
PhD-FSTM-2024-072
Faculty of Science, Technology and Medicine

DISSERTATION

Presented on the 16/09/2024 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN
INFORMATIQUE

by

Yinghua LI
Born on 28th June 1992 in Sichuan, China

Test Input Prioritization for Deep Neural
Networks

Dissertation Defense Committee
Dr. Tegawendé F. BISSYANDE, Dissertation Supervisor
Professor, University of Luxembourg, Luxembourg

Dr. Jacques KLEIN, Chairman
Professor, University of Luxembourg, Luxembourg

Dr. Lei MA, Vice Chairman
Professor, The University of Tokyo, Japan

Dr. Hongyu ZHANG, Member
Professor, Chongqing University, China

Dr. Xiang GAO, Member
Professor, Beihang University, China

Abstract

The rapid adoption of deep neural networks (DNNs) has revolutionized machine
learning in several domains. As a result, thorough evaluation and validation of DNNs
are crucial for ensuring their effectiveness. Testing DNNs, however, is challenging
due to three key issues: 1) manual labeling is the mainstream; 2) test sets can be
large scale; and 3) domain-specific knowledge can be required for labeling. To reduce
the labeling costs, one promising approach is test prioritization, which focuses on
identifying and prioritizing potentially misclassified test inputs. Early identification
of such challenging inputs can accelerate the DNN debugging process and improve
the efficiency of DNN testing. While existing test prioritization approaches for DNNs
have proven effective in some cases, they show limitations when applied to more
specialized scenarios.

In this dissertation, we focus on four special scenarios, namely video classification,
Graph Neural Networks (GNN) classification, compressed DNN classification and 3D
shape classification. Applying existing DNN test prioritization methods to these four
specific domains presents certain limitations. From Chapter 3 to Chapter 6, each
chapter proposes a new test prioritization method aimed at a specific domain. We
conducted empirical studies to demonstrate their effectiveness. Below, we present
the core contributions.
• Test prioritization for videos To solve the labeling-cost problem specifically in

the context of video test inputs, we proposed a novel test prioritization approach
called VRank. The fundamental concept underlying VRank is that test inputs
situated closer to the decision boundary of the model are at a higher risk of being
predicted incorrectly. To capture the spatial relationship between a video test
and the decision boundary, we designed a series of feature generation strategies
tailored to video-type tests. Based on these strategies, VRank generated features
for each test in the test set to perform test prioritization.

• Test prioritization for GNNs To relieve the labeling-cost problem and improve
the efficiency of GNN testing, we propose a GNN-oriented test prioritization
approach, NodeRank. NodeRank leverages the concepts of mutation testing to
perform test prioritization, operating on the core premise that if a test input
(node) can kill many mutated models and produce different prediction results
with many mutated inputs, this input is considered more likely to be misclassified
by the GNN model and should be prioritized higher.

• Test prioritization for compressed DNNs To address the challenge of labeling-
cost reduction in testing compressed DNN models, we proposed PriCod, which
can identify and prioritize potentially misclassified tests. PriCod leverages the
behavior disparities caused by model compression, along with the embeddings of
test inputs, to effectively prioritize potentially misclassified tests.

• Test prioritization for 3D point clouds To address the issue of high labeling

costs for 3D point cloud data, we propose a novel test prioritization approach,
PCPrior. PCPrior relies on the premise that test inputs closer to the decision
boundary of the model are more likely to be predicted incorrectly. To this end,
we designed a set of feature generation strategies tailored to 3D point clouds and
utilized the generated features for test prioritization.
In summary, this dissertation proposes four new test prioritization methods

tailored to four specialized DNN scenarios and demonstrates their effectiveness
against the compared methods.

i

ii

Well done is better than well said.

Benjamin Franklin

iii

iv

Acknowledgements

I would like to express my deepest gratitude to those who supported and helped
me throughout my PhD journey. Their support was indispensable, and without their
assistance, the completion of my dissertation would not have been possible. It is my
pleasure to express my gratitude to them.

Firstly, I wish to express my heartfelt gratitude to my supervisor, Prof. Tegawendé
F. Bissyandé. He has always trusted and supported me with his great kindness
throughout my whole PhD journey. I am particularly grateful for his patient commu-
nication and continuous encouragement in my research. His academic diligence and
persistence had a profound positive impact on my personal growth and development,
inspiring me to continue engaging in academic research in my future career.

Next, I am equally grateful to my daily advisor, Prof. Jacques Klein. He
was always willing to provide valuable suggestions and in-depth discussions for my
research work. I extend profound thanks to my co-supervisor, Prof. Lei Ma, for his
patience, advice, guidance, and encouragement in my research. Special thanks to
Doctoral Researcher Xueqi Dang, who regularly discussed research project with me
and persistently offered help and support throughout my PhD journey.

Thirdly, I would like to thank all my co-authors who worked closely with me
during my PhD study for their helpful discussions and collaboration. Specifically, I
am grateful to Dr. Jun Gao for helping me get acquainted with the HPC computing
cluster, ensuring all my experiments could run smoothly on HPC during my PhD.
Moreover, I would like to express my gratitude to the HPC teams for providing
robust computing resources for my research.

I would like to thank all the members of my PhD defense committee, including
Prof. Jacques KLEIN, Prof. Lei Ma, Prof. Hongyu Zhang, Prof. Xiang Gao and
my supervisor Prof. Tegawendé F. Bissyandé. It is my great honor to have them
participate in my defense committee, and I am very grateful for their review of my
dissertation and my PhD work.

I would like to thank all my colleagues from TruX (SnT) for all the good discussions
and interesting reading group sessions.

Finally, I express my deepest gratitude to my parents. They supported all my
decisions unconditionally and constantly encouraged me to move forward and pursue
my dreams.

Yinghua Li
University of Luxembourg

August 2024

v

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Limitations of Existing Approaches 3

1.2.1 Video classification . 3
1.2.2 GNN classification . 4
1.2.3 Compressed DNN classification 4
1.2.4 3D shape classification . 4

1.3 The Main Contributions . 5
1.4 Roadmap . 7

2 Background and Related Work 9
2.1 Deep Neural Networks Across Diverse Domains 10

2.1.1 DNNs for Video Classification 10
2.1.2 Graph Neural Networks . 11
2.1.3 DNN Model Compression . 11
2.1.4 Deep Learning for 3D Point Clouds 11

2.2 Test Input Prioritization for DNNs 12
2.3 DNN Testing . 13
2.4 Mutation Testing . 14

3 Prioritizing Test Cases for Deep Learning-based Video Classifiers 15
3.1 Introduction . 17
3.2 Background . 20

3.2.1 DNNs and DNN Testing . 20
3.2.2 DNNs for Video Classification 20
3.2.3 Test Input Prioritization for DNNs 21

3.3 Approach . 21
3.3.1 Overview . 21
3.3.2 Step 1: Video-oriented Feature Generation 22
3.3.3 Step 2: Learning-to-rank . 24
3.3.4 Step 3: Test Prioritization . 24
3.3.5 Variants of VRank . 25
3.3.6 Usage of VRank . 25

3.4 Study design . 26
3.4.1 Research questions . 26
3.4.2 Subjects . 26

3.4.2.1 DNN Models . 27
3.4.2.2 Datasets . 28

3.4.3 Noise generation techniques 29

vii

3.4.4 Compared Approaches . 29
3.4.5 Measurements . 30
3.4.6 Implementation and Configuration 31

3.5 Results and analysis . 31
3.5.1 RQ1: Effectiveness and efficiency of VRank 31
3.5.2 RQ2: Effectiveness on noisy test inputs 34
3.5.3 RQ3: Impact of different ranking models 35
3.5.4 RQ4: Feature contribution analysis 37
3.5.5 Impact of the number of extracted frames on the effectiveness

of VRank. 39
3.6 Discussion . 40

3.6.1 Limitations . 40
3.6.2 Threats to Validity . 41

3.7 Related Work . 42
3.7.1 Test Prioritization in DNN Testing 42
3.7.2 Deep Neural Network Testing 42
3.7.3 Test Prioritization for Traditional Software 44

3.8 Conclusion . 44

4 Test Input Prioritization for Graph Neural Networks 47
4.1 Introduction . 49
4.2 Background . 53

4.2.1 Graph Neural Networks . 53
4.2.2 Mutation Testing . 54
4.2.3 Ensemble Learning . 55

4.3 Approach . 55
4.3.1 Overview . 55
4.3.2 Specifying Mutation Rules . 57

4.3.2.1 Graph structure mutation (GSM) 57
4.3.2.2 Node feature mutation (NFM) 57
4.3.2.3 GNN model mutation (GMM) 58

4.3.3 Constructing Mutation Features Vectors 59
4.3.4 Building an Ensemble Ranking Model 60
4.3.5 Usage of NodeRank . 61

4.4 Evaluation Design . 61
4.4.1 Research Questions . 62
4.4.2 Performance Metric . 62
4.4.3 Compared Approaches . 63
4.4.4 GNN Subjects . 64

4.4.4.1 Graph datasets . 64
4.4.4.2 GNN models . 64

4.4.5 Graph Adversarial Attacks . 65
4.4.6 Variants of NodeRank . 65

4.4.6.1 NodeRankS . 65
4.4.6.2 NodeRankV . 66

4.4.7 Implementation and Configuration 66
4.5 Experimental Results . 67

4.5.1 RQ1: Performance of NodeRank 67

viii

4.5.2 RQ2: Prioritization of Adversarial Inputs 72
4.5.3 RQ3: Influence of Ensemble Learning Methods 78
4.5.4 RQ4: Ablation Study of Mutation Operators 79
4.5.5 RQ5: Investigating the Contributions of Model Mutation Rules

on NodeRank Effectiveness . 81
4.5.6 RQ6: Influence of Mutation Operator Parameters on NodeRank 84

4.6 Discussion . 85
4.6.1 Generality of NodeRank . 85
4.6.2 Challenges of NodeRank . 86
4.6.3 Differences in Approaches for NodeRank 86
4.6.4 Threats to Validity . 87

4.7 Related Work . 87
4.7.1 Test Prioritization Techniques 87
4.7.2 Mutation Testing . 88
4.7.3 Deep Neural Network Testing 89

4.8 Conclusion . 89

5 PriCod: Prioritizing Test Inputs for Compressed Deep Neural Networks 91
5.1 Introduction . 93
5.2 Background . 96

5.2.1 DNNs and DNN testing . 96
5.2.2 DNN Model Compression . 97
5.2.3 Confidence-based Test Prioritization for DNNs 97

5.3 Approach . 98
5.3.1 Preliminary Study . 98
5.3.2 Overview of PriCod . 99
5.3.3 Deviation Features Generation 101
5.3.4 Embedding Features Generation 104
5.3.5 Feature Fusion . 105
5.3.6 Feature-based Ranking . 105
5.3.7 Variants of PriCod . 106

5.4 Study design . 108
5.4.1 Research Questions . 108
5.4.2 Models and Datasets . 109

5.4.2.1 Datasets . 109
5.4.2.2 Compressed DNN models 110

5.4.3 Noise Generation Techniques 112
5.4.4 Adversarial Techniques . 113
5.4.5 Compared Approaches . 113
5.4.6 Measurements . 116

5.4.6.1 Average Percentage of Fault Detection (APFD) . . . 116
5.4.6.2 Percentage of Fault Detected (PFD) 116

5.4.7 Im plementation and Configuration 116
5.5 Results and analysis . 117

5.5.1 RQ1: Performance of PriCod on Natural Test Inputs 117
5.5.2 RQ2: Effectiveness on Noisy Test Inputs 121
5.5.3 RQ3: Effectiveness on Adversarial Test Inputs 124
5.5.4 RQ4: Impact of fusion strategies 125

ix

5.5.5 RQ5: Feature contribution analysis 127
5.5.6 RQ6: Exploring whether uncertainty-based metrics can en-

hance the effectiveness of PriCod 130
5.6 Discussion . 132

5.6.1 Limitations of PriCod . 132
5.6.2 Threats to Validity . 132

5.7 Related Work . 133
5.7.1 Test prioritization for Deep Neural Networks 133
5.7.2 Test Prioritization for Traditional Software 134
5.7.3 Deep Neural Network Testing 134
5.7.4 Test Generation approaches for Compressed DNN models . . . 135

5.8 Conclusion . 136

6 Test Input Prioritization for 3D Point Clouds 137
6.1 Introduction . 139
6.2 Background . 143

6.2.1 Deep Learning for 3D Point Clouds 143
6.2.2 Mutation Testing . 144
6.2.3 Test Input Prioritization for DNNs 145

6.3 Approach . 146
6.3.1 Overview . 146
6.3.2 Spatial Feature Generation . 147
6.3.3 Mutation Feature Generation 151
6.3.4 Prediction Feature Generation 152
6.3.5 Uncertainty Feature Generation 153
6.3.6 Feature Concatenation . 153
6.3.7 Learning-to-rank . 153
6.3.8 Usage of PCPrior . 154

6.4 Study design . 155
6.4.1 Research Questions . 155
6.4.2 Models and Datasets . 156

6.4.2.1 Datasets . 156
6.4.2.2 Models . 157

6.4.3 Measurements . 158
6.4.4 Compared Approaches . 159
6.4.5 Variants of PCPrior . 160
6.4.6 Implementation and Configuration 161

6.5 Results and analysis . 161
6.5.1 RQ1: Performance of PCPrior 161
6.5.2 RQ2: Influence of ranking models 165
6.5.3 RQ3: Impact of Main Parameters in PCPrior 166
6.5.4 RQ4: Effectiveness on Noisy Test Inputs 167
6.5.5 RQ5: Feature contribution analysis 172
6.5.6 RQ6: Retraining 3D shape classification models with PCPrior

and uncertainty-based methods 175
6.6 Discussion . 176

6.6.1 Limitations of PCPrior . 176
6.6.2 Generality of PCPrior . 177

x

6.6.3 Threats to Validity . 178
6.6.3.1 Internal Threats to Validity. 178
6.6.3.2 External Threats to Validity. 178

6.7 Related Work . 178
6.7.1 Test Prioritization Techniques 178
6.7.2 Mutation Testing for DNNs 179
6.7.3 Deep Neural Network Testing 179

6.8 Conclusion . 181

7 Conclusion and Future Work 183
7.1 Conclusion . 184
7.2 Future Work . 184

xi

xii

List of Figures

1.1 Roadmap of this dissertation . 7

2.1 An example of a DNN classifier . 10

3.1 Overview of VRank . 22

4.1 Overview of NodeRank . 54
4.2 Effectiveness distributions between NodeRank and the compared ap-

proaches on natural test inputs . 68
4.3 Test prioritization effectiveness among NodeRank and the compared

approaches for CiteSeer with TAGCN and PubMed with GAT. X-Axis:
the percentage of prioritized tests; Y-Axis: the percentage of detected
misclassified tests. 70

4.4 Test prioritization effectiveness among NodeRank and the compared
approaches for CiteSeer with GCN attacked by MMA and LastFM with
GraphSAGE attacked by PGD. X-Axis: the percentage of prioritized
tests; Y-Axis: the percentage of detected miscalssified tests. 72

4.5 Effectiveness distributions between NodeRank and the compared ap-
proaches on adversarial test inputs 74

4.6 Impact of mutation operator parameters in NodeRank 83

5.1 Correlation between deviation behavior and misclassification of tests.
X-Axis: Tests sorted by decreasing deviation; Y-Axis: the number of
misclassified tests . 100

5.2 Overview of PriCod . 101
5.3 Top five contributing features among all deviation features 129

6.1 Example of Point cloud test cases . 140
6.2 Overview of PCPrior . 146
6.3 Test prioritization effectiveness among PCPrior and the compared

approaches for ModelNet with DGCNN and ShapeNet with PointNet.
X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of
detected miscalssified tests. 165

6.4 Impact of main parameters in PCPrior 168
6.5 Test prioritization effectiveness among PCPrior and the compared

approaches for ModelNet(Noisy) with PointNet and ShapeNet(Noisy)
with DGCNN on noisy datasets. X-Axis: the percentage of prioritized
tests; Y-Axis: the percentage of detected misclassified tests. 171

xiii

xiv

List of Tables

3.1 Video models and datasets . 27
3.2 Effectiveness comparison among VRank, Random, DeepGini, Vanil-

laSM, PCS, and Entropy in terms of the APFD values on natural
datasets . 32

3.3 Performance improvement of VRank on the 15 initial subjects (i.e.,
three natural input sets on 5 Video classification models) 32

3.4 Statistical analysis on natural test inputs (in terms of p-value and
effect size) . 32

3.5 Time cost of VRank and the compared approaches 33
3.6 Overall effectiveness comparison on noisy video datasets 35
3.7 Performance improvement of VRank on the 105 noisy subjects (i.e.,

3(natural input sets)×5(Video classification models)×7(noise technique) 35
3.8 Effectiveness comparison on noisy datasets generated by the WS noise

generation technique . 36
3.9 Performance (APFD scores) of VRank variants with different ranking

models (#BC ⇔ #Best cases) and (Avg ⇔ Average APFD score) . . 37
3.10 Top-10 features in terms of the average contribution 38
3.11 Ablation study on different features of VRank: Embedding Fea-

tures(EF), Temporal Features(TF), Prediction Features(PF), Uncer-
tainty Features(UF). ‘w/o’ means ‘without’ 38

3.12 Influence of the number of extracted frames on the effectiveness of
VRank . 40

4.1 Effectiveness comparison among NodeRank, Random, DeepGini, Vanil-
laSM, PCS, and Entropy in terms of the APFD values on natural
datasets . 67

4.2 Performance improvement of NodeRank on the 16 initial subjects (i.e.,
4 natural input sets on 4 GNN models) 68

4.3 Average comparison results among NodeRank and the compared ap-
proaches in terms of PFD . 69

4.4 Confidence interval of NodeRank and the compared approaches in
terms of APFD on natural test inputs 70

4.5 Confidence interval of NodeRank and the compared approaches in
terms of PFD on natural test inputs 71

4.6 Statistical analysis on natural test inputs (in terms of p-value under
the Mann–Whitney U test) . 71

4.7 Time cost of NodeRank and the compared approaches 71
4.8 Test prioritization performance (APFD scores) on DICE-based graph

adversarial test inputs . 72

xv

4.9 Overall comparison results on graph adversarial datasets 73
4.10 Confidence interval of NodeRank and the compared approaches in

terms of APFD on DICE-based graph adversarial test inputs 74
4.11 Average comparison results among NodeRank and the compared ap-

proaches on adversarial data in terms of PFD 75
4.12 Confidence interval of NodeRank and the compared approaches in

terms of PFD on adversarial datasets 76
4.13 Statistical analysis on adversarial datasets (in terms of p-value under

the Mann–Whitney U test) . 77
4.14 Confidence interval of NodeRank and the compared approaches in

terms of APFD on adversarial test inputs 77
4.15 Performance (APFD scores) of NodeRank variants associated to dif-

ferent ensemble learning strategies (#BC ⇔ #Best cases) and (Avg
⇔ Average APFD score) . 79

4.16 Feature ablation study results . 79
4.17 Effectiveness (APFD scores) of NodeRank’s variants. (NodeRankwithoutGMM

does not generate mutated models. NodeRankRandom does not use
model mutation rules to generate mutated models. NodeRankDeepCime

uses model mutation rules to generate mutated models) 81

5.1 Correlation between prediction deviation in the original model and
the compressed model and misclassification of tests 99

5.2 Compressed DNN models and datasets 109
5.3 Effectiveness comparison among PriCod, DeepGini, VanillaSM, PCS,

Entropy, Margin, LC, ATS and random selection in terms of the APFD
values on natural test inputs . 118

5.4 Average improvement of PriCod over the compared approaches in
terms of the APFD values on natural test inputs 119

5.5 Average comparison results among PriCod and the compared ap-
proaches in terms of PFD on natural test inputs 120

5.6 Statistical analysis on natural test inputs (in terms of p-value on PFD)121
5.7 Time cost of PriCod and the compared test prioritization approaches 121
5.8 Average Effectiveness comparison among PriCod, DeepGini, Vanil-

laSM, PCS, Entropy, Margin, LC, ATS, and random selection in terms
of the APFD values on different accuracy compressed models 121

5.9 Average Effectiveness comparison among PriCod, DeepGini, Vanil-
laSM, PCS, Entropy, Margin, LC, ATS, and random selection in terms
of the APFD values on noisy test inputs 122

5.10 Average improvement of PriCod over the compared approaches in
terms of the APFD values on noisy test inputs 122

5.11 Effectiveness comparison results among PriCod and the compared
approaches in terms of PFD on noisy test inputs 123

5.12 Average effectiveness comparison results among PriCod and the com-
pared approaches in terms of PFD on noisy data 124

5.13 Average Effectiveness comparison among PriCod, DeepGini, Vanil-
laSM, PCS, Entropy, Margin, LC, ATS and random selection in terms
of the APFD values on adversarial test inputs 124

xvi

5.14 Average improvement of PriCod over the compared approaches in
terms of the APFD values on adversarial test inputs 124

5.15 Average effectiveness comparison results among PriCod and the com-
pared approaches on adversarial test inputs in terms of PFD 125

5.16 Effectiveness comparison among PriCod and PriCod Variants in terms
of the APFD values on natural test inputs 126

5.17 Ablation study on different features of PriCod: Embedding Fea-
tures(EB), Deviation Features (DF). ‘w/o’ means ‘without’ 128

5.18 Top-10 most contributing features on the effectiveness of PriCod:
Embedding Features(EB), Deviation Features (DF) 130

5.19 Effectiveness comparison among PriCod and PriCodu in terms of the
APFD values on natural test inputs 132

6.1 3D Point cloud datasets and models 157
6.2 Effectiveness comparison among PCPrior, DeepGini, VanillaSM, PCS,

Entropy and random selection in terms of the APFD values on natural
datasets . 163

6.3 Effectiveness improvement of PCPrior over the compared approaches
in terms of the APFD values on natural datasets 163

6.4 Statistical analysis on natural test inputs (in terms of p-value and
effect size) . 164

6.5 Variance in experimental results (×10−3) for PCPrior and the com-
pared approaches across ten repetitions 164

6.6 Average comparison results among PCPrior and the compared ap-
proaches on natural data in terms of PFD 164

6.7 Time cost of PCPrior and the compared test prioritization approaches 165
6.8 Effectiveness comparison among PCPrior and PCPrior Variants in

terms of the APFD values on natural datasets 166
6.9 Average comparison results among PCPrior and PCPrior Variants in

terms of the PFD values on natural datasets 167
6.10 Effectiveness comparison among PCPrior and the compared approaches

in terms of the average APFD values on noisy datasets 169
6.11 Performance improvement of PCPrior over the compared approaches

in terms of APFD on 150 noisy subjects 169
6.12 Statistical analysis on noisy test inputs (in terms of p-value and effect

size) . 169
6.13 Effectiveness comparison of PCPrior and the compared approaches in

terms of the PFD values on noisy datasets 170
6.14 Average effectiveness comparison of PCPrior and the compared ap-

proaches in terms of the PFD values on noisy datasets 170
6.15 Ablation study on different features of PCPrior: Mutation Features(MF),

Spatial Features(SF), Uncertainty Features(UF), Prediction Features(PF).
‘w/o’ means ‘without’ . 173

6.16 Top-10 most contributing features on the effectiveness of PCPrior . . 174
6.17 The average accuracy value after retraining with 10%~70% prioritized

tests . 176

xvii

xviii

1 Introduction

In this chapter, we first introduce the motivation of DNN test prioritization. Then,
we describe the limitations of existing DNN test prioritization methods. Finally, we
present the contributions and the roadmap of this dissertation.

Contents
1.1 Motivation . 2
1.2 Limitations of Existing Approaches 3

1.2.1 Video classification . 3
1.2.2 GNN classification . 4
1.2.3 Compressed DNN classification 4
1.2.4 3D shape classification 4

1.3 The Main Contributions . 5
1.4 Roadmap . 7

Chapter 1. Introduction

1.1 Motivation
The widespread adoption of deep neural networks (DNNs) has led to significant

advancements in machine learning, particularly in domains such as computer vision [1,
2], autonomous vehicles [3, 4], and recommendation systems [5]. Consequently, the
evaluation and validation of DNNs have become increasingly critical to ensure their
performance. However, as mentioned in the existing study [6], testing DNNs poses
significant challenges. This challenge stems from three main factors: 1) manual
labeling is still the mainstream, typically necessitating the involvement of multiple
annotators to ensure the accuracy and consistency of the labeling process.; 2) test
sets can be large and complex 3) labeling can require domain-specific knowledge,
which can be costly to acquire.

To minimize labeling costs and enhance the efficiency of testing DNN-based
systems, an intuitive approach is to prioritize test inputs that are more likely to be
misclassified. By prioritizing these inputs, resources can be allocated to label these
potentially misclassified inputs first. Early identification of these inputs can rapid
the DNN debugging process, significantly improving the efficiency of DNN testing.

In the literature, numerous test prioritization strategies have been proposed for
DNNs, broadly classified into three categories: coverage-based [7, 8], confidence-
based [6, 9], and mutation-based [10] methods. Coverage-based techniques, such as
CTM [11], prioritize test inputs by considering neuron coverage, borrowing concepts
from traditional software testing [11, 12]. Confidence-based approaches [6, 10]
operate under the assumption that test inputs with lower model confidence are
more likely to be misclassified and should be prioritized higher. Prior work [6] has
demonstrated that confidence-based approaches perform better than coverage-based
test prioritization approaches. Mutation-based test prioritization methods focused
on employing mutation operations and supervised learning for prioritizing tests.
PRIMA [10], a mutation-based strategy, utilizes well-designed model mutation rules
and input mutation rules to generate mutation results and employs the ranking
model [13] for efficient test input prioritization.

Although the aforementioned approaches have been demonstrated to be effective
in some cases, they exhibit limitations in some specialized scenarios. In our work,
we concentrate on four special scenarios: three-dimensional (3D) shape classification,
Graph Neural Networks (GNN) classification, compressed DNN classification, and
video classification. From Chapter 3 to Chapter 6, each chapter proposed a new test
prioritization method aimed at a specific domain. The core motivation behind all
the methods is to address the labeling cost problem. Specifically, these proposed
approaches prioritize test inputs that are more likely to be misclassified by the model.
Early identification and labeling of such inputs can reduce manual labeling efforts
and improve the overall efficiency of the testing process.

Moreover, we conducted empirical studies to demonstrate that our proposed
new methods outperform existing test prioritization approaches. Below, we provide
detailed explanations of our focused scenarios.
• Video classification Video classification focuses on categorizing input videos

into predetermined classes. With the growing prominence of short-form videos,
there is an increased demand for efficient video classification algorithms [14], and
the presence of bugs in video-oriented DNNs can lead to substantial real-world
consequences. For instance, consider a scenario on a highway where a camera-

2

1.2. Limitations of Existing Approaches

equipped model aims to detect car accidents. If the model inaccurately classifies
an accident scene as safe, it will fail to issue a timely warning, potentially leading
to severe consequences due to delayed assistance. Hence, ensuring the quality of
video classification models is crucial.

• GNN classification GNNs have emerged as powerful tools for capturing intri-
cate relationships within graph-structured data. In GNNs, a graph is typically
composed of nodes and edges. For example, in the case of the Cora dataset [15],
given a test input (a scientific paper), a GNN model can be used to classify the
node into specific categories (e.g., ‘neural networks paper’). With the application
of GNNs continuing to expand, the testing and validation of GNNs becomes
increasingly essential.

• Compressed DNN classification Compressed DNN models are engineered
to minimize computational and memory requirements while preserving perfor-
mance, thereby enabling effective deployment in resource-constrained contexts.
Various compression techniques have proven to be valuable in reducing the size
and computational load of DNNs while maintaining their predictive capabilities.
Consequently, the evaluation and validation of compressed DNNs have become
increasingly critical to ensure their performance on devices.

• 3D shape classification 3D shape classification refers to the task of categorizing
three-dimensional shapes [16]. In this context, the input consists of the geometric
information of three-dimensional objects, typically represented as point clouds.
A point cloud [17] consists of a collection of three-dimensional data points in
space. Compared to two-dimensional data (e.g., images), 3D point clouds can
provide a three-dimensional depiction of objects, thereby enhancing accuracy and
reliability in identifying complex 3D shapes and volumes. Moreover, point cloud
data can directly capture surface details and morphology of objects. Consequently,
the integration of point cloud processing in safety-critical applications, such as
autonomous driving [18, 4] has become increasingly prevalent. In recent years,
the application of DNNs to 3D point cloud data has garnered significant attention.
Ensuring the reliability of DNNs operating on 3D point cloud data is crucial for
safe and efficient functioning.
Our work focuses on proposing new test prioritization methods for the aforemen-

tioned four scenarios in order to accelerate the debugging process and enhance the
overall testing efficiency in these contexts. In the following section, we will discuss
the limitations of applying existing test prioritization methods to the aforementioned
scenarios.

1.2 Limitations of Existing Approaches
In this section, we discuss the limitations of existing test prioritization meth-

ods when applied to the four specific scenarios, namely video classification, GNN
classification, compressed DNN classification, and 3D shape classification.

1.2.1 Video classification
When applying confidence-based approaches to video-type test inputs, the follow-

ing limitations occur: they do not take into account the unique temporal information
present in video data. In contrast to images and text, video inputs consist of multiple
frames that capture the dynamic nature and temporal fluctuations of objects over
time. On the other hand, the mutation-based test prioritization approach PRIMA is

3

Chapter 1. Introduction

not applicable to video test inputs because the mutation rules of PRIMA are not
adapted for video datasets.

1.2.2 GNN classification
When applying confidence-based approaches to GNNs, they have the following

limitations:
• Confidence-based approaches do not account for the interdependence present in

graph-structured test inputs. Specifically, graph inputs are composed of nodes
interconnected by edges, and this interdependence plays a crucial role in the
inference process of GNNs. However, confidence-based approaches were originally
designed for DNNs, whose tests are typically independent of each other. They
ignore the interdependence in the graph-structured data in the process of test
prioritization.

• Confidence-based approaches operate under the assumption that test inputs for
which the model exhibits low confidence are more likely to be misclassified and,
therefore, should be prioritized higher. However, in the presence of adversarial
attacks, the model’s confidence can be higher for incorrect predictions. In such
cases, even if the model is highly confident in its prediction for a test, it does not
necessarily imply that the test is more likely to be misclassified.
The mutation-based method, PRIMA, cannot be applied to GNNs since their

mutation operators are not adapted to graph-structured data and GNN models.

1.2.3 Compressed DNN classification
When applying confidence-based approaches to compressed DNN models, the

following limitations occur: they treat the compressed DNN models as black boxes
and ignore the information regarding deviations before and after model compression
when conducting test prioritization. Moreover, the mutation-based test prioritization
approach, PRIMA [10], cannot be applied to compressed DNN models because the
model mutation operators of PRIMA are not applicable to them. This limitation
arises from the fact that the architectures and gradients of compressed models are
typically unavailable [19].

1.2.4 3D shape classification
When applying confidence-based test prioritization approaches to 3D point cloud

data, there are the following limitations.
• Noises in 3D point cloud data 3D point cloud data typically contains noises

(e.g., sensor noise and non-uniform sampling density). These noises can reduce the
effectiveness of confidence-based approaches. Specifically, for a given test sample,
the model can erroneously assign a high probability to an incorrect category due
to the noise. In this case, confidence-based approaches will assume that the model
is highly confident of this particular test, considering it will not be misclassified.
However, the model’s prediction on this test sample is indeed incorrect.

• Missing crucial spatial features Confidence-based methods operate solely
based on the model’s prediction uncertainty on tests. However, 3D point cloud
typically exhibits complex spatial characteristics, and confidence-based methods
fail to fully leverage the informative features inherent in point cloud data for test
prioritization.
When applying the mutation-based test prioritization method to 3D point clouds,

4

1.3. The Main Contributions

there are the following limitations.
• The mutation operators utilized in PRIMA are primarily designed for two-

dimensional data. These operators are not directly applicable to 3D point cloud
data. Unlike traditional image or text data, 3D point clouds have a unique
three-dimensional representation characterized by a large number of points.

• Even considering the possibility of converting 3D data into 2D images using
dimensionality reduction techniques and integrating them into PRIMA, there
are some practical problems. Specifically, PRIMA requires feeding 2D images of
mutations into the DNN model to compare predictions between the mutants and
the original input. However, models designed for 3D point clouds are inherently
tailored to process three-dimensional data and lack the capability to classify
two-dimensional images. Therefore, these models cannot make predictions for the
variants. Consequently, even in scenarios where dimensionality reduction tools are
available, PRIMA remains unsuitable for accommodating 3D point cloud data.

1.3 The Main Contributions
In this section, we provide a summary of the contributions of this dissertation.

• Prioritizing Test Cases for Deep Learning-based Video Classifiers We
propose VRank, a novel test prioritization approach designed specifically for video
test inputs. The key premise is that test inputs situated closer to the decision
boundary of the model are at a higher risk of being predicted incorrectly. To
capture the spatial relationship between a video test and the decision boundary,
we employ a vectorization technique that transforms a given video test into a
lower-dimensional space to indirectly reveal the underlying proximity between
the test and the decision boundary. To implement this vectorization strategy,
we generate four different types of features for each video-type test: temporal
features, video embedding features, prediction features, and uncertainty features.
By combining these feature types, VRank effectively constructs a comprehensive
feature vector for each individual test input. To assess the misclassification
likelihood of each test input, VRank employs a LightGBM-based ranking model
that takes the constructed feature vector as input and generates a misclassification
score. Based on these misclassification scores, VRank sorts all the tests within
the test set in descending order. We conducted an empirical evaluation to assess
the performance of VRank, encompassing both natural and noisy datasets. The
experimental results demonstrated that VRank outperforms all the compared test
prioritization methods.

This work has been accepted by Empirical Software Engineering(EMSE) in 2024.

• Test Input Prioritization for Graph Neural Networks We propose NodeR-
ank, a novel test input prioritization approach targeting GNNs. The core idea is
that a test is considered more likely to be misclassified if it can kill many mutated
models and produce different prediction results with many mutated inputs. To
this end, we developed three different types of mutations, namely graph structure
mutation, node feature mutation, and GNN model mutation, based on the char-
acteristics of GNNs and the graph test dataset. For each test input, NodeRank
generates these three types of mutations. By comparing the prediction results
before and after the mutation, NodeRank generates a mutation feature vector for

5

Chapter 1. Introduction

each test. We trained an ensemble ranking model to predict the misclassification
score for each test based on its mutation feature vector and accordingly ranked
all the tests. We conducted an empirical study to evaluate the effectiveness
of NodeRank. The results demonstrated that NodeRank outperformed all the
compared test prioritization approaches.

This work has been accepted by the IEEE Transactions on Software Engineering
(TSE) in 2024.

• PriCod: Prioritizing Test Inputs for Compressed Deep Neural Networks
We propose PriCod, a novel test prioritization approach designed for compressed
DNNs. PriCod leverages the behavior disparities caused by model compression,
along with the embeddings of test inputs, to effectively prioritize potentially
misclassified tests. It operates on the premise that significant behavior disparities
between the models indicate potential misclassifications and that inputs near
decision boundaries are more likely to be misclassified. To this end, PriCod
generates deviation features and embedding features for each test input to capture
the prediction deviation caused by model compression and the proximity to
decision boundaries, respectively. By combining these features, PriCod predicts
the probability of misclassification for each test, ranking tests accordingly. We
conduct an extensive study to evaluate the effectiveness of PriCod on natural,
noisy, and adversarial test inputs. The experimental results demonstrate that
PriCod outperforms all the compared test prioritization approaches in all three
types of scenarios.

This work has undergone major revision and is currently under review in ACM
Transactions on Software Engineering and Methodology(TOSEM) in 2024.

• Test Input Prioritization for 3D Point Clouds We proposed PCPrior, a
novel test prioritization approach specifically designed for 3D point cloud test
cases. PCPrior leverages the unique characteristics of 3D point clouds to prioritize
tests. The core idea is that test inputs closer to the decision boundary of the model
are more likely to be predicted incorrectly [20]. To capture the spatial relationship
between a point cloud test and the decision boundary, we propose transforming
each test (a point cloud) into a low-dimensional feature vector, towards indirectly
revealing the underlying proximity between a test and the decision boundary.
To achieve this, we carefully design a group of feature generation strategies,
and for each test input, we generate four distinct types of features, namely,
spatial features, mutation features, prediction features, and uncertainty features.
Through a concatenation of the four feature types, PCPrior assembles a final
feature vector for each test. Subsequently, PCPrior employs a ranking model to
estimate the misclassification probability for each test based on its feature vector.
Finally, PCPrior ranks all tests based on their misclassification probabilities. We
conducted an extensive study based on 165 subjects to evaluate the performance of
PCPrior, encompassing both natural and noisy datasets. The results demonstrate
that PCPrior outperforms all the compared test prioritization approaches.

This work has been accepted by the ACM Transactions on Software Engineering

6

1.4. Roadmap

and Methodology (TOSEM) in 2024.

1.4 Roadmap
The dissertation roadmap is depicted in Figure 1.1. Chapter 2 provides the back-

ground and related work concerning deep neural networks, test input prioritization
for DNNs, DNN testing, and mutation testing. Chapter 3 presents our proposed test
prioritization approach designed for video-type test inputs, called VRank. Chapter 4
presents our proposed test prioritization approach specifically designed for GNNs,
called NodeRank. Chapter 5 presents our proposed test prioritization approach
tailored for compressed DNN models, PriCod. Chapter 6 presents our proposed test
prioritization approach tailored to 3D point clouds, PCPrior. Chapter 7 concludes
the dissertation and discusses future work.

Chapter 2: Background and Related Work

Deep Neural Networks

Test Input Prioritization for DNNs

DNN Testing

Mutation Testing

Chapter 3

VRank

Chapter 4

NodeRank

Chapter 5

PriCod

Chapter 6

PCPrior

Chapter 7: Conclusion and Future Work

Figure 1.1: Roadmap of this dissertation

7

Chapter 1. Introduction

8

2 Background and Related Work

This chapter introduces the necessary concepts and related works to understand this
dissertation. We present the details of deep neural networks, test input prioritization
for DNNs, DNN testing and mutation testing, respectively.

Contents
2.1 Deep Neural Networks Across Diverse Domains 10

2.1.1 DNNs for Video Classification 10
2.1.2 Graph Neural Networks 11
2.1.3 DNN Model Compression 11
2.1.4 Deep Learning for 3D Point Clouds 11

2.2 Test Input Prioritization for DNNs 12
2.3 DNN Testing . 13
2.4 Mutation Testing . 14

Chapter 2. Background and Related Work

2.1 Deep Neural Networks Across Diverse Domains

Probability

Input layer Hiden layer 2 Output layer

0.2

0.1

0.6

0.1

Hidden layer 1

Input data

Figure 2.1: An example of a DNN classifier
Deep neural networks (DNNs) serve as the core of numerous deep learning

applications, particularly in tasks related to classification. As illustrated in Figure 2.1,
the architecture of a DNN consists of multiple layers: the input layer, a number of
hidden layers (which are optional), and the output layer. Each layer consists of a
series of neurons, which are the fundamental processing units in a DNN. Neurons from
different layers are interconnected through weighted edges. These neurons gather
and process information from the input or previous neurons, utilizing activation
functions to produce outputs. The weights of the connections between neurons are
not predetermined by developers. Instead, they are adjusted during a training phase
that employs a large dataset of labeled data.

Once sufficiently trained, a DNN can autonomously classify inputs. For instance,
as shown in Figure 2.1, a DNN is used to determine a car’s type from its image. For any
given input, this DNN generates an N -dimensional vector, denoted as ⟨p1, p2, . . . , pN⟩,
where each pi refers to the likelihood that the input image corresponds to the i-
th category. The sum of all pi values equals 1. In Figure 2.1, the DNN predicts
the probabilities of the input belonging to each category as 0.2, 0.1, 0.6, and 0.1,
respectively.

In the following, we introduce some specific scenarios of DNNs, including video
classification, graph neural networks, model compression, and 3D point cloud pro-
cessing. From Chapter 3 to Chapter 6, the test prioritization methods we propose
are specifically designed for these scenarios.

2.1.1 DNNs for Video Classification

In recent years, the proliferation of multimedia content on the Internet has surged,
leading to a significant increase in the volume of videos shared every minute. This
rapid expansion highlights the need for comprehensive analysis of video data. In
the field of computer vision [21], researchers have dedicated efforts to developing
algorithms to address video analysis challenges, particularly video classification.
Tran et al. [22] proposed the use of deep 3D ConvNets to extract spatio-temporal
features for video classification, leveraging extensive video datasets. Building upon
this work, Tran et al. [23] conducted an empirical ConvNet architecture search to
improve spatiotemporal feature learning, which outperformed C3D on several datasets,
with faster inference time, smaller model size, and more compact representation.
Additionally, Feichtenhofer et al. [24] introduced the SlowFast network for video
recognition, incorporating a Slow pathway for capturing spatial semantics and a Fast
pathway for discerning motion at a finer temporal resolution.

10

2.1. Deep Neural Networks Across Diverse Domains

2.1.2 Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated remarkable effectiveness in

addressing machine learning challenges associated with data structured in graphs [25,
26, 27]. Within the domain of GNNs, a graph is defined by nodes and edges, typically
denoted as G = (V, E), where V represents the set of nodes and E denotes the
connections between them. One practical application of GNNs is node classifica-
tion. A prevalent node classification dataset is Cora, where nodes correspond to
scientific papers, and edges represent citations between them. Given an input (a
scientific paper), a GNN model can classify the paper into specific categories such as
‘reinforcement learning’ and ‘neural networks’.
[GNN training] GNNs undergo a training process similar to other neural networks.
The necessary inputs for GNN training generally consist of: 1) Graph Structure
This encompasses the connections between nodes in the graph. 2) Node Features
Each node typically possesses associated feature vectors, reflecting its attributes. 3)
Target Labels In GNN node classification training data, ‘Target Labels’ denote the
category to which each node belongs, usually predefined.
[GNN inference] In the context of GNNs, inference denotes utilizing a pre-trained
GNN model to make predictions on new graph data. For instance, in node classifica-
tion tasks, the GNN model leverages its learned parameters and weights to classify a
given node. The input typically encompasses the features of the node and the graph
structure to which it belongs. The output is the classification of the node.

2.1.3 DNN Model Compression
DNN model compression has emerged as a critical research focus, tackling the

challenge of deploying DNN models in environments constrained by computational
and storage resources [28, 29, 30]. The aim of DNN model compression is to
reduce the size and computational demands of DNN models without significantly
reducing their performance, thereby enabling their deployment on mobile devices
like smartphones. Among various compression techniques, quantization stands out
as a prevalent method. Model quantization aims to reduce the precision of the
model’s numerical parameters, typically converting 32-bit floating-point weights to
lower-bit representations such as 8-bit, thereby decreasing both the model’s storage
requirements and computational complexity [31]. TensorFlow Lite (TFLite) [32]
and CoreML [33] are two widely-adopted model quantization approaches. TFLite,
developed by Google, specializes in optimizing neural networks for mobile and
embedded device deployment, with a focus on efficient computational performance
on Android devices [34]. On the other hand, CoreML is Apple’s framework tailored
for iOS devices, leveraging Apple hardware to enable rapid neural network inference
through hardware acceleration.

2.1.4 Deep Learning for 3D Point Clouds
The emergence of advanced sensor technologies, such as LiDAR (Light Detection

and Ranging) [35] and RGB-D (Red-Green-Blue Depth) cameras [36], has led to
an explosion of 3D point cloud data across various applications. A 3D point cloud
typically represents a collection of data points in 3D space [37]. The emergence
of Deep Learning [38], has revolutionized the analysis and understanding of 3D
point cloud data. Moreover, the accessibility of openly accessible datasets, such as
ModelNet [39], ShapeNet [40], and S3DIS [41], has played a pivotal role in advancing

11

Chapter 2. Background and Related Work

research on the application of deep learning techniques to 3D point clouds. One
crucial aspect of research in this domain is 3D shape classification, which focuses on
leveraging DNNs to classify three-dimensional shapes. For instance, in autonomous
driving applications, 3D shape classification can be used to categorize objects on the
road, such as vehicles and traffic signs. Accurate classification of these objects can
enhance the autonomous driving system’s understanding of its surroundings, leading
to more precise decision-making. In the literature [17, 16, 38, 42], several approaches
have been proposed to tackle the challenge of 3D shape classification. Notable
methods include PointConv [17], Dynamic Graph Convolutional Neural Network
(DGCNN) [16], and PointNet [38]. PointConv, a specialized convolutional neural
network, is tailored for the processing of 3D point clouds. By training multi-layer
perceptrons on local point coordinates, it facilitates the direct construction of deep
networks on 3D point clouds, enabling efficient analysis. DGCNN, on the other
hand, treats 3D point cloud data as graphs and exploits intrinsic spatial relationships.
Utilizing graph convolutions and dynamically adapting the graph structure based
on input data, DGCNN effectively learns and processes point cloud representations.
PointNet, another widely adopted architecture for processing 3D point cloud data,
integrates a shared multi-layer perceptron (MLP) with max-pooling for local feature
extraction, along with a symmetric function for aggregating global features. T-
Net layers within PointNet enable the learning of transformation matrices, thereby
enhancing its robustness to input variations.

2.2 Test Input Prioritization for DNNs
Test prioritization is a critical aspect of software testing, aiming to determine

the optimal sequence for conducting unlabeled tests [6]. Its primary objective is to
identify and prioritize tests that are likely to be misclassified, thereby facilitating
early labeling and improving debugging efficiency. Current test prioritization strategy
for Deep Neural Networks can be broadly classified into three categories: coverage-
based [7, 8], confidence-based [6, 9], and mutation-based [10] methods.

Coverage-based techniques, such as CTM [11], prioritize test inputs based on
neuron coverage and adapt coverage-based prioritization techniques from traditional
software testing [11, 12]. Pei et al. proposed the basic neuron coverage criterion
inspired by program coverage. These metrics can be used as test prioritization
metrics. Ma et al. proposed DeepGauge [7], which defines several coverage-based
criteria that can be used for test prioritization, such as KMNC and Neuron Boundary
Coverage. Confidence-based approaches [6, 10] assume that test inputs with lower
model confidence are more likely to be misclassified and, hence, should be prioritized
higher. Existing studies [6] have shown that confidence-based approaches are more
effective than coverage-based ones. DeepGini [6] is a classical confidence-based
test prioritization approach, which assumes that a test input is more likely to be
mispredicted if the DNN outputs similar probabilities for each class. Weiss et al. [9]
performed a comprehensive investigation of various DNN test input prioritization
techniques, including several confidence-based approaches such as Vanilla Softmax,
Prediction-Confidence Score (PCS), and Entropy. These demonstrated that these
simple confidence-based approaches are effective in identifying possibly misclassified
test inputs. Mutation-based test prioritization methods focus on utilizing mutation
operations and supervised learning for test prioritization. PRIMA [10], is a mutation-
based test prioritization strategy, which employs well-designed model and input

12

2.3. DNN Testing

mutation rules to generate mutation results and leverages the XGBoost ranking
algorithm [13] to achieve effective test input prioritization.

In addition to the aforementioned work, Zheng et al. [43] proposed CertPri,
which prioritizes test inputs by measuring movement difficulty in the feature space.
Specifically, to perform test prioritization, CertPri evaluates the cost of moving test
inputs closer to or farther from the class centers. Wei et al. [44] proposed EffiMAP,
an efficient test prioritization technique leveraging predictive mutation analysis.
Instead of requiring a complete mutation analysis, EffiMAP predicts the ability of
test cases to expose model prediction failures by utilizing information extracted from
the test case execution trace. Tao et al. [45] proposed TPFL, which employs dynamic
spectrum analysis at the neuron level for test prioritization. TPFL identifies neurons
that likely cause incorrect decisions in a DNN and ranks test inputs based on their
potential to activate these suspicious neurons.

2.3 DNN Testing

To optimize the efficiency of DNN testing, numerous test optimization approaches
have been introduced in the existing literature [6, 46, 10, 47]. These approaches
typically fall into two main categories: test input prioritization [6, 9] (which has
been discussed in the previous section) and test selection [46, 48], which aims to
select a small subset of test inputs to accurately estimate the overall accuracy of the
test set, thereby reducing labeling costs. Li et al. [48] proposed Cross Entropy-based
Sampling (CES) to select representative test inputs for DNN accuracy estimation.
CES operates by minimizing the cross-entropy between the selected set and the entire
test set, thereby ensuring similarity in distribution. Chen et al. [46] proposed PACE
for accuracy estimation. PACE first clusters all the test inputs and then employs
the MMD-critic algorithm [49] to select prototypes from each cluster. Finally, all
the selected tests are aggregated for accuracy estimation. Zhou et al. [50] proposed
DeepReduce to estimate the performance of a DL model. DeepReduce begins by
selecting a subset of test data to satisfy testing adequacy. It then selects additional
data to approximate the output distribution of the entire testing dataset, using
relative entropy minimization to minimize the difference.

In addition to focusing on DNN testing efficiency, several studies [51, 20, 8, 7, 52]
have concentrated on evaluating DNN testing adequacy. Pei et al. [8] introduced
neuron coverage to gauge the coverage of DNN model logic by a test set. Ma et
al. [7] proposed DeepGauge, a suite of coverage-based metrics that regard neuron
coverage as a crucial indicator of test input effectiveness. Moreover, they devised
metrics based on neuron coverage granularity to distinguish adversarial attacks from
legitimate test data. Kim et al. [52] proposed surprise adequacy, which focused
on assessing the efficacy of a test input within a test set by measuring its surprise
concerning the training set. Surprise is defined as the disparity in neuron activation
values when presented with this new input. Beyond these, Dola et al. [53] proposed
the Input Distribution Coverage (IDC) framework for evaluating the black-box test
adequacy of DNNs. Leveraging a Variational Autoencoder (VAE) to transform test
inputs into feature vectors, IDC establishes a coverage domain wherein Combinatorial
Interaction Testing (CIT) metrics measure test coverage.

13

Chapter 2. Background and Related Work

2.4 Mutation Testing
Mutation testing is a systematic software testing technology that has attracted

great attention from academia and industrial research circles [54]. The basic principle
consists of introducing small and intentional modifications (called mutants) into
the source code of a software system to simulate potential failures that may occur
during program execution. A well-designed test suite should be able to detect these
mutants, demonstrating its effectiveness in identifying real bugs in the code [55].
In traditional software testing [56, 57, 58], mutation testing can assess the fault-
detection capabilities of individual test cases, facilitating test prioritization. Lou et
al. [56] proposed a novel test-case prioritization approach that orders test cases based
on their fault detection ability, determined through the analysis of mutation faults
simulated from real software faults. By strategically ordering test cases, this approach
aims to maximize testing efficiency by prioritizing the detection of critical faults.
Shin et al. [57] proposed a method that combines mutation-based and diversity-based
approaches for test case prioritization, demonstrating the effectiveness of mutation-
based prioritization in comparison to random and coverage-based prioritization.

Furthermore, in addition to the context of traditional software, numerous studies
have explored the application of mutation testing to DNNs. Ma et al. [20] proposed
DeepMutation, which utilized mutation testing to evaluate the quality of DNN test
data. They designed a collection of mutation operators to inject faults into training
data, programs, and DL models. DeepMutation evaluated the validity of the test
data by analyzing the extent to which injected faults can be detected. Hu et al. [59]
extended the work of Ma et al. [20], and thereby developed DeepMutation++, which
introduced new mutation operators for feedforward neural networks (FNN) and
recurrent neural networks (RNN) and enabled mutation of the RNN runtime state.
Humbatova et al. [60] proposed DeepCrime, a mutation testing tool that implemented
a set of DL mutation operators based on real DL faults. Shen et al. [61] proposed
MuNN, a method for mutation analysis specific to neural networks. MuNN defines
five mutation operators grounded in neural network characteristics.

14

3 Prioritizing Test Cases for Deep Learning-
based Video Classifiers

In this chapter, we propose a novel test prioritization approach called VRank. VRank
is designed to assign higher priority to video test inputs that are more likely to be
misclassified. The fundamental concept is that test inputs situated closer to the
decision boundary of the model are at a higher risk of being predicted incorrectly. By
identifying and prioritizing such inputs, developers can allocate limited label budgets
to such potentially misclassified inputs and improve testing efficiency.

This chapter is based on the work in the following research paper:
• Yinghua Li, Xueqi Dang, Lei Ma, Jacques Klein and Tegawendé F. Bissyandé.

Prioritizing Test Cases for Deep Learning-based Video Classifiers. Empirical
Software Engineering (EMSE). Accepted for publication on Jun. 20, 2024.

Contents
3.1 Introduction . 17
3.2 Background . 20

3.2.1 DNNs and DNN Testing 20
3.2.2 DNNs for Video Classification 20
3.2.3 Test Input Prioritization for DNNs 21

3.3 Approach . 21
3.3.1 Overview . 21
3.3.2 Step 1: Video-oriented Feature Generation 22
3.3.3 Step 2: Learning-to-rank 24
3.3.4 Step 3: Test Prioritization 24
3.3.5 Variants of VRank . 25
3.3.6 Usage of VRank . 25

3.4 Study design . 26
3.4.1 Research questions . 26
3.4.2 Subjects . 26
3.4.3 Noise generation techniques 29
3.4.4 Compared Approaches 29
3.4.5 Measurements . 30

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

3.4.6 Implementation and Configuration 31
3.5 Results and analysis . 31

3.5.1 RQ1: Effectiveness and efficiency of VRank 31
3.5.2 RQ2: Effectiveness on noisy test inputs 34
3.5.3 RQ3: Impact of different ranking models 35
3.5.4 RQ4: Feature contribution analysis 37
3.5.5 Impact of the number of extracted frames on the effec-

tiveness of VRank. 39
3.6 Discussion . 40

3.6.1 Limitations . 40
3.6.2 Threats to Validity . 41

3.7 Related Work . 42
3.7.1 Test Prioritization in DNN Testing 42
3.7.2 Deep Neural Network Testing 42
3.7.3 Test Prioritization for Traditional Software 44

3.8 Conclusion . 44

16

3.1. Introduction

3.1 Introduction
The rapid growth of multimedia on the Internet has led to an exponential increase

in the number of videos being shared every minute. The popularity of short videos
has further heightened the demand for video classification algorithms [14] to facilitate
speedy user video recommendations [62]. Specifically, video classification plays a
crucial role in identifying and tracking objects in a variety of domains, such as accident
detection [63, 64, 65]. Given the crucial usage, the presence of bugs in video-oriented
Deep Neural Networks (DNNs) can have severe real-world consequences, especially
in safety-critical domains [66]. Here, bugs refer to certain internal parameter weights
within the video classification model that can lead to prediction errors when dealing
with video inputs. For example, consider a highway scenario where the camera-
equipped video classification model is specifically engineered to determine whether a
given scene involves a car accident. In the event of an erroneous prediction, where the
model misclassified the accident scene as a safe scenario, there is a risk of failing to
issue a timely warning. This oversight can potentially result in severe consequences
due to a lack of prompt assistance. Therefore, it is crucial to guarantee the quality
of DNN models employed for video classification.

