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Abstract—There is growing interest in developing reliable,
non-invasive, and cost-effective methods for early diagnosis
of neurodegenerative diseases such as Mild Cognitive Impair-
ment (MCI) and Alzheimer’s Disease (AD). In this regard,
handwriting-based tasks have shown potential in differentiating
MCI and AD patients from healthy controls (HCs). However,
previous work has reported mixed results when using different
symbols and data representations. We address this research gap
by developing computational models (convolutional and recurrent
neural networks) to differentiate MCI and AD from HCs with
off-line (scanned images) and on-line (discrete time series) house
drawings. Notably, we observed that augmenting on-line data
and then converting it to off-line format, a method we refer to
as “OnOff-line”, yielded the best performance results in binary
classification tasks. These findings highlight the effectiveness of
on-line representations in capturing handwriting dynamics more
accurately. Ultimately, our work opens new avenues for future
research to enhance automated diagnostic of MCI and AD from
handwriting analysis.

Index Terms—Mild Cognitive Impairment, Alzheimer’s Dis-
ease, Handwriting, Drawing, Deep Learning, Classification.

I. INTRODUCTION

Alzheimer’s Disease (AD) is the primary cause of dementia,
leading to substantial cognitive and behavioral decline [1], and
is expected to impact up to 152 million individuals worldwide
by 2050 [2]. The early detection and understanding of Mild
Cognitive Impairment (MCI), which often precedes dementia,
has garnered considerable attention from both researchers
and healthcare professionals, as it represents a pivotal phase
between healthy aging and AD. MCI is characterized by mild
cognitive symptoms (e.g., memory and thinking skills) that
do not significantly impede daily life activities. Although

not all MCI cases progress to dementia, there is an ele-
vated risk of evolving into AD [3], particularly for people
who experience memory deficits [4], [5]. Furthermore, the
availability of specific diagnostic tests can be constrained by
factors such as economic limitations, healthcare infrastructure,
or geographical location [6]. These restrictions can adversely
affect the prompt diagnosis and intervention for individuals
with cognitive impairments. This limitation underscores the
need for alternative, patient-friendly diagnostic approaches.

Current research and technological advancements are fo-
cused on improving the accessibility and accuracy of diag-
nostic tools. Given the challenges and inaccuracies associated
with traditional (manual) diagnosis methods for MCI and AD,
there is growing interest in using Machine Learning (ML)
to enhance these processes. For example, ML can identify
biomarkers such as neurofibrillary tangles and senile plaques,
which correlate highly with specific structural changes in the
brain caused by AD [7]. This shift towards technology-driven
diagnostics aims to streamline the early detection of AD and
MCI, facilitating timely interventions that could potentially
slow the progression of these neurodegenerative diseases.

Handwriting analysis has seen substantial growth recently,
following recent advancements in neuroscience, and in par-
ticular, it has proven useful in diagnosing AD due to its
ability to detect changes in cognitive and motor skills [8]–
[10]. The community has acknowledged handwriting-based
tests1 as a viable, non-invasive method for early detection of

1In this paper, we consider handwriting and hand-drawing synonymous be-
cause both tasks involve the same neurophysiological and peripheral processes
involved in motor control.



cognitive decline [11]–[13], a necessity in light of increasing
AD prevalence and an aging population.

In the medical field, it is widely recognized that handwriting
deterioration (e.g., irregular size, spacing, and letter formation)
is one of the earlier indicators of cognitive disorders. This
deterioration stems from the impact of cognitive diseases
on motor skills, which involve cognitive, kinesthetic, and
perceptual-motor abilities. Therefore, observing changes in
handwriting can serve as a critical early sign of cognitive
decline, highlighting the need for early diagnosis and inter-
ventions to mitigate the severity of these conditions [14].

The choice of symbols for handwriting/drawing tests sig-
nificantly impacts the accuracy and utility of the results. The
Clock Drawing Test (CDT), widely used for cognitive evalu-
ation, has been shown to require large sample sizes to yield
reliable results [15]. The Pentagon drawing test (PDT), which
measures visuospatial abilities through a copy task, is not well-
suited for detecting broader cognitive impairments beyond
spatial skills [16]. Sentence-writing tasks [17] are language-
dependent, which poses a challenge in multilingual settings
or among individuals with language deficits, and handwritten
signatures do not perform well for AD screening [18], [19].

