTI) systems is the foundation of classical
control theory, providing basic insights for understanding and manipulating a
wide range of dynamical systems. Work such as that by Skogestad et al. [SP05],
Dullerud and Paganini [DP13], and Åström and Murray [ÅM21] has highlighted
the principles governing these systems, emphasizing their predictability and the
ease with which established control techniques can be applied.

The inverted pendulum, a paradigmatic example of control theory, serves as
an ideal test-bed for exploring these principles. The inverted pendulum, char-
acterised by its centre of mass located above its pivot point, exemplifies a class
of inherently unstable systems that require continuous control input to maintain
equilibrium [And89]. This requirement makes it an ideal model for studying the
effectiveness of different control strategies, particularly in the context of LTI sys-
tems. Linearization plays a critical role in the analysis and control of the inverted
pendulum [ML19]. In its natural form, the system is nonlinear; however, by lin-
earizing it around a fixed point or a periodic orbit, we can transform it into an
LTI system amenable to classical control techniques [BK22]. This process involves
approximating the nonlinear dynamics of the pendulum near its equilibrium point
with a linear model, greatly simplifying the analysis and control design. The lin-
earised model of the inverted pendulum, although a simplification, captures the
essence of its dynamic behaviour. It allows the application of LTI system theory
to predict its response to control inputs and disturbances.

In addition, the principles derived from LTI system theory provide a basis for
exploring how nonlinearities in the inverted pendulum deviate from this linear
model. By studying these deviations, control theorists can develop strategies for
dealing with the nonlinear characteristics inherent in real implementations of the
system. Exploring these nonlinear dynamics is crucial, as it leads to a more com-
prehensive understanding of the behaviour of the inverted pendulum in different
operational scenarios [Fra18].

In summary, the inverted pendulum exemplifies the challenges and intricacies

20

of controlling unstable systems. It clearly illustrates how linear systems theory
can be applied to initially nonlinear systems, providing invaluable insights into
the dynamics and control of a wide range of real-world applications.

3.1.2 System dynamics
3.1.2.1 System assumption

In our system we focus on a dynamic model involving a cart and an inverted
pendulum. The cart, which can move along a linear axis, plays a crucial role in
stabilising the pendulum. Both the cart and the pendulum have their own masses,
which significantly influence the dynamics of the system. In addition, friction is
an important factor affecting both the movement of the cart and the oscillation of
the pendulum. The primary objective of our control strategy is to maintain the
stabilisation of the inverted pendulum over a given period of time. An interesting
aspect of our model is the treatment of the cart position represented as X as a
"free variable". This means that while our control efforts are focused on keeping
the pendulum balanced, the cart’s position is not constrained to any particular
point. This flexibility allows the cart to move as needed to achieve pendulum
stabilisation, adding a layer of complexity to the control task.

In practice, this approach mimics scenarios where maintaining the overall bal-
ance or stability of a system is more critical than the exact positioning of its
components. This model finds relevance in various applications, such as robotic
systems, where adaptability and dynamic equilibrium are essential [Yoo10]. By
focusing on the stabilisation of the pendulum with a free moving cart, we aim to
design a control system that is both robust and adaptable to changing conditions.

3.1.2.2 State parameters

Our system is characterized by two degrees of freedom represented with the cart
X and angle of the pendulum θ. Keeping in mind two degrees of freedom and
Newton’s Second Law of Motion, we are getting four coupled ordinary differential
equations (ODE)s [BK22]. That results in four rows of non-linear equations, and
the actual derivation of the function takes a substantial amount of time and can
be done by using Lagrangian and Hamiltonian classical mechanics equations.

For the sake of simplicity, this thesis will not provide a detailed derivation of
the equation and will assume a non-linear problem. As the scope of this thesis is
not to delve into the detailed derivation and control theory, we will instead present
a high-level overview. The state parameters are given the following values:

• g represents gravitational acceleration

21

Figure 3.1: Parameters that govern the pendulum’s equations of motion.

• L is the length of a pendulum

• m is the mass of the bob on top

• x is direction in which the cart moves

• M is mass of the cart

• θ is angle of the pendulum

• damping d1 and d2 (see the code) is the friction on the cart, where we are
expecting that cart has a lot more friction than the pendulum itself

The state of our cart-inverted pendulum system is concisely captured by a
vector of state variables, each of which represents a key dynamic attribute of the
system. This vector consists of four primary parameters:

~X =

X

Ẋ
θ

θ̇

 (3.1)

22

• Cart position (X): This variable represents the linear position of the cart
along a horizontal axis. It’s a crucial parameter as it reflects the primary
movement of the system’s base and plays an important role in the overall
balancing strategy.

• Cart velocity (Ẋ): The rate of change of the cart’s position, or its velocity.
This parameter provides insight into the cart’s dynamic behaviour, including
its acceleration and deceleration, which is key to understanding and control-
ling the system’s momentum.

• Angle of the pendulum (θ): The variable θ represents the angle of the pen-
dulum relative to an upright vertical position. This angle determines the
deviation of the pendulum from its equilibrium state and is therefore a crit-
ical factor in the stabilisation control algorithm.

• Angular velocity of the pendulum (θ̇): Finally, this is the angular velocity of
the pendulum. This measure indicates how quickly the angle θ is changing
and provides essential information about the pendulum’s rotational dynam-
ics.

These state parameters collectively offer a comprehensive snapshot of the sys-
tem at any given moment. Understanding the interplay between these variables
is vital for developing effective control strategies. For instance, the control sys-
tem must respond not only to the pendulum’s angle but also consider its rate
of change to apply the right corrective forces. Similarly, the cart’s position and
velocity are integral to how these forces are translated into movement, impacting
the pendulum’s stability.

3.1.3 Linearization
The next step in our overview involves the crucial process of linearising the system,
which allows a more manageable exploration of its dynamics [BK22]. Linearisation
is performed around key fixed points, which are crucial for simplifying the non-
linear equations of the system into a linear form. In the context of our inverted
pendulum, these fixed points are determined based on the position and motion of
the pendulum. Specifically, we consider the angle of the pendulum θ, to be either
θ (representing the pendulum in the downward position) or π (representing the
pendulum in the upright position). In addition, for these fixed points, the rates of
change of both θ (angular velocity) and the cart’s speed are set to zero, indicating
a state of equilibrium.

The linearisation process involves the calculation of the Jacobian matrix, a
mathematical tool that provides a first-order approximation to the dynamics of

23

the system in the region of the fixed points. While the derivation of the Jacobian
matrix is complicated and involves complex computations (and is therefore not
presented in detail here), its role is indispensable in translating the nonlinear
dynamics into a linear framework [Rig+20]. By plugging the aforementioned fixed
points into the Jacobian matrix, we effectively linearise the system around these
equilibrium points. This linearisation gives the linear system equations which are
fundamental to understanding and controlling the behaviour of the system under
small deviations from the fixed points. These linear equations are more tractable
and form the basis for designing control strategies that can effectively stabilise
the pendulum even in the presence of small disturbances or variations in system
parameters. The result is a set of equations that, although simplified, still capture
the essential characteristics of the pendulum’s dynamics. As a result, we obtain
the equations of the linear system.

Ẋ = Ax+Bu

In this case, u expresses the force on the cart in the X direction. As a final
result, we intend to design the controllers based on this equation. After checking
that our system is controllable

1 self.A = np.array([\
2 [0,1,0,0], \
3 [0,-d1, -g*m/M,0],\
4 [0,0,0,1.],\
5 [0,d1/L,_q,-d2]])

Source Code 3.1: A linearized matrix

In the following, we are specified the linearizable B matrix

1 self.B = np.expand_dims(np.array([0, 1.0/M, 0., -1/(M*L)]) , 1) # 4x1

Source Code 3.2: B linearized matrix

Having established the validity of the A and B matrices, which are fundamental
to our linearised system model, we focus on their application in relation to the
force acting in the X direction on the cart u force. These matrices are essential

24

Figure 3.2: State feedback control

for understanding how external inputs, such as the u force, affect the state of the
system. A crucial step in our overview is to assess the controllability of the system,
a key concept in control theory that determines whether it’s possible to drive the
system to a desired state using appropriate inputs [OY02]. If calculations indicate
that the controllability rank of the system is 4, it implies that the entire state
space of the system’s four linear equations can be influenced by the control inputs.
This comprehensive controllability indicates that the system is fully controllable,
meaning that it is theoretically possible to steer the system from any initial state
to any desired final state within a finite time using the control input u. Knowing
that the system is controllable enables the design of an effective controller.

u = −Kx

Now we can see that our closed-loop system is equal to the:

Ẋ = (A−BK)x

We can design K so that we can specify eigenvalues whenever we want. As a
reminder, our state feedback system is shown in figure 3.2. An inverted pendulum
on a cart characterises the system. After measuring the full state x, we will feed
it back according to the control law given above (i.e. u = −Kx)

3.2 Choosing the control algorithm

3.2.1 Linear Quadratic Regulator (LQR)
To address the challenge of selecting the most appropriate eigenvalues for our
system, we use the Linear Quadratic Regulator (LQR) technique. LQR is an
advanced and efficient method in the field of optimal control that utilises state

25

space representation principles [KJ13]. This approach is particularly valuable for
designing controllers that can accurately manage complex, multivariable systems.

The core concept of LQR revolves around the creation of a cost function that
quantifies the ’cost’ or undesirability associated with certain system behaviours.
For example, it can penalise slow convergence to an optimal state, excessive control
effort, or deviations from a desired trajectory. By assigning quantifiable values to
these undesirable behaviours, LQR provides a structured way of evaluating and
minimising the overall ’cost’ of system performance [NAR08]. Once the cost func-
tion is established, LQR systematically minimises this total ’cost’ by calculating
optimal feedback gains. These feedback gains adjust the control inputs to drive the
system towards the desired state while minimising the defined cost. This process
ensures that the system operates efficiently, with improved stability and perfor-
mance, making LQR a robust choice for achieving optimal control in complex
systems. The cost function is given by:

∫ ∞

0

(xtQx+ utRu)dt

This function represents the weighted sum of the state and control input u
over time, where Q and R are matrices that weight the importance of the state
and control input, respectively. To stabilize the pendulum, we need the X value to
decrease quickly while minimizing energy expenditure to avoid high control inputs
(u). Consequently, our Q matrix is defined as follows:

1 Q = np.diag([1, 1, 10, 100])

Source Code 3.3: Our Q matrix

These values indicate how it is possible to penalize the state parameters. The
first value corresponds to the position of the cart, and the second to its speed. For
the pendulum angle , we apply higher penalties to stabilize the pendulum quickly,
as reflected in the larger values in the Q matrix.

When energy is not a primary concern, the appropriate value for R is speci-
fied. With the Q and R matrices established, the powerful Python function "lqr"
(similar to the function in Matlab1) can be utilized. This function designs the
optimal controller (u = -Kx) that minimizes the cost function, known as a Linear

1Matlab LQR function https://www.mathworks.com/help/control/ref/lqr.html

26

https://www.mathworks.com/help/control/ref/lqr.html

Quadratic Regulator. "Linear" indicates that it is a linear full-state feedback con-
troller. "Quadratic" refers to its minimization of the quadratic cost function, which
demonstrates a quadratic shape when plotted. As a "Controller," it stabilizes the
system, ensuring that X approaches 0.

1 # Return values of LQR function
2 # K : State feedback for stability
3 # S : Solution to Riccati Equation
4 # E : Eigenvalues of the closed-loop system
5 K, S, E = control.lqr(ss.A, ss.B, Q, R)

Source Code 3.4: LQR function with its return values

To correctly apply the value to the PWM register, it is necessary to scale the
values based on the control law to generate a single output.The influence on each
matrix position value has associated effects on stability. We derive the dot product
or scalar product, which takes two equal-length sequences of numbers (usually
coordinate vectors) and returns a single number, to perform this operation. In the
source code 3.5 you can observe the function that returns us the final single LQR
value.

1 // Control law $u = -K(x-desired)$

2 double* LQR(double* x_error, double* xdot_error, double* theta_error,

3 double* thetadot_error){

4 // Calculate the LQR with gain array K and passed errors

5 LQR_value = -((K[0]*(*x_error) + K[1]*(*xdot_error) + K[2]*(*theta_error)

6 + K[3]*(*thetadot_error)));

7

8 return &LQR_value;

9 }

Source Code 3.5: Vectors multiplication

27

3.2.2 Proportional Integral Derivative (PID)
The Proportional-Integral-Derivative (PID) controller is a widely used feedback
mechanism in industrial control systems because of its simplicity and effectiveness
[Ben93]; [Vin+07]. It continuously calculates the error value as the difference
between the desired setpoint and the measured process variable, and then applies
a correction based on the proportional, integral and derivative (P, I and D) terms.

• Proportional (P) component: The proportional component responds to the
current error, which is the difference between the desired setpoint and the
actual value. The response is directly proportional to the error, i.e. the
greater the error, the greater the corrective action. This component is critical
to the responsiveness of the system. However, a high proportional gain can
lead to system instability and oscillations. If the proportional gain is too
low, the system response may be too slow and the error will persist for a
longer time. Tuning the proportional gain is therefore essential to balance
speed and stability.

• Integral (I) component: Integral control is particularly useful in systems
where the elimination of steady-state error is critical. For example, in chem-
ical processing plants, maintaining precise concentrations of reactants is es-
sential for product quality [Whi+21]. Integral action ensures that even small
persistent errors are corrected over time, bringing the process variable exactly
to the setpoint. However, in systems with high integral gain, the accumula-
tion of errors can lead to overcompensation, causing the system to oscillate
[GH24].

• Derivative (D) component: The derivative component is beneficial in systems
where predicting future error trends can prevent overshoot and improve set-
tling time. For example, in robotic arms used in manufacturing, accurate
positioning is critical [PLY18]. The derivative helps to dampen the response,
reducing overshoot and ensuring that the arm moves smoothly to the desired
position

3.2.2.1 Tuning and Optimization

Tuning a PID controller involves adjusting the proportional, integral and derivative
gains to achieve the desired system performance. Various methods such as Ziegler-
Nichols tuning, Cohen-Coon tuning and software-based optimisation techniques
can be used to find the optimum settings [Bor+21]; [BSS12]. The aim is to balance
the trade-offs between responsiveness, stability and accuracy.

28

The integral gain is then adjusted to eliminate the steady-state error, ensuring
that the system reaches and maintains the desired setpoint [Odw09]. Careful tun-
ing of the integral component improves accuracy without introducing instability.
In some cases, adaptive tuning methods dynamically adjust PID parameters in
real time to account for changing system conditions [Bha+19].

3.2.3 Comparing stateless and stateful control tasks
To compare the stateful and stateless nature of PID and LQR controllers, we
first consider the linear regime of the inverted pendulum. State h(t) is proximal
at any moment t to its stable point i.e. h(t) = [x(t), ẋ(t), θ(t), θ̇(t)] → hs =
[x0, 0, 0, 0]. Here x is the position of the pendulum along the one-dimensional
axis, ẋ its linear velocity, θ its time-varying angle with-respect to the vertical axis
and θ̇ the associated angular speed. In this stability region and in the presence
of a feedback control u(t) the fully non-linear equation of motion approximately
linearize and are given by θ̈ = 1

L

(
g cos θ(t)− u(t) sin θ(t)

)
.

The goal of any feedback control system is to keep the state of the plant close
to the stable point by sensing its current state and applying a counterbalancing
force u to the sliding mass M . The task of every feedback control system is to
keep the state of the plant close to the stable point by first sensing its current
state and subsequently imparting a counter balancing force u, in our case to the
sliding mass M . LQR implements the control task by feeding back a force which is
proportional to the error of the current state with respect to the stable point such
that uk = −K · δhk, where δh = hk − hs and K is a matrix of constant weights
that are fine-tuned as a function of the plant’s dynamical properties.

PID takes a similar approach by adding two additional terms to the propor-
tional term of LQR uk = Kp · δhk +Ki ·

∑k
m=k−l δhm+Kd · dδhk

dk
where the integral

term accumulates the k−m historic errors and the derivative term determines how
fast the stable point is reached2. One striking difference between PID and LQR
is that the former needs to keep track of the historic states in order to compute
the integral term and is therefore referred to as a stateful controller as opposed
to LQR being a stateless controller. However, given the technical specifications
of our measurement devices. Position and angle are sensed through two rotary
encoders, which detect changes of the encoders’ rotation angle as quadratically
shifted square waves in two channels. That is, angular changes are reported as
raising and falling edges of the square waves, whereby the shift between channels
indicates the direction of rotation, instantaneous measures such as linear and angu-
lar speed are not immediately available for a given epoch but have to be indirectly

2We refer the reader to [BK22] for further information on how to tune the PID gains and K matrix
for LQR.

29

inferred through first recording past positions and angles and then computing the
temporal variation of the latter. Consequently, LQR becomes effectively stateful.
Formally for a given epoch k the forward function that models the control feedback
loop can be written as f(hk−l, ..., hk) = uk where for LQR l = 1 and PID l ≥ 1.
The necessary state that the controller needs to keep track of (h) would allow us
to turn an effectively stateful controller into a stateless recoverable instance (see
Section 4.1.1).

For PID and LQR of an inverted pendulum, this state is trivially small for mod-
ern computational devices as just a couple of variables are saved across invocations.
However, we must observe that over the years, several increasingly sophisticated
control algorithms have been proposed to cope with increasing plant complexities,
including Model Predictive Controllers (MPC). One glaring example is the electric
microgrid, as exemplified by Huo et al. [HBJ22] where MPC optimizes the energy
generation and storage decisions based on a state as large as 420KB (at each step).

On the other hand, there is a theoretical possibility to optimize an MPC al-
gorithm implementation on a 43KB-limited microcontroller [MAB15], using tech-
niques that enable satisfactory control performance while respecting memory con-
straints.

3.3 Custom made inverted pendulum
In order to illustrate the concepts and demonstrate a real-world example, we built
our own prototype of an inverted pendulum, as shown in Figure 3.3. Model is
designed to study the dynamics and control of an inverted pendulum system. The
key components are as follows:

• Pendulum Rod (1): The rod’s angle θ is the primary variable of interest.

• Motor (2): Provides a controllable force u, to move a mass M along a hori-
zontal rail.

• Rotary Encoder (3): Measures the angle θ of the pendulum rod.

• Rotary Encoder (4): Measures the position of the mass M along the x-axis.

30

Figure 3.3: Early Prototype and Preliminary PCB Layout

3.3.1 Final version of inverted pendulum
Significant advancements have been made in the design, resulting in the final
version shown in the latest image. The rail and base structure have been reinforced
for enhanced stability and precision, while the components, including the motor
and encoders, have been more seamlessly integrated. Additionally, the final version
features a more polished version with labelled components and a streamlined layout
that enhances functionality. These enhancements have resulted in the development
of a more robust and efficient prototype, capable of more precise control that
ensures greater accuracy in experiments and better overall performance of the
system. For a demonstration of the final prototype, please refer to the video 3.

3available on YouTube [Mat23]

31

Figure 3.4: Final version with integrated parts

32

Chapter 4

Consensual Resilient Control

This section introduces and describes our CRC framework. The key components
are illustrated in Figure 4.1. At the core is the control algorithm, which processes
inputs from the plant (the system being controlled) to generate actuation signals.
To ensure fault tolerance, active replication maintains multiple instances (replicas)
of the control algorithm. These instances send their output signals to a detection
quorum (voter), which aggregates the signals and actuates the plant based on
majority consensus. Furthermore, the system incorporates a fault injection mech-
anism to test resilience by simulating errors, and a recovery mechanism to reset or
rejuvenate replicas between control cycles, precisely preventing the propagation of
faults.

Figure 4.1: High-level overview of the Consensual Resilient Control architecture

Our approach is designed to tolerate up to f faults with just a detection quorum
of n ≥ f + 1 replicas. For now, let n = k = f + 1 and f = 1. That is, n replicas
are periodically invoked with a consistent view of the plant state and are expected

33

Figure 4.2: Example illustrating how f + 1 agreement can be achieved despite
replicas failing. Shown is a scenario with f = 1 and n = k = f + 1 = 2 over three
epochs. In the first, correct replicas agree. In the second epoch, no agreement can
be reached due to replica R1 failing. In epoch 3, the voter is able to collect f + 1
matching proposals after R1 rejuvenates, even if this time R2 fails.

to produce an actuation signal, which they pass to the voter, which actuates the
plant only after f + 1 replicas agree to the actuation value. In addition, to allow
extremely fast recovery from faults and to make it possible to rejuvenate replicas
in between any two subsequent invocations, they also vote on the state they would
like to preserve across epochs.