DNN testing [67] is widely recognized as an effective means of ensuring the quality
of DNNs, including DNNs for video classification. However, a significant challenge
in DNN testing lies in the high cost associated with labelling test inputs to verify
the accuracy of DNN predictions. The general reasons include: 1) the test set is
usually large-scale; 2) manual labelling is still mainstream; 3) labelling can require
domain-specific expertise. Furthermore, in comparison to labeling image and text
data, labeling video-type test inputs presents unique challenges, outlined as follows.
• Video data is characterized by its sequential composition of frames, establishing a

temporal structure. Unlike static images or text, video data necessitates annotators
to meticulously observe and analyze the content over time, frame by frame.

• Video datasets can contain multiple objects and events within a single frame,
making it challenging to identify which objects or events should be labelled.

• Video datasets are typically much larger than image/text datasets, containing
multiple frames per second, which can create a large volume of data to be labelled.
This can be time-consuming and resource-intensive, requiring significant human
labor.
To relieve the labelling cost problem, one effective way is test prioritization [6],

which aims to prioritize bug-revealing test inputs (i.e., test inputs that are more likely
to be misclassified by the DNN model) earlier in the testing process so that those
test inputs can be labeled earlier. To this end, researchers have proposed several test
input prioritization techniques to address the labelling-cost issue in DNNs [10, 6].
These techniques can be broadly categorized into coverage-based and confidence-
based approaches. Coverage-based approaches, such as CTM [11], prioritize test
inputs based on neuron coverage and adapt coverage-based prioritization techniques
from traditional software testing [11, 12]. On the other hand, confidence-based
approaches [6, 10] assume that test inputs with lower model confidence are more
likely to be misclassified and hence should be prioritized higher. DeepGini [6], a
classical confidence-based test prioritization approach, considers a test input more
likely to be misclassified if the model outputs similar prediction probabilities for
each class. Wang et al. [10] proposed PRIMA, which leverages mutation analysis

17

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

and learning-to-rank methods to prioritize test inputs for DNNs.
However, when applying the aforementioned existing test prioritization methods

to the scenario of video test inputs, certain limitations arise:
• The approaches mentioned above do not take into account the unique tempo-

ral information present in video data. In contrast to images and text, video
inputs consist of multiple frames that capture the dynamic nature and temporal
fluctuations of objects over time.

• The mutation-based test prioritization approach PRIMA is not applicable to
video test inputs because the mutation rules of PRIMA are not adapted for video
datasets.
In this paper, we propose VRank (Video Test Inputs Ranking), the first test input

prioritization technique tailored exclusively for video test inputs. The fundamental
concept underlying VRank is that video-type tests with a higher probability of being
misclassified by the evaluated DNN classifier are considered more likely to reveal
faults and will be prioritized higher. To achieve this, we train a ranking model with
the goal of predicting the probability of a given test input being misclassified by a
DNN classifier. Specifically, the ranking model is trained using a dataset generated
from the training sets of the evaluated DNN classifier. For a given video-type test,
we generate four different types of features for the ranking model to make predictions:
temporal features (TF), video embedding features (EF), prediction features (PF),
and uncertainty features (UF). Ma et al. [20] previously demonstrated that test
inputs located close to the decision boundary of the DNN classifier are more likely
to be misclassified. Therefore, based on these four types of features, the ranking
model can learn the test’s proximity to the DNN classifier’s decision boundary and,
consequently, predict the probability of the test being misclassified by the model. We
rank all test inputs in the target test set based on their misclassification probabilities.
Videos with a higher likelihood of being misclassified are considered more likely to
reveal faults. Consequently, these potentially misclassified videos will be prioritized
higher. In the following, we provide detailed information about the four types of
features generated for a specific test input.
• Temporal features(TF) TF captures the unique temporal coherence inherent

in a given video-type test. The primary objective of generating TF is to convert
a video test into a low-dimensional vector by taking into account the temporal
continuity of frames.

• Video embedding features (EF) EF captures the intrinsic information of a
given video test input itself. More specifically, EF captures the temporal dimension
of video data and is obtained using existing frame sampling techniques [68] that
are specifically designed for video data.

• Prediction features (PF) PF captures the model’s classification information
for a test input. PF features are derived from the output of a DNN classifier and
represent the confidence of a prediction result, as previously utilized in several
studies [48, 6].

• Uncertainty features (UF) UF captures the uncertainty associated with the
model’s classification. UF features are generated by calculating the uncertainty
scores assigned to each test input using existing uncertainty metrics, such as
DeepGini [6].
VRank demonstrates applicability in various domains. For example, when evalu-

ating a video classification model designed to identify accident videos captured by

18

3.1. Introduction

highway cameras, VRank can be utilized to detect potentially misclassified video
test cases within the test dataset. These video tests have a higher likelihood of
uncovering bugs in the model. Through early labeling and diagnosis of these video
tests, VRank can accelerate the model debugging process, minimizing the need for
time and manual labeling efforts.

Moreover, prioritizing video-type test inputs can provide several benefits for
developers in the context of DNN testing: 1) Save labeling time and cost:
Prioritizing video data for testing can save the cost of traditional manual labeling.
Developers can quickly identify tests that are most likely to be incorrectly predicted
by the model and label them, reducing the overall labeling cost. Videos typically
contain numerous frames and continuous dynamic information, requiring a significant
investment of time and manual effort for labeling. Test prioritization can help
reduce the cost of manual labeling; 2) Rapidly uncover bugs in video models:
Test prioritization on video-type tests can help developers quickly identify tests
that are more likely to be misclassified by the video classification model. These
tests can efficiently aid in identifying bugs in the model; 3) Identify weight
parameters causing prediction errors: These potentially misclassified tests
can also assist developers in efficiently analyzing which weight parameters in the
model are responsible for causing prediction errors; 4) Fine-tuning of video
models: Through prioritizing video-type tests for rapid bug identification and quick
recognition of weight parameters associated with causing prediction errors, developers
can better perform model fine-tuning.

We conducted an empirical study to evaluate the performance of VRank based
on 120 subjects. Here, a subject refers to a pair of video dataset and DNN model.
We compare VRank with four test prioritization approaches compatible with video
datasets and one baseline method, random selection. Furthermore, we evaluated
the effectiveness of VRank in scenarios where noise is present during testing. Our
experimental results demonstrate that VRank achieved better effectiveness over
all the compared test prioritization approaches, with an average improvement of
5.76%∼46.51% on natural datasets and 4.26%∼53.56% on noisy datasets. We publish
our dataset, results, and tools to the community on Github1.

Our work has the following major contributions:
❶ Approach. We propose VRank, the first test prioritization approach that is

specifically designed for video datasets. Specifically, VRank utilizes video-oriented
feature generation and learning-to-rank techniques to rank the test inputs and
prioritize potentially-misclassified video inputs.

❷ Study We conduct an extensive study involving 120 subjects, including natu-
ral and noisy test sets, to evaluate the performance of VRank. We compare
VRank against existing test prioritization approaches and random selection. Our
experimental results demonstrate the effectiveness of VRank.

❸ Feature contribution analysis We conducted a comprehensive analysis to
assess the individual contributions of various feature types to the effectiveness
of VRank. Our findings demonstrate that all four types of generated features,
namely temporal features (TF), uncertainty features (UF), prediction features
(PF), and video embedding features (EF), contribute to enhancing the effectiveness
of VRank.
The remaining sections of our paper are organized as follows. Section 3.2 provides

1https://github.com/yinghuali/VRank

19

https://github.com/yinghuali/VRank

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

the background for our work. Section 3.3 presents the specific details of the VRank
approach we propose. Section 3.4 exhibits the design of our study. Section 3.5
presents the relevant details of the experiments and the analysis of the experimental
results. Section 3.6 discusses the limitations and threats to the validity of our study.
Section 3.7 presents the related work of our study. Finally, we conclude our paper in
Section 3.8.

3.2 Background
3.2.1 DNNs and DNN Testing

Classification deep neural networks (DNNs) [69] are foundational to many appli-
cations of deep learning [70]. These networks are characterized by their multilayer
architecture consisting of an input layer, one or more hidden layers, and an output
layer. Each layer of a DNN comprises a set of interconnected neurons [71] that
interconnect via weighted edges. A neuron is a computational unit that applies
an activation function to the inputs and the weights of the incoming edges. The
resulting output is then propagated to the next layer via the edges. During training,
the DNN automatically learns the optimal weights of the edges using a large set
of labeled training data. Once trained, the DNN can accurately classify an input
object, such as an image or a video, into its corresponding class or category.

Ensuring the quality and reliability of DNN models is of paramount importance,
and DNN testing [46, 6, 48, 72, 73, 74, 75] has emerged as a widely used approach
to achieve this goal. Analogous to traditional software systems [76, 77, 78, 79, 80],
DNN testing involves inputs and oracles. In the context of DNN testing, test inputs
refer to the input that the model is expected to classify, which can take diverse
forms depending on the specific task of the DNN under test, including images,
natural language, or speech. Test oracles in DNN testing rely on manual labeling,
whereby each input is manually labeled with ground truth by human annotators. By
comparing the labeled ground truth and the predicted output of the DNN model, it
is possible to assess the accuracy of the model in predicting the correct output for
the given input.

3.2.2 DNNs for Video Classification
In recent years, the volume of multimedia content available on the Internet has

increased exponentially, leading to an explosion in the number of videos being shared
every minute. This rapid growth of video content has created a pressing need to
analyze and understand these videos for a variety of applications, including search,
recommendation, and ranking. Over the past few decades, the computer vision
community [21] has focused on developing algorithms to address different video
analysis problems, notably video classification. While significant progress has been
made in feature learning using deep learning approaches in the image domain [81],
pre-trained convolutional network (ConvNet) models [82] have been developed for
generating image features. These features represent the activations of the network’s
last few fully-connected layers. However, applying these image-based deep features
directly to videos is typically not feasible.

To overcome this issue, Tran et al. [22] proposed the use of deep 3D ConvNets to
learn spatio-temporal features for video classification, leveraging large-scale video
datasets. Building upon their previous work, Tran et al. [23] conducted an empirical

20

3.3. Approach

ConvNet architecture search to improve spatiotemporal feature learning, which
outperformed C3D on several datasets, with faster inference time, smaller model
size, and more compact representation. In their subsequent work, Tran et al. [14]
investigated several forms of spatiotemporal convolutions for video analysis and
their effects on action recognition. Moreover, Feichtenhofer et al. [24] proposed
the SlowFast network for video recognition, which comprises a Slow pathway for
capturing spatial semantics and a Fast pathway for capturing motion at a fine
temporal resolution.

3.2.3 Test Input Prioritization for DNNs
Test input prioritization aims to rank the test inputs based on their likelihood

of being incorrectly predicted by a DNN model. The literature has proposed two
main categories of approaches for test input prioritization: coverage-based and
confidence-based. Coverage-based approaches (e.g., CTM [11]) extend traditional
software system testing methods to DNN testing. The research work conducted by
Feng et al. [6] compared their proposed confidence-based approach DeepGini with
numerous coverage-based approaches, demonstrating that DeepGini outperforms
existing coverage-based techniques in prioritizing tests regarding both effectiveness
and efficiency. Weiss et al. [9] further conducted an extensive investigation of
several notable uncertainty-based metrics like Vanilla SM, Prediction-Confidence
Score (PCS), and Entropy. These metrics have been demonstrated to be effective
in test prioritization. While the aforementioned confidence-based approaches can
be adapted to prioritize video test inputs, they fail to account for the distinct
characteristics inherent in video data during the test prioritization process. In
contrast, our proposed VRank explicitly considers the unique features of videos by
utilizing a carefully designed feature generation strategy. By taking into account these
video-specific features, VRank achieves higher prioritization effectiveness compared to
the aforementioned uncertainty-based methods. Currently, Wang et al. [10] proposed
PRIMA, which is based on mutation analysis and learning-to-rank. However, PRIMA
is not applicable to video-oriented test prioritization because PRIMA’s mutation
rules are not adapted to video data.

3.3 Approach
3.3.1 Overview

Figure 3.1 illustrates the comprehensive outline of the sequential stages involved
in our proposed VRank test prioritization approach. In the subsequent sections, we
provide a more detailed description of each step.
❶ Feature vector generation Given a video test set T and the model M to be

evaluated, in this step, VRank aims to generate a feature vector for each test
t ∈ T . To this end, for each test, VRank generates four different types of features
for it and combines these features into a final feature vector. The specific methods
for feature generation can be found in Section 3.3.2. Furthermore, Section 3.3.2
also describes how to combine the generated four different types of features into a
final feature vector.

❷ Ranking model training After obtaining the final feature vector for each test
input t ∈ T , in this step, we aim to leverage a ranking model to predict the
probability of each test being predicted incorrectly by the model M based on

21

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

Prediction

Prediction feature

Uncertainty feature

Ranking model

Video Data

Frame
Extraction

Feature combination

Feature vector of training data
(with ground truth)

Feature vector of test data
(to be labeled)

Learning to rank Ranking

Prioritized
video test data

Labeling

Developers

Frames

Uncertainty
calculationVideo model

Input

Temporal features

Embedding

Video embedding feature

Time seriesStep 1 Step 2
Step 3

Figure 3.1: Overview of VRank
its final feature vector. The specific details regarding the training process of the
ranking model and the methodology for utilizing the ranking model to predict
misclassification probabilities can be found in Section 3.3.3.

❸ Test prioritization After obtaining the probability of each test (in the test set
T) being misclassified by the model M using the ranking model, VRank utilizes
this information for test prioritization. Tests with a higher probability of being
misclassified will be prioritized higher. The specific details of this step can be
found in Section 3.3.4.
In the subsequent sections, we provide a comprehensive description of each

step outlined aforementioned, encompassing Video-oriented Feature Generation
(cf. Section 3.3.2), Learning-to-rank (cf. Section 3.3.3), Variants of VRank (cf.
Section 3.3.5), and the Usage of VRank (cf. Section 3.3.6). These sections delve
into the intricate details of each step, offering a thorough understanding of the
methodologies employed and their associated considerations.

3.3.2 Step 1: Video-oriented Feature Generation
Given a test set T of videos and a DNN model M to be tested, the objective of

VRank is to prioritize tests that are more likely to be misclassified by the model
M . VRank is based on video-oriented feature generation and the learning-to-rank
technique. Therefore, in the first step, VRank generates four types of features for
each video-type test input. In the following, we provide a comprehensive elucidation
of the details for each type of feature, delving into the underlying rationale behind
their inclusion in VRank and the methods employed for their generation. We aim to
establish a clear understanding of their significance and relevance in the context of
VRank.
• Temporal features(TF) TF captures the distinctive temporal coherence within

a given video-type test. The primary aim of generating TF is to transform a video
test into a low-dimensional vector by considering temporal frame continuity. In
the following, we present the two main approaches we employed for generating
TF features from consecutive frames: 1) Feature generation based on temporal
changes. We compute variations between adjacent frames, encompassing Euclidean
distance [83], Manhattan distance [84], squared difference distance [85], and
Pearson similarity [86]. These metrics can indicate the extent of change between
frames, effectively capturing the dynamic information of the video. 2) Statistical
feature computation. We calculate statistical features such as variance, mean,
and median for consecutive frames. These features contribute to delineating the
individual characteristics of each frame.

• Video embedding features (EF) capture the intrinsic information of a given

22

3.3. Approach

video test input. To obtain EF, we employ existing frame sampling techniques [68]
to extract a fixed number of frames from a given video-type test input t. We
then utilize the pre-trained ResNet model [87] to map each frame into a vector
representation. Finally, we compute the average of all frame vectors to obtain a
representative vector for the entire video.

• Prediction features (PF) captures the model’s classification information for
a test input. To obtain PF, we input t into the model M , and M will output a
probability vector representing the probabilities of t belonging to each class. For
example, a feature vector {0.2, 0.3, 0.5} signifies that, according to the predictions
made by model M , the test input t has a 20% probability of belonging to class 1,
a 30% probability of belonging to class 2, and a 50% probability of belonging to
class 3. PF has been utilized in various prior studies [48, 6].

• Uncertainty features (UF) captures the uncertainty associated with the model’s
classification. To obtain UF, we leverage six existing uncertainty metrics [9, 6, 88]
(i.e., DeepGini, Vanilla SM, PCS, Entropy, Margin, and Least Confidence) to
obtain a set of uncertainty scores for each test input t. These metrics have been
widely recognized for their outstanding effectiveness in quantifying uncertainty
in classification tasks. For each test input t, we compute the corresponding
uncertainty scores using each of the six metrics. These scores represent the
model’s uncertainty in predicting the class for t. The UF vector for a given test
input is then constructed by concatenating the six uncertainty scores, resulting in
a vector representation: {S1, S2, S3, S4, S5, S6}. Each element Si represents the
uncertainty associated with the model’s prediction for the test input t calculated
by the ith uncertainty-based metric.
For each test input t ∈ T , VRank combines its four aforementioned types of

features to generate a comprehensive and representative feature vector. This feature
vector encapsulates the relevant information from all feature types for the given test
input.

Below, we explain how the aforementioned features contribute to determining
the decision boundaries of the model:
• Temporal features (TF) Temporal features can capture the unique temporal

coherence in a given video type test. Generating time features allows the transfor-
mation of video tests into low-dimensional vectors, where the model’s decision
boundaries can be perceived as a geometric interface. Low-dimensional video
vectors, when mapped into space, can indirectly reflect the distance between the
video-type test and the decision boundary.

• Video embedding features (EF) These features can effectively capture the
intrinsic information of the video test input, particularly the temporal dimension
of video data. Through this capture, the video input can be mapped to a spatial
vector, where the model’s decision boundaries can be seen as a geometric interface.
The numerical video embedding feature can facilitate the calculation of the
distance between a video-type test and the decision boundary. Therefore, the
embedding feature can indirectly reflect the proximity between a test and the
decision boundaries.

• Prediction features (PF) These features originate from the DNN classifier’s
classification information for the test input. PF features reflect the model’s
confidence in the prediction results and can be used to evaluate the model’s
accuracy in predicting specific test inputs. If a test input’s PF features indicate

23

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

that the model is not confident in its classification result, it can suggest that the
input is close to the model’s decision boundaries.

• Uncertainty features (UF) These features represent the model’s uncertainty
about its classification decisions. By calculating uncertainty scores for each test
input (e.g., using DeepGini), UF features can assist in identifying test inputs for
which the model exhibits higher uncertainty during classification. Test inputs
with high uncertainty are more likely to be located near the model’s decision
boundaries.
Below, through a specific example, we illustrate how VRank integrates the

aforementioned four types of features into a final feature vector. Assuming that, for
a given video-type test input, VRank generates four types of features for it: temporal
features (TF) of i dimensions, denoted as (v1, v2, ..., vi), embedding features (EF) of
j dimensions, denoted as (e1, e2, ..., ej), prediction features (PF) of k dimensions,
denoted as (p1, p2, ..., pk), and uncertainty features (UF) of n dimensions, denoted
as (u1, u2, ..., un). VRank combines these four types of vectors by concatenation,
producing a final vector of (i + j + k + n) dimensions: (v1, v2, ...vi, e1, e2, ..., ej, p1,
p2, ..., pk, u1, u2, ...,un).

In the following section, we provide a detailed explanation of the methodology
employed to obtain the misclassification score.

3.3.3 Step 2: Learning-to-rank
In this step, we employ the ranking model LightGBM [89] to learn from the

feature vector of v ∈ V to predict its misclassification score. LightGBM is an
advanced gradient-boosting framework renowned for its ability to learn features for
efficient classifications. We follow the process below to train the LightGBM model:
Given the video classification M with the dataset used for its evaluation, we initially
partition the dataset into two sets: the training set R and the test set T . The
test set is kept untouched for evaluating VRank. Our objective is to construct a
training set R′ for training the ranking models based on the training set R. To
achieve this, we generate the final feature vector for each r ∈ R by following the
steps in Section 3.3.2. These features serve as the training features for the dataset
R. Subsequently, we employ the original video classification model M to classify
each instance r ∈ R, aiming to identify whether each r is misclassified by the model
M . If r is misclassified, it will be labelled as 1; otherwise, it will be labelled as 0.
Consequently, we obtain the labels for the training set R. Using the constructed
training set, we train the LightGBM ranking model for VRank.

3.3.4 Step 3: Test Prioritization
The LightGBM ranking model, trained in the previous step, was originally

designed for binary classification, classifying a given input into one of two classes.
However, our objective is to obtain a misclassification probability score for each
test input, indicating the likelihood of it being misclassified by the model. To
achieve this, we applied specific adjustments to the original LightGBM model: We
extract the intermediate value from the model’s output for a given input, which
can indicate the misclassification probability. Typically, in the model prediction
process, if this intermediate value exceeds a predefined threshold, the input is
labeled as "misclassified"; otherwise, it is labeled as "not misclassified". Instead of
proceeding with the final classification, we directly employ this intermediate value as

24

3.3. Approach

the misclassification probability score. A higher score implies a greater probability
of the test instance being misclassified. Finally, we rank all tests in the test set T in
descending order based on their misclassification probability scores.

3.3.5 Variants of VRank
We investigate the impact of different ranking models on the effectiveness of VRank

and propose three variants of VRank, namely VRankX , VRankR, and VRankL. These
variants employ the XGBoost [13], Random Forest [90], and Logistic Regression [91]
respectively, as their underlying ranking models. It is important to note that the
execution workflow of these variants closely resembles that of VRank, and the sole
distinction lies in the selection of ranking models.

Additionally, we also extended the adjustments made to the ranking model
LightGBM of VRank to the ranking models of VRank’s variants. Specifically, for
a test input, rather than having the ranking models output a binary classification
(i.e., whether the test will be predicted incorrectly by the model), we extract the
intermediate output to obtain the probability of this test being misclassified. In
this way, we can obtain the misclassification score of each test input, which can be
utilized for test prioritization. In the following, we provide a detailed explanation of
the specific ranking models utilized by each variant of VRank.
• VRankX In the context of VRankX , we leverage the XGBoost ranking algo-

rithm [13] to predict the misclassification score associated with a given test input,
based on its feature vector. XGBoost is a powerful gradient-boosting technique
that effectively integrates decision trees to augment prediction accuracy.

• VRankR In the context VRankR, we adopt Random Forest [90] as the ranking
model. Random forest is an ensemble learning algorithm that constructs multiple
decision trees. The predictions from individual trees are combined to produce the
final prediction using averaging or voting.

• VRankL In the context VRankL, we adopt Logistic Regression [91] as the ranking
algorithm. Logistic Regression is a statistical modeling technique that uses a
logistic function to model the association between a categorical dependent variable
and one or more independent variables.

3.3.6 Usage of VRank
Utilizing ranking models, VRank is capable of predicting a misclassification score

for each test input within a designated test set. Test inputs with higher scores are
assigned a higher priority. The ranking models employed in VRank undergo pre-
training prior to their execution, following standardized and consistent procedures.
In the subsequent parts, we comprehensively present the training process, outlining
the specific steps taken to train the ranking models.

Given a video dataset and the model M under test, the initial step is to partition
the dataset into two subsets: the training set R and the test set T , with a ratio of
7:3 [92]. The test set T remains untouched to evaluate the effectiveness of VRank.
Based on the training set R, our objective is to construct a new training set R′

specifically for training the ranking models. Initially, a feature vector Fv is generated
for each input r ∈ R. The generation procedures for the feature vector are described
in Section 3.3.2. These feature vectors are then used to construct a new training set
R′. To obtain the labels for each sample in R′, we input ri ∈ R into the model M .
Leveraging the known ground truth of the training set R if ri is incorrectly predicted

25

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

by model M , the label of the corresponding r′
i ∈ R′ is set to 1; otherwise, it is set to

0.
Based on the constructed training set R′, we train the ranking models. Upon

the completion of the training process, the ranking models are capable of predicting
the likelihood of misclassification for a given test input based on its corresponding
feature vector.

3.4 Study design
3.4.1 Research questions

Our experimental evaluation answers the research questions below.
• RQ1: How does VRank perform in prioritizing video test inputs?

We assess the effectiveness and efficiency of VRank and compare it with multiple
existing testing prioritization approaches, including DeepGini, Vanilla Softmax,
PCS, Entropy, and random selection.

• RQ2: How does VRank perform on noisy video data?
To evaluate the effectiveness of VRank in noisy contexts, we employ a range of
noise generation techniques derived from prior research works [93, 94, 95, 96] to
generate video datasets with simulated noise. We compare VRank’s effectiveness
on these generated noisy datasets with the aforementioned test prioritization
approaches to demonstrate its effectiveness.

• RQ3: What is the impact of different ranking models on the effectiveness
of VRank?
Within the learning-to-rank process of VRank, we employed the LightGBM [89]
ranking algorithm. In this research question, we introduce three variants of
VRank by modifying the ranking models to Random Forest [90], XGBoost [13],
and Logistic Regression [91], respectively. By evaluating the effectiveness of
VRank and its variants, we aim to explore which ranking algorithm can better
utilize the generated features for test prioritization.

• RQ4: To what extent do each type of features contribute to the effec-
tiveness of VRank?
In VRank, we generate four distinct types of features from each test input for
test prioritization, namely temporal features (TF), video embedding features
(EF), prediction features (PF), and uncertainty features (UF), as elaborated in
Section 6.3. In this research question, we focus on comparing the contributions of
the three types of features toward the effectiveness of VRank.

• RQ5: What is the influence of the number of extracted frames on the
effectiveness of VRank?
Two critical steps in VRank are to generate video embedding features and temporal
features from a given test to predict the likelihood of the test being misclassified.
To obtain these two types of features, we utilize established frame sampling
techniques [68] to extract a fixed number of frames from the video-type test input.
In this research question, we explore the impact of the number of extracted frames
on the effectiveness of VRank.

3.4.2 Subjects
The effectiveness of VRank and the compared test prioritization approaches [6, 9]

was evaluated using a set of 120 subjects, where each subject corresponds to a video

26

3.4. Study design

Table 3.1: Video models and datasets
ID Dataset # Videos Model Type
1 UCF101 13320 C3D Original, HF, HS, WS, FSN, SR, ZCA, CSR
2 UCF101 13320 R2Plus1D Original, HF, HS, WS, FSN, SR, ZCA, CSR
3 UCF101 13320 R3D Original, HF, HS, WS, FSN, SR, ZCA, CSR
4 UCF101 13320 SlowFastNet Original, HF, HS, WS, FSN, SR, ZCA, CSR
5 UCF101 13320 VT Original, HF, HS, WS, FSN, SR, ZCA, CSR
6 HMDB51 6849 C3D Original, HF, HS, WS, FSN, SR, ZCA, CSR
7 HMDB51 6849 R2Plus1D Original, HF, HS, WS, FSN, SR, ZCA, CSR
8 HMDB51 6849 R3D Original, HF, HS, WS, FSN, SR, ZCA, CSR
9 HMDB51 6849 SlowFastNet Original, HF, HS, WS, FSN, SR, ZCA, CSR
10 HMDB51 6849 VT Original, HF, HS, WS, FSN, SR, ZCA, CSR
11 HWID12 2782 C3D Original, HF, HS, WS, FSN, SR, ZCA, CSR
12 HWID12 2782 R2Plus1D Original, HF, HS, WS, FSN, SR, ZCA, CSR
13 HWID12 2782 R3D Original, HF, HS, WS, FSN, SR, ZCA, CSR
14 HWID12 2782 SlowFastNet Original, HF, HS, WS, FSN, SR, ZCA, CSR
15 HWID12 2782 VT Original, HF, HS, WS, FSN, SR, ZCA, CSR

dataset with a model. Essential details regarding these subjects are presented in
Table 3.1. Specifically, the “#Videos” column indicates the number of videos in a
dataset, while the “Type” column denotes the dataset’s type. “Original” denotes
natural data, while other non-original types are abbreviations representing different
types of noise. For instance, “HF” indicates Horizontal Flip noise.

Among the 120 subjects, 15 subjects (3 video datasets × 5 models) were generated
using natural datasets, while the remaining 105 subjects were generated using noisy
datasets. To generate the noisy datasets, we applied 7 noise generation techniques
to each natural dataset, resulting in 7 noisy datasets. Each noisy dataset was then
paired with 5 models. Therefore, the total number of subjects is 105 (3 video datasets
× 5 models × 7 noise generation techniques). In the subsequent section, we present
a comprehensive description of the datasets and models employed in our research.

3.4.2.1 DNN Models

We assess the effectiveness of VRank based on five prevalent video classification
models: C3D [22], R3D [23], R2Plus1D [14], SlowFast [24] and VT [97]. The reason
we selected these models for evaluating VRank is that: 1) These models are widely
recognized in the field of video classification and have extensive applications in both
academia and industry [22, 23, 14, 24]. 2) Each model has its unique architecture and
approach to handling video data. 3) Since these models have undergone extensive
testing and application on multiple datasets [22, 23, 14, 24], they provide VRank with
a solid benchmark for effectively comparing VRank’s performance across different
models.

Although we only conduct tests on these specific models, it is important to note
that VRank can be applied to a wide range of video classification models.
• C3D [22] The C3D (Convolutional 3D) network is an architecture of 3D Con-

volutional Networks designed to learn spatio-temporal data, particularly in the
form of videos. C3D comprises eight convolutional layers, five max-pooling layers,
and two fully connected layers, followed by a softmax output layer. C3D’s unique
ability to model both appearance and motion information simultaneously is a key
factor in its superior performance compared to 2D ConvNet features on various
video analysis tasks. This is because videos are inherently spatio-temporal and
therefore require specialized architectures capable of extracting and processing

27

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

information in all three dimensions.
• R3D [23] The R3D network is a variant of 3D Convolutional Networks, incorpo-

rating design elements from both ResNet [87] and C3D architectures. Specifically,
R3D leverages residual connections from ResNet, which facilitate the training of
DNNs by allowing gradients to flow directly through the network. Additionally,
the R3D architecture uses 3D ConvNets to learn spatiotemporal features, making
it particularly suited for video-based tasks.

• R2Plus1D [14] The R2Plus1D architecture effectively addresses the computa-
tional complexity associated with action recognition tasks by decomposing the
3D convolutions into a fusion of spatial and temporal convolutions. This decom-
position enables more efficient utilization of computational resources compared to
fully 3D convolutions.

• SlowFast [24] SlowFast is a video recognition architecture that introduces two
pathways, namely the slow pathway and the fast pathway. The slow pathway
effectively functions at a reduced frame rate, thereby facilitating the extraction
and analysis of spatial semantics pertaining to the video content. Conversely, the
fast pathway operates at a significantly higher frame rate, affording the capacity
to capture motion nuances with exceptional temporal resolution.

• VT [97] The Video Classification with Transformers (VT) model is an open-source
project officially released by the Keras deep learning framework. It integrates
Convolutional Neural Networks (CNNs) and Transformers to enhance video
classification capabilities. Specifically, it employs CNNs to extract frame-level
features from the video and then feeds these features into a Transformer to
capture temporal relationships between different frames. The model is designed to
effectively learn spatial-temporal features from video data, enhancing its ability to
classify video content accurately. This approach showcases an advanced application
of deep learning in video analysis.

3.4.2.2 Datasets

In our study, we assess the performance of VRank using three widely-adopted
video datasets: HWID12 [98], HMDB51 [99], and UCF101 [100]. The rationale
behind choosing these three datasets is their extensive usage in the realm of video
classification. More specifically, we select these datasets for evaluating VRank due
to the following two reasons: 1) Diversity and Representativeness These three
datasets exhibit diversity and representativeness in the context of video classifica-
tion. HWID12 includes real-world surveillance videos of high-speed highway traffic,
HMDB51 covers various daily actions, and UCF101 contains a variety of action videos
from the real world. This diversity ensures that VRank be evaluated more compre-
hensively; 2) Wide Applications and Recognition These datasets are widely
used and recognized in the fields of computer vision and video analysis [98, 99, 100].
Utilizing these well-established datasets can enhance the generalizability of VRank’s
evaluation results.
• HWID12 [98] The HWID12 dataset serves for the classification task of real-

time highway accident detection in intelligent transportation systems. HWID12
comprises 2,782 video clips with duration ranging from 3 to 8 seconds, categorized
into twelve classes (e.g., “Sideswipe collision”, “Collision with motorcycle” and
“Pedestrian hit”).

28

3.4. Study design

• HMDB51 [99] The HMDB51 dataset comprises video clips sourced from movies,
supplemented by a small portion obtained from public databases such as the
Prelinger Archives, YouTube, and Google Videos. HMDB51 is composed of 6,849
videos, classified into 51 action categories (e.g., “Drink”, “Hug”, and “Walk”),
with each category containing at least 100 clips.

• UCF101 [100] The UCF101 dataset is an action recognition dataset collected
from YouTube. UCF101 consists of 13,320 videos, categorized into 101 action
classes (e.g., “High Jump”, “Punch”, and “Diving”).

3.4.3 Noise generation techniques
In our study, we employed seven noise generation techniques to generate video

inputs with noise. These techniques were selected based on prior research studies [93,
94, 95, 96]. The following is a description of each technique:
• Channel Shift (CSR): CSR applies modifications to the overall color representa-

tion of a video by shifting the value of the color channel. This technique introduces
color perturbations by adding random noise to each pixel’s color channel values,
thus altering the color appearance of the video.

• Feature-wise Normalization (FSN): FSN performs normalization of the fea-
tures in each video input by dividing it with the standard deviation. This process
aims to decentralize the video dataset and normalize the feature distributions,
enabling the model to capture finer-grained variations in the data.

• Height Shift (HS): HS vertically displaces a given video by a certain number
of pixels, effectively shifting its position up or down within the frame. This
augmentation technique introduces spatial transformations, such as simulating
camera movements or object repositioning, by adding random noise to the vertical
position of each frame.

• Width Shift (WS): WS horizontally shifts the position of a video input by a
specified number of pixels. By applying random horizontal offsets to each frame,
WS enables the model to learn robustness to variations in object positioning
and enhances its ability to handle objects appearing at different spatial locations
within the frame.

• Shear (SR): SR refers to the intentional distortion of a video along its axes with
the primary objective of creating or correcting perceptual angles.

• Horizontal Flip (HF): HF horizontally flips a given video by mirroring the
content along the vertical axis. This operation introduces left-right orientation
changes to the video frames, augmenting the dataset with horizontally flipped
versions of the original videos.

• ZCA Whitening (ZCA): ZCA whitening applies dimension reduction operations
to the given videos, reducing redundant information while preserving crucial
features. By performing a linear transformation on the pixel values of each
frame, ZCA whitening removes correlations between neighboring pixels, effectively
decorrelating the data and enhancing the model’s ability to focus on meaningful
variations in the video content.

3.4.4 Compared Approaches
To demonstrate the effectiveness of VRank, we compare it with five distinct test

prioritization approaches, including a baseline approach, namely random selection,
alongside four DNN test prioritization techniques. The rationale behind selecting

29

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

these particular methods rests on three key factors: Firstly, their adaptability to
facilitate test prioritization on video datasets, which is a pivotal requirement for
our research context. Secondly, their effectiveness in the context of DNNs has
been well demonstrated in the existing literature [6, 9, 101]. Lastly, the availability
of open-source implementations. All of the selected approaches are accessible for
implementation purposes.
• DeepGini [6] employs the Gini coefficient to measure the likelihood of misclas-

sification, thereby enabling the ranking of test inputs. The calculation of Gini
score is presented in Formula 4.8.

ξ(x) = 1 −
N∑

i=1
(pi(x))2 (3.1)

where ξ(x) refers to the likelihood of the test input x being misclassified. pi(x)
refers to the probability that the test input x is predicted to be label i. N refers
to the number of labels.

• Vanilla SM [9] calculates the difference between the value of 1 and the maximum
activation probability in the output softmax layer. Formula 6.21 provides a clear
depiction of the calculation process.

V(x) = 1 − Cmax
c=1

lc(x) (3.2)

where lc(x) belongs to a valid softmax array in which all values are between 0 and
1, and their sum is 1.

• Prediction-Confidence Score (PCS) PCS [9] quantifies the level of uncertainty
in a classification model’s prediction for a given test by computing the difference
between the predicted class and the second most confident class. PCS is calculated
by Formula 4.10.

P (x) = lk(x) − lj(x) (3.3)

where lk(x) refers to the most confident prediction probability. lj(x) refers to the
second most confident prediction probability.

• Entropy Entropy [9] measures uncertainty in a classification model’s prediction
for a given test by computing the entropy of the softmax likelihood.

• Random selection [102] In random selection, the order of execution for test
inputs is determined randomly.

3.4.5 Measurements
Following the prior research on DNN test prioritization [6], we employ the Average

Percentage of Fault-Detection (APFD) [11] metric to assess the effectiveness of VRank
and the compared approaches. APFD is a well-established and widely accepted
measure for evaluating prioritization strategies. Generally, higher APFD scores
indicate a faster rate of misclassification detection. We determine the APFD values
by utilizing Formula 6.17.

APFD = 1 −
∑k

i=1 oi

kn
+ 1

2n
(3.4)

where n is the number of test inputs in the test set T . k is the number of test
inputs in T that will be misclassified by the DNN model M . oi is the index of the

30

3.5. Results and analysis

ith misclassified tests in the prioritized test set. More specifically, oi is an integer
that represents the position of the ith misclassified tests in the test set that has been
prioritized. Below, we explain the rationale for using APFD to assess the effectiveness
of a test prioritization method in detecting misclassified tests: In the formula of
APFD (Formula 6.17), a smaller ∑k

i=1 oi suggests that the misclassified tests are
positioned relatively closer to the front of the prioritized test set. This implies that
the prioritization approach effectively places misclassified tests at the beginning
of the test set, indicating a higher level of effectiveness. Consistent with previous
research [6], we normalize the APFD values to the range [0,1]. A prioritization
approach is deemed more effective when the APFD value is closer to 1.
Efficiency measurement of VRank: Following the existing study [10], we evaluate
the efficiency of VRank by quantifying the time required for each step of VRank, as
well as the time cost of each compared approach.

3.4.6 Implementation and Configuration
VRank was implemented in Python utilizing PyTorch 2.0.0 [103], OpenCV 4.7.0,

and scikit-learn 1.0.2 libraries. In terms of the compared approaches [6, 9], we
integrated existing implementations of them into our experimental pipeline. In terms
of ranking models, for XGBoost and LightGBM, we employed the specific versions
XGBoost 1.7.4 and LightGBM 3.3.5. For the ranking model random forest and
logistic regression, we leveraged the existing algorithm packages provided by scikit-
learn. Concerning the parameter configurations, we set the n_estimators parameter
to 100 for the XGBoost, LightGBM, and Random Forest ranking algorithms. For
the Logistic Regression ranking algorithm, we set the max_iter parameter to 100.
Our experiments were conducted on NVIDIA Tesla V100 32GB GPUs. In terms of
data analysis, the corresponding experiments were performed on a MacBook Pro
laptop with Mac OS Big Sur 11.6, Intel Core i9 CPU, and 64 GB RAM.

3.5 Results and analysis
3.5.1 RQ1: Effectiveness and efficiency of VRank
Objective: We investigate the effectiveness and efficiency of VRank, comparing it
with existing test input prioritization approaches and random selection.
Experimental design: We employed 12 pairs of video datasets and models as
subjects in our study to assess the effectiveness of VRank. The fundamental details
of these datasets and models can be found in Table 3.1. Specifically, we selected
five compared approaches, consisting of four test prioritization techniques (namely
DeepGini, Vanilla SM, PCS, and Entropy) along with a baseline approach (random
selection). We utilize these approaches for comparison because they can be adapted
to prioritize testing on video datasets. To quantify the effectiveness of each approach,
we employed the Average Percentage of Fault-Detection (APFD), a widely accepted
measure in the field. In addition to assessing effectiveness, we investigated the
efficiency of VRank by analyzing the time required for each step of its execution and
comparing its overall execution time with that of the five compared approaches.

Furthermore, due to the randomness of the model training process, we performed a
statistical analysis to ensure the stability of our findings. Specifically, we repeated all
experiments ten times for each subject and reported the average results. Furthermore,
we calculated the p-value of the experiments to assess whether the VRank approach

31

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers
Table 3.2: Effectiveness comparison among VRank, Random, DeepGini, VanillaSM,
PCS, and Entropy in terms of the APFD values on natural datasets

ApproachData Model Random DeepGini VanillaSM PCS Entropy VRank
C3D 0.513 0.717 0.716 0.712 0.717 0.745
R2Plus1D 0.492 0.695 0.696 0.685 0.694 0.735
R3D 0.488 0.696 0.698 0.697 0.694 0.742
SlowFastNet 0.528 0.703 0.701 0.698 0.705 0.744

HWID12

VT 0.522 0.721 0.723 0.726 0.718 0.746
C3D 0.484 0.661 0.659 0.653 0.663 0.702
R2Plus1D 0.495 0.573 0.577 0.577 0.568 0.616
R3D 0.493 0.619 0.623 0.622 0.609 0.658
SlowFastNet 0.488 0.614 0.614 0.612 0.614 0.650

HMDB51

VT 0.503 0.704 0.708 0.706 0.696 0.735
C3D 0.501 0.759 0.758 0.754 0.758 0.817
R2Plus1D 0.503 0.766 0.766 0.764 0.763 0.806
R3D 0.498 0.697 0.697 0.693 0.694 0.755
SlowFastNet 0.492 0.717 0.716 0.711 0.720 0.772

UCF101

VT 0.507 0.749 0.751 0.749 0.743 0.797

Table 3.3: Performance improvement of VRank on the 15 initial subjects (i.e., three
natural input sets on 5 Video classification models)

Approach # Best cases Average APFD Improvement(%)
Random 0 0.501 46.51
DeepGini 0 0.692 6.07
VanillaSM 0 0.694 5.76
PCS 0 0.691 6.22
Entropy 0 0.690 6.38
VRank 15 0.734 -

consistently outperformed the compared approaches.
To further illustrate the statistical significance of the improvements in VRank

compared to other test prioritization approaches, we conducted a statistical analysis
by calculating p-values and effect size associated with the experimental results.
Regarding the calculation of p-values, we employed the paired two-sample t-
test [104], which is a widely used statistical method for evaluating differences
between two related datasets. If the p-value is less than 10−05, it indicates that
the difference between the two sets of data is statistically significant [105]. For the
measurement of effect size, we utilized Cohen’s d for measuring the effect size [106].
In this context, values of |d| < 0.2 are categorized as “negligible,” |d| < 0.5 as “small,”
|d| < 0.8 as “medium,” and otherwise as “large”. For instance, if we compare VRank
with another test prioritization method, and the value of d is 0.7, the effect size
is categorized as “medium” because 0.5 < 0.7 < 0.8. This suggests that there is a
relatively medium difference between the two methods.
Table 3.4: Statistical analysis on natural test inputs (in terms of p-value and effect
size)

Random DeepGini VanillaSM PCS Entropy
VRank (p-value) 1.755 × 10−09 7.336 × 10−07 1.023 × 10−06 1.605 × 10−06 6.311 × 10−07

VRank (effect size) 7.615 3.816 3.669 3.479 3.884

Results: The experimental findings pertaining to RQ1 are presented in Table 3.2,
Table 3.3, Table 3.4 and Table 3.5. We highlight the approach with the highest
effectiveness in grey to facilitate quick and easy interpretation of the results. Table 3.2
presents the effectiveness of VRank and the compared approaches across different

32

3.5. Results and analysis

Table 3.5: Time cost of VRank and the compared approaches
Time cost Approach

VRank Random DeepGini VanillaSM PCS Entropy
Feature generation 2.3 min - - - - -

Ranking model training 35 s - - - - -
Prediction <1 s <1 s <1 s <1 s <1 s <1 s

video subjects, as measured by the Average Percentage of Faults Detected (APFD).
We see that VRank performs better than all the compared approaches regarding
APFD across all cases. Specifically, the APFD range for VRank spans from 0.616
to 0.817, whereas the baseline approach exhibits an APFD range of 0.484 to 0.528.
Furthermore, the uncertainty-based test prioritization methods yield an APFD range
of 0.563 to 0.766. Table 3.3 provides a detailed analysis of the experimental results
for RQ1, focusing on three aspects: the number of best-performing cases for each
test prioritization approach, the average effectiveness, and the relative improvement
of VRank compared to each method. It is observed that the average APFD of
VRank is 0.734, with an average improvement of 5.76%∼46.51% compared to the
uncertainty-based test prioritization approaches and random selection. Based on
the aforementioned results, we conclude that VRank exhibits better effectiveness in
prioritizing video test inputs compared to DeepGini, VanillaSM, PCS, Entropy, and
Random Selection.

Table 3.4 presents the results of the statistical analysis evaluating the improvement
of VRank in comparison to other test prioritization methods. The analysis employs
two key metrics: p-value and effect size. As mentioned in the experimental design
above, a p-value below 10−05 indicates that the difference between two datasets [105]
is statistically significant. An effect size of ≥ 0.8 suggests that the difference in
effectiveness between the two approaches is considered “large”.

In Table 3.4, we see that all the p-values between VRank and other test prioritiza-
tion approaches consistently fall below 10−05. This suggests that VRank significantly
outperforms all the test prioritization methods being compared. For example, the
p-value between VRank and DeepGini is 7.336 × 10−07, while the p-value between
VRank and VanillaSM is 1.023 × 10−06. Moreover, the effect sizes between VRank
and all the compared approaches exceed 0.8, suggesting that the improvement in
VRank’s effectiveness (measured by APFD) compared to all the other approaches is
“large”. For instance, the effect size between VRank and VanillaSM is 3.669, and the
effect size between VRank and DeepGini is 3.816.

Table 3.5 provides a comprehensive breakdown of the time required by each step
of VRank and a comparison with uncertainty-based test prioritization approaches
and random selection. The time required for VRank is partitioned into three steps:
feature generation, ranking model training, and prediction. Our findings reveal
that feature generation is the most time-consuming step, taking approximately 2.3
minutes, followed by ranking model training, which takes approximately 35 seconds.
Notably, the prediction time of VRank is fast, taking less than 1 second once the
ranking model is trained and the features have been generated. Overall, the average
time consumption of VRank for each dataset is approximately 3 minutes. Although
VRank is less efficient than uncertainty-based test prioritization approaches, which
take less than 1 second, its time cost is acceptable compared to the prohibitively
expensive manual labeling.

33

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers
Answer to RQ1: When applied to natural datasets, VRank demonstrates better
effectiveness in prioritizing video test inputs compared to DeepGini, VanillaSM, PCS,
Entropy, and Random Selection, with the average improvement of 5.76%∼46.51%.
Furthermore, the total time required for the execution of VRank is less than 3
minutes, which falls within an acceptable range.

3.5.2 RQ2: Effectiveness on noisy test inputs
Objective: We evaluated the effectiveness of VRank on noisy test inputs. To this
end, we incorporated various types of video noise, namely Channel Shift (CSR),
Feature-wise Normalization (FSN), Height Shift (HS), Width Shift (WS), Shear (SR),
Horizontal Flip (HF), and ZCA Whitening (ZCA), as discussed in Section 3.4.3. We
derived inspiration for these noise types from prior research [93, 94, 95, 96].
Experimental design: In order to generate noisy video datasets, we employed seven
noise generation techniques, namely Channel Shift (CSR), Feature-wise Normalization
(FSN), Height Shift (HS), Width Shift (WS), Shear (SR), Horizontal Flip (HF),
and ZCA Whitening (ZCA). By applying these techniques, we introduced various
forms of noise and perturbations to the original video datasets, thereby increasing
their diversity and complexity. In total, we constructed 84 subjects for evaluation (4
video models × 3 video datasets × 7 noise generation techniques). Consistent with
our previous research question, we compared VRank with four test prioritization
approaches and a baseline method (i.e., random selection), using the metric APFD
to quantify their effectiveness.
Results: The experimental results for RQ2 are presented in Table 3.6 Table 3.7
and Table 3.8. Table 3.6 showcases the effectiveness of VRank in comparison to
several test prioritization techniques and the baseline (i.e., random selection) across
noisy datasets generated using various noise generation techniques. We see that
VRank consistently performs better than all the compared methods in terms of
average APFD across all cases. More specifically, the average APFD of VRank
ranges from 0.612 to 0.758, while the baseline method exhibits an average APFD
ranging from 0.490 to 0.518. The uncertainty-based test prioritization techniques
achieve an average APFD between 0.555 to 0.728. Overall, VRank demonstrates an
improvement ranging from 4.26% to 53.56% compared with DeepGini, VanillaSM,
PCS, Entropy, and Random Selection. This improvement is consistently observed
across each noise generation technique. For instance, under the HS noise technique,
VRank exhibits an improvement ranging from 5.32% to 43.17%. Similarly, under the
HF noise technique, the improvement ranges from 4.80% to 46.26%, and under the
CSR noise technique, it ranges from 4.26% to 48.28%.

Table 3.7 provides a detailed analysis of the experimental results for RQ2, focusing
on three aspects: the number of best-performing cases for each test prioritization
approach, the average effectiveness, and the relative improvement of VRank compared
to each method. We see the average APFD of VRank is 0.692, with an average
improvement of 7.12% to 38.68% compared to other test prioritization approaches.

In Table 3.8, we present a detailed analysis of VRank’s effectiveness by using the
SR noise technique as an example. We can see that VRank consistently performs
better than the compared approaches across all subjects (a DNN model associated
with a noisy dataset) related to SR. Moreover, the APFD values of VRank range
from 0.577 to 0.756, while that of the compared approaches range from 0.496 to
0.712. The aforementioned experimental results indicate that VRank maintains

34

3.5. Results and analysis

Table 3.6: Overall effectiveness comparison on noisy video datasets
Average APFD Improvement(%)Noise

Data Approach C3D R2Plus1D R3D SlowFastNet VT C3D R2Plus1D R3D SlowFastNet VT
Random 0.502 0.507 0.505 0.504 0.508 37.85% 31.36% 32.67% 30.75% 46.26%
DeepGini 0.651 0.624 0.618 0.606 0.707 6.30% 6.73% 8.41% 8.75% 5.09%
VanillaSM 0.651 0.625 0.622 0.606 0.709 6.30% 6.56% 7.72% 8.75% 4.80%
PCS 0.647 0.616 0.620 0.605 0.708 6.96% 8.12% 8.06% 8.93% 4.94%
Entropy 0.651 0.623 0.612 0.606 0.703 6.30% 6.90% 9.48% 8.75% 5.69%

HF

VRank 0.692 0.666 0.670 0.659 0.743 - - - - -
Random 0.505 0.496 0.498 0.503 0.498 24.16% 30.44% 33.73% 21.67% 43.17%
DeepGini 0.586 0.602 0.611 0.557 0.676 7.00% 7.48% 9.00% 9.87% 5.47%
VanillaSM 0.585 0.604 0.616 0.557 0.677 7.18% 7.12% 8.12% 9.87% 5.32%
PCS 0.580 0.597 0.615 0.555 0.673 8.10% 8.38% 8.29% 10.27% 5.94%
Entropy 0.586 0.601 0.604 0.558 0.672 7.00% 7.83% 10.26% 9.68% 6.10%

HS

VRank 0.627 0.647 0.666 0.612 0.713 - - - - -
Random 0.498 0.506 0.506 0.499 0.499 33.53% 30.83% 31.42% 27.45% 46.49%
DeepGini 0.627 0.620 0.614 0.591 0.694 6.06% 6.77% 8.31% 7.61% 5.33%
VanillaSM 0.627 0.621 0.617 0.590 0.694 6.06% 6.60% 7.78% 7.80% 5.33%
PCS 0.621 0.611 0.617 0.587 0.690 7.09% 8.35% 7.78% 8.35% 5.94%
Entropy 0.627 0.618 0.608 0.592 0.693 6.06% 7.12% 9.38% 7.43% 5.48%

WS

VRank 0.665 0.662 0.665 0.636 0.731 - - - - -
Random 0.491 0.494 0.501 0.508 0.507 53.56% 45.55% 43.60% 42.13% 49.70%
DeepGini 0.712 0.678 0.670 0.678 0.725 5.90% 6.05% 7.16% 6.49% 4.69%
VanillaSM 0.711 0.680 0.672 0.677 0.728 6.05% 5.74% 6.85% 6.65% 4.26%
PCS 0.706 0.676 0.671 0.674 0.728 6.80% 6.36% 7.00% 7.12% 4.26%
Entropy 0.713 0.675 0.666 0.679 0.719 5.75% 6.52% 7.81% 6.33% 5.56%

FSN

VRank 0.754 0.719 0.718 0.722 0.759 - - - - -
Random 0.499 0.511 0.496 0.496 0.516 50.30% 40.31% 44.35% 45.16% 47.09%
DeepGini 0.710 0.674 0.666 0.673 0.722 5.63% 6.38% 7.51% 6.98% 5.12%
VanillaSM 0.709 0.677 0.668 0.672 0.726 5.78% 5.91% 7.19% 7.14% 4.55%
PCS 0.704 0.672 0.666 0.670 0.725 6.53% 6.70% 7.51% 7.46% 4.69%
Entropy 0.710 0.671 0.661 0.674 0.717 5.63% 6.86% 8.32% 6.82% 5.86%

SR

VRank 0.751 0.717 0.716 0.720 0.759 - - - - -
Random 0.505 0.499 0.508 0.490 0.509 49.31% 44.09% 41.34% 47.35% 49.12%
DeepGini 0.712 0.678 0.670 0.678 0.721 5.90% 6.05% 7.16% 6.49% 4.85%
VanillaSM 0.711 0.681 0.672 0.677 0.724 6.05% 5.74% 6.85% 6.65% 4.42%
PCS 0.706 0.676 0.671 0.674 0.725 6.80% 6.36% 7.00% 7.12% 4.28%
Entropy 0.713 0.675 0.666 0.679 0.716 5.75% 6.52% 7.81% 6.33% 5.59%

ZCA

VRank 0.754 0.719 0.718 0.722 0.756 - - - - -
Random 0.495 0.499 0.493 0.498 0.518 48.28% 33.27% 39.76% 38.76% 46.53%
DeepGini 0.691 0.617 0.634 0.634 0.725 6.38% 7.78% 8.68% 8.99% 4.55%
VanillaSM 0.689 0.616 0.639 0.633 0.727 6.53% 7.95% 7.82% 9.16% 4.26%
PCS 0.685 0.610 0.639 0.631 0.726 7.15% 9.02% 7.82% 9.51% 4.41%
Entropy 0.691 0.615 0.627 0.635 0.718 6.38% 8.13% 9.89% 8.82% 5.57%

CSR

VRank 0.734 0.665 0.689 0.691 0.758 - - - - -

better effectiveness over all the compared approaches on noisy video datasets.
Answer to RQ2: When applied to noisy datasets, VRank also demonstrates better
effectiveness over the compared test prioritization approaches, with an average
improvement of 4.26% to 53.56%. The improvement is consistently observed across
each utilized noise generation technique.