Both the Tree Drawing Test (TDT) [20], [21] and the House
Drawing Test (HDT) [22] are increasingly being used by
clinicians nowadays. These tests evaluate a range of cognitive
functions, including planning, organization, spatial awareness,
and motor control [22]. Despite their potential, computational
modeling using these symbols remains unexplored. The TDT,
though useful, presents certain challenges. Trees can vary
greatly in their structure and complexity, which may introduce
variability in the interpretation of results. In contrast, the HDT
offers a more standardized and relatable symbol. Drawing
a house typically involves a combination of straight lines,
angles, and geometric shapes, which can effectively assess
visuoconstructional abilities and cognitive function without the
variability introduced by more complex symbols. It is simple
to administer, language independent and captures a wide range
of cognitive abilities. Given these advantages, we develop
computational models using HDT data in this paper.

Another area that remains underexplored is the use of differ-
ent input representations that can improve model performance.
Namely, the vast majority of previous work uses scanned
images (off-line representations) for AD classification [15],
[18], [23]–[25]. Only a handful of papers have explored the use
of time series data (on-line representations) in this regard [11],
[26]. We argue that on-line data can capture better handwriting
dynamics; however, in the medical domain, these kinds of
datasets are really small, so ML models tend to overfit [27].
This is arguably the main reason why previous work has only
focused on off-line data. In this paper, we explore a novel
approach: convert on-line data to off-line data. This enables
the combination of fine-grained handwriting dynamics with
static image data, for which computer vision DL models have
proved useful for AD classification.

In sum, this paper makes the following contributions:
• Comparison of Deep Learning (DL) models for classi-

fication of AD, MCI, and HCs using both On-line and
Off-line HDTs.

• On-line to off-line conversion: a novel approach where
time series data are encoded into (pixel-based) intensity
values as images.

II. RELATED WORK

ML in digital medicine has recently shown considerable
promise in enhancing healthcare outcomes and improving
the efficiency of the diagnostic process [26], [28]–[30]. ML
algorithms have been used to classify MCI, AD, and cognitive
normal groups using neurocognitive tests, with high area under
the ROC curve (AUC) values, indicating strong predictive
performance [31]. Handwriting analysis, particularly in the
context of AD and MCI, offers valuable insights for screening
and diagnosis (e.g., [32]). Recent studies have identified dis-
tinct patterns in the early stages of AD through handwriting,
demonstrating the efficacy of drawing skills as indicators of
cognitive decline [10], [33]–[35].

Handwriting data can be captured either as scanned images,
also known as off-line data, or as discrete sequences of {x, y}
(sometimes {x, y, t}) points, also known as on-line data. The
former has been the focus of most of the previous work
in AD screening [23], [29]. The latter has gained attention
only recently [11], [26], which is surprising because, in other
domains, it has been shown that on-line data representations
provide richer movement dynamics, including, for example,
detailed timing and (sometimes) pressure information [14],
[36]–[38], which are features not available in off-line data
representations.

When combined with cognitive functioning assessments,
handwriting kinematic measures can differentiate between
MCI, AD, and healthy controls (HCs). The reported classi-
fication accuracy ranges from 69% to 72% in differentiating
participants, although the classification accuracy for the MCI
group alone is relatively poor [39]. Müller et al. [40] reported
that the digital Clock Drawing Test (dCDT) has a higher
diagnostic accuracy for discriminating MCI patients from
HCs compared to the conventional CDT (cCDT) (81.3% vs.
62.5%). Robens et al. [41] used the digital Tree Drawing
Test (dTDT), achieving 77% AUC when discriminating MCI
from HCs and 90% AUC when discriminating AD from HCs.
Faundex et al. [22] used the House Drawing Test to analyze
(not classify) handwriting movements in AD patients and
HCs. They noted that on-line data revealed subtler motor
impairments that traditional off-line methods would miss.