Figure 4.2 shows for f = 1 and n = k = 2 how such a majority for the state
update and actuation signal can be formed. In the first epoch, no faults happen,
and the two replicas propose the same state update and actuation signal, which the
voter applies since the f+1 agreement has been reached. Even though replicas were
correct, they are proactively rejuvenated to also return compromised but stealthy
replicas to a known good state. In epoch 2, replica R1 becomes faulty (either due
to an attack or accidentally) and proposes an actuation value a′2 instead. Without
further knowledge about the plant, the voter cannot discern which of the two
proposed actuation signals is correct and will therefore not actuate (while possibly
holding the previous actuation value a1 if the plant requires that). It will also
not update the state, even though the replicas agree on this part of the proposal.
This is to avoid inconsistencies between the plant and the state maintained by
the replicas. As for now, the plant is not actuated, and we experience a deadline
miss, which, since we so far missed less than k deadlines, we assume the plant
tolerates. After rejuvenating the replicas, the replicas start. However, this time,
no agreement could be reached in the previous epoch, with the sensor information

34

captured at the beginning of epoch 2. This time replica R2 fails in epoch 3. If the
previous fault of R1 was due to a cyberattack, R2 could fail only due to accidental
causes because we assume adversaries cannot compromise more than f replicas
faster than the duration of k epochs. Also, by our fault model, the proposal of
such an accidentally failing replica will not match the proposal R1 made during
epoch 2. If R1 fails accidentally, adversaries are unlikely to predict how the failure
will manifest. In both cases, the proposal from R1 in epoch 2 and R2 in epoch 3
will not already form a majority. However, after k = 2 epochs, the voter collected
two votes from correct replicas (from R2 in epoch 2 and R1 in epoch 3). Finally,
the voter is able to actuate again (with a2) and update the state (with h2).

Moreover, operating the system with more than n = f + 1 replicas is possible.
In this case, n − f replicas are correct by our fault model, and the voter can
collect n− f correct proposals in each epoch. Therefore, the number of epochs k

needed before f + 1 agreement can be reached is k =
⌈
f+1
n−f

⌉
. As long as a plant

can tolerate at least k deadline misses, n and k will be a correct configuration to
tolerate up to f faults for that plant. An important prerequisite for this approach
to work is that replicas can be recovered fast enough from faults and rejuvenated
between any two invocations.

In the following, we shall therefore discuss how to systematically turn state-
ful control tasks into statelessly-recoverable instants (Section 4.1.1), how to invoke
replicas with the same plant state (Section 4.1.2), and how to design a voter that is
capable of supporting this construction and that is sufficiently simple to be imple-
mented at the hardware level as a trusted-trustworthy component (Section 4.1.4).
Then in Section 4.1.5, we bring everything together and discuss in Section 4.1.6
why it is safe to deploy our solution in an environment that meets the conditions
laid out in the fault model in Section 4.1.

4.1 System and Fault Model
System Model: This work concerns the fault tolerant control of a plant by means
of replicating its control task across n nodes (see Figure 4.3). We assume nodes
fail independently, but are sufficiently closely coupled to access a voter through
the IO channels it offers and to access shared ECC and possibly RAID protected
memory. These can be cores of a multi- or many-core system (e.g., controlling
a drone), multi-chip modules or more loosely coupled, but close compute nodes.
If cached, the minimum requirement for the shared ECC memory is to invalidate
cachelines upon writes, which as we shall see are updated exclusively by the voter.

A minimal control task senses the state of the plant, executes a control algo-
rithm and proposes a signal for actuation. However, control tasks may also be
more complex (e.g., structured as a directed acyclic graph of runnables) and in-

35

Figure 4.3: Replicated control architecture. Control task replicas sense the plant
and have read-only access to shared state. They propose an actuation signal and
state update, which the voter applies after reaching consensus.

volve filters, sensor aggregation and models of the plan to compute hidden state.
Our goal is to support plants that are unaware of their controller’s replicated na-
ture. As such, we introduce a voter, which is trusted to consolidate control-task
proposals into a singleton actuation signal. We shall also use the voter to update
shared memory after reaching a consensus on how this state should be updated.

For simplicity, we assume a single control task having a single period is respon-
sible for actuating the plant. Replicas of that task are invoked periodically every T
time units and receive a consistent view of the plant state as far as this is observable
through the plant’s sensors. Supporting multi-periodic tasks (see e.g., Pagetti et
al. [Pag+11]) is trivial as long as actuations are independent one from another. By
replicating the multi-periodic control tasks individually and by introducing addi-
tional voters for each such group of replicas, one can achieve the desired actuation
rates in the absence of errors. However, under faults, plants will have to tolerate
missing some actuations for a number of epochs while others keep arriving. A dis-
cussion of multi-periodic control tasks with dependent actuations, where related
actuations must not be passed to the plant if any of them cannot be performed
at a given time, is out of the scope of this thesis. We return in Section 4.1.2 to
demonstrate how periodic activation and consistent sensing can be achieved using
a trusted real-time operating system (RTOS) but also on bare metal. We call the
T -distant invocations control epochs. Being invoked synchronously every T with a
consistent view implies we operate under the assumptions of a synchronous system
model.

Our approach is parametric in the number of faults f it can tolerate in an epoch
(see our Fault model below for details) and in the number of epochs k by which

36

we guarantee it to reach consensus. The parameters f and k determine how many
replicas are required. Maggio et al. [Mag+20] found that many plants tolerate
missing deadlines. The parameter k is bounded from above by this number m of
deadlines that can be missed. Some plants, such as electric steering can miss up
to m = 17 deadlines. Our goal is to leverage this possibility to miss deadlines to
optimize the system by reducing the number of replicas n required. Immediate
masking (i.e., k = 1) within a single epoch (e.g., TMR) requires n ≥ 2f+1 replicas.
Our goal is to reduce this number to as low as just n = f + 1 replicas, which can
only detect faulty invocations that manifest in deviating proposals passed to the
voter. With n = f + 1 replicas, at least one replica is guaranteed to make a
healthy proposal. More generally, we are guaranteed to receive n− f such healthy
proposals during each epoch. To reach consensus, we have to collect f+1 matching
proposals including from at least one healthy replica. Our fault model rules out
reaching such a match without healthy replica. But with only n − f healthy
proposals in each epoch, we are sure to collect the f + 1 matching proposals only
after

⌈
f+1
n−f

⌉
epochs, which bounds k from below. TMR typically operates under

the assumption of f = 1, but there are systems deployed (e.g., for energy-grid
safety), which have to tolerate f = 5 or even more faults simultaneously.

Fault Model: As mentioned above, we aim to protect against both accidental
faults and intentionally induced, malicious faults (e.g., from cyberattacks). We
shall therefore discuss several classes of faults and how we represent them in our
abstract fault model, which is a slightly extended variant of the standard fault
model for persistent and repeatedly partially-successful cyberattacks originally in-
troduced by Sousa et al. [SNV06b].

Our fault model and hence the system we propose is parametric in the number
of simultaneously occuring faults f that it can tolerate as well as in a few param-
eters (T f

fault−type) which depend on the type of fault and which characterize when
faults of that type may reoccur. The combination of number of faults and time
of re-occurrence is quite standard, even in real-time systems. For example, the
fault-tolerant time-triggered protocol by Kopetz and Grundsteidl [KG93] already
assumed such a model. TTP can tolerate one fault among four synchronization
replicas, provided the fault will not re-appear in the immediately following syn-
chronization interval.

These parameters f , k and T f
fault−type are related to the configuration of the

system in terms of the number of control-task replicas n that need to be deployed
to tolerate this number of faults, the time Trejuvenate to rejuvenate replicas and in
the time Tagree until agreement must be reached. The latter is further constrained
by the number of subsequent deadline misses m that the plant can tolerate.

Deploying a system in an environment where these constraints cannot be guar-
anteed (e.g., because more than f faults of a class occur faster than T f

fault−type)

37

constitutes a failure in using the system. Fault tolerance and in consequence
safety are no longer guaranteed once the thresholds are exceeded.

In terms of accidental faults, we consider transient and correctable faults that
manifest in all parts of the system state, including in memory and in the internal
and architecturally visible registers of the CPU. Such faults include bit flips due to
radiation, charge deposited in flash memory cells, etc. We assume the RTOS fre-
quently corrects such faults (e.g., by overwriting registers with the correct value or
by scrubbing ECC memory). In particular we shall establish consensually-updated
memory in ECC and possibly even RAID-protected memory. This memory will
be shared between replicas and must return the latest written values, even in the
presence of faults. If, on the other hand, bit flips occur only in a replica’s memory
and in not more than f over a period T f

accidental , leaving our consensual memory
unaffected, our system can handle these faults by collecting proposals from other
replicas and by rejuvenating the faulty replica.

Accidental faults typically follow well understood characteristics from which a
mean-time-to-failure (MTTF) can be derived and hence a high probability that
faults will not reoccur within a certain time period, which for accidental faults
we call T f

accidental . Faults of this nature often arise from external factors like ra-
diation or fluctuations in temperature and are generally considered to be random
events. To model these faults, stochastic processes, such as Poisson processes, are
commonly employed. These models can help estimate the likelihood of faults hap-
pening within a designated time frame [Lyu+96]. In the case of alpha particles
hitting memory, this phenomenon is known as soft errors or single-event upsets
(SEUs). Soft errors are transient faults that do not cause permanent damage to
the system. They occur when high-energy particles, such as alpha particles or
cosmic rays, strike the sensitive regions of semiconductor devices, causing bit flips
in memory cells [Bau01].

Malicious faults result from an attacker redirecting the control flow and alter-
ing the task’s state to serve its purposes. Notice that techniques, such as return-
oriented programming [08]; [Roe+12], allow deviating from the task’s intended
control flow without modifying its code. This can happen, for example, by exploit-
ing vulnerabilities such as buffer overflows to push return addresses that redirect
the control flow to snippets of the task’s code that, when combined, implement the
adversary’s desire. We assume a strong adversary capable of identifying, reaching,
and exploiting such a vulnerability in control replicas.

Obviously, with identical replicas, no bound on the simultaneously affected
replicas can be guaranteed. Instead, replicas need to be sufficiently diverse such
that an attack applied to one replica cannot just be applied to another replica.
Over time, adversaries may find vulnerabilities in more than f replicas by analyzing
their current state (e.g., how its address space is randomized) and adjusting their

38

exploit to the replicas state. This leads to two durations, which characterize the
adversary. The time T f

deploy required to deploy an attack and compromise a replica
in the desired way, and the time T f

exceed by which the adversary has analyzed
more than f replicas. In this work, we allow T f

deploy to become small (see below).
However, we shall assume, as recommended by Sousa [SNV06b], that the RTOS
diversifies all n replicas as part of the rejuvenation process faster than T f

exceed (e.g.,
by re-randomizing their address space layout [Boj+11a]; [FGG18] or by applying
other diversification techniques [FSA97]; [Lar+14]; [Sch+22]). Notice also that
fault statistics do not apply to malicious faults.

We shall not further discuss diversification in this thesis, as this needs to be
applied at a different time scale1, but they can easily be merged with the rejuve-
nation process we will introduce in Section 4.1.1 by not returning to the original
binary’s control loop and instead first activating a transition control loop after ad-
justing the address space of the task and then to the diversified version’s control
loop. See Section 4.1.5 for further details.

Rejuvenating replicas before each epoch to address faults, our approach can
tolerate accidental and malicious faults, provided (i) the overall number of ac-
cidental and malicious faults will not exceed f and provided (ii) no more than
f faults happen within any sliding window of length kT . The second condition
holds if T f

accidental > kT and if T f
deploy > kT . Of course, mean-time-to-failure is a

value derived from fault statistics, which means that with a certain probability
accidental faults can occur more frequently.

We shall not make such assumptions about accidental faults, but support more
frequent occurrence of accidental faults, by leveraging another characteristics of
such faults, namely that it is highly unlikely that two faults in two replicas will
result in identical proposals. We will further reduce the likelihood of this happening
by requiring replicas to solve a challenge for their proposal to be considered. Notice
that this also addresses persistent faults, since a replica experiencing such a fault
is unlikely to solve the challenge. Of course, persistent faults must be properly
attributed in the overall number of faults and must be addressed by replacing the
affected replica, which is out of the scope of this work. We shall return to this in
Section 4.1.5.

It is also highly unlikely that adversaries will be able to predict accidental-fault
intrinsics of a replica that still is able to solve the challenge, such that it can predict
what that replica will propose. For application scenarios which can tolerate a low
residual likelihood that the system becomes unsafe in case such a combination of
events happen, we can therefore also deploy our solution in environments where
up to f faults happen in each of the k epochs and where from the fk total faults,
at most f are maliciously induced.

1T f
exceed well exceeds the m epochs by which agreement needs to be reached.

39

While replicas may fail as described above, we shall assume that the voter, the
RTOS and the system clock will not fail in a similar manner. We assume they
remain correct even in the presence of accidental faults and cyberattacks. For the
voter, this assumption is justified by its simplicity, which allows implementing it
entirely as custom logic in silicon or on an FPGA. Implementing the RTOS itself
in a fault tolerant manner [SHE19]; [GVE22] allows lifting the second assumption.
Such a fault tolerant RTOS may then consensually update the system clock to
remain in synchrony with other nodes in the system. Our solution is not resilient
to physical attacks.

4.1.1 Converting stateful replicas into statelessly-recoverable
instants

Control tasks, like other applications, modify their internal state. For example,
both single and multi-threaded control tasks typically implement function invoca-
tion and local variables using a stack, they use global variables and, at least during
startup, they may allocate objects on the heap. The easiest way of converting this
state into easily recoverable information is to make all state read only and to store
it in ECC-protected memory. This way, accidental faults cannot manifest in the
state and the error correcting code (ECC) captures accidental faults that occur
in the memory block. Moreover, by making state read only, adversaries have no
chance of modifying it without bypassing the processor’s protection mechanism2.

Indeed, it will not be possible to make the entire state of a control task read-
only. At least the stack must remain writeable to support function calls and
local variables. Fortunately, resetting the stack pointer to the location before a
function call discards all values a previous function call has pushed. Therefore, to
trivially recover control tasks, we turn the control loop of these tasks into a call
to a function, which, as we shall see, will never need to return. Instead, it checks
the voter to see whether the previous epoch was successful, which determines
whether the current plant state should be considered or whether the replica needs
to execute the control problem of a previous epoch, by reaching to that epoch’s
captured state and sensor values, to reach consensus about this epoch’s control
problem. It then proposes the actuation value and whatever part of this dynamic
state should be preserved for the next epoch. Then, because we rejuvenate control
tasks irrespective of their fault status, the only remaining part is to return to the
control loop function while resetting the stack pointer. In other words, we turn
the control loop function into a continuation and invoke it after every rejuvenation
of the control task.

2We hope future safety-critical systems will be constructed from hardware components that are
resistant to protection-bypassing attacks, such as Rowhammer [Kim+14]

40

As we have seen, the state that control algorithms need to carry across epochs
may range from a few values (such as the error and accumulator for PID) to several
kilobytes of data (as in the electric microgrid controller from Huo et al. [HBJ22]).
Our strategy for protecting this state is to store it in consensually-updated mem-
ory [GVE22]. Consensually-updated memory is a memory shared among several
replicas. To read, replicas can directly access the memory as it can be mapped
read-only into the replica’s address space. However, writing requires agreeing on
which part of the memory should be updated and how. We leverage the voter to
perform also these updates. In particular, we propose simultaneously all updates
and the actuation signal to avoid inconsistencies due to partial updates. Also,
since we collect proposals over k epochs, we cannot go back in time to receive
additional parts of a proposal from a replica.

Control tasks not specifically built for our system will include code to read and
write parts of this state. The transformation required to turn these control tasks
into consensual-resilient-control (CRC) aware tasks is as follows. We analyze the
program and allocate space on the stack in the context of the control-loop contin-
uation. Upon the first write to a variable in consensual memory, we create a copy
in that space and modify this copy instead of the original location3. Subsequent
reads and writes then refer to this copy instead of the original location, and fi-
nally, the value of this copy is proposed as part of the update that the voter should
apply. Transformations like the above are readily available in modern compilers
(e.g., when constructing single-assignment form).

Figure 4.4 illustrates the above on an example address space layout of control
task applications. Replicas receive a read-only copy of the plant state (see next
section) and share as read-only mapping the code, read-only data, and shared
memory. Stack and the MMIO interface to invoke the voter remain mapped in a
writable manner. As part of the first write, a copy of the consensually updated
state is created in the space allocated in the control-loop continuation’s context
on the stack, and all subsequent reads and writes are directed to this copy. The
last operation of the control-loop continuation (fn_ctl) is to propose the copy as
part of the state update and with the actuation signal, which the voter applies
once f + 1 agreement with other replicas is reached. Irrespective whether or not
fn_ctl terminates, the control task will be resumed in the next epoch with that
function, after resetting its stack to remove any modifications an attack could have
performed. This is important since compromised replicas may fail in an arbitrary
manner, including by not proposing or by not terminating.

3Being at the top of the stack, functions called from the continuation can reach this space.

41

Figure 4.4: Address space layout of a control task replica. Shared state, code,
and data are mapped read-only into the address space. Dashed lines indicate the
data flow for variables in the consensually updated shared memory. Upon the
first write, a copy is created on the stack and finally proposed to update the state
after reaching a consensus. After reset, the instruction pointer (IP) is reset to the
control loop function (fn_ctl) and the stack pointer (SP) to the beginning of the
stack.

4.1.2 Sensing and control-task invocation

This section explains how we ensure replicas are invoked with the same view of the
plant, both in a hosted environment and on bare metal. We start by looking at the
implications of not invoking replicas with the same view of the plant. In this case,
each replica would need to sense the plant state individually and would produce
slightly different actuation signals and values to carry to the next epoch, even
if we consider only correct replicas. Consequently, the voter would now need to
identify when values are sufficiently close, which adds extra complexity to support
this form of approximate agreement.

Instead of adding this complexity to the voter, it can also be added to the
replicas by either reaching agreement on the sensed values or by agreeing on the
actuation value and state update before presenting this to the voter. In either case,
first reaching agreement requires collecting the opinions of f + 1 healthy replicas,
which can only be guaranteed to happen after k epochs. Therefore, any additional
agreement would require the plant to tolerate an extra k epochs of deadline misses,
which would severely limit the applicability of our approach. In the following, we
therefore present solutions that do not require additional agreement rounds other
than for actuating the plant and updating consensual memory.

42

4.1.2.1 Hosted environments

Assuming a trusted-trustworthy operating system (OS), OS-level drivers could
read sensors on the replicas’ behalf and provide them with the values they read.
Since replicas may need to revert to the past k elements, a k + 1 element ring
buffer suggests itself as data structure, which the RTOS can map to the replicas’
address spaces in a read-only manner.

Figure 4.6 shows the ring-buffer data structure used to grant the control task
access to past sensor values and the pseudocode for a very simple controller lever-
aging this data structure. Retrieving from the voter the last epoch where votes
were successful, replicas either contribute to the current control problem at hand
(if this was the previous epoch) or they contribute to forming a majority for a
past control problem that has failed so far to reach an agreement. As the code
shows, with the ringbuffer in place, both cases can be treated in the same way, by
obtaining the sensor value from the buffer (Line 6), computing the control output
and state to carry over (Line 9) and by proposing both (Line 12) before yielding
or sleeping until the next invocation. Replicas will be woken up as part of the
rejuvenation process and resume at the beginning of the control loop captured in
fn_ctl (at Line 3).

1 on rotary_interrupt:
2 epoch = (now() - start_time) / T;
3 angle[(epoch + 1) mod m] += direction()
4 return from interrupt

Figure 4.5: Interrupt handler for decoding rotary controller interrupts from the
rotary encoder sensors of our pendulum into angular values (See also the pendulum
in Section 3).

Let us illustrate the use of this data structure on an example with less co-
operative sensors. Rotary encoders do not reveal the angle directly, but instead
signal a change of their rotation angle by triggering interrupts. To obtain the
desired angle, rotary controllers require the operating system to accumulate an-
gular changes, which they notify through interrupts. The interrupt handler code
in Figure 4.5 shows this decoding of interrupts to angular values, where angle is
the ringbuffer shown in Figure 4.6 and direction returns +4 or -4, depending on
whether the encoder was turned right or left (i.e., depending on which of the two
channels preceded the other (see Section 3)).

43

Figure 4.6: Ring buffer data structure used to refer back to previous plant states
in case the previous epoch was not successful.

1 // control loop
2 fn_ctl () {
3 epoch = voter. last_successful_epoch + 1;
4
5 // read sensor values
6 input = ring_buffer . get_sensor ((epoch + 1) % k);
7
8 // compute controller response
9 <output ,new_state > = control (input , state);

10
11 // make proposal
12 propose (voter. get_nonce (),epoch ,output , new_state);
13
14 // wait for next epoch
15 // (resumes with continuation fn_ctl)
16 sleep ();
17 }

Figure 4.7: Controller function fn_ctl

44

4.1.2.2 Bare metal

Not all control tasks run in a hosted environment. In the following, we therefore
sketch how replica invocation and sensing can be handled in a simple microcon-
troller for applications running on bare metal. We assume that in such an archi-
tecture, we still have the possibility to statically configure privileges (before the
system starts critical operation) and to program a non-maskable timer to enter a
read-only interrupt service routine that executes the code to activate the fn_ctl
continuation at the beginning of the epoch and to reset the stack accordingly
(Line 2 in Figure 4.7).

Without additional hardware support, replicas, in a bare-metal configuration,
have to sense themselves, which requires agreement and plants that tolerate at
least 2k deadline misses before actuation can be guaranteed. To avoid the overhead
entailed with this agreement, we suggest deploying capture hardware units [Tecb]
to periodically sample sensors in a reliable way and store the sampled results in
memory that gets mapped to the replicas’ address spaces in a read-only manner.
Deploying 2fccu +1 such units, where fccu is the tolerated fault threshold for these
units allows replicas to immediately mask wrong sensor values and proceed with
their control tasks. In particular for interrupt-driven sensors, such as the rotary
controllers of our pendulum, the capture units should perform the accumulation
task to avoid replicas having to accumulate captured interrupts themselves.