3.5.3 RQ3: Impact of different ranking models
Objective: We explore the efficacy of various ranking models in VRank concerning
their ability to leverage the generated video features for test prioritization.
Experimental design: In order to explore the influence of different ranking models
Table 3.7: Performance improvement of VRank on the 105 noisy subjects (i.e.,
3(natural input sets)×5(Video classification models)×7(noise technique)

Approach # Best cases Average APFD Improvement(%)
Random 0 0.499 38.68
DeepGini 0 0.645 7.29
VanillaSM 0 0.646 7.12
PCS 0 0.642 7.79
Entropy 0 0.644 7.45
VRank 105 0.692 -

35

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers
Table 3.8: Effectiveness comparison on noisy datasets generated by the WS noise
generation technique

ApproachData Model Random DeepGini VanillaSM PCS Entropy VRank
C3D 0.478 0.698 0.699 0.690 0.696 0.719
R2Plus1D 0.506 0.682 0.684 0.662 0.680 0.716
R3D 0.503 0.667 0.669 0.667 0.661 0.715
SlowFastNet 0.498 0.638 0.636 0.633 0.640 0.699

HWID12

VT 0.503 0.710 0.711 0.712 0.710 0.736
C3D 0.514 0.577 0.576 0.572 0.577 0.617
R2Plus1D 0.504 0.555 0.558 0.554 0.551 0.599
R3D 0.510 0.559 0.565 0.571 0.549 0.610
SlowFastNet 0.499 0.551 0.551 0.549 0.551 0.577

HMDB51

VT 0.497 0.659 0.659 0.650 0.658 0.701
C3D 0.499 0.604 0.604 0.600 0.605 0.658
R2Plus1D 0.504 0.621 0.620 0.616 0.620 0.670
R3D 0.504 0.614 0.615 0.612 0.612 0.669
SlowFastNet 0.499 0.583 0.581 0.578 0.585 0.630

UCF101

VT 0.496 0.711 0.712 0.706 0.708 0.756

on the effectiveness of VRank, we have proposed three VRank variants that employ
different ranking models for the learning-to-rank process. Specifically, we evaluate
VRank along with its variants, namely VRankX , VRankR, and VRankL (as described
in Section 3.3.5), on their ability to prioritize test inputs in both natural and noisy
settings and assess their effectiveness in terms of APFD.

Results: The experimental results pertaining to RQ3 are presented in Table 3.9.
The upper segment of the table displays the average effectiveness across diverse
models, while the lower segment showcases the average effectiveness across different
video datasets. We see that both VRank and its variants perform better than all the
compared approaches on average. Specifically, in the case of natural inputs, VRank
exhibits the highest performance in 86.67% of instances, whereas VRankX achieves
superiority in the remaining 13.33% of cases. In the context of noisy data, VRank
achieves the highest performance in 84.61% of cases, while VRankX excels in the
remaining 15.38% of cases. Furthermore, the mean APFD values for VRank and
its variants on the natural dataset range from 0.718 to 0.758, while the compared
approaches exhibit mean APFD values ranging from 0.493 to 0.755. On the noisy
dataset, the mean APFD values for VRank and its variants range from 0.680 to
0.746, while the compared methods exhibit mean APFD values ranging from 0.499
to 0.742. These findings demonstrate that VRank and its variants perform better
than all the compared methods on average.

Furthermore, we see that VRank demonstrates the highest effectiveness among
all variants. As shown in Table 3.9, regardless of whether the datasets are natural
or noisy, VRank consistently achieves the highest average APFD across all cases.
In the natural dataset scenario, the mean APFD of VRank reaches 0.734, while
the variants exhibit mean values ranging from 0.701 to 0.729. In the noisy dataset
scenario, VRank attains an average APFD of 0.702, whereas the variants exhibit
mean values ranging from 0.672 to 0.697. These results indicate that VRank surpasses
all variants in terms of effectiveness, suggesting that the ranking model employed by
VRank, namely LightGBM, outperforms the ranking models utilized by the variants
in leveraging the features of video input for test prioritization.

36

3.5. Results and analysis

Table 3.9: Performance (APFD scores) of VRank variants with different ranking
models
(#BC ⇔ #Best cases) and (Avg ⇔ Average APFD score)

Natural inputs Noise inputs
Approach #BC C3D R2Plus1D R3D SlowFastNet VT #BC C3D R2Plus1D R3D SlowFastNet VT
Random 0 0.499 0.496 0.493 0.502 0.511 0 0.499 0.501 0.501 0.499 0.507
DeepGini 0 0.712 0.677 0.670 0.678 0.725 0 0.669 0.641 0.640 0.631 0.710
VanillaSM 0 0.710 0.679 0.672 0.676 0.727 0 0.668 0.642 0.643 0.630 0.712
PCS 0 0.706 0.675 0.670 0.673 0.727 0 0.664 0.636 0.642 0.627 0.711
Entropy 0 0.712 0.674 0.665 0.679 0.719 16 0.670 0.639 0.634 0.631 0.705
VRankX 2 0.750 0.712 0.713 0.713 0.755 0 0.706 0.678 0.687 0.674 0.742
VRankR 0 0.743 0.706 0.706 0.705 0.749 1 0.701 0.672 0.681 0.662 0.737
VRankL 0 0.713 0.690 0.684 0.691 0.728 0 0.677 0.656 0.659 0.651 0.719
VRank 13 0.754 0.719 0.718 0.722 0.758 88 0.711 0.685 0.691 0.680 0.746

Natural inputs Noise inputs
Approach HWID12 HMDB51 UCF101 AVG HWID12 HMDB51 UCF101 AVG
Random 0.508 0.492 0.501 0.501 0.502 0.501 0.502 0.502
DeepGini 0.706 0.634 0.737 0.692 0.685 0.607 0.683 0.658
VanillaSM 0.706 0.636 0.737 0.694 0.686 0.609 0.682 0.659
PCS 0.703 0.634 0.734 0.691 0.682 0.607 0.679 0.656
Entropy 0.705 0.629 0.735 0.690 0.683 0.603 0.681 0.655
VRankX 0.739 0.664 0.783 0.729 0.725 0.639 0.728 0.697
VRankR 0.731 0.661 0.773 0.722 0.715 0.635 0.721 0.690
VRankL 0.714 0.636 0.753 0.701 0.699 0.614 0.704 0.672
VRank 0.742 0.672 0.789 0.734 0.727 0.645 0.735 0.702

Answer to RQ3: VRank and its variants exhibit better average effectiveness than
DeepGini, Vanilla SM, PCS, and Entropy. Notably, VRank surpasses all of its
variants in terms of effectiveness, indicating that the ranking model implemented
in VRank, LightGBM, outperforms the ranking models employed by the variants
in effectively utilizing the video input features for test prioritization.

3.5.4 RQ4: Feature contribution analysis
Objective: We aim to investigate the contributions of different types of features to
the effectiveness of VRank.
Experimental design: To evaluate the importance of different types of features
for VRank, we leverage the cover metric in the XGBoost algorithm [13]. The cover
metric provides a means of evaluating feature importance by quantifying the average
coverage of each instance through the leaf nodes within a decision tree. Specifically,
this metric entails the calculation of the frequency with which a specific feature is
employed for partitioning the data across all trees within the ensemble, followed
by the summation of the coverage values associated with each feature across all
trees. Subsequently, the resulting coverage value is appropriately normalized by the
total number of instances, thereby yielding the average coverage of each instance
by the leaf nodes. The significance of a particular feature is then ascertained based
on its derived coverage value, with features exhibiting higher coverage values being
attributed greater importance. Upon computing the importance scores for all features,
the identification of the top-N important features was carried out for each dataset,
thereby providing an elucidation of the feature types that significantly contribute to
the effectiveness of VRank.

Moreover, in order to assess the impact of each feature type on the effectiveness of
VRank, we conducted a carefully designed ablation study following the methodology
outlined in prior research [107]. More specifically, we removed individual feature types

37

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

Table 3.10: Top-10 features in terms of the average contribution

Rank HWID12 HMDB51 UCF101
Feature Score Feature Score Feature Score

1 UF5 88.56 UF0 104.31 UF1 280.18
2 UF1 80.86 EF1352 84.75 EF984 248.26
3 PF11 61.34 TF2070 80.48 EF1386 219.73
4 EF52 38.23 EF443 72.76 PF65 211.38
5 EF2048 37.49 UF2 70.74 TF2153 201.27
6 TF2104 37.48 UF1 68.38 UF5 163.01
7 EF1456 36.43 EF1819 67.33 TF2164 154.78
8 TF2113 34.88 TF2115 64.25 PF18 147.84
9 TF2068 33.43 EF2124 64.06 TF2184 146.92
10 PF7 32.13 PF44 63.45 UF5 139.84

Table 3.11: Ablation study on different features of VRank: Embedding Fea-
tures(EF), Temporal Features(TF), Prediction Features(PF), Uncertainty Fea-
tures(UF). ‘w/o’ means ‘without’

DatasetApproach HWID12 HMDB51 UCF101 Average

VRank w/o EF 0.727 0.656 0.772 0.718
VRank w/o TF 0.731 0.654 0.771 0.719
VRank w/o PF 0.729 0.653 0.768 0.717
VRank w/o UF 0.732 0.652 0.763 0.715
VRank 0.742 0.672 0.788 0.734

and evaluated VRank’s effectiveness under these modified conditions. For example,
to measure the contribution of UF features, VRank was executed with UF features
excluded while retaining the other three feature types. The resulting performance of
VRank was then evaluated under these adjusted circumstances. Similarly, to evaluate
the contribution of EF features, VRank was executed without generating EF features
while still generating the other three feature types. The performance of VRank was
subsequently assessed in this context. Through the conducted ablation study, we can
compare the contribution of each feature type to the overall effectiveness of VRank.
Results: The findings for RQ4 are presented in Table 3.10. In Table 3.10, the
abbreviations UF, PF, EF, and TF represent uncertainty-based features, prediction
features, video embedding features, and temporal features. Additionally, the small
superscript numbers on the upper right corner of the feature abbreviations indicate
the index of the feature. For instance, UF5 denotes the UF feature with index 5.
In Table 3.10, we see that, across different video datasets (i.e., HWID12, HMDB51,
and UCF101), all four types of features appear among the top 10 most contributing
features. Specifically, for the HWID12 dataset, UF features contribute to 20% of the
top 10 features, PF features contribute to 20%, EF features contribute to 30%, and
TF features contribute to 30%. In the case of the HMDB51 dataset, UF, PF, EF, and
TF features contribute 30%, 10%, 40%, and 20%, respectively. These experimental
results illustrate that all four types of generated features make visible contributions
to the effectiveness of VRank.

The experimental results of the ablation study are presented in Table 3.11. In this
table, ‘w/o’ stands for ‘without.’ For example, ‘VRank w/o EF’ refers to executing
VRank without generating the video embedding features. From Table 3.11, we see
that the original VRank achieves the highest average effectiveness. Removing any

38

3.5. Results and analysis

type of feature results in a decrease in the effectiveness of VRank, demonstrating
that each type of feature contributes to VRank’s effectiveness. For instance, on the
HWID12 dataset, the average APFD value of the original VRank is 0.742. Removing
video embedding features results in a decline of VRank’s average APFD to 0.727,
while the removal of temporal features causes a decrease to 0.731, prediction features
to 0.729, and uncertainty features to 0.732.

From Table 3.11, we see that across different datasets, all four types of features
contribute to VRank. Specifically, the average APFD decrease resulting from the
removal of EF is 0.016. Removing TF leads to an average APFD decrease of 0.015,
while PF removal results in an average APFD decrease of 0.017, and UF removal
causes an average APFD decrease of 0.019. These differences are small. Moreover,
taking the HMDB51 dataset as an example, the APFD decreases caused by removing
the four types of features are 0.016, 0.018, 0.019, and 0.02, respectively. These
experimental results suggest that all types of generated features contribute to the
effectiveness of VRank.
Answer to RQ4: All four types of generated features, namely uncertainty fea-
tures, prediction features, video embedding features, and temporal features, visibly
contribute to the effectiveness of VRank.

3.5.5 Impact of the number of extracted frames on the effec-
tiveness of VRank.

Objective: In VRank, two critical steps involve generating video embedding features
(EF) and temporal features (TF) from the video-type test to predict the likelihood
of the test being misclassified. To obtain EF and TF, we utilize established frame
sampling techniques [68] to extract a fixed number of frames from the video-type test
input. In this research question, we explore the impact of the number of extracted
frames on the effectiveness of VRank. Experimental design: In the original VRank
implementation, we extracted 16 frames during the generation of video embedding
features and temporal features. To investigate the impact of the number of generated
frames, we kept the other execution processes of VRank unchanged and only varied
the number of frames extracted, specifically changing it to 4, 8, and 32 frames. The
reason we chose these specific numbers of frames to extract is as follows: Selecting 4,
8, and 32 frames can cover a range of frame numbers from relatively low (4 frames) to
relatively high (32 frames). This can assist researchers in understanding the impact
of different frame count levels on the performance of VRank. We compared the
effectiveness (measured by APFD) of VRank with the different number of frames
generated. Through comparison, we aim to explore the impact of the number of
extracted frames on the effectiveness of VRank.
Results: The results for RQ5 are presented in Table 3.12. Specifically, Frames-4
indicates that, during the video embedding feature and temporal feature generation
step in VRank, four frames were extracted. Similarly, Frames-8, Frames-16, and
Frames-32 correspond to the extraction of 8, 16, and 32 frames, respectively. From
Table 3.12, we see that the effectiveness of VRank increases slightly with the number
of extracted frames. In the HWID12 dataset, the effectiveness of VRank with 4
frames to 32 frames is as follows: 0.725, 0.735, 0.742, and 0.748. In the HMDB51
dataset, the effectiveness of VRank with 4 frames to 32 frames is 0.651, 0.663, 0.672,
and 0.681. For the UCF101 dataset, the values are 0.752, 0.768, 0.789, and 0.795.
We see that on each dataset, VRank’s APFD values gradually improve with an

39

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers
Table 3.12: Influence of the number of extracted frames on the effectiveness of
VRank

Data Frames-4 Frames-8 Frames-16 Frames-32
HWID12 0.724 0.735 0.742 0.748
HMDB51 0.651 0.663 0.672 0.681
UCF101 0.752 0.768 0.789 0.795

increase in the number of frames. However, the augmentation of frames affects the
running time of VRank, impacting efficiency. The original VRank, which utilizes 16
extracted frames, has outperformed all the compared test prioritization methods,
and the total execution time is only around 3 minutes. As shown in Table 3.3, the
original VRank (16 frames) outperforms all the compared methods in all cases, with
improvements ranging from 5.76% to 46.51%. Therefore, for a trade-off between
efficiency and effectiveness, we select to extract 16 frames in the process of generating
video embedding features and temporal features.
Answer to RQ5: The effectiveness of VRank increases with the number of
extracted frames, but the improvement is slight.

3.6 Discussion
3.6.1 Limitations

[Dependency on Visual Features] One noteworthy limitation of the current im-
plementation of VRank is its exclusive emphasis on extracting visual information
from video data, neglecting the incorporation of speech or audio information. This
singular focus on visual features hampers the comprehensive understanding of video
content, as audio analysis plays a pivotal role in decoding the complete semantic
meaning embedded within videos. The absence of audio analysis restricts the model’s
ability to capture important auditory cues, such as spoken dialogue, sound effects,
or background music, which are integral components of video content. Consequently,
the lack of audio analysis may impede the accuracy and effectiveness of the ranking
process, as the model’s comprehension of videos remains incomplete and insufficiently
nuanced. To address this limitation, future iterations of VRank will include a robust
audio analysis component, which will facilitate a more holistic and comprehensive
approach to video ranking by encompassing both visual and auditory information.
By incorporating audio analysis, VRank will be empowered to leverage the com-
plementary nature of audio-visual data, enabling a more nuanced understanding of
video content and enhancing the accuracy and reliability of the ranking process.
[Contextual Understanding] While VRank excels in the analysis of individual frames
within a video, it can exhibit limitations in comprehending the broader contextual
aspects and narrative structure inherent in video content. As focusing solely on
individual frames, VRank can lack the temporal relationships and dependencies
between frames, thus failing to capture the temporal dynamics and sequential
nature of video content. This limitation can pose challenges in accurately ranking
videos that heavily rely on temporal coherence, as well as those that require a
comprehensive understanding of the entire video content as a cohesive narrative. The
lack of contextual understanding may result in an incomplete representation of the
video’s meaning and can impact the effectiveness of the ranking process, particularly
for videos with intricate storytelling or complex visual narratives. To mitigate

40

3.6. Discussion

this limitation, future research efforts will seek to enhance VRank’s contextual
understanding capabilities by exploring methods that can capture narrative structures
within videos. By incorporating contextual understanding, VRank will be better
equipped to rank videos that exhibit nuanced temporal dynamics, thereby improving
its overall performance and applicability in real-world scenarios.
[Whole Video Classification] Our research is centered around multi-class datasets
that concentrate on classifying entire videos rather than categorizing each frame
of a video individually. Specifically, in the video dataset we evaluated, each video
(sample) is assigned to a specific category. This implies that within the evaluated
video dataset, each frame belongs to the same category. For instance, in the UCF101
dataset, there are a total of 101 categories. A video sample classified as “High Jump”
has each frame assigned to the “High Jump” category.

3.6.2 Threats to Validity

Threats to Internal Validity. The internal threats to validity primarily
reside within the implementation of our proposed VRank framework and the test
prioritization approaches utilized for comparison. To mitigate these threats, we took
several measures to ensure the reliability and consistency of our experimental setup.
Firstly, we implemented VRank using the widely recognized and extensively utilized
PyTorch library, known for its robustness and computational efficiency in deep
learning research. By leveraging a well-established framework, we aimed to minimize
potential implementation biases. Furthermore, to guarantee the reliability of our
comparative analysis, we employed the publicly available implementations of the
compared approaches as provided by their respective authors. This approach ensures
consistency across the experimental procedures, reducing the risk of implementation
discrepancies and increasing the reproducibility of our findings. Another potential
internal threat arises from the inherent randomness associated with the training
process of the models. To mitigate this threat and enhance the stability of our
experimental results, we conducted a statistical analysis. Specifically, we conducted
multiple runs of all experiments, repeating the training and evaluation procedures
ten times. By adopting this approach, our experimental findings acquire heightened
reliability and stability. Furthermore, we calculated the statistical significance of our
experimental results, providing further evidence for the validity and generalizability
of our results.
Threats to External Validity. The external threats to validity in our study
primarily stem from the generalizability of our findings to other models and video
datasets. To address this concern, we carefully selected a diverse set of models and
video datasets for our experimental evaluation. By incorporating various model-
dataset pairs, we aimed to capture a broad spectrum of scenarios and ensure that
our findings are not limited to a specific combination of models and datasets. We
intentionally included both natural and noisy inputs during testing. More specifically,
we leveraged well-established noise generation techniques from publicly available
studies. These techniques, derived from the literature on image and video process-
ing [93, 94, 95, 96], enable us to augment the diversity of the video datasets used for
evaluation. By incorporating these augmentation techniques, we aimed to evaluate
the effectiveness of VRank on noisy contexts.

41

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

3.7 Related Work
We present the related work in three aspects: test prioritization in DNN testing,

deep neural network testing, and test prioritization for traditional software.

3.7.1 Test Prioritization in DNN Testing
In the domain of DNN testing, test prioritization [6, 9, 108, 47, 109] has emerged

as a critical task for identifying possibly-misclassified test inputs. Various metrics
have been proposed for this purpose. DeepGini, proposed by Feng et al. [6], aims
to prioritize tests based on model uncertainty. DeepGini assumes that a test input
is more likely to be mispredicted if the DNN outputs similar probabilities for each
class. Byun et al. [110] evaluated several white-box metrics for prioritizing bug-
revealing inputs, including widely-used metrics like softmax confidence, Bayesian
uncertainty, and input surprise. Moreover, Weiss et al. [9] performed a comprehensive
investigation of various DNN test input prioritization techniques, including several
uncertainty-based metrics such as Vanilla Softmax, Prediction-Confidence Score
(PCS), and Entropy. These metrics have been shown to be effective in identifying
possibly-misclassified test inputs and aiding test prioritization efforts. Recently,
Wang et al. [10] proposed PRIMA, which uses intelligent mutation analysis for
prioritizing test inputs. This approach can be applied not only to classification but
also to regression models and can handle test inputs generated from adversarial
input generation approaches that increase the probability of the wrong class. While
PRIMA has demonstrated its effectiveness on image data, it cannot be used to
prioritize video tests since its mutation rules are not adapted to video data.

The aforementioned uncertainty-based test prioritization methods can be adapted
for test prioritization of video datasets. However, video data possesses unique
characteristics, particularly temporal information, which necessitate a tailored test
prioritization strategy. In comparison to these existing approaches, our proposed
VRank introduces a carefully-designed feature generation strategy specifically for
video samples. VRank leverages frame sampling techniques [68] and the ResNet
model [87] to extract frame representations that capture the temporal information
embedded within video data. By exploiting these techniques, VRank enables the
effective prioritization of video tests by considering the temporal dynamics and
dependencies present in the video content, thereby augmenting the accuracy and
relevance of the test prioritization process.

3.7.2 Deep Neural Network Testing
DNN Testing [60, 111] aims to systematically assess and enhance the reliability

and robustness of neural network models through rigorous testing methodologies. In
addition to test input prioritization, numerous approaches have been proposed to
enhance the efficiency of DNN testing through the process of test selection. Test
selection aims to accurately estimate the accuracy of the entire test set by labeling
only a carefully chosen subset of test inputs, thereby reducing the labeling cost
associated with DNN testing. By effectively selecting a representative subset of
test inputs, test selection techniques can provide reliable estimates of the DNN’s
performance without requiring the evaluation of the entire test set. Li et al. [48]
introduced two test selection methods, namely Cross Entropy-based Sampling (CES)
and Confidence-based Stratified Sampling (CSS). CES operates by minimizing the
cross-entropy between the selected set and the complete test set, thereby ensuring

42

3.7. Related Work

that the distribution of the selected test set aligns with that of the original test set.
In this way, CES aims to capture the diversity and characteristics of the complete
test set while using only a fraction of the available test inputs. CSS, on the other
hand, leverages the confidence features of test inputs to ensure similarity between
the selected test set and the entire test set. By selecting samples based on their
confidence scores, CSS aims to capture the representative distribution of the test set,
thereby providing accurate estimations of the DNN’s performance.

Building upon the foundation of test selection, Chen et al. [46] proposed a
practical test selection approach called Practical Accuracy Estimation (PACE). PACE
integrates various techniques, including clustering, prototype selection, and adaptive
random testing, to facilitate efficient and effective test selection. PACE initiates
by clustering all the test inputs based on their testing capabilities. Through this
process, test inputs with similar characteristics and behaviors are grouped together,
enabling the identification of distinct clusters within the test set. Following clustering,
prototypes are selected from each cluster using the MMD-critic algorithm [49]. The
MMD-critic algorithm ensures that the selected prototypes are representative of their
corresponding clusters, thus capturing the diversity and variability of the test set.
For test inputs that do not fall into any specific cluster, PACE employs adaptive
random testing, which randomly selects samples from the remaining unclustered
inputs. By adapting the sampling strategy to the unique characteristics of the
unclustered inputs, adaptive random testing helps maintain the representativeness
and diversity of the selected test set. It is important to note that while test selection
techniques aim to reduce the labeling cost by selecting a subset of test inputs, our
work primarily focuses on the complementary task of test prioritization. Unlike test
selection methods that estimate the performance of a DNN by utilizing a selected
subset of inputs, our proposed approach (VRank) focuses on ranking all test inputs
based on their potential to reveal bugs without discarding any of them.

Besides enhancing the efficiency of DNN testing [8, 7, 20, 52, 112], evaluating
the adequacy of DNNs has been a significant objective in several studies in the
field. These studies have focused on developing metrics and frameworks to assess
the coverage and effectiveness of test sets. Pei et al. [8] introduced the concept of
neuron coverage as a metric to evaluate the adequacy of a test set in covering the
logic of a DNN model. Neuron coverage measures the extent to which the activations
of individual neurons in the model are exercised by the test inputs. Building upon
this metric, the authors developed a white-box testing framework for DNNs, which
has shown effectiveness in detecting faults and revealing hidden vulnerabilities in
these models.

Ma et al. [7] proposed DeepGauge, a comprehensive set of DNN testing coverage
criteria. One of the key components of DeepGauge is neuron coverage, which serves as
a significant indicator of the effectiveness of a test input. By measuring the coverage
of neurons in the model, DeepGauge provides insights into the regions of the model
that are adequately exercised by the test inputs. Additionally, DeepGauge introduced
new coverage metrics with varying granularities to differentiate between adversarial
attacks and legitimate test data. These metrics capture the subtle differences in the
behavior of the model when exposed to adversarial inputs, enabling the detection
and identification of such attacks. Kim et al. [52] proposed the surprise adequacy
approach for DNN testing. This approach assesses the effectiveness of a test input
by quantifying its surprise with respect to the training set. The surprise of a test

43

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

input is measured by the difference in the activation values of neurons in response to
the new input. By evaluating the surprise of test inputs, this approach provides a
means to identify inputs that exhibit unusual or unexpected behavior, highlighting
potential vulnerabilities or weaknesses in the model.

3.7.3 Test Prioritization for Traditional Software
Within the domain of software testing, various techniques have been explored and

adopted to improve the efficiency and effectiveness of bug detection in the testing
process [56, 57, 58, 113, 9]. Among these techniques, test prioritization has gained
significant attention as a means to determine the most advantageous order in which
to execute test cases, aiming to detect software bugs at the earliest possible stage.

The main objective of test case prioritization is to identify the maximum number
of test cases that have the potential to reveal bugs within a limited time frame.
Empirical studies have demonstrated the positive impact of test case prioritization
on the fault detection rate of the overall test suite [102, 114, 115]. For instance, Di
et al. [79] conducted a case study evaluating coverage-based prioritization strategies
on real-world regression faults. Their study assessed the effectiveness of various
test case prioritization techniques in detecting bugs, providing insights into the
efficacy of different prioritization approaches. Rothermel et al. [116] introduced and
compared three types of test case prioritization techniques for regression testing, which
leveraged test execution information to determine the order of test case execution.
Their research emphasized the effectiveness of these prioritization techniques in
increasing the fault detection rate of the test suite. Lou et al. [56] proposed a test
case prioritization approach based on the fault detection capability of individual test
cases. They introduced two models, the statistics-based model, and the probability-
based model, to calculate the fault detection capability of each test case. Through
their empirical evaluation, they found that the statistics-based model outperformed
other approaches, highlighting the importance of considering the fault detection
capability in test case prioritization.

Shin et al. [57] developed a test case prioritization technique utilizing the diversity-
aware mutation adequacy criterion. They empirically evaluated the effectiveness of
mutation-based prioritization techniques using a large-scale collection of developer-
written test cases. Their research shed light on the benefits of employing mutation-
based prioritization techniques in practical testing scenarios. Papadakis et al. [58]
proposed a method that involved mutating Combinatorial Interaction Testing models
and prioritizing test cases based on their ability to detect and eliminate mutants.
They demonstrated a strong correlation between the number of model-based mutants
killed and the identification of code-level faults by the test cases, illustrating the
potential of model-based prioritization approaches in software fault detection.

These studies collectively showcase the effectiveness and benefits of test prioriti-
zation techniques in detecting software faults and optimizing the overall software
testing process. By strategically ordering the execution of test cases, testers can
allocate their limited resources more efficiently and uncover bugs earlier, leading to
improved software quality and reliability.

3.8 Conclusion
To solve the labeling-cost problem specifically in the context of video test inputs,

we proposed a novel test prioritization approach called VRank. The primary objective

44

3.8. Conclusion

of VRank is to assign higher priority to video test inputs that are more likely to be
misclassified. The fundamental concept underlying VRank is that test inputs situated
closer to the decision boundary of the model are at a higher risk of being predicted
incorrectly. To capture the spatial relationship between a video test and the decision
boundary, we employ a vectorization technique that transforms a given video test
into a lower-dimensional space to indirectly reveal the underlying proximity between
the test and the decision boundary. To implement this vectorization strategy, we
generate four different types of features for each video-type test: temporal features,
video embedding features, prediction features, and uncertainty features. Each of
these feature types captures essential aspects of the video tests and the model’s
classification behavior specific to videos. Temporal features capture the unique
temporal coherence inherent in a given video-type test. Video embedding features
encapsulate the inherent information within the videos, while the prediction features
focus on the model’s classification information regarding the videos. Uncertainty
features, on the other hand, take into consideration the level of uncertainty associated
with the model’s classification outputs. By combining these feature types, VRank
effectively constructs a comprehensive feature vector for each individual test input.
To assess the misclassification likelihood of each test input, VRank employs a
LightGBM-based ranking model that takes the constructed feature vector as input
and generates a misclassification score. A higher misclassification score indicates a
higher probability of the test input being incorrectly predicted by the model. Based
on these misclassification scores, VRank sorts all the tests within the test set in
descending order, establishing a prioritized ranking. To assess the effectiveness
of VRank, we carried out an empirical evaluation, comparing it with several test
prioritization methods. Our evaluations involved 120 subjects, incorporating both
natural and noisy data. The results of our experiments demonstrate the effectiveness
of VRank in comparison to a diverse range of existing test prioritization approaches.
Specifically, VRank yielded an average improvement of 5.76%∼46.51% on natural
datasets and 4.26%∼53.56% on noisy datasets.

45

Chapter 3. Prioritizing Test Cases for Deep Learning-based Video
Classifiers

46

4 Test Input Prioritization for Graph
Neural Networks

In this chapter, we introduce a novel test prioritization approach called NodeRank,
which focuses on prioritizing test inputs that are more likely to be misclassified by the
evaluated GNN model. NodeRank addresses a critical gap in the literature: existing
DNN prioritization methods ignore the interdependencies among test inputs (nodes)
in graph-structured datasets. The core premise is that a test is considered more likely
to be misclassified if it can kill many mutated models and produce different prediction
results with many mutated inputs. By prioritizing such potentially misclassified
test inputs, testers can allocate labeling resources more effectively and thus enhance
debugging efficiency.

This chapter is based on the work published in the following research paper:
• Yinghua Li, Xueqi Dang, Weiguo Pian, Andrew Habib, Jacques Klein and

Tegawendé F. Bissyandé. Test Input Prioritization for Graph Neural Networks.
IEEE Transactions on Software Engineering (TSE). Accepted for publication
on Mar. 31, 2024.

Contents
4.1 Introduction . 49
4.2 Background . 53

4.2.1 Graph Neural Networks 53
4.2.2 Mutation Testing . 54
4.2.3 Ensemble Learning . 55

4.3 Approach . 55
4.3.1 Overview . 55
4.3.2 Specifying Mutation Rules 57
4.3.3 Constructing Mutation Features Vectors 59
4.3.4 Building an Ensemble Ranking Model 60
4.3.5 Usage of NodeRank . 61

4.4 Evaluation Design . 61
4.4.1 Research Questions . 62
4.4.2 Performance Metric . 62
4.4.3 Compared Approaches 63

Chapter 4. Test Input Prioritization for Graph Neural Networks

4.4.4 GNN Subjects . 64
4.4.5 Graph Adversarial Attacks 65
4.4.6 Variants of NodeRank 65
4.4.7 Implementation and Configuration 66

4.5 Experimental Results . 67
4.5.1 RQ1: Performance of NodeRank 67
4.5.2 RQ2: Prioritization of Adversarial Inputs 72
4.5.3 RQ3: Influence of Ensemble Learning Methods 78
4.5.4 RQ4: Ablation Study of Mutation Operators 79
4.5.5 RQ5: Investigating the Contributions of Model Mutation

Rules on NodeRank Effectiveness 81
4.5.6 RQ6: Influence of Mutation Operator Parameters on

NodeRank . 84
4.6 Discussion . 85

4.6.1 Generality of NodeRank 85
4.6.2 Challenges of NodeRank 86
4.6.3 Differences in Approaches for NodeRank 86
4.6.4 Threats to Validity . 87

4.7 Related Work . 87
4.7.1 Test Prioritization Techniques 87
4.7.2 Mutation Testing . 88
4.7.3 Deep Neural Network Testing 89

4.8 Conclusion . 89

48

4.1. Introduction

4.1 Introduction
Recent years have witnessed widespread adoption of graph machine learning

for modeling, predictive, and analytics tasks on graph-structured data, while the
emergence of Graph Neural Networks (GNNs) [117] has led to the achievement of the
unprecedented performance of a variety of applications in drug design [118, 119, 120],
recommender systems [121, 122], and social network analysis [123, 124]. As they
are increasingly adopted, the debugging of GNNs becomes essential, especially in
safety-critical and security-sensitive domains. A key perspective in that domain
is developing effective and efficient techniques for GNN testing to achieve quality
assurance.

Unfortunately, Deep Neural Networks (DNNs), including GNNs, are notoriously
difficult to test due to the limitations in the availability of a test oracle [48, 6, 10].
Indeed, DNN testing is challenged by the fact that it is costly and time-consuming
to label test inputs: 1) automated labeling is not yet mainstream; 2) datasets can be
substantially large, and the data can be complex, as in the case of GNNs; 3) labeling
may require deep domain-specific knowledge, which is prohibitively expensive to
acquire. Therefore, to achieve efficient and effective testing of DNN-based systems,
researchers and practitioners generally focus on identifying only the relevant test
inputs that are likely to cause the system to behave incorrectly (i.e., bug-revealing test
inputs). Diagnosing those inputs is then expected to provide insights for debugging
the DNNs.

Prior work has developed various techniques to identify and prioritize bug-
revealing test inputs, which allows testers/developers to focus on the most critical
inputs [6, 10, 125, 110]. Such test prioritization techniques aim at optimizing the
time as well as the required resources for testing. A large majority of DNN test priori-
tization approaches fall within three categories [10]: coverage-based, confidence-based
and surprise-based approaches. Confidence-based approaches, such as DeepGini [6],
prioritize test inputs based on model confidence: a test input is more likely to be
incorrectly predicted via a DNN model if that model outputs similar prediction
probabilities for each class. Coverage-based approaches, such as CTM [11], simply
adapt coverage-based test prioritization from traditional software systems testing
into DNN testing and have been shown to underperform against confidence-based
approaches [6]. Surprise-based methods [52, 110] perform test prioritization based
on the surprise of test inputs. This "surprise" is quantified by measuring the distance
in neuron activation patterns between a test input and the training data. However,
existing studies [105] have demonstrated that surprise-based methods are less effective
than confidence-based approaches. Furthermore, surprise-based methods typically
come with higher computational costs due to the need for more parameter tuning.

Although confidence-based approaches have demonstrated effectiveness in the
context of DNNs, they suffer from several limitations when applied to GNNs. Notably,
they do not account for the interdependence inherent in graph-structured test inputs
composed of nodes and edges. These approaches were originally designed for DNNs,
where tests are independent of each other. Additionally, confidence-based approaches
operate under the assumption that test inputs for which the model exhibits low
confidence are more likely to be misclassified and, therefore, should be given higher
priority. However, in the presence of adversarial attacks, the model’s confidence can
be higher for incorrect predictions, leading to erroneous outputs.

49

Chapter 4. Test Input Prioritization for Graph Neural Networks

More recently, novel approaches such as PRIMA [10] are being introduced in the
literature of DNN testing, leveraging techniques such as mutation analysis. However,
PRIMA, the state-of-the-art in DNN test prioritization, cannot be applied to GNNs
since their mutation operators are not adapted to graph-structured data and models.
Dang et al. [108] proposed GraphPrior, a test prioritization method specifically
designed for GNNs. Despite GraphPrior also relying on mutation analysis, there are
significant differences between NodeRank and GraphPrior:
• Incorporating Input Mutations GraphPrior performs test prioritization solely

based on model-specific mutations, whereas NodeRank not only considers model
mutations but also takes into account mutations specific to the input. NodeRank
considers two types of input mutations: 1) Node feature mutations, which are
designed to perturb the feature attributes of selected nodes, consequently influenc-
ing the representation and information flow within the graph; 2) Graph structure
mutations, which aim to alter the interdependence of the test inputs within the
graph by introducing additional edges, thus changing the structural properties of
the graph.

• Leveraging Ensemble Learning Techniques for learning-to-rank In con-
trast to GraphPrior, which employs a single ranking model to learn the mis-
classification probability of test inputs, NodeRank leverages ensemble learning
techniques to integrate multiple base ranking models with the aim of optimizing
its performance. Existing studies [126, 127, 128] have demonstrated that ensemble
learning typically achieves higher accuracy than single ML models. Furthermore,
our analysis delves into the influence of different ensemble techniques on NodeRank
and illustrates that the sum-based ensemble technique yields the best performance.

• Considering Different Killing Methods GraphPrior simply assumes that
a mutated model is considered "killed" if the predictions of the original model
and the mutated model for the test input differ. However, prior research [60]
has highlighted that in the context of DNN mutation analysis, variations in the
outputs between a mutated model and the original model can occur solely due to
the inherent randomness in the training process rather than because the mutant is
actually discriminated from the original model. Therefore, we utilized the killing
method provided by DeepCrime [60] for test prioritization and generated relevant
variants of NodeRank. In DeepCrime, the killing process involves iteratively
training both the original model and the mutated model, then comparing the
distribution difference in their outputs to determine whether the mutated model is
"killed." This approach can contribute to mitigating the impact of randomness in
the training process. Based on the DeepCrime approach, by comparing NodeRank
variants utilizing model mutation rules and those not utilizing model mutation
rules, we demonstrated that mutations generated by the model mutation rules of
NodeRank contribute to its effectiveness.

This paper. We propose NodeRank (Node Ranking for graph-structure test
inputs), a novel test input prioritization approach targeting GNNs. NodeRank
leverages the ideas from traditional mutation testing [129, 130] to prioritize po-
tentially misclassified test inputs so that such tests can be identified earlier with
limited manual labeling costs. More specifically, the core idea of NodeRank is that:
a test is considered more likely to be misclassified if this test can kill many mutated
models and produce different prediction results with many mutated inputs.

NodeRank is a test prioritization approach that is model-based, input-based, and

50

4.1. Introduction

mutation testing-based. It applies mutation operations to GNN models and tests,
generating mutation features for test prioritization. Specific mutation operations
applied are described below.

In NodeRank, we developed three distinct types of mutations, namely graph
structure mutation (GSM), node feature mutation (NFM), and GNN model mutation
(GMM), based on the characteristics of GNNs and the graph test dataset. GSM aims
to modify the interdependence of the graph test inputs by introducing additional
edges, thereby altering the structural properties of the graph. NFM, on the other
hand, perturbs the feature attributes of selected nodes, thereby influencing the
representation and information flow within the graph. Both GSM and NFM can
be categorized as input mutations as they directly modify the characteristics of the
dataset. In contrast, GMM is specifically developed to mutate GNN models, with
the objective of modifying the message passing of the GNNs by changing specific
training parameters. The GMM mutation type thus falls under the category of model
mutations.

For each test input, NodeRank generates these three types of mutations, as
described above. Subsequently, by comparing the prediction results before and
after the mutation, NodeRank generates a mutation feature vector for each test.
Specifically, for graph input mutation (i.e., GSM and NFM), if a mutated input fails
(i.e., the predictions for the mutated inputs and the original inputs are different), the
corresponding element in the relative feature vector is marked as 1; otherwise, it is
marked as 0. For GNN model mutation (i.e., GMM), if a mutated model is killed (i.e.,
the prediction results for this input via the mutated models and the original models
are different), the corresponding element in the relative feature vector is marked as
1; otherwise, it is marked as 0. The mutation feature vector of each test is then fed
into pre-trained ranking models, which are designed to predict the likelihood of this
input being misclassified. Our ranking models are trained to automatically predict a
misclassification score indicating its likelihood of being misclassified by the model.

To further enhance the performance of our ranking models, we adopt ensemble
learning techniques that combine the predictions from multiple base ranking models.
The idea draws inspiration from the field of ensemble learning [126, 127, 131], which
aims to improve overall performance by integrating predictions from two or more base
machine learning models. Notably, ensemble learning methods have achieved state-of-
the-art outcomes across various machine learning applications [132, 133, 134, 135]. In
the NodeRank framework, we employ three distinct ensemble methods [126, 136, 137]
to effectively combine the outputs of the individual ranking models.

It is important to note that, NodeRank differs from the state-of-the-art test
prioritization approach, PRIMA, in several domains: the target (GNN vs. DNN) as
well as the approach (mutation rules and ranking strategies).
• Target. NodeRank is designed to address the test prioritization problem in

GNNs and, therefore, operates on datasets that exhibit complex interdependence
between individual test inputs. In contrast, PRIMA is intended for traditional
DNNs, where each sample in the dataset is independent.

• Mutation rules. NodeRank’s mutation rules can affect the interdependency
between test inputs from two perspectives: First, NodeRank’s model mutation
rules can directly or indirectly affect the message passing between nodes in graph
data. More specifically, in the mutated GNN model, the manner in which nodes
acquire information from their neighboring nodes is slightly different from that

51

Chapter 4. Test Input Prioritization for Graph Neural Networks

of the original GNN model. Second, NodeRank’s node mutation rules modify
the interdependence between nodes by adding edges to nodes. When adding a
new edge from node A to node B, a new connection is built, and the prediction
of node A is now impacted by the newly connected node B, thus changing the
node interdependence. In contrast, the mutation rules of PRIMA are specifically
designed for independent test inputs and, therefore, do not impact the relationships
between tests.

• Ranking strategies. NodeRank leverages ensemble ranking models to learn from
mutation results for test prioritization. These models are constructed by combining
different base ranking models, thereby improving the overall performance of the
model [126, 127, 131]. In contrast, PRIMA employs a single ranking model for
test prioritization.
We evaluate the performance of NodeRank based on 124 subjects (i.e., a pair of

dataset and GNN model). Our evaluation considers both natural inputs and graph
adversarial inputs, which are generated by eight graph adversarial attacks [138, 139,
140, 141]. We compare NodeRank with multiple test prioritization approaches. Our
experimental results demonstrate that, on natural datasets, the average improvement
of NodeRank over the compared approaches, in terms of APFD, is between 4.41%
and 58.11%. On graph adversarial inputs, the average improvement of NodeRank
over the compared approaches in terms of APFD ranges from 4.96% and 62.15%.

NodeRank can be applied across diverse real-world contexts. For instance, a
typical use case of node classification in GNNs is fraud detection [142] in banking
transfer transaction systems. Here, each account can be represented as a node, while
the transactional interactions between them can be represented as edges. Through
node classification, these accounts can be categorized as normal or fraudulent. When
developers use GNNs to predict whether each node (account) is a fraudulent account,
the GNNs can exhibit wrong prediction behavior, such as predicting fraudulent
accounts as normal accounts, which can lead to losses for the bank. In this scenario,
NodeRank can be utilized to prioritize potentially misclassified accounts (with those
more likely to be misclassified ranked at the top). These sorted accounts can be
provided to bank staff, allowing them to quickly perform manual checks on the
accounts that are more likely to be misclassified, thus reducing losses.

The contributions of this paper are as follows:
• Approach. We propose a novel approach, NodeRank, to prioritize test inputs

for GNN models. NodeRank introduces three distinct types of mutation rules
that target the mutation of graph structure, node features, and GNN models,
respectively and adopt ensemble-learning-based learning-to-rank to intelligently
combine mutation results for effective test input prioritization.

• Study. We conducted a large-scale study based on 124 subjects to evaluate
the effectiveness of NodeRank on both natural and adversarial inputs. The
experimental results demonstrate its effectiveness.

• Performance Analysis. We provide an extensive analysis of the performance
of NodeRank by investigating the influence of the different ensemble learning
strategies as well as by performing an ablation study to showcase the contributions
of the different mutation feature sets.
Our dataset, code, and results are made publicly available in a replication package1

for the community.
1https://github.com/yinghuali/NodeRank

52

https://github.com/yinghuali/NodeRank

4.2. Background

4.2 Background
We now briefly introduce the key domain concepts for our work.

4.2.1 Graph Neural Networks
Graph neural networks [25, 26, 27] have achieved great success in solving machine

learning problems on graph-structured data [123, 143, 144]. Initial models learned
representations of target nodes by propagating neighborhood information through
recurrent neural architectures in an iterative manner until a stable fixed point is
reached. Subsequently, several variations have been proposed in the literature: Kipf
et al. [145] proposed Graph convolutional networks (GCN), which adapt convolution
techniques from classical convolutional neural networks, to graph data. GCN im-
plements message passing of multi-order neighborhoods by superimposing several
convolutional layers. More recently, other GNN architectures have been proposed
towards taking into account the advancements in the field of deep learning: for
example, Veličković et al. [27] proposed graph attention networks (GAT) which uses
attention techniques to assign different weights according to the importance of nodes
in the graph.

In GNNs, a graph is usually defined as a data structure composed of nodes and
edges. We denote a graph as G = (V, E) where V = {1, 2, . . . , N} refers to the set
of N nodes, and E ⊆ V × V refers to the set of edges. In GNN datasets like Cora
(a node classification dataset), each node represents a scientific paper, while edges
represent citation relationships between papers. In this dataset, test inputs typically
refer to new nodes (scientific papers) that have not been seen during the training
process. In the case of the Cora dataset, given a test input (a scientific paper), a
GNN model is used to classify the paper into specific categories. In other words, the
GNN model predicts the categories that best describe the content of the given paper.
For instance, these categories can be "reinforcement learning" and "neural networks,"
implying that the paper belongs to the "reinforcement learning" or "neural networks"
category.
[GNN training process] GNNs undergo a training process similar to other neural
networks. The inputs required for GNN training typically include: 1) Graph
Structure. Graph structure information encompasses the connections between
nodes in the graph.; 2) Node Features. Each node typically comes with associated
feature vectors, which reflect the attributes of the node; 3) Target Labels. In the
training data for GNN node classification, "Target Labels" refer to the category to
which each node belongs. These labels are typically predefined.

During the training process of GNNs, several components are continually trained
and optimized: 1) Model Parameters. The primary aim of GNN training is to
refine the model parameters. These parameters include weights and biases linked
to operations like graph convolutions and aggregation functions within the GNN
architecture. 2) Node Embeddings. GNNs comprise layers with associated
parameters, and part of the training process involves learning these node embeddings.
Node embeddings are vector representations of individual nodes within the graph.
They capture a node’s structural and feature-based information and evolve as the
model trains; 3) Loss Function. The loss function plays a pivotal role in GNN
training. It quantifies the disparity between the model’s predictions, typically
pertaining to nodes or graph-level attributes, and the actual ground truth labels for
the given task. Throughout training, model parameters are iteratively adjusted to

53

Chapter 4. Test Input Prioritization for Graph Neural Networks

minimize this loss function.
The specific training process for GNNs typically consists of the following steps:

• Initialization: All GNN parameters are randomly initialized, typically with
small random values.

• Forward Propagation: For each node, its node embedding is updated based
on the information from its neighbors. This is typically achieved using weight
matrices and aggregation functions (e.g., mean or max pooling). This aggregation
process can go through multiple layers, allowing information to propagate further
in the graph.

• Loss Calculation: This process calculates the loss value based on the GNN’s
output and the true labels.

• Backpropagation: This process computes the gradients of the loss function with
respect to each parameter.

• Parameter Weight Updates: This process updates each parameter weight
based on the gradient values.

• Iterate: This process repeats the above steps (forward propagation, loss calcu-
lation, backpropagation, parameter updates) until a stopping condition is met,
such as reaching a predefined number of iterations.
It is important to note that graphs used in GNN training differ from normal

graphs. Specifically, GNN training graphs include feature attributes for nodes.
Furthermore, in tasks like node classification, nodes in the graphs have category
labels. In contrast, normal graphs usually comprise only the topological structure of
nodes and edges, without specific labels or node attributes.
[GNN inference] In the context of GNNs, inference refers to using a pre-trained
GNN model to perform prediction on new graph data. For example, in node
classification tasks, the GNN model utilizes its learned parameters and weights to
classify a given node. The input typically consists of the features of the node and the
graph structure of its belonged graph. The output is the classification of the node.

Graph data

Node feature vector

GNN model

Graph structure
mutation (GSM)

Feature
extraction

GSM features

Feature combination

Node feature
mutation (NFM)

Feature
extraction

NFM features

Graph model
mutation (GMM)

Feature
extraction

GMM features Feature vector of test set
(to be labelled)

Feature vector of training set
(with ground truth)

Ensemble learning
Ensemble ranking models

Prioritized test set

Ranking

Developer

Labeling

Learning to rank

Step 1 Step 2 Step 3

Figure 4.1: Overview of NodeRank

4.2.2 Mutation Testing
Mutation testing [129] is a software testing method that aims to evaluate the

quality of the test suite by intentionally introducing small changes (called mutations)
into the source code and observing the test suite’s reaction. The core objective is
to determine the effectiveness of test suites in finding code bugs. The intuition is
that if a test case can detect intentionally-introduced errors, this test case is more
likely to detect real bugs in practice. Mutation testing has achieved state-of-the-art
performance by providing a comprehensive evaluation of the test suite via creating

54

4.3. Approach

and testing multiple variations (mutants) of the code, ensuring that the test cases
are thoroughly covering different scenarios and even edge cases, which is difficult to
achieve through traditional testing methods.

In mutation testing, kill and fail are terms used to describe the results of running
a test suite on a set of artificially created code changes or ‘mutants’ to evaluate the
quality of the test suite. Specifically, a mutant is regarded as ‘killed’ if the behavior
of this mutant differs from that of the original code, indicating that the test suite is
capable of detecting the fault introduced by the mutant. A test input is said to ‘fail’
if it is not passed by the target program.

4.2.3 Ensemble Learning
Ensemble learning [126] is a meta approach in machine learning where multiple,

generally diversified, ML models are combined to achieve better performance and
generalization. Common examples of ensemble learning strategies include Majority
voting and Stacking. Majority voting is a straightforward approach that sums for
each prediction class the number of yielded predictions by the different models: the
class with the majority number of predictions is then outputted by the ensemble
model. On the other hand, Stacking utilizes a meta-model such as logistic regression
to learn how to optimally combine the predictions from base ML models.

Ranking is crucial to many real-world applications, notably in the field of informa-
tion retrieval. In software engineering, test prioritization assumes the possibility to
rank test cases according to their ability to reveal faults. In recent studies [126], the
ranking has been formalized as a machine learning problem, and ensemble ranking
often employs ensemble learning techniques to learn optimal weights for combining
multiple ranking algorithms.

4.3 Approach
4.3.1 Overview

NodeRank is a model-based, input-based, and mutation testing-based test prior-
itization approach. By employing mutation operations on both GNN models and
test inputs, NodeRank produces mutation features for each test input and predicts
the misclassification probability of the input in order to perform test prioritization.
Figure 4.1 presents the overview of the different steps in our NodeRank test pri-
oritization approach. First, we offer detailed explanations for certain elements in
Figure 4.1 and provide reasons for the symbols utilized for them, with the goal of
enhancing the understanding of the figure.
• The second dotted square in Step 1 represents an N × M matrix. This matrix

is used to encapsulate the feature vectors of all nodes. Specifically, each row of
the matrix represents a node’s feature vector. There are N rows in the matrix
corresponding to the N nodes in the dataset. M columns represent that each
node has M features.

• The reason we use a dotted representation for node feature vectors and mutation
features is that, in our experiments, these features are both represented using
matrices. The dotted square can serve as a visual abstraction of a matrix. A
matrix comprises multiple values, and we use dots to represent the values within
the matrix abstractly. For example, in the second dotted square in Step 1, the
third dot in the second row represents the value of the third feature of the second

55

Chapter 4. Test Input Prioritization for Graph Neural Networks

node in the graph dataset.
• It is important to note that the meaning of the dotted squares in Step 1 and Step

2 is different. However, since they both represent matrices, we use dotted squares
with different colors to distinguish them. In Step 1, the dotted square represents
the node feature vector, while in Step 2, the dotted square represents mutation
features generated from the mutation results.

• We utilize arrows to illustrate processes and operations. For instance, in Step 1,
the Graph data undergoes graph structure mutation within Step 1 and feature
generation in Step 2, resulting in graph input mutation features. Another example
involves the Node feature vector in Step 1, which undergoes node feature mutation
in Step 1 and feature generation in Step 2 to yield node mutation features.