A study by Garre et al. [27] investigated handwriting and
drawing copy-tasks involving several symbols (e.g., spiral,
house, or crossed pentagons) to differentiate between AD,
MCI, and HC. They found that kinematic features such as
pen tip velocity and pressure could classify participants based
on their cognitive status with varying accuracy, from 63.5%
(drawing of a 3D house and CDTs) to 100% (drawing of
a spiral). Unfortunately, the spiral symbol does not include
considerations of fine-grained details and facets of spatial



awareness, planning, and memory, all of which are particularly
affected in MCI and AD patients.

El-Yacoubi et al. [38] tried to identify cognitive states based
on handwriting characteristics (e.g., velocity, acceleration,
or stroke length) when copying predefined sentences. Their
study revealed distinct clusters that corresponded to different
cognitive profiles. For example, one cluster was dominated
by HC and MCI patients, while another was dominated by
MCI and early-stage AD patients. This clustering highlighted
that MCI patients exhibited handwriting behaviors that were
intermediate between HCs and early-stage AD patients. An-
other study by Raksasat et al. [42] developed an Attentive
Pairwise Interaction Network (API-Net) aimed at enhancing
the automatic scoring of the CDT. They achieved 79% F1-
score, slightly outperforming a convolutional neural network
(ResNet-152 by 3%) for multi-class classification.

As shown before, there is no consensus about which per-
formance metric should be reported and which handwriting
task should be administered. Further, very few datasets are
available for AD and MCI screening, mostly in off-line
form. To address these issues, we collected a comprehensive
dataset 2 featuring HDTs, drawn by MCI and AD patients as
well as HC, using both on-line and off-line data. Our dataset
is, therefore, unique in the sense that it encompassed off-
line and on-line representations of the same drawing from
the same subject. Accordingly, we compare and contrast the
classification performance of various computational models
(neural networks) using either off-line or on-line handwriting
to detect MCI and AD. We also investigate a novel approach,
which consists of converting on-line data to off-line, which
turned out to outperform models trained from scratch on
either on-line or off-line data. Taken together, our results
provide new insights into the performance of ML models when
classifying MCI and AD patients using different handwriting
data representations.

III. EXPERIMENTAL SETUP

Digital pens bring new challenges, including increased
costs and a potential compromise in handwriting input due
to variations in pen grip and user familiarity with digital
interfaces [43]. To address these concerns, we used a Repaper
tablet,3 featuring conventional pencils equipped with a small
accelerometer, which allowed us to replicate the natural paper-
based handwriting experience while at the same time capturing
discrete time series data of {x, y} points. The on-line data
capture of these {x, y} points is crucial as it provides a
continuous, real-time digital record of the writing process,
enabling detailed analysis of handwriting trajectories. These
trajectories are particularly meaningful in our study as they
offer insights into neuromotor control in elderly populations,
helping to differentiate between normal aging processes and
specific impairments associated with MCI and AD.

In addition to on-line data, off-line data captures static
end results of the handwriting, such as the final drawing.

2Available upon reasonable request.
3https://www.iskn.co/

The key difference between off-line and on-line data is that
while off-line data provides a snapshot of the final product,
on-line data captures the process. By comparing both off-
line and on-line versions from the same patient, we can gain
a comprehensive understanding of both the result and the
process of handwriting, which is essential for diagnosing and
differentiating between MCI and AD.

A. Participants

TABLE I
DEMOGRAPHIC INFORMATION OF OUR DATASET.

HC MCI AD

(n = 11) (n = 25) (n = 22)