In summary, while an RTOS provides valuable features such as local scheduling,
task isolation, and service functionalities, it may not be essential for systems with
synchronised local timers and simpler architectures, such as Midir [GVE22]. Re-
execution can be managed without a trusted OS by restarting cores from a reset
state, ensuring valid state recovery. This approach, which can be implemented on
bare metal with immutable code post-reset, can maintain system integrity even in
the event of missed control instances. Therefore, the requisite functionality and
safety can be attained through alternative means, which may also serve to simplify
the system architecture and enhance its reliability.

4.1.3 Replicas execution time
Each replica operates with its own non-deterministic execution periodicity, which
is influenced by the algorithmic complexity. It is of importance to determine and
adjust the replica’s position and sleep time with precision upon completion of the
computation and prior to the transmission of a proposal to the voter. This ensures
synchronisation and optimal performance across the system:

replicas_position = (current_position - start_time) mod Ti (4.1)

45

Figure 4.8: Layout of one of the voter buffers. The size s of the proposal and its
inner structure in the form of m address, size, value triples are stored consecutively
for easier comparisson.

Once the execution of control algorithm has been completed, the replicas no
longer need to be kept active. We therefore save resources by putting them into
sleep mode. In Linux environments, predicting the exact time to reactivate the
replicas in the following epoch is challenging due to inherent sleep overhead issues,
which we identify to be around 70 microseconds. However, in the following epoch,
we can confidently predict that the replicas will be reawakened. To manage this, we
dynamically adjust the sleep duration of each replica by calculating the difference
between the global start time of our framework and the current position of the
replica modulo Ti. By accurately determining each replica’s position, we then
subtract this from the pre-established Ti value.

sleep_time = Ti - replicas_position (4.2)

By using this mechanism, we are confident that the framework will will work
even if the overhead in the specific thread is so is such that one replica gets woken
up to start the epoch and the other at the end.

4.1.4 Voting on state updates and actuation
Consolidating the replicas’ proposals into a single actuation output turns the voter
into a necessarily trusted component, which, to be trustworthy, should remain as
simple as possible. However, unlike voting in traditional TMR systems, not all
proposals are available simultaneously, which requires the voter to buffer requests
before f + 1 matching votes can be extracted. In particular, we need nk buffers
for n ≥ f + 1 replicas and for k =

⌈
f+1
n−f

⌉
epochs.

For our pendulum and most systems we have investigated, actuation amounts
to writing several memory-mapped registers, where the final write typically triggers

46

the actuation. Likewise, consensual memory updates of state that should be carried
to the next epoch also amount to writes to ECC-protected memory, respectively,
to multiple locations in case of RAID. These write locations are typically not
consecutive and, as we have seen before, proposals must be submitted in their
entirety. Therefore an interface suggests itself where replicas specify m writes as
address-size-value triples, stored as s consecutive bytes, as shown in Figure 4.8.
This way, the f + 1 matching proposals can be identified by matching s and
the strings of size s in the respective buffers. Moreover, the voter can apply a
successful vote (i.e., one reaching f + 1 agreement) by performing the m writes
to the specified locations. Aside from maintaining the order of writes, we did not
see any need for sophisticated consistency models other than register consistency,
since voter-initiated writes will typically happen after replicas end their activity
in an epoch and before the next epoch starts. In addition, healthy replicas may
identify state updates in progress, by means of simple sequence locks in consensual
memory.

To interface with the voter, we implement channels and map each channel to
one replica. Moreover, we make the voter aware of epochs by exposing two read-
only registers to each replica. The first contains the current epoch and is advanced
every T . The second contains the epoch number when the last successful vote has
happened (see Line 3 in Figure 4.7). Making the voter aware of epochs avoids
costly operations when resetting replicas, which otherwise would require changing
the permissions of a replica to use a different channel. Upon receiving a message
through the channel, the voter copies the proposal to the respective buffer for
this replica and the epoch it is executing in, rotating through buffers as epochs
advance.

As indicated in our fault model, we further complicate the case of faulty replicas
reaching f + 1 agreement by introducing a challenge response mechanism to the
voter interface. At the start of each epoch, after rejuvenating all replicas, the
voter presents each replica a different random value — called nonce, which they
are asked to reflect to the voter by xor-ing their proposal with this value. Then,
rather than comparing the strings bytewise, the voter first xors the proposed string
with the replica’s current nonce, which returns the original string and then tries to
find f + 1 matching proposals. This way, accidentally faulty replicas, in addition
to adversaries needing to guess their proposal, must still be sufficiently correct to
encode both the state update and the actuation signal using the provided nonce
and to propose both to the voter before they are rejuvenated at the end of the
epoch, which is highly unlikely. Notice that because the nonce is random and
different every epoch, replicas which do not propose in an epoch are automatically
considered as faulty replicas.

In preparation for changing the active replica set, we equip voters with more

47

than n channels and with buffers for more than k epochs. This way, the active set
can be supported with a subset of the resources available in the voter. A trusted
replica manager can change this subset and the parameters n, k, and f over time,
should that be necessary. The active subset is encoded in a bit vector with one
bit per channel (considering those channels as active whose bit is set). Replicas
with access to an inactive channel may already propose, but are ignored until
their channel becomes active. This way, additional replicas can already be started
and allowed to participate while the previous set of replicas is still in control of
the plant. Then, once the new set of replicas are prepared, the trusted replica
manager atomically transitions to this set by means of writing a single register.
The change will become effective at the beginning of the next epoch. Figure 4.9
shows the channels, buffers, epoch registers as well as the reconfiguration registers
just described.

Figure 4.9: Voter internal structure. The voter provides one buffer per replica and
epoch, which the replica can access through a channel. The proposal communi-
cated through the channel is copies into the corresponding buffer of this replica for
the current epoch. The voter reveals as well the current epoch and the last epoch
where f + 1 agreement could be reached and allows k, f and n to be reconfigured
by a trusted replica manager (if necessary).

From the description above, it should be clear that such a voter can be imple-
mented as a service at the application level (waiting for signals from the replicas)
as an operating-system service (invoked by system calls) or as a fixed-function
custom logic mapped to an FPGA or implemented in silicon. In the latter two
cases, replicas interface with the voter through memory-mapped IO registers that
are mapped into the replicas’ address spaces.

Notice also that while replicas must produce identical actuation signals and
state updates to reach agreement (given the same consensually updated state and
sensor values), they may (and in fact should to ensure fault independence) compute

48

these proposals in a sufficiently different manner, such that an attack of one replicas
does not automatically apply to others.

4.1.5 Bringing it all together
With the above building blocks, we can now bring everything together. The system
starts by initializing the plant, the trusted replica-management service (if neces-
sary), and the replicas, which enter the control loop (fn_ctl) as a continuation.
When the continuation starts, the RTOS or capture units have already sensed the
observable part of the plant and captured that information in a ring-buffer. There-
fore if the previous epoch was successful, the replica can proceed with the current
sensor values and the current state in consensual memory to produce an actuation
signal and update for the state that needs to be carried to the next epoch. Both
are proposed to the voter to reach an agreement.

If the previous epoch was unsuccessful, the replica performs the same steps but
with the sensor values for the epoch that precedes the last successful one. Notice
that in this case, the consensual memory has not been updated and contains the
control parameters (e.g., accelerator and previous value for PID control) required
for that epoch. Once the voter receives f + 1 matching proposals, it marks the
current epoch as the last successful and executes the agreed-upon sequence of
writes, updating the consensual memory and actuating the plant.

Healthy replicas end their activity in an epoch by sleeping. However, regardless
of whether a replica sleeps, the RTOS/non-maskable timer will signal a protected
handler in the replicas, which resets the replica by returning to the start of the
control-loop continuation (fn_ctl) and by resetting the replica’s stack.

4.1.6 Safe Deployment
In our fault model in Section 4.1, we have defined constraints for the safe deploy-
ment of systems that implement our solution. If these constraints are met, control
tasks will reach an agreement, and the agreement is on a correct proposal only.
System safety then depends on correct control tasks proposing correct actuations
in the given situation, which to ensure is out of the scope of this work.

The constraints highlighted in Section 4.1 are that (i) no more than f total
faults occur and that (ii) the system addresses faults faster than kT with no further
faults occurring before that time. In particular, we have discussed that malicious
faults must be constrained through diversification such that not all replicas become
faulty simultaneously, with the additional constraint that the time to re-deploy an
attack remains above kT . We have also discussed that persistent faults, which
cannot be handled at that timescale need to be accounted for. That is, if there are

49

fpersistent < f faults, present, only up to f − fpersistent faults of another kind may
occur within the sliding windows of length at least kT .

With up to f faults over a time kT , at most f proposals may originate from
faulty of otherwise compromised replicas. Therefore, when f+1 matching propos-
als are collected, they are collected from at least one healthy replica. In particular,
by the measures we discuss in Section 4.1.2 and Section 4.1.4, we ensure that all
replicas operate from the same state and are invoked in a reliable manner after
rejuvenation. This means (due to our assumption that fused sensor values are cor-
rect) that any healthy replica will propose a correct proposal and that agreement
can only be reached on such a proposal.

It is always possible to reach agreement on such a proposal because over up
to k epochs, n− fk replicas are correct (possibly after rejuvenating them), which
because k =

⌈
f+1
n−f

⌉
, is larger or equal to f + 1. Hence the system is life.

To see why our system is also correct in case up to f faults occur during
each epoch, but with the additional constraints that (iii) among the fk faults
over any sliding window of length kT only up to f are malicious faults, (iv) that
malicious faults do not propose the same value as accidental faults and (v) no
two accidental faults agree in their value, we have to see that agreement cannot
already be reached among faulty replicas. Condition (iii) rules out agreement just
by including malicious replicas and (iv) that malicious replicas collude with an
accidentally faulty replica, even if up to f malicious replicas agree in their proposal.
(v) avoids agreement among accidentally faulty replicas. Notice though that these
are probabilistic arguments and that, as mentioned in Section 4.1, systems cannot
safely be deployed if the residual likelihood of agreement among accidentally faulty
replicas or if in the targeted environment, the residual likelihood of malicious
replicas guessing the fault characteristics of an accidentally faulty replica, cannot
be tolerated by the system. Our challenge to require replicas to send their proposals
by xor-ing a voter provided nonce, further reduces these likelihoods, as accidentally
faults replicas must remain able to do so, despite the fault manifesting.

The above condition also ensures liveness in this setting, since n − f replicas
remain correct in each epoch, which, when collecting their proposals over k epochs
sums up to at least f + 1 proposals from correct replicas.

4.1.7 Distributed Control
To support distributed nodes for the control tasks and a remote plant, both the
sensor signals and the actuation signals must be communicated reliably to all
notes in the system (e.g., by using communication media that already have such
a reliability built in [HKD07] or by running a suitable reliable transmission proto-
col [Lam19]; [OO14].

50

Our focus thus far has primarily been on systems characterized by their tight
coupling, allowing for efficient communication through shared, ECC and RAID
protected memory. This architectural setup facilitates a seamless operation of the
CRC mechanism, wherein a central voter can effectively gather proposals, update
the consensual memory, and subsequently actuate the plant. Our approach is
equally applicable to scenarios where nodes managing the control task are closely
integrated, even if the plant itself is remotely located, provided that the commu-
nication link between the voter and the plant is robust and reliable.

However, the landscape of control systems is rapidly evolving towards more
distributed architectures. In such scenarios, the conventional model of shared
memory, central to our current CRC implementation, may not be feasible. This
shift necessitates a reimagining of our approach to accommodate distributed nodes
for control tasks, particularly when the plant in question is remotely situated.

In distributed environments, where shared memory is not a viable option, an
alternative approach is needed. One potential solution is the use of locally ac-
cessible, read-only mapped memories that are updated consensually among the
nodes. This method would necessitate a mechanism for reconstructing the state of
such a memory in the event of a node’s memory failure. The intricate process of
coordinating these memory updates, while maintaining the integrity and reliabil-
ity inherent in the CRC framework, poses a new set of challenges. The design of
such a system would involve carefully balancing the trade-offs between distributed
control, communication reliability, and memory management.

As control systems continue to evolve and expand into increasingly distributed
networks, the need for resilient, adaptable control mechanisms becomes more press-
ing. While the exploration of these trade-offs and the development of a robust
distributed CRC system is beyond the scope of this thesis, it represents a crucial
direction for future work.

4.2 Evaluation
To demonstrate that our approach to consensual resilient control is in fact robust,
even in the presence of errors, we have implemented the voter and two control
algorithms (LQR and PID) by leveraging Linux’s user-level driver infrastructure
to sense and actuate our inverted pendulum. In particular, we were interested in
whether the ability to tolerate accidental faults in the time domain allows con-
trolling such an application from the less predictable environment that standard
Linux offers. For small epochs (T < 10ms), we had to use Linux’ "silent core"
feature to limit OS activity on the cores to which we pinned our control tasks.

All measurements were conducted on a 4-core Raspberry 3 Model B+ with 1GB
RAM, running at 1.4 GHz, using the pendulum shown in Section 3. In addition, to

51

evaluate the scalability of our approach, we used a 4x6 core Intel Xeon Gold 6334
CPU, running at 3.4 GHz, and a software emulator of the pendulum (implementing
its equation of motion and random turbulence).

We have implemented the voter in software as a user-level task and have pinned
replicas and the voter each to a separate core. Replicas communicate with the
voter through a dedicated shared memory region, as depicted in Figure 4.4, which
implements the voter’s channel interface. We inject faults into randomly selected
replicas and consider only faults that manifest in proposing values that are different
from those of healthy replicas. For accidental faults, a random value is proposed.
For maliciously-induced faults, we as well select a random value but will use the
same value for all compromised replicas. In addition, for demonstration purposes,
pressing a button on the Raspberry PI will as well cause a random replica to fail.

4.2.1 Overhead

Since our approach is to re-execute replicas after rejuvenation for up to k epochs,
the runtime overhead in terms of time to agreement under faults is dominated by
the number of epochs required to collect f + 1 faults. In no faults occur, replicas
actuate within a single epoch and the worst-case time to agreement is the WCET
of the control task plus the overhead to propose and update the state that needs
to be preserved across epochs.

We measured this overhead for PID and LQR on the Raspberry PI and with our
inverted pendulum (f = 1, n = 2) to be 0.39 µs for the time that the replica needs
to preserve the state for the next epoch, by proposing the error and accumulator
(PID) and the measured angles to calculate angular velocities (LQR). The voter
required 0.034 µs to update consensual memory and actuate the plant.

In addition, we performed a series of microbenchmarks on our x86-based simu-
lator of the pendulum to understand these overheads for different controllers that
require preserving increasing amounts of state across epochs. Figure 4.10 shows
these results for the same scenario (f = 1 and n = 2). Shown are the maximum
observed (bars), average (green dot) and P95 (top) and P05 (bottom) percentiles
of these execution-time overheads.

As can be seen, the overhead of turning control tasks into statelessly-recoverable
instants, by pushing all state that needs to be maintained across epochs to con-
sensual memory, is negligible for controllers with small state and well below 2ms
for controllers that operate on a significant amount of dynamic state (such as the
one from Huo et al. [HBJ22]). It should be noted that typical book-keeping tasks
can also be performed on consensual memory, with little additional overhead for
logging system states in consensual memory.

52

Figure 4.10: Overhead of consensual resilient control (in µs) broken down into
the overhead on the replica side to propose the actuation value and update of the
state that should be preserved for the next epoch and into the voter overhead of
applying this update and the actuation signal. Shown is the scenario for f = 1,
n = 2.

4.2.2 Breakdown of Voting Overheads
Figure 4.11 further breaks down the overhead for voting into the different oper-
ations that a software-level voter needs to perform. Hardware implementations
can avoid buffering costs by directing inputs directly to the current epoch’s buffer
and they may parallelize agreement checks. Figure 4.11a investigates for n = 2
replicas how the voting overhead scales with the size of the state that needs to
be preserved across epochs. Figure 4.11b shows these results for increasing n and
therefore also for increasing f and a fixed state size of 200KB.

As can be seen, updating consensual memory, copying to the buffer and check-
ing for agreement is linear in the size of the proposal, given that the number of
replicas is fixed to n = 2 for these measurements. Similarly, updating consensual
memory and copying to the buffer are constant for a fixed-size message, irrespec-
tive of the number of replicas and the agreement check linear in the number of

53

(a) Breakdown of the overhead of voting for
n = 2.

(b) Scalability of voting overhead for
larger f and n. Shown are the results

for a 200KB cross epoch state.

Figure 4.11: Voting overhead for the constant invocation of T = 25ms.

54

replicas (and hence faults tolerated) in case no faults occur (as shown in 4.11b)
and quadratic (n ·k) when f +1 agreement must be collected over up to k epochs.
This is because whenever a replica proposes, the voter checks this proposal to all
buffers that already contain a proposal for the voted-upon epoch.

4.2.3 Actuation Signals

Figure 4.12: Continuous PWM signal generation in static rotary encoder channels:
enhancing motor readiness for improved stability

As shown in Figure 4.12, a Pulse Width Modulation (PWM) signal is intention-
ally generated even when the channels of the rotary encoders remain unchanged.
This systematic generation of the PWM signal is intended to prepare the motor
for immediate action upon the detection of any disturbances, ensuring a quick and
seamless transition into movement. This proactive measure is key to the motor’s
readiness and aims to eliminate any possible delay between the detection of a dis-
turbance and the motor’s response. The encoders’ high resolution of 600 pulses
per revolution enables the system to detect movements exceeding 0.15 degrees.

The consistent supply of PWM not only enables smooth motor movement but
also greatly enhances the operational stability of the entire system. A stable

55

system experiences fewer instances of erratic movements or overshooting, which is
essential for ensuring accuracy and reliability in the controlled processes.

Figure 4.13: Sensor and actuation signals of the pendulum were evaluated using a
logic analyzer. Shown are the points in time of actuation (vertical lines) for three
epochs (marked on the top as 4, 5 and 6). The individual channels show DC motor
actuation (1), encoded as a pulse-width modulated signal, the two channels of the
rotary encoder which measures the angle of the pendulum (2) and (3), as well as
the two channels measuring the position (4) and (5).

Figure 4.13 shows the sensor (Channel 2–4) and actuation signal (Channel 1)
of the inverted pendulum, controlled over three epochs with a consensual resilient
PID controller. The scenario depicted in the figure roughly resembles the situation
presented in Figure 4.2. During the first epoch, actuating at vertical line (4), no
faults happen and the DC motor gets configured to a 66% duty cycle, as seen in the
wider pulse width in Channel 1. As a response to this actuation, the rate of change
of the angle drops, as can be seen from the longer distances between the rising and
falling edges on Channel 2 and 3. Therefore, the control algorithm selects a lower
duty cycle to reduce motor velocity and slow down the cart and thereby also the
pendulum motion even further, with the idea of reaching the stable point where
the pendulum is pointing straight to the top. Unfortunately, a replica fails during
that epoch (since we injected a fault). In consequence, after the voter receives
f + 1 proposals at the point in time denoted by vertical line (5), no agreement
can be reached and the voter will hold the previous duty cycle of 66%. In the
following epoch, we again inject a fault into one of the replicas, but this time,
f + 1 agreement can be reached by combining the proposals of the current and

56

the previous epoch. The voter applies the proposal and adjusts the duty cycle to
8.3%, as can be seen in the change of the pulse-width encoded signal. We also see
slight variations between the actuation points. This is due to the control replicas
executing with slightly different actual execution times within the 7ms epochs.

4.2.4 Rejuvenation costs
A central contribution of this work is the reduction of rejuvenation costs to just
resuming the control loop continuation (fn_ctl) and resetting the stack, which both
have overheads in the single to double-digit cycle range. In addition, we induce
a maximum observed overhead of 0.39µs (with LQR and PID) for proposing and
updating the state in consensual memory that must be preserved across epochs.

To compare and contrast these costs, we have also measured the average-
case overhead when rejuvenating replicas traditionally by creating a new process
(329.06µs), a new thread (13.28µs) and by mapping the voter interface to this
replica (100.82µs). In addition, such a replica would experience cold start effects
and need to catch up to the state of other replicas. However, as can already be
seen from the reported numbers, the costs of rejuvenating replicas traditionally
are significant. It should also be noted that it is difficult to bind these costs from
above, which is why typically, real-time systems only use these operations while
they have to guarantee timeliness. Notice that rejuvenation will also be required
in systems, such as TMR, that are capable of masking faults. This is because
persistent attacks exhaust the healthy majority over time. Rejuvenation restores
this majority.

4.2.5 Replicas Synchronization Costs
Coordinating proposals from replicas executing a control algorithm can be a com-
plex process in a Linux environment where sleep overhead can introduce timing
variability (Figure 4.14). In this scenario, replicas submit their proposals via in-
coming buffers and a voter centralises these proposals for decision making. Key
aspects of this process include:

• Proposal submission by replicas: Each replica sends its proposal to the voter
after completing the control algorithm. The timing of these submissions
is critical, but unpredictable due to the sleep overhead inherent in Linux
systems. This unpredictability leads to asynchronous proposal arrivals, with
different replicas sending their inputs at different times within the same
control epoch.

• The role of the voter in synchronisation: The voter is responsible for the
consolidation of these proposals. Its effectiveness depends on its ability to

57

handle delays and discrepancies in proposal arrival times. The voter must
wait for all proposals to arrive and ensure that each replica’s input is consid-
ered. This requires a mechanism within the voter to identify which replicas
have already submitted their proposals and which have yet to do so.