• The chromosome symbols represent mutation results. In Figure 4.1, a chromosome
with a break indicates the mutations applied to the GNN model or inputs, resulting
in mutation results. These mutation results are subsequently used for mutation
feature generation in order to perform test prioritization.
Moreover, each box represents a step in the NodeRank workflow. In the following

section, we offer a general overview of each step, as depicted in Figure 4.1. Specific
details for each step can be found from Section 4.3.2 to Section 4.3.4.
❶ Generating mutants. NodeRank generates mutants for three different inputs:
the graph structure itself (which represents the interdependence of samples in the
datasets), the node features (which represents sample data), and the GNN model
(which is learned and is the target of testing). To that end, we develop specific
mutation rules that are carefully designed for GNN testing. Section 4.3.2 details
those rules that must be applied to generate mutants for a given test set T , the
graph structure G of the data, and the GNN model M under test.
❷ Extracting and combining mutation features NodeRank then obtains the model
prediction towards the mutants and the original test inputs. By comparing the
predictions, NodeRank generates the mutation feature vector for each input. The
detailed description is as follows. Given M ′, a mutant of M , NodeRank considers
that a test input kills M ′ if the prediction on this test input by M ′ is different from
the prediction by M . For a given mutant of a test input t ∈ T , NodeRank considers
that this mutant failed if it leads to a prediction that is different from the prediction
using t. Given G′, a mutant of G, NodeRank considers that the mutant fails if the
prediction of the GNN using G′ is different from its prediction when using G.

Based on the execution outputs, NodeRank builds feature vectors to train a
ranking model. These are referred to as mutation features and are of three types:
Node mutation features, graph structure mutation features, and model mutation
features (cf. Section 4.3.3 for details).
❸ Ranking test inputs using ensemble ranking models. Eventually, for each test
input, NodeRank produces three vectors, which represent three types of mutation
features. These vectors are then concatenated to produce a mutation feature vector
v for each test input t ∈ T . Given all test inputs from T , NodeRank, therefore,
leverages ensemble ranking models based on their associated mutation features to
predict ranking scores of the test inputs. These scores, ordered in a descending way,
are used to prioritize the associated test inputs accordingly.

The findings presented in Section 4.5 provide compelling evidence for the ef-
fectiveness of NodeRank, which can be attributed, in part, to the careful design
of mutation rules and the effective ensemble strategy of ranking models. 1) Our

56

4.3. Approach

designed mutation rules can effectively generate informative mutation features by
leveraging the interdependence of test inputs. The node mutation rules operate
by introducing new edges between nodes in the graph dataset, which impacts the
interdependence structure of the data. The model mutation rules affect message
passing between nodes in the GNN prediction process, leading to small changes in
node interdependence. 2) NodeRank adopts an ensemble ranking model for test
prioritization, which leverages the strengths of multiple base ranking models to
improve the overall performance. By comparing different ensemble strategies, we are
able to identify the most suitable approach for use in NodeRank’s test prioritization
process.

In the remainder of the section, we will describe in detail the mutation rules that
we have designed for NodeRank (cf. Section 4.3.2), the construction process of the
mutation feature vectors (cf. Section 4.3.3), the setup of the ensemble ranking model
(cf. section 4.3.4) and the application of NodeRank (cf. Section 4.3.5).

4.3.2 Specifying Mutation Rules
We design mutation rules that are adapted to the key main ingredients of a GNN:

the graph structure of the data, the nodes in the graph, and the GNN model itself,
which are explained in detail as follows.
4.3.2.1 Graph structure mutation (GSM)

Graph structure mutation is designed to introduce slight changes to the input
graph by randomly incorporating new edges. Consequently, when provided with a
test input node, denoted as t ∈ T , we create mutants by adding one or more edges
between node t and a randomly selected node, denoted as s ∈ T . For a given node
t ∈ T , the following mathematical formula provides an intuitive representation of
the GSM mutation:

G′ = G +
n∑

i=1
addEdge (G, t, si) (4.1)

where G represents the original graph. G′ represents the mutated graph structure.
In each iteration, we use the addEdge function to generate an edge from node t to a
randomly selected node si ∈ T . We use the symbol "+" to denote the addition of
the newly generated edge to the original graph G. This process is repeated n times,
resulting in the addition of n edges to the original graph G.
4.3.2.2 Node feature mutation (NFM)

Given a test set and the features of the test inputs, node feature mutation aims
to slightly change the features of the targeted nodes in order to offset their position
in the feature space. This offset implies the modification of feature values in the
different dimensions.

In the following, we introduce how node feature mutation is performed in detail.
Given the original test set T , which consists of n nodes, each node t is characterized
by m dimensions, where each dimension corresponds to a specific feature value of the
node n. In this case, T can be represented as an n × m feature matrix. To perform
node feature mutation, we apply an offset to this matrix. Specifically, assuming the
degree of offset is denoted as α, Formula 4.2 represents the mutation process for
the test set T . As observed in the formula, the initial step involves multiplying the
matrix of the original test set T by the offset degree to calculate the ultimate offset

57

Chapter 4. Test Input Prioritization for Graph Neural Networks

to be applied to T . Subsequently, the matrix of the mutated test set, denoted as
F (T ′), is derived by adding T ’s matrix to the offset α ∗ F (T).

F (T ′) = F (T) + α ∗ F (T) (4.2)

where F (T ′) is the feature matrix of the mutated test set T ′, F (T) is the feature
matrix of the original test set T , and α is the coefficient of the degree of offset.
4.3.2.3 GNN model mutation (GMM)

Given a trained graph neural network model, the GNN model mutation aims to
change the training parameters slightly. Formula 4.3 offers an intuitive representation
of the GMM mutation. For integer or float type parameters, the mutation operation
involves making slight adjustments to the parameters. In the case of Boolean-type
parameters, the mutation operation involves switching between True and False.
Therefore, the formula is as follows:

M ′ =

M(θ + β · θ) if θ ∈ R
M(¬θ) if θ ∈ { True, False }

(4.3)

where M ′ refers to the mutated GNN model. M refers to the original GNN model,
θ refers to a parameter of the original model M , and β refers to the coefficient of
change, indicating the magnitude of parameter change. The symbol ¬ signifies the
logical negation operation, which inverts the parameter θ. If the original value is
True, it becomes False, and if the original value is False, it becomes True.

In NodeRank, we consider the following:
• Learning Additive Bias (LAB) [145, 146, 147] The LAB parameter is a

Boolean variable that determines whether to introduce a predetermined offset
to the representation vectors of nodes in the GNN model. By enabling the LAB
parameter (set to True), a bias parameter is assigned to each node’s representation
vector. This allows the GNN model to capture the intrinsic properties of the
graph better and improve the interdependence between nodes in the prediction
process.

• Negative Slope (NS) [146] NS is a float parameter that controls the slope
of the negative part of the activation function used in the Gated Linear Unit
(GLU) operation, a commonly used non-linear function for message passing in
GNNs. In particular, GLU combines the node features with the weighted sum of
their neighboring nodes’ features, which is the message passed between nodes in
the graph. The negative slope parameter of the activation function in the GLU
operation determines the rate of decrease for negative input values and can affect
the message passing between nodes. As such, the value of NS plays a crucial role
in determining the sensitivity of the GNN model to negative input values and the
resulting impact on the interdependence between nodes in the graph.

• Changing Multi-head Attentions (CMA) [146] CMA is an integer type
parameter that determines the number of attention heads employed by the GNN
model, with an increase in CMA leading to an expanded model capacity and
improved capacity to capture the interdependencies that exist among the nodes
in the graph.

• Concat (CON) [146] The CON parameter is a Boolean-type parameter that
determines the method used to integrate node embeddings from neighboring nodes.

58

4.3. Approach

When set to True, the concatenation operation is employed to combine the node
embeddings of adjacent nodes, resulting in a more sophisticated and expressive
node representation. This, in turn, enhances the capacity of the GNN model to
capture more interdependencies between nodes.

• Adding Self Loops (ASL) [145, 146] The ASL parameter is a Boolean param-
eter that governs the addition of self-loops to the input graph in graph neural
networks. By setting ASL to ‘True’, self-loops are introduced to each node in
the graph, enabling the aggregation of intrinsic information from nodes into their
representation vectors. This operation modifies the weighting of neighboring
nodes and can affect the interdependence of nodes during the prediction process.

• Adding Layer Computations (ALC) [145] ALC is a Boolean type parameter
that determines whether or not to include additional layers of computation in the
GNNs. When ALC is set to true, additional layers are introduced to the network,
which allows for more complex transformations of the node features. As a result,
the message passing process becomes more refined and capable of capturing more
intricate dependencies among the nodes.

• Hidden Channel (HC) [145, 146, 147, 148] The HC parameter is an integer
configuration parameter that governs the dimensionality of the hidden represen-
tation in each layer of the GNNs. As such, modifications to this parameter can
impact the interdependence of nodes in a given graph by allowing the GNN to
learn more expressive and informative node embeddings.
We explain how the mutation rules of NodeRank utilize node interdependence to

generate mutations as follows:
• For Model-level mutants: NodeRank’s mutant rules can directly or indirectly

affect the message passing between nodes in graph data. More specifically, in the
mutated GNN model, the manner in which nodes acquire information from their
neighboring nodes is slightly different from that of the original GNN model.

• For Node-level mutants: NodeRank modifies the interdependence between nodes
by adding edges to nodes. When adding a new edge from node A to node B, a
new connection is built, and the prediction of node A is now impacted by the
newly connected node B, thus changing the node interdependency.
Note that the mutation rules of NodeRank are specifically developed for GNNs,

and its applicability in the context of DNNs has not yet been examined. Specifically,
regarding node mutation rules, NodeRank focuses on modifying the connection
relationships between nodes in a graph. However, in DNNs, the samples within a
dataset are independent and lack any inherent connectivity, rendering the proposed
mutation rules unsuitable for such datasets. Moreover, the model mutation rules
of NodeRank are designed to impact the message passing between nodes during
the prediction process, either directly or indirectly. In contrast, conventional DNNs
generally consist of independent samples within a dataset, implying that such
mutation rules are unlikely to influence the transmission of information between
distinct tests.

4.3.3 Constructing Mutation Features Vectors
Leveraging the three types of mutation rules introduced in the previous steps, we

generate a mutation feature vector for each test input. To this end, we execute the
three mutation rules, thereby generating three distinct feature vectors for each input.
These feature vectors are concatenated to build the final mutation feature vector. In

59

Chapter 4. Test Input Prioritization for Graph Neural Networks

the following, we explain the generation of each feature vector of different mutation
types.
Dataset mutation (NFM and GSM) Given a test input t and a GNN model
M , we denote the mutants of t as {t1, t2, . . . , tn}, which are obtained using NFM
mutation rules. We associate a vector V of size n to the test input t where n is
the number of mutants and V [k] maps to the execution output for the mutant tk.
If tk fails (i.e., the prediction of tk is different from that of t), then V [k] is set to
1. Otherwise, it is set to 0. We use the same procedure to build a graph mutation
features vector for t using the GSM mutation rules. Formula 6.14 describes the
process of dataset mutation in our mutation testing operation.

V [k] =

1 if M (tk) ̸= M(t)
0 if M (tk) = M(t)

(4.4)

where M(tk) represents the prediction of the GNN model M for mutant tk, and M(t)
represents the prediction for the original test input t.
Model mutation (GMM): Given a test input t, a GNN model M and its mutants
{M1, M2, . . . , Mn}, we associate to the test input t, a vector V of size n (i.e., the
number of mutants of M) where V [k] maps to the execution output for the mutant
Mk with test input t. If t kills the mutated model Mk (i.e., the prediction of vk via
the original model M and the mutated model Mk is different), then V [k] is set to 1.
Otherwise, it is set to 0. Formula 4.5 presents the process of model mutation in our
mutation testing operation.

V [k] =

1, if M(t) ̸= Mk(t)
0, if M(t) = Mk(t)

(4.5)

where M(t) represents the prediction of the original model M for the test input t.
Mk(t) represents the prediction of the mutant model Mk for the same test input t.

4.3.4 Building an Ensemble Ranking Model
Based on the previous step, NodeRank generates a feature vector Vi for each

test input ti ∈ T . This feature vector is then used as the input to the ensemble
ranking model for predicting the misclassification probability of ti. The design of the
ensemble ranking models is motivated by the principles of learning-to-rank [149] and
ensemble learning [126]. In particular, we adopt four base ranking models, including
Logistic Regression [150], Random Forest [90], XGBoost [13], and LightGBM [89],
to form ensemble models that can leverage the strengths of each individual model.
NodeRank uses the sum-based ensemble learning method [126], which combines
scores of the base ranking models for a given test input. By inputting Vi into the
sum-based ensemble ranking model, NodeRank obtains a misclassification score for ti,
which can be used to estimate the probability that the GNN model M will misclassify
ti.

Our experiments further consider two other ensemble learning methods (i.e.,
stacking-based [136] and voting-based [126]) to build variants of NodeRanks and
assess the effectiveness of our design choices (cf. Section 4.4.6).

60

4.4. Evaluation Design

4.3.5 Usage of NodeRank

The inputs of NodeRank are a test set T and a GNN model M . The output is
the prioritized test set T P . NodeRank generates mutants for the test set T and the
GNN model M and exploits the execution outputs of the GNN on these mutants
to build feature vectors that can be utilized to learn to prioritize test inputs using
ensemble ranking models. We present the training process of each ranking model as
follows.
❶ Dataset Split Given a GNN model M with dataset T , we partition the dataset

T into two subsets: a training set R and a test set. Following common practice
in the field [92], we allocate 70% of the data to the training set and consider the
remaining 30% as the test set. We emphasize that the test set is kept entirely
separate from the training process and is only utilized to evaluate NodeRank.

❷ Training set construction Based on the given training set R, the objective of
this step is to build a training set R′ for training the ranking models. Firstly,
for each input ri ∈ R, three types of mutants are generated, and based on the
execution of these mutants, the mutation feature vector Vi of ri is obtained.
Subsequently, the mutation feature vector of ri is utilized to build the features of
the training set R′. Secondly, the original GNN model M is used to classify each
input ri ∈ R and compare it with the ground truth of ri. This step helps identify
whether ri is misclassified by the GNN model M . If ri is misclassified by M , it is
labeled as 1, and if not, it is labeled as 0. This process aids in building the labels
of the ranking model training set R′.

❸ Training ranking models After building R′, we train the ranking model based
on it.
Notably, the training set R′ contains binary labels (i.e., 1 or 0), whereas the rank-

ing models are expected to output continuous values, referred to as misclassification
scores. To address this, we made certain modifications to the ranking algorithms
we employed, such as the random forest. During the classification process, these
algorithms calculate an intermediate value, which is used to decide whether an input
belongs to a particular class. If the intermediate value exceeds a predefined threshold
of 0.5 (which is configurable), the input is classified into the first class; otherwise, it
is classified into the other class. Rather than outputting the binary label, we directly
output the intermediate value, representing the misclassification score. This score
indicates the likelihood of a test input being misclassified by the GNN model, with a
higher score indicating a greater probability of misclassification.

4.4 Evaluation Design
To assess NodeRank, we enumerate various research questions (cf. Section 4.4.1),

which explore the performance metric (cf. Section 4.4.2) for test inputs prioritzation
on a diverse set of GNN subjects (cf. Section 4.4.4). Beyond the prioritization
performance of NodeRank in uncovering model misclassification, we also consider
the performance under adversarial settings (cf. Section 4.4.5). In this section, we
also present how the design of the different variants of NodeRank(cf. Section 4.4.6),
which vary based on the ensemble ranking strategy. Finally, information about
implementation and configuration setup is provided in Section 4.4.7.

61

Chapter 4. Test Input Prioritization for Graph Neural Networks

4.4.1 Research Questions
We investigate the following research questions:

• RQ1: What is the effectiveness of NodeRank?
Building on studies in traditional software testing [57, 56], effective test prioritiza-
tion techniques should be able to prioritize possibly-misclassified test inputs.

• RQ2: How does NodeRank perform on adversarial inputs?
Graph adversarial attacks [139, 140] can induce GNN models to be confident in
their however-incorrect predictions. Thus, existing confidence-based test prioriti-
zation approaches are likely to fail. We demonstrate the superior performance of
NodeRank under such settings.

• RQ3: How does NodeRank perform with different ensemble ranking
strategies?
We investigate the performance of NodeRank variants implemented by considering
three different ensemble learning techniques.

• RQ4: Are all mutation feature categories useful in NodeRank?
We conduct an ablation study on NodeRank to assess the contribution of graph
structure mutation features, node mutation features, and graph model mutation
feature on the performance of NodeRank. Our ablation experiments follow prior
work by Meyes et al. [151].

• RQ5: Do the model mutation rules of NodeRank contribute to its
effectiveness?
In the original NodeRank, for a given test input, we employ the killing approach
from traditional mutation testing [152] to generate model mutation features.
These features are then utilized to predict the misclassification probability for
this input. However, the model mutation features generated by such a killing
approach can contain information from both the model mutation rules and the
randomness inherent in mutated model training, both of which can contribute to
the effectiveness of NodeRank. In this research question, we aim to demonstrate
that the model mutation rules actually contribute to the effectiveness of NodeRank
by employing the killing approach in DeepCrime [60], which takes into account
the training randomness of the mutated models during the killing process.

• RQ6: How do the parameter ranges of the newly designed mutation
operators impact the effectiveness of NodeRank?
In NodeRank, we developed a set of novel mutation operators tailored for GNNs.
In this research question, we investigate how the parameter ranges of these newly
designed mutation operators affect the performance of NodeRank.

4.4.2 Performance Metric
We evaluate the effectiveness of test prioritization based on the common Average

Percentage of Fault-Detection (APFD) [11] metric. Specifically, higher APFD values
indicate faster misclassification detection rates. Given a GNN model M under the
test set T , the APFD values are calculated via Formula 4.6.

APFD = 1 −
∑k

i=1 oi

kn
+ 1

2n
(4.6)

where n is the number of test inputs in T ; k is the number of test inputs in T that
will be misclassified by M ; oi represents the position of the ith misclassified test
within the prioritized test set. When the sum of the index values for the first k

62

4.4. Evaluation Design

misclassified tests, i.e., ∑k
i=1 oi, is small, it indicates that the prioritized test set has a

higher order of the misclassified tests, leading to a larger APFD score. Consequently,
a higher APFD score indicates better prioritization effectiveness.

Following prior work [6], we perform normalization on the APFD values, making
them fall in the range of [0, 1] to facilitate comparison. We thus assume a test
prioritization approach is better if its APFD value is closer to 1.

To conduct a more detailed evaluation, we employ the Percentage of Fault De-
tected (PFD) metric [6] to quantify the fault detection rate of each test prioritization
approach across varying ratios of prioritized test inputs. High PFD values indicate
higher effectiveness in identifying misclassified test inputs. PFD is calculated based
on Formula 4.7.

PFD = Fc

Ft

(4.7)

where Fc is the number of misclassified test inputs that are correctly detected. Ft is
the total number of misclassified test inputs.

In this study, we compare the PFD of NodeRank and the uncertainty-based test
prioritization approaches against different ratios of prioritized tests. We use PFD-n
to represent the first n% prioritized test inputs.

4.4.3 Compared Approaches
This study utilized five compared approaches, including a baseline approach (i.e.,

random selection) and four DNN test prioritization techniques. The selection of these
methods was driven by several factors. Firstly, we aimed to consider approaches that
could be feasibly adapted for GNN test prioritization. Secondly, the chosen techniques
have been demonstrated as effective for DNNs in the existing literature [6, 9, 101].
Lastly, open-source implementations of these techniques are available.
• DeepGini [6] employs the Gini coefficient as a statistical measure of the likelihood

of misclassification, thereby enabling the ranking of test inputs. The calculation
of the Gini score is presented in Formula 4.8.

ξ(x) = 1 −
N∑

i=1
(pi(x))2 (4.8)

where ξ(x) refers to the likelihood of the test input x being misclassified. pi(x)
refers to the probability that the test input x is predicted to be label i. N refers
to the number of labels.

• Vanilla Softmax [9] calculates the difference between the value of 1 and the
maximum activation probability in the output softmax layer. Formula 6.21 clearly
depicts the calculation process.

V(x) = 1 − Cmax
c=1

lc(x) (4.9)

where lc(x) belongs to a valid softmax array in which all values are between 0 and
1, and their sum is 1.

• Prediction-Confidence Score (PCS) PCS [9] measures the difference between
the predicted class and the second most confident class in softmax likelihood.
PCS is calculated by Formula 4.10. Low PCS values indicate high probability of
being misclassified.

P (x) = lk(x) − lj(x) (4.10)

63

Chapter 4. Test Input Prioritization for Graph Neural Networks

where lk(x) refers to the most confident prediction probability. lj(x) refers to the
second most confident prediction probability.

• Entropy Entropy [9] measures uncertainty in a classification model’s prediction
for a given test by computing the entropy of the softmax likelihood.

• GraphPrior GraphPrior [108] is a test prioritization method specifically designed
for GNNs. GraphPrior generates mutated models for GNNs and regards tests
that kill many mutated models as more likely to be misclassified.

• Random selection [102] In random selection, the order of execution for test
inputs is determined randomly.

4.4.4 GNN Subjects
4.4.4.1 Graph datasets

Our study utilizes four benchmark datasets commonly used in the field of graph
neural networks (GNNs). The Cora and CiteSeer datasets are composed of machine
learning publications, represented as nodes in a graph structure, with edges repre-
senting citation links between the publications. The PubMed dataset, on the other
hand, contains biomedicine publications. The LastFM Asia Social Network dataset,
consists of the relationships between users on the Last.fm music service in Asia,
where users are represented as nodes and their mutual follower relationships are
represented as edges. These datasets have been widely adopted in existing research
on graph neural networks [153, 154, 155, 156, 157].

Overall, we built 124 subjects to evaluate the effectiveness of NodeRank, including
16 subjects of natural datasets and 108 subjects of adversarial datasets.
• Cora [15] Cora comprises 2,708 scientific publications and 5,429 links between

them. Publications are considered nodes and are classified into seven classes.
• CiteSeer [15] CiteSeer is composed of 3,327 scientific publications and 4,732 links

between them. Publications (nodes) are classified into six classes.
• PubMed [15] PubMed is composed of 19,717 diabetes-related publications and

44,338 links between them. Publications (nodes) are classified into three classes.
• LastFM Asia Social Network [158] LastFM Asia Social Network comprises

7,624 nodes and 27,806 edges.

4.4.4.2 GNN models
We consider four GNN models which have been widely studied in the literature

of neural network testing, specifically under adversarial attacks.
• Graph Convolutional Network (GCN) [145] is a class of neural networks

that use graph convolutions. GCN leverages the information of edges to aggregate
node information to generate new node representations.

• Graph Attention Network (GAT) [146] introduces a graph attention layer
to weigh the importance of different nodes within a neighborhood. Each node is
assigned an attention score so that more important neighbors can be identified.

• Topology Adaptive GCN (TAGCN) [148] designs a set of fixed-size learnable
filters to perform convolution operations on graphs. These filters adapt to the
topology of the graph while it is scanned for convolution.

• Graph Sample and Aggregate (GraphSAGE) [147] generates node em-
beddings through sampling and aggregating features of neighbor nodes. For
computational efficiency, GraphSAGE samples a fixed number of neighbors for
each node.

64

4.4. Evaluation Design

4.4.5 Graph Adversarial Attacks
In RQ2, we aim to investigate the effectiveness of NodeRank on test inputs

generated through diverse graph adversarial attacks. Graph adversarial attacks
refer to the manipulation of the graph structure or node features to generate graph
adversarial perturbations that fool the GNN models. To evaluate the performance
of NodeRank against such attacks, we applied a range of adversarial attacks in our
experiments. We introduced these attacks as follows.
• Delete internally, connect externally (DICE) [138] DICE randomly inserts

or deletes an edge for each perturbation. DICE follows two crucial rules: 1) only
removing edges between nodes that are from the same class, and 2) only inserting
nodes that are from different classes.

• Min-max attack (MMA) [139] The min-max attack is a type of untargeted
white-box GNN attack, which formulates the attack problem as a min-max
optimization problem. In this setup, the inner maximization objective is to
update the model’s parameters (θ) by maximizing the attack loss, and it can
be efficiently solved using gradient ascent. Meanwhile, the outer minimization
is achieved using the Projected Gradient Descent (PGD) [159] algorithm, which
iteratively perturbs the graph within a bounded ℓp norm constraint to ensure that
the generated perturbations are not too large.

• Node embedding attack-Add (NEAA) [140] In the node embedding attack-
add, attackers have the ability to manipulate the original graph structure by
adding new edges while ensuring that a predetermined budget constraint is not
exceeded.

• Node embedding attack-Remove (NEAR) [140] In the Node embedding
attack-Remove, adversarial attacks are aimed at modifying the original graph
structure by selectively removing edges while adhering to a budget constraint.

• PGD attack (PGD) [139] The PGD attack leverages the Projected Gradient
Descent (PGD) algorithm to search for optimal structural perturbations to attack
GNNs.

• Random Attack-Add (RAA) [141] RAA randomly adds edges to the input
graph to generate perturbations.

• Random Attack-Remove (RAR) [141] RAR randomly removes edges to the
input graph to generate perturbations.

• Random Attack-Flip (RAF) [141] RAF randomly flips edges to the input
graph to generate perturbations.

4.4.6 Variants of NodeRank
In this paper, when using NodeRank, we refer to the approach that utilizes the

Sum-based ensemble learning method (cf. Section 4.3.4) on top of the four considered
base models, namely Logistic Regression [150], Random Forest [90], XGBoost [13],
and LightGBM [89]. We also implemented two variants using the stacking-based,
and voting-based ensemble methods.

4.4.6.1 NodeRankS

With this variant, we implemented a stacking-based ensemble method, which uses
meta-learning [160] to learn from the outputs of base ranking models to make more
accurate predictions. Given a GNN model M that classified nodes into n classes
and a test set Ttest, NodeRankS performs as follows: (1) first, each base ranking

65

Chapter 4. Test Input Prioritization for Graph Neural Networks

model RMi is trained using mutation features of the training input set Ttrain of M ;
(2) then, NodeRank uses the output of each ranking model to create a new dataset.
More specifically, NodeRankS inputs the mutation results of the training set to each
ranking model to obtain the outputs. For each training input, NodeRankS obtains
four probability scores, which will be considered as new features, while the label is 1
or 0. Here, 1 means the training input is misclassified by the GNN model M , while
0 means the training input is correctly classified. Since the training set has ground
truth for each input, in this way, we build a new dataset. (3) NodeRankS uses the
new dataset to train the meta-learner. Here, each input has four features, which are
the outputs from the four ranking models. The ground truth is whether an input is
misclassified by the GNN model M . (4) After training the meta-learner, NodeRankS

inputs the mutation results of the test set Ttest to ranking models. Then, NodeRankS

inputs the outputs of ranking models to the meta-learner, which will provide a score
for each test input in Ttest. Based on the scores, NodeRankS prioritizes all the test
inputs.
4.4.6.2 NodeRankV

With this variant, we implemented the majority voting-based ensemble learning
method [161] to combine the prediction results of different ranking models. Majority
voting sums the predictions for each class and returns the class with the majority
vote as the ensemble prediction. Given a GNN model M and a test set Ttest,
NodeRankV performs as follows: (1) first, each base ranking model RMi is trained
using mutation features of the training input set Ttrain of M ; (2) For a test input in
Ttest, NodeRankV inputs its mutation features to N ranking models, obtaining N
scores (i.e., misclassification probabilities) for this input, denoted as {S1, S2, · · · , SN}.
Then, NodeRankS transforms each score into 0 or 1. Scores below 0.5 are converted
to 0, otherwise to 1. In this way, NodeRankS obtains an N-length vector for each
input. For example, {0, 1, · · · , 0}. NodeRankS regards 1 voting for misclassification
(i.e., the input will be misclassified by the GNN model M) and 0 voting for correct
classification. (3) After voting, for each input, NodeRankV sums its votes from
all ranking models. NodeRankV ranks all the test inputs based on their votes for
misclassification.

4.4.7 Implementation and Configuration
We implemented NodeRank in Python based on the PyTorch [103] framework. We

also integrate the available implementations of the compared approaches [6, 105, 88]
into our experimental pipeline to adapt to the GNN prioritization problem. Regarding
the GNN models selected as subjects in our study, the range of their accuracy is:
GAT: 71%∼77%, GCN: 70%∼73%, GraphSAGE: 71%∼73%, TAGCN: 72%∼81%.
Regarding our mutation rules, for the GNN model mutation, we generated 144
mutants on average. For graph structure mutation, we generated 265 mutants
on average. For node feature mutation, we generated 147 mutants on average.
Concerning the configurations of node mutation rules in the experiments of this
paper, we made the following design choice: We slightly modify attributes, with an
offset between 0.005 to 0.015.

We conducted all learning experiments on a high-performance computer cluster,
where each cluster node runs a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA
Tesla V100 16G SXM2 GPU. For the data processing, we conducted our experiments
on a MacBook Pro laptop with Mac OS Big Sur 11.6, Intel Core i9 CPU, and 64

66

4.5. Experimental Results

GB RAM. Overall, our experiments involved 124 subjects, of which 16 subjects were
based on natural inputs and 108 subjects were based on adversarial inputs.

4.5 Experimental Results
For each research question, we present the experimental objective, design, and

results before discussing the findings.
Table 4.1: Effectiveness comparison among NodeRank, Random, DeepGini, Vanil-
laSM, PCS, and Entropy in terms of the APFD values on natural datasets

CiteSeer Cora LastFM PubMed
Approach GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN
Random 0.4784 0.4893 0.4837 0.4882 0.4912 0.5268 0.4857 0.4782 0.4870 0.4981 0.5142 0.5049 0.4890 0.4972 0.5032 0.5123
DeepGini 0.6072 0.6197 0.6732 0.6260 0.7080 0.7037 0.7070 0.7650 0.5887 0.6991 0.7820 0.7368 0.6371 0.6995 0.6952 0.6140
VanillaSM 0.6519 0.6611 0.6831 0.6534 0.7325 0.7292 0.7283 0.7688 0.6696 0.7437 0.7850 0.7677 0.6630 0.7196 0.6981 0.6583
PCS 0.6528 0.6848 0.6767 0.6541 0.7132 0.7239 0.7303 0.7330 0.6925 0.7454 0.7463 0.7548 0.6569 0.6738 0.6660 0.6658
Entropy 0.6045 0.6181 0.6727 0.6165 0.7019 0.7007 0.7025 0.7564 0.5228 0.6411 0.7082 0.6011 0.6402 0.7004 0.6968 0.6155
GraphPrior 0.6754 0.6942 0.7103 0.6961 0.7853 0.7883 0.7651 0.7815 0.7746 0.7834 0.7914 0.7792 0.7546 0.7426 0.7534 0.7285
NodeRank 0.7319 0.7203 0.7325 0.7199 0.8326 0.8021 0.8121 0.8164 0.8146 0.8151 0.8063 0.8225 0.7714 0.7670 0.7895 0.7795

4.5.1 RQ1: Performance of NodeRank
Objective: We evaluate the performance of NodeRank in prioritizing test inputs
for GNNs. To that end, we also compare NodeRank against five uncertainty-based
test prioritization approaches.
Experimental design: We use our initial subjects (4 datasets and 4 GNN models,
leading to 16 combinations of natural inputs, i.e., without any adversarial attacks
introduced). Moreover, we compare NodeRank with 6 test prioritization approaches,
which include 1 test prioritization method for GNNs (GraphPrior), 4 test prioritization
methods for traditional DNNs (i.e., DeepGini, VanillaSM, PCS, and Entropy), and a
baseline method (random selection). Specific details about these compared methods
can be found in Section 4.4.3. All subjects are applied to NodeRank, as well
as the six compared approaches. Beyond effectiveness, we also investigated the
efficiency of NodeRank by analyzing the time cost of each step involved in its
execution. Furthermore, due to the randomness in the GNN model training process,
we conducted a statistical analysis to ensure the stability of our findings. Following
the prior work [162], we repeated all the experiments 30 times. The following results
are the averages obtained from the 30 repeated experiments.

To demonstrate the statistical significance of the improvement of NodeRank
relative to the compared test prioritization approaches, we utilized the Mann-Whitney
U test [163] to compute the p-value of the repeated experimental results. The Mann-
Whitney U test is a statistical method used to determine whether there is a notable
distinction between two sets of data distributions. The Mann-Whitney U test does
not require the assumption of normal distribution for the data. Therefore, it can
be used for both normal and non-normal distributed data. The Mann-Whitney U
test transforms the data into ranks, calculates a test statistic based on these ranks,
and uses this as a basis for computing the p-value to assess if there is a statistically
significant difference between the two sets of data. A p-value < 0.05 is generally
considered indicative of significance.

Furthermore, in addition to showcasing the average experimental results, we also
evaluate the variability of these results in order to ensure a more fair comparison
between the effectiveness of NodeRank and existing test prioritization approaches.
The specific steps of these experiments are elucidated below:
• Effectiveness distributions between NodeRank and the compared ap-

proaches As previously mentioned, we conducted 30 repetitions of all experiments.

67

Chapter 4. Test Input Prioritization for Graph Neural Networks

Subsequently, based on the results generated from these 30 repetitions, we used
box plots to illustrate the distribution of results for various test prioritization
methods. The rationale behind employing box plots is that: 1) they offer an
intuitive representation of data distribution, including key statistics like the me-
dian, quartiles, and identification of outliers. This visual format enables a quick
understanding of data characteristics; 2) Box plots offer a visual tool for easily
comparing the distribution of experimental results across various test prioritization
approaches. When multiple box plots are displayed side by side, the differences
between them can be clearly exhibited.

• Confidence interval between NodeRank and the compared approaches
Based on the results of 30 repeated experiments, we calculated the confidence
interval of each test prioritization approach. Following the existing study [164], we
employed Formula 4.11 to compute the upper and lower bounds of the confidence
interval. We calculated the confidence intervals for different test prioritization
methods across two metrics (PFD and APFD) and two scenarios (natural and
adversarial datasets).

(
X̄ − Zα

2

σ√
n

, X̄ + Zα
2

σ√
n

)
(4.11)

where X̄ represents the average value, σ represents the standard deviation, n
represents the sample size, and Zα/2 represents the confidence coefficient.

Table 4.2: Performance improvement of NodeRank on the 16 initial subjects (i.e., 4
natural input sets on 4 GNN models)

Approach # Best cases Average APFD Improvement(%)
Random 0 0.4954 58.11
DeepGini 0 0.6788 15.39
VanillaSM 0 0.7071 10.78
PCS 0 0.6981 12.20
Entropy 0 0.6513 20.27
GraphPrior 0 0.7502 4.41
NodeRank 16 0.7833 -

NodeRank

GraphPrior
DeepGini

vanillasm PCS
Entropy

Random

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
P

FD

a) All natural subjects
NodeRank

GraphPrior
DeepGini

vanillasm PCS
Entropy

Random

0.50

0.55

0.60

0.65

0.70

0.75

A
P

FD

b) CiteSeer, TAGCN
NodeRank

GraphPrior
DeepGini

vanillasm PCS
Entropy

Random

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
P

FD

c) LastFM, GCN
Figure 4.2: Effectiveness distributions between NodeRank and the compared
approaches on natural test inputs
Results: The experimental results of RQ1 are presented in Table 4.1, Table 4.2,
Table 4.3, Table 4.4, Table 4.5, Table 4.6, Table 4.7, Figure 4.2, and Figure 4.3. We
highlight the approach with the highest effectiveness in grey to facilitate quick and
easy interpretation of the results. Table 4.1 presents the APFD scores of NodeRank

68

4.5. Experimental Results

Table 4.3: Average comparison results among NodeRank and the compared ap-
proaches in terms of PFD

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60
Random 0.0859 0.1758 0.2802 0.3859 0.4776 0.5753
DeepGini 0.1999 0.3393 0.4609 0.5796 0.6849 0.7705
VanillaSM 0.2104 0.3805 0.5254 0.6471 0.7253 0.8077
PCS 0.2103 0.3858 0.5267 0.6478 0.7513 0.8217
Entropy 0.1991 0.3402 0.4542 0.5772 0.6766 0.7683
GraphPrior 0.2355 0.4431 0.6024 0.7253 0.7827 0.8235

CiteSeer

NodeRank 0.2684 0.5078 0.6790 0.7752 0.8267 0.8697
Random 0.0938 0.1955 0.2996 0.3893 0.4971 0.5822
DeepGini 0.2555 0.4647 0.6193 0.7406 0.8293 0.8831
VanillaSM 0.2718 0.4906 0.6461 0.7676 0.8541 0.9170
PCS 0.2406 0.4386 0.6061 0.7513 0.8422 0.9103
Entropy 0.2551 0.4627 0.6100 0.7325 0.8250 0.8759
GraphPrior 0.3025 0.6021 0.7254 0.8013 0.8923 0.9215

Cora

NodeRank 0.3434 0.6764 0.8682 0.9113 0.9342 0.9468
Random 0.1021 0.1983 0.3041 0.4045 0.5039 0.5994
DeepGini 0.2476 0.4549 0.6042 0.7128 0.7898 0.8548
VanillaSM 0.2560 0.4939 0.6606 0.7814 0.8658 0.9177
PCS 0.2253 0.4593 0.6527 0.7883 0.8698 0.9143
Entropy 0.2472 0.4264 0.5190 0.6022 0.6705 0.7214
GraphPrior 0.3015 0.5324 0.7612 0.8563 0.8746 0.9237

LastFM

NodeRank 0.3487 0.6833 0.8621 0.9083 0.9297 0.9473
Random 0.1015 0.2023 0.3027 0.3989 0.4959 0.5957
DeepGini 0.2344 0.4026 0.5463 0.6407 0.7226 0.7959
VanillaSM 0.2270 0.4034 0.5649 0.6935 0.7851 0.8516
PCS 0.1968 0.3811 0.5422 0.6640 0.7630 0.8313
Entropy 0.2348 0.4028 0.5467 0.6424 0.7264 0.7994
GraphPrior 0.3021 0.5163 0.6582 0.7535 0.8192 0.8746

PubMed

NodeRank 0.3463 0.6258 0.7744 0.8359 0.8748 0.9062

and the compared approaches on each subject (i.e., a combination of a natural dataset
and GNN model). We see that NodeRank consistently outperforms all compared
approaches on all 16 subjects (i.e., 16 Best cases for NodeRank). Moreover, the APFD
range for NodeRank is 0.7199 to 0.8326, while GraphPrior (the test prioritization
method specifically designed for GNNs) falls within the range of 0.6754 to 0.7883.
Additionally, the APFD range for other test prioritization methods varies from 0.4784
to 0.7850. Table 4.2 presents an in-depth assessment of NodeRank’s effectiveness
in comparison to other approaches, including the number of best cases achieved by
each approach, the average APFD, and the improvement that NodeRank offers over
the compared methods. We see that the average APFD for NodeRank is 0.7883,
while the average APFD for GraphPrior is 0.7502. In contrast, the average APFD
range for other test prioritization methods falls between 0.4954 and 0.7071. When
compared to GraphPrior, NodeRank exhibits an average improvement of 4.41%,
while its improvement relative to other comparative methods ranges from 10.78% to
58.11%.

We present further evidence of the high effectiveness of NodeRank in the context
of test prioritization by utilizing the PFD (Percentage of Fault Detected) metric.
The corresponding experimental results are presented in Table 4.3. Our analysis
demonstrates that NodeRank consistently surpasses GraphPrior, all the confidence-
based approaches, and random selection in terms of average PFD, regardless of

69

Chapter 4. Test Input Prioritization for Graph Neural Networks

10% 20% 30% 40% 50% 60% 70%

0.2

0.4

0.6

0.8
P

FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior
Random

a) CiteSeer, TAGCN
10% 20% 30% 40% 50% 60% 70%

0.2

0.4

0.6

0.8

P
FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior
Random

b) PubMed, GAT
Figure 4.3: Test prioritization effectiveness among NodeRank and the compared
approaches for CiteSeer with TAGCN and PubMed with GAT. X-Axis: the percentage
of prioritized tests; Y-Axis: the percentage of detected misclassified tests.
Table 4.4: Confidence interval of NodeRank and the compared approaches in terms
of APFD on natural test inputs

Approach Lower Bound Upper Bound
Random 0.4942 0.4966
DeepGini 0.6743 0.6832
VanillaSM 0.7032 0.7109
PCS 0.6945 0.7016
Entropy 0.6467 0.6558
GraphPrior 0.7467 0.7536
NodeRank 0.7798 0.7867

the proportion of prioritized tests. Furthermore, the effectiveness of NodeRank is
visually apparent in Figure 4.3. In the figure, NodeRank is represented by the red
line, GraphPrior by the blue line, and the baseline method by the pink line. It is
evident that NodeRank consistently outperforms GraphPrior, all the confidence-
based approaches, and the baseline. These experimental findings further confirm the
high effectiveness of NodeRank.

Table 4.6 presents the results of statistical analysis. We use the Mann–Whitney
U test [163] as the metric to calculate the p-value of the experimental results. Our
objective is to demonstrate that the improvement of NodeRank over other testing
methods is statistically significant. Within Table 4.6, we see that the range of p-
values is from 7.7245 × 10−7 to 0.0092. These values are all less than 0.05, indicating
that the improvement of NodeRank compared to other test prioritization methods is
statistically significant.

Moreover, Figure 4.2 presents and compares the effectiveness (in terms of APFD)
of NodeRank with other test prioritization methods using box plots. The box plots
highlight the distribution of results of multiple repeated experiments for NodeRank
and other test prioritization methods. In Figure 4.2, we see that, in terms of the
median, the median APFD value of NodeRank exceeds that of other test prioritization
methods across all natural datasets. Moreover, in the presented two specific examples
shown in the box plots, which respectively correspond to subject CiteSeer, TAGCN,
and subject LastFM, GCN, we can also see that the median of NodeRank from
repeated experiments is the highest.

70

4.5. Experimental Results

Table 4.5: Confidence interval of NodeRank and the compared approaches in terms
of PFD on natural test inputs

PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60
Approach Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Random 0.0917 0.1008 0.1887 0.1989 0.2907 0.3024 0.3879 0.4007 0.4872 0.4994 0.5817 0.5933
DeepGini 0.2280 0.2411 0.4101 0.4197 0.5523 0.5628 0.6620 0.6743 0.7496 0.7609 0.8197 0.8305
VanillaSM 0.2346 0.2482 0.4373 0.4477 0.5928 0.6032 0.7175 0.7265 0.8016 0.8129 0.8675 0.8791
PCS 0.2124 0.2231 0.4112 0.4222 0.5760 0.5877 0.7071 0.7183 0.7998 0.8111 0.8637 0.8737
Entropy 0.2285 0.2398 0.4012 0.4128 0.5282 0.5378 0.6319 0.6426 0.7186 0.7309 0.7870 0.7953
GraphPrior 0.2811 0.2920 0.5175 0.5291 0.6826 0.6912 0.7773 0.7899 0.8359 0.8477 0.8814 0.8923
NodeRank 0.3215 0.3322 0.6167 0.6294 0.7910 0.8014 0.8534 0.8631 0.8865 0.8967 0.9118 0.9218

Table 4.6: Statistical analysis on natural test inputs (in terms of p-value under the
Mann–Whitney U test)

Mann–Whitney U test NodeRrank
vs Random

NodeRank
vs DeepGini

NodeRank
vs VanillaSM

NodeRank
vs PCS

NodeRank
vs Entropy

NodeRank
vs GraphPrior

p-value 7.7245 × 10−7 1.1175 × 10−5 9.5154 × 10−5 2.5438 × 10−5 1.6231 × 10−6 0.0092

Table 4.7: Time cost of NodeRank and the compared approaches
Time cost Approach

NodeRank Random GraphPrior DeepGini VanillaSM PCS Entropy
Mutant generation 35 min - 35 min - - - -
Feature extraction 30 s - 20 s - - - -
Ranking model training 3 min - 3 min - - - -
Prediction <1 s <1 s <1 s <1 s <1 s <1 s <1 s

Regarding the quartile range, NodeRank’s quartile range (i.e., the height of the
box) exhibits some variations across different datasets, but overall, its upper quartile
is higher than that of other methods. Analyzing outliers, the box plots do not
show significant outliers, indicating that NodeRank’s performance across different
datasets is relatively stable, with no extreme cases of inefficiency. In summary, we
conclude that NodeRank outperforms all compared testing prioritization methods in
terms of APFD based on the distribution of data from multiple experimental results.
This demonstrates that NodeRank exhibits better effectiveness in test prioritization
compared to other methods.

Furthermore, we calculated the confidence intervals for all test prioritization
methods, and the experimental results are presented in Table 4.4 and Table 4.5. In
Table 4.4, we see that NodeRank’s APFD has the highest lower and upper bounds
compared to other test prioritization methods, with values of 0.7798 and 0.7867,
respectively. Notably, NodeRank’s lower bound (0.7798) even exceeds the upper
bounds of all other comparative methods. GraphPrior’s upper bound is 0.7536,
while the upper bounds for other test prioritization methods range from 0.4966 to
0.7109. Table 4.5 exhibits the confidence intervals of all test prioritization methods
in terms of PFD. The gray highlights indicate the test prioritization approaches that
achieve the maximum PFD in this scenario. In Table 4.5, we see that NodeRank
also demonstrates the highest lower and upper bounds in terms of PFD compared to
other test prioritization methods when prioritizing different ratios of tests. These
experimental findings highlight that, in terms of confidence intervals, NodeRank’s
effectiveness exceeds that of the comparative test prioritization methods.

In addition to its effectiveness, we also present an analysis of NodeRank’s efficiency
in Table 4.7. We offer a comprehensive breakdown of the time taken by each step in
NodeRank and compare it with GraphPrior, the confidence-based test prioritization
methods, and the baseline approach (random selection). As shown in Table 4.7, the
time required for NodeRank is divided into four parts: mutant generation, feature

71

Chapter 4. Test Input Prioritization for Graph Neural Networks

extraction, ranking model training, and NodeRank prediction. Among these steps,
mutant generation is found to be the most time-consuming, taking approximately 35
minutes, followed by ranking model training, which takes approximately 3 minutes.
Overall, NodeRank requires a total time of approximately 38 minutes. However, it is
worth noting that the prediction time of NodeRank is extremely fast, taking less than
1s once the ranking model is trained, and the mutation features are extracted. The
overall runtime of GraphPrior is similar to NodeRank, approximately 38 minutes. In
contrast, the confidence-based test prioritization methods have an overall runtime of
less than 1 second. While NodeRank is less efficient than the uncertainty-based test
prioritization approaches (which takes less than 1s), its time cost remains acceptable
compared to the prohibitively expensive manual labeling.

Answer to RQ1: On natural test inputs, NodeRank consistently exhibits better
effectiveness compared to GraphPrior, all confidence-based approaches, and the
baseline method across all subjects, as evident from both APFD and PFD metrics.

In terms of APFD, NodeRank showcases an average improvement of 4.41% and
58.11% over the compared approaches. Additionally, the efficiency of NodeRank is
within an acceptable range, thereby demonstrating its practical usefulness.

4.5.2 RQ2: Prioritization of Adversarial Inputs
Table 4.8: Test prioritization performance (APFD scores) on DICE-based graph
adversarial test inputs

CiteSeer Cora LastFM PubMed
Approach GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN
Random 0.4867 0.4986 0.4937 0.5153 0.4938 0.5250 0.4817 0.5100 0.5031 0.4907 0.5004 0.4973 0.4997 0.4953 0.4929 0.4940
DeepGini 0.5893 0.6059 0.6550 0.6168 0.6878 0.6873 0.7061 0.7269 0.5883 0.6897 0.7685 0.7136 0.6363 0.6726 0.6846 0.6145
VanillaSM 0.6159 0.6418 0.6695 0.6335 0.7058 0.7113 0.7189 0.7359 0.6559 0.7294 0.7720 0.7502 0.6567 0.6875 0.6875 0.6488
PCS 0.6058 0.6494 0.6639 0.6304 0.6803 0.6974 0.7065 0.7066 0.6696 0.7289 0.7342 0.7428 0.6453 0.6379 0.6538 0.6509
Entropy 0.5874 0.6044 0.6536 0.6123 0.6827 0.6839 0.7025 0.7175 0.5364 0.6478 0.6961 0.5828 0.6384 0.6731 0.6860 0.6157
GraphPrior 0.7013 0.6955 0.7143 0.6745 0.7525 0.7436 0.7515 0.7537 0.7652 0.7561 0.7827 0.7732 0.7067 0.7037 0.7051 0.7038
NodeRank 0.7249 0.7128 0.7402 0.7171 0.8054 0.7963 0.8031 0.7859 0.8034 0.8059 0.8054 0.8040 0.7543 0.7465 0.7752 0.7699

10% 20% 30% 40% 50% 60% 70%

0.2

0.4

0.6

0.8

P
FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior
Random

a) MMA, CiteSeer, GCN
10% 20% 30% 40% 50% 60% 70%

0.2

0.4

0.6

0.8

1.0

P
FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior
Random

b) PGD, LastFM, GraphSAGE
Figure 4.4: Test prioritization effectiveness among NodeRank and the compared
approaches for CiteSeer with GCN attacked by MMA and LastFM with GraphSAGE
attacked by PGD. X-Axis: the percentage of prioritized tests; Y-Axis: the percentage
of detected miscalssified tests.
Objective: We evaluate the effectiveness of NodeRank on adversarial test inputs.
We assume that natural test inputs (cf. RQ1) can easily discriminate which ones are
more likely to reveal bugs. In contrast, with adversarial inputs, by construction, they
are all generated to make the probability of the wrong classification label as high as

72

4.5. Experimental Results

Table 4.9: Overall comparison results on graph adversarial datasets
Average performance score

(APFD)
Improvement(of APFD)

of NodeRank over the compared approachesAttack Approach GAT GCN GraphSAGE TAGCN GAT GCN GraphSAGE TAGCN
Random 0.4958 0.5024 0.4922 0.5042 55.71% 52.35% 58.68% 52.56%
DeepGini 0.6254 0.6639 0.7036 0.6679 23.44% 15.29% 11.03% 15.17%
VanillaSM 0.6586 0.6925 0.7120 0.6921 17.22% 10.53% 9.69% 11.14%
PCS 0.6503 0.6784 0.6896 0.6827 18.71% 12.82% 13.25% 12.67%
Entropy 0.6112 0.6523 0.6846 0.6321 26.31% 17.34% 14.08% 21.69%
GraphPrior 0.7314 0.7247 0.7384 0.7263 5.54% 5.61% 5.76% 5.91%

DICE

NodeRank 0.7720 0.7654 0.7810 0.7692 - - - -
Random 0.5283 0.5128 0.5161 0.4775 46.60% 47.62% 50.34% 60.27%
DeepGini 0.6591 0.6616 0.6960 0.6950 17.51% 14.42% 11.48% 10.12%
VanillaSM 0.6857 0.6923 0.7093 0.7104 12.95% 9.35% 9.39% 7.73%
PCS 0.6662 0.6980 0.7034 0.6952 16.26% 8.45% 10.31% 10.08%
Entropy 0.6551 0.6591 0.6938 0.6881 18.23% 14.85% 11.83% 11.22%
GraphPrior 0.7258 0.7126 0.7392 0.7266 6.70% 6.23% 4.96% 5.32%

MMA

NodeRank 0.7745 0.7570 0.7759 0.7653 - - - -
Random 0.5079 0.5053 0.5009 0.4938 54.54% 54.98% 59.19% 60.33%
DeepGini 0.6311 0.6869 0.7238 0.6864 24.37% 14.00% 10.17% 15.34%
VanillaSM 0.6686 0.7170 0.7301 0.7172 17.39% 9.22% 9.23% 10.39%
PCS 0.6630 0.6931 0.7062 0.7032 18.39% 12.99% 12.95% 12.59%
Entropy 0.6114 0.6708 0.7005 0.6410 28.38% 16.74% 13.83% 23.51%
GraphPrior 0.7421 0.7368 0.7521 0.7433 5.76% 6.28% 6.02% 6.51%

NEAA

NodeRank 0.7849 0.7831 0.7974 0.7917 - - - -
Random 0.4936 0.5016 0.4946 0.5134 61.93% 58.19% 62.15% 56.62%
DeepGini 0.6426 0.6955 0.7241 0.7005 24.39% 14.09% 10.76% 14.79%
VanillaSM 0.6850 0.7237 0.7337 0.7269 16.69% 9.64% 9.31% 10.62%
PCS 0.6841 0.7061 0.7096 0.7144 16.84% 12.38% 13.02% 12.56%
Entropy 0.6206 0.6771 0.6976 0.6523 28.79% 17.19% 14.97% 23.27%
GraphPrior 0.7352 0.7548 0.7625 0.7581 8.71% 5.12% 5.18% 6.06%

NEAR

NodeRank 0.7993 0.7935 0.8020 0.8041 - - - -
Random 0.5043 0.5114 0.5026 0.5090 56.81% 52.07% 57.02% 53.14%
DeepGini 0.6378 0.6764 0.7239 0.7137 23.99% 14.98% 9.02% 9.22%
VanillaSM 0.6839 0.7133 0.7336 0.7304 15.63% 9.03% 7.58% 6.72%
PCS 0.6805 0.7187 0.7176 0.7133 16.21% 8.21% 9.98% 9.28%
Entropy 0.6169 0.6593 0.6997 0.6644 28.19% 17.96% 12.79% 17.32%
GraphPrior 0.7491 0.7324 0.7403 0.7387 5.56% 6.19% 6.60% 5.52%

PGD

NodeRank 0.7908 0.7778 0.7892 0.7795 - - - -
Random 0.4981 0.4951 0.5027 0.5018 53.88% 55.10% 55.06% 54.15%
DeepGini 0.6299 0.6660 0.7084 0.6709 21.69% 15.30% 10.04% 15.29%
VanillaSM 0.6596 0.6964 0.7160 0.6972 16.21% 10.27% 8.87% 10.94%
PCS 0.6459 0.6824 0.6931 0.6836 18.67% 12.53% 12.47% 13.15%
Entropy 0.6166 0.6553 0.6910 0.6360 24.31% 17.18% 12.81% 21.62%
GraphPrior 0.7046 0.7261 0.7312 0.7258 8.78% 5.75% 6.60% 6.57%

RAA

NodeRank 0.7665 0.7679 0.7795 0.7735 - - - -
Random 0.4990 0.4964 0.5003 0.5004 54.31% 55.00% 56.69% 54.66%
DeepGini 0.6199 0.6660 0.7074 0.6724 24.21% 15.53% 10.81% 15.10%
VanillaSM 0.6519 0.6971 0.7157 0.6984 18.12% 10.37% 9.53% 10.81%
PCS 0.6415 0.6829 0.6937 0.6828 20.03% 12.67% 13.00% 13.34%
Entropy 0.6062 0.6550 0.6882 0.6374 27.02% 17.47% 13.91% 21.42%
GraphPrior 0.7109 0.7257 0.7369 0.7281 8.34% 6.02% 6.37% 6.29%

RAF

NodeRank 0.7702 0.7694 0.7839 0.7739 - - - -
Random 0.5134 0.5015 0.5043 0.5024 52.84% 53.84% 56.61% 56.35%
DeepGini 0.6312 0.6765 0.7063 0.6895 24.32% 14.04% 11.82% 13.92%
VanillaSM 0.6723 0.7080 0.7153 0.7115 16.72% 8.97% 10.42% 10.40%
PCS 0.6700 0.6990 0.6994 0.7039 17.12% 10.37% 12.93% 11.59%
Entropy 0.6144 0.6620 0.6875 0.6542 27.72% 16.54% 14.88% 20.07%
GraphPrior 0.7403 0.7325 0.7421 0.7362 5.99% 5.32% 6.42% 6.69%

RAR

NodeRank 0.7847 0.7715 0.7898 0.7855 - - - -

possible. Thus, a test input prioritization on adversarial inputs may be challenged
in ranking them adequately. Yet, such prioritization is still necessary to ensure a
fast assessment of GNN model robustness.