Gender (male + female) 3 + 8 15 + 10 5 + 17

Age (M ± SD) 82.63 ± 2.46 81.44 ± 5.89 79.36 ± 4.09
MMSE (M ± SD) 29.91 ± 0.83 27.60 ± 2.18 23.45 ± 3.57

We recruited 58 individuals aged between 70 and 89 years at
the Memory Unit of the Hospital Clinico San Carlos (HCSC)
in Madrid, including 25 patients with MCI, 22 patients with
AD, and 11 HC; see Table I and Figure 1. All individuals had
normal vision and no hearing problems. Cognitive capabilities
were assessed in a clinical setting optimized to minimize
distractions and background noise. This assessment used the
Mini-Mental State Examination (MMSE) [44] to evaluate
cognitive status. Patients were classified into MCI or AD based
on criteria from the National Institute of Neurological and
Communicative Disorders and Stroke (NINCDS), Alzheimer’s
Disease and Related Disorders Association (ADRDA) [45],
and the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) [46]. Statistical analysis with one-way ANOVA tests
revealed no significant age differences between the three
groups (F (2, 55) = 2.04, p > .139), indicating a balanced
distribution across participants. Conversely, significant dif-
ferences in MMSE scores were found among the groups
(F (2, 55) = 25.64, p < .0001), with the HC group scoring
higher than the MCI and AD groups (p < .0001), as expected.

Fig. 1. Data distribution of (a) age and (b) MMSE score of HC, MCI, and
AD groups.



Fig. 2. Full system pipeline, from data collection and preprocessing to model training and classification.

Figure 1 presents the distribution of (a) age and (b) MMSE
scores for the three groups. The HC group displays a broader
age range with a slightly higher median age compared to the
MCI and AD groups. Notably, the statistical test indicates no
significant difference (p > .05) in age distribution among
the groups, suggesting that age alone does not allow to
differentiate between these groups. The boxplots reveal a clear
descending trend in median MMSE scores from HC to AD,
indicating a progressive cognitive decline. The MCI scores lie
between those of the HC and AD groups, consistent with their
intermediary diagnostic status. The difference across groups
was statistically significant (p < .001).

B. Procedure
Participants were tasked to draw a house with the instru-

mented pencil (1 drawing per participant, totaling 58 draw-
ings). The Repaper tablet simultaneously recorded off-line and
on-line data. The on-line data were stored as SVG files (default
format in Repaper) and then converted to JSON files for later
post-processing. The off-line data were digitized with an HP
Color LaserJet Pro scanner, stored as PDF files (default format
in LaserJet), and then converted into PNG files for later post-
processing. The PNG files were enhanced with the Canny edge
detector [47] and resized to a standard resolution of 224×224
px.

IV. MODELING METHODOLOGY

Figure 2 shows the full system pipeline. As explained later,
we use Convolutional Neural Networks (CNNs) to classify off-
line data and Recurrent Neural Networks (RNNs) to classify

on-line data. We chose CNNs and RNNs for our tasks because
of their effectiveness in analyzing complex drawing tasks such
as the CDT [15], [48], HDT [22] and PDT tasks [16], which
are commonly used to assess cognitive impairment [49] for
both off-line and on-line data. CNNs are particularly effective
for processing off-line data, such as pixel-based images, where
they can detect spatial patterns and intricate details within the
static drawings, essential for identifying signs of cognitive
decline. On the other hand, RNNs, especially Long Short-
Term Memory networks (LSTMs) and Gated Recurrent Units
(GRUs), excel in analyzing on-line data by capturing the
sequential nature of stroke movements, which is critical for
understanding the temporal progression in tasks like drawing
tests. This approach allows us to capitalize on the specific
strengths of CNNs for off-line image analysis and RNNs for
on-line sequential data, providing a comprehensive assessment
of cognitive function.

A. Data Augmentation

Data augmentation is essential to increase the robustness
and generalizability of ML models, especially in digital
medicine, where sample sizes are quite often too small for
today’s ML standards. We considered three versions of data
augmentation (Figure 2b), as follows.

Off-line version: We applied a series of standalone ge-
ometric transformations to the images, such as scaling and
small rotations, in a selective manner to preserve the image
semantics (e.g., no vertical flipping). For this, we used the



Fig. 3. Distributions of SSIM and DTW distributions across HC, MCI, and AD. Dashed plots correspond to the results considering all the augmentation
techniques collectively (labeled as “All aug.”). The solid plots show the results from the selected augmentation (labeled as “Sel. aug.”) techniques.

Albumentations library.4

On-line version: The discrete point sequences were modi-
fied according to commonly used transformation methods for
time series, such as jittering and scaling [50].