Figure 4.14: Cost of synhconization for the voter

A larger number of replicas will naturally increase voter waiting time from the
first received request to the last. As seen in Figure 4.15 we scaled up the number
of replicas while voting on the PID state of 16KB. Even if we run 19 replicas, the
waiting time would be, on average, around 25us and therefore cannot interfere
with our execution flow, keeping in mind that an inverted pendulum as a use
case with a particularly short control loop is around 5ms. Thus, only running a
control loop with a duration of under 100us can be problematic. However, these
results are derived while running Linux, and we assume the overhead and cost
synchronization will be significantly lower while running RTOS.

58

Figure 4.15: Synchronization cost with the respect of the scaling replicas

4.3 Checkpoint Recovery
Macroscopically, our approach could be characterized as a checkpoint recovery
scheme albeit with an ultra-high checkpoint frequency and unconditional recovery
at the end of each epoch. However, when we compare to other checkpointing
approaches, such as [RS94]; [ZC03]; [AY03], in more detail, there are substantial
differences, which we characterize in the following:

• Checkpoints typically capture the entire state of a task in a consistent cut
across all replicas (updating the previous checkpoint with what has been
modified since then), whereas in our approach and using consensual memory,
replicas propose only very selectively what portion of that state they will
need for future epochs. The remaining (writable) state is simply discarded.

• Computation of and agreement on a new checkpoint are typically separate
operations. Our approach combines both by only changing the shared state
after f + 1 healthy replicas agree on the update.

• Checkpoints are typically computed asynchronously to the execution of check-
pointed tasks (e.g., by marking modified pages as copy on write to create a

59

consistent cut). This is not necessary, since replicas end their activity in an
epoch by proposing both what should be updated in the shared state and
how to actuate the plant. This further ensures that the agreed-upon state
corresponds to the latest plant actuation, since agreement is reached on both
simultaneously and the voter follows suite in applying the updates.

• Recovery from a checkpoint is typically performed only after replicas have
failed. This is not sufficient as compromised replicas might remain stealthy
and go undetected. For this reason, we recover replicas after every epoch,
by resetting them to the beginning of their control loop.

• Last but not least, checkpointing diversified replicas requires determining
whether the individual checkpoints denote the same progress, whereas agree-
ing just on the values to be carried across control epochs, avoids such compli-
cations, because (i) the agreed upon state needs not to be diversified (it can
only be written consensually), and (ii) healthy replicas agree on the same
updates, despite computing them in a sufficiently different manner.

60

Chapter 5

Aεgis: Dependable
Simplex-Complex Control

The second approach presented in this thesis represents a strategic shift towards
the creation of systems that are inherently adaptable to change. This method
embraces the dynamic nature of modern environments, recognising the necessity
for systems that are able to adapt and respond to evolving circumstances. In con-
trast to traditional models that prioritise static, unchanging structures, the focus
is on the development of systems that are capable of maintaining functionality and
resilience in the face of unpredictable challenges and changing conditions. This ap-
proach aligns with the principles of CPS. Failures in these systems can arise from
design faults, cyberattacks, or environmental disruptions. Current standards, such
as ISO 26262 [Sta18], recommend redundancy to enhance reliability, exemplified
by the Boeing 777’s use of triple modular redundancy [Yeh95] . Despite the imple-
mentation of these measures, CPS often lack resilience against undetected attacks.
Therefore, adaptability, including functional adaptation through different control
modes (e.g., taxiing, take-off, flight, and landing in aircraft), is crucial for ensur-
ing continued operation in varying conditions, which may conflict with the static
assumptions of traditional monitoring tools.

5.0.1 The Simplex architecture
In 2001, Sha [Sha01] introduced a dual control architecture where the concerns
of safety and performance are addressed by isolated components cf. Fig. 5.1. To
leverage optimal control performance when possible, while ensuring safety when
at risk, a complex controller CC is paired with a simple controller CS that provides
safety guarantees, but at the cost of limited performance. Normally, the complex
controller remains in charge, delivering optimal control performance. However, if
the decision module D deems the control signal of this controller unsafe, it switches

61

Figure 5.1: Simplex architecture, adopted from [Sha01]. A complex, high-
performance, controller operates the plant in normal situations, while a simple,
high-assurance controller guarantees safety. A decision module implements the
switch between both for optimizing the control performance (complex controller)
while maintaining safety (simplex controller).

to the simplex controller, which guarantees safety.

Damare, Roy, Smolka, and Stoller [Dam+22] showed the architecture’s advan-
tage by presenting a provably safe decision module D based on Barrier Certificates
to integrate neural-network-based complex controllers that do not provide any
guarantees. Sha [Sha01] investigated its behavior under accidental faults, showing
that the forward recovery strategy implemented by that design allows employ-
ing high performance control strategies more aggressively while reducing the costs
for providing high assurance. Wang, Hovakimyan, and Sha [WHS13] extend the
analysis of the Simplex architecture and assume physical failures changing the
dynamics of the phenomenon P to be controlled additionally to software faults
affecting the controller. In contrast, Mohan, Bak, Betti, Yun, Sha, and Cac-
camo [Moh+13a] considered cyberattacks targeting (only) the complex controller
in their S3 architecture. By moving not only the safety controller and the deci-
sion logic but also an additional monitoring system to dedicated hardware Field
Programmable Gate Array (FPGA)), they argue that these trusted components
are not attackable. Moreover, by detecting deviations in the execution of the com-
plex controller, additional information (e.g., about ongoing cyberattacks) becomes
available for deciding when to perform the safety switch to the simplex controller.

This, however, requires additional hardware for monitoring and simplex control
and limits (functional) adaptability of the system in open environments that may
dictate changing the simplex controller, monitoring and detection strategy. This
change would either require reprogramming the FPGA (which re-introduces vul-
nerabilities to cyberattacks) or overprovisioning hardware by providing instances
upfront. On the other hand, when implementing the simplex controller and deci-
sion logic in software, adaptation simplifies to restarting tasks, which now are no
longer exempt from cyberattacks and expose a relevant attack surface.

62

5.0.2 Stability Considerations of Simplex and its Switching
System

The Simplex architecture aims at controlling a plant P , which requires it to provide
stability guarantees. In this section we address these stability considerations.

To formalize the behavior of switching systems, we model the physical phe-
nomenon P under control using discrete-time linear time invariant systems ac-
cording to

P :

{
xk+1 = Axk +B uk

yk = C xk +Duk,
(5.1)

where xk ∈ Rn is the system state, uk ∈ Rp is the control signal, and yk ∈ Rq is
the system output. The matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and D ∈ Rq×p

completely describe the system dynamics.
In the Simplex architecture, two controllers are assumed — a simplex controller

CS and a complex controller CC. Each controller type is implemented as a periodic
task with period τC. In every iteration, one of the controller types is in charge
of computing a control signal for the following period. Commonly, the goal is to
keep the complex controller in charge as it is assumed to have superior control
performance by being based on sophisticated algorithms (for example taking into
account sensor fusion, or finding the solution of an optimization problem). As
such, no inherent structure of a complex controller can be predefined. Instead we
write it as a function of the physical plant controlled (P), the sensed data (yk),
and possibly of the previous control signal uk,

CCi : uk+1, zk+1 = fi (P , yk, uk, zk), (5.2)

where zk represents the internal state of the controller. One can imagine setting
the control value as the result of a reinforcement learning algorithm or of a neural
network [Pha+20]. With that the complex controller is assumed to not provide
any guarantees about the quality of the calculated control signal, which implies
that stability of the system is not guaranteed when operated with the complex
controller.

Therefore, the simplex controller CS has to provide safety and consequently
stability guarantees. For that we assume that a generic simplex controller CS can
also be written as a discrete-time linear time invariant system

CSi :

{
zk+1 = Fi zk +Gi yk
uk+1 = Hi zk +Ki yk,

(5.3)

again zk ∈ Rc is a vector that represents the internal state of the controller. Here,
F ∈ Rc×c, G ∈ Rc×q, H ∈ Rp×c and K ∈ Rp×q determine the evolution of the
controller computation [ÅH06]. Without loss of generality, we assume that the

63

controller is trying to regulate the output to be zero (the system model can always
be shifted to move the desired output to the origin). In this setting, executing
a Proportional and Integral simplex controller CSi means selecting Fi = I,Gi =
I,Hi = ki, and Ki = kp, where kp and ki are respectively the proportional and
integral gain matrices. On the contrary, executing an Output Feedback controller
CSj, means selecting Fj = 0, Gj = 0, Hj = 0, and Kj = K, where K is a matrix
that determines the output feedback law. We use subscript i and j to differentiate
between simplex controllers.

With the controller in place, we can analyze the behavior of the closed-loop
autonomous system when the simplex controller CS is executed as:xk+1

zk+1

uk+1

︸ ︷︷ ︸

x̃k+1

=

 A 0 B
GiC Fi GiD
KiC Hi KiD

︸ ︷︷ ︸

Φi

xk

zk
uk

︸ ︷︷ ︸

x̃k

(5.4)

where Φi is the closed-loop state matrix when the simplex controller CS is executed.
If all eigenvalues of Φ lie within the unit disc, the system is asymptotically stable
when controlled with CS, and reaches an equilibrium point determined by the
control design procedure.

This, however, covers only the execution of the simplex controller, disregarding
the complex controller CC that can be switched to/from by the decision module D.
It implements a function D(yk,uk+1, ξ), which determines the control signal to be
applied to the plant based on the current sensor data yk, on the calculated complex
and simplex control signals uk+1 = {uC, uS}, and on an internal knowledge base ξ.
That effectively turns the system into a switching system whose stability can be
verified using more complex tools [Lib03]. In particular, a sufficient and necessary
condition for a switching system to be stable under arbitrary switch is that its joint
spectral radius, i.e., the maximum rate of growth of the system state is less than
1 [Jun09]. Unfortunately, the problem of determining the stability of switching
systems using the joint spectral radius is undecidable [BT00]. To overcome this
issue, several methods allow us to determine tighter or coarser approximations for
stability results [VHJ14]. Some of these methods can also be turned into design
procedures. In some situations we can design all the controllers of the switching
system to ensure that the corresponding matrices Φi are contractive. Alternatively,
if all the closed loop systems matrices Φi are asymptotically stable, enforcing a
prescribed switching dwell time ensures stability [CM10]; [Xia22].

This, however, requires some knowledge about the complex controller. Ei-
ther its structure and parameters are used to show stability directly [Joh08] or
reachability analysis is used to predict system behavior under the complex con-
troller [Bak+14]. The former requires the complex controller to fulfill design con-
straints and thereby contradicts the idea of not providing any guarantees. The

64

latter, on the other hand, places additional complexity and computational load
on the decision module which needs to maintain a model of the system and its
environment. With that, using dedicated, trusted hardware FPGAs, Application-
Specific Integrated Circuits (ASICs)) as discussed for implementing resiliency to
cyberattacks becomes challenging.

5.0.3 Dependability
The last subsections showed that the Simplex architecture provides the basis for
exploiting optimal control strategies when possible by relying on guarantees given
by the simplex controller CS and a decision module D. For stability, this requires
the latter modules to maintain models of the system and its environment which
increases their complexity. The necessity for being resilient to cyberattacks, on
the other hand, requires to have trusted components, which were proposed to be
implemented in hardware [Moh+13a]. However, implementing increased complex-
ity directly in hardware reduces maintainability, rendering it untrustworthy, and
potentially introduces an untrustworthy but to-be-trusted Single Point of Failure
(SPoF), which must be avoided.

We operate under the assumption that faults may occur also in the simplex
controller and decision module – resulting either in unsafe control actions or dead-
line misses. These may be caused by accidental faults affecting the controller or by
cyberattacks impairing control actions - both rapidly or slowly. For now, we addi-
tionally assume that environmental observations provided by sensors are adhering
to their specification. That is, they are affected only by reasonable noise levels but
not impaired by faults or attacks (cyber or physical). To achieve fault-tolerance
under such assumptions, different versions of redundancy can be employed [Ise05].
The central assumption to be fulfilled is that redundant components fail inde-
pendently, in isolation of each other and that at each point in time at most f
components are faulty as described above. That is, the operation of one compo-
nent is not affected by another component, in particular a faulty one. Depending
on their implementation, one can distinguish hardware- and software-based re-
dundancy. The former addresses the availability of physically replicated hardware
(e.g., instance execution units) that can be swapped in when faults are detected
(passive replication with hot, warm or cold standby) or that are executed in par-
allel (active replication). With that physical, independent faults of the employed
hardware as well as faults in the executed software are covered such that a high
fault coverage is provided. On the other hand, additional hardware increases costs
and installation space.

In software-based redundancy, modules are replicated, for instance, as tasks
managed by the OS, while not being able to cover physical faults or faults in the OS
and thereby having a reduced fault coverage, software faults can be addressed more

65

effectively. N-version programming [CA95] produces diversity in employed software
modules to increase their independence and consequently reduce the likeliness
of multiple modules failing simultaneously. But even when replicating the same
software module, diversification can be achieved at OS-level, e.g. by address-space
layout randomizing [Boj+11b]. Additionally, they can be protected from accidental
memory faults, e.g. through error correction and scrubbing.

We assume active replication of the simplex tasks but are agnostic as to whether
this is achieved through hardware or software redundancy (the latter of course
with the implications mentioned above, like assuming a trusted OS. We consider a
hybrid fault model [Ver06a]. That is, while up to f simplex/decision-module tasks
and the complex task may fail and behave in an arbitrary, potentially malicious
manner (e.g., when compromised in a cyberattack), we shall introduce a voter
(implemented in hardware or the OS depending on the redundancy model used)
and assume that this voter will not fail. We will justify the coverage of this
assumption by arguing that it suffices for this voter to provide a simple, fixed
function (irrespective of the controllers that should be used) and by demonstrating
that it can be implemented in hardware within 148 lines of VHDL code.

5.0.4 Problem Formulation
Emerging Cyber-Physical Systems need to be adaptable, resilient to cyberattacks,
and tolerant to disturbances as well as faults. The Simplex architecture provides
this adaptability by enabling switches to safe controllers when increased distur-
bances, caused by the environment, necessitates the same. Unfortunately, it does
not address functional adaptations or cybersecurity. The latter asks for necessar-
ily trusted components on which security measures can be based. These trusted
components may entail additional, hardware-based components [Moh+13a] that
reduce adaptability, maintainability, and fault-tolerance of the system. Fault-
tolerance can be achieved by introducing redundancy in such components. This,
however, entails reduced adaptability due to an increased number components.

Therefore, individual approaches to provide adaptability, resiliency to cyberat-
tacks, and tolerance to disturbances as well as faults are available, but address the
above challenges in isolation. With AεGIS, we aim at balancing these challenges
by integrating individual approaches into a single system architecture, leveraging
a single, fixed-function, but generic trusted component, implemented in hardware,
for all approaches.

To balance the objectives of providing redundancy-based fault-tolerance while
enabling adjustments of functionality and robustness to changed operational en-
velopes in a secure manner, AεGIS is conceptually based on the Simplex architec-
ture [Sha01] and separates the concerns of performance and safety. This enables
us to extend the architecture by introducing two additional mode switches —

66

complex-to-complex and simplex-to-simplex — to provide independent adaptability
of functionality and robustness.

5.0.5 Operational Mode Switching
The Simplex architecture [Sha01] implements a simplex and a complex controller
together with a decision module (cf. Fig. 5.1) to realize the following mode switches:

Complex-to-Simplex When the decision module D detects an unsafe control
action provided by the complex controller, it initiates a switch to the simplex
controller to maintain safety.

Simplex-to-Complex Considering the system’s stability, the decision module D
initiates a switch to the complex controller to increase performance executing
the complex controller.

With these switches, the Simplex architecture implements adaptability to achieve
robustness by switching between performance and safety modes. However, it lacks
the adaptability to react to deviations from the specified operational envelope
of the system, that is, functional adaptability. Thus, AεGIS extends the set of
possible switches by introducing:

Complex-to-Complex Assuming that complex controllers cover normal oper-
ating conditions (i.e., in the absence of faults), implementing adaptability
requires switching between complex controllers to optimize the closed-loop
system performance. This switch is performance-driven and does not provide
or affect safety guarantees.

Simplex-to-Simplex Simplex-to-Simplex switches provide safety guarantees when
adjusting to a changed operational envelope. Specifically, they allow the
controller to maintain safety through increased disturbance mitigation, or
by providing safety strategies adapted to the current environment.

Combining these four operational mode switches, AεGIS simultaneously provides
both functional and robustness adaptation to adequately react to changing envi-
ronmental conditions.

67

Figure 5.2: Schematic representation of the AεGIS featuring a complex subsys-
tem to generate best-effort, high-performance control signals uCk+1

and a simplex
subsystem to either guarante e the safety of the proposed signal or calculate a
corrected, safe control signal uk+1 to be passed to the plant P .

Figure 5.3: The complex subsystem is comprised of multiple complex controllers
CCi that are optimized for varying operational envelops. The performance man-
ager implements a complex-to-complex switch by activating the complex controller
matching the current operational envelop best.

5.0.6 AεGIS Control Architecture
To implement the described operational mode switches in a secure and reliable
manner, AεGIS consists of a complex subsystem generating a best-effort control
signal uC.k+1

and a simplex subsystem for calculating a safe control signal uk+1

based on it, cf. Fig. 5.2. We shall first describe our architecture in a hosted setting,
before returning in Subsection 5.0.7 to a bare metal variant. Both maintain the
separation of performance and safety concerns.

The performance aspect is implemented in the complex subsystem, which com-
prises two sets of components to realize the complex-to-complex switch and gen-
erate uCk+1

:

Complex Controllers CC{1,...,mC} To provide high-performance control strate-
gies optimized for different operational envelopes, a set of complex con-
trollers CC{1,...,mC} is employed. Next to using a model of the plant P ,

68

Figure 5.4: The simplex subsystem receives the best-effort control signal uCk+1
from

the complex subsystem as well as current sensor observations yk. These inputs are
passed to the currently active simplex controller that is replicated n = 2f+1 times
in its replication group. The safety voter consolidates the control signals proposed
by the replicas into a single control signal uk+1 that is passed to the plant P and
decides about the switching between simplex controllers, that is, executing the
simplex-to-simplex switch.

they receive the current sensor observations yk as well as the last applied
control action uk to calculate a new, best-effort control signal uCik+1 as
uCik+1, zCik+1 = fi (P , yk, uk, zCik with i ∈ {1, . . . ,mC}. Since no guarantees
need to be provided, the controllers may employ complex strategies, for in-
stance model-predictive control [Sch+21] or reinforcement learning [Bru+22].
zCi,k allows them to be stateful.

Performance Manager The Performance Manager also receives the sensor ob-
servations of the plant yk and uses this data to maintain an estimate of
the system’s state and its operational envelop. Based on this estimate, the
optimal control strategy is determined and the corresponding complex con-
troller is activated. This may entail a switch between complex controllers (a
complex-to-complex switch), which effectively adjusts the system’s function-
ality to a changed operational envelop. Finally, the performance manager
routes the best-effort control signal uCik+1 of the currently active complex
controller CCi to the subsystem’s output, that is, uCk+1

.

With its complex-to-complex switch, the complex subsystem enables performance-
driven adaptability of the overall system, but does not provide any guarantees
about the produced control signal uCk+1

. To ensure that said guarantees are pro-
vided, the control signal is sent, as a proposal, to the simplex subsystem which
verifies its safety or calculates a safe alternative. For that, it comprises the follow-
ing components (cf. Fig. 5.4):

69

Figure 5.5: The simplex controller implements the high-assurance simplex algo-
rithm CSi

and guarantees safety of the calculated control signal USk+1
using the

decision module D. It implement the Simplex architecture as proposed by Sha
[Sha01] and therefore provides the complex-to-simplex and simplex-to-complex
switches. They are denoted Complex-Simplex Switch in the figure for simplicity.

Simplex Controller CSi
The simplex controller implements a high-assurance

control strategy that is guaranteed to stabilize the plant P while fulfilling
predefined safety requirements, even under attack. It is based on the Simplex
architecture [Sha01] to provide complex-to-simplex and simplex-to-complex
switches but extends it to enable simplex-to-simplex switches as well. Its
components are explained in the following paragraph.

Replication Groups Ri With the Simplex Controller verifying or correcting the
control signal uCk+1

to guarantee safety, it becomes a SPoF. To prevent this,
the simplex controller is replicated n = 2f + 1 times in its replication group
Ri.

Safety Voter Entailed by the replication of the simplex controller, the safety
voter is tasked with consolidating the control signals proposed by the replicas
into a single control signal uk+1 that is passed to the plant P . Moreover,
it is responsible for passing control of the plant from the current to the
switched-to simplex replication group. Since simplex-simplex switching is a
time-critical operation, we decided to separate the concerns of bringing up
the switched-to replication group and passing control to it, leaving the latter
to the safety voter after the new group is active and while the old group
is still active. Once the switch is performed, the old group is deactivated,
again in a non-time-critical operation.

For orchestrating the replicas and implementing the simplex-to-simplex switch,
the simplex controllers embedded in the simplex subsystem comprise the following
components (cf. Fig. 5.5):

70

Simplex Control Algorithm CSi
The simplex control algorithm implements a

high-assurance control strategy that is guaranteed to stabilize the plant P
while fulfilling predefined safety requirements. It receives the current sensor
observations yk to calculate a new control signal uSik+1, e.g. using Eq. (5.3).
Note that its structure needs to be chosen in such a way that proving its
stability is possible. As such, the simplex control algorithm is complementary
to the complex controllers CC{1,...,mC}.