Experimental design: To investigate the effectiveness of NodeRank on adversarial
datasets, we generated adversarial test inputs using eight graph adversarial attack

73

Chapter 4. Test Input Prioritization for Graph Neural Networks

Table 4.10: Confidence interval of NodeRank and the compared approaches in
terms of APFD on DICE-based graph adversarial test inputs

Approach Lower Bound Upper Bound
Random 0.4976 0.4996
DeepGini 0.6610 0.6693
VanillaSM 0.6848 0.6925
PCS 0.6715 0.6788
Entropy 0.6409 0.6491
GraphPrior 0.7271 0.7334
NodeRank 0.7686 0.7749

NodeRank

GraphPrior
DeepGini

vanillasm PCS
Entropy

Random

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
P

FD

a) All adversarial subjects
NodeRank

GraphPrior
DeepGini

vanillasm PCS
Entropy

Random

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
P

FD

b) RAR, Cora, GAT
NodeRank

GraphPrior
DeepGini

vanillasm PCS
Entropy

Random

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
P

FD

c) NEAA, Cora, GCN
Figure 4.5: Effectiveness distributions between NodeRank and the compared
approaches on adversarial test inputs
methods [138, 141, 140]. We set the attack level to 0.3, which indicates that 30% of
the test inputs in the test set are adversarial tests. It is worth noting that a high
attack level, such as 90%, would result in a significant proportion of adversarial
test inputs. Under such circumstances, any prioritization method could potentially
select a larger number of bug cases, making it difficult to effectively demonstrate
the efficacy of NodeRank. Thus, to ensure a proper evaluation of NodeRank and
the compared approaches, we selected a reasonable attack level (i.e., 0.3), which
effectively limits the proportion of adversarial test inputs.

Eventually, we construct 108 subjects (i.e., a combination of a GNN model and
an adversarial inputs set). Consistent with the experimental design employed in
RQ1, we evaluate the prioritization effectiveness of NodeRank and the compared
approaches using both the APFD and PFD metrics. Similar to RQ1, we conducted
30 repetitions of all experiments and reported the average outcomes. Aside from
presenting the average experimental findings, we assessed the variability of these
results to ensure a fairer comparison between the effectiveness of NodeRank and
existing test prioritization methods. Detailed steps for these experiments can be
found in the experimental design of RQ1 (refer to Section 4.5.1).
Results: The experimental results of RQ2 are presented in Table 4.8, Table 4.9,
Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14, Figure 4.4, and Figure 4.5.
Table 4.8 presents the APFD scores of NodeRank and the compared approaches on
DICE-based graph adversarial inputs. Again, NodeRank performs the best across all
subjects. Experiment results on all the subjects are available on our GitHub2

Table 4.9 presents the average APFD values for NodeRank and the compared

2https://github.com/yinghuali/NodeRank/tree/main/results

74

https://github.com/yinghuali/NodeRank/tree/main/results

4.5. Experimental Results

Table 4.11: Average comparison results among NodeRank and the compared
approaches on adversarial data in terms of PFD

Attack Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60
Random 0.0977 0.1943 0.2930 0.3959 0.4985 0.5994
DeepGini 0.2119 0.3904 0.5359 0.6451 0.7359 0.8173
VanillaSM 0.2167 0.4054 0.5601 0.6894 0.7865 0.8582
PCS 0.1945 0.3708 0.5359 0.6704 0.7750 0.8524
Entropy 0.2113 0.3835 0.5149 0.6191 0.7064 0.7843
GraphPrior 0.2587 0.5023 0.6856 0.7835 0.8344 0.8923

DICE

NodeRank 0.2876 0.5594 0.7569 0.8473 0.8968 0.9267
Random 0.1059 0.2126 0.3165 0.4071 0.5129 0.6036
DeepGini 0.2261 0.4012 0.5465 0.6621 0.7572 0.8353
VanillaSM 0.2379 0.4246 0.5860 0.6964 0.7885 0.8628
PCS 0.2153 0.3976 0.5589 0.6900 0.7891 0.8649
Entropy 0.2248 0.3987 0.5424 0.6567 0.7496 0.8284
GraphPrior 0.2788 0.5081 0.6782 0.7823 0.8438 0.8935

MMA

NodeRank 0.2972 0.5710 0.7391 0.8277 0.8801 0.9155
Random 0.0974 0.2011 0.3017 0.3980 0.5045 0.6033
DeepGini 0.2306 0.4167 0.5634 0.6724 0.7646 0.8359
VanillaSM 0.2327 0.4302 0.5939 0.7215 0.8167 0.8857
PCS 0.2022 0.3949 0.5652 0.6996 0.7977 0.8725
Entropy 0.2307 0.4090 0.5342 0.6393 0.7276 0.7947
GraphPrior 0.2845 0.5127 0.6943 0.7857 0.8571 0.9146

NEAA

NodeRank 0.3055 0.5936 0.7978 0.8811 0.9184 0.9409
Random 0.0960 0.2001 0.2965 0.4005 0.5014 0.6057
DeepGini 0.2435 0.4366 0.5813 0.6934 0.7724 0.8416
VanillaSM 0.2482 0.4556 0.6148 0.7408 0.8262 0.8905
PCS 0.2143 0.4163 0.5933 0.7219 0.8206 0.8819
Entropy 0.2423 0.4274 0.5501 0.6551 0.7317 0.7954
GraphPrior 0.3071 0.5788 0.7834 0.8123 0.8662 0.9014

NEAR

NodeRank 0.3435 0.6520 0.8266 0.8796 0.9084 0.9337
Random 0.0988 0.2033 0.2992 0.4067 0.5123 0.6161
DeepGini 0.2350 0.4247 0.5702 0.6826 0.7706 0.8429
VanillaSM 0.2487 0.4558 0.6106 0.7315 0.8162 0.8824
PCS 0.2249 0.4209 0.5878 0.7259 0.8200 0.8845
Entropy 0.2341 0.4120 0.5393 0.6432 0.7333 0.7982
GraphPrior 0.2835 0.5241 0.6836 0.7826 0.8543 0.8992

PGD

NodeRank 0.3171 0.6083 0.7795 0.8531 0.8996 0.9304
Random 0.1035 0.1991 0.2959 0.3985 0.4956 0.6013
DeepGini 0.2110 0.3917 0.5392 0.6491 0.7483 0.8273
VanillaSM 0.2166 0.4052 0.5686 0.6990 0.7933 0.8627
PCS 0.1929 0.3734 0.5347 0.6755 0.7787 0.8552
Entropy 0.2108 0.3862 0.5192 0.6253 0.7203 0.7960
GraphPrior 0.2545 0.4523 0.6834 0.7436 0.8521 0.9034

RAA

NodeRank 0.2826 0.5518 0.7587 0.8543 0.9011 0.9271
Random 0.1007 0.1997 0.2970 0.3954 0.4968 0.5925
DeepGini 0.2108 0.3915 0.5335 0.6487 0.7412 0.8188
VanillaSM 0.2158 0.4044 0.5669 0.6972 0.7921 0.8606
PCS 0.1918 0.3728 0.5343 0.6705 0.7754 0.8516
Entropy 0.2105 0.3852 0.5136 0.6228 0.7142 0.7873
GraphPrior 0.2465 0.5014 0.6547 0.7362 0.8357 0.9033

RAF

NodeRank 0.2816 0.5535 0.7611 0.8628 0.9048 0.9326
Random 0.0970 0.2033 0.3058 0.4053 0.5117 0.6062
DeepGini 0.2273 0.4100 0.5573 0.6614 0.7532 0.8226
VanillaSM 0.2400 0.4305 0.5854 0.7114 0.8022 0.8650
PCS 0.2124 0.4057 0.5691 0.6981 0.8003 0.8677
Entropy 0.2268 0.4044 0.5376 0.6347 0.7227 0.7909
GraphPrior 0.2833 0.5344 0.6836 0.7843 0.8561 0.9013

RAR

NodeRank 0.3222 0.6164 0.7853 0.8533 0.8951 0.9210

approaches, as well as the average improvement of NodeRank over the compared
approaches across different adversarial attacks. We can see that, across all cases,
NodeRank consistently outperforms GraphPrior, confidence-based approaches, and
random selection. Specifically, NodeRank achieves an average APFD ranging from

75

Chapter 4. Test Input Prioritization for Graph Neural Networks

Table 4.12: Confidence interval of NodeRank and the compared approaches in
terms of PFD on adversarial datasets

PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60
Attack Approach Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Random 0.0951 0.1006 0.1915 0.1972 0.2903 0.2974 0.3912 0.3984 0.4948 0.5026 0.5949 0.6028
DeepGini 0.2090 0.2160 0.3857 0.3952 0.5309 0.5392 0.6420 0.6495 0.7331 0.7397 0.8150 0.8205
VanillaSM 0.2130 0.2206 0.4015 0.4090 0.5553 0.5637 0.6871 0.6922 0.7836 0.7904 0.8551 0.8626
PCS 0.1911 0.1972 0.3675 0.3745 0.5331 0.5407 0.6667 0.6753 0.7708 0.7770 0.8475 0.8559
Entropy 0.2067 0.2151 0.3801 0.3872 0.5114 0.5180 0.6161 0.6235 0.7033 0.7112 0.7814 0.7871
GraphPrior 0.2542 0.2622 0.4995 0.5046 0.6835 0.6902 0.7794 0.7874 0.8303 0.8375 0.8898 0.8944

DICE

NodeRank 0.2835 0.2908 0.5571 0.5618 0.7519 0.7618 0.8445 0.8511 0.8929 0.9012 0.9218 0.9306
Random 0.1019 0.1103 0.2084 0.2167 0.3115 0.3206 0.4049 0.4101 0.5094 0.5155 0.6014 0.6073
DeepGini 0.2214 0.2285 0.3972 0.4056 0.5426 0.5510 0.6574 0.6652 0.7549 0.7599 0.8306 0.8383
VanillaSM 0.2342 0.2412 0.4216 0.4279 0.5817 0.5888 0.6921 0.6997 0.7838 0.7908 0.8594 0.8676
PCS 0.2130 0.2192 0.3940 0.4009 0.5558 0.5617 0.6856 0.6938 0.7860 0.7937 0.8602 0.8693
Entropy 0.2222 0.2271 0.3951 0.4022 0.5390 0.5446 0.6537 0.6606 0.7449 0.7521 0.8246 0.8325
GraphPrior 0.2755 0.2818 0.5054 0.5128 0.6760 0.6810 0.7790 0.7854 0.8388 0.8474 0.8889 0.8982

MMA

NodeRank 0.2946 0.3019 0.5679 0.5752 0.7360 0.7434 0.8252 0.8304 0.8776 0.8831 0.9107 0.9193
Random 0.0926 0.1010 0.1969 0.2051 0.2991 0.3038 0.3948 0.4005 0.4995 0.5073 0.5983 0.6069
DeepGini 0.2261 0.2332 0.4130 0.4215 0.5605 0.5670 0.6703 0.6759 0.7610 0.7666 0.8323 0.8388
VanillaSM 0.2286 0.2365 0.4252 0.4325 0.5891 0.5969 0.7184 0.7248 0.8142 0.8213 0.8834 0.8887
PCS 0.1996 0.2058 0.3906 0.3991 0.5629 0.5696 0.6964 0.7029 0.7935 0.8006 0.8692 0.8761
Entropy 0.2282 0.2336 0.4045 0.4134 0.5319 0.5391 0.6357 0.6415 0.7243 0.7324 0.7903 0.7996
GraphPrior 0.2812 0.2866 0.5099 0.5165 0.6900 0.6968 0.7826 0.7885 0.8541 0.8615 0.9111 0.9189

NEAA

NodeRank 0.3018 0.3090 0.5915 0.5957 0.7930 0.8005 0.8771 0.8846 0.9140 0.9213 0.9362 0.9437
Random 0.0932 0.0985 0.1956 0.2033 0.2932 0.3008 0.3980 0.4035 0.4980 0.5063 0.6022 0.6097
DeepGini 0.2394 0.2463 0.4318 0.4408 0.5779 0.5833 0.6897 0.6963 0.7679 0.7752 0.8380 0.8437
VanillaSM 0.2444 0.2530 0.4509 0.4585 0.6116 0.6179 0.7381 0.7442 0.8240 0.8300 0.8859 0.8947
PCS 0.2105 0.2171 0.4134 0.4196 0.5908 0.5978 0.7198 0.7241 0.8180 0.8249 0.8769 0.8856
Entropy 0.2389 0.2449 0.4244 0.4301 0.5468 0.5549 0.6526 0.6573 0.7288 0.7343 0.7910 0.7998
GraphPrior 0.3042 0.3098 0.5740 0.5827 0.7797 0.7870 0.8093 0.8146 0.8614 0.8685 0.8979 0.9056

NEAR

NodeRank 0.3387 0.3467 0.6480 0.6548 0.8220 0.8295 0.8754 0.8842 0.9045 0.9114 0.9303 0.9362
Random 0.0956 0.1023 0.1984 0.2056 0.2963 0.3036 0.4032 0.4114 0.5088 0.5169 0.6124 0.6208
DeepGini 0.2301 0.2387 0.4197 0.4276 0.5672 0.5734 0.6800 0.6867 0.7668 0.7740 0.8388 0.8472
VanillaSM 0.2463 0.2531 0.4517 0.4605 0.6065 0.6148 0.7276 0.7339 0.8114 0.8187 0.8798 0.8854
PCS 0.2222 0.2290 0.4186 0.4230 0.5851 0.5914 0.7238 0.7284 0.8161 0.8235 0.8812 0.8884
Entropy 0.2306 0.2382 0.4092 0.4166 0.5347 0.5435 0.6400 0.6456 0.7287 0.7360 0.7953 0.8029
GraphPrior 0.2794 0.2868 0.5193 0.5282 0.6793 0.6866 0.7793 0.7869 0.8500 0.8576 0.8967 0.9019

PGD

NodeRank 0.3129 0.3205 0.6053 0.6128 0.7770 0.7842 0.8507 0.8574 0.8974 0.9023 0.9282 0.9351
Random 0.1004 0.1079 0.1949 0.2012 0.2916 0.2979 0.3960 0.4022 0.4935 0.4996 0.5981 0.6053
DeepGini 0.2083 0.2141 0.3871 0.3944 0.5367 0.5421 0.6457 0.6533 0.7452 0.7510 0.8234 0.8318
VanillaSM 0.2140 0.2188 0.4027 0.4081 0.5637 0.5727 0.6949 0.7032 0.7908 0.7959 0.8598 0.8670
PCS 0.1894 0.1959 0.3710 0.3765 0.5310 0.5396 0.6706 0.6798 0.7748 0.7832 0.8515 0.8588
Entropy 0.2080 0.2143 0.3830 0.3893 0.5161 0.5227 0.6208 0.6273 0.7164 0.7240 0.7930 0.8008
GraphPrior 0.2496 0.2588 0.4491 0.4566 0.6793 0.6862 0.7403 0.7462 0.8482 0.8541 0.8991 0.9074

RAA

NodeRank 0.2776 0.2875 0.5492 0.5564 0.7543 0.7626 0.8515 0.8578 0.8980 0.9036 0.9229 0.9306
Random 0.0978 0.1043 0.1971 0.2021 0.2937 0.2995 0.3913 0.3995 0.4947 0.5007 0.5898 0.5951
DeepGini 0.2087 0.2149 0.3882 0.3946 0.5311 0.5374 0.6457 0.6517 0.7369 0.7457 0.8155 0.8224
VanillaSM 0.2118 0.2197 0.4001 0.4070 0.5619 0.5691 0.6936 0.7011 0.7894 0.7944 0.8558 0.8643
PCS 0.1875 0.1947 0.3703 0.3774 0.5307 0.5389 0.6657 0.6739 0.7732 0.7800 0.8479 0.8558
Entropy 0.2062 0.2151 0.3808 0.3890 0.5104 0.5164 0.6205 0.6249 0.7101 0.7169 0.7843 0.7896
GraphPrior 0.2442 0.2491 0.4973 0.5040 0.6523 0.6570 0.7319 0.7395 0.8309 0.8394 0.9008 0.9062

RAF

NodeRank 0.2793 0.2842 0.5491 0.5558 0.7564 0.7654 0.8606 0.8648 0.9026 0.9076 0.9295 0.9369
Random 0.0940 0.1015 0.1992 0.2063 0.3030 0.3102 0.4031 0.4095 0.5072 0.5141 0.6023 0.6109
DeepGini 0.2229 0.2310 0.4059 0.4137 0.5532 0.5607 0.6576 0.6642 0.7484 0.7553 0.8176 0.8249
VanillaSM 0.2377 0.2449 0.4256 0.4329 0.5816 0.5902 0.7074 0.7160 0.7977 0.8044 0.8615 0.8678
PCS 0.2099 0.2160 0.4008 0.4083 0.5656 0.5716 0.6951 0.7004 0.7953 0.8049 0.8649 0.8723
Entropy 0.2236 0.2298 0.4001 0.4071 0.5350 0.5405 0.6326 0.6378 0.7182 0.7271 0.7866 0.7929
GraphPrior 0.2784 0.2861 0.5320 0.5376 0.6815 0.6870 0.7809 0.7866 0.8527 0.8606 0.8983 0.9038

RAR

NodeRank 0.3201 0.3254 0.6128 0.6212 0.7831 0.7875 0.8510 0.8556 0.8904 0.8977 0.9183 0.9242

0.7570 to 0.8041, whereas GraphPrior averages between 0.7046 and 0.7625. The
remaining testing prioritization methods show APFD ranges from 0.4922 to 0.7337.
In terms of improvement over GraphPrior, NodeRank demonstrates an average
improvement ranging from 4.69% to 8.78%. NodeRank’s improvement over the other
testing prioritization methods varies from 6.72% to 62.15%.

Table 4.13 presents the results of statistical analysis on adversarial datasets. The
adopted approach (Mann-Whitney U test method) for calculating the p-value is
explained in RQ1 (Section 4.5.1). Within Table 4.13, we see that the range of p-values
is from 2.4541 × 10−8 to 0.0057. All these values fall below 0.05, indicating that
the improvement of NodeRank in comparison to other test prioritization methods is
statistically significant.

Table 4.10 presents the confidence intervals for all test prioritization methods in
relation to the metric APFD. We see that NodeRank’s APFD has the highest lower
and upper bounds compared to other test prioritization methods. Specifically, the
lower bound is 0.7686, and the upper bound is 0.7749. These experimental results

76

4.5. Experimental Results

Table 4.13: Statistical analysis on adversarial datasets (in terms of p-value under
the Mann–Whitney U test)

Attack NodeRrank
vs Random

NodeRank
vs DeepGini

NodeRank
vs VanillaSM

NodeRank
vs PCS

NodeRank
vs Entropy

NodeRank
vs GraphPrior

DICE 3.3978 × 10−8 6.8803 × 10−7 1.2979 × 10−5 2.9367 × 10−6 1.7078 × 10−7 0.0021
MMA 2.4541 × 10−8 6.4702 × 10−5 4.6045 × 10−4 1.2353 × 10−4 2.0828 × 10−5 0.0014
NEAA 4.5746 × 10−8 3.3978 × 10−7 2.3978 × 10−5 4.2542 × 10−6 1.4537 × 10−7 0.0002
NEAR 2.6732 × 10−8 6.1731 × 10−7 1.1088 × 10−6 5.3228 × 10−7 3.3978 × 10−7 0.0009
PGD 3.3274 × 10−8 2.6274 × 10−5 4.6045 × 10−4 5.1867 × 10−5 1.3448 × 10−6 0.0017
RAA 8.2331 × 10−8 3.4582 × 10−7 5.5223 × 10−6 1.7497 × 10−6 1.1088 × 10−7 0.0016
RAF 3.4582 × 10−8 1.0307 × 10−6 1.4624 × 10−5 2.2701 × 10−6 1.7078 × 10−7 0.0057
RAR 6.4691 × 10−8 3.9739 × 10−7 5.5223 × 10−6 1.3448 × 10−6 9.5885 × 10−7 0.0041

Table 4.14: Confidence interval of NodeRank and the compared approaches in
terms of APFD on adversarial test inputs

Approach Lower Bound Upper Bound
Random 0.5013 0.5022
DeepGini 0.6705 0.6738
VanillaSM 0.6958 0.6987
PCS 0.6832 0.6861
Entropy 0.6501 0.6534
GraphPrior 0.7319 0.7344
NodeRank 0.7760 0.7783

underscore that in terms of APFD and considering confidence intervals, NodeRank
demonstrates better effectiveness compared to other test prioritization methods.

In addition to the APFD metric, we also computed the PFD of NodeRank and
compared approaches under adversarial attack scenarios, and the results are presented
in Table 4.11 and Figure 4.4. As shown in Table 4.11, NodeRank outperformed the
compared approaches regarding PFD values for all attacks and any prioritization
ratio of test inputs. Notably, NodeRank detected more than 90% of the bugs when
approximately 50% of the test inputs were prioritized.

Furthermore, Figure 4.4 offers two visual examples for assessing the effectiveness
of NodeRank compared to other approaches on the CiteSeer and LastFM datasets.
In the figure, NodeRank is represented by a red line, GraphPrior by a blue line, and
the baseline method by a pink line. We see that NodeRank consistently outperforms
GraphPrior, as well as all confidence-based approaches and the baseline method.
These experimental results demonstrate that the effectiveness of NodeRank exceeds
that of all compared approaches under adversarial attack scenarios, indicating its
efficacy in detecting bugs in adversarial datasets.

The box plot in Figure 4.5 illustrates NodeRank’s effectiveness (in terms of
APFD) compared to other test prioritization methods using box plots on adversarial
datasets. It presents the distribution of results from multiple repeated experiments
for both NodeRank and the compared approaches. In Figure 4.5, we see that, across
all adversarial datasets, NodeRank’s median effectiveness, as indicated by the median
line within the box, surpasses that of other methods.

Regarding the quartile range, NodeRank’s quartile range (i.e., the height of the
box) exhibits some variations across different datasets, but overall, its upper quartile
is higher than that of other methods. This difference is particularly noticeable
in the subjects "RAR, Cora, GAT" and "NEAA, Cora, GCN". In terms of the
outliers, we see that the box plots do not show significant outliers, indicating that

77

Chapter 4. Test Input Prioritization for Graph Neural Networks

NodeRank’s performance across different datasets is relatively stable. Based on the
above experimental results, we conclude that NodeRank outperforms all compared
testing prioritization methods in terms of APFD based on the distribution of data
from multiple experimental results. This demonstrates that NodeRank exhibits
higher effectiveness in test prioritization compared to other methods on adversarial
datasets.

Moreover, Table 4.12 and Table 4.14 displays the confidence intervals of all
test prioritization methods. Table 4.12 displays the confidence intervals of all test
prioritization methods in terms of PFD. We see that, in terms of PFD, NodeRank
also demonstrates the highest lower and upper bounds compared to other test priori-
tization approaches when prioritizing different ratios of tests. These experimental
findings emphasize that, from the perspective of confidence intervals, NodeRank
shows higher effectiveness compared to other test prioritization methods.

Table 4.14 displays the confidence intervals in terms of APFD. In Table 4.14,
NodeRank’s APFD shows the highest lower and upper bounds compared to other test
prioritization methods, with values of 0.7760 and 0.7783, respectively. Remarkably,
NodeRank’s lower bound (0.7760) even surpasses the upper bounds of all other
comparative methods. GraphPrior’s upper bound is 0.7344, while the upper bounds
for other test prioritization methods range from 0.5022 to 0.6987.

Answer to RQ2: On adversarial test inputs, NodeRank consistently demonstrates
better effectiveness in comparison to GraphPrior, all confidence-based approaches,
and the baseline method across all subjects in terms of both the APFD and PFD
metrics. Regarding APFD, NodeRank exhibits an average improvement of 4.96%
and 62.15% over the compared methods.

4.5.3 RQ3: Influence of Ensemble Learning Methods
Objective. We investigate the impact of ensemble learning strategies on NodeRank’s
effectiveness in the learning-to-rank process.
Experimental design. We employ NodeRank and its variants, namely NodeRankV

and NodeRankS (cf. Section 4.4.6 for details), to prioritize test inputs for both
natural and adversarial scenarios, and evaluate their effectiveness in terms of APFD.
These variants differ in the ensemble learning strategies used in the learning-to-rank
process.
Results. Table 4.15 presents the average effectiveness of NodeRank and its variants,
along with several compared approaches, on both natural and adversarial datasets.
The upper part shows the average effectiveness under different models, while the
bottom part shows the average effectiveness across different datasets. From Ta-
ble 4.15, we can observe that the average effectiveness of NodeRank and its variants
outperform all the compared approaches (i.e., GraphPrior, the confidence-based
approaches and random selection) in each case. Additionally, the effectiveness of
NodeRank is comparatively better than their variants. Across different GNN models,
NodeRank performs the best in 100% of the cases on natural data. Furthermore, on
the adversarial data, NodeRank also outperforms in 100% of the cases. From the per-
spective of datasets, on natural data, NodeRank performs better than all the variants
in each case. On adversarial data, NodeRank has the highest average effectiveness
across all adversarial datasets. Overall, the final average effectiveness of NodeRank
is 0.7833 and 0.7772 on natural and adversarial datasets, respectively. These experi-

78

4.5. Experimental Results

Table 4.15: Performance (APFD scores) of NodeRank variants associated to
different ensemble learning strategies
(#BC ⇔ #Best cases) and (Avg ⇔ Average APFD score)

Natural inputs Adversarial inputs
Approach #BC GAT GCN GraphSAGE TAGCN #BC GAT GCN GraphSAGE TAGCN
Random 0 0.4864 0.5028 0.4967 0.4959 0 0.5037 0.5023 0.5009 0.5014
DeepGini 0 0.6353 0.6805 0.7144 0.6855 0 0.6325 0.6737 0.7115 0.6850
VanillaSM 0 0.6792 0.7134 0.7236 0.7120 0 0.6686 0.7045 0.7202 0.7089
PCS 0 0.6789 0.7069 0.7048 0.7020 0 0.6610 0.6934 0.7003 0.6961
Entropy 0 0.6174 0.6650 0.6950 0.6474 0 0.6167 0.6607 0.6921 0.6477
GraphPrior 0 0.7475 0.7421 0.7501 0.7463 0 0.7298 0.7307 0.7428 0.7354
NodeRankV 0 0.7607 0.7505 0.7505 0.7481 0 0.7537 0.7483 0.7558 0.7475
NodeRankS 0 0.7551 0.7495 0.7512 0.7561 0 0.7516 0.7447 0.7527 0.7533
NodeRank 16 0.7876 0.7761 0.7851 0.7846 108 0.7795 0.7731 0.7872 0.7802

with Natural inputs with Adversarial inputs
Approach CiteSeer Cora LastFM Pubmed Avg CiteSeer Cora LastFM Pubmed Avg
Random 0.4849 0.4954 0.5011 0.5004 0.4955 0.5028 0.5064 0.4990 0.4991 0.5018
DeepGini 0.6315 0.7209 0.7017 0.6615 0.6788 0.6277 0.7082 0.6927 0.6604 0.6722
VanillaSM 0.6623 0.7397 0.7415 0.6847 0.7071 0.6524 0.7244 0.7318 0.6807 0.6973
PCS 0.6671 0.7251 0.7348 0.6656 0.6981 0.6511 0.7043 0.7257 0.6578 0.6847
Entropy 0.6279 0.7154 0.6183 0.6632 0.6562 0.6253 0.7027 0.6173 0.6618 0.6518
GraphPrior 0.6842 0.7801 0.7821 0.7448 0.7478 0.6735 0.7624 0.7637 0.7332 0.7332
NodeRankV 0.6845 0.7873 0.7909 0.7471 0.7525 0.6941 0.7745 0.7839 0.7397 0.7481
NodeRankS 0.6917 0.7845 0.7893 0.7465 0.7532 0.6881 0.7742 0.7864 0.7398 0.7471
NodeRank 0.7261 0.8158 0.8146 0.7768 0.7833 0.7286 0.8011 0.8093 0.7690 0.7772

Table 4.16: Feature ablation study results
with Natural inputs with Adversarial inputs

Approach CiteSeer Cora LastFM Pubmed Avg CiteSeer Cora LastFM Pubmed Avg
Random prioritization (b/c No features) 0.4849 0.4954 0.5011 0.5004 0.4955 0.5028 0.5064 0.4990 0.4991 0.5018
DeepGini 0.6315 0.7209 0.7017 0.6615 0.6788 0.6277 0.7082 0.6927 0.6604 0.6722
VanillaSM 0.6623 0.7397 0.7415 0.6847 0.7071 0.6524 0.7244 0.7318 0.6807 0.6973
PCS 0.6671 0.7251 0.7348 0.6656 0.6981 0.6511 0.7043 0.7257 0.6578 0.6847
Entropy 0.6279 0.7154 0.6183 0.6632 0.6562 0.6253 0.7027 0.6173 0.6618 0.6518
GraphPrior 0.6842 0.7801 0.7821 0.7448 0.7478 0.6735 0.7624 0.7637 0.7332 0.7332
NodeRankNF M 0.5828 0.6328 0.5933 0.6085 0.6044 0.5710 0.6200 0.5897 0.6030 0.5959
NodeRankNF M+GSM 0.6315 0.6796 0.7025 0.6452 0.6647 0.6569 0.6876 0.7106 0.6504 0.6764
NodeRank (i.e., NodeRankNF M+GSM+GMM) 0.7261 0.8158 0.8146 0.7768 0.7833 0.7286 0.8011 0.8093 0.7690 0.7772

mental results demonstrate that the sum-based ensemble learning strategies used in
NodeRank is more suitable for test prioritization.

Answer to RQ3: On both natural and adversarial datasets, NodeRank offers a
better effectiveness, in terms of APFD, over other variants. We also note that
any variant of NodeRank outperforms all the compared approaches in GNN test
prioritization.

4.5.4 RQ4: Ablation Study of Mutation Operators
Objective: We investigate the effect of each category of mutation operators (i.e.,
GSM, NFM, and GMM). To this end, we analyze the contributions of the features
generated by each type of mutation operator and conduct corresponding ablation
studies. We proceed as proposed by Meyes et al. [151]: We measure the impact
of a component on an ML system by removing or replacing this component and
observing whether the performance of the ML system is affected. The objective is not
to comprehensively check which feature set combinations provide good performance
but rather to check that each set contributes to the performance.
Experimental design: We assume that the node mutation features (NFM) as a key

79

Chapter 4. Test Input Prioritization for Graph Neural Networks

component of the NodeRank approach. Then, the graph structure mutation (GSM)
features, which are obtained from the dataset, are considered the next most important
feature set. Finally, the graph model mutation (GMM) features are considered as
the first that can be removed in the ablation study, following the process in [151].
The experimental steps for checking the contributions of each subset of mutation
features to the performance of NodeRank are thus as follows:

1. We compute the test prioritization performance of NodeRank when all mutation
features are used.

2. We compute the test prioritization performance of a variant of NodeRank where
the ranking model is learned with vectors that do not consider GMM features.

3. We compute the test prioritization performance of a variant of NodeRank where
the ranking model is learned only with NFM feature vectors (i.e., by removing
the GMM and GSM).

4. Finally, we also consider the case where no features are used. NodeRank, therefore,
does not implement ensemble learning to rank. Instead, we consider a random
ranking approach to prioritize the test set.

Note that we do not attempt to perform experiments that compare the value
of the different feature sets. Indeed, the mutation space of GNNs is complex, and
mutations of different types can produce feature vectors of various sizes, which may
implicitly impact the learning performance, making any performance comparison
biased or uninformative.
Results: The results of the ablation experiment are reported in Table 4.16. As
expected, the Random prioritization approach, which employs no mutation features
for learning to rank, performs the worst in terms of APFD. In contrast, the NodeRank
approach that learns to rank by incorporating all three mutation rule sets (pertaining
to nodes, graph structure, and graph model) exhibits the highest performance.
Remarkably, the exclusion of graph model mutation features leads to a decline in
learning performance by approximately 17.84% and 14.90% in terms of APFD on
natural and adversarial datasets, respectively. On the other hand, employing only
node mutation features yields a significant improvement over Random prioritization,
with a performance gain of approximately 21.98% and 18.75% in terms of APFD on
natural and adversarial datasets, respectively.

Moreover, by comparing against the performance of uncertainty-based DNN test
prioritization approaches and GraphPrior, we note that the combinations of the three
categories of mutation features were necessary to achieve state-of-the-art performance
in GNN test prioritization.

Answer to RQ4: The design choice in NodeRank to include all three types of
mutation operators was effective. Indeed, although the node mutation operator can
enable NodeRank to outperform random prioritization, it is the combination of
NFM, GSM, and GMM operators that together lead to the SOTA performance of
NodeRank.

80

4.5. Experimental Results

Table 4.17: Effectiveness (APFD scores) of NodeRank’s variants.
(NodeRankwithoutGMM does not generate mutated models. NodeRankRandom

does not use model mutation rules to generate mutated models. NodeRankDeepCime

uses model mutation rules to generate mutated models)
Natural inputs Adversarial inputs

Approach #BC GAT GCN GraphSAGE TAGCN #BC GAT GCN GraphSAGE TAGCN
NodeRankwithoutGMM 0 0.6607 0.6467 0.6701 0.6812 0 0.6772 0.6634 0.6826 0.6965
NodeRankRandom 0 0.6892 0.7143 0.7185 0.7162 0 0.6847 0.7112 0.7152 0.7144
NodeRankDeepCrime(effectSize ≥ 0.3) 0 0.7465 0.7448 0.7571 0.7597 0 0.7440 0.7416 0.7575 0.7542
NodeRankDeepCrime(effectSize ≥ 0.4) 0 0.7472 0.7445 0.7573 0.7599 14 0.7439 0.7417 0.7569 0.7543
NodeRankDeepCrime(effectSize ≥ 0.5) 8 0.7480 0.7449 0.7558 0.7602 7 0.7439 0.7418 0.7571 0.7542
NodeRankDeepCrime(effectSize ≥ 0.6) 0 0.7472 0.7444 0.7568 0.7601 38 0.7441 0.7420 0.7572 0.7541
NodeRankDeepCrime(effectSize ≥ 0.7) 2 0.7444 0.7402 0.7605 0.7603 15 0.7425 0.7398 0.7576 0.7540
NodeRankDeepCrime(effectSize ≥ 0.8) 2 0.7414 0.7353 0.7571 0.7622 21 0.7412 0.7372 0.7557 0.7540
NodeRankDeepCrime(effectSize ≥ 0.9) 4 0.7383 0.7331 0.7573 0.7601 13 0.7398 0.7338 0.7533 0.7537

with Natural inputs with Adversarial inputs
Approach CiteSeer Cora LastFM Pubmed Avg CiteSeer Cora LastFM Pubmed Avg
NodeRankwithoutGMM 0.6315 0.6796 0.7025 0.6452 0.6647 0.6569 0.6876 0.7106 0.6504 0.6764
NodeRankRandom 0.6686 0.7382 0.7452 0.6859 0.7095 0.6619 0.7460 0.7498 0.6676 0.7063
NodeRankDeepCrime(effectSize ≥ 0.3) 0.6995 0.7785 0.7734 0.7565 0.7520 0.7012 0.7677 0.7694 0.7495 0.7470
NodeRankDeepCrime(effectSize ≥ 0.4) 0.6998 0.7787 0.7736 0.7568 0.7521 0.7017 0.7667 0.7694 0.7495 0.7469
NodeRankDeepCrime(effectSize ≥ 0.5) 0.6989 0.7794 0.7739 0.7567 0.7522 0.7012 0.7670 0.7695 0.7496 0.7468
NodeRankDeepCrime(effectSize ≥ 0.6) 0.6993 0.7787 0.7737 0.7568 0.7521 0.7015 0.7672 0.7696 0.7497 0.7471
NodeRankDeepCrime(effectSize ≥ 0.7) 0.6991 0.7797 0.7706 0.7560 0.7513 0.7016 0.7669 0.7682 0.7478 0.7461
NodeRankDeepCrime(effectSize ≥ 0.8) 0.6967 0.7753 0.7692 0.7547 0.7490 0.7005 0.7664 0.7659 0.7457 0.7446
NodeRankDeepCrime(effectSize ≥ 0.9) 0.6965 0.7746 0.7661 0.7515 0.7472 0.6991 0.7646 0.7640 0.7432 0.7427

4.5.5 RQ5: Investigating the Contributions of Model Mutation
Rules on NodeRank Effectiveness

Objective: In this research question, our aim is to demonstrate that the model
mutation rules of NodeRank actually contribute to its effectiveness. In the original
NodeRank, we utilize the killing approaches in traditional mutation analysis for
DNNs. This killing process is used to generate model mutation features of a given
test input. The features are then utilized to predict the misclassification probability
of this input. In this process, the model mutation features generated by killing
may contain information resulting from model mutation rules and randomness in
model training, both of which may contribute to the effectiveness of NodeRank. In
this research question, by utilizing the killing approach in DeepCrime [60], which
considers the training randomness in the process of the killing, we aim to demonstrate
that the model mutation rules actually contribute to the effectiveness of NodeRank.
Experimental design: To demonstrate the aforementioned objective, we designed
three types of variants of NodeRank: 1) NodeRankDeepCrime, a variant that utilizes
DeepCrime’s killing method to mitigate the influence of randomness when generating
model mutation features. DeepCrime’s killing approach takes into account the
training randomness of the mutated model. Specifically, this killing approach requires
repeating the training process n times for both the original model N = ⟨N1, . . . , Nn⟩
and its mutated model M = ⟨M1, . . . , Mn⟩. A test is considered killed if the
difference between the outputs of the original and mutated models is statistically
significant with non-negligible and non-small effect size. 2) NodeRankRandom, which
does not incorporate model mutation rules and solely relies on random generation of
model mutation features, and 3) NodeRankwithoutGMM, which does not utilize model
mutation features. We validated whether model mutation rules contribute to the
effectiveness of NodeRank by comparing the effectiveness of these three variants. If
NodeRankDeepCrime outperformed both NodeRankRandom and NodeRankwithoutGMM, we
consider that the model mutation rules contribute to the effectiveness of NodeRank.

81

Chapter 4. Test Input Prioritization for Graph Neural Networks

In the subsequent sections, we first describe the detailed implementation of
DeepCrime. Then, we present the details of the variants of NodeRank and how
we leverage these variants to demonstrate that model mutation rules contribute to
NodeRank’s effectiveness.

1) Implementation of DeepCrime
Given an original GNN model N and a test t, the DeepCrime approach follows

the following method to determine whether a test is "killed".
❶ For the original GNN model N , we repeated its training process n times, resulting

in n GNN models: ⟨N1, . . . , Nn⟩. Similarly, for the mutated model M , we repeated
its training process n times, obtaining ⟨M1, . . . , Mn⟩. Consistent with previous
research [60], we set n = 20 in our experiments.

❷ For ⟨N1, . . . , Nn⟩, we used each GNN model to make predictions on the test t
and obtained the predicted classifications for t from each model. Similarly, for
⟨M1, . . . , Mn⟩, we used each mutated model to predict the test t and obtained the
predicted classifications for t from each model.

❸ Prior work [60] suggests that the mutated model M is considered "killed" if, for
the given test t, the difference between the output of the original and mutated
models, denoted as AN(t) = ⟨AN1 , . . . , ANn⟩ and AM(t) = ⟨AM1 , . . . , AMn⟩, is
statistically significant with a non-negligible and non-small effect size. Therefore,
we measure whether the mutated model M is "killed" using Formula 4.12.

isKill(N, M, t) =

true if effectSize(AN (t), AM (t)) ≥ β

and p−value(AN (t), AM (t)) < α

false otherwise
(4.12)

In Formula 4.12, isKilled indicates whether the test t "kills" the mutated model
M . AN(t) represents a series of predictions (outputs) for test t from the set of
models ⟨N1, . . . , Nn⟩. Similarly, AM(t) refers to ⟨AM1 , . . . , AMn⟩, representing the
set of predictions (outputs) for test t from the set of models ⟨M1, . . . , Mn⟩.

The term "effect size" [106] quantitatively measures the difference between two
distributions of APFD results. One commonly used measure of effect size is Cohen’s
d. This value can be interpreted using thresholds provided by Cohen [165]: |d| < 0.2
indicates a "negligible" effect, |d| < 0.5 indicates a "small" effect, |d| < 0.8 indicates
a "medium" effect, and otherwise, it is considered a "large" effect. The prior study
on DNN mutation analysis [60] pointed out that the effect size should be non-small.
The β can have an impact on the effectiveness of the killing method DeepCrime in
the context of NodeRank for test prioritization. In our experiments, we set β to be
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, covering a wide range of effect sizes. By adopting
different effect size values, we can observe whether, under different effect sizes, the
effectiveness of the NodeRank variants using DeepCrime and mutation rules is better
than the variant not using mutation rules but instead randomly generating mutated
models, thereby better validating the contributions of model mutation rules.
2) Variants of NodeRank

In the following, we explain how we design variants of NodeRank and how we
utilize them to demonstrate the effectiveness of NodeRank’s model mutation rule.
❶ In the first step, we generate three types of variants of NodeRank: NodeRankwithoutGMM,

NodeRankRandom, and NodeRankDeepCrime. Regarding NodeRankDeepCrime, we set
different values for the effect size, ranging from 0.3 to 0.9. This aims to measure
the effectiveness of NodeRankDeepCrime across varying effect sizes, providing a

82

4.5. Experimental Results

clearer demonstration of the effectiveness of our model mutation rules.
❷ NodeRankwithoutGMM does not utilize model mutation features for test prioriti-

zation. All other workflow processes in this variant remain consistent with the
original NodeRank.

❸ NodeRankRandom utilizes model mutation features for test prioritization. However,
the generated mutated models do not correspond to actual mutations; instead, it
chooses to obtain different but equivalent GNN models as mutated models. Due
to the randomness in training GNN models (such as the random initialization
of model weights before training), different initializations can lead to different
optimization paths during training, resulting in different weights at the end of
training. Therefore, under the same configuration and operating conditions,
the generated models can vary. In NodeRankRandom , we generated a series of
equivalent GNN models as mutated models using the same configuration and
operating conditions. All other workflow processes in this variant remain consistent
with the original NodeRank.

❹ NodeRankDeepCrime uses DeepCrime’s mutation killing approach as the killing
approach to generate model mutation features for test prioritization. All other
workflow processes in this variant remain consistent with the original NodeRank.

In summary, NodeRankwithoutGMM represents NodeRank without the use of model
mutation features. NodeRankRandom incorporates model mutation features, but the
mutated models are not generated by model mutation rules; instead, they alter the
initial random seed to produce different but equivalent GNN models as the mu-
tated models. NodeRankDeepCrime utilizes model mutation rules to generate mutated
models. After completing the above process, we consider that if the effectiveness of
NodeRankDeepCrime is higher than that of NodeRankRandom and NodeRankwithoutGMM,
the model mutation rules operated in NodeRankDeepCrime contribute to its effective-
ness.

1 2 3 4

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
P

FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior

a) Number of edges
0.05 0.10 0.15 0.20

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
P

FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior

b) Node feature offset

0.1 0.2 0.3 0.4

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
P

FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior

c) Negative slope
5 10 15 20

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
P

FD

NodeRank
DeepGini
Entropy
VanillaSM
PCS
GraphPrior

d) Hidden channel
Figure 4.6: Impact of mutation operator parameters in NodeRank

Results: Table 4.17 presents the experimental results for RQ5. We highlighted

83

Chapter 4. Test Input Prioritization for Graph Neural Networks

the approach with the highest effectiveness in grey to facilitate quick and easy
interpretation of the results. The table above showcases the average effectiveness
of NodeRankwithoutGMM, NodeRankRandom, and NodeRankDeepCrime across different
subjects in terms of models. The table below shows the average effectiveness in terms
of datasets.

The two tables show that in each case, NodeRankDeepCrime performs the best.
Furthermore, each variant of NodeRankDeepCrime, regardless of different effect size
settings, exhibits higher effectiveness than that of NodeRankRandom. According to
the experimental design mentioned above, if the effectiveness of NodeRankDeepCrime
is higher than that of NodeRankRandom and NodeRankwithoutGMM, we consider that
the model mutations (generated by model mutation rules) in NodeRankDeepCrime
contribute to mutated models. Therefore, the above experimental results indicate
that the model mutation rule of NodeRank actually contributes to its effectiveness.

Answer to RQ5: The model mutation rules of NodeRank actually contribute to
its effectiveness.

4.5.6 RQ6: Influence of Mutation Operator Parameters on
NodeRank

Objective: In NodeRank, we designed a set of new mutation operators specifically
for GNNs. In this research question, we explore the influence of the parameter ranges
of mutation operators on NodeRank.
Experimental design: First, we selected multiple mutation operators with pa-
rameters of integer/float types. This choice was made because, for Boolean-type
mutation operators, mutations involve toggling between True and False, resulting in
only one possible parameter value, rendering parameter changes unfeasible. Following
the approach from the existing study [10], for each investigated mutation operator,
we systematically varied its parameters multiple times while keeping the parame-
ters of other mutation operators in their initial states. Subsequently, we recorded
NodeRank’s effectiveness (measured by APFD) after each parameter change. We
used line graphs to visually depict the impact of parameter changes on NodeRank’s
effectiveness for each mutation operator.

Specifically, NodeRank consists of three types of mutation operators: Graph
structure mutation (GSM), Node feature mutation (NFM), and GNN model mutation
(GMM). Since these mutation operators aim to introduce subtle modifications to the
original test set or the GNN model, we aim to ensure that after adjusting parameter
ranges, the new parameter values also result in relatively slight changes.
• Graph structure mutation (GSM) GSM includes a mutation operator that

involves slightly changing the structure of the input graph by randomly adding
edges. Consequently, the parameter for this mutation operator is the number of
added edges. This parameter was set to 1, 2, 3, and 4 to investigate the impact of
the parameter range of this mutation operator on the effectiveness of NodeRank.

• Node feature mutation (NFM) NFM includes a mutation operator that
changes the features of the targeted nodes to adjust their positions in the feature
space. Consequently, the parameter for NFM is the node feature offset. This
parameter was set to 0.05, 0.10, 0.15, and 0.20 to investigate the impact of the
parameter range of this mutation operator on the effectiveness of NodeRank.

• GNN model mutation (GMM) GMM comprises multiple mutation operators

84

4.6. Discussion

that aim to make slight changes to the training parameters in NodeRank. We
selected mutation operators with integer/float-type parameters and adjusted
their parameter ranges. These include "Negative Slope" with parameter range
adjustments of (0.1, 0.2, 0.3, 0.4) and "Hidden Channel" with parameter ranges
of (5, 10, 15, 20).

Results: The experimental results of RQ6 are presented in Figure 4.6. The ex-
periments are conducted on 16 natural subjects. Among them, Figure 4.6a) shows
the impact of changing the parameter number of edges for the mutation operator
targeting graph structure. Figure 4.6b) illustrates the influence of the parameter
node feature offset for the mutation operator targeting node features. Figure 4.6c)
demonstrates the impact of the parameter negative slope for the mutation operator
targeting the GNN models. Figure 4.6d) displays the influence of the parameter
Hidden channel for the mutation operator targeting the GNN model. In this con-
text, the red line represents NodeRank. First, we see that across all parameter
settings of the mutation operator, NodeRank effectiveness consistently exceeds that
of all the comparative test prioritization methods (i.e., GraphPrior, confidence-based
approaches and random selection). Moreover, we found that NodeRank performs
stably when the parameter values of the newly designed mutation operators change.
For example, when modifying the "Number of edges" parameter, the APFD values
of NodeRank vary within the range of approximately 0.778 to 0.785. Similarly,
when adjusting the "Node feature offset" parameter, the APFD values of NodeRank
fluctuate between approximately 0.777 and 0.785.

Answer to RQ6: Across all parameter settings of the newly designed mutation
operator, NodeRank’s effectiveness consistently outperforms that of other compara-
tive test prioritization methods. Moreover, the effectiveness of NodeRank remains
stable when the parameter values change.

4.6 Discussion

4.6.1 Generality of NodeRank

Our proposed NodeRank and its variants perform test prioritization for GNNs
via ensemble-learning-based mutation analysis. The evaluation on 124 subjects
demonstrates their effectiveness on both natural and adversarial datasets. The
scheme of NodeRank, (i.e., slightly changing graph inputs and graph models) can
also be generalized to edge-level and graph-level GNN tasks. In the future, we will
carefully design relevant mutation rules to further adapt NodeRank to other GNN
tasks.

Additionally, we discuss the potential applicability of NodeRank for regression
tasks. However, currently, the mutation rules and ranking models of NodeRank are
designed explicitly for classification tasks. To extend NodeRank to regression tasks,
modifications to the model mutation rules and ranking models would be required. If
appropriate model mutation rules can be identified for regression tasks and suitable
ranking models can be designed, NodeRank could also be a promising approach for
regression tasks.

85

Chapter 4. Test Input Prioritization for Graph Neural Networks

4.6.2 Challenges of NodeRank
NodeRank requires a sufficiently large training set to train its internal ranking

model. This training set includes labels (i.e., samples that the model predicts
incorrectly are labeled as 1, while correctly predicted samples are labeled as 0). If the
original model has very high accuracy, it can result in very few training samples labeled
as 1, potentially leading to an imbalanced dataset during the training of NodeRank’s
ranking model. An imbalanced dataset can cause a decrease in performance when
dealing with samples labeled as 1, as there are not enough examples to learn how to
rank these samples correctly.

For example, in a scenario involving bank transfer transactions, where each
account represents a node and edges represent transfer transactions between accounts,
GNN models can be used to identify fraudulent accounts (i.e., whether a node is
a fraudulent account or not). If the GNN model has a very high accuracy (few
nodes predicted incorrectly), it will result in very few samples labeled as 1 in the
NodeRank training set. This directly affects the training of the ranking model in
NodeRank. Under these conditions, the effectiveness of NodeRank in prioritizing the
misclassified accounts will be affected.

4.6.3 Differences in Approaches for NodeRank
In this Section, we discuss the differences in approaches for NodeRank from three

perspectives, namely the differences in evaluating NodeRank methods, the differences
between NodeRank and its variants, as well as different NodeRank approaches with
different types of features.

[Differences in evaluating NodeRank methods] In addition to evaluating NodeRank
on natural datasets, we assess its effectiveness from three different perspectives, as
presented in RQ2 through RQ4. This is because these perspectives cover key aspects
and contribute to a comprehensive understanding of NodeRank’s performance. In
RQ2, we assess the efficacy of NodeRank when confronted with adversarial test
inputs. In RQ3, we explore how ensemble learning strategies influence NodeRank’s
effectiveness within the context of learning-to-rank. In RQ4, we examine the individ-
ual contributions of each category of mutation features (GSM, NFM, and GMM)
that are generated for NodeRank’s learning-to-rank model. Below, we provide a
detailed explanation of the differences across approaches for RQ2, RQ3, and RQ4, as
well as why it is important to assess the effectiveness of NodeRank from these three
different perspectives.
• RQ2 - Evaluation on Adversarial Test Inputs This perspective focuses on

assessing NodeRank’s performance when confronted with adversarial test inputs.
It is critical because it reveals NodeRank’s resilience and reliability in handling
challenging input data. In contrast to the evaluation methods in RQ2 and RQ3,
this assessment is conducted using adversarial test inputs rather than natural
datasets.

• RQ3 - Impact of Ensemble Learning Strategies This perspective investigates
how different ensemble learning strategies influence NodeRank’s effectiveness
within the context of learning-to-rank. This investigation is significant as it helps
us understand which strategies are more suitable for NodeRank to perform test
prioritization.

• RQ4 - Contributions of Mutation Features: In RQ4, we delve into the
individual contributions of each category of mutation features (GSM, NFM, and

86

4.7. Related Work

GMM) on NodeRank. Understanding these differences is essential to identify
which features are most critical for NodeRank’s effectiveness, guiding further
research and development efforts.
[Differences between NodeRank and its variants] In RQ3, we propose several

variants of NodeRank. In RQ3, the variants of NodeRank differ in the ensemble
learning strategies used to combine base ranking models. Apart from this distinction,
the workflows of the NodeRank variants remain identical to NodeRank.