OnOff-line version: The augmented on-line data were
converted to off-line data (PNG format), following the same
steps indicated in Section III-B. This variant is a compromise
solution between on-line and off-line approaches; the idea
is to leverage the potentially larger variability produced by
time series transformations and combine it with the high
performance of pre-trained CNNs.

Thanks to data augmentation, we expanded our dataset to in-
clude 300 images (off-line representations) and 300 sequences
(on-line representations), ensuring a balanced representation
across categories. As an example, for the MCI category, we
generated 75 unique variations from the initial set of 25 house
drawings.

While augmented data should introduce variability, it should
still retain the essential features of the original data to be
useful for training. To ensure this, the quality and variability
of the augmented dataset were rigorously assessed using the
Structural Similarity Index Measure (SSIM) [51] for off-line
data and the Dynamic Time Warping (DTW) [52] metric for
on-line data. SSIM is a similarity metric where 0 indicates no
similarity, and 1 means full similarity. SSIM is commonly
used to measure the visual similarity between images by
considering changes in structural information, luminance, and
contrast. DTW is a distance metric where values greater than
0 indicate deviation from full similarity. DTW, on the other
hand, compares time-series data by aligning sequences in a
way that minimizes the cumulative distance.

Note that, in this context, “similarity” refers to maintaining
the structural integrity of the original data while introducing
the desired variations. The goal of using similarity measures in

4https://albumentations.ai/

the context of data augmentation is not to create augmented
data identical to the originals but rather to ensure that the
transformations do not lead to the loss of important features or
introduce unrealistic characteristics. Too high SSIM or DTW
values might indicate insufficient augmentation, whereas too
high SSIM values might indicate that the augmented data is
too similar to the original, suggesting insufficient variability
and, therefore, potentially less effective augmentation. Con-
versely, SSIM values that are too low might indicate excessive
distortion, where the structural integrity of the data is com-
promised. Similarly, higher values suggest greater deviation
from the original time-series patterns for DTW, while very low
values could imply that the augmentation did not introduce
meaningful variations. Thus, both SSIM and DTW provide
critical insights into the balance between maintaining essential
features and introducing sufficient variability, ensuring that the
augmented data remains valid for model training.

Figure 3 represents the plots for SSIM and DTW. With
SSIM scores ranging between 0.7 and 0.75 (see Figure 3 b) and
DTW ranging from 180 to 4987 (see Figure 3b), we confirm
that the augmented data comprise novel variations rather than
mere replicas of the originals.

B. Convolutional Neural Networks

CNNs are inspired by the hierarchical structure of the
human visual cortex [53] and are widely used for image
classification tasks in digital medicine (e.g., [54]). We se-
lected three state-of-the-art CNNs pre-trained on the popular
ImageNet dataset, which offers a vast range of images across
multiple categories:5 ResNet50 [55], DenseNet121 [56], and
EfficientNet [57]. ResNet uses skip connections to allow
gradients to flow through the network directly, preventing the
vanishing gradient problem and enabling the training of very
deep networks. DenseNet features a unique architecture where
each layer is connected to every other layer in a feed-forward

5https://www.image-net.org/



fashion, significantly reducing the number of parameters and
enhancing feature propagation. EfficientNet scales up CNNs
in a more structured manner using a compound coefficient
to ensure that depth, width, and resolution grow uniformly.
These models were fine-tuned to our dataset using transfer
learning [58].

C. Recurrent Neural Networks

RNNs are preferred to handle sequential data, where un-
derstanding spatiotemporal dynamics is important [59]. Since
no pre-trained RNN models for sequence classification are
currently available as open source, we designed three models
from scratch, each based on one type of RNN memory cell.

Bidirectional vanilla RNN (BiRNN, with no memory),
which operates without the use of gating mechanisms, makes
it simpler and faster for tasks where long-term dependencies
are less critical. This model analyzes the sequence dynamics in
a straightforward manner, though it may struggle with longer
sequences due to the vanishing gradient problem.