Decision Module D The decision module D receives the best-effort control sig-
nal uCk+1

provided by the complex subsystem and either the safe control
signal uSik+1 provided by the simplex control algorithm or the sensor ob-
servation yk. With that, the decision module is tasked with verifying the
safety of uCk+1

or, in case uCk+1
is not safe, to switch to the simplex control

algorithm CSi
. To this end, it implements the function

uk+1 = D (yk, uCk+1
, uSk+1

, ξ) =

{
uCk+1

, if t (yk, uCk+1
, ξ) = 1

uSk+1
, if otherwise

with the test t (yk, uCk+1
, ξ) implementing the run-time safety check of the

best-effort control action by evaluating either to one (safe) or any other value
(unsafe). Depending on the test function’s result, either the best-effort signal
uCk+1

is passed to the plant P or the trusted control signal uSk+1
is used.

As such, the module implements the complex-to-simplex and simplex-to-
complex switches, for which it has to take the stability of the system into
account. Next to the stability of the individual controllers, it has to consider
that the resulting system is a switching system [Lib03], cf. Section 5.0.2.

Simplex Manager The simplex manager is tasked with preparing the simplex-
to-simplex switch. To this end, it takes the current sensor data yk as input
and maintains and evaluates an estimate of the system’s operational enve-
lope. Upon detecting the operational envelope changing, it schedules the ac-
tivation of a simplex controller that implements a matching simplex control
algorithm using the trusted RTOS the architecture is implemented on. Once
the simplex controller is ramped up, the simplex manager signals readiness
by providing the corresponding activation vector avSi

. This vector instructs
the voter to consider from now on control signals from Si, while ignoring
those from the previous simplex controller.

Replication Manager In the presence of faults, the simplex controller is a SPOF.
To prevent this, the simplex controller is replicated and the replication man-
ager is tasked with orchestrating the replicas. It monitors the health of
the replicas and commands the trusted RTOS to rejuvenate replicas when

71

needed. For that, it receives the last buffered and voted on control signals
~b from the safety voter, cf. Section 5.0.8. When detecting a disagreement
of replicas with the majority, it commands the trusted RTOS to rejuvenate
those identified faulty replicas. In addition, to counter stealthy attacks, it
proactively rejuvenates replicas on a periodic basis [SNV06a].

While the simplex control algorithm and the decision module are motivated by
the Simplex architecture of Sha [Sha01], the simplex manager and the replication
manager are novel components for realizing the mode switches of AεGIS in a fault-
tolerant manner. Moreover, since the replication manager is implemented inside
the simplex controller, it is replicated as well and does not become a SPoF itself.
On the other hand, we therefore need to assume that the trusted RTOS provides
the following functionality: process isolation techniques to prevent another process
from compromising the security and integrity of the critical functions of the archi-
tecture, a trustworthy voting mechanism to ensure that the commands from the
replicated replication manager are executed only when majority is achieved, and
trustworthiness of actually spinning up the processes as commanded to. For hosted
AεGIS, implementing the safety voter as a trusted RTOS functionality suggests
itself or, if a hardware implementation is available, to also use it for replicating
the RTOS itself [GVE22].

5.0.7 Bare Metal AεGIS
It is also possible to realize AεGIS without trusted RTOS, that is, in a bare
metal configuration. In that case, realizing the safety voter in hardware suggests
itself as software implementation would require setting aside a core that must be
trusted not to fail. Moreover, all possible simplex replication groups must already
be configured and replicas isolated from each other (e.g., by means of booting
into a hardware partitioning configuration), but they can be left dormant, waking
replica groups up before switching to them. In this case, no replication manager
is needed, since replication groups are already available and in principle ready to
run and take over. Notice though that static partitioning limits rejuvenation to
periodically rebooting the individual replicas from a read-only image.

5.0.8 Safety Voter
The safety voter is the last component deciding on the control signal to be sent to
the plant. Failures of it could result in unsafe control signals reaching the plant
and can therefore not be tolerated. This effectively turns the Safety Voter into a
zero-defect target which can only be reached when aiming for minimal complexity
(ideally implemented in hardware).

72

Figure 5.6: Trusted hardware voter for consolidating proposals of safe control
actions uSik+1 from the currently active replica group Si into a single control signal
uk+1. Replicas obtain access to a channel through which they propose the control
action, but also changes to the activation vector ~av and possibly also the fault
threshold f in case the Simplex Manager seeks to change the replica group as
part of a simplex-simplex switch. Otherwise, they repeat the previous value. A
monotonic sequence number seq ensures that the voter only considers current
vote and prevents faulty replicas from reaching agreement with lagging replicas
on outdated control signals. The voter seeks agreement among f + 1 out of the
n = 2f +1 replicas of the current replica group, ignoring the proposals of all those
replicas that may already have access to a channel (due to their ramp-up process),
but to which the Simplex Manager did not yet switch. Once agreement is reached,
the voter increments seq , updates f and ~av and provides the plant’s actuators with
the control action uk+1.

73

Two goals are pursued with the safety voter. Firstly, it consolidates proposals
of control signals calculated by the simplex subsystem into a single signal passed
to the plant. Secondly, it assists in realizing simplex-to-simplex switches. Fig. 5.6
exemplary illustrates our voter design for f = 1. Replicas from two groups have
obtained the permission to write to individual channels of the voter. Group S0 is
currently responsible for controlling the plant, whereas group S1 is ramped up to
take over to better respond to environmental changes. Changing permissions is a
costly and difficult to predict operation. Hence we leave it to the replica manager
and the trusted RTOS to establish these permissions and decouple the granting of
permissions from the time-sensitive switch by means of the activation vector ~av.

Normally, when no switch is imminent, replicas of the active group merely
vote to agree on a safe control signal uk+1 by repeating ~av (and f). The voter
accepts proposals from all activated channels (i.e., channels i where ~av[i] = 1) and
from replicas that are able to match in their proposal the sequence number seq ,
which the voter increments after each successful vote. The latter is to prevent
replay attacks, by faulty replicas agreeing with lagging replicas on historic control
signals. Also, the voter actively prevents equivocation, by preventing replicas
from altering the buffer once they have made a proposal for the current sequence
number, allowing further proposals to be made only after seq advances.

To perform a simplex-to-simplex switch, after the new group of replicas is
already up and ready to take over, the Simplex Manager proposes a new activation
vector ~av disabling the channels associated to replicas of the old group and enabling
those associated to the new group. During this step, it is also possible to adjust f to
adapt to increasing / decreasing threats or to compensate for different complexities
of the simplex controllers or of the environmental conditions in which they have
to act.

Reaching agreement on ~av and f changes the values of both, which becomes
effective for the subsequent votes. Figure 5.7 illustrates the timing of simplex-
simplex switches and the use of ~av to simultaneously relinquish the responsibility
of the current replica group and put in charge the new replica group. Ramp up can
last several control periods, relieving the RTOS from providing stringent timing
guarantees for loading, memory allocation and privilege management. During that
time, the current simplex controller keeps the closed-loop system safe, by providing
the plant with a correct control signal every control period τC. Then, after the
ramp-up completes and when the new replica group is ready, the vote over ~av
changes which channels the voter considers and hence passes responsibility to the
new replica group.

Notice that the same mechanism for simplex-to-simplex switching can be used
during proactive and reactive rejuvenation, but enabling the channel of the rejuve-
nated replicas while at the same time disabling the channel of the next replica to

74

Figure 5.7: Simplex-simplex switch. After the replica group for the new simplex
controller is ramped up. The current simplex controller votes on changing av to
relinquish its responsibility and put the new replica group in charge.

rejuvenate. This avoids having to provide extra replicas to secure proper majorities
(as discussed in Sousa et al. [SNV06a]).

75

5.0.9 Practical Matters
In this subsection, we summarize a few additional considerations in the practical
implementation of AεGIS.

5.0.9.1 Timing of Simplex Control and Decision Module Execution

Figure 5.8: Scheduling options for complex, simplex and the decision module.
Shown is the tradeoff between granting the complex subsystem less time to safe
resources and execute the simplex controller only after the decision module found
the complex control output unsafe (left) and of executing the simplex controller
in parallel to the complex subsystem, deciding upon and selecting the result only
after both finished (right). The latter allows granting more time to the complex
subsystem, since, after it completes, only the decision module must execute before
the end of the control period.

The simplex architecture and as such also AεGIS allows trading off time granted
to the complex subsystem to safe resources, by not executing complex and simplex
in parallel. In our case, replication of the simplex subsystem makes this tradeoff
more prominent.

To decide on the value to put forward to the voter and hence to the plant, the
complex subsystem has to produce a control output by a relative virtual deadline
δC < τC. Only after the complex subsystem finishes, the decision module can
decide on the safety of the provided control output and hence on the necessity to
perform a complex-simplex switch, by executing as well the simplex controller and
by using its control output instead of the one from the complex subsystem (see
Figure 5.8 (left)).

76

In case the control period τC is small or the complex subsystem needs longer to
produce a control output, it is however also possible to always execute the simplex
controller in parallel to the complex controller to reduce the amount of work that
has to follow δC . In this case, the decision module receives both the output of the
complex controller and the output of the simplex controller and merely decides
which of the two values to put forward to the voter and the plant (Figure 5.8
(right)).

5.0.9.2 Preventing the Complex Subsystem from Equivocating

Since the voter actively prevents overwriting buffers once a proposal has been
made, it provides a unique opportunity to also prevent equivocation from the com-
plex subsystem to the decision module by assigning an always disabled (~av[i] = 0)
channel i to the complex subsystem. Without that, the complex subsystem could
lie inconsistently to the decision module replicas, which then would be required
to first reach consensus about the complex control output they received. Reading
from the complex buffer avoids the overhead that such an agreement would entail.

5.0.9.3 Loosely Coupled Systems

Notice that AεGIS is not limited to tightly coupled systems (e.g., where replicas
execute on cores of a multi- or manycore architecture and where cores and the
voter reside within the same system-on-a-chip). Instead, the safety voter can be
located near the plant actuators and be implemented to receive proposals over
a network (e.g., TT-Ethernet). In that case, the replicas of the different replica
groups would be assigned different time slots and the voter picks up and memorizes
in the buffers proposals that are sent in the respective timeslot, considering them
for the vote when ~av[i] = 1.

5.0.10 Summary
With AεGIS we aim to design a system architecture that allows adaptability of the
system’s functionality and robustness to varying disturbances in a secure and reli-
able manner. To this end, it allows the execution of mS simplex and mC complex
controllers and switching between them via the implemented complex-to-complex,
complex-to-simplex, simplex-to-complex, and simplex-to-simplex switches. While
complex-to-complex and simplex-to-simplex switches enable the system to ad-
just for changing operational envelopes (adaptation of functionality), complex-
to-simplex and simplex-to-complex switches enable the system to react to faults
and disturbances (adaptation of robustness).

77

Moreover, the implemented mode switches combined with the replication of
simplex controllers and consolidation of their proposals using a single, trusted
hardware element, the safety voter, resiliency to cyberattacks is achieved as well.
In case of compromised complex controllers resulting in changed or unsafe control
signals, the simplex controller will trigger a complex-to-simplex switch to maintain
safety. Similarly, in case of compromised simplex controllers, the safety voter will
mask such faulty proposals and the replication manager of the healthy replicas
will trigger rejuvenation of the compromised replicas. Finally, to address cyberat-
tacks that go undetected or that only gradually destabilize the system, proactive
rejuvenation of simplex controllers can be employed to outpace the adversary in
compromising the system.

To evaluate our approach we have implemented AεGIS and measured the
framework in a case study on the Crazyflie quadcopter flight controller [Gie+17].
In addition to the overheads added by switching and by ramping up (in the back-
ground) a new group of simplex-controller replicas, we were also intereested in the
achieved overall performance the crazyflie achieves in unforeseeable situations. For
the latter, we analyzed a complex-to-simplex switch to guarantee safety despite fly-
ing the quadcopter with an in general untrustworthy learning-based performance
controller, and a simplex-to-simplex switch to hand over to a simplex controller
that is specialized for rejecting unforseeable disturbances. Moreover, we have con-
vinced ourselves that the necessarily trusted component of our architecture — the
voter — can in fact be trusted by implementing it in VHDL and by synthesizing
it on an FPGA.

5.0.11 Experimental Setup
We used three different systems in our evaluation. An 8-core ARM Cortex-A76
system, running at 2.25 GHz, an ARM Cortex-A55 quadcore, running at 1.8GHz,
and an AMD Zynq UltraScale+ ZU9EG-1E MPSoC, which provides an ARM
Cortex-A53 quadcore, running at 1.5 GHz next to the programmable logic, which
runs at the same frequency. We confirmed that the results on all three core types
remain sufficiently similar, after taking into account their frequencies and will
therefore only report numbers for the 8-core system.

To measure the time needed to ramp-up and activate a new replicated sim-
plex subsystem, we implemented AεGIS as a user-level driver framework. For
these measurements, we minimized operating system activity (other than what
we needed for ramping up the new replica group) by utilizing Linux’ ’silent core’
feature.

In the above setup we measured the time to decide, vote and actuate, while
replaying the overheads of computing the control output, which we measured sep-
arately on the crazyflie. We randomly induced erroneous control outputs to simu-

78

late accidental faults and applied them consistently in up to f replicas to simulate
compromise of the latter.

While the 4-core FPGA allowed us to only evaluate AεGIS’s ability to tol-
erate a single faulty replica (f = 1), we used the 8-core system and a software-
implementation of the voter to demonstrate a full simplex-to-simplex switch as
well as to scale up to f = 3 (and n = 7).

For the crazyflie case study, we leverage the simulation framework developed
by Claudio Mandrioli [Man22] to simulate a drone flying in a wind and no-wind
scenario. Each simulation runs for 70 seconds with a resolution of 0.001 seconds.
We use the ODE representation and solve the initial value problem using the
Runge-Kutta 4/5 method as implemented in the scipy.integrate package. We
do not simulate sensor failures and use the quadcopter in cross-configuration.

We deploy two simplex controllers, CS1 and CS2, which we derive from the stan-
dard PID-controller for the crazyflie [Gie+17]. CS1 (NW PID) is fine-tuned using
a simple Evolutionary Algorithm [Bar+14] to fly optimally in no-wind situations,
CS2 (W PID) is fine-tuned for disturbance rejection. We also evaluate the un-tuned
standard controller (A PID) from [Gie+17].

For the complex controllers (CC1 and CC2), we train a single layer Long-Short-
Term-Memory Recurrent Neural Network with 25 cells using behavioral cloning
[LA21] and fine-tune the networks as well using the above Evolutionary Algorithm.

5.0.12 Ramp-up and Switching Overheads
The direct costs for ramping-up a system costs are the cumulative costs of starting
a new process (642.20µs observed worst case on the 8-core ARM Cortex-A73 over
2250 runs) or forking it from an existing process (399.04µs), of mapping the voter
interface for the channel the replica should use (201.11µs), and of establishing the
memory mappings needed for the information exchange between the controllers
and the replicas that execute them (283.75µs). In total, these costs add up to to
1157.06µs (respectively 912.26µs for forking).

However, in addition to direct costs, difficult to measure indirect costs may
induced, depending on the used operating system, due to the use of copy-on-write
during fork, memory allocation in this process and possibly the demand to free
memory.

While these costs are highly dependent on the operating system used, and typ-
ically far exceed the control period τC, it’s difficult to set exact upper bounds on
their worst-case execution time. Nevertheless, under our assumptions, the current
simplex task will ensure the safety of the plant during this period, even though a
new simplex controller might be better adapted to the task at hand. The over-
head for switching in the new replicas is negligible, as it occurs seamlessly during
the normal voting process that determines the plant’s actuation strategy. The

79

Figure 5.9: Cost of handing over control and for voting on the control signal, broken
down into the decision module costs (DM) and replica-to-voter synchronization
costs (SYNC), as well as for our software-implementation of the voter the time to
propose (PROP) and to check for agreement (AGREE) in the voter.

changeover to the new controller takes place in the next epoch, and is therefore
effective for the upcoming control period. This leads to highly unpredictable be-
havior, which may well surpass the length of a control period. For this reason, we
decouple ramp-up from handing over control.

Figure 5.9 details the costs for reaching agreement on the control signal and
for handing over control to a new group of simplex controllers. Since both voting
on the controller output and on the activation vector use the same mechanism, the
costs are the same in both instances. The figure shows these costs for f ∈ {1, 2, 3},
which corresponds to a system with n = 3, n = 5, and n = 7 simplex replicas,
respectively. Costs are broken down as follows. Most dominant is the time to
decide, which controller to use (i.e., the runtime of the decision module (DM),
which for f = 1 is 105.93µs), the time to synchronize (SYNC) to ensure voter and
replica are in the same control period (6.49µs), by checking and waiting for the
voter to accept proposals for the next control epoch. These costs are necessary,
since, as we discussed, the voter has to prevent equivocation and agreement with
lagging replicas. It might therefore happen that that replicas have outputs ready
before the voter can accept them. In the software-implementation of the voter,

80

additional costs arise due to the cross core communication when proposing (PROP)
through a shared memory buffer, which the voter polls (14.48µs) and for comparing
(AGREE) the received proposals to identify the agreed-upon activation signal
(33.19µs). It is these costs which increase in a software implementation of the
voter as we scale the number of replicas from n = 3 (for f = 1) to n = 7 (for
f = 3), since the voter has to copy out more proposals from the channel into
the buffer of the voter to prevent time-of-check/time-of-use attacks and since it
must compare more proposals. In a hardware implementation, reaching out to
the voter depends on the performance of the used interface and bus system. The
comparission and extraction of the agreed-upon value happens within a single
cycle, since a hardware implementation can compare all active buffers in parallel.

As discussed in Section 5.0.8, handing over to another replica happens by
changing the activation vector, which is otherwise kept the same and is already
part of each vote. The change becomes effective for the next control period.

5.0.13 Crazyflie Case Study - Performance evaluation

Figure 5.10: Simplex PID Controllers in Wind and No-Wind environments.

81

Let us first confirm that fine-tuning simplex controllers for specific environ-
ments improves the robustness of the system, in particular when compared to a
standard controller that will not distuinguish environments. Figure 5.10 shows the
performance of our three Simplex PID controller candidates in a no-wind (top) and
in a wind scenario (bottom), relative to the reference signal (dotted line). We show
here only the x-direction, since we choose the wind disturbance to only come from
this direction and the signal is most disturbed in that direction. As can be seen, the
controllers that are fine-tuned for the specific scenario perform best in that specific
environment and worst in the respective other scenario. We measured in the no-
wind environment mean-squared errors of 0.0241 for the no-wind optimized PID
controller, 0.0295 for the wind optimized and 0.0329 for the standard controller,
which was not specifically optimized for one of these environments. Similarly, we
measured in the wind scenario mean-squared errors of 0.160, 0.054 and 0.131 for
the no-wind, wind and general PID controller, respectively. Especially for rejecting
disturbances (in the wind scenario), it pays off to specialize controllers, in partic-
ular if multiple different scenarios of that sort are to be expected, but a clear gain
can also be seen in the benign (no-wind) environment.

With these results established, we can now investigate the overall performance
of AεGIS, by adjusting both the complex and simplex controllers as the environ-
mental conditions change, respectively as safety requires. Figure 5.11 shows the
results. Highlighted are the setpoint, how AεGIS follows the setpoint by switch-
ing between complex and simplex controllers and by replacing the complex and
simplex controllers with the ones better tuned for the current environmental con-
ditions. We show when these switches happen as dashed vertical lines and which
controller (complex – blue / simplex – red) is in charge of stablizing the Crazyflie.
The number next to the dashed vertical line denotes which of the two complex or
simplex controllers are active.

For deciding when to switch from complex to simplex, we implemented a deci-
sion module using forward reachability with a time-horizon of 0.25 s. During that
horizon, we predict the state the system should be in, given the control action
of the current complex subsystem. In case this prediction falls below a height of
z ≤ 25m, while accelerating downwards, if the predicted drone state would tilt the
drone more than θ ≥ 45◦ or if the predicted state deviates more than 0.75m from
the reference, we switch from the complex controller to the simplex controller to
maintain safety.

For the simplex-simplex switch, we use the internal world model of the simplex
controllers to predict their next state and switch to the one whose predicted state
is closest to the setpoint, while being prepared to limit the rate of simplex-simplex
switches to prevent too fast alternations. In our example, there was always a clear
winner for several control periods.

82

Figure 5.11: Analyzing the performance of the optimized simplex controllers within
the AεGIS architecture. We observe the combination of both optimized controllers
outperforms single PID controller optimized for both environments.

83

As performance manager, we use the distance to the reference and a threshold
of ≥ 0.21m to decide when to switch to the other complex controller.

Decision Module:

• We use forward reachability to decide when to switch.

• Using a time-horizon of 0.25 s, we predict the state the system should be in
given the control action of the complex subsystem.

• If the system is predicted to lose height (z ≤ 25m) and has acceleration
pointing downwards, we switch to the simplex controller.

• If the system is tilted too much (θ ≥ 45◦), we switch to the simplex controller.

• If the system is predicted to deviate more than 0.75m from the reference,
we switch to the simplex controller.

Performance Manager:

• We use the distance to the reference to decide when to switch.

• If the distance is ≥ 0.21m, we switch to the other complex controller.