[Different NodeRank approaches with different types of features] In RQ4, we
design different NodeRank approaches, which apply different types of mutation
features for test prioritization. Specifically, NodeRankNF M only applies the NFM
features. NodeRankNF M+GSM applies both the NFM and GSM features. Our aim is
to investigate the contributions of each feature type to the effectiveness of NodeRank.

4.6.4 Threats to Validity
Threats to Internal Validity. The internal threat to validity mainly exists in the
implementation of NodeRank, its variants, and the compared approaches. To
reduce the threat, we implemented all approaches based on the widely used library
PyTorch. Concerning the compared test prioritization approaches, we considered
the implementations released by the authors. Another internal threat lies in the
randomness of the model training process. To mitigate this threat, we conducted a
statistical analysis involving performing ten repetitions of the model training process
for both the original and mutated models. We then used these results to calculate
the statistical significance of the experiments. The selection of the mutation rules
used in our study represents another potential threat to the internal validity of our
research. Despite our best efforts to identify model mutation rules, it is possible that
there are other unknown training parameters that could serve as mutation rules. To
mitigate this potential threat, we deliberately chose model mutation rules that could
directly or indirectly impact node interdependence in the prediction process.
Threats to External Validity. The external threats to validity mainly stem from the
selection of the graph datasets as well as the GNN models adopted for our study.
This threat is mitigated by the diversity of the subjects, as well as by the fact that
we consider assessing not only natural inputs but also adversarial inputs.
Threats to Construct Validity. Our mutation rules are similar to the attacks used under
graph adversarial settings. This may, in theory, create a bias in the experimental
results related to adversarial test input prioritization. However, this threat is
mitigated by two elements: first, we also apply NodeRank on natural inputs; second,
the objective of the mutation is eventually to generate features for learning to rank
initial inputs, not generating new samples that will be part of the test suite.

4.7 Related Work
4.7.1 Test Prioritization Techniques

Test prioritization focuses on finding the ideal ordering of tests to detect more bugs
in a limited time budget. In traditional software testing, a variety of approaches [11,
76, 77, 166, 167, 79] has been proposed. Mutation analysis has also been explored
for test prioritization: Shin et al. [57] use a diversity-aware mutation adequacy
criterion and demonstrate its effectiveness on large-scale developer-written test cases.
Papadakis et al. [58] proposed mutating Combinatorial Interaction Testing models

87

Chapter 4. Test Input Prioritization for Graph Neural Networks

for test prioritization. Gökçe et al. [168] introduced a prioritized testing approach
aimed at enhancing the testing capacity of ESG-based testing algorithms. ESG-based
algorithms, as discussed by Belli et al. [169], focus on generating software test suites
that meet specific criteria related to both coverage and execution cost. Gökçe et
al.’s approach leverages adaptive competitive learning algorithms for training the
neural networks utilized in this process. The core objective of their work is to
improve the test capacity of existing algorithms by prioritizing the testing process.
GÖKÇE et al. [170] introduced a model-based approach to test prioritization. Their
method focuses on providing an effective algorithm for ordering test cases based
on the perceived degree of preference by the tester. Unlike code-based approaches,
which rely on prior knowledge such as fault counts, or source code, GÖKÇE et al.’s
approach is radically different. It does not require prior knowledge about the system
under test (SUT), making it suitable for a wide range of testing scenarios.

For DNNs, Feng et al. [6] have proposed DeepGini, which prioritized test inputs
based on model uncertainty: a test input is more likely to be incorrectly predicted
if the DNN model outputs similar probabilities for different classes. PRIMA [10]
is currently the state-of-the-art DNN test prioritization approach. It is based on
intelligent mutation analysis guided by learning-to-rank. NodeRank shares similarities
with PRIMA in the use of mutation analysis. Unfortunately, PRIMA’s mutation rules
are not applicable to GNNs and their inputs. Our work is thus the first approach
that specifically leveraged mutation testing adapted to GNNs in order to achieve
test input prioritization.

4.7.2 Mutation Testing
Mutation testing is commonplace in traditional software engineering [57, 58],

where it constitutes a widely validated way to assess the quality of test cases.
Mutation rules for traditional software have therefore been iteratively refined in
the community. Recent studies have extended the applicability of mutation testing
to various domains by focusing on adapting new mutation rules. Beyond simple
bugs, Loise et al. [130] proposed 15 security-aware mutant operators to improve
security testing. Beyond plain Java code, Deng et al. [171, 172] proposed novel
mutant operators that are specifically designed to test Android applications (e.g.,
with event handling and activity lifecycle mutant operators).

Furthermore, in addition to the context of traditional software, several studies
have investigated the application of mutation testing to DNNs and have proposed
different mutation operators and frameworks. For instance, Ma et al. [20] proposed
DeepMutation, a method to assess the quality of test data for DL systems using
mutation testing. To achieve this, they designed a collection of source-level and
model-level mutation operators to inject faults into the training data, programs, and
DL models. The effectiveness of the test data is evaluated by analyzing the extent to
which the injected faults can be detected. Later, Hu et al. [59] extended their work
into a mutation testing tool for DL systems named DeepMutation++. This tool
introduced new mutation operators for feed-forward neural networks (FNNs) and
Recurrent Neural Networks (RNNs) and enabled the mutation of run-time states of
an RNN. Another notable contribution is DeepCrime [60], a mutation testing tool
that implements a set of DL mutation operators based on real DL faults. Shen et
al. [61] proposed MuNN, a mutation analysis method for neural networks. MuNN
defined five mutation operators based on the characteristics of neural networks.

88

4.8. Conclusion

4.7.3 Deep Neural Network Testing

In order to improve the test efficiency of DNNs, existing studies [6, 48, 46, 10,
173, 59, 47, 174] has proposed several approaches to optimize the test process, which
is mainly divided into two categories. The first one is test input prioritization, which
has been elaborated in the above section. The second one is test selection, which
focuses on selecting a small group of test inputs to precisely estimate the accuracy
of the whole testing set to reduce labelling costs. Li et al. [48] proposed Cross
Entropy-based Sampling (CES) to select representative test inputs for DNN accuracy
estimation, which minimizes the cross-entropy between the selected set and the entire
test set to ensure the distribution of the selected test set similar to the original test
set. Chen et al. [46] proposed PACE for test selection and accuracy estimation. Pace
clusters all the inputs in a test set into different groups and leverages the MMD-critic
algorithm [49] to select prototypes from each group. In addition to improving DNN
testing efficiency, existing studies [51, 20, 8, 7, 52] have also focused on measuring
DNN testing adequacy. Pei et al. [8] proposed neuron coverage to assess the extent
to which a test set covers the DNN model logic. Ma et al. [7] proposed DeepGauge,
a set of coverage-based metrics that consider neuron coverage a good indicator to
evaluate the adequacy of test inputs. Kim et al. [52] proposed surprise adequacy,
which assesses the adequacy of test inputs by measuring their surprise with respect
to the training set.

4.8 Conclusion
To relieve the labelling-cost problem and improve the efficiency of GNN testing, we

propose a novel test prioritization approach, NodeRank, which prioritizes test inputs
that are more likely to be misclassified by the evaluated GNN model. NodeRank
filled a gap in the literature: prioritization approaches that achieve state-of-the-art
performance on DNNs are not suitable for GNNs since they ignore the interdependence
between test inputs in graph-structured datasets. NodeRank leverages the concepts
of mutation testing to perform test prioritization, with the aim of reducing the
labelling cost in the process of evaluating a GNN model. Overall, NodeRank is a test
prioritization approach that is model-based, input-based, and mutation testing-based.
It utilizes mutation operations on both GNN models and test inputs to generate
mutation features for each test input, facilitating test prioritization. The core idea
is that: If a test input (node) can kill many mutated models and produce different
prediction results with many mutated inputs, this input is considered more likely to
be misclassified by the GNN model and should be prioritized higher. The specific
process of NodeRank consists of two core steps: (1) NodeRank introduced three
types of mutation rules to generate mutants from the perspective of the graph
structure, node features, and the GNN model, respectively. (2) After obtaining
the mutation results, NodeRank generated mutation feature vectors and utilized
ensemble ranking models for test prioritization. Experimental results on 124 diverse
subjects, considering natural and adversarial inputs, demonstrated the effectiveness
of NodeRank. More specifically, NodeRank outperformed all the compared test
prioritization approaches with an average improvement between 4.41% and 62.15%.
Moreover, ablation experiments are performed to check that the different types of
mutation features are all useful for the effectiveness of NodeRank.

89

Chapter 4. Test Input Prioritization for Graph Neural Networks

Availability
Our replication package is available at

https://zenodo.org/records/10049979.

90

https://zenodo.org/records/10049979

5 PriCod: Prioritizing Test Inputs for
Compressed Deep Neural Networks

In this chapter, we propose PriCod, a novel test prioritization approach specifically
designed for compressed DNN models. PriCod is rooted in two fundamental premises:
firstly, that significant prediction deviations between compressed and original DNN
models signify a greater likelihood of test input misclassification, and secondly, that
test inputs situated near decision boundaries are more susceptible to misclassification.
By prioritizing potentially misclassified test inputs, testers can allocate limited label
budgets to these challenging inputs, thus speeding up the debugging process.

This chapter is based on the work in the following research paper:
• Yinghua Li, Xueqi Dang, Jacques Klein, Yves LE Traon and Tegawendé F.

Bissyandé. PriCod: Prioritizing Test Inputs for Compressed Deep Neural
Networks. Under TOSEM major revision review.

Contents
5.1 Introduction . 93
5.2 Background . 96

5.2.1 DNNs and DNN testing 96
5.2.2 DNN Model Compression 97
5.2.3 Confidence-based Test Prioritization for DNNs 97

5.3 Approach . 98
5.3.1 Preliminary Study . 98
5.3.2 Overview of PriCod . 99
5.3.3 Deviation Features Generation 101
5.3.4 Embedding Features Generation 104
5.3.5 Feature Fusion . 105
5.3.6 Feature-based Ranking 105
5.3.7 Variants of PriCod . 106

5.4 Study design . 108
5.4.1 Research Questions . 108
5.4.2 Models and Datasets . 109
5.4.3 Noise Generation Techniques 112

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

5.4.4 Adversarial Techniques 113
5.4.5 Compared Approaches 113
5.4.6 Measurements . 116
5.4.7 Im plementation and Configuration 116

5.5 Results and analysis . 117
5.5.1 RQ1: Performance of PriCod on Natural Test Inputs . . 117
5.5.2 RQ2: Effectiveness on Noisy Test Inputs 121
5.5.3 RQ3: Effectiveness on Adversarial Test Inputs 124
5.5.4 RQ4: Impact of fusion strategies 125
5.5.5 RQ5: Feature contribution analysis 127
5.5.6 RQ6: Exploring whether uncertainty-based metrics can

enhance the effectiveness of PriCod 130
5.6 Discussion . 132

5.6.1 Limitations of PriCod 132
5.6.2 Threats to Validity . 132

5.7 Related Work . 133
5.7.1 Test prioritization for Deep Neural Networks 133
5.7.2 Test Prioritization for Traditional Software 134
5.7.3 Deep Neural Network Testing 134
5.7.4 Test Generation approaches for Compressed DNN models 135

5.8 Conclusion . 136

92

5.1. Introduction

5.1 Introduction
The widespread use of deep neural networks (DNNs) has brought significant

advancements to machine learning in areas like computer vision [1, 2], autonomous
vehicles [3, 4], and recommendation systems [5]. However, the increasingly complex
DNNs require substantial computational resources and memory, limiting their prac-
tical deployment in resource-constrained environments, such as edge devices. To
tackle these challenges, the research community has focused on the development of
compressed DNN models that strike a balance between computational efficiency and
model accuracy. Compressed DNN models, essentially scaled-down neural networks,
are designed to sustain predictive accuracy while keeping computational requirements
to a minimum. A multitude of compression techniques, including quantization [175],
have emerged as valuable tools for reducing the size and computational load of
DNNs while safeguarding their predictive prowess. Consequently, the evaluation
and validation of compressed DNNs have become increasingly crucial to ensure their
performance.

Existing studies [176, 177, 178] mentioned that, when evaluating compressed
DNN models, labeling new test cases is necessary. However, labelling test inputs for
compressed DNN models faces a central challenge: the high labelling cost issue. This
challenge arises for two main reasons. Firstly, the scale of the test set can be extensive.
Secondly, manual labeling is still the mainstream approach, requiring the participation
of multiple annotators to guarantee the accuracy of the labeling process for each
test input. A highly appealing solution to this challenge is test input prioritization.
This technique prioritizes test inputs that are more likely to be misclassified when
resources and time are limited for manual labeling. In contrast to traditional DNN
models, test prioritization for compressed DNN models presents unique challenges:
1) Traditional DNN models usually consider two factors for test prioritization: the
tests and the evaluated DNN model. For instance, DeepGini prioritizes tests by
assessing the uncertainty level in the model’s predictions for each test. However,
test prioritization for compressed models can involve incorporating information from
an additional source: the prediction deviation between the compressed DNN model
and its original DNN model. Integrating data from this deviation information is
also essential to improve the effectiveness of test prioritization. However, existing
test prioritization methods for traditional DNNs do not take this important aspect
into consideration; 2) In mutation-based test prioritization methods, the ranking
of test cases is typically conducted by introducing model/input mutations, such as
neuron effect block and weights shuffling [10]. However, due to the unique structure
of the compressed model, some specific model mutation operations such as neuron
activation inversion cannot be directly applied to compressed DNN models [19].
Below, we presented existing test prioritization approaches for traditional DNNs
and discussed their limitations in the context of compressed DNNs. Specifically,
current test prioritization methods can generally be categorized into three types:
coverage-based, confidence-based, and mutation-based strategies.

Coverage-based approaches prioritize test inputs based on the extent of neuron
coverage within DNNs. Conversely, confidence-based methods aim to identify poten-
tial misclassifications by quantifying the classifier’s output confidence for each test
case. Notably, the DeepGini approach by Feng et al. [6] utilizes the Gini score as
a confidence metric for effective test prioritization. More recently, Weiss et al. [9]

93

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

conducted a comprehensive study, which included an evaluation of several confidence-
based metrics, such as Vanilla Softmax, Prediction-Confidence Score (PCS), and
Entropy. Mutation-based techniques propose various mutation operations and employ
the modified results to prioritize test cases. While these methods have made progress
in identifying potentially misclassified test inputs, they still face certain challenges
and limitations when applied to compressed DNN models.
• Previous research [6] has demonstrated that coverage-based methods are less ef-

fective and more time-consuming when compared to confidence-based approaches.
• The mutation-based test prioritization approach, PRIMA [10], cannot be applied

to compressed DNN models because the model mutation operators of PRIMA are
not applicable to them. This limitation arises from the fact that the architectures
and gradients of compressed models are typically unavailable [19].

• Furthermore, when employing confidence-based test prioritization approaches for
compressed DNN models, these methods treat the compressed DNN models as
black boxes and ignore the information regarding deviations before and after
model compression when conducting test prioritization.
In this paper, we propose PriCod (Prioritizing test inputs for Compressed DNN

models), a test prioritization approach specifically tailored for compressed DNN
models. PriCod leverages the deviation between the original model and compressed
DNN models, along with the embedding information of test inputs, to perform test
prioritization. The fundamental principle underlying PriCod is twofold:
• Premise 1: For a given test, if the prediction behavior between the compressed

DNN model and the original model shows a large deviation, it suggests that, for
this input, the compressed model is more likely to make a prediction different
from that of the original model. This test is considered more likely to reveal bugs
in the compressed model. We validated premise 1 through a targeted preliminary
study. Details can be found in Section 5.3.1.

• Premise 2: Test inputs that are located closer to the decision boundary of
the model are more likely to be misclassified. This premise has been previously
established in prior research [20].
Building upon the aforementioned premises, PriCod generates two distinct types

of features: deviation features and embedding features. To ensure a comprehensive
representation of deviation information, PriCod employs a set of 17 strategies for
generating deviation features. For each test input, PriCod combines these two feature
types to predict the probability of the test being misclassified by compressed DNN
models. Below, we provide an overview of the two types of features and elaborate on
how PriCod utilizes them to achieve effective test prioritization.
• Deviation Features Deviation features are specifically designed to capture the

impact of model compression on test inputs. They quantify the disparities in
predictions between the original DNN model and the compressed DNN model
for each test input. We generated 17 types of deviation features, such as Cosine
Similarity [179] and Manhattan Distance [180], with the aim of providing a more
comprehensive quantification of the disparity.

• Embedding Features Embedding Features encapsulate the representative infor-
mation within each test input. Through the process of mapping a test input to a
vector in space, PriCod aims to indirectly unveil the proximity between the test
input and the decision boundary.
For each test instance, PriCod integrates the aforementioned two types of fea-

94

5.1. Introduction

tures to derive the ultimate feature vector. Using this vector, PriCod learns the
misclassification probability of this test. Ultimately, PriCod ranks all tests within a
test set based on their misclassification probabilities.

Compared to test prioritization approaches for traditional DNNs, the unique
novelty and contribution of PriCod lies in its tailored design for compressed models.
Unlike traditional DNN test prioritization methods that rely on information from
just the test set and the DNN model, PriCod incorporates a third key element:
the original model from which the compressed model is derived. More specifically,
PriCod utilizes the disparities between the original and compressed DNN models for
test prioritization. By converting these differences into features, PriCod enhances the
effectiveness of test prioritization in the context of compressed DNNs. The novelty
of PriCod mainly exists in the following aspects.
• Utilization of Deviation Features PriCod first leverages the prediction de-

viation between the compressed DNN model and its original DNN model for
test prioritization. To this end, PriCod introduces "deviation features" that aim
to quantify the impact of model compression on each test input. Specifically,
PriCod employs 12 different deviation evaluation metrics, aiming to comprehen-
sively assess prediction deviation, thereby enhancing the effectiveness of test
prioritization.

• Integration of Embedding Features In addition to the "deviation features",
PriCod introduces "embedding features" for test prioritization, encompassing
crucial information from each test input. By mapping test inputs to vectors in
space, PriCod aims to indirectly reveal the proximity of test inputs to the model’s
decision boundaries, thereby guiding the test prioritization process.

• Adopting Different Feature Fusion Strategies PriCod employs various
feature fusion strategies to combine the aforementioned deviation features and
embedding features for test prioritization. According to the existing study [181],
feature fusion can contribute to improving model predictive capability. By using
different feature fusion techniques in PriCod, we can identify the most suit-
able strategy to enhance the effectiveness of PriCod’s ranking model for test
prioritization.
PriCod demonstrates its wide applicability across various contexts of compressed

DNNs. For instance, in the context of medical image diagnosis, hospitals utilize
DNN models to diagnose lung diseases in X-ray chest images. To overcome storage
and computational limitations, they opt for compressed DNN models. However, this
compression process carries the risk of accuracy loss, which can lead to treatment
delays, missed early interventions, and patient health deterioration. PriCod can be
used to effectively identify images at higher risk of misclassification by the compressed
DNN model. By prioritizing these samples for screening, it can reduce the risk of
misdiagnosis and enhance the reliability of the diagnostic model.

We conducted an extensive study to assess PriCod’s performance, utilizing a
dataset comprising 182 subjects (paired datasets and compressed DNN models).
The evaluation covered a diverse range of test inputs, including natural data, noisy
data, and adversarial data. Additionally, we meticulously selected a set of test
prioritization approaches for comparison, which have previously proven effective in
existing studies [9, 6]. Furthermore, we included random selection as the baseline ap-
proach. Our experimental results highlight PriCod’s superior performance compared
to existing methods. When applied to natural test inputs, PriCod demonstrates

95

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

an average improvement ranging from 7.43% to 55.89%. For noisy and adversarial
test inputs, it exhibits an average improvement ranging from 7.92% to 52.91% and
from 7.03% to 51.59%, respectively. We publish our dataset, results, and tools to
the community on Github1.

Our work has the following major contributions:
• Approach We propose PriCod, a novel test prioritization approach designed

specifically for compressed DNN models. Our approach leverages the discrepancies
in predictions before and after model compression, as well as the embedding
features of tests, to guide test prioritization.

• Study To evaluate PriCod, we conduct an extensive study involving 182 subjects,
encompassing natural, noisy, and adversarial datasets. Within this study, we
systematically evaluate PriCod in comparison to multiple test prioritization
approaches. Our experimental results demonstrate the effectiveness of PriCod.

• Performance Analysis We assess the contributions of various feature types to
the performance of PriCod. Additionally, we analyze the impact of feature fusion
techniques on PriCod’s effectiveness. Furthermore, we investigate the relationship
between the misclassification probability and the deviated behaviors.

5.2 Background
5.2.1 DNNs and DNN testing

Classification deep neural networks (DNNs) [87] serve as the core of numerous
deep learning (DL) systems. Classification refers to the task of categorizing input data
into different classes [182], such as identifying objects in images or categorizing emails
as spam or non-spam. DNNs can perform the classification task by learning mappings
from input data to specific categories. They adjust the weights and parameters
within the network through training data, enabling the network to automatically
capture patterns and features in the data, thereby achieving accurate classification.

A DNN consists of multiple layers: an input layer, an output layer, and one or
more hidden layers. Each layer is composed of a series of neurons. The input layer is
the first layer of the network, responsible for receiving raw data. The output layer is
the final layer of the network, generating the final prediction results. Hidden layers
lie between the input and output layers. They transmit information and perform
feature extraction within the network. Each hidden layer comprises multiple neurons
that combine and transmit information through weights and activation functions. In
the context of DNNs, neurons are the fundamental computational units. Neurons in
hidden and output layers are interconnected with all neurons in the preceding layer
through weighted edges. The weights of these edges are automatically learned during
a training process using a large dataset with labeled training examples. Following
training, a DNN can autonomously classify input samples, such as images, into their
respective categories. For example, within the framework of a DNN model designed
for animal classification tasks, it can differentiate between various types of animals
in images, precisely labeling whether it is a cat, dog, or bird.

Ensuring the quality and reliability of DNN models is of paramount importance.
DNN testing has emerged as a widely adopted approach to achieve this goal [111,
60, 108, 183]. Similar to traditional software systems [77, 184, 185, 78], DNN testing
relies on the use of inputs and oracles. In the context of DNN testing, test inputs

1https://github.com/yinghuali/PriCod

96

https://github.com/yinghuali/PriCod

5.2. Background

represent the data that the model is expected to classify. These inputs can take
various forms depending on the specific task of the DNN under examination, such as
images, natural language, or speech. Test oracles in DNN testing involve manual
labeling, wherein human annotators manually assign ground truth labels to each
input. By comparing these labeled ground truth labels with the predicted output of
the DNN model, it becomes possible to evaluate the model’s accuracy in generating
the correct output for a given input.

5.2.2 DNN Model Compression
Model compression has emerged as a promising avenue of research to facilitate

the deployment of DNN models [28, 29, 30]. The primary objective of DNN model
compression is to minimize the computational and memory requirements of models
while maintaining their performance, thus enabling effective deployment in resource-
constrained contexts. A variety of techniques have been proposed for compressing
DNN models. Among these techniques, Quantization plays a crucial role, which
operates by compressing a DNN model through the adjustment of bit numbers
allocated to weight representation [31]. In the conventional landscape of DNN
models, weights find their common expression in the form of 32-bit floating-point
numbers. The primary goal of quantization is to reduce the bit precision of parameters
in neural network models, thereby decreasing storage and computational overhead
while maintaining optimal model performance. This involves the utilization of
reduced bit representations like 8-bit, which in turn substantially curtails the storage
requirements of the model. In our study, we primarily employed quantization as the
method for model compression.

The currently trending model compression techniques primarily encompass two
options: TensorFlow Lite (TFLite) [32] and CoreML [33]. These two compression
methodologies have gained extensive traction within the mobile device domain [70].
TFLite, developed by Google, is a deep learning inference framework explicitly
designed for mobile and embedded devices. Its standout feature is its highly optimized
computational performance, which ensures the efficient execution of trained neural
network models on the Android platform [34]. On the other hand, CoreML is
Apple’s solution for deep learning inference on mobile devices, tailored exclusively
for the iOS ecosystem. CoreML leverages the inherent hardware advantages of
Apple devices and achieves rapid inference for neural network models through
strategic hardware acceleration implementation. In our research, we employed
the aforementioned techniques (TFLite and CoreML) to compress the original
DNN models into compressed DNN models, aiming to offer a more comprehensive
evaluation.

5.2.3 Confidence-based Test Prioritization for DNNs
Confidence-based methods identify inputs that can potentially expose bugs (i.e.,

possibly misclassified test inputs) by analyzing the output probabilities of a DNN
classifier. One classic confidence-based test prioritization technique is DeepGini,
which prioritizes test inputs by calculating Gini scores for each input. These scores
measure the model’s confidence in classifying each input, thus facilitating test
prioritization. More specifically, if a DNN produces similar probabilities for all classes
towards a test input, it indicates lower confidence in the classification. As a result,
this input will be prioritized higher. DeepGini has demonstrated effectiveness across

97

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

various prevalent DNN datasets, such as CIFAR10 (color images) [186] and Fashion
(fashion product images) [187]. Recently, Weiss et al. [9] extensively explored diverse
techniques for prioritizing DNN test inputs, encompassing a series of confidence-
based approaches, such as Vanilla Softmax, Prediction-Confidence Score (PCS),
and Entropy. These metrics have been proven effective in DNN test prioritization.
Compared with coverage-based test prioritization methods (e.g., CTM and CAM),
which prioritize inputs based on neuron coverage, confidence-based methods offer
several distinct advantages.
• Efficiency Confidence-based methods require minimal time and computational

resources, as they solely rely on statistical computations of confidence levels in
the predicted probability vectors from the output softmax layer.

• Effectiveness Confidence-based methods have demonstrated higher effectiveness
compared to various coverage-based test prioritization techniques.

• Minimal Need for Intermediate Information Unlike coverage-based meth-
ods, confidence-based approaches do not necessitate the collection of extensive
intermediate information to compute coverage rates. Additionally, they enhance
security by not requiring an in-depth inspection of the DNN, thereby safeguarding
sensitive information embedded within the network.

However, applying confidence-based methods to compressed DNN models comes with
a limitation. These methods solely depend on the predictive confidence information
of the compressed DNN model without considering the differences between the com-
pressed model and the original model. Our proposed approach, PriCod, incorporates
this deviation information in the test prioritization process. We compared PriCod
with a set of confidence-based test prioritization techniques and demonstrated that
Pricod outperforms all the comparative methods, as evidenced by Section 6.5.

5.3 Approach
5.3.1 Preliminary Study

The core idea of premise 1 is that, given a test input, if there is a large deviation
in the prediction behavior between the compressed DNN model and the original
model, it indicates that this test have a high probability to be misclassified by the
compressed DNN model. In this section, to validate the rationality of Premise 1, we
conducted the following preliminary study:
Objectives: We investigate the relationship between the prediction deviation
resulting from model compression and the probability of the test being misclassified
by the compressed DNN model.
Experimental design: We utilized a variety of distance measurement metrics,
such as Euclidean Distance and Manhattan Distance, to investigate the correlation
between prediction deviations and misclassification probabilities. For each distance
metric, we evaluated the prediction deviations between the original DNN model and
the compressed model for each sample in the test dataset, accordingly assigning a
deviation score. Subsequently, we ranked all the test samples in descending order
based on their deviation scores. We then divided the samples into ten equally sized
groups, with deviations progressively decreasing across these ten segments. Within
each segment, we identify the number of misclassified tests to observe whether there
was a relationship between prediction deviation magnitude and the likelihood of
misclassification.

98

5.3. Approach

Results: The experimental results of the preliminary study are presented in Table 5.1
and Figure 5.1. Table 5.1 displays the number of misclassified tests in different
deviation levels of test groups based on various distance metrics. The "Deviated
Behavior Metrics" in the table represent the metrics used to measure deviation.
Furthermore, for each metric, we sorted all tests in the test set according to the
magnitude of their deviation behavior. The range of 0%-10% indicates the top 10%
of samples with the highest deviations. Similarly, 10% to 20% represents samples
with deviation magnitudes falling within the top 10% to 20% interval. In each test
group (i.e., 10%~20% and 20%~30%), the total number of samples is the same.
Table 5.1: Correlation between prediction deviation in the original model and the
compressed model and misclassification of tests

Deviated Behavior
Metrics

Percentage of tests selected
0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Euclidean 877 815 769 705 635 499 347 200 81 28
Manhattan 918 851 794 712 618 475 309 174 77 26
Chebyshev 868 811 755 690 628 504 356 230 86 27
SSD 877 815 769 705 635 499 347 200 81 28
Wasserstein 859 826 789 725 633 498 338 183 78 27

To provide a more precise illustration of the data in the table, we provide a
concrete example: the number in the first row and first column of the table indicates
that, when using the Euclidean method as the deviation metric, among the top 10%
of tests with the highest deviation between the original model and the compressed
model, there were 877 tests misclassified by the compressed model. It is important
to note that the experiments for this research question were conducted using natural
datasets, and the number of misclassified tests represents the mean across all 20
subjects.

We see that, as the deviation level decreases, regardless of the distance metric used
to measure the deviation, the number of misclassified tests in each group decreases.
For instance, with the Manhattan metric, in the top 10% of tests with the highest
deviation, there were 918 misclassified tests. In the 10% to 20% deviation range,
there were 851 misclassified tests, and this number decreased to 794 in the 20%
to 30% range and further to 712 in the 30% to 40% range. Only 26 tests were
misclassified in the 90% to 100% range. To visually represent this decreasing trend,
we provide Figure 5.1, where each curve represents the relationship between deviation
and misclassification for different distance metrics. In Figure 5.1, we see that as
the deviation level decreases, the number of misclassified tests in the test groups
gradually decreases. The above experimental results indicate that for a given test, if
the original DNN model and the compressed model exhibit higher deviation in their
predictions, the test is more likely to be misclassified by the compressed model.

Finding Tests with higher prediction disparities between the original
DNN model and the compressed model are more likely to be misclassified
by the compressed model.

5.3.2 Overview of PriCod
In this paper, we introduce PriCod, a novel test prioritization approach specifically

designed for compressed Deep Neural Network (DNN) models. The overview of
PriCod is depicted in Figure 5.2. Overall, the workflow of PriCod consists of four
steps: Deviation Feature Generation, Embedding Feature Generation, Feature Fusion,
and Feature-based Ranking. We provide a brief overview of these four steps below.

99

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

0%
~10%

10%
~20%

20%
~30%

30%
~40%

40%
~50%

50%
~60%

60%
~70%

70%
~80%

80%
~90%

90%
~100%

0

200

400

600

800

N
um

be
r o

f M
is

cl
as

si
fie

d
Te

st
s

Euclidean
Manhattan
Wasserstein
Chebyshev
SSD

Figure 5.1: Correlation between deviation behavior and misclassification of tests.
X-Axis: Tests sorted by decreasing deviation; Y-Axis: the number of misclassified
tests
For detailed explanations, please refer to Section 5.3.3 to Section 5.3.6.
❶ Deviation Feature Generation PriCod initially generates deviation features

for each test input. These features capture the behavioral differences between the
compressed DNN model and its original DNN model when predicting a given test
input t. The utilization of deviation features for test prioritization is grounded
in the premise that, for a given test, if the prediction behavior between the
compressed DNN model and the original model exhibits a large deviation, this
test is considered more likely to be misclassified by the compressed DNN model.
(The preliminary study conducted in Section 5.3.1 further validates this premise).

❷ Embedding Feature Generation For each test case, PriCod also generates
embedding features to reflect the key characteristics of the test (image/text).
This step is based on the premise that test inputs closer to the model’s decision
boundary are more likely to be misclassified. By mapping each test input to a
vector in space, the embedding features can indirectly indicate the proximity of
the test to the decision boundary.

❸ Feature Fusion PriCod integrates deviation features and embedding features,
generating a more comprehensive feature representation for each test input.

❹ Feature-based Ranking Utilizing the generated fused feature vector, PriCod
employs the LightGBM model to calculate misclassification scores for each test
input. A high score for a test implies that it is more likely to be misclassified
by the compressed model. Therefore, PriCod ranks all tests in descending order
based on the misclassification scores.
Below, we explain the rationale for the design.

• Deviation feature generation - prioritizing tests based on behavioral
deviation: A key insight of PriCod is that if there is a high prediction deviation
between the compressed model and the original model for a given test, it is highly
likely that the compressed model has potential issues arising from the compression
when handling this test. Therefore, PriCod utilizes the deviation information to
perform test prioritization. The feasibility of this approach is demonstrated by
the preliminary study conducted in Section 5.3.1.

• Embedding feature generation - prioritizing tests based on proximity
to the decision boundary: An existing study [20] has pointed out that test
inputs close to the decision boundary are more likely to be misclassified. PriCod
generates embedding features to indirectly reflect the proximity of each test input

100

5.3. Approach

to the decision boundary, thus performing test prioritization.
• Feature fusion - enhancing the predictive power of the ranking model:

According to the existing study [181], feature fusion can enhance the predictive
capabilities of models. Through feature fusion, we aim to enhance the ability of
PriCod’s ranking model to predict misclassification scores for each test, thereby
improving the effectiveness of test prioritization.

• Feature-based ranking - predicting the misclassification probability
based on features: Given a test input, PriCod utilizes the LightGBM model
to estimate the probability of it being misclassified based on the fused features.
LightGBM has been proven to be a powerful algorithm capable of predicting
the probability values for different categories [89]. Within the framework of
PriCod, LightGBM categorizes tests into two groups: those "misclassified by the
compressed model" and those "not misclassified by the compressed model". We
utilize LightGBM to predict the probability of each sample being misclassified
by the compressed model, referred to as the misclassification score. A high
misclassification score implies that the test is more likely to be misclassified by the
compressed model. Therefore, PriCod ranks all tests in descending order based
on the misclassification scores.

Compressed DNN

Data set

Original DNN

Embedding features Embedding Model

Deviated behaviors
analysis

Deviation features

Feature
combination

Training data with label

Test data
to be labeled

Misclassification
Classifier

Training

Misclassification
scores

Prioritized test set

Figure 5.2: Overview of PriCod

5.3.3 Deviation Features Generation
During the process of model compression, which aims at reducing storage and

computational costs, the model can lose some details and complexity, resulting in a
relatively simplified compressed model. Deviations in prediction behavior can arise
between the original DNN model and the compressed DNN model. Our core premise
for prioritizing testing based on these behavioral discrepancies is as follows: When
there is a significant deviated behavior between the compressed DNN model and the
original model for a given test, it suggests that the compressed model is more likely
to produce a prediction different from that of the original model for this input. This
test is deemed more likely to expose bugs in the compressed model. We validated
premise 1 through a specially designed preliminary study. Further details can be
found in Section 5.3.1.

In order to quantify the magnitude of differences in predictions between the origi-
nal model and the compressed DNN model, we propose 17 strategies for generating
deviation features, with the aim of effectively encapsulating variations in predictions
between the original model and the compressed DNN model. Our objective is to
provide a comprehensive suite of measures to capture different aspects of deviation
before and after model compression for each test input.
• Classification Deviation Features (CLA) [19]: These features capture the

101

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

disparities in predicted classes between the original DNN model and the compressed
DNN model for a given test input. To derive these features, we compare the
specific category predictions for each test case obtained from the original DNN
model and the compressed DNN model. When the predictions differ, it signifies
that the compressed model displays classification behavior contrary to that of
the original model, providing a direct reflection of the variations in predictive
behavior.

• Confidence Deviation (CFD) [6]: CFD reflects the absolute difference between
the probability of the predicted category by the original model and the probability
of the same category by the compressed DNN model. It reflects the degree of
variation in the models’ confidence levels.

• Euclidean Distance Features (EUCL) [83]: These features measure the
Euclidean distance between the probability vectors of predictions made by the
original model and the compressed model for a given test input. This distance
metric reflects the overall magnitude of differences between the models’ prediction
probabilities, providing a comprehensive view of their predictive disparities.

• Manhattan Distance Features (MHD) [84]: MHD represents the Manhattan
Distance between the probability vectors of predictions made by the original
model and the compressed model for a given test input. It quantifies the sum of
absolute differences between corresponding probabilities, indicating the overall
shift in predictions and the directions of these shifts.

• Chebyshev Distance Features (CHD) [188]: CHD reflects the Chebyshev
Distance between the probability vectors of predictions made by the original
model and the compressed model for a specific test input. This metric highlights
the maximum absolute difference between corresponding probabilities, showcasing
the most significant deviations in the models’ predictions.

• Pearson Correlation Coefficient Features (PCC) [86]: PCC measures the
Pearson Correlation Coefficient between the probability vectors of predictions
made by the original model and the compressed model for a given test input. It
indicates the strength and direction of a linear relationship between the predictions,
offering insights into the consistency of their deviations. A higher PCC value
indicates smaller disparities in predictive behavior between the original model
and the compressed model, while a lower PCC value indicates relatively larger
disparities.

• Sum of Squared Differences Features (SSD) [85]: SSD reflects the Sum of
Squared Differences between the probability vectors of predictions made by the
original model and the compressed model for a specific test input. It emphasizes
larger deviations while downplaying smaller ones, providing a measure of the
overall prediction divergence.

• Hellinger Distance Features (HED) [189]: HED reflects the Hellinger Distance
between the probability vectors of predictions made by the original model and the
compressed model for a given test input. It measures the similarity between the
square root of the prediction probabilities, offering insights into their predictive
differences.

• Wasserstein Distance Features (WAS) [190]: WAS reflects the Wasserstein
Distance between the probability vectors of predictions made by the original model
and the compressed model for a specific test input. It measures the minimum
"cost" of transforming one distribution into another, highlighting their divergence.

102

5.3. Approach

• Coordinate Deviation Features: CDF is obtained by subtracting the origin
coordinates from the prediction vector of the compressed model. This vector
directly reflects the deviation in predictions of the compressed DNN models from
the origin coordinates.

• Relative Entropy Features (REL) [191]: REL reflects the Relative Entropy
between the probability vectors of predictions made by the original model and
the compressed model for a given test input. It measures the information lost
between the compressed model and the original model.

• Difference Vector Features (DIF): DIF refers to the vector obtained by
subtracting the prediction vector of the original model from the prediction vector
of the compressed model for a specific test input. This vector directly reflects the
direction and magnitude of deviation in predictions.

The aforementioned deviation features exhibit the following differences:
1) Classification Deviation Features (CLA) vs. Confidence Deviation
(CFD) CLA focuses on the difference in classification results, i.e., whether the
compressed model produces the same output classification for a given test as its
original model. CFD measures the deviation in confidence, indicating the differences
in prediction uncertainty between a compressed model and its original model for a
given test.
2) Euclidean Distance (EUCL) vs. Manhattan Distance (MHD) EUCL
measures the straight-line distance between the prediction vectors of the compressed
DNN model and its original DNN model, making it suitable for quantifying overall
deviations in predictions in a multi-dimensional space. On the other hand, MHD
calculates the sum of absolute differences in each dimension based on the prediction
vectors.
3) Chebyshev Distance (CHD) vs. Sum of Squared Differences (SSD)
CHD emphasizes the difference in the maximum single dimension of the prediction
vectors, particularly highlighting extreme values. SSD represents the sum of squared
differences across dimensions, offering a quantitative measure of overall deviation.
4) Hellinger Distance (HED) vs. Wasserstein Distance (WAS) HED mea-
sures the disparities in the shape of distributions between the prediction vectors
generated by the compressed model and those of its original model for a specific test.
In contrast, WAS focuses on the "effort" required to transform one distribution into
another.
5) Relative Entropy (REL) vs. Pearson Correlation Coefficient (PCC)
REL specifically focuses on information loss or gain to quantify the disparity in
prediction distributions between the compressed model and its original model. On
the other hand, PCC measures the degree of linear correlation among the prediction
vectors.
6) Coordinate Deviation Features (CDF) vs. Difference Vector Features
(DIF) Given a test input, CDF reflects the absolute prediction bias between pre-
dictions made by the compressed model and those by the original model. On the
other hand, DIF emphasizes changes in both direction and magnitude relative to the
predictions of the original model and the compressed model.

The aforementioned deviation features have proven to be useful in the context of
PriCod for test prioritization, as evidenced by the preliminary study conducted in
Section 5.3.1 and RQ5 (Feature contribution analysis). Specifically, the rationale
behind these features is derived from PriCod’s premise 1, which states that for a

103

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

given test, if the prediction behavior between the compressed DNN model and the
original model exhibits a large deviation, it suggests that this test is more likely
to be misclassified by the compressed DNN model. The aforementioned features
are all designed to measure the prediction differences. Therefore, these features
can be utilized for test prioritization. The validation of premise 1’s reasonability
is established in the preliminary study (cf. Section 5.3.1), and the effectiveness of
deviation features is further demonstrated in RQ5 (cf. Section 5.5.5), which leverage
ablation studies to confirm the contributions of the deviation features.

5.3.4 Embedding Features Generation
Embedding Features (EF) capture the intrinsic information of each test input

t ∈ T . In our experiments, PriCod was evaluated under two scenarios: image-type
tests and text-type tests. In the following sections, we present the generation process
of embedding features under each of the scenarios. In the context of image-type tests,
to obtain these Embedding Features (EFs), we utilize a pre-trained ResNet model [87]
to transform each test into a vector representation. In the case of text-type tests,
we employ the BERT [192] model to map each input into a corresponding vector
representation.

The process by which ResNet transforms an image into an embedding feature
vector is as follows: First, the pre-trained ResNet network is employed to load the
image. Through successive layers of convolution and pooling, the image undergoes a
gradual transformation into higher-level abstract features. The output of the final
global average pooling layer is extracted and treated as the image’s embedding. This
embedding encapsulates the semantic information of the image.

The principle behind prioritizing testing using the Embedding Features of test
cases is that: test inputs closer to the decision boundary of the model are more likely
to be misclassified, as outlined in existing literature [20]. By mapping images to
vectors in space, PriCod can automatically learn the distance between a test and the
decision boundary to perform effective test prioritization. The benefits of utilizing
the ResNet model to generate embedding features are outlined below:
• Automatic Identification of Vital Features The ResNet model can automat-

ically extract crucial features from raw data. By generating embedded features,
key characteristics can be focused.

• Effective Feature Generation ResNet boasts powerful feature generation
capabilities. Its architecture integrates multiple convolutional and pooling layers,
allowing the model to effectively capture a wide range of features and patterns
within images. This capability can be highly advantageous for test prioritization.
The process by which BERT converts textual data into an embedding feature

vector can be described in the following steps:
• Tokenization The input text, whether a sentence or a paragraph, is broken down

into smaller units called tokens. These tokens are typically words or subwords,
and each is assigned a unique identifier.

• Embedding Each token identifier is transformed into a corresponding word
vector. These vectors are rich in semantic information, representing not just the
token but also aspects of its meaning.

• Contextual Analysis with Transformer Encoders BERT utilizes multiple
layers of Transformer encoders to process these word vectors. These encoders are
adept at capturing contextual information, allowing the model to understand the

104

5.3. Approach

nuances and varied meanings of words based on their context in the sentence or
paragraph.

• Generation of Embedding Vectors The final hidden states outputted by the
Transformer encoders serve as the embedding vectors. These vectors represent
the entire input text (sentence or paragraph) and encapsulate both the semantic
and contextual information of the original text.
The advantages of the BERT model include: BERT takes into account contextual

information when processing text, and the vectors it generates can better represent
the semantic meaning of the text. As a result, when text information is mapped
into space, BERT can place semantically similar texts closer together in this space,
with texts of the same category being nearer to each other and different texts being
farther apart. These vectors in space can indirectly reflect the distance from the
decision boundary.

5.3.5 Feature Fusion
Building upon the above procedures, PriCod produces two distinct categories of

feature vectors for each test sample in T : deviation feature vector and embedding
feature vector. Following this, for each test sample t ∈ T , PriCod combines the two
feature vectors and input to the LightGBM classifier, facilitating the prediction of
the misclassification score for the test case. The process of feature fusion serves
to enhance the effectiveness of subsequent test prioritization. Each type of feature
(deviation features, embedding features) captures distinct aspects of the data, which
hold informative value for the final prioritization. Through the amalgamation of
these features into a singular feature vector, multiple sources of information are
effectively integrated.

5.3.6 Feature-based Ranking
After obtaining the feature vector for each test t in set T , PriCod employs the

LightGBM classifier [89] as the ranking model to predict the misclassification
probability for each t based on its corresponding feature vector. LightGBM is a
gradient-boosting framework that employs decision trees as base learners. LightGBM
is designed for efficient parallel computation. In the subsequent section, we elaborate
on the procedures of constructing the classifier and elucidate the adaptations carried
out on the classifier to generate the misclassification scores instead of producing
categories.
• Construction of the LightGBM Classifier Given the compressed DL model

M and the evaluated dataset, to build the classifier, we first partitioned the
dataset into two sets: a training set labeled as R and a test set labeled as T , with
a partition ratio of 7:3 [92]. The test set T remains untouched for evaluating
PriCod. The LightGBM ranking model is trained using the dataset R′, which
is derived from the original training set R of the evaluated compressed model.
The process of constructing the training set for the ranking model R′ is described
below. Initially, we generate deviation features and embedding features for each
instance r ∈ R. These features serve as the training features for the new dataset
R′. Subsequently, we construct the labels for R′. To this end, we employ the
compressed DNN model M to predict the classification of each instance r ∈ R.
We compare the model’s predictions with the corresponding ground truth of r to
determine whether r is misclassified. Instances that are misclassified are labeled

105

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

as 1, while correctly classified instances are labeled as 0. Consequently, we obtain
the labels for the training set of the ranking model. By utilizing the constructed
training set, we train the ranking model LightGBM.

• Adapting the LightGBM Classifier Once the training is complete, LightGBM
can be used to predict whether a test input will be misclassified by the compressed
DNN model. To enable the model to produce misclassification scores as outputs
instead of labels, we introduced specific modifications to the original LightGBM
classifier. More precisely, we extract the intermediate value from the model’s
output, which initially served to determine whether a test would be misclassified
by the model. In the model’s decision-making process, if this intermediate value
exceeds a certain threshold, the input is classified as "misclassified"; otherwise, it
is classified as "not misclassified." Within the adjusted LightGBM classifier, this
intermediate value refers to the misclassification score. A higher value signifies
that a test instance is more likely to be misclassified.

• Test Prioritization Ultimately, PriCod ranks all the tests within the test set T
in a descending order based on their respective misclassification probability scores.
This sorting procedure yields the prioritized test set denoted as T ′.

In the above steps of constructing the LightGBM classifier, we utilized deviation
features and embedding features as training features to train the LightGBM model.
We selected these specific features due to their ability to reflect the probability of a
test being misclassified by a compressed DNN model. The rationale behind selecting
these features is grounded in the core premises of PriCod (cf. Section 5.3.3 and
Section 5.3.4):
• Premise 1 (for deviation features) For a given test, if the prediction behavior

between the compressed DNN model and the original model exhibits a large
deviation, it suggests that this test is more likely to be misclassified by the
compressed DNN model. This premise indicates that deviation features can reflect
the probability of a test being misclassified. The preliminary study conducted in
Section 5.3.1 further validates this premise.

• Premise 2 (for embedding features) Test inputs that are located closer to
the decision boundary of the model are more likely to be misclassified [20]. This
premise elucidates that embedding features can reflect the probability of a test
being misclassified. Specifically, by mapping each test input to a vector in space,
the embedding features can indirectly indicate the proximity of the test to the
decision boundary.

In the training set, each training sample is labeled as 0 or 1. Specifically, 0 means
the sample was not misclassified by the compressed DNN model under evaluation,
while 1 indicates the sample was misclassified. PriCod first generates deviation
features and embedding features from each training sample. Using the LightGBM
model, it learns the relationship between these features and "being misclassified".
Following the completion of training, given a new test input, PriCod can quantify
the probability of this test being misclassified based on its deviation features and
embedding features.

5.3.7 Variants of PriCod
To comprehensively investigate how different feature fusion methods affect the

overall performance of PriCod, we propose three distinct PriCod variants. These
variants were meticulously designed to incorporate different approaches for combining

106

5.3. Approach

embedding features and deviation features, shedding light on the impact of feature
fusion techniques on PriCod’s effectiveness. These three variants are denoted as
PriCoda, PriCodm, and PriCodc, each adopting a unique strategy for feature fusion:
addition, multiplication, and cross-multiplication [193], respectively.
• PriCoda The variant PriCoda utilizes an addition-based fusion method for test

prioritization. In this variant, the feature fusion strategy relies on addition, com-
bining the embedding features and deviation features by adding them. Addition-
based fusion is straightforward and results in a merged feature vector where the
corresponding elements of the two input feature vectors are summed together.

• PriCodm The variant PriCodm employs a multiplication-based fusion method
for test prioritization. This approach involves multiplying each element of the
embedding features by the corresponding element of the deviation features.
Multiplication-based fusion is more intricate compared to addition-based fu-
sion and has the potential to emphasize interactions and relationships between
the two feature sets.

• PriCodc PriCodc employs a cross-multiplication feature fusion strategy. This
approach performs cross-multiplication on elements of the embedding features
and deviation features. Cross-multiplication is a more complex fusion method
compared to both addition and multiplication. It allows the model to capture
intricate interdependencies between features by considering all possible pairwise
interactions.
To enhance the clarity of each feature fusion strategy, we incorporate an illustrative

example. Given a test t, we first follow the steps outlined in Section 5.3.3 and
Section 5.3.4 to obtain its embedding feature vector and deviation feature vector.
Assuming these two vectors are {e1, e2, e3} (embedding features) and {d1, d2, d3}
(deviation features), we present the final vectors obtained after addition-based
fusion, multiplication-based fusion, and cross-multiplication-based fusion below.
Addition-based fusion: {e1 + d1, e2 + d2, e3 + d3}. Multiplication-based
fusion: {e1 × d1, e2 × d2, e3 × d3}. Cross-multiplication-based fusion: {e1 ×
d1, e1×d2, e1×d3, e2×d1, e2×d2, e2×d3, e3×d1, e3×d2, e3×e3}. In the following,
we explain the rationale behind the studied feature fusion strategies.
• Feature fusion based on addition (PriCoda) The rationale behind this

fusion approach mainly consists of three points. 1) This approach is intuitive,
simply adding the information of two feature sets together, making it easy to
understand and implement. 2) by simple addition, this method preserves the
complete information of each feature set. 3) This approach is widely used in the
context of DNNs and has been proven to be effective [87].

• Feature fusion based on multiplication (PriCodm) The rationale behind
the multiplication-based fusion approach mainly consists of three points. 1)
Multiplication-based fusion emphasizes the interdependence between features. 2)
Multiplying certain input elements by smaller weights can contribute to ignoring
irrelevant information.

• Feature fusion based on cross-multiplication (PriCodc) 1) The cross-
multiplication fusion allows the model to capture more complex interdependencies
and interactions between features by considering possible pairwise interactions.
2) This approach creates a high-dimensional feature space capable of revealing
more hidden patterns and relationships. 3) Existing research [193] has proven the
effectiveness of this method.

107

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

While we have introduced diversity in the feature fusion aspect, we intentionally
maintained all other aspects of the PriCod variants identical to the original Pri-
Cod, aiming to ensure that any observed performance differences can be attributed
primarily to the selected fusion method.

5.4 Study design
In this section, we present a comprehensive elucidation of the specific details

concerning our study design. To begin, Section 5.4.1 elucidates the research questions
that guided our investigation. Subsequently, Section 5.4.2 provides intricate insights
into the compressed models and datasets adopted in our study. Section 5.4.3
showcases the noisy generation techniques utilized in RQ2, while Section 5.4.4 exhibits
the adversarial attacks employed in the context of RQ3. Moreover, Section 5.4.5
demonstrates the test prioritization methods subjected to comparison. In addition,
Section 5.4.6 outlines the measurement metrics we employed to assess the effectiveness
of PriCod, its variants, and the compared approaches. Finally, Section 5.4.7 provides
a comprehensive overview of the implementation and configuration setup utilized
throughout our study.

5.4.1 Research Questions
Our experimental evaluation answers the research questions below.

• RQ1: How does PriCod perform in prioritizing test inputs for com-
pressed DNN models?
When utilizing confidence-based test prioritization techniques for compressed
DNN models, these methods typically treat the compressed DNN models as
black boxes, neglecting valuable information about deviations before and after
model compression in the prioritization process. In our research, we introduce
PriCod, a tailored test prioritization approach explicitly designed for compressed
DNNs. PriCod harnesses prediction disparities induced by model compression, in
combination with test input embeddings, to efficiently prioritize tests that may
reveal misclassifications. In this study, we assess the effectiveness of PriCod by
comparing it to a set of existing test prioritization methods.

• RQ2: How does PriCod perform on noisy test inputs?
When implemented on mobile devices, compressed DNN models can encounter
noisy data due to a range of factors, such as capturing photos from various angles,
as well as the presence of raindrops. In this research inquiry, we employ a set
of noise generation techniques [93, 94, 95, 96] to construct noisy datasets for
evaluating the performance of PriCod.

• RQ3: How does PriCod perform on adversarial inputs?
The previous research questions have assessed PriCod’s effectiveness with natural
and noisy test inputs. In this research question, we evaluate PriCod’s performance
with adversarial test inputs.

• RQ4: How does the feature combination strategies impact the effec-
tiveness of PriCod?
In this research question, we aim to gain a deeper understanding of the impact
of different feature combination strategies on the effectiveness of PriCod. By
analyzing this critical factor, we can determine which feature fusion technique is
better suited for PriCod.