Bidirectional Long Short-Term Memory (BiLSTM) [60] uses
LSTM units to capture long-range dependencies within the
data effectively. This model is particularly adept at handling
the challenges of sequence classification, where understanding
across large time lags is crucial. The bidirectional architecture
enhances its capability to integrate context from both past and
future inputs, providing a robust analysis of the sequence’s
temporal features.

Bidirectional Gated Recurrent Unit (BiGRU) [61] uses GRU
cells that streamline the architecture of LSTMs while retaining
their ability to manage long-term dependencies. GRUs sim-
plify the gating mechanism found in LSTMs, leading to faster
training times without a significant trade-off in performance.
Like BiLSTM, the bidirectional approach allows the BiGRU
to glean comprehensive insights from both directions of the
sequence, enhancing its predictive accuracy in complex sce-
narios.

Generally, bi-directionality allows the models to analyze an
input sequence in the forward and backward directions, of-
fering a more comprehensive understanding of the sequence’s
temporal features. Our three RNNs have one hidden layer com-
prising 128 neurons selected through Bayesian optimization
with the Keras Tuner library [62], hyperbolic tangent as an
activation function, and a dropout rate of 0.1 to prevent over-
fitting. This setup precedes a softmax output layer, ensuring a
probabilistic distribution over the classification labels as model
output (Figure 2d).

D. Training Procedure

We split our augmented dataset as disjoint partitions of: 80%
training, and 20% testing. The test partition simulates unseen
data, as it is only used for final model evaluation. We train
our CNN and RNN models using the Adam optimizer with a
learning rate of η = 0.001 and momentums β1 = β2 = 0.99.
The loss function is binary cross-entropy for two-class classi-
fication tasks (in our case, two categories: HC and patient) and
categorical cross-entropy for multi-class classification tasks (in

our case, three categories: HC, MCI, and AD). We use a batch
size of 32 and train each model for up to 100 epochs with early
stopping (patience of 40 epochs, meaning that if validation loss
does not improve over 40 consecutive epochs, training stops,
preserving the optimal model weights).

To ensure a consistent proportion of samples across different
classes, we used a stratified 5-Fold Cross-Validation, a type of
K-Fold Cross-Validation that splits the entire set into k number
of folds. The number of folds, k, was set to 5. Consequently,
the training set–which represents 80% of the whole dataset–
was split into 5 folds. The first fold was used as the validation
set, while the remaining 4 folds served as the training set. This
process was repeated 5 times to guarantee that the entire set
was used for both training and validation purposes.

E. Evaluation Metrics

To assess the performance of our models, we compute
classification accuracy (Acc) and Area Under the Receiver
Operating Characteristic curve (AUC). Together, these two
metrics serve as fundamental tools in the assessment of pre-
dictive models, particularly in applications where the balance
between sensitivity (true positive rate) and specificity (true
negative rate) is crucial.

Accuracy is defined as the percentage of true cases (true
positives and true negatives) that are correctly identified
relative to the total number of cases. This metric offers a
straightforward measure of a model’s overall performance in
correctly predicting outcomes. The AUC, on the other hand,
provides insight into the discriminative power of any classifier.
It is calculated by plotting the true positive rate against the
false positive rate and measuring the area under the resulting
curve. The true positive rate quantifies the model’s ability to
correctly identify actual positives, while the false positive rate
measures how often the model incorrectly classifies negatives
as positives. If AUC = 50%, the classifier is no better than
random guessing, highlighting its ineffectiveness.

V. RESULTS AND DISCUSSION

We first evaluated the performance of the proposed CNN
and RNN models, with and without data augmentation, for
the three data representations considered (Off-line, OnOff-line,
and On-line). Figure 4 shows that data augmentation yields
notable improvements in all cases. Without it, most models
behave like a random classifier, especially when considering
binary classification tasks; see the leftmost plots in Figure 4.
This emphasizes that data augmentation is essential to train
competent computational models.