As can be seen, when the wind gust starts and ends, the complex controller
cannot maintain safety and the simplex controller takes over briefly, before return-
ing to the complex controller. At roughly t = 17.0 s, the LSTM of the complex
controller generates a control action, which causes the drone to drop down. The
simplex controller takes over and stabilizes the drone, which, however, causes devi-
ations in the x and y directions. As this example shows, the individual LSTM can
keep the system safe only in specific circumstances. Once the controlled system
leaves their operational envelope, LSTMs become unsafe and only through the
simplex controllers we will be able to maintain safety.

In the shown simulation, AεGIS achieves a mean squared error of 0.2460. This
is mainly due to the drone compensating the abrupt change in z-direction, caused
by the complex controller providing an unsafe control signal. The switch of com-
plex controllers alone was not sufficient to maintain safety.

5.0.14 Voter Complexity
To confirm that the voter is sufficiently simple to be brought to zero defects, we
have implemented the voter in VHDL (148 lines of code) and synthesized it for
an UltraScale+ ZU9EG-1E MPSoC FPGA. Table 5.1 lists the required FPGA re-
sources for the voter with and without the AXI interface that allows mapping voter
channels to memory. We report these costs separately, since other architectures

84

FPGA
with AXI only the voter Risc-V (reference)

CLB LUTs 638 18 1157
CLB Registers 619 10 955
F7MUX 0 0 108
CELLS Usage 1399 59 2481

Table 5.1: Hardware resources required for an FPGA implementation with and
without the AXI interface.

require different interfaces. For reference, we also report the resources that the
Risc-V reference design would consume. The voting logic itself requires only 18
lookup tables (LUTs), 10 registers and spans over 59 cells. AXI adds significant
overheads to this design, which suggests a tighter integration with the cores to
avoid these overheads. The Risc-V reference design is almost two orders of magni-
tude larger, adding a significant burden in terms of what a user must necessarily
trust for using software implementations of trusted components.

5.0.15 Summary
In this section, we have discussed the overheads of proposing and agreeing on a
control signal as well as to decide which signal is safe to be used or if a control
switch is necessary. As we have shown, the costs of the decision module domi-
nate in a simplex architecture (classical or ours), but this module is essential for
ensuring safety. In contrast, the costs for replicating this module and the sim-
plex controllers to be able to tolerate up to f of them to fail due to accidental
or intentionally malicious reasons, are reasonable, in particular when taking into
account the availability of multicore systems, which allow running simplex replicas
in parallel.

We have also seen the benefit of adjusting both the complex and the simplex
subsystem to environmental conditions and to switch between them as the envi-
ronment changes. Except for situations where complex fails to remain safe, this
even leads to better following the setpoint, and, as we have shown, allows quickly
recovering from situations where the complex subsystem produces unsafe control
signals.

85

Chapter 6

Discussion: CRC + Aegis
integration

6.1 Conceptual Integration

The integration of CRC and Aegis architectures aims to create a comprehensive
framework that combines the strengths of both systems. CRC enhances system re-
silience by transforming stateful control tasks into stateless recoverable instances,
significantly improving control task replication performance with minimal over-
head. Our approach rejuvenates control tasks within each cycle, maintaining sys-
tem stability even with occasional missed deadlines. Aegis’ dual-control system
optimises performance and security by switching between complex and simple con-
trollers based on operational conditions. This ensures that the complex controller
can provide high performance control signals in the presence of disturbances, while
the simple controller ensures safety through fault-tolerant mechanisms.

By integrating these two approaches, the combined architecture would signif-
icantly increase the resilience, efficiency and adaptability. The reduction in repli-
cas required by CRC and the efficient control switching of Aegis ensure that the
system can adapt and recover quickly with minimal resource overhead, which is
particularly important in environments with limited compute or power resources.
Real-time rejuvenation and adaptation is achieved through CRC’s control cycle
rejuvenation and Aegis’ adaptive control, which adjusts to environmental changes
and possible threats.

For example, autonomous vehicles, such as self-driving cars and drones, would
benefit from improved safety and performance under varying traffic conditions and
potential hardware/software failures. These systems require robust control mech-
anisms to handle real-time adjustments and fault recovery, making them ideal
candidates for CRC and Aegis integration. Similarly, in industrial automation,

86

manufacturing systems using robotic arms and automated production lines could
benefit from the increased reliability and fault tolerance by this integrated archi-
tecture.

One of the critical challenges of this integration is managing missed deadlines
and ensuring that the system can catch up without compromising performance or
safety. CRC’s approach to rejuvenating control tasks allows the system to han-
dle occasional missed deadlines by exploiting the inherent stability of the system.
Aegis complements this by providing adaptive control that can quickly adapt to
changing conditions. The integrated system must define clear metrics for accept-
able missed deadlines and implement adaptive algorithms that optimise ramp-up
times to ensure timely recovery and system stability.

Seamless coordination between CRC’s stateless recovery approach and Aegis’
dual control system is also important. This coordination must be precise to switch
between complex and simple controllers without introducing delays or inconsis-
tencies in the control signals. The implementation of adaptive algorithms that
optimise start-up times is critical to the timely recovery of the system, allowing it
to quickly regain its operational state after failures.

In conclusion, the integration of CRC and Aegis creates a robust framework ca-
pable of dynamic adaptation and resilience, enhancing the reliability and effective-
ness of modern cyber-physical systems. By managing missed deadlines, optimising
performance under varying conditions, ensuring resource-efficient adaptability, and
providing real-time rejuvenation and adaptation, this integrated system addresses
the complexities of modern CPS.

However, we identify this as a future work that we plan to develop and explore.

87

Chapter 7

Conclusions and Future Work

This thesis presents a comprehensive study on enhancing the resilience and adapt-
ability of control tasks in cyber-physical systems (CPS) through the development
and implementation of the Consensual Resilient Control (CRC) and AGIS architec-
tures. The primary focus is on addressing the dual challenges of system resilience
against a wide range of threats and adaptability in dynamic and unpredictable
operational environments.

The Consensual Resilient Control (CRC) approach is designed to transform
stateful control tasks into statelessly recoverable instances. This transformation
is achieved by protecting the necessary state in consensual memory, allowing the
system to mask faults with a minimal number of replicas. CRC utilizes a detec-
tion quorum to operate with a reduced number of replicas, significantly lowering
overheads compared to traditional replication methods (from 2f + 1 to f + 1).
The framework’s ability to rejuvenate replicas within each control cycle enhances
system resilience and operational efficiency. Practical applications, such as the
custom-built inverted pendulum system, validated the robustness of CRC in un-
predictable environments and demonstrated its capability to maintain system re-
silience with fewer resources. This novel approach not only ensures fault tolerance
but also reduces the resource burden typically associated with traditional fault-
tolerant methods, making it a highly efficient solution for modern CPS.

The AGIS architecture further enhances system resilience and adaptability by
integrating dual control systems. This architecture allows for the seamless switch-
ing between complex controllers for performance optimization and simple con-
trollers for safety, depending on the operational requirements. The minimal over-
head associated with switching control modes makes AGIS particularly suitable
for environments subject to a wide range of disturbances. Practical applications,
such as environmental monitoring, highlight AGISs utility in enhancing system
robustness under varying conditions. By combining the strengths of complex and
simple control mechanisms, AGIS ensures that CPS can adapt to both expected

88

and unexpected changes in their operating environments, thus maintaining high
levels of performance and safety.

The experimental evaluations presented in this thesis underscore the practical
benefits of the proposed architectures. Tests conducted in both controlled and
less predictable settings, such as using user-level Linux processes with user-level
drivers, demonstrate the scalability and robustness of the CRC approach. Ad-
ditionally, the AGIS architectures adaptability is validated through various case
studies, including those involving Crazyflie drones and other complex systems.
These evaluations confirm that the CRC framework can effectively reduce over-
heads while maintaining resilience, and that AGIS can dynamically adjust to main-
tain optimal performance and safety. The successful implementation and testing
of these systems illustrate their potential to significantly improve the reliability
and adaptability of CPS, paving the way for their broader application in critical
infrastructure sectors.

In conclusion, this thesis provides insights into the field of CPS by developing
solutions that enhance both resilience and adaptability. The combination of CRC
and AGIS architectures provides a robust framework capable of addressing the
challenges posed by modern CPS environments. Future research could explore
further refinements to these architectures, including the integration of advanced
control algorithms and the application of these methods to a wider range of CPS
domains. In this way, CPS can become even more robust, efficient and capable of
meeting the demands of an increasingly interconnected world.

89

Appendix A

Consensual Resilient Control API

A.0.1 Interactive User Menu
For the purpose of the Software framework part we created the interactive user
menu (Figure A.1) with the following options:

1. Hardware Concurrency Info. of Machine: behind this option is a C++
function that returns the number of concurrent threads supported by the
system’s hardware, providing an indication of how many threads can run
simultaneously for parallel execution;

2. Modify framework parameters: This option provides a user a flexibility of
running the framework with the different parameters

• Ti - the length of the controller invocation
• Check the isolated cores: This option gives the user full instructions on

how to isolate the cores and thus produce more accurate results (see
section 4).

• Modify the number of running replicas - modify the number of replicas
currently participating, this depends on the context of the running ma-
chine. That’s why the first user should check option 1 of this framework

• Total number of samples - together with the length of the Ti, this value
determines the length of time the framework will be in operation.

• Interrupt sleep routine speed - or how fast the simulation will derive
the values inside a ring buffer

• Failure frequency (epoch frequency) - when and how often the failure
or replica is simulated

90

3. Normal Mode Operation - when selected framework will run without pro-
ducing any errors within the replicas operation’s final output;

4. Choose control algorithm - this option offers multiple control algorithm that
replicas can run. For now the given options are: PID, LQR, and scaled PID
with matrix multiplication and state scaling;

5. Triple Modular Redundancy (TMR) - Three replicas running in parallel while
masking one fault;

6. Error Mode Operation - running our detection quorum with just f+1 replicas
while masking f = 1;

7. Advanced Error Mode operation - running our detection quorum with just
f + 1 replicas while masking f = 2 in f + 1 epochs;

8. Manual Mode operation - allowing user to manually modify the number of
replicas that can participate;

A.1 API
We created the API for all the function responsible for making a framework alive

A.1.1 Control configuration
A.1.1.1 uint8_t readEncoders()

Returns GPIO pins values at the given time

1 static uint8_t AB[2] = readEncoders();

Source Code A.1: readEncoders() example.

A.1.1.2 uint8_t read_cart_encoder()

Returns GPIO pin value of cart encoder at the given time.

1 uint8_t ENC_PORT = read_cart_encoder();

Source Code A.2: read_cart_encoder() example.

91

Figure A.1: User menu for the options

A.1.1.3 uint8_t read_penudulum_encoder()

Returns GPIO pin of pendulum encoder at the given time.

1 uint8_t ENC_PORT = read_pendulum_encoder();

Source Code A.3: read_pendulum_encoder() example

A.1.1.4 reset_button()

return nothing: releasing the resources of taken GPIO pins

92

1

2 reset_button(){
3 printf("Reset button pressed \n");
4 cleanup_state();
5 }

Source Code A.4: cleanup_state() example

A.1.1.5 void cart_encoder_ISR_simplex(int gpio, int level, uint32_t
tick)

ISR handler for cart encoder. Returns nothing.
int gpio - GPIO attached to the one pin of cart.
level 0-2
0 = change to low (a falling edge)
1 = change to high (a rising edge)
2 = no level change (a watchdog timeout)

The number of microseconds since boot. This wraps around from 4294967295
to 0 roughly every 72 minutes

1

2 // isr_f is placeholder for our ISR
3 // for more information about gpioSetISRFunc go back to the ISR in Raspberry Pi
4 gpioSetISRFunc(gpioA, EITHER_EDGE, -1, isr_f);
5

Source Code A.5: cart_encoder_ISR_simplex example

A.1.1.6 void pendulum_encoder_ISR_simplex(int gpio, int level, uint32_t
tick)

ISR handler for pendulum encoder. Returns nothing.
int gpio - GPIO attached to the one pin of cart.
level 0-2
0 = change to low (a falling edge)
1 = change to high (a rising edge)
2 = no level change (a watchdog timeout)

93

tick The number of microseconds since boot. This wraps around from 4294967295
to 0 roughly every 72 minutes

1

2 // isr_f is placeholder for our ISR
3 // for more information about gpioSetISRFunc go back to the ISR in Raspberry Pi
4 gpioSetISRFunc(gpioA, EITHER_EDGE, -1, isr_f);
5

Source Code A.6: pendulum_encoder_ISR_simplex example

A.1.1.7 static void toggle_lights(int yellow, int green, int red)

Returns nothing. Toggle indication lights for ensuring current execution. Yel-
low light - program has compiled. Green - run loop has been executed. Red -
framework is operating with faults.

1 // Turn off all indication ligths on press of the reset button
2 reset_button(){
3 togle_lights(0,0,0);
4 }

Source Code A.7: toggle_lights() example

A.1.1.8 void cart_encoder_ISR_simplex(int gpio, int level, uint32_t
tick)

ISR handler for cart encoder. Returns nothing.
int gpio - GPIO attached to the one pin of cart.
level 0-2
0 = change to low (a falling edge)
1 = change to high (a rising edge)
2 = no level change (a watchdog timeout)

tick The number of microseconds since boot. This wraps around from 4294967295
to 0 roughly every 72 minutes

94

1 // isr_f is placeholder for our ISR
2 // for more information about gpioSetISRFunc go back to the ISR in Raspberry Pi
3 gpioSetISRFunc(gpioA, EITHER_EDGE, -1, isr_f);
4

Source Code A.8: cart_encoder_ISR_simplex example

A.1.1.9 void pendulum_encoder_ISR_simplex(int gpio, int level, uint32_t
tick)

ISR handler for pendulum encoder. Returns nothing.
int gpio - GPIO attached to the one pin of cart.
level 0-2
0 = change to low (a falling edge)
1 = change to high (a rising edge)
2 = no level change (a watchdog timeout)

tick The number of microseconds since boot. This wraps around from 4294967295
to 0 roughly every 72 minutes

1

2 // isr_f is placeholder for our ISR
3 // for more information about gpioSetISRFunc go back to the ISR in Raspberry Pi
4 gpioSetISRFunc(gpioA, EITHER_EDGE, -1, isr_f);
5

Source Code A.9: pendulum_encoder_ISR_simplex example

A.1.1.10 static void turn_off_buttons()

Returns nothing. Reset current button using pigpio library [pig12].

1

2 // Ensuring that buttons are turn of when compiling
3 main(){
4 turn_off_buttons();
5 }

Source Code A.10: turn_off_buttons() example

95

A.1.1.11 void delayMicroseconds (unsigned int howLong)

Returns nothing. Delay execution with nanosleep(), used only in oled init sequence.
Linux way of ensuring sleep time.

1

2 // Ensuring that buttons are turn of when compiling
3 void initial_i2c_oled_sequence(){
4 // Slower transition
5 delayMicroseconds(10000);
6

7 }

Source Code A.11: void delayMicroseconds

A.1.1.12 static void turn_off_buttons()

Returns nothing. Reset current button using pigpio library [pig12].

1

2 // Ensuring that buttons are turn of when compiling
3 main(){
4 turn_off_buttons();
5 }

Source Code A.12: turn_off_buttons() example

A.1.1.13 void cancel_dep_encoder()

Returns nothing. Set ISR call to 0 for dependant encoder.

1

2 void cancel_dep_encoder(){
3 gpioSetAlertFunc(DEP_A, 0);
4 gpioSetAlertFunc(DEP_B, 0);
5 }
6

Source Code A.13: cancel_dep_encoder() example

96

A.1.1.14 void initial_i2c_oled_sequence()

Returns nothing. Initialize i2c oled display for showing values from dependant
rotary encoder.

1 void main(){
2 // Updated on ISR call of dependant rotary encoder
3 initial_i2c_oled_sequence();
4 }
5

Source Code A.14: initial_i2c_oled_sequence() example

A.1.1.15 static void reset_button()

Returns nothing. Resetting all the values back to initial value. Values to be reseted
are: IN1, and IN2 motor registry, calling cancel_dep_encoder(), setting pwm to
0 by calling pwmWrite(ENA, 0), cleanup DMA values, reseting indicator lights,
reseting i2c oled sequence, and terminating pigpio library [pig12].

pigpio uses gpioTerminate but wiringPi does not belive you can go back to the
previous state. To be a good citizen you need to reset each pin manually

1

2 static inline void debounce_reset(){
3 if(reset_state == 1){ // initial conditions for state1
4 reset_button();
5 }
6 }

Source Code A.15: reset_button() example

A.1.1.16 static void rotary_setup(uint8_t gpioA, uint8_t gpioB, gpi-
oISRFunc_t isr_f)

Returns nothing. Setup rotary encoder by using pigpio [pig12], setting accu-
rate mode for gpioA and gpioB to be input (in this case). Setting pins to be
PI_PUD_UP as the pins are commonly grounded, and setting gpio ISR function.
More about it in ISR section and pigpio documentation.

97

1 main(){
2 rotary_setup(PENDULUM_A, PENDULUM_B, pendulum_encoder_ISR_complex);
3 }
4 }

Source Code A.16: rotary_setup example

A.1.1.17 void pendulum_encoder_ISR_complex(int gpio, int level,
uint32_t tick)

Returns nothing. Accumulates direction from angle encoder in rot_pendulum
write to the ring buffer into (epoch+1)mod m, and read the previous values shared
with replicas in double angle.

1 // isr_f is placeholder for our ISR
2 // for more information about gpioSetISRFunc go back to the ISR in Raspberry Pi
3 gpioSetISRFunc(gpioA, EITHER_EDGE, -1, isr_f);

Source Code A.17: pendulum_encoder_ISR_complex example

A.1.1.18 void cart_encoder_ISR_complex(int gpio, int level, uint32_t
tick)

Returns nothing. Accumulates direction from cart pendulum in rot_car write to
the ring buffer into (epoch+1)mod m, and read the previous values shared with
replicas in double position.

1 // isr_f is placeholder for our ISR
2 // for more information about gpioSetISRFunc go back to the ISR in Raspberry Pi
3 gpioSetISRFunc(gpioA, EITHER_EDGE, -1, isr_f);

Source Code A.18: cart_encoder_ISR_complex example

98

A.1.1.19 static inline void debounce_reset(void)

Returns nothing. Debouncing reset button. If triggered for 4 counts that re-
set_state is set to 1, which is later to trigger reset_button();

1 server_loop_voter(){
2 do{
3 debounce_reset();
4 }while(reset_state == 1);
5

6 }

Source Code A.19: debounce_reset(void) example

A.1.1.20 static inline void buttons_debounce_magic(void)

Returns nothing. Debouncing main state transition button. On the active button
press generates theta_desired and x_desired which is equal to current angle and
position. We are measuring error based on this values by following control law
−KX where X = (current− desired).

1 server_loop_voter(){
2 do{
3 buttons_debounce_magic();
4 }while(state == 1);
5

6 }

Source Code A.20: buttons_debounce_magic(void) example

A.1.1.21 uint8_t read_dep_encoder())

Returns current values of dependant rotary encoder.

1 void dep_encoder(){
2 uint8_t ENC_PORT = read_dep_encoder();
3 }

Source Code A.21: read_dep_encoder() example

99

A.1.1.22 void dep_encoder(int dir))

Returns nothing. Modifying epoch_value which is used in the run time to change
Ti

1 main(){
2 re_decoder dep_dec(DEP_A, DEP_B, &dep_encoder);
3 }

Source Code A.22: cleanup_state() example

A.2 Replicas
A.2.0.1 Class Replica

Defining thread and thread_execution_handle. Except for the possiblity of giving
current id (which can be done inside of run() as well) it remains unimplemented.

1 class Replica {
2 public:
3 # if defined INTERNAL_THREAD
4 std::thread execution_handle;
5 # else
6 pid_t execution_handle;
7 # endif
8

9 unsigned int id;
10

11 Replica(unsigned int i) : id(i) {}
12

Source Code A.23: Class Replica example

A.2.0.2 run()

Main replicas function, called lambda on each available core (except core reserved
for voter). Other replicas are randomly placed on available cores in the FIFO or-
der. In this function, the execution of the control algorithm has been performed.
Computed values are proposed to the check_incoming(), via the Message commu-
nication channel.

100

1

2 main(){
3 r[i]->execution_handle = std::thread([i,f,n] {run(i,f,n);});
4 }
5

Source Code A.24: run() example

A.2.0.3 int generate_random()

Returns 0 if not set. Generates random number in the range used for erroneously
value in replica with given ID number.

1

2 run(){
3 act_values = generate_random();
4 }
5

Source Code A.25: generate_random() example

A.3 Voter

A.3.1 Class Voter
Initialize the set of incoming messages with RW privileges for individual repli-
cas and the set of the latest read-only messages. TimePassing is used for time
synchronization with server_loop_voter().

1 /* rw individual replicas */
2 // MAX_REPLICAS
3 Message volatile incoming[MAX_REPLICAS];
4

5 /* read only */
6 Message volatile latest[MAX_REPLICAS];
7

8 TimePassing volatile global_start_time;
9

101

Source Code A.26: Class Voter example

A.3.2 init(unsigned long f, unsigned long n)
Returns nothing. Initialization function for voter, set with n and f number that
user inputs. Making new voter class instance.

1 void init(unsigned long f, unsigned long n) {
2 v = new Voter(f, n);
3 }
4

Source Code A.27: voter initialization example

A.3.3 server_loop_voter()
Returns nothing. Lambda function to voter core. Schedules check_incoming() as
the primary voter function.