• RQ5: To what extent does each type of features contribute to the

108

5.4. Study design

Table 5.2: Compressed DNN models and datasets
ID Dataset # Size Model Compression Tool Supported Mobile Platforms
1 CIFAR10 60,000 AlexNet-coreml Core ML iOS, watchOS
2 CIFAR10 60,000 AlexNet-tflite TensorFlow Lite Android, Linux-based Systems
3 CIFAR10 60,000 VGG16-coreml Core ML iOS, watchOS
4 CIFAR10 60,000 VGG16-tflite TensorFlow Lite Android, Linux-based Systems
5 Fashion 70,000 LeNet1-coreml Core ML iOS, watchOS
6 Fashion 70,000 LeNet1-tflite TensorFlow Lite Android, Linux-based Systems
7 Fashion 70,000 LeNet5-coreml Core ML iOS, watchOS
8 Fashion 70,000 LeNet5-tflite TensorFlow Lite Android, Linux-based Systems
9 Plant 52,803 NIN-coreml Core ML iOS, watchOS
10 Plant 52,803 NIN-tflite TensorFlow Lite Android, Linux-based Systems
11 Plant 52,803 VGG19-coreml Core ML iOS, watchOS
12 Plant 52,803 VGG19-tflite TensorFlow Lite Android, Linux-based Systems
13 CIFAR100 60,000 ReseNet152-coreml Core ML iOS, watchOS
14 CIFAR100 60,000 ReseNet152-tflite TensorFlow Lite Android, Linux-based Systems
15 CIFAR100 60,000 DenseNet201-coreml Core ML iOS, watchOS
16 CIFAR100 60,000 DenseNet201-tflite TensorFlow Lite Android, Linux-based Systems
17 News 21,107 LSTM-coreml Core ML iOS, watchOS
18 News 21,107 LSTM-tflite TensorFlow Lite Android, Linux-based Systems
19 News 21,107 GRU-coreml Core ML iOS, watchOS
20 News 21,107 GRU-tflite TensorFlow Lite Android, Linux-based Systems

effectiveness of PriCod?
In this research question, we investigate the impact of various feature types on the
performance of PriCod. This investigation enables us to identify the features that
have a more significant influence on PriCod. Additionally, conducting a thorough
analysis of feature contributions can enhance our comprehension of the underlying
mechanisms and operational principles of PriCod.

• RQ6: To what extent can uncertainty-based metrics contribute to
improving the effectiveness of PriCod?
In the test prioritization process within PriCod, we generate embedding features
for each test to indirectly reveal the proximity between the test and the decision
boundary. A prior study [9] indicated that uncertainty-based metrics can also
reflect the proximity. Therefore, in this research question, we investigate whether
incorporating uncertainty-based metrics can enhance the effectiveness of PriCod.
To be more specific, we employ several uncertainty metrics (such as DeepGini [6]
and Margin [88]) to produce uncertainty features for each test and integrate them
into the original PriCod for test prioritization.

5.4.2 Models and Datasets
In our study, we have utilized a total of 182 subjects to assess the performance of

PriCod and the compared approaches [6, 101]. Table 5.2 provides essential particulars
regarding these subjects, encompassing the dataset-model associations, dataset sizes,
tools used for DNN compression, and supported mobile platforms. Among the
182 subjects under investigation in this study, 20 subjects are constructed based
on natural datasets, 126 subjects are built on noisy datasets, and 36 subjects are
established on adversarial datasets.
5.4.2.1 Datasets

In our study, we evaluate the performance of PriCod using five distinct datasets:
CIFAR10 [194], Fashion [187], Plant [195], CIFAR100 [196], and News [197]. The
selection of these specific datasets is grounded in their widespread adoption within
the domain of DNN testing. Notably, CIFAR10 and Fashion are two of the most

109

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

widely employed datasets for DNN evaluation. The Plant dataset stands out as a
renowned dataset for AI applications focused on detecting plant diseases. Moreover,
compressed models tailored to this context have already been implemented. Therefore,
investigating this dataset becomes particularly valuable for the study of compressed
models.
• CIFAR10 [194] The CIFAR10 dataset serves as a frequently utilized collection

of images for training and assessing DNN models. Comprising a total of 60,000
images, each measuring 32x32 pixels and in color, the dataset is categorized into
ten distinct classes, containing 6,000 images per class. These categories include
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

• Fashion [187] The Fashion dataset comprises fashion product images from 10
categories, such as T-shirts, trousers, dresses, etc. Each category consists of 7000
images, making a total of 70,000 images. All images in the dataset are grayscale
with dimensions of 28x28 pixels.

• Plant [195] The Plant dataset covers a diverse range of crops and various disease
types, including images depicting healthy plant leaves. Specifically, the Plant
dataset comprises 52,803 plant leaf images organized into 38 distinct category
labels. Each label corresponds to a combination of a specific crop and a disease.
Examples of these classes encompass Healthy Corn Leaf, Potato Late Blight, and
Rose Black Spot.

• CIFAR100 [196] The CIFAR100 dataset is a widely used benchmark in computer
vision, consisting of 60,000 32x32 color images categorized into 100 distinct classes
(such as clouds, cups, and forests). CIFAR100 is a valuable resource for training
and evaluating DNN models, particularly designed for image classification tasks.

• News [197] The News dataset is an English-language dataset that comprises
an annotated corpus of finance-related tweets. This dataset is utilized for the
classification of finance-related tweets based on their topics. It consists of 21,107
samples categorized into 20 classes. Examples of these categories include financials,
currencies, and opinion.

5.4.2.2 Compressed DNN models

Our study encompasses a set of 20 compressed deep neural network (DNN) models.
Our approach for model compression primarily focuses on model quantization, a
prevalent method in the field of model compression. The reason for selecting
quantization as our compression method is that, in the industry, quantization is
considered one of the most commonly adopted techniques for deploying models
to mobile devices [70, 198]. In the process of generating compressed models, we
primarily employed two quantization techniques to compress DNN models. Below,
we provide details regarding the two techniques used to compress DNN models:
• Tensorflow Lite [199] We utilized TensorFlow Lite (TFLite) as one of the

compression techniques to compress DNN models. TFLite, a component of the
TensorFlow deep learning framework developed and maintained by Google, offers
interfaces for converting TensorFlow models into lightweight counterparts. This
facilitates deployment on various low-computing devices, including Android mobile
phones. In our experiments, we chose 8-bit quantization for model compression.
This involves quantizing the weights and activation values in the model to 8-bit
numbers, thereby reducing the model’s size and enhancing deployment efficiency

110

5.4. Study design

on resource-constrained devices.
• CoreML [200] In our experiments, we utilized another pivotal technique for model

compression, namely CoreML. Developed by Apple, CoreML is a framework
designed to transform models into the Mlmodel format, customized for iOS
platforms. Similar to parameter selection in TFLite, we implemented 8-bit
quantization. This process involves quantizing the model’s weights and activation
values into 8-bit numbers.
In the following, we present detailed information on all the compressed DNN

models employed to evaluate PriCod.
• AlexNet-coreml and AlexNet-tflite AlexNet [201] is a deep convolutional

neural network designed for image classification tasks. It comprises multiple
convolutional layers, pooling layers, and fully connected layers, all using the Rec-
tified Linear Unit (ReLU) activation function. AlexNet-coreml is a compressed
version of the AlexNet model converted into the CoreML format, suitable for
inference and applications on Apple devices. AlexNet-tflite is a compressed
version of the AlexNet model converted into the TensorFlow Lite (TFLite) format,
designed for inference and applications on Android and embedded devices.

• VGG16-coreml and VGG16-tflite VGG16 [202] is a deep convolutional neural
network with 16 convolutional and fully connected layers, primarily used for
image classification. Its notable features include fixed 3x3 convolutional kernel
size and a large number of layers, making it suitable for training on large-scale
image datasets. VGG16-coreml is a compressed version of the VGG16 model
converted into the CoreML format intended for image processing tasks on Apple
devices. VGG16-tflite is a compressed version of the VGG16 model converted
into the TFLite format, designed for image processing tasks on Android and
embedded devices.

• LeNet1-coreml and LeNet1-tflite LeNet-1 [203] is an early convolutional
neural network. It consists of convolutional layers, pooling layers, and fully
connected layers, suitable for small-scale image classification tasks. LeNet1-
coreml is a compressed version of the LeNet-1 model converted into the CoreML
format intended for image processing and recognition tasks on Apple devices.
LeNet1-tflite is a compressed version of the LeNet-1 model converted into the
TFLite format.

• LeNet5-coreml and LeNet5-tflite LeNet-5 [203] is another early convolutional
neural network. It includes convolutional layers, pooling layers, and fully connected
layers and has more layers and parameters compared to LeNet-1. LeNet5-coreml
is a compressed version of the LeNet-5 model converted into the CoreML format.
LeNet5-tflite is a compressed version of the LeNet-5 model converted into the
TFLite format.

• NIN-coreml and NIN-tflite NIN [204] is an innovative convolutional neural
network architecture that introduces the concept of "network in network" to
enhance model expressiveness. It uses 1x1 convolutional layers to extract local
features. NIN-coreml is a compressed version of the NIN model converted
into the CoreML format, suitable for image processing tasks on Apple devices.
NIN-tflite is a compressed version of the NIN model converted into the TFLite
format.

• VGG19-coreml and VGG19-tflite VGG19 [202] is an extended version of
VGG16 with more convolutional and fully connected layers, suitable for complex

111

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

image classification tasks. VGG19-coreml is a compressed version of the VGG19
model converted into the CoreML format. VGG19-tflite is a compressed version
of the VGG19 model converted into the TFLite format.

• ReseNet152-coreml and ReseNet152-tflite ResNet152 [87] is a deep con-
volutional neural network (CNN) employing the Residual Network architecture,
with 152 layers and 60.4 million parameters. ResNet152-coreml represents a
compressed version of the ResNet152 model, converted into the CoreML format.
Similarly, ResNet152-tflite is a compressed variant of the ResNet152 model,
converted into the TFLite format.

• DenseNet201-coreml and DenseNet201-tflite DenseNet201 [205] is a convolu-
tional neural network consisting of 201 layers and a total of 20.2 million parameters.
DenseNet201-coreml denotes a compressed version of the DenseNet201 model,
converted into the CoreML format. DenseNet201-tflite is another compressed
version of the DenseNet201 model, converted into the TFLite format.

• LSTM-coreml and LSTM-tflite [206] LSTM (Long Short-Term Memory) is
a type of recurrent neural network known for its ability to capture long-term
dependencies in sequential data. LSTM-coreml refers to a compressed version
of the LSTM model, converted into the CoreML format. LSTM-tflite is another
compressed version of the LSTM model, converted into the TFLite format.

• GRU-coreml and GRU-tflite [207] GRU (Gated Recurrent Unit) is a recurrent
neural network architecture widely employed for processing sequential data. Com-
pared to LSTM, GRU is characterized by fewer gates and parameters, making
it faster. GRU-coreml denotes the compressed version of the GRU model,
converted into the CoreML format. GRU-tflite is another compressed version of
the GRU model, converted into the TFLite format.

5.4.3 Noise Generation Techniques
In our experiments for Research Question 2 (RQ2), we utilized 13 noise techniques

sourced from top-level conferences [93, 94, 95, 96]. These diverse selections of noise
generation techniques were aimed at evaluating the effectiveness of PriCod in a
broader range of noisy scenarios. We provide a detailed explanation of each noise-
generation technique below.
• Channel Shift Range (CSR) The CSR technique engenders a transformative

alteration in the image’s overall color palette by perturbing the values of its color
channels.

• Feature-wise Std Normalization (FSN) FSN operates by normalizing each
input sample with respect to its standard deviation. The underlying motivation
is to decentralize the dataset.

• Height Shift (HS) HS effectuates vertical displacements of an image, essen-
tially shifting it upwards or downwards within the image canvas. This spatial
modification introduces variations in the vertical positioning of objects.

• Horizontal Flip (HF) The HF technique orchestrates horizontal mirroring of
the input image. By introducing random horizontal flips during augmentation,
diverse perspectives of objects are captured.

• Vertical Flip (VF) VF introduces a vertical inversion of the image, essentially
flipping it along the horizontal axis.

• Rotation (RO) RO introduces controlled rotations to the input samples, adhering
to a designated angle range.

112

5.4. Study design

• Shear Range (SR) SR engenders a shear transformation, preserving one coordi-
nate while linearly displacing the other.

• Width Shift (WS) WS pertains specifically to horizontal translations, thereby
repositioning the image horizontally within the canvas.

• Zca Whitening (ZCA) ZCA performs dimensionality reduction on the input
images, effectively reducing redundancy while retaining essential features.

• Zoom (ZOO) ZOO introduces alterations in the image scale by magnifying or
contracting it along its length or width.

• Contrast (CON) CON quantifies the disparity between the brightest and darkest
regions of an image. This augmentation manipulates image contrast, diversifying
the dataset concerning luminance and accentuating differences between light and
dark areas.

• Noise Gasuss (GAS) GAS simulates signal noise by following a Gaussian
distribution. By adding this form of noise to the input images, the dataset’s
resilience to stochastic variations is bolstered.

• Salt & Pepper (SP) SP augments the dataset by introducing either white or
black pixels to the image, imitating the effects of salt and pepper noise. This
introduces localized distortions.

5.4.4 Adversarial Techniques
In the context of RQ3 in our study, we employed four distinct adversarial tech-

niques to generate adversarial samples for assessing the effectiveness of PriCod. These
techniques include the Fast Gradient Method, Adversarial Patch, Basic Iterative
Method and Projected Gradient Descent. We elaborate on the operational principles
of each adversarial technique in the following explanations.
• Fast Gradient Method (FGM) [208] FGM is an extension of the Fast Gradient

Sign Method (FGSM), which was the pioneering gradient-based white-box attack
algorithm utilizing deep neural network gradients to craft adversarial examples.
FGM enhances the original FGSM attack by incorporating other norms for
perturbation generation.

• Adversarial Patch (Patch) [209] AP generates adversarial examples by cre-
ating attack patches designed to replace specific portions of the original images.
Importantly, this technique does not necessitate attackers to possess knowledge
about the original dataset.

• Basic Iterative Method (BIM) [210] BIM is an advancement of FGSM in-
volving multiple iterations of small perturbations. After each iteration, the pixel
values of the obtained result are clipped to ensure that the outcome remains
within the vicinity of the original image.

• Projected Gradient Descent (PGD) [159] PGD attack is an iterative tech-
nique. In contrast to FGSM, which involves a single iteration and a significant
perturbation, PGD incorporates multiple iterations with small perturbations. Dur-
ing each iteration, the perturbation is constrained within predefined boundaries.

5.4.5 Compared Approaches
To demonstrate the effectiveness of PriCod, we employed seven test prioritization

approaches along with a baseline method. These seven methods are DeepGini,
Prediction-Confidence Score (PCS), Vanilla Softmax, Entropy, Margin, Least Confi-
dence (LC) and ATS. We chose these methods for the following reasons: 1) These

113

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

approaches can be tailored to prioritize tests for compressed Deep Neural Networks; 2)
These approaches have previously shown effectiveness for DNNs; 3) These approaches
offer open-source implementations. It is crucial to emphasize that all the test prior-
itization methods used for comparison were initially designed for non-compressed
models in their respective research papers. However, despite being designed for
uncompressed models, these methods can be directly applied to compressed DNN
models. This is a crucial factor why we selected them to compare with PriCod.
• DeepGini [6] DeepGini performs test prioritization by calculating the model

confidence towards each test case. The metric used to measure the confidence
score is the Gini coefficient, which is calculated using the Formula 6.19 provided
below. A higher Gini coefficient for a test indicates that the test is more likely to
be misclassified. Therefore, it should be prioritized towards the front of the test
set.

Gini(t) = 1 −
N∑

i=1
(pi(t))2 (5.1)

where Gini(t) represents the Gini score of the test t. pi(t) denotes the probability
that the test input t is predicted to belong to label i. N represents the total
number of classes to which the input can be classified.

• Prediction-Confidence Score (PCS) [9] For each test input in the specified
test set, PCS calculates the difference between the probability of the model’s most
confident prediction for that test and the probability of the second most confident
prediction. A smaller difference indicates that the model is less confident in its
prediction for that particular test input, and this input will be prioritized higher.
The formula for this calculation is provided in Formula 6.20.

PCS(t) = p1(t) − p2(t) (5.2)

where p1(t) denotes the probability of the model’s most confident prediction for
that test, and p2(t) represents the probability of the model’s second most confident
prediction for the same test.

• Vanilla Softmax [9] Vanilla Softmax prioritizes tests by calculating the difference
between the maximum activation probability in the output softmax layer and the
ideal value of 1 for each test input. Test inputs exhibiting larger disparities are
perceived as more likely to be misclassified by the model. The computation of
Vanilla Softmax is demonstrated in Formula 6.21.

V(t) = 1 − Nmax
i=1

pi(t) (5.3)

where maxN
i=1 pi(t) represents the maximum activation probability in the output

softmax layer for the test input t. Here, N denotes the total number of prediction
classes. pi(t) signifies the probability that the model classify the test t into class i.

• Entropy [9] Entropy prioritizes tests by computing the entropy of the softmax
likelihood for each test instance. Higher entropy values imply higher uncertainty
in the model’s predictions for those inputs. Therefore, test inputs with greater
entropy are interpreted as more prone to being misclassified by the model and
will be assigned higher priority.

• Margin [88] Margin prioritizes tests by evaluating the difference between the
model’s most confident prediction and the second most confident prediction for

114

5.4. Study design

each test. For a given test, if its margin score is large, the test is considered more
likely to be misclassified. The margin score is calculated by Formula 5.4.

M(t) = pk(t) − pj(t) (5.4)

where M(x) denotes the margin score. pk(t) represents the model’s most confident
prediction probability for the test instance t. pj(t) represents the second most
confident prediction probability.

• Least Confidence (LC) [88] Least Confidence regards test inputs for which the
model exhibits the least confidence as more likely to be misclassified. The least
confidence score is calculated using Formula 5.5. For a given test, a higher least
confidence score indicates that the model is less confident about the prediction for
that particular test. Therefore, this test is considered more likely to be predicted
incorrectly.

L(t) = 1 − max
i=1:n

pi(t) (5.5)

where L(t) represents the least confidence score. pi(t) denotes the probability
that the test input t is predicted to be label i via a model M . maxi=1:n pi(t)
corresponds to the model’s most confident prediction probability for the test
instance t.

• ATS [211] ATS (Adaptive Test Selection) is an adaptive method for test selection
that utilizes variations in model outputs to assess the behavioral diversity of
DNN test data. Its objective is to select a diverse subset of tests from a massive
unlabeled dataset. In empirical evaluations [211], ATS has demonstrated superior
performance compared to all the evaluated coverage-based test selection methods,
showing significant improvements in both fault detection and model improvement
capabilities.

• Random selection [102] Random selection serves as the baseline in our study.
This approach involves randomly determining the order in which test inputs are
executed. This implies that the arrangement of test inputs is established entirely
at random, without any predefined patterns or logical sequences.
In addition to the aforementioned test prioritization methods, there are sev-

eral classic approaches in the literature for prioritizing tests for DNNs, including
PRIMA [10] and coverage-based test prioritization methods [8]. However, due to
the characteristics of compressed models, these methods are challenging to directly
apply. We explain the specific reasons below:
• PRIMA PRIMA is not suitable for compressed DNN models primarily because

some of its model mutation rules cannot be adapted to the structure of the
compressed DNN model. For example, one of PRIMA’s model mutation operations
is Neuron Activation Inverse, which reverses the activation state of a neuron by
changing the sign of the neuron output before passing it to the activation function.
However, previous research [19] has pointed out that the structure of compressed
models does not support such model mutation operations.

• Coverage-based metrics Coverage-based test prioritization methods, such as
DeepXplore, cannot be applied to compressed DNN models primarily due to
the fact that coverage-based approaches typically prioritize test inputs based
on their neuron coverage. However, existing study [19] pointed out that, due
to the unique structure of compressed models, obtaining neuron coverage is not
feasible. Therefore, coverage-based test prioritization methods cannot be adapted
to compressed DNN models.

115

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

5.4.6 Measurements
Consistent with previous studies [6], we utilized two metrics to evaluate the

effectiveness of PriCod: Average Percentage of Fault Detection (APFD) [11] and
Percentage of Faults Detected (PFD) [6].
5.4.6.1 Average Percentage of Fault Detection (APFD)

APFD is a widely accepted metric for evaluating test prioritization effectiveness.
A higher APFD value signifies greater effectiveness. APFD values are calculated
using Formula 6.17.

APFD = 1 −
∑k

i=1 oi

kN
+ 1

2N
(5.6)

• N represents the total number of test inputs in the test set.
• k signifies the number of misclassified test inputs.
• oi refers to the index of the ith misclassified test within the prioritized test set.

Below, we explain from a mathematical perspective why a larger APFD indicates
better effectiveness of a test prioritization method: Given that N is a constant, a
higher APFD value corresponds to a smaller ∑k

i=1 oi (the index sum of misclassified
tests in the prioritized list). A smaller ∑k

i=1 oi suggests that misclassified tests are
positioned closer to the beginning of the prioritized test set, indicating that the test
prioritization approach prioritized misclassified tests higher. Such an approach is
considered to exhibit a high level of effectiveness.

Consistent with prior research [6], we normalize APFD values to the range [0, 1].
A prioritization approach is considered more effective if its APFD value approaches
1.
5.4.6.2 Percentage of Fault Detected (PFD)

PFD quantifies the ratio of correctly identified misclassified test inputs to the
total count of misclassified tests. A higher PFD value indicates greater effectiveness
of a test prioritization approach. PFD is calculated as shown in Formula 6.18.

PFD = Fc

Ft

(5.7)

• Fc represents the number of detected misclassified test inputs
• Ft is the total number of misclassified test inputs

In our investigation, we evaluated the PFD values of PriCod across different ratios
of prioritized tests. We use PFD-n to denote the first n% prioritized test inputs.

5.4.7 Im plementation and Configuration
We implemented PriCod using Python and the PyTorch 2.0.0 framework [103]

and TensorFlow 2.3.1 framework. To facilitate comparisons with other approaches,
we integrated existing implementations of the compared methods [9, 6] into our
experimental pipeline. The compression of DNN models to the CoreML format was
performed on macOS Ventura 13.4.1, as CoreML models can only be executed on iOS
systems. For the classifier used in the ranking process, we employed LightGBM 3.3.5
with specific parameter settings: the learning rate of 0.1, n_estimators of 100, and
min_child_sample of 20. Furthermore, we leveraged the packages SciPy 1.4.1 and

116

5.5. Results and analysis

scikit-learn 1.1.3 for data processing. Below, we present the test accuracy and training
accuracy of the ranking model LightGBM on each dataset: 1) CIFAR10 Training
Accuracy: 96.82%~97.84%; Test Accuracy: 77.42%~82.24% 2) CIDAR100 Training
Accuracy: 96.28%~97.13%; Test Accuracy: 82.15%~85.58% 3) Fashion Training
Accuracy: 97.53%~97.96%; Test Accuracy: 86.31%~86.75% 4) Plant Training
Accuracy: 97.59%~98.12%; Test Accuracy: 85.51%~89.15% 5) News Training
Accuracy: 94.26%~96.13%; Test Accuracy: 77.79%~80.25%. In our experiments,
the accuracy of the compressed DNN models used to evaluate PriCod ranged from
70.03% to 77.43%. The accuracy range of their original DNN model was between
70.23% and 78.74%. Other fundamental information about the models can be found
in Table 5.2. Our experimental setup involved conducting experiments on NVIDIA
Tesla V100 32GB GPUs. We used a MacBook Pro laptop running macOS Ventura
13.4.1 for data analysis, equipped with an Intel Core i9 CPU and 64 GB of RAM. In
total, our study encompassed experiments involving 182 subjects, with 20 subjects
based on natural inputs, 126 subjects based on noisy inputs, and 36 subjects based
on adversarial inputs.

5.5 Results and analysis
5.5.1 RQ1: Performance of PriCod on Natural Test Inputs
Objectives: We evaluate the effectiveness of PriCod on natural test inputs with 20
compressed DNN models. We compare PriCod with a set of existing test prioritization
approaches and a baseline method (i.e., random selection). Moreover, we evaluate
PriCod on compressed DNN models with different accuracy levels, aiming to better
assess the effectiveness of PriCod. Specifically, the experiments are conducted based
on the following two sub-questions:
• RQ-1.1 How does PriCod perform in terms of effectiveness and efficiency when

applied to natural test inputs?
• RQ-1.2 How does PriCod perform on compressed DNN models with different

accuracy levels?
Experimental design: We conducted the following experiments to answer the
aforementioned sub-questions, respectively.
[Experiment for RQ-1.1] We assessed the effectiveness and efficiency of PriCod
on natural test inputs through the following experimental steps.
• Subject Construction We constructed 20 subjects consisting of compressed DNN

models and their corresponding datasets. Specifically, we utilized 20 compressed
DNN models along with three datasets. For specific details regarding the models
and datasets, please refer to Section 6.4.2. The matching relationships are
illustrated in Table 3.1.

• Selection of Comparative Approaches Subsequently, we meticulously selected
five comparative approaches (i.e., DeepGini, Vanilla SM, PCS, entropy, and
random selection) from the existing literature [6, 9]. These approaches can be
adapted for prioritizing test inputs for compressed DNN models, with random
selection as the baseline.

• Evaluation of Effectiveness Within our constructed 20 subjects, we evaluated
the effectiveness of PriCod and all comparative methods using two widely adopted
metrics: Average Percentage of Fault-Detection (APFD) and Percentage of Fault
Detected (PFD) [6]. Detailed explanations of these metrics can be found in

117

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

Section 6.4.3.
• Comparison of Efficiency Moreover, we compared the efficiency of PriCod and

other test prioritization methods by analyzing their time costs.
• Statistical Analysis Recognizing the inherent variability within the model

training process, we undertook a statistical analysis by executing each experiment
ten times. We showcase the average outcomes of these trials.
More specifically, we employed the paired two-sample t-test [104], a widely utilized
statistical method for comparing differences between two related datasets. The
fundamental steps involve: 1) selecting two sets of related data, 2) calculating
the difference for each corresponding pair of data points, and 3) analyzing these
differences to assess whether there is a statistically significant disparity between
the two datasets. In the context of the paired two-sample t-test, the significance
of the results is determined by the p-value. Typically, a p-value less than 10−05

indicates a statistically significant difference between the two datasets [105].
[Experiment for RQ-1.2] We evaluated PriCod on compressed DNN models with
varying accuracy levels using the following experimental steps. Initially, we trained a
group of compressed DNN models at various accuracy levels, specifically 50%, 60%,
70%, 80%, and 90%. We evaluated the effectiveness of PriCod separately for each
accuracy level using the APFD metric. Subsequently, we presented and compared
PriCod’s effectiveness across different accuracy levels through tabular representation.
Table 5.3: Effectiveness comparison among PriCod, DeepGini, VanillaSM, PCS,
Entropy, Margin, LC, ATS and random selection in terms of the APFD values on
natural test inputs

ApproachData Model Random DeepGini VanillaSM PCS Entropy Margin LC ATS PriCod
AlexNet-coreml 0.501 0.668 0.666 0.658 0.669 0.658 0.666 0.599 0.721
AlexNet-tflite 0.502 0.670 0.668 0.660 0.671 0.660 0.668 0.601 0.720
VGG16-coreml 0.497 0.748 0.747 0.744 0.747 0.744 0.747 0.708 0.781CIFAR10

VGG16-tflite 0.501 0.750 0.749 0.747 0.748 0.747 0.749 0.707 0.781
DenseNet201-coreml 0.502 0.737 0.737 0.734 0.735 0.734 0.737 0.712 0.788
DenseNet201-tflite 0.501 0.753 0.755 0.753 0.747 0.753 0.755 0.703 0.796
ResNet152-coreml 0.498 0.710 0.711 0.707 0.703 0.707 0.711 0.688 0.765CIFAR100

ResNet152-tflite 0.496 0.749 0.751 0.746 0.741 0.746 0.751 0.691 0.786
LeNet1-coreml 0.502 0.743 0.744 0.742 0.737 0.742 0.744 0.616 0.815
LeNet1-tflite 0.504 0.743 0.744 0.741 0.737 0.741 0.744 0.615 0.815
LeNet5-coreml 0.508 0.763 0.763 0.757 0.760 0.757 0.763 0.623 0.826Fashion

LeNet5-tflite 0.496 0.763 0.763 0.757 0.760 0.757 0.763 0.626 0.824
NIN-coreml 0.501 0.740 0.743 0.743 0.736 0.743 0.743 0.711 0.795
NIN-tflite 0.501 0.742 0.744 0.744 0.737 0.744 0.744 0.714 0.794
VGG19-coreml 0.497 0.687 0.685 0.683 0.687 0.683 0.685 0.643 0.779Plant

VGG19-tflite 0.502 0.688 0.687 0.684 0.689 0.684 0.687 0.645 0.781
GRU-coreml 0.491 0.713 0.715 0.713 0.707 0.713 0.715 0.684 0.756
GRU-tflite 0.505 0.713 0.715 0.712 0.707 0.712 0.715 0.685 0.757
LSTM-coreml 0.503 0.729 0.731 0.732 0.723 0.732 0.731 0.691 0.771News

LSTM-tflite 0.511 0.729 0.732 0.733 0.723 0.733 0.732 0.692 0.770

Results: The experimental results for RQ-1.1 are depicted in Table 5.3, Table 5.4,
Table 5.5, Table 5.6, and Table 5.7. Among these, the first two tables compare
PriCod and other test prioritization methods based on the APFD metric using
natural test inputs. Table 5.5 presents a comparison using the PFD metric. Table 5.6
presents detailed results from the statistical analysis in terms of PFD. Table 5.7
illustrates the comparison in terms of efficiency.

PriCod consistently outperforms all the compared approaches (i.e.,
DeepGini, Vanilla SM, PCS, Entropy, and Random) in terms of effective-
ness. Table 5.3 showcases the effectiveness comparison of PriCod and all comparative

118

5.5. Results and analysis

Table 5.4: Average improvement of PriCod over the compared approaches in terms
of the APFD values on natural test inputs

Approach # Best cases Average APFD Improvement(%)
Random 0 0.501 55.89
DeepGini 0 0.726 7.58
VanillaSM 0 0.727 7.43
PCS 0 0.724 7.87
Entropy 0 0.723 8.02
Margin 0 0.724 7.87
LC 0 0.727 7.43
ATS 0 0.668 16.92
PriCod 20 0.781 -

methods across different subjects, measured using the APFD metric. Notably, we
highlighted the approach with the highest effectiveness in gray for each case. From
Table 5.3, we see that PriCod performs better than all the comparative methods
across all subjects. The range of PriCod’s APFD values spans from 0.720 to 0.826,
while the APFD values for the comparative methods fall within the range of 0.491
to 0.763. Table 5.4 delves deeper into the effectiveness comparison between PriCod
and other test prioritization methods. This comparison is approached from three
perspectives: the number of cases in which each approach performs the best, the
average APFD of each method, and the average improvement in APFD of PriCod
over the compared test prioritization methods. Notably, the average APFD value
achieved by PriCod is 0.781, with an average improvement ranging from 7.43%
to 55.89% over the compared test prioritization approaches. Table 5.5 displays
the comparative results between PriCod and existing test prioritization methods
utilizing the metric PFD. We see that PriCod showcases a higher level of effectiveness
across different prioritized test ratios, surpassing all the compared techniques. The
aforementioned observations strongly demonstrate that PriCod outperforms all the
compared approaches in terms of both APFD and PFD.

As mentioned in the experimental design, we conducted a statistical analysis to
evaluate the stability of our findings. This involved repeating all experiments ten
times. All results presented are the average values obtained from these ten repetitions.
Furthermore, we identified that the p-value is less than 10−05, underscoring the
consistent superiority of PriCod over the compared methods in test prioritization.

Moreover, Table 5.6 presents detailed results from the statistical analysis in terms
of PFD. We see that all the p-values between PriCod and the compared approaches
consistently fall below 10−05, indicating that PriCod statistically outperforms all the
compared methods in terms of PFD. For example, the p-value for the difference in
experimental results between PriCod and DeepGini is 3.22 × 10−06. The p-value
between PriCod and PCS is 6.69 × 10−06.

The efficiency of PriCod falls within an acceptable range. Table 5.7
presents a comparison of the efficiency between PriCod and the compared methods.
We observe that PriCod’s total execution time is less than 9 min 20s, which can be
divided into three main components: Feature generation, training, and prediction.
Among these, feature generation takes 9 minutes, training requires 18 seconds,
and prediction is completed in less than 1 second. The final prediction time for
the compared methods is less than 1 second. While PriCod is not as efficient as
the confidence-based test prioritization approaches, its efficiency falls within an
acceptable range.

119

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks
Table 5.5: Average comparison results among PriCod and the compared approaches
in terms of PFD on natural test inputs

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
Random 0.105 0.201 0.302 0.402 0.498 0.599 0.699
DeepGini 0.230 0.418 0.577 0.713 0.819 0.896 0.945
VanillaSM 0.230 0.414 0.575 0.710 0.818 0.895 0.945
PCS 0.213 0.403 0.568 0.705 0.814 0.893 0.943
Entropy 0.226 0.415 0.575 0.714 0.821 0.898 0.947
Margin 0.213 0.403 0.568 0.705 0.814 0.893 0.943
LC 0.230 0.414 0.575 0.710 0.818 0.895 0.945
ATS 0.206 0.367 0.503 0.612 0.711 0.807 0.901

CIFAR10

PriCod 0.273 0.489 0.661 0.786 0.875 0.935 0.971
Random 0.102 0.199 0.299 0.402 0.501 0.601 0.699
DeepGini 0.249 0.459 0.632 0.769 0.869 0.935 0.972
VanillaSM 0.253 0.462 0.635 0.771 0.870 0.935 0.972
PCS 0.241 0.452 0.630 0.769 0.869 0.934 0.972
Entropy 0.245 0.449 0.619 0.756 0.859 0.929 0.971
Margin 0.241 0.452 0.630 0.769 0.869 0.934 0.972
LC 0.253 0.462 0.635 0.771 0.870 0.935 0.972
ATS 0.221 0.416 0.581 0.702 0.784 0.854 0.913

CIFAR100

PriCod 0.283 0.521 0.711 0.847 0.931 0.973 0.991
Random 0.102 0.197 0.299 0.397 0.501 0.599 0.699
DeepGini 0.258 0.479 0.665 0.805 0.893 0.944 0.974
VanillaSM 0.259 0.483 0.666 0.804 0.893 0.944 0.973
PCS 0.248 0.468 0.659 0.801 0.891 0.942 0.974
Entropy 0.253 0.472 0.654 0.791 0.890 0.942 0.974
Margin 0.248 0.468 0.659 0.801 0.891 0.942 0.974
LC 0.259 0.483 0.666 0.804 0.893 0.944 0.973
ATS 0.219 0.344 0.425 0.521 0.612 0.713 0.864

Fashion

PriCod 0.356 0.626 0.812 0.919 0.968 0.988 0.996
Random 0.101 0.199 0.298 0.399 0.502 0.603 0.703
DeepGini 0.219 0.412 0.575 0.718 0.834 0.911 0.963
VanillaSM 0.221 0.409 0.578 0.721 0.834 0.912 0.963
PCS 0.214 0.406 0.577 0.722 0.834 0.913 0.964
Entropy 0.217 0.410 0.576 0.713 0.828 0.909 0.961
Margin 0.214 0.406 0.577 0.722 0.834 0.913 0.964
LC 0.221 0.409 0.578 0.721 0.834 0.912 0.963
ATS 0.201 0.362 0.523 0.657 0.763 0.851 0.912

Plant

PriCod 0.281 0.531 0.735 0.876 0.949 0.983 0.994
Random 0.095 0.194 0.291 0.393 0.493 0.595 0.695
DeepGini 0.239 0.446 0.618 0.740 0.833 0.898 0.946
VanillaSM 0.249 0.451 0.623 0.739 0.833 0.897 0.946
PCS 0.243 0.453 0.623 0.738 0.834 0.897 0.945
Entropy 0.233 0.429 0.598 0.732 0.830 0.895 0.947
Margin 0.243 0.453 0.623 0.738 0.834 0.897 0.945
LC 0.249 0.451 0.623 0.739 0.833 0.897 0.946
ATS 0.212 0.415 0.531 0.672 0.725 0.801 0.887

News

PriCod 0.281 0.501 0.666 0.791 0.864 0.926 0.965

Answer to RQ1.1: PriCod consistently outperforms all the compared approaches
(i.e., DeepGini, Vanilla SM, PCS, Entropy, and Random), with an average im-
provement of 8.28% to 56.69% in terms of APFD. Moreover, the efficiency of
PriCod falls within an acceptable range.

The experimental results for RQ-1.2 are displayed in Table 5.8. In each case,
we highlighted the approach with the highest effectiveness in gray. In Table 5.8,
we see that, across compressed DNN models at different accuracy levels, PriCod
consistently exhibits the highest effectiveness, as measured by APFD. Specifically,
PriCod achieves an average APFD of 0.793 across all accuracy levels, while the
average APFD for the comparison methods ranges from 0.498 to 0.732. These
experimental findings indicate that, across models with different accuracy levels,
PriCod’s effectiveness surpasses all compared testing prioritization methods.

The methods used for comparison, including DeepGini, VanillaSM, PCS, Entropy,
Margin, LC, and ATS, are influenced by the accuracy of the compressed models.

120

5.5. Results and analysis

Table 5.6: Statistical analysis on natural test inputs (in terms of p-value on PFD)
Approach

Random DeepGini VanillaSM PCS Entropy Margin LC ATS
Pricod 3.88 × 10−14 3.22 × 10−6 1.21 × 10−7 6.69 × 10−6 5.12 × 10−6 6.69 × 10−6 1.21 × 10−7 2.53 × 10−9

Table 5.7: Time cost of PriCod and the compared test prioritization approaches
Time cost Approach

PriCod Random DeepGini VanillaSM PCS Entropy Margin LC ATS
Feature generation 9 min - - - - - - - -

Ranking model training 18 s - - - - - - - -
Prediction <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s >10 min

For instance, DeepGini exhibits an APFD of 0.862 in compressed models with
90% accuracy, while it decreases to 0.604 in compressed models with 50% accuracy.
Similarly, PCS has an APFD of 0.861 in compressed models with 90% accuracy, and
it decreases to 0.595 in compressed models with 50% accuracy. In contrast, PriCod’s
performance is relatively less affected by the accuracy of the compressed models
compared to these methods. For instance, in compressed models with 90% accuracy,
PriCod has an APFD of 0.864. In compressed models with 50% accuracy, its APFD
is 0.713.

Answer to RQ1.2: Across compressed DNN models with varying accuracy
levels, PriCod consistently performs better than all the compared test prioritization
methods.

Table 5.8: Average Effectiveness comparison among PriCod, DeepGini, VanillaSM,
PCS, Entropy, Margin, LC, ATS, and random selection in terms of the APFD values
on different accuracy compressed models

AccuracyApproach 50% 60% 70% 80% 90% Average APFD

Random 0.501 0.499 0.497 0.501 0.493 0.498
DeepGini 0.604 0.658 0.739 0.784 0.862 0.729
VanillaSM 0.604 0.664 0.742 0.786 0.863 0.732
PCS 0.595 0.656 0.736 0.782 0.861 0.726
Entropy 0.603 0.648 0.732 0.780 0.859 0.724
Margin 0.595 0.656 0.736 0.782 0.861 0.726
LC 0.604 0.664 0.742 0.786 0.863 0.732
ATS 0.586 0.623 0.661 0.735 0.806 0.682
PriCod 0.713 0.751 0.801 0.839 0.864 0.793

5.5.2 RQ2: Effectiveness on Noisy Test Inputs
Objectives: When deployed on mobile devices, compressed DNN models can
encounter noisy data due to various factors. These factors encompass user behaviors,
such as capturing photos from various angles. All these elements have the potential
to introduce noise into the images. As a result, it becomes crucial to evaluate the
effectiveness of PriCod using noisy datasets. To accomplish this, we utilize 13 noise
generation techniques [93, 94, 95, 96] to construct datasets with inherent noise for
the purpose of assessment.
Experimental design: We introduce noise to the original datasets using 13 noise
generation techniques collected from existing literature. Specifically, given an original
test set, we extract 30% of the tests and transform them into noisy data using a noise

121

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

technique, while the remaining 70% are left unchanged. The comparative methods
we employed in this research question, along with the evaluation metrics, remained
consistent with RQ1. The comparative methods were DeepGini, Vanilla SM, PCS,
entropy, and random selection. Moreover, we utilized the APFD and PFD metrics
(cf. Section 6.4.3) to evaluate the effectiveness of PriCod.
Table 5.9: Average Effectiveness comparison among PriCod, DeepGini, VanillaSM,
PCS, Entropy, Margin, LC, ATS, and random selection in terms of the APFD values
on noisy test inputs

ApproachNoisy Techniques Random DeepGini VanillaSM PCS Entropy Margin LC ATS PriCod
CSR 0.501 0.724 0.724 0.720 0.721 0.720 0.724 0.645 0.775
FSN 0.499 0.729 0.729 0.724 0.726 0.724 0.729 0.650 0.779
HS 0.499 0.708 0.708 0.703 0.706 0.703 0.708 0.641 0.767
HF 0.499 0.693 0.692 0.687 0.692 0.687 0.692 0.637 0.762
VF 0.500 0.675 0.673 0.667 0.675 0.667 0.673 0.609 0.737
RO 0.499 0.689 0.688 0.681 0.690 0.681 0.688 0.626 0.753
SR 0.499 0.729 0.729 0.724 0.726 0.724 0.729 0.649 0.779
WS 0.497 0.711 0.710 0.704 0.710 0.704 0.710 0.634 0.771
ZCA 0.500 0.729 0.729 0.724 0.726 0.724 0.729 0.651 0.778
ZOO 0.501 0.684 0.681 0.674 0.686 0.674 0.681 0.608 0.748
CON 0.500 0.704 0.703 0.698 0.703 0.698 0.703 0.672 0.746
GAS 0.499 0.699 0.696 0.689 0.700 0.689 0.696 0.614 0.759
SP 0.500 0.711 0.711 0.706 0.709 0.706 0.711 0.638 0.771

Table 5.10: Average improvement of PriCod over the compared approaches in terms
of the APFD values on noisy test inputs

Approach # Best cases Average APFD Improvement(%)
Random 0 0.499 52.91
DeepGini 0 0.707 7.92
VanillaSM 0 0.706 8.07
PCS 0 0.701 8.84
Entropy 0 0.705 8.23
Margin 0 0.701 8.84
LC 0 0.706 8.07
ATS 0 0.636 19.97
PriCod 126 0.763 -

Results: The experimental results for RQ2 are presented in Table 5.9, Table 5.10,
Table 5.11, and Table 5.12. When applied to noisy test inputs, PriCod consistently
exhibits superior performance compared to all the test prioritization approaches
under different noise generation techniques. Specifically, Table 5.9 and Table 5.10
illustrate the effectiveness of PriCod and the compared test prioritization methods
based on the APFD metric. We see that PriCod’s APFD values range between 0.737
and 0.779, while the compared test prioritization methods range from 0.497 and
0.729. Furthermore, Table 5.10 offers a more comprehensive analysis, showcasing the
best cases achieved by each approach, the average APFD value of each method, and
PriCod’s effectiveness improvement relative to each comparative method. Notably,
PriCod demonstrates the highest effectiveness across all cases. The average APFD
value achieved by PriCod is 0.763, while that of the compared approaches falls
between 0.499 and 0.707. The improvement achieved by PriCod over the comparative
methods varies from 7.92% to 52.91%.

Table 5.11 and Table 5.12 present a comprehensive comparative analysis of PriCod
and the compared approaches regarding the PFD metric. In Table 5.11, we exhibit
experimental results under seven noises, while the results for other noise scenarios

122

5.5. Results and analysis

Table 5.11: Effectiveness comparison results among PriCod and the compared
approaches in terms of PFD on noisy test inputs

Noisy Techniques Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
Random 0.100 0.199 0.301 0.403 0.502 0.601 0.702
DeepGini 0.236 0.436 0.604 0.743 0.846 0.915 0.958
Entropy 0.232 0.428 0.599 0.736 0.843 0.914 0.959
PCS 0.226 0.426 0.597 0.737 0.843 0.913 0.957
VanillaSM 0.238 0.437 0.604 0.742 0.845 0.915 0.958
Margin 0.226 0.426 0.597 0.737 0.843 0.913 0.957
LC 0.238 0.437 0.604 0.742 0.845 0.915 0.958
ATS 0.207 0.352 0.458 0.559 0.654 0.755 0.845

CSR

PriCod 0.299 0.539 0.721 0.845 0.918 0.961 0.983
Random 0.101 0.200 0.299 0.400 0.501 0.603 0.702
DeepGini 0.242 0.445 0.616 0.754 0.853 0.918 0.960
Entropy 0.238 0.439 0.609 0.748 0.851 0.917 0.960
PCS 0.229 0.433 0.609 0.748 0.850 0.917 0.959
VanillaSM 0.243 0.445 0.616 0.753 0.852 0.918 0.960
Margin 0.229 0.433 0.609 0.748 0.850 0.917 0.959
LC 0.243 0.445 0.616 0.753 0.852 0.918 0.960
ATS 0.212 0.355 0.464 0.566 0.661 0.759 0.850

FSN

PriCod 0.306 0.547 0.730 0.850 0.923 0.963 0.985
Random 0.099 0.199 0.300 0.399 0.498 0.601 0.701
DeepGini 0.220 0.407 0.571 0.711 0.823 0.902 0.953
Entropy 0.217 0.401 0.564 0.706 0.818 0.901 0.952
PCS 0.205 0.394 0.562 0.704 0.817 0.899 0.951
VanillaSM 0.218 0.407 0.571 0.709 0.822 0.901 0.953
Margin 0.205 0.394 0.562 0.704 0.817 0.899 0.951
LC 0.218 0.407 0.571 0.709 0.822 0.901 0.953
ATS 0.196 0.347 0.458 0.556 0.647 0.744 0.837

HS

PriCod 0.278 0.503 0.687 0.818 0.904 0.953 0.980
Random 0.099 0.200 0.300 0.401 0.499 0.599 0.699
DeepGini 0.218 0.403 0.562 0.697 0.799 0.870 0.921
Entropy 0.216 0.399 0.559 0.694 0.799 0.871 0.923
PCS 0.204 0.391 0.555 0.689 0.793 0.867 0.918
VanillaSM 0.217 0.402 0.562 0.695 0.798 0.869 0.921
Margin 0.204 0.391 0.555 0.689 0.793 0.867 0.918
LC 0.217 0.402 0.562 0.695 0.798 0.869 0.921
ATS 0.196 0.344 0.459 0.560 0.652 0.745 0.830

HF

PriCod 0.287 0.517 0.698 0.829 0.910 0.957 0.982
Random 0.100 0.200 0.299 0.399 0.498 0.597 0.697
DeepGini 0.204 0.382 0.541 0.679 0.792 0.876 0.934
Entropy 0.202 0.382 0.543 0.681 0.793 0.877 0.936
PCS 0.189 0.365 0.525 0.666 0.784 0.872 0.932
VanillaSM 0.202 0.378 0.536 0.675 0.790 0.875 0.934
Margin 0.189 0.365 0.525 0.666 0.784 0.872 0.932
LC 0.202 0.378 0.536 0.675 0.790 0.875 0.934
ATS 0.180 0.326 0.440 0.534 0.626 0.726 0.826

RO

PriCod 0.258 0.474 0.655 0.794 0.888 0.946 0.977
Random 0.099 0.201 0.301 0.400 0.501 0.600 0.700
DeepGini 0.241 0.445 0.615 0.755 0.853 0.918 0.960
Entropy 0.237 0.439 0.609 0.747 0.851 0.917 0.960
PCS 0.228 0.433 0.608 0.748 0.849 0.917 0.958
VanillaSM 0.242 0.445 0.615 0.753 0.852 0.918 0.960
Margin 0.228 0.433 0.608 0.748 0.849 0.917 0.958
LC 0.242 0.445 0.615 0.753 0.852 0.918 0.960
ATS 0.211 0.355 0.464 0.565 0.660 0.758 0.849

SR

PriCod 0.305 0.547 0.730 0.850 0.922 0.963 0.985
Random 0.099 0.200 0.300 0.401 0.500 0.601 0.701
DeepGini 0.188 0.358 0.512 0.652 0.771 0.863 0.927
Entropy 0.186 0.358 0.513 0.654 0.772 0.865 0.929
PCS 0.175 0.339 0.496 0.639 0.761 0.857 0.924
VanillaSM 0.187 0.354 0.508 0.648 0.769 0.862 0.927
Margin 0.175 0.339 0.496 0.639 0.761 0.857 0.924
LC 0.187 0.354 0.508 0.648 0.769 0.862 0.927
ATS 0.167 0.306 0.416 0.510 0.604 0.705 0.807

VF

PriCod 0.233 0.442 0.619 0.764 0.868 0.935 0.972

can be found on our GitHub2. In Table 5.11, we see that, across different noisy
techniques, PriCod consistently outperforms the compared approaches in terms of
PFD. Moreover, Table 5.12 exhibits that PriCod performs the best across varying
proportions of prioritized tests. Notably, when prioritizing 50% of the tests, PriCod
can identify 90.3% of misclassified tests, while the competing methods can only
identify 50.1% to 81.9% misclassified tests. These experimental results demonstrate
that PriCod performs better than all the compared test prioritization methods when
applied to noisy test inputs.

2https://github.com/yinghuali/PriCod/tree/main/tables

123

https://github.com/yinghuali/PriCod/tree/main/tables

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks
Table 5.12: Average effectiveness comparison results among PriCod and the com-
pared approaches in terms of PFD on noisy data

Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
Random 0.101 0.199 0.301 0.398 0.501 0.602 0.701
DeepGini 0.220 0.410 0.573 0.711 0.819 0.895 0.946
VanillaSM 0.220 0.408 0.571 0.709 0.818 0.895 0.946
Entropy 0.217 0.406 0.570 0.709 0.818 0.896 0.947
PCS 0.207 0.395 0.562 0.702 0.812 0.892 0.944
Margin 0.207 0.395 0.562 0.702 0.812 0.892 0.944
LC 0.220 0.408 0.571 0.709 0.818 0.895 0.946
ATS 0.193 0.338 0.449 0.550 0.644 0.743 0.837
PriCod 0.277 0.506 0.687 0.818 0.903 0.953 0.981

Answer to RQ2: When applied to noisy test inputs, PriCod continues to out-
perform all the compared approaches in terms of both APFD (Average Percentage
of Fault Detection) and PFD (Percentage of Fault Detection). The improvement
achieved by PriCod over the comparative methods varies from 8.46% to 53.80% in
terms of APFD.

5.5.3 RQ3: Effectiveness on Adversarial Test Inputs
Objectives: Besides evaluating the effectiveness of PriCod on natural and noisy
test inputs, following the evaluation methodology of previous test prioritization
research [10], we also assess its effectiveness on adversarial test inputs.
Experimental design: To generate adversarial test samples, we utilized four distinct
adversarial attack techniques: the Fast Gradient Method (FGM) [208], Adversarial
Patch (Patch) [209], Basic Iterative Method (BIM) [210], and Projected Gradient
Descent (PGD) [159]. This yielded a set of 32 subjects for evaluation. Consistent
with our prior research questions, we conducted a comparative analysis between
PriCod and four alternative test prioritization approaches, along with a baseline
method (random selection). The effectiveness of these methods was measured using
the metrics APFD and PFD.
Table 5.13: Average Effectiveness comparison among PriCod, DeepGini, VanillaSM,
PCS, Entropy, Margin, LC, ATS and random selection in terms of the APFD values
on adversarial test inputs

ApproachAdversarial Attack Techniques Random DeepGini VanillaSM PCS Entropy Margin LC ATS PriCod
BIM 0.499 0.727 0.727 0.722 0.725 0.722 0.727 0.654 0.773
FGM 0.501 0.729 0.731 0.724 0.727 0.724 0.731 0.658 0.776
Patch 0.499 0.661 0.660 0.656 0.659 0.656 0.660 0.617 0.721
PGD 0.501 0.725 0.725 0.721 0.722 0.721 0.725 0.652 0.771

Table 5.14: Average improvement of PriCod over the compared approaches in terms
of the APFD values on adversarial test inputs

Approach # Best cases Average APFD Improvement(%)
Random 0 0.501 51.59
DeepGini 0 0.710 7.18
VanillaSM 0 0.711 7.03
PCS 0 0.705 7.94
Entropy 0 0.708 7.49
Margin 0 0.705 7.94
LC 0 0.711 7.03
ATS 0 0.645 17.98
PriCod 36 0.761 -

Results: The experimental results for RQ3 are presented in Table 5.13, Table 5.14,

124

5.5. Results and analysis

Table 5.15: Average effectiveness comparison results among PriCod and the com-
pared approaches on adversarial test inputs in terms of PFD

Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
Random 0.099 0.199 0.298 0.399 0.501 0.599 0.701
DeepGini 0.224 0.417 0.582 0.719 0.822 0.895 0.944
Entropy 0.220 0.412 0.576 0.713 0.819 0.894 0.944
PCS 0.213 0.406 0.575 0.713 0.818 0.893 0.943
VanillaSM 0.225 0.416 0.582 0.718 0.821 0.894 0.944
Margin 0.213 0.406 0.575 0.713 0.818 0.893 0.943
LC 0.225 0.416 0.582 0.718 0.821 0.894 0.944
ATS 0.201 0.346 0.459 0.561 0.655 0.754 0.846
PriCod 0.282 0.511 0.690 0.816 0.896 0.946 0.975

and Table 5.15. Among these, Table 5.13 and Table 5.14 illustrate the comparative
results between PriCod and the compared test prioritization approaches based on the
APFD metric on the adversarial test inputs. Table 5.15 showcases the comparative
results based on the PFD metric. From Table 5.13, we see that across different attack
techniques, PriCod consistently exhibits the highest effectiveness, with the range of
its average APFD scores lying between 0.721 and 0.776. In contrast, the average
scores of the compared methods range from 0.499 and 0.731. Within Table 5.14, we
see that PriCod outperforms all other test prioritization approaches across all 32
cases. PriCod’s average APFD score across all subjects is 0.761, while that of the
compared methods ranges from 0.501 and 0.711. Furthermore, PriCod achieves an
improvement of 7.03% to 51.59% over all the compared methods.