Subsequently, we found that both jittering and scaling were
particularly effective in improving classification accuracy for
models that rely on on-line data representations. This contra-
dicts previous findings in Parkinson’s disease (PD) screening,
where jittering failed to improve performance due to the
introduction of noise that mimicked dyskinesia charateris-
tics [50]. It is important to note that time series data should
not be excessively modified to avoid significant distortions
after data augmentation. Contrary to studies in PD (e.g., [50]),



10

30

50

70

90

A
cc

.(
%

)
Before and After data augmentation

Binary classification

Off OnOff On

10

30

50

70

90

Before and After data augmentation
Multi-class classification

Off OnOff On

D
enseN

et

R
esN

et

E
fficientN

et

10

30

50

70

90

A
U

C
(%

)

D
enseN

et

R
esN

et

E
fficientN

et

B
iR

N
N

B
iL

ST
M

B
iG

R
U

D
enseN

et

R
esN

et

E
fficientN

et

10

30

50

70

90
D

enseN
et

R
esN

et

E
fficientN

et

B
iR

N
N

B
iL

ST
M

B
iG

R
U

Fig. 4. Classification accuracy (top row) and AUC scores (bottom row) using different models. Dashed lines indicate the performance of a random classifier,
serving as an empirical lower bound for comparison.

our methods proved effective, suggesting that the type of
data augmentation and the nature of the disease significantly
influence model outcomes.

Our study aims to go beyond merely achieving accurate and
high-performance classification results; it seeks to understand
the effectiveness of different input data formats as novel diag-
nostic methods. Overall, our CNN and RNN models succeeded
in distinguishing AD patients from HC or MCI, outperform-
ing random guessing by a large margin. Interestingly, our
experiments achieved the best results in binary classification
tasks when augmenting on-line (time series) data and then
converting them to off-line (images) data, referred to as OnOff-
line in our experiments. To the best of our knowledge, this is
the first work to report this finding.

Conversely, RNNs, specifically BiGRU, achieved the best
performance for multi-class classification tasks. In binary
classification tasks, MCI and AD patients are considered in the
same group, which may introduce some noise and ambiguities
in the multi-class case, affecting the BiGRU model’s perfor-
mance. However, for multi-class classification tasks, where
HC, MCI, and AD are treated as separate classes, BiGRU mod-
els can effectively use their architecture to distinguish between
these groups more accurately. BiGRU worked best for multi-
class classifications and performed as well as EfficientNet for
binary classifications, making it the most versatile model for
our dataset.

CNNs have previously been recognized for their high ac-
curacy in predicting the conversion from MCI to AD [33],
[63]. ML models have also been used to detect the progression
of AD stages. For example, Bucholc et al. [64] introduced a

hybrid Random Forest model that achieved 87.5% accuracy;
however, the reported performance varied across different
measures (e.g., MRI, age, and cognitive measures). In contrast,
our models deliver higher accuracy across classification tasks
and are robust across different data formats. Another study by
Piers et al. [65] used on-line data to examine neurocognitive
behavior over time, demonstrated the utility of digital pen tech-
nology in cognitive evaluation. In line with these observations,
our study shows that on-line data representations are preferred,
even when converted to off-line data.

Table II presents the classification results from various
studies involving handwriting analysis to diagnose AD, using
both off-line and on-line representations and across differ-
ent datasets. Where applicable, each model’s performance is
evaluated under binary and multi-class classification scenarios.
When using off-line data representations, EfficientNet models
on pentagon drawings achieved the highest binary classifica-
tion accuracy. This is followed closely by the InceptionRes-
NetV2 models on letter drawings, which also show robust per-
formance. In multi-class classification, where the complexity
of class differentiation increases, all models generally show
reduced performance, exemplifying the challenges posed by
more complex classification tasks. On-line data representations
performed best in this case.

Classification accuracy varies notably across the different
drawings and formats, underscoring the influence of draw-
ing complexity and data format on model performance. Our
findings suggest that simpler shapes may facilitate higher
accuracy in binary classification due to fewer complexities
distinguishing ADs from HCs. However, as the task complex-



ity increases in multi-class scenarios, where the model must
differentiate between multiple stages or types of cognitive
impairment, model performance generally declines. This is
evident in the more complex “Clock” and “Letter” drawings,
which involve more intricate details and potentially more
variation in individual execution.

TABLE II
CLASSIFICATION RESULTS AND COMPARISON TO THE STATE OF THE ART.