1 main(){
2 if (i == 0) {
3 r[0]->execution_handle = std::thread([f,n] {server_loop_voter(f,n);});
4 }
5 }
6

Source Code A.28: server_loop_voter() example

A.3.4 check_incoming()
Returns nothing. Main voter function. It checks incoming requests, performs
double buffering techniques, reaches an agreement on proposed values, and applies
vote to the PWM registry. It is executed in inside a server_loop_voter() function
which is running on the core 0.

102

1 server_loop_voter(unsigned long f, unsigned long n){
2

3 // Rate of voter scheduling determined by while loop
4 while (true) {
5 for (int i = 0; i < n; i++) {
6 v->check_incoming(i);
7 }
8 }
9 }

10

Source Code A.29: check_incoming() example

A.4 Message

A.4.1 void propose(Message volatile * m, unsigned long
op, unsigned int epoch, T val, bool flag)

Returns nothing. Accepting values for Message is set inside the run() function
for n number of replicas. Operation counter counts current preformed operation.
Replicas provide epoch numbers to the voter. Generic T value is act_val produced
by control algorithm and computed by replicas inside run function. A flag will
determine the last sent request.

1

2 run(){
3 propose<int>(m1, 0, epoch, loc_LQR_value*85.25, loc_flag);
4 }
5

Source Code A.30: propose() example

A.4.2 void propose_time(TimePassing volatile * tp, int
start_time))

Returns nothing. Communication channel to propose global time to the voter.

103

1 // Proposing current time
2 server_loop_voter(){
3 propose_time<long>(tp, global_time_integral);
4 }

Source Code A.31: propose_time() example

A.5 Hardware configuration

A.5.1 static void motor_setup()
Returns nothing. Initialize the following parameters. IN1, IN2 direction regis-
ters by using DMA. Setting ENA as a PWM pin and The PWM generator can
run in 2 modes balanced and mark:space. The mark:space mode is standard;
however, the default mode in the Pi is balanced. You can change modes by pro-
viding the parameter: PWM_MODE_BAL or PWM_MODE_MS. We are using
PWM_MODE_MS. Setting the clock frequency and PWM range

1 main(){
2 motor_setup();
3 }

Source Code A.32: motor_setup() example

104

Bibliography

[08] Return-Oriented Programming: Exploits Without Code Injection. Aug.
2008. url: hovav.net/ucsd/talks/blackhat08.html.

[A+21] Loveless A, Dreslinski R, Kasikci B, and Phan LT. “IGOR: Accel-
erating byzantine fault tolerance for real-time systems with eager
execution.” In: IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS). May 2021, pp. 360–373.

[Abe06] Isabelle Abele-Wigert. “Challenges governments face in the field of
critical information infrastructure protection (CIIP): Stakeholders
and perspectives”. In: International CIIP Handbook 2 (2006), pp. 139–
167.

[Abr+06] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi.
“Byzantine disk paxos: optimal resilience with byzantine shared mem-
ory”. In: Distributed Computing 18 (2006), pp. 387–408.

[ÅH06] K.J. Åström and T. Hägglund. Advanced PID Control. The Instru-
mentation, Systems, and Automation Society, 2006.

[Alu15] Rajeev Alur. Principles of cyber-physical systems. MIT press, 2015.
[ÅM21] Karl Johan Åström and Richard Murray. Feedback systems: an in-

troduction for scientists and engineers. Princeton university press,
2021.

[And89] Charles W Anderson. “Learning to control an inverted pendulum us-
ing neural networks”. In: IEEE Control Systems Magazine 9.3 (1989),
pp. 31–37.

[Ang+12] Enrico Angori, Roberto Baldoni, Eliezer Dekel, Atle Dingsor, and
Matteo Lucchetti. “The financial critical infrastructure and the value
of information sharing”. In: Collaborative Financial Infrastructure
Protection: Tools, Abstractions, and Middleware. Springer, 2012, pp. 3–
39.

105

hovav.net/ucsd/talks/blackhat08.html

[ASR22] Sima Abolhassani Khajeh, Morteza Saberikamarposhti, and Amir
Masoud Rahmani. “Real-time scheduling in IoT applications: a sys-
tematic review”. In: Sensors 23.1 (2022), p. 232.

[Ass08] Dan Assaf. “Models of critical information infrastructure protec-
tion”. In: International Journal of Critical Infrastructure Protection
1 (2008), pp. 6–14.

[Aub+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneevi, Vivien Quéma,
and Marko Vukoli. “The next 700 BFT protocols”. In: ACM Trans-
actions on Computer Systems (TOCS) 32.4 (2015), pp. 1–45.

[AY03] Hakan Aydin and Qi Yang. “Energy-aware partitioning for multipro-
cessor real-time systems”. In: Proceedings International Parallel and
Distributed Processing Symposium. IEEE. 2003, 9–pp.

[BA07] John Baillieul and Panos J Antsaklis. “Control and communication
challenges in networked real-time systems”. In: Proceedings of the
IEEE 95.1 (2007), pp. 9–28.

[Bak+14] Stanley Bak, Taylor T Johnson, Marco Caccamo, and Lui Sha. “Real-
time reachability for verified simplex design”. In: 2014 IEEE Real-
Time Systems Symposium. IEEE. 2014, pp. 138–148.

[Bar+14] Thomas Bartz-Beielstein, Jürgen Branke, Jörn Mehnen, and Olaf
Mersmann. “Evolutionary algorithms”. In: Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 4.3 (2014), pp. 178–
195.

[Bau01] Robert C Baumann. “Soft errors in advanced semiconductor devices-
part I: the three radiation sources”. In: IEEE Transactions on device
and materials reliability 1.1 (2001), pp. 17–22.

[Ben93] Stuart Bennett. “Development of the PID controller”. In: IEEE Con-
trol Systems Magazine 13.6 (1993), pp. 58–62.

[BG11] Radhakisan Baheti and Helen Gill. “Cyber-physical systems”. In: The
impact of control technology 12.1 (2011), pp. 161–166.

[Bha+19] Sangram Bharat, Arunangshu Ganguly, Rohit Chatterjee, Biswajit
Basak, Deb Kumar Sheet, and Anirban Ganguly. “A review on tuning
methods for PID controller”. In: Asian Journal For Convergence In
Technology (AJCT) ISSN-2350-1146 (2019).

[BK00] Günther Bauer and Hermann Kopetz. “Transparent redundancy in
the time-triggered architecture”. In: Proceeding International Confer-
ence on Dependable Systems and Networks. DSN 2000. IEEE. 2000,
pp. 5–13.

106

[BK22] Steven L Brunton and J Nathan Kutz. Data-driven science and en-
gineering: Machine learning, dynamical systems, and control. Cam-
bridge University Press, 2022.

[Boj+11a] Hristo Bojinov, Dan Boneh, Rich Cannings, and Iliyan Malchev. “Ad-
dress space randomization for mobile devices”. In: Proceedings of the
Fourth ACM Conference on Wireless Network Security (WiSec11).
2011, pp. 127–138. doi: doi:10.1145/1998412.1998434.

[Boj+11b] Hristo Bojinov, Dan Boneh, Rich Cannings, and Iliyan Malchev. “Ad-
dress space randomization for mobile devices”. In: 4th ACM Confer-
ence on Wireless Network Security. 2011, pp. 127–138. doi: 10.1145/
1998412.1998434.

[Bor+21] Rakesh P Borase, DK Maghade, SY Sondkar, and SN Pawar. “A
review of PID control, tuning methods and applications”. In: Inter-
national Journal of Dynamics and Control 9 (2021), pp. 818–827.

[Bou+22] Djamila Bouhata, Hamouma Moumen, Jocelyn Ahmed Mazari, and
Ahcène Bounceur. “Byzantine fault tolerance in distributed machine
learning: a survey”. In: arXiv preprint arXiv:2205.02572 (2022).

[Bou12] Olfa Boubaker. “The inverted pendulum: A fundamental benchmark
in control theory and robotics”. In: International conference on edu-
cation and e-learning innovations. IEEE. 2012, pp. 1–6.

[Bra+14] Tino Brade, Georg Jäger, Sebastian Zug, and Jörg Kaiser. “Sensor-
and Environment Dependent Performance Adaptation for Maintain-
ing Safety Requirements”. In: Computer Safety, Reliability, and Se-
curity. Ed. by Andrea Bondavalli, Andrea Ceccarelli, and Frank Ort-
meier. Cham: Springer International Publishing, 2014, pp. 46–54.

[Bru+22] Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi
Zhou, Jacopo Panerati, and Angela P. Schoellig. “Safe Learning in
Robotics: From Learning-Based Control to Safe Reinforcement Learn-
ing”. In: Annual Review of Control, Robotics, and Autonomous Sys-
tems 5.1 (2022), pp. 411–444. doi: 10.1146/annurev-control-
042920-020211. eprint: https://doi.org/10.1146/annurev-
control - 042920 - 020211. url: https : / / doi . org / 10 . 1146 /
annurev-control-042920-020211.

[BSS12] Hari Om Bansal, Rajamayyoor Sharma, and PR Shreeraman. “PID
controller tuning techniques: a review”. In: Journal of control engi-
neering and technology 2.4 (2012).

107

https://doi.org/doi:10.1145/1998412.1998434
https://doi.org/10.1145/1998412.1998434
https://doi.org/10.1145/1998412.1998434
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1146/annurev-control-042920-020211

[BT00] V.D. Blondel and J.N. Tsitsiklis. “The boundedness of all products
of a pair of matrices is undecidable”. In: Systems & Control Letters
41.2 (2000), pp. 135–140. doi: 10.1016/S0167-6911(00)00049-9.

[CA95] L. Chen and A. Avizienis. “N-version Programming: A Fault-Tolerance
Approach to Reiliability of Sofware Operation”. In: Symposium on
Fault-Tolerant Computing. 1995, p. 113. doi: 10.1109/FTCSH.1995.
532621.

[Cas+19] Fernando Castaño, Stanisaw Strzelczak, Alberto Villalonga, Rodolfo
E Haber, and Joanna Kossakowska. “Sensor reliability in cyber-physical
systems using internet-of-things data: A review and case study”. In:
Remote sensing 11.19 (2019), p. 2252.

[CAS08] Alvaro A Cardenas, Saurabh Amin, and Shankar Sastry. “Secure con-
trol: Towards survivable cyber-physical systems”. In: 2008 The 28th
International Conference on Distributed Computing Systems Work-
shops. IEEE. 2008, pp. 495–500.

[Cav07] Myriam Dunn Cavelty. “Critical information infrastructure: vulner-
abilities, threats and responses”. In: Disarmament Forum. Vol. 3.
UNIDIR. 2007, pp. 15–22.

[Che+17] Baiyu Chen, Zhengyu Yang, Siyu Huang, Xianzhi Du, Zhiwei Cui,
Janki Bhimani, Xin Xie, and Ningfang Mi. “Cyber-physical system
enabled nearby traffic flow modelling for autonomous vehicles”. In:
2017 IEEE 36th international performance computing and commu-
nications conference (IPCCC). IEEE. 2017, pp. 1–6.

[Che+20] Gang Chen, Nan Guan, Kai Huang, and Wang Yi. “Fault-tolerant
real-time tasks scheduling with dynamic fault handling”. In: Journal
of Systems Architecture 102 (2020), p. 101688.

[Chu+07] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubi-
atowicz. “Attested append-only memory: Making adversaries stick
to their word”. In: ACM SIGOPS Operating Systems Review 41.6
(2007), pp. 189–204.

[CL+99] Miguel Castro, Barbara Liskov, et al. “Practical byzantine fault tol-
erance”. In: OsDI. Vol. 99. 1999. 1999, pp. 173–186.

[CM10] M. Cao and A.S. Morse. “Dwell-time switching”. In: Systems & Con-
trol Letters 59.1 (2010), pp. 57–65. doi: 10.1016/j.sysconle.2009.
11.007.

108

https://doi.org/10.1016/S0167-6911(00)00049-9
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.1016/j.sysconle.2009.11.007
https://doi.org/10.1016/j.sysconle.2009.11.007

[CNV04] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. “How to
tolerate half less one Byzantine nodes in practical distributed sys-
tems”. In: Proceedings of the 23rd IEEE International Symposium on
Reliable Distributed Systems, 2004. IEEE. 2004, pp. 174–183.

[CNV13a] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. “BFT-
TO: Intrusion Tolerance with Less Replicas”. In: The Computer J.
56.6 (2013), pp. 693–715. doi: 10.1093/comjnl/bxs148.

[CNV13b] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. “Bft-to:
Intrusion tolerance with less replicas”. In: The Computer Journal 56.6
(2013), pp. 693–715.

[Dam+22] Amol Damare, Shouvik Roy, Scott A. Smolka, and Scott D. Stoller.
“A Barrier Certificate-Based Simplex Architecture with Application
to Microgrids”. In: Runtime Verification. Ed. by Thao Dang and
Volker Stolz. Cham: Springer International Publishing, 2022, pp. 105–
123.

[DCK15] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. “Resource-
efficient Byzantine fault tolerance”. In: IEEE transactions on com-
puters 65.9 (2015), pp. 2807–2819.

[Dib+19] Seyed Mehran Dibaji, Mohammad Pirani, David Bezalel Flamholz,
Anuradha M Annaswamy, Karl Henrik Johansson, and Aranya Chakrabortty.
“A systems and control perspective of CPS security”. In: Annual re-
views in control 47 (2019), pp. 394–411.

[DP13] Geir E Dullerud and Fernando Paganini. A course in robust con-
trol theory: a convex approach. Vol. 36. Springer Science & Business
Media, 2013.

[EA21] Roth E and Haeberlen A. “Do Not Overpay for Fault Tolerance!” In:
IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). May 2021, pp. 374–386.

[EV10] Ian Ellefsen and Sebastiaan Von Solms. “Critical information in-
frastructure protection in the developing world”. In: Critical Infras-
tructure Protection IV: Fourth Annual IFIP WG 11.10 International
Conference on Critical Infrastructure Protection, ICCIP 2010, Wash-
ington, DC, USA, March 15-17, 2010, Revised Selected Papers 4.
Springer. 2010, pp. 29–40.

[Fan+18] Haoyang Fan, Fan Zhu, Changchun Liu, Liangliang Zhang, Li Zhuang,
Dong Li, Weicheng Zhu, Jiangtao Hu, Hongye Li, and Qi Kong.
“Baidu apollo em motion planner”. In: arXiv preprint arXiv:1807.08048
(2018).

109

https://doi.org/10.1093/comjnl/bxs148

[FGG18] Joachim Fellmuth, Thomas Göthel, and Sabine Glesner. “Instruction
Caches in Static WCET Analysis of Artificially Diversified Software”.
In: 30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Ed. by Sebastian Altmeyer. Vol. 106. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, 21:1–21:23. doi: 10.4230/
LIPIcs.ECRTS.2018.21. url: http://drops.dagstuhl.de/opus/
volltexte/2018/8982.

[FP18] Nathan Fulton and André Platzer. “Safe ai for CPS”. In: 2018 IEEE
International Test Conference (ITC). IEEE. 2018, pp. 1–7.

[Fra+10] Markus Fras, H Kroha, O Reimann, B Weber, and R Richter. “Use
of Triple Modular Redundancy (TMR) technology in FPGAs for the
reduction of faults due to radiation in the readout of the ATLAS
Monitored Drift Tube (MDT) chambers”. In: Journal of Instrumen-
tation 5.11 (2010), p. C11009.

[Fra18] Steven A Frank. Control theory tutorial: basic concepts illustrated by
software examples. Springer Nature, 2018.

[FSA97] S. Forrest, A. Somayaji, and D. H. Ackley. “Building diverse com-
puter systems”. In: Hot Topics in Operating Systems. 1997, pp. 67–
72. doi: doi:10.1109/HOTOS.1997.595185.

[GH24] José Luis Guzmán and Tore Hägglund. “Tuning rules for feedforward
control from measurable disturbances combined with PID control: a
review”. In: International Journal of Control 97.1 (2024), pp. 2–15.

[Gie+17] Wojciech Giernacki, Mateusz Skwierczyski, Wojciech Witwicki, Pawe
Wroski, and Piotr Kozierski. “Crazyflie 2.0 quadrotor as a platform
for research and education in robotics and control engineering”. In:
2017 22nd International Conference on Methods and Models in Au-
tomation and Robotics (MMAR). IEEE. 2017, pp. 37–42.

[Gue+22] Blessing Guembe, Ambrose Azeta, Sanjay Misra, Victor Chukwudi
Osamor, Luis Fernandez-Sanz, and Vera Pospelova. “The emerging
threat of ai-driven cyber attacks: A Review”. In: Applied Artificial
Intelligence 36.1 (2022), p. 2037254.

[Guo+22] Jinghua Guo, Lubin Li, Jingyao Wang, and Keqiang Li. “Cyber-
physical system-based path tracking control of autonomous vehicles
under cyber-attacks”. In: IEEE Transactions on Industrial Informat-
ics 19.5 (2022), pp. 6624–6635.

110

https://doi.org/10.4230/LIPIcs.ECRTS.2018.21
https://doi.org/10.4230/LIPIcs.ECRTS.2018.21
http://drops.dagstuhl.de/opus/volltexte/2018/8982
http://drops.dagstuhl.de/opus/volltexte/2018/8982
https://doi.org/doi:10.1109/HOTOS.1997.595185

[GVE22] Inês Pinto Gouveia, Marcus Völp, and Paulo Esteves-Verissimo. “Be-
hind the last line of defense: Surviving SoC faults and intrusions”. In:
Computers & Security 123 (2022), p. 102920.

[Ham50] Richard W Hamming. “Error detecting and error correcting codes”.
In: The Bell system technical journal 29.2 (1950), pp. 147–160.

[Han+14] Song Han, Miao Xie, Hsiao-Hwa Chen, and Yun Ling. “Intrusion
Detection in Cyber-Physical Systems: Techniques and Challenges”.
In: IEEE Systems Journal 8.4 (2014), pp. 1052–1062. doi: 10.1109/
JSYST.2013.2257594.

[HAR14] Shah Ahsanul Haque, Syed Mahfuzul Aziz, and Mustafizur Rahman.
“Review of cyber-physical system in healthcare”. In: international
journal of distributed sensor networks 10.4 (2014), p. 217415.

[HB07] Vance Hilderman and Tony Baghi. Avionics certification: a complete
guide to DO-178 (software), DO-254 (hardware). Avionics Commu-
nications, 2007.

[HBJ22] Yuchong Huo, François Bouffard, and Géza Joós. “Integrating learn-
ing and explicit model predictive control for unit commitment in
microgrids”. In: Applied Energy 306 (2022), p. 118026.

[HCC21] Li H, Lu C, and Gill CD. “RT-ZooKeeper: Taming the Recovery La-
tency of a Coordination Service”. In: ACM Transactions on Embedded
Computing Systems (TECS). Vol. 20. Sept. 2021, pp. 1–22.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. “Peer-
Review: Practical accountability for distributed systems”. In: ACM
SIGOPS operating systems review 41.6 (2007), pp. 175–188.

[HM19] Luis-Carlos Herrera and Olaf Maennel. “A comprehensive instrument
for identifying critical information infrastructure services”. In: In-
ternational Journal of Critical Infrastructure Protection 25 (2019),
pp. 50–61.

[HS20] Petri Helo and AHM Shamsuzzoha. “Real-time supply chainA blockchain
architecture for project deliveries”. In: Robotics and Computer-Integrated
Manufacturing 63 (2020), p. 101909.

[Hum+08] Todd E Humphreys, Brent M Ledvina, Mark L Psiaki, Brady W
O’Hanlon, Paul M Kintner, et al. “Assessing the spoofing threat:
Development of a portable GPS civilian spoofer”. In: Proceedings of
the 21st International Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS 2008). 2008, pp. 2314–2325.

111

https://doi.org/10.1109/JSYST.2013.2257594
https://doi.org/10.1109/JSYST.2013.2257594

[HYT14] Pengcheng Huang, Hoeseok Yang, and Lothar Thiele. “On the schedul-
ing of fault-tolerant mixed-criticality systems”. In: Proceedings of the
51st annual design automation conference. 2014, pp. 1–6.

[Ise05] Rolf Isermann. Fault-diagnosis systems: an introduction from fault
detection to fault tolerance. Springer Science & Business Media, 2005.

[ISO11] ISO. Road vehicles – Functional safety. Norm. 2011.
[Isr+23] Sardor Israilov, Li Fu, Jesús Sánchez-Rodrguez, Franco Fusco, Guil-

laume Allibert, Christophe Raufaste, and Médéric Argentina. “Rein-
forcement learning approach to control an inverted pendulum: A gen-
eral framework for educational purposes”. In: Plos one 18.2 (2023),
e0280071.

[Joh+98] Leslie A Johnson et al. “DO-178B: Software considerations in air-
borne systems and equipment certification”. In: Crosstalk, October
199 (1998), pp. 11–20.

[Joh08] Taylor Johnson. “Stability analysis of simplex architecture controlled
inverted pendulum”. In: Department of Electrical and Computer En-
gineering, University of Illinois at Urbana-Champaign., http://www.
academia. edu/276649 (2008).

[JR18] Juliza Jamaludin and Jemmy Mohd Rohani. “Cyber-physical sys-
tem (cps): State of the art”. In: 2018 International Conference on
Computing, Electronic and Electrical Engineering (ICE Cube). IEEE.
2018, pp. 1–5.

[Jun09] R. Jungers. The Joint Spectral Radius: Theory and Applications. Lec-
ture Notes in Control and Information Sciences. Springer Berlin Hei-
delberg, 2009.