Drawing Models Binary Multi-class

O
ff

-l
in

e
da

ta

Clock [15] DenseNet-121 74% 61%
Letter [66] InceptionResNetV2 74.6% N/A
Pentagon [16] EfficientNet 87% 76%
House (Off), ours EfficientNet 76% 60%
House (OnOff), ours EfficientNet 82% 66%

O
n-

lin
e

da
ta

Clock [67] DL 83.44% N/A
Signature [68] SVM 75.71% N/A
Letter [11] 1D-CNN 89% N/A
House (On), ours BiGRU 72% 61%
House (OnOff), ours EfficientNet 82% 66%

Note: All these studies used data augmentation to improve their model
performance.

The MCI group showed characteristics that were inter-
mediate between HCs and ADs, which made it challenging
to distinguish them clearly, as it was also stated in Werner
et al. work [10]. However, our study demonstrated better
performance in distinguishing MCI from HC and AD with
higher accuracy in our multi-class classification task, with an
accuracy of (See Table II). Compared with previous work,
several factors of our study stand out:

1) Data augmentation: Our results demonstrate that data
augmentation significantly enhances model performance,
which aligns with findings by Dao et al. [11] and Ben-
salah et al. [26] (see Table II). Unlike their studies,
which focused on GANs, our work shows that traditional
augmentation techniques like jittering and scaling can
also yield high accuracy. This highlights the versatility
of these simple augmentation techniques across different
datasets and model architectures.

2) Model performance: Similar to Bucholc et al. [64], who
reported high accuracy with a hybrid Random Forest
model, our study finds that BiGRU performs exception-
ally well in multi-class classification tasks. This suggests
that RNNs, particularly BiGRU, are highly effective in
capturing the temporal dynamics of handwriting data,
which is critical for distinguishing between HC, MCI,
and AD.

3) Data Representations: Our findings that on-line data
representations are preferred, even when converted to off-
line data (here OnOff-line format), are consistent with
Piers et al. [12], who suggested that using both on-
line and off-line handwriting analysis with deep transfer
learning and GANs can improve early-stage Alzheimer’s
disease detection. This underscores the importance of

preserving temporal information in handwriting data for
accurate classification.

4) Digital Drawing Tools: The use of digital drawing
tools, as highlighted in previous studies [41], [65], [69]),
supports our approach of using on-line pen stroke data
to analyze drawing characteristics indicative of cognitive
impairment. All those previous studies emphasized the
potential of these tools for early dementia detection but
only a handful of them actually did some computational
modeling tasks.

VI. LIMITATIONS AND FUTURE WORK

We acknowledge that relying solely on a single type of
drawing task (in our case, a house) may limit the generaliz-
ability of our findings across different clinical settings where
other forms of cognitive assessments are used. Although, as
discussed in the Introduction section, the HDT evaluates a
range of cognitive functions [22], therefore, in line with recent
work, it should become the standard task to screen MCI and
AD patients. We also should note that previous work has
considered pentagons [70], clocks [15], and signatures [18],
[71], achieving similar results (sometimes lower) to ours.

On the other hand, our experimental findings are drawn
from a relatively small sample size, which might limit their
applicability to a broader population of patients. However, the
challenge of recruiting a large and diverse cohort is a common
and pervasive issue in digital medicine [14], [72]. Despite
these limitations, our results hold promise and could pave the
way for future clinical applications using a simple handwriting
test as a non-invasive, low-cost, and accurate method.

VII. CONCLUSION

Handwriting analysis has been used by neurologists assess-
ing suspected dementia patients in conjunction with a range
of other measurements and tests. We have investigated how
neural networks can use off-line and on-line house drawings to
classify AD and MCI patients. We have observed that on-line
data converted to off-line data is the most efficient approach to
distinguish patients from HC (binary classification), whereas
on-line data representations are preferred over off-line data for
distinguishing AD, MCI, and HC (multi-class classification).
Taken together, our results show the potential to enhance
home-based healthcare services, using non-invasive, low-cost
handwriting tests like the one we have investigated in this
paper.
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