[Kap+12] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler,
Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat,
and Klaus Stengel. “CheapBFT: Resource-efficient Byzantine fault
tolerance”. In: Proceedings of the 7th ACM european conference on
Computer Systems. 2012, pp. 295–308.

[KB03] Hermann Kopetz and Günther Bauer. “The time-triggered architec-
ture”. In: Proceedings of the IEEE 91.1 (2003), pp. 112–126.

[KG93] H. Kopetz and G. Grunsteidl. “TTP - A time-triggered protocol for
fault-tolerant real-time systems”. In: FTCS-23 The Twenty-Third In-
ternational Symposium on Fault-Tolerant Computing. 1993, pp. 524–
533. doi: 10.1109/FTCS.1993.627355.

112

https://doi.org/10.1109/FTCS.1993.627355

[Khu+21] Halim Khujamatov, Ernazar Reypnazarov, Doston Khasanov, and
Nurshod Akhmedov. “IoT, IIoT, and cyber-physical systems integra-
tion”. In: Emergence of cyber physical system and IoT in smart au-
tomation and robotics: computer engineering in automation. Springer,
2021, pp. 31–50.

[Kim+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flip-
ping bits in memory without accessing them: An experimental study
of DRAM disturbance errors”. In: ACM SIGARCH Computer Archi-
tecture News 42.3 (2014), pp. 361–372.

[KJ13] E Vinodh Kumar and Jovitha Jerome. “Robust LQR controller de-
sign for stabilizing and trajectory tracking of inverted pendulum”. In:
Procedia Engineering 64 (2013), pp. 169–178.

[KK20] Georgios Kavallieratos and Sokratis Katsikas. “Managing cyber se-
curity risks of the cyber-enabled ship”. In: Journal of Marine Science
and Engineering 8.10 (2020), p. 768.

[Kos+22] Kazimierz T Kosmowski, Emilian Piesik, Jan Piesik, and Marcin li-
wiski. “Integrated functional safety and cybersecurity evaluation in a
framework for business continuity management”. In: Energies 15.10
(2022), p. 3610.

[Kri14] C Mani Krishna. “Fault-tolerant scheduling in homogeneous real-
time systems”. In: ACM Computing Surveys (CSUR) 46.4 (2014),
pp. 1–34.

[KRM17] Tai-hoon Kim, Carlos Ramos, and Sabah Mohammed. Smart city
and IoT. 2017.

[KS22] Hermann Kopetz and Wilfried Steiner. Real-time systems: design
principles for distributed embedded applications. Springer Nature, 2022.

[LA21] Abdoulaye O. Ly and Moulay Akhloufi. “Learning to Drive by Imi-
tation: An Overview of Deep Behavior Cloning Methods”. In: IEEE
Transactions on Intelligent Vehicles 6.2 (2021), pp. 195–209. doi:
10.1109/TIV.2020.3002505.

[Lam19] Leslie Lamport. “The part-time parliament”. In: Concurrency: the
Works of Leslie Lamport. 2019, pp. 277–317.

[Lar+14] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. “Sok: Au-
tomated software diversity”. In: IEEE Symposium on Security and
Privacy. 2014. doi: 10.1109/SP.2014.25.

113

https://doi.org/10.1109/TIV.2020.3002505
https://doi.org/10.1109/SP.2014.25

[LCJ18] Michael J Lees, Melissa Crawford, and Christoph Jansen. “Towards
industrial cybersecurity resilience of multinational corporations”. In:
IFAC-PapersOnLine 51.30 (2018), pp. 756–761.

[Lev+09] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Mosci-
broda. “TrInc: Small Trusted Hardware for Large Distributed Sys-
tems.” In: NSDI. Vol. 9. 2009, pp. 1–14.

[LHS15] Ana Laugé, Josune Hernantes, and Jose M Sarriegi. “Critical in-
frastructure dependencies: A holistic, dynamic and quantitative ap-
proach”. In: International Journal of Critical Infrastructure Protec-
tion 8 (2015), pp. 16–23.

[Li+16] Jie Li, Yuanqing Xia, Xiaohui Qi, and Zhiqiang Gao. “On the ne-
cessity, scheme, and basis of the linear–nonlinear switching in active
disturbance rejection control”. In: IEEE Transactions on Industrial
Electronics 64.2 (2016), pp. 1425–1435.

[Lib03] D. Liberzon. Switching in Systems and Control. Birkhäuser Boston,
2003.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine generals problem”. In: ACM Trans. on Progr. Languages and
Systems 4.3 (1982), pp. 382–401.

[Lv+21] Zhihan Lv, Dongliang Chen, Ranran Lou, and Ammar Alazab. “Ar-
tificial intelligence for securing industrial-based cyber–physical sys-
tems”. In: Future generation computer systems 117 (2021), pp. 291–
298.

[LV62] Robert E Lyons and Wouter Vanderkulk. “The use of triple-modular
redundancy to improve computer reliability”. In: IBM journal of re-
search and development 6.2 (1962), pp. 200–209.

[Lyu+96] Michael R Lyu et al. Handbook of software reliability engineering.
Vol. 222. IEEE computer society press Los Alamitos, 1996.

[MAB15] Ibtissem Malouche, A Kheriji Abbes, and Faouzi Bouani. “Automatic
model predictive control implementation in a high-performance mi-
crocontroller”. In: 2015 IEEE 12th International Multi-Conference
on Systems, Signals & Devices (SSD15). IEEE. 2015, pp. 1–6.

[Mac+18] Jon Mackey, Scott J Hall, Thomas Haag, Peter Y Peterson, and Hani
Kamhawi. “Uncertainty in inverted pendulum thrust measurements”.
In: 2018 Joint Propulsion Conference. 2018, p. 4516.

114

[Mag+20] Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegen-
bein. “Control-system stability under consecutive deadline misses
constraints”. In: 32nd euromicro conference on real-time systems (ECRTS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020.

[Man22] Claudio Mandrioli. Control-Theoretical Perspective in Feedback-Based
Systems Testing. Department of Automatic Control, Faculty of En-
gineering LTH, Lund University, 2022.

[Mat23] Aleksandar Matovic. Fault Tolerant Inverted Pendulum - Admorph.
Accessed: 2024-06-25. 2023. url: https : / / www . youtube . com /
watch?v=cLfs6DOasjs&ab_channel=ADMORPHProject.

[ML19] Sayani Maity and Greg R Luecke. “Stabilization and optimization of
design parameters for control of inverted pendulum”. In: Journal of
dynamic systems, measurement, and control 141.8 (2019), p. 081007.

[Moh+13a] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. “S3A:
Secure system simplex architecture for enhanced security and robust-
ness of cyber-physical systems”. In: 2nd ACM international confer-
ence on High confidence networked systems. 2013, pp. 65–74.

[Moh+13b] Sibin Mohan, Stanley Bak, Emiliano Betti, Heechul Yun, Lui Sha,
and Marco Caccamo. “S3A: Secure system simplex architecture for
enhanced security and robustness of cyber-physical systems”. In: Pro-
ceedings of the 2nd ACM international conference on High confidence
networked systems. 2013, pp. 65–74.

[Moh+21] Nader Mohamed, Jameela Al-Jaroodi, Sanja Lazarova-Molnar, and
Imad Jawhar. “Applications of integrated IoT-fog-cloud systems to
smart cities: A survey”. In: Electronics 10.23 (2021), p. 2918.

[MR98] Dahlia Malkhi and Michael Reiter. “Byzantine quorum systems”. In:
Distributed computing 11.4 (1998), pp. 203–213.

[MSF16] George Mois, Teodora Sanislav, and Silviu C Folea. “A cyber-physical
system for environmental monitoring”. In: IEEE transactions on in-
strumentation and measurement 65.6 (2016), pp. 1463–1471.

[MSG19] Mounesh Marali, Sithu D Sudarsan, and Ashok Gogioneni. “Cyber
security threats in industrial control systems and protection”. In:
2019 International Conference on Advances in Computing and Com-
munication Engineering (ICACCE). IEEE. 2019, pp. 1–7.

115

https://www.youtube.com/watch?v=cLfs6DOasjs&ab_channel=ADMORPHProject
https://www.youtube.com/watch?v=cLfs6DOasjs&ab_channel=ADMORPHProject

[Mvo+20] Djob Mvondo, Alain Tchana, Renaud Lachaize, Daniel Hagimont,
and Noël De Palma. “Fine-grained fault tolerance for resilient pVM-
based virtual machine monitors”. In: 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE. 2020, pp. 197–208.

[NAR08] Ahmad NK Nasir, M Ashraf Ahmad, and Mohd Fuaad Rahmat.
“Performance comparison between LQR and PID controllers for an
inverted pendulum system”. In: AIP conference proceedings. Vol. 1052.
1. American Institute of Physics. 2008, pp. 124–128.

[Nwe21] Livinus Obiora Nweke. “A Survey of Specification-based Intrusion
Detection Techniques for Cyber-Physical Systems”. In: International
Journal of Advanced Computer Science and Applications 12.5 (2021).
doi: 10.14569/IJACSA.2021.0120506. url: http://dx.doi.org/
10.14569/IJACSA.2021.0120506.

[Odw09] Aidan O’dwyer. Handbook of PI and PID controller tuning rules.
World Scientific, 2009.

[OO14] Diego Ongaro and John Ousterhout. “In search of an understand-
able consensus algorithm”. In: 2014 {USENIX$}$ Annual Technical
Conference (${$USENIX$}$${ATC}$ 14). 2014, pp. 305–319.

[ORe+06] Gerard O’Reilly, Ahmad Jrad, Ramesh Nagarajan, Theresa Brown,
and Stephen Conrad. “Critical infrastructure analysis of telecom for
natural disasters”. In: Networks 2006. 12th International Telecommu-
nications Network Strategy and Planning Symposium. IEEE. 2006,
pp. 1–6.

[OY02] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering.
Vol. 4. Prentice-Hall, 2002.

[Pag+11] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and
David Lesens. “Multi-task implementation of multi-periodic synchronous
programs”. In: Discrete event dynamic systems 21 (2011), pp. 307–
338.

[Pat14] Risat Mahmud Pathan. “Fault-tolerant and real-time scheduling for
mixed-criticality systems”. In: Real-Time Systems 50 (2014), pp. 509–
547.

[PB20] Abhilash Panda and Andrew Bower. “Cyber security and the disas-
ter resilience framework”. In: International Journal of Disaster Re-
silience in the Built Environment 11.4 (2020), pp. 507–518.

116

https://doi.org/10.14569/IJACSA.2021.0120506
http://dx.doi.org/10.14569/IJACSA.2021.0120506
http://dx.doi.org/10.14569/IJACSA.2021.0120506

[Pha+20] Dung T Phan, Radu Grosu, Nils Jansen, Nicola Paoletti, Scott A
Smolka, and Scott D Stoller. “Neural simplex architecture”. In: NASA
Formal Methods: 12th International Symposium, NFM 2020, Moffett
Field, CA, USA, May 11–15, 2020, Proceedings 12. Springer. 2020,
pp. 97–114.

[pig12] pigpio. pigpio API documentation. Feb. 2012. url: https://abyz.
me.uk/.

[Pla+14] Marco Platania, Daniel Obenshain, Thomas Tantillo, Ricky Sharma,
and Yair Amir. “Towards a practical survivable intrusion tolerant
replication system”. In: 2014 IEEE 33rd International Symposium
on Reliable Distributed Systems. IEEE. 2014, pp. 242–252.

[PLY18] Yongping Pan, Xiang Li, and Haoyong Yu. “Efficient PID track-
ing control of robotic manipulators driven by compliant actuators”.
In: IEEE Transactions on Control Systems Technology 27.2 (2018),
pp. 915–922.

[PNM03] Verssimo P.E., Neves N.F., and Correia M.P. “Intrusion-Tolerant Ar-
chitectures: Concepts and Design”. In: Architecting Dependable Sys-
tems. Lecture Notes in Computer Science 2677 (2003). doi: https:
//doi.org/10.1007/3-540-45177-3_1.

[Rad+21] Petar Radanliev, David De Roure, Max Van Kleek, Omar Santos,
and Uchenna Ani. “Artificial intelligence in cyber physical systems”.
In: AI & society 36 (2021), pp. 783–796.

[Rig+20] Gerasimos Rigatos, Krishna Busawon, Jorge Pomares, and Masoud
Abbaszadeh. “Nonlinear optimal control for the wheeled inverted
pendulum system”. In: Robotica 38.1 (2020), pp. 29–47.

[Roe+12] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Sav-
age. “Return-oriented programming: Systems, languages, and appli-
cations”. In: ACM Transactions on Information and System Security
(TISSEC) 15.1 (2012), pp. 1–34.

[RS13] Reza Ramezani and Yasser Sedaghat. “An overview of fault tolerance
techniques for real-time operating systems”. In: ICCKE 2013 (2013),
pp. 1–6.

[RS94] Krithi Ramamritham and John A. Stankovic. “Scheduling algorithms
and operating systems support for real-time systems”. In: Proceedings
of the IEEE 82.1 (1994), pp. 55–67.

[Rud13] Martin Rudner. “Cyber-threats to critical national infrastructure: An
intelligence challenge”. In: International Journal of Intelligence and
CounterIntelligence 26.3 (2013), pp. 453–481.

117

https://abyz.me.uk/
https://abyz.me.uk/
https://doi.org/https://doi.org/10.1007/3-540-45177-3_1
https://doi.org/https://doi.org/10.1007/3-540-45177-3_1

[Rus01] John Rushby. “Bus architectures for safety-critical embedded sys-
tems”. In: International Workshop on Embedded Software. Springer.
2001, pp. 306–323.

[SAM22] Michael Sony, Jiju Antony, and Olivia McDermott. “The impact of
medical cyber–physical systems on healthcare service delivery”. In:
The TQM Journal 34.7 (2022), pp. 73–93.

[Sch+21] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. “Review
on model predictive control: An engineering perspective”. In: The
International Journal of Advanced Manufacturing Technology 117.5-
6 (2021), pp. 1327–1349.

[Sch+22] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Ascher-
mann, Julius Basler, Thorsten Holz, and Ali Abbasi. “Loki: Harden-
ing Code Obfuscation Against Automated Attacks”. In: 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 3055–3073. url: https://www.usenix.
org/conference/usenixsecurity22/presentation/schloegel.

[Sha01] L. Sha. “Using simplicity to control complexity”. In: IEEE Software
18.4 (2001), pp. 20–28.

[SHE19] Yanyan Shen, Gernot Heiser, and Kevin Elphinstone. “Fault Toler-
ance Through Redundant Execution on COTS Multicores: Exploring
Trade-Offs”. In: 2019 49th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). 2019, pp. 188–
200. doi: 10.1109/DSN.2019.00031.

[Sil+21] Douglas Simoes Silva, Rafal Graczyk, Jérémie Decouchant, Mar-
cus Völp, and Paulo Esteves-Verissimo. “Threat Adaptive Byzantine
Fault Tolerant State-Machine Replication”. In: 40th International
Symposium on Reliable Distributed Systems (SRDS). Sept. 2021.

[SK22] Serkan Sava and Süleyman Karata. “Cyber governance studies in
ensuring cybersecurity: an overview of cybersecurity governance”. In:
International Cybersecurity Law Review 3.1 (2022), pp. 7–34.

[SM10] Siddharth Sridhar and G Manimaran. “Data integrity attacks and
their impacts on SCADA control system”. In: IEEE PES general
meeting. IEEE. 2010, pp. 1–6.

[SNV06a] P. Sousa, N.F. Neves, and P.E. Verssimo. “Proactive resilience through
architectural hybridization”. In: ACM Symposium on Applied Com-
puting. 2006, pp. 686–690.

118

https://www.usenix.org/conference/usenixsecurity22/presentation/schloegel
https://www.usenix.org/conference/usenixsecurity22/presentation/schloegel
https://doi.org/10.1109/DSN.2019.00031

[Ver+11] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. “Efficient byzantine fault-
tolerance”. In: IEEE Transactions on Computers 62.1 (2011), pp. 16–
30.

[Ver06a] P.E. Verssimo. “Travelling through wormholes: a new look at dis-
tributed systems models”. In: ACM SIGACT News 37.1 (2006), pp. 66–
81.

[Ver06b] Paulo E Verssimo. “Travelling through wormholes: a new look at
distributed systems models”. In: ACM SIGACT News 37.1 (2006),
pp. 66–81.

[VHJ14] G. Vankeerberghen, J. Hendrickx, and R.M. Jungers. “JSR: A Tool-
box to Compute the Joint Spectral Radius”. In: 17th International
Conference on Hybrid Systems: Computation and Control. 2014, pp. 151–
156. doi: 10.1145/2562059.2562124.

[Vil11] John D Villasenor. Ensuring hardware cybersecurity. Center for Tech-
nology Innovation at Brookings, 2011.

[Vin+07] Blas M Vinagre, Concepción A Monje, Antonio J Calderón, and José
I Suárez. “Fractional PID controllers for industry application. A brief
introduction”. In: Journal of Vibration and Control 13.9-10 (2007),
pp. 1419–1429.

[WHC10] Xin Wang, Keith Holbert, and Lawrence T Clark. “Using TMR to
mitigate SEUs for digital instrumentation and control in nuclear
power plants”. In: 7th International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface Technolo-
gies 2010, NPIC and HMIT 2010. 2010, pp. 925–934.

[Whi+21] Max Whitby, Luca Cardelli, Marta Kwiatkowska, Luca Laurenti,
Mirco Tribastone, and Max Tschaikowski. “PID control of biochemi-
cal reaction networks”. In: IEEE Transactions on Automatic Control
67.2 (2021), pp. 1023–1030.

[WHS13] X. Wang, N. Hovakimyan, and L. Sha. “L1Simplex: Fault-Tolerant
Control of Cyber-Physical Systems”. In: 4th International Conference
on Cyber-Physical Systems. 2013, pp. 41–50. doi: 10.1145/2502524.
2502531.

[Wil14] Clay Wilson. “Cyber threats to critical information infrastructure”.
In: Cyberterrorism: Understanding, Assessment, and Response. Springer,
2014, pp. 123–136.

120

https://doi.org/10.1145/2562059.2562124
https://doi.org/10.1145/2502524.2502531
https://doi.org/10.1145/2502524.2502531

[WIR13] David Ward, Ireri Ibarra, and Alastair Ruddle. “Threat analysis and
risk assessment in automotive cyber security”. In: SAE International
Journal of Passenger Cars-Electronic and Electrical Systems 6.2013-
01-1415 (2013), pp. 507–513.

[WM91] Victor Williams and Kiyotoshi Matsuoka. “Learning to balance the
inverted pendulum using neural networks”. In: [Proceedings] 1991
IEEE International Joint Conference on Neural Networks. IEEE.
1991, pp. 214–219.

[Xia22] Weiming Xiang. “Necessary and Sufficient Conditions for Stability of
Discrete-Time Switched Linear Systems With Ranged Dwell Time”.
In: IEEE Control Systems Letters 6 (2022), pp. 728–733. doi: 10.
1109/LCSYS.2021.3086393.

[Yan+19] Aibin Yan, Zhelong Xu, Kang Yang, Jie Cui, Zhengfeng Huang,
Patrick Girard, and Xiaoqing Wen. “A novel low-cost TMR-without-
voter based HIS-insensitive and MNU-tolerant latch design for aerospace
applications”. In: IEEE Transactions on Aerospace and Electronic
Systems 56.4 (2019), pp. 2666–2676.

[Yeh95] Y.C. Yeh. “Dependability of the 777 Primary Flight Control System”.
In: Dependable Computing for Critical Applications. IEEE, 1995.

[Yoh+20] Rajaa Vikhram Yohanandhan, Rajvikram Madurai Elavarasan, Premku-
mar Manoharan, and Lucian Mihet-Popa. “Cyber-physical power sys-
tem (CPPS): A review on modeling, simulation, and analysis with
cyber security applications”. In: IEEE Access 8 (2020), pp. 151019–
151064.

[Yoo10] Myung-Gon Yoon. “Dynamics and stabilization of a spherical in-
verted pendulum on a wheeled cart”. In: International Journal of
Control, Automation and Systems 8.6 (2010), pp. 1271–1279.

[ZC03] Ying Zhang and Krishnendu Chakrabarty. “Fault recovery based on
checkpointing for hard real-time embedded systems”. In: Proceedings
18th IEEE Symposium on Defect and Fault Tolerance in VLSI Sys-
tems. IEEE. 2003, pp. 320–327.

[ZCJ16] Xingliang Zou, Albert MK Cheng, and Yu Jiang. “P-FRP task schedul-
ing: A survey”. In: 2016 1st CPSWeek Workshop on Declarative Cyber-
Physical Systems (DCPS). IEEE. 2016, pp. 1–8.

[Zho+17] Junlong Zhou, Min Yin, Zhifang Li, Kun Cao, Jianming Yan, Tongquan
Wei, Mingsong Chen, and Xin Fu. “Fault-tolerant task scheduling for
mixed-criticality real-time systems”. In: Journal of Circuits, Systems
and Computers 26.01 (2017), p. 1750016.

121

https://doi.org/10.1109/LCSYS.2021.3086393
https://doi.org/10.1109/LCSYS.2021.3086393

	d4cff5f379abac3fe9a248143fa13616d4fd82d6cd9f39e720d46bed7bd277d5.pdf
	thesis-pages
	thesis-pages (4)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)
	thesis (1)