Table 5.15 illustrates the comparison of effectiveness between PriCod and other
test prioritization methods based on the PFD metric. Notably, PriCod consistently
demonstrates superior effectiveness across varying test prioritization ratios. Notably,
when 50% of the tests are prioritized, PriCod can identify 89.6% of misclassified
tests. In contrast, the compared methods only managed to identify 50.1% to 82.2%
of misclassified tests under the same conditions. Additionally, with a prioritization
of 40% of the tests, PriCod can identify 81.6% of misclassified tests, whereas the
compared methods only achieve a range of 39.9% to 71.9% for the same metric.
These results collectively demonstrate that in terms of the APFD and PFD metrics,
PriCod’s effectiveness surpasses that of all compared test prioritization methods.

Answer to RQ3: When applied to adversarial test inputs, PriCod continues
to outperform all the compared test prioritization approaches in terms of both
APFD and PFD. PriCod achieves an improvement of 8.24%~55.31% over all the
compared approaches.

5.5.4 RQ4: Impact of fusion strategies
Objectives: We conducted an in-depth study of the impact of different feature
fusion methods on the effectiveness of PriCod.
Experimental design: To investigate the impact of different feature fusion methods
on the effectiveness of PriCod, we designed three variants of PriCod. Each variant
employs a distinct feature fusion approach to combine the embedding features and
deviation features. These three variants are denoted as PriCoda, PriCodm, and
PriCodc, which respectively utilize addition, multiplication, and cross-multiplication
techniques for feature fusion. Apart from the method of feature fusion, the rest
of these variants remain consistent with the original PriCod. Subsequently, we
evaluated their effectiveness along with the original PriCod on natural datasets.

125

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

This comparison enabled us to assess the influence of various fusion methods on the
effectiveness of PriCod.

Below, we explain why the studied feature fusion strategies are meaningful.
• Addition-based feature fusion strategy The addition-based fusion strategy is

meaningful due to several reasons: 1) The addition-based fusion strategy preserves
the original information of each feature; 2) the addition-based fusion strategy
is simple and efficient to implement; 3) the addition-based fusion strategy is
suitable for cases where two sets of features are relatively independent, with each
contributing independently to the prediction results.

• Multiplication-based feature fusion strategy The multiplication-based fusion
strategy is meaningful for various reasons: 1) The utilization of the multiplication
operation introduces non-linear transformations, enhancing the capability of
the ranking model to grasp more feature relationships. 2) Incorporating the
multiplication operation aids in mitigating the influence of irrelevant features.
When the value of a feature is small, the multiplication diminishes its overall
contribution, thereby reducing its impact.

• Cross-multiplication-based feature fusion strategy The cross-multiplication-
based fusion strategy is meaningful for various reasons: 1) Cross-multiplication-
based operations can introduce stronger information interaction between features.
This can help the model better understand the relationships between features,
thereby enhancing its representational capacity. 2) By considering all possible
pairwise interactions, the model operates in a higher-dimensional feature space,
capable of revealing more hidden patterns and relationships.

Table 5.16: Effectiveness comparison among PriCod and PriCod Variants in terms
of the APFD values on natural test inputs

ApproachData Model PriCoda PriCodm PriCodc PriCod
AlexNet-coreml 0.572 0.689 0.717 0.721
AlexNet-tflite 0.573 0.686 0.717 0.720
VGG16-coreml 0.611 0.756 0.780 0.781CIFAR10

VGG16-tflite 0.610 0.756 0.778 0.781
DenseNet201-coreml 0.654 0.762 0.785 0.788
DenseNet201-tflite 0.651 0.752 0.782 0.796
ResNet152-coreml 0.658 0.749 0.764 0.765CIFAR100

ResNet152-tflite 0.662 0.751 0.776 0.786
LeNet1-coreml 0.755 0.783 0.808 0.815
LeNet1-tflite 0.754 0.771 0.807 0.815
LeNet5-coreml 0.760 0.794 0.820 0.826Fashion

LeNet5-tflite 0.759 0.783 0.817 0.824
NIN-coreml 0.671 0.760 0.793 0.795
NIN-tflite 0.670 0.757 0.792 0.794
VGG19-coreml 0.652 0.752 0.776 0.779Plant

VGG19-tflite 0.652 0.753 0.780 0.781
GRU-coreml 0.730 0.719 0.736 0.756
GRU-tflite 0.726 0.717 0.737 0.757
LSTM-coreml 0.744 0.734 0.754 0.771News

LSTM-tflite 0.744 0.731 0.754 0.770
Average 0.681 0.748 0.774 0.781

Results: The experimental results for RQ4 are presented in Table 5.16. We have
shaded the approach with the highest effectiveness in gray for each case. From the
table, we see that the effectiveness of PriCod remains consistently highest across

126

5.5. Results and analysis

different subjects. Its APFD values range from 0.720 to 0.826. The variant PriCoda

exhibits an APFD range of 0.572 to 0.760. The variant PriCodm demonstrates an
APFD range of 0.686 to 0.794. The variant PriCodc shows an APFD range of 0.717
to 0.820. We see that the effectiveness of the PriCodc variant is second only to the
original PriCod. In our experiments, PriCod employs a concatenation approach for
feature fusion. This indicates that, compared to addition, multiplication, and cross-
multiplication, the concatenation method is more suitable for fusing the deviation
features and embedding features of compressed DNN models for test prioritization.

Answer to RQ4: The effectiveness of PriCod surpasses all variants, indicating
that among all feature fusion methods, concatenation is more effective in combining
the deviation features and embedding features of compressed DNN models for test
prioritization.

5.5.5 RQ5: Feature contribution analysis
Objectives: We delve into understanding the impact of different feature types on
the effectiveness of PriCod in test prioritization. Our exploration centers around two
key sub-questions presented below:
• RQ-5.1 To what extent does each type of features contribute to the effectiveness

of PriCod?
• RQ-5.2 How are the feature types distributed among the top-N most influential

features towards the effectiveness of PriCod?
Experimental design: We conducted two experiments to address the aforemen-
tioned sub-questions.
[Experiments for RQ-5.1] Within the initial PriCod framework, we generated two
distinct categories of features: deviation features and embedding features. In order
to assess the individual impact of each feature type on the effectiveness of PriCod, we
conducted a carefully designed ablation study, following established methodologies as
outlined in previous work [107]. Specifically, we excluded one feature type at a time
while retaining the other. To elaborate, for the assessment of the contribution made
by deviation features, we executed PriCod without incorporating deviation features
while keeping the embedding features present. Conversely, to gauge the contribution
of embedding features, we ran PriCod without embedding features but retained the
deviation features. This meticulous ablation study facilitated a quantitative analysis
of the influence exerted by each feature type on the overall effectiveness of PriCod.
[Experiments for RQ-5.2] To investigate the distribution of different feature types
within the top N contributing features, we leveraged the cover metric of the XGBoost
algorithm [13]. The specific experimental procedures are detailed below:
❶ Feature Importance Calculation Initially, we employed the cover metric to

calculate the importance scores of each feature utilized by PriCod in the context
of test prioritization.

❷ Top-N Feature Selection Subsequently, we identified the N most important
features based on the computed scores.

❸ Categorization Analysis Through an analysis of the categorization of these
selected features, we delved into the extent to which different feature types
contribute to the effectiveness of PriCod.

We provide an outline of how XGBoost measures the importance of features as follows.
Within the XGBoost algorithm, the cover metric serves as a fundamental tool for

127

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

quantifying feature importance. This metric functions by assessing the average
coverage of individual instances across the leaf nodes in decision trees. Essentially,
the cover metric evaluates how frequently a specific feature is employed to partition
data across all trees within the ensemble. The coverage values assigned to each
feature across the entirety of trees are then combined, resulting in a cumulative
coverage value. To determine the average coverage of each instance by the leaf
nodes, the cumulative coverage value is normalized relative to the total number of
instances. Consequently, the coverage value attributed to a particular feature plays a
decisive role in establishing its significance within the context of the XGBoost model.
Notably, features that exhibit higher coverage values are granted increased importance,
shaping the XGBoost algorithm’s decision-making process. This systematic approach
empowers XGBoost to effectively assess the impact of individual features, contributing
to accurate predictions and well-informed decisions.

Furthermore, we conducted a more detailed comparison to assess the contribu-
tions of different deviation features on the effectiveness of PriCod. Specifically, we
performed comparative experiments through the following process.
❶ Under each subject, we calculate the importance value of each type of deviation

feature, which reflects its impact on the effectiveness of PriCod within that specific
subject.

❷ For each type of deviation feature, we calculated the sum of its importance values
across all subjects. For example, in the case of the CLA feature, we summed up
all its importance values across all subjects to obtain the final value.

❸ We normalized the final importance values of all deviation features to compare
their contributions. We represented the results in the form of a pie chart. In the
pie chart, if the proportion of a deviation feature is higher compared to others, it
implies that this feature contributes more to the effectiveness of PriCod.

Table 5.17: Ablation study on different features of PriCod: Embedding Fea-
tures(EB), Deviation Features (DF). ‘w/o’ means ‘without’

Approach Datasets AverageCIFAR10 CIFAR100 Fashion Plant News
PriCod w/o EB 0.745 0.766 0.791 0.762 0.743 0.761
PriCod w/o DF 0.598 0.615 0.778 0.648 0.618 0.652
PriCod 0.751 0.784 0.820 0.787 0.763 0.781

Results: The experimental results for RQ5.1 are presented in Table 5.17. In this
table, ‘w/o’ stands for ‘without.’ For instance, ‘PriCod w/o EB’ indicates the
execution of PriCod without generating the embedding features. We highlighted the
approach with the highest effectiveness in gray for each case.

Each type of features (i.e., deviation features and embedding features)
contribute to the effectiveness of PriCod. As indicated by the results in
Table 5.17, the unaltered PriCod model achieves the highest average effectiveness.
Notably, the removal of any feature type leads to a reduction in PriCod’s effectiveness,
highlighting that each type of features plays a role in PriCod’s effectiveness. For
example, on the CIFAR10 dataset, the original PriCod attains an average APFD
value of 0.751. Removing embedding features leads to a decrease in PriCod’s average
APFD to 0.745, while the absence of deviation features results in a more significant
decline to 0.598.

Deviation features make the highest average contributions. Moreover,
as indicated in Table 5.17, deviation features demonstrate the most substantial

128

5.5. Results and analysis

average contributions to the effectiveness of PriCod. Across all datasets, the impact
of removing deviation features on PriCod’s effectiveness is the most pronounced. On
average, across all cases, the exclusion of deviation features leads to a decrease in
APFD of 0.129, while the removal of embedding features only results in a decrease
of 0.020. To provide specific examples, consider the CIFAR10 dataset: removing
deviation features causes a noteworthy reduction in APFD by 0.153, compared to
a minor decrease of 0.006 from removing embedding features. On the CIFAR100
dataset, the removal of deviation features results in a decrease in APFD by 0.169, in
contrast to a marginal decrease of 0.018 observed when removing embedding features.
Likewise, on the Fashion dataset, the absence of deviation features leads to a drop
in APFD by 0.042, whereas removing embedding features leads to a decrease of
0.029. Similarly, on the Plant dataset, removing deviation features causes an APFD
decrease of 0.139, whereas removing embedding features results in a decrease of
0.025.

Answer to RQ5.1: Each type of features (i.e., deviation features and embedding
features) contribute to the effectiveness of PriCod. Notably, deviation features
make the highest average contributions.

42.4%

23.3%

9.4%

8.8%

4.4%
11.6%

CDF
DIF
REL
CLA
WAS
Others

Figure 5.3: Top five contributing features among all deviation features
The results of RQ5.2 are displayed in Table 5.18, where the scores signify the

importance levels of individual features. For each pairing of model and dataset,
we present the leading N features that contribute significantly. The abbreviations
DF and EB denote deviation features and embedding features, respectively. The
numerical values appended to the feature abbreviations indicate the corresponding
feature indices. For instance, DF-12 signifies the 12th deviation feature. From
Table 5.18, we see that both DF and EB features consistently emerge among the
foremost N contributors across diverse subjects. Overall, DF features exhibit a
higher overall importance, constituting more than half of an equal share across
each subject. Within the CIFAR10 dataset, in the top 10 features with the highest
contributions, the proportion of DF features varies from 60% to 70%. In the context
of the CIFAR100 dataset, DF features account for 60% to 80% within the top 10
contributing features. Within the News dataset, DF features cover a span of 60% to
70%.

The CDF features have the highest contributions to the effectiveness of
PriCod compared to other deviation features. Figure 5.3 illustrates the specific
contributions of each deviation feature to the effectiveness of PriCod. In particular,
it represents the normalized results of the final importance values for each deviation
feature. The detailed calculation process can be found in the experimental design of

129

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks
Table 5.18: Top-10 most contributing features on the effectiveness of PriCod:
Embedding Features(EB), Deviation Features (DF)

Data Rank AlexNet-coreml AlexNet-tflite VGG16-coreml VGG16-tflite
Feature Value Feature Value Feature Value Feature Value

CIFAR10

1 DF-0 3022 DF-0 4486 DF-0 2923 DF-4 2876
2 DF-4 2614 DF-9 4135 DF-4 2768 DF-0 1686
3 DF-27 2192 DF-4 2896 DF-20 1885 DF-20 1651
4 DF-13 1655 DF-28 2354 DF-26 1489 DF-26 1294
5 DF-9 1620 DF-27 2018 DF-5 1459 DF-25 1204
6 DF-28 1522 EB-170 1822 EB-206 1321 DF-24 1194
7 EB-121 1460 DF-20 1621 DF-24 1267 DF-22 1164
8 EB-63 1435 EB-124 1604 EB-175 1252 EB-274 1156
9 EB-205 1398 DF-23 1557 EB-167 1220 EB-208 1132
10 DF-25 1387 EB-307 1490 EB-321 1205 EB-59 1127

Data Rank DenseNet201-coreml DenseNet201-tflite ResNet152-coreml ResNet152-tflite
Feature Value Feature Value Feature Value Feature Value

CIFAR100

1 DF-86 4563 DF-181 3285 DF-202 2975 DF-91 4874
2 DF-199 3141 DF-4 3133 DF-163 2974 DF-126 3802
3 DF-138 3046 DF-184 2825 DF-0 2904 EB-227 3313
4 DF-159 3012 DF-162 2748 DF-194 2773 DF-4 3107
5 DF-91 2985 DF-80 2745 DF-122 2678 DF-72 3065
6 DF-162 2972 DF-141 2734 EB-235 2551 EB-235 3047
7 DF-4 2849 EB-251 2651 DF-179 2411 EB-233 2905
8 EB-213 2812 EB-221 2634 DF-4 2351 EB-212 2839
9 EB-232 2760 DF-125 2597 EB-257 2319 DF-61 2742
10 DF-0 2749 EB-256 2577 EB-226 2150 DF-5 2633

Data Rank LeNet1-coreml LeNet1-tflite LeNet5-coreml LeNet5-tflite
Feature Value Feature Value Feature Value Feature Value

Fashion

1 DF-4 4083 DF-1 4760 DF-4 3685 DF-4 3526
2 DF-0 3634 DF-4 4110 DF-8 2412 DF-28 1449
3 DF-25 1943 DF-3 2202 EB-267 1843 EB-275 1417
4 DF-28 1800 EB-32 1593 EB-258 1705 EB-138 1350
5 EB-68 1785 EB-204 1585 DF-28 1650 EB-288 1326
6 DF-5 1779 EB-283 1584 DF-5 1529 EB-55 1324
7 EB-147 1593 DF-25 1518 EB-240 1326 DF-5 1308
8 EB-297 1537 EB-262 1432 EB-174 1322 DF-23 1265
9 EB-206 1531 EB-132 1427 EB-205 1304 EB-319 1262
10 EB-132 1515 DF-22 1424 EB-133 1277 EB-311 1249

Data Rank NIN-coreml NIN-tflite VGG19-coreml VGG19-tflite
Feature Value Feature Value Feature Value Feature Value

Plant

1 DF-0 3335 DF-0 3826 DF-27 1736 DF-4 2834
2 DF-4 3114 DF-4 2688 DF-4 1729 DF-52 2361
3 DF-49 1994 DF-53 2632 EB-92 1676 EB-225 1974
4 DF-76 1947 EB-97 2273 DF-52 1613 EB-256 1867
5 DF-61 1804 DF-52 2142 DF-50 1582 DF-72 1733
6 DF-5 1754 EB-88 2112 DF-74 1488 DF-57 1636
7 EB-87 1748 EB-94 1975 DF-39 1433 DF-9 1587
8 EB-94 1685 DF-49 1888 EB-247 1428 EB-323 1562
9 DF-53 1679 DF-55 1784 EB-89 1350 DF-78 1438
10 EB-148 1670 DF-50 1766 DF-20 1344 EB-264 1421

Data Rank GRU-coreml GRU-tflite LSTM-coreml LSTM-tflite
Feature Value Feature Value Feature Value Feature Value

News

1 DF-4 713 DF-4 791 DF-4 818 DF-4 673
2 DF-24 377 DF-0 502 DF-11 458 DF-5 491
3 DF-5 339 EB-87 329 DF-5 406 DF-16 349
4 EB-72 315 EB-76 303 DF-16 383 DF-36 346
5 DF-37 288 DF-5 298 EB-109 372 EB-83 327
6 DF-46 272 DF-32 290 DF-43 371 EB-92 317
7 DF-47 264 EB-120 282 EB-89 354 DF-12 309
8 EB-60 246 DF-12 277 EB-92 294 EB-99 300
9 DF-21 243 EB-98 266 DF-33 265 DF-11 295
10 EB-148 239 DF-41 263 EB-85 251 DF-45 291

RQ 5.2. In the pie chart, if the proportion of a deviation feature is higher compared
to others, it implies that this feature contributes more to the effectiveness of PriCod.
Notably, CDF features have the highest total importance value, accounting for 42.4%.
This suggests that CDF features, namely Coordinate Deviation Features, contribute
the most to the effectiveness of PriCod. The second-highest proportion is attributed
to DIF features, accounting for 23.3%.

Answer to RQ5.2: Both deviation features and embedding features consistently
demonstrate their presence among the top-N most influential attributes across a
range of subjects. Notably, deviation features exhibit a greater overall importance.
Among all the deviation features, the CDF features have the highest contributions
to the effectiveness of PriCod compared to other deviation features.

5.5.6 RQ6: Exploring whether uncertainty-based metrics can
enhance the effectiveness of PriCod

Objectives: In the original PriCod, we generate embedding features for each test to
indirectly reveal its proximity to the decision boundary. A prior study [9] suggests

130

5.5. Results and analysis

that uncertainty-based metrics can also reflect this proximity. Therefore, in this
research question, we investigate whether integrating these metrics can enhance
PriCod’s effectiveness.

Experimental design: To assess whether the integration of uncertainty-based met-
rics can enhance the effectiveness of PriCod, we incorporate several uncertainty-based
metrics into the original PriCod for the purpose of test prioritization. Specifically,
we utilize six widely adopted uncertainty-based metrics [9, 6, 88], namely DeepGini,
Vanilla SM, PCS, Entropy, Margin, and Least Confidence. The selection of these
metrics is based on their widespread use in quantifying uncertainty in the context
of DNN testing and their demonstrated effectiveness [101, 9]. The process of con-
structing the uncertainty feature vector for each test input t ∈ T is outlined as
follows:

• Calculation of Confidence Scores: Given a test input t, we compute its
uncertainty scores using the aforementioned six uncertainty-based metrics.

• Generation of Uncertainty Features: For t, its uncertainty feature vector is
generated by concatenating the uncertainty scores obtained from the six metrics.
Consequently, for t, PriCod generated a final uncertainty feature vector, denoted
as [S1, S2, S3, S4, S5, S6], where each element Si represents the uncertainty score
calculated by the ith uncertainty-based metric.

Finally, for the test t, we integrate its uncertainty features obtained above with
embedding features and deviation features (the generation processes for these two
types of features can be referred to in Section 5.3.2) to calculate the misclassification
probability of this test. We represent this new PriCod method as PriCodu. We
compare the effectiveness of PriCodu and the original PriCod to determine whether
integrating the uncertainty-based metrics can enhance PriCod’s effectiveness.

Results: The experimental results for RQ6 are presented in Table 5.19. Here,
PriCodu represents the variant of PriCod where uncertainty-based features are
incorporated for test prioritization. Notably, for each case, we highlighted the
approach with the highest effectiveness in gray. In Table 5.19, we see that the
average effectiveness (measured by APFD) of the original PriCod slightly exceeds
that of PriCodu. Specifically, the average APFD for PriCod is 0.7810, while for
PriCodu, it is 0.7805, with a difference of only 0.0005. PriCodu demonstrates better
effectiveness in a higher proportion of cases, accounting for 70% of all cases. However,
in each individual case, the improvement of PriCodu relative to the original PriCod
is slight. For instance, in the case of CIFAR10 with the AlexNet-coreml model, the
APFD for PriCod is 0.721, while for PriCodu, it is 0.722. The above experimental
results indicate that uncertainty features do not enhance the performance of PriCod
in terms of average results. In certain specific subjects, the inclusion of uncertainty
features can lead to improvements, but the improvements are minor.

Answer to RQ6: From the perspective of the average values, uncertainty features
do not enhance the performance of PriCod. Although uncertainty features can lead
to improvement in some specific subjects, the enhancement is minor.

131

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks
Table 5.19: Effectiveness comparison among PriCod and PriCodu in terms of the
APFD values on natural test inputs

ApproachData Model PriCod PriCodu

AlexNet-coreml 0.721 0.722
AlexNet-tflite 0.720 0.721
VGG16-coreml 0.781 0.783CIFAR10

VGG16-tflite 0.781 0.782
DenseNet201-coreml 0.788 0.790
DenseNet201-tflite 0.796 0.789
ResNet152-coreml 0.765 0.766CIFAR100

ResNet152-tflite 0.786 0.778
LeNet1-coreml 0.815 0.822
LeNet1-tflite 0.815 0.821
LeNet5-coreml 0.826 0.832Fashion

LeNet5-tflite 0.824 0.829
NIN-coreml 0.795 0.798
NIN-tflite 0.794 0.798
VGG19-coreml 0.779 0.783Plant

VGG19-tflite 0.781 0.782
GRU-coreml 0.756 0.745
GRU-tflite 0.757 0.744
LSTM-coreml 0.771 0.763News

LSTM-tflite 0.770 0.762
Average 0.7810 0.7805

5.6 Discussion
5.6.1 Limitations of PriCod

While PriCod has demonstrated its potential to improve test prioritization for
compressed DNN models, it is crucial to recognize its limitations:

[Model Compression Tools] PriCod has currently undergone primary testing using
two prevalent compression tools, TFLite and CoreML, which are widely utilized in
the field. While our method has demonstrated its efficacy with models compressed
using these tools, our future endeavors will involve assessing PriCod’s performance
across a broader spectrum of compression tools.

[Model Compression Techniques] Our approach primarily focuses on model com-
pression through quantization, a prevalent method in the field of model compression.
However, model compression encompasses a wide range of techniques beyond quanti-
zation. In the future, we intend to evaluate PriCod’s effectiveness across a broader
spectrum of compression methods. This broader assessment will be crucial in ensuring
that PriCod remains versatile and capable of addressing various types of compressed
DNN models.

[Model Domains] PriCod is primarily tailored for test prioritization in image-
related domains. While image analysis is a typical application, the applicability of
PriCod in other domains remains an area for exploration. In the future, we intend
to evaluate PriCod’s effectiveness in diverse domains beyond images.

5.6.2 Threats to Validity
Threats to Internal Validity. Internal validity threats primarily arise from
the execution of PriCod and its variations, along with the test prioritization ap-
proaches being compared. To address this concern, we implement PriCod using the

132

5.7. Related Work

widely recognized TensorFlow library and the LightGBM framework. Regarding
the implementation of the compared approaches, we utilize their original codebases
as provided in their respective publications, aiming to minimize potential biases
stemming from implementation. Another internal threat emerges from the inherent
randomness associated with model training. To mitigate this concern and ensure
the reliability of our experimental results, we conducted a statistical analysis by
replicating the training procedure ten times. We presented the average experimental
outcomes and calculated the statistical significance of the results.
Threats to External Validity. The primary external validity threats originate
from the datasets and compressed DNN models employed in our study. To tackle
these issues, we encompassed a diverse range of subjects, spanning natural, noisy,
and adversarial data. As for the compressed DNN models, we utilized two widely
adopted frameworks for model compression: TFLite and CoreML. Our objective is
to perform a thorough evaluation of PriCod’s effectiveness across various scenarios
and to enhance the applicability of our conclusions.

5.7 Related Work
5.7.1 Test prioritization for Deep Neural Networks

In the literature, a variety of techniques have been proposed to prioritize test
inputs for Deep Neural Networks (DNNs)[6, 10, 9]. Feng et al. [6] introduced
DeepGini [6], which identifies potentially misclassified tests by evaluating the model’s
confidence. This approach is built on the assumption that if a DNN assigns similar
probabilities to each class for a test, it is more likely to be incorrectly predicted. Byun
et al. [110] examined several metrics for prioritizing inputs that reveal software bugs,
using white-box measurements of DNN sentiment. These metrics include softmax
confidence (i.e., predicted probability for output categories in DNNs using softmax
output layers), Bayesian uncertainty (i.e., uncertainty in prediction probability
distributions for Bayesian Neural Networks), and input surprise (i.e., the disparity
in neuron activation patterns between a test input and training data). Weiss
et al. [9] investigated the effectiveness of different DNN test input prioritization
methods, including notable confidence-based metrics like Vanilla Softmax, Prediction-
Confidence Score (PCS), and Entropy. Wang et al.[10] introduced PRIMA, a
technique for prioritizing test inputs for DNNs through intelligent mutation analysis.
PRIMA enhances DNN test prioritization in two significant ways. Firstly, it can be
applied not only to classification models but also to regression models. Secondly,
PRIMA addresses scenarios where test inputs are generated using adversarial input
generation methods[212], which could artificially increase the probability of an
incorrect class assignment. However, PRIMA can not be adapted to compressed
DNN models since the model mutation rules employed by PRIMA cannot be directly
applied to compressed DNN models.

Zheng et al. [43] proposed CertPri, a DNN test input prioritization technique that
focuses on measuring movement difficulty in the feature space. This method assesses
the cost of moving test inputs closer to or farther from the class centers, providing a
novel perspective on prioritization strategies. Al-Qadasi et al. [213] introduced a new
metric, WFDR, for evaluating the effectiveness of prioritizing Dtest in the context of
DNNs. The WFDR metric considers fault detection ratio and rate, incorporating
adaptive weights to account for prioritization difficulty. This approach offers a

133

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

comprehensive assessment framework for prioritization algorithms. Wei et al. [44]
proposed EffiMAP, an efficient test case prioritization technique utilizing predictive
mutation analysis. Without requiring a full mutation analysis, EffiMAP predicts
the capability of test cases to expose model prediction failures based on information
extracted from the test case execution trace. This pioneering work demonstrates
the feasibility of predictive mutation analysis in ranking test cases for deep neural
network testing. Tao et al. [45] introduced TPFL, a DNN test prioritization technique
that employs dynamic spectrum analysis on each neuron. TPFL identifies suspicious
neurons causing incorrect decisions in the DNN and prioritizes test inputs based on
their ability to activate these neurons. This approach leverages key insights into the
relationship between neuron activation and bug-revealing inputs.

5.7.2 Test Prioritization for Traditional Software
In the realm of traditional software testing [214], the concept of test prioritization

is a pivotal approach aimed at determining the most efficient sequence for executing
test cases, enabling the swift identification of system defects [11, 167, 79, 116, 113, 215].
Rothermel et al. [116] pioneered introducing and comparing three distinct test case
prioritization methods for regression testing, all rooted in test execution data. Their
findings unequivocally showcased that each of the scrutinized prioritization methods
substantially heightened the fault detection rate within the test suite. In the pursuit
of evaluating the efficacy of diverse test case prioritization techniques in bug detection,
Di Nardo et al. [79] conducted an empirical case study centered around coverage-based
prioritization strategies applied to real-world regression faults. Similarly, Henard
et al. [77] embarked on an extensive survey, undertaking a meticulous comparison
of existing test prioritization approaches. Intriguingly, their investigation revealed
marginal disparities between white-box [216, 217, 218, 11] and black-box strategies
[219, 220, 221]. Another noteworthy advancement came from Chen et al. [167], who
introduced the LET method, a pioneering approach to prioritizing test programs in
the domain of compiler testing with the primary goal of enhancing efficiency. Chen
et al. demonstrated the method’s efficacy through two interconnected processes. The
initial process involves learning, wherein the system identifies distinctive features of
test programs and predicts the probability of a new test program uncovering bugs.
Subsequently, the scheduling process comes into play, prioritizing test programs
based on these predicted probabilities of bug discovery. This innovative dual-process
framework proposed by Chen et al. constitutes a notable contribution to optimizing
compiler testing strategies.

5.7.3 Deep Neural Network Testing
DeepXplore [8] is the first technique targeted at testing DNN models. It proposed

neuron coverage, which measures the activation state of neurons, to guide the
generation of test inputs. DeepXplore is based on differential testing, and it uses
multiple models of a task to detect potential defects. To alleviate the need for
multiple models under test, DeepTest [222] leverages metamorphic relations [223]
that are expected to hold by a model as its test oracles. Both DeepXplore and
DeepTest perturb their test inputs based on the gradient of deep learning models.

The preceding section has discussed test prioritization, which aims to reduce
labeling costs and improve DNN testing efficiency. In addition to test prioritization,
several test selection approaches have also been proposed to lower labeling costs.

134

5.7. Related Work

Test selection focuses on accurately estimating the accuracy of the entire dataset by
labeling only a selected subset of test inputs. This approach effectively decreases
the labeling costs associated with DNN testing. Li et al. [48] introduced CES (Cross
Entropy-based Sampling), which performs test selection by minimizing the cross-
entropy between the selected subset and the complete test set, ensuring that the
distribution of the chosen test inputs resembles that of the original test set. Chen et
al. [46] proposed PACE to guide DNN test selection. Initially, PACE clusters all test
inputs into groups based on their testing characteristics. Then, PACE employs the
MMD-critic algorithm [49] to select prototypes from each group. For test inputs not
falling into any group, PACE utilizes adaptive random testing to select appropriate
tests from them.

Wu et al. [224] introduced Stratified random Sampling with Optimum Allocation
(SSOA), a framework that integrates sampling theory into the task of deep learning
test input selection. SSOA leverages stratified random sampling and optimum
allocation to provide an unbiased approach for selecting test inputs. This methodology
contributes to mitigating biases in the test input selection process, enhancing the
representativeness of the chosen inputs. Hao et al. [225] proposed Multiple-Objective
Optimization-Based Test Input Selection (MOTS) as a method for selecting a more
effective test subset to retrain DNN models. In contrast to existing approaches,
MOTS considers both the uncertainty of test inputs and the diversity of the test
subset. Employing the NSGA-II multiple-objective optimization algorithm, MOTS
ensures that the selected test subset exhibits diverse features, providing enhanced
support for DNN model retraining.

Wu et al. [226] introduced RNNtcs, a method for selecting test cases for Recurrent
Neural Networks (RNNs) that combines clustering and uncertainty. RNNtcs aims
to identify test cases that can effectively reveal RNN bugs by considering both
the clustering structure and uncertainty. This approach is designed to reduce the
cost of labeling by focusing on test cases with a higher likelihood of exposing
model vulnerabilities. Liu et al. [227] proposed DeepState, a test suite selection
tool tailored to the specific neural network structures of Recurrent Neural Network
(RNN) models. DeepState reduces data labeling and computation costs by selecting
data based on a stateful perspective of RNN. This perspective involves identifying
potentially misclassified tests by capturing the state changes of neurons in RNN
models. DeepState addresses the unique challenges posed by RNN structures in the
context of test input selection.

5.7.4 Test Generation approaches for Compressed DNN models
In the literature, several test generation approaches have been proposed for

compressed DNN models. Odena and Goodfellow introduced TensorFuzz [228],
a pioneering method that utilized coverage-guided fuzzing as a test generation
approach. TensorFuzz aimed to reveal difference-inducing inputs between a well-
trained DNN and its quantized counterpart. By employing a coverage-guided strategy,
TensorFuzz efficiently explored the input space, exposing discrepancies in the behavior
of compressed DNN models.

Yahmed et al. [229] proposed DiverGet, a search-based testing framework de-
signed specifically for quantization assessment in compressed DNN models. DiverGet
introduces a structured space of metamorphic relations that simulate natural distor-
tions on input data. These metamorphic relations are then systematically explored

135

Chapter 5. PriCod: Prioritizing Test Inputs for Compressed Deep
Neural Networks

to optimize the revelation of disagreements among DNNs subjected to different
arithmetic precision. By defining and strategically navigating this metamorphic
space, DiverGet provides a comprehensive approach to evaluating the impact of
quantization on DNN models.

Xie et al. [230] proposed DiffChaser, a novel automated black-box disagreement
detection technique tailored for multiple variants of a DNN. The core premise behind
DiffChaser is the identification of similarities in decision boundaries between a
DNN and its quantization-aware training (QC) version variants. The rationale is
that the decision boundaries tend to exhibit resemblance, particularly in proximity
to the boundary itself. Consequently, inputs near these decision boundaries are
more likely to capture the discrepancies in decision boundaries, representing the
disagreement among the DNN models. DiffChaser leverages prediction uncertainty
as a guiding metric and automatically generates inputs that lie in the vicinity of
decision boundaries to unveil the distinctions between DNN variants.

5.8 Conclusion
To address the challenge of labeling-cost reduction in the context of testing

compressed DNN models, we proposed PriCod, a novel test prioritization approach
designed to identify and prioritize potentially misclassified tests. PriCod is rooted
in two fundamental premises: firstly, that significant prediction deviations between
compressed and original DNN models signify a greater likelihood of test input
misclassification, and secondly, that test inputs situated near decision boundaries are
more susceptible to misclassification. Building upon these premises, PriCod generates
two distinct feature types for each test input for the purpose of test prioritization:
deviation features, quantifying the prediction deviation caused by model compression,
and embedding features, which indirectly reflect proximity to decision boundaries by
leveraging intrinsic information about test inputs. These features are combined to
calculate the misclassification probability of each test input. Subsequently, PriCod
ranks all tests in descending order based on their misclassification probability. We
conducted a comprehensive assessment of PriCod’s performance, using different types
of test inputs and various test prioritization techniques. Our findings consistently
showcased PriCod’s superior performance, revealing an average improvement from
7.43% to 55.89% for natural test inputs, 7.92% to 52.91% for noisy inputs, and 7.03%
to 51.59% for adversarial inputs compared to existing methods.
Availability. All artifacts are available in the following public repository:

https://github.com/yinghuali/PriCod

136

https://github.com/yinghuali/PriCod

6 Test Input Prioritization for 3D Point
Clouds

In this chapter, we propose PCPrior, a novel test prioritization method tailored
for 3D point clouds. The core idea behind PCPrior is that test input close to the
decision boundary of the model is more likely to be misclassified. By identifying and
prioritizing such potentially misclassified test inputs, developers can allocate limited
label budgets more effectively and accelerate the debugging process.

This chapter is based on the work published in the following research paper:
• Yinghua Li, Xueqi Dang, Lei Ma, Jacques Klein, Yves LE Traon and Tegawendé

F. Bissyandé. Test Input Prioritization for 3D Point Clouds. ACM Transactions
on Software Engineering and Methodology(TOSEM). Accepted for publication
on Jan. 15, 2024.

Contents
6.1 Introduction . 139
6.2 Background . 143

6.2.1 Deep Learning for 3D Point Clouds 143
6.2.2 Mutation Testing . 144
6.2.3 Test Input Prioritization for DNNs 145

6.3 Approach . 146
6.3.1 Overview . 146
6.3.2 Spatial Feature Generation 147
6.3.3 Mutation Feature Generation 151
6.3.4 Prediction Feature Generation 152
6.3.5 Uncertainty Feature Generation 153
6.3.6 Feature Concatenation 153
6.3.7 Learning-to-rank . 153
6.3.8 Usage of PCPrior . 154

6.4 Study design . 155
6.4.1 Research Questions . 155
6.4.2 Models and Datasets . 156
6.4.3 Measurements . 158

Chapter 6. Test Input Prioritization for 3D Point Clouds

6.4.4 Compared Approaches 159
6.4.5 Variants of PCPrior . 160
6.4.6 Implementation and Configuration 161

6.5 Results and analysis . 161
6.5.1 RQ1: Performance of PCPrior 161
6.5.2 RQ2: Influence of ranking models 165
6.5.3 RQ3: Impact of Main Parameters in PCPrior 166
6.5.4 RQ4: Effectiveness on Noisy Test Inputs 167
6.5.5 RQ5: Feature contribution analysis 172
6.5.6 RQ6: Retraining 3D shape classification models with

PCPrior and uncertainty-based methods 175
6.6 Discussion . 176

6.6.1 Limitations of PCPrior 176
6.6.2 Generality of PCPrior 177
6.6.3 Threats to Validity . 178

6.7 Related Work . 178
6.7.1 Test Prioritization Techniques 178
6.7.2 Mutation Testing for DNNs 179
6.7.3 Deep Neural Network Testing 179

6.8 Conclusion . 181

138

6.1. Introduction

6.1 Introduction
The advent of point cloud data has revolutionized various fields, such as computer

vision [1, 2], autonomous driving [3, 4], augmented reality [231, 232, 233] and smart
cities [234, 234], by enabling highly accurate and detailed representation of real-world
environments. A Point cloud [17] refers to a collection of three-dimensional data
points in space, typically representing the surface geometry or shape of real-world
objects or environments. Each data point in a point cloud is defined by its spatial
coordinates (x, y, z) and, in some cases, additional attributes such as color or
intensity values. Figure 6.1 illustrates an example of a point cloud representing
the shape of a car, composed of thousands of individual points. To showcase
the inherent three-dimensional attributes of the point cloud, we present multiple
perspectives of the object from different viewing angles. From specific angles, the
car is easily identifiable and recognizable. However, from some angles, it becomes
challenging to identify the object as a car. Point clouds are commonly generated using
various sensing technologies, including LiDAR (Light Detection and Ranging) [35],
depth cameras [235], or structured light scanners [236], which capture the physical
measurements of points in the environment.

Compared to two-dimensional data like images, 3D point clouds have inherent
differences and significant advantages. First, 3D point clouds offer a three-dimensional
depiction of objects, resulting in higher accuracy and reliability when identifying
complex 3D shapes and volumes. Moreover, point cloud data can directly capture
surface details and morphology of objects, making them difficult to be replaced
by images in many practical applications. Consequently, the integration of point
cloud processing in safety-critical applications, such as autonomous driving [18, 4],
medical imaging [237], and industrial automation [238], has become increasingly
prevalent. For instance, 3D point clouds can be utilized for autonomous driving
in the context of obstacle detection and perception [239]. More specifically, 3D
point cloud data obtained from LiDAR (Light Detection and Ranging) sensors [35]
can provide a rich and detailed representation of the surrounding environment in
three-dimensional space. By leveraging this data, it becomes feasible to identify and
localize various objects on the road, such as automobiles, pedestrians, cyclists, and
obstacles. Leveraging these 3D data, autonomous driving systems can employ 3D
classification models to detect and categorize objects, thereby guiding the avoidance
of obstacles. Hence, the accuracy of these 3D classification models plays a pivotal
role in ensuring the safety of autonomous driving.

In recent years, Deep Neural Networks (DNNs) have emerged as a powerful tool
for various computer vision tasks [240, 241], and their application to 3D point cloud
data has garnered significant attention. Ensuring the reliability of DNNs operating
on point cloud data is crucial for safe and efficient functioning. DNN testing [9, 111]
has become a widely adopted approach to assess and ensure the quality of such
networks. Nevertheless, prior investigations [46, 6, 10] have highlighted a central
challenge pertaining to DNN testing: the significant cost incurred in labeling test
inputs to verify the accuracy of DNN predictions. First, the scale of the test set is
typically extensive. Second, manual labelling is mainstream, typically necessitating
the involvement of multiple annotators to ensure the accuracy and consistency of
the labeling process for each test input.

The challenges are further compounded in the case of 3D point cloud data.

139

Chapter 6. Test Input Prioritization for 3D Point Clouds

Figure 6.1: Example of Point cloud test cases
In addition to the aforementioned obstacles, labeling point cloud data presents
additional distinctive challenges compared to traditional image/text data.
• Data representation Image data is represented as two-dimensional matrices,

with each pixel having a distinct position and value. In contrast, point cloud
data comprises an unordered set of points, each possessing three-dimensional
coordinates and additional attributes such as color and normals. This distinctive
data representation significantly increases the complexity of labeling, necessitating
additional processing and interpretation steps.

• Sparsity of point clouds Point cloud data is generally characterized by sparsity
compared to image data. There can be missing points or noise in the point
cloud, and the distribution of points is non-uniform. This inherent sparsity poses
challenges for accurate labeling.

• Expert knowledge for 3D point clouds Labeling 3D point cloud data ne-
cessitates domain-specific expertise due to its unique characteristics. With a
large number of three-dimensional points, each with its own coordinates and
potential attributes, accurately labeling 3D point cloud data requires expert
knowledge. This expertise is crucial for understanding and interpreting the geo-
metric attributes, shapes, and potentially semantic information conveyed by the
points.

To address the issue of labeling cost in the context of DNNs, previous research
efforts [6] have primarily focused on test prioritization, which aims to prioritize
test inputs that are more likely to be misclassified by the model. By allocating
resources to label these challenging inputs first, developers can ensure priority for
critical test cases, ultimately resulting in reduced overall labeling costs. Existing
test prioritization approaches [10, 6, 9] can be broadly categorized into two main
groups: coverage-based and confidence-based. Coverage-based techniques prioritize
test inputs based on the coverage of neurons [11, 12]. In contrast, confidence-based
approaches operate under the assumption that test inputs for which the model
exhibits lower confidence are more likely to be misclassified. Notably, confidence-
based approaches have been demonstrated to be more effective than coverage-based
approaches in the existing studies [6]. Weiss et al. [9] conducted a comprehensive
exploration of diverse test input prioritization techniques, encompassing several
confidence-based metrics that can be adapted to 3D point cloud data, such as
DeepGini, Vanilla Softmax, Prediction-Confidence Score (PCS), and Entropy.

Although the confidence-based test prioritization approaches have demonstrated
efficacy in specific contexts such as image and text data, they encounter several
limitations when applied to 3D point cloud data.
• Noises in 3D point cloud data 3D point cloud data can exhibit inherent noise,

which arises from various sources such as sensor noise and non-uniform sampling
density. These noise factors can affect the effectiveness of confidence-based
approaches. Specifically, in the presence of noise, the model can erroneously assign

140

6.1. Introduction

a high probability to an incorrect category for a given test sample. Consequently,
confidence-based approaches incorrectly assume that the model is highly confident
of this particular test, considering it will not be misclassified. However, the model’s
prediction on this test sample is indeed incorrect (i.e., this test is misclassified by
the model).

• Missing crucial spatial features Confidence-based methods typically rely on
the model’s prediction confidence on test samples. However, in the case of 3D point
cloud data, the point cloud exhibits complex spatial characteristics, and relying
solely on the confidence feature of the model’s prediction for test prioritization
is limited. In other words, confidence-based methods fail to fully leverage the
informative features inherent in point cloud data for test prioritization.
In addition to coverage-based and confidence-based techniques, Wang et al. [10]

proposed PRIMA, which leverages mutation analysis and learning-to-rank method-
ologies for test input prioritization in DNNs. However, although demonstrating
effectiveness in the domain of DNN test prioritization, PRIMA faces challenges when
applied to 3D point cloud data. The reason is that: 1) the mutation operators
utilized in PRIMA are primarily designed for two-dimensional images, text, and
predefined features. These operators are not directly applicable to 3D point cloud
data. In contrast to conventional image or text data, 3D point clouds exhibit a
distinctive three-dimensional representation characterized by a substantial quantity of
points; 2) even when considering the possibility of utilizing dimensionality reduction
techniques to transform 3D data into two-dimensional images and integrating them
into PRIMA, practical issues emerge. The execution flow of PRIMA necessitates the
mutated two-dimensional images to be fed into the evaluated model for comparing
the prediction results between mutants and original inputs. However, the model
employed for 3D point clouds is inherently tailored to process three-dimensional
data and lacks the capability to classify the mutated two-dimensional images. As a
result, even in scenarios where dimensionality reduction tools are accessible, PRIMA
remains unsuitable for accommodating 3D point cloud data.

In this paper, we propose PCPrior (3D Point Cloud Test Prioritization), a
novel test prioritization approach specifically designed for 3D point cloud test cases.
PCPrior leverages the unique characteristics of 3D point clouds to prioritize tests. It
is crucial to emphasize that our approach focuses on datasets where each 3D point
cloud corresponds to an individual test case. Therefore, each test case is constituted
by a collection of points. The core idea behind the PCPrior framework is that: test
inputs situated closer to the decision boundary of the model are more likely to be
predicted incorrectly, which has been proven in the prior research [20]. PCPrior aims
to prioritize such possibly-misclassified tests higher.

To reflect the distance between a test (a point cloud) and the decision boundary,
we adopt a vectorization approach to map each test to a low-dimensional space,
indirectly revealing the proximity between the point cloud data and the decision
boundary. Based on this vectorization strategy, we design a diverse set of features to
characterize a point cloud test, including Spatial Features (SF), Mutation Features
(MF), Prediction Features (PF), and Uncertainty Features (UF). Notably, SF and
MF are specifically designed based on the characteristics of point clouds. Specifically,
these features play a pivotal role in capturing essential aspects, including the spatial
properties of the point cloud, mutation information present in the input, predictions
generated by the DNN model, and the corresponding confidence levels. PCPrior

141

Chapter 6. Test Input Prioritization for 3D Point Clouds

constructs a comprehensive feature vector through the concatenation of these four
feature types and leverages a ranking model to learn from it for effective test
prioritization.

Compared to existing test prioritization approaches, PCPrior has the following
advantages:
• Tailored for 3D Point Cloud Data PCPrior is specifically designed to address

the challenges of test prioritization for 3D point cloud data. Unlike existing
approaches that focus on 2D images or text data, PCPrior leverages the distinctive
characteristics of 3D point clouds and provides a more targeted approach for
prioritizing tests.

• Effective Utilization of Spatial Features PCPrior leverages the spatial features
of 3D point clouds, which are essential for understanding the geometric attributes
and shapes of objects in the data. Unlike confidence-based approaches that
solely rely on prediction confidence, PCPrior incorporates spatial features into
the prioritization process. By considering the spatial properties of the point
cloud data, PCPrior can effectively capture the informative features necessary for
accurate test prioritization.

• Comprehensive Feature Generation Mechanism In addition to incorporating
spatial characteristics, PCPrior integrates confidence-based features while also
taking into account mutation and prediction features. By combining these features
into a comprehensive feature vector, PCPrior captures a rich set of information
that enhances the effectiveness of test prioritization.
PCPrior exhibits broad applicability across diverse domains. As a case in point,

in the field of autonomous driving, when testing a 3D shape classification model,
the utilization of sensors facilitates the collection of unlabeled test sets comprising
surrounding 3D point clouds. PCPrior can be utilized to identify and prioritize
test instances that are more likely to be misclassified by the model. By focusing
on labeling these possibly-misclassified test inputs, it results in a reduction of both
labeling time and the manual efforts involved in the labeling process.

To evaluate the effectiveness of PCPrior, we conduct an extensive experimental
evaluation on a diverse set of 165 subjects, encompassing both natural datasets and
noisy datasets. We compare PCPrior with several existing test prioritization ap-
proaches that have demonstrated effectiveness in prior studies [6, 9]. The evaluation
metrics include the Average Percentage of Fault-Detection (APFD) [11] and Percent-
age of Fault Detected (PFD) [6], which are standard and widely-adopted metrics for
test prioritization. The experimental results demonstrate the superiority of PCPrior
over existing test prioritization techniques. Specifically, when applied to natural
datasets, PCPrior consistently outperforms all the comparative test prioritization
approaches, yielding an improvement ranging from 10.99% to 66.94% in terms of
APFD. Moreover, on noisy datasets, the improvement ranges from 16.62% to 53%.
We publish our dataset, results, and tools to the community on Github1.

Our work has the following major contributions:
• Approach We propose PCPrior, the first test prioritization approach specifically

for 3D point cloud data. To this end, we design four types of features that can
comprehensively extract information from a 3D point cloud test. We employ
effective ranking models to learn from the generated features for test prioritization.

• Study We conduct an extensive study based on 165 3D point cloud subjects
1https://github.com/yinghuali/PCPrior

142

https://github.com/yinghuali/PCPrior

6.2. Background

involving natural and noisy datasets. We compare PCPrior with multiple test
prioritization approaches. Our experimental results demonstrate the effectiveness
of PCPrior.

• Performance Analysis We compare the contributions of different types of
features to the effectiveness of PCPrior. We also investigate the impact of main
parameters in PCPrior.

6.2 Background
6.2.1 Deep Learning for 3D Point Clouds

The rapid advancements in sensor technologies, such as LiDAR (Light Detection
and Ranging) [35] and RGB-D (Red-Green-Blue Depth) cameras [36], have led to the
proliferation of three-dimensional (3D) point cloud data. These representations find
significant utility in various fields, including medical treatment [242], autonomous
driving [243, 18], and robotics [244, 245]. Typically, a point cloud represents a
collection of data points in 3D space, each point typically denoted by its spatial
coordinates (x, y, z) and, in some cases, additional attributes like color or intensity
values [37]. Figure 6.1 illustrates one concrete example of a point cloud, showcasing
the shape of a car. Each point cloud comprises numerous individual points.

The emergence of Deep Learning [246, 70], particularly Convolutional Neural Net-
works (CNNs) and PointNet [38], has revolutionized the analysis and understanding
of 3D point cloud data. Moreover, the availability of numerous publicly accessible
datasets, such as ModelNet [39], ShapeNet [40], and S3DIS [41], has played a pivotal
role in stimulating research endeavors focused on deep learning techniques applied
to 3D point clouds. This surge in research has led to the development of numerous
methods addressing various problems in point cloud processing. One extensively
studied problem in this domain is three-dimension (3D) shape classification,
which focuses on utilizing DNNs to classify three-dimensional shapes. For example,
in the field of autonomous driving, 3D shape classification can be utilized to cate-
gorize various objects on the road, such as vehicles, pedestrians, traffic signs, etc.
By accurately classifying these objects, the autonomous driving system can better
understand the surrounding environment, enabling more precise decision-making.

3D shape classification typically involves three main steps: 1) Learning in-
dividual point embeddings Initially, each point in the point cloud undergoes
processing to acquire its embedding representation. 2) Obtaining global shape
embedding Subsequently, these individual point embeddings are aggregated to
generate the global shape embedding for the entire point cloud. This step aims to
capture the overall structure and shape characteristics of the entire point cloud. 3)
Classification Processing Finally, the global shape embedding is input into several
fully connected layers for classification. These layers are responsible for determining
the category of the 3D shape represented by the point cloud based on the extracted
global features.

In the literature [17, 16, 38, 42], several approaches have been proposed to tackle
the challenge of 3D shape classification, such as PointConv [17], Dynamic Graph
Convolutional Neural Network (DGCNN) [16], and PointNet [38]. PointConv is a
specialized convolutional neural network designed for processing 3D point clouds.
Training multi-layer perceptrons on local point coordinates enables the construction
of deep networks directly on 3D point clouds for efficient analysis. DGCNN, tailored

143

Chapter 6. Test Input Prioritization for 3D Point Clouds

for 3D point cloud data, leverages intrinsic spatial relationships by modeling them
as graphs. Through graph convolutions and dynamic adaptation of the graph
structure based on input data, DGCNN effectively learns and processes point cloud
representations. PointNet, a widely adopted architecture for 3D point cloud data,
incorporates a shared multi-layer perceptron (MLP) with max-pooling for local
feature extraction and a symmetric function for aggregating global features. T-Net
layers enable PointNet to learn transformation matrices, enhancing its robustness
to input variations. PointNet has demonstrated impressive capabilities in 3D shape
classification.

6.2.2 Mutation Testing
Mutation testing in traditional software engineering In the field of software
testing [185, 78, 184], mutation testing [152, 111] presents a robust methodology for
evaluating the effectiveness of a test suite in identifying code defects. The primary
objective of mutation testing revolves around assessing the test suite’s capacity to
detect and localize faults within the code. The fundamental premise is that: if a
test case can successfully uncover a mutation, thereby revealing a discrepancy in
program behavior compared to the original code, it signifies the test case’s potential
to identify bugs in real-world scenarios. These mutations are intentionally introduced
into the original program through simple syntactic modifications, resulting in the
creation of a set of defective programs known as mutants, each possessing a distinct
syntactic alteration. To assess the efficacy of a given test suite, these mutants are
executed using the input test set, allowing an examination of whether the injected
faults can be detected.

The process of mutation testing, as delineated in prior research [129], entails
generating a set of mutated programs, denoted as p′, by applying predefined mutation
rules to an original program P . These mutations introduce minor modifications to P ,
thereby creating a collection of mutants for evaluation. The determination of whether
a mutant p′ is classified as "killed" or "survived" is contingent upon the disparity
observed in the test result between p′ and the original program. More specifically, a
mutant is categorized as "killed" if the test case yields a different behavior compared
to that of the original test. The killing of a mutant indicates that the corresponding
test case has successfully identified and flagged a potential defect in the code under
examination. This discrepancy in behavior suggests that the test case has effectively
detected and indicated the presence of a possible defect within the code. Conversely,
a mutant is regarded as "survived" if the test result remains unchanged in comparison
to the original program, suggesting that the test case fails to uncover the introduced
fault. When a test suite is able to "kill" many mutants, it indicates that the suite
has a higher capability to detect and localize faults within the code.
Mutation testing for DNNs Researchers have introduced various approaches
and tools aimed at adapting mutation testing for deep learning systems [20, 59, 61].
Notable contributions include DeepMutation [20], DeepMutation++ [59], MuNN [61],
and DeepCrime [60]. DeepMutation [20] is designed to evaluate the quality of test
data for deep learning (DL) systems using mutation testing. This innovative ap-
proach encompasses the creation of mutation operators at both the source and model
levels, strategically introducing faults into various components such as training data,
programs, and DL models. The evaluation of test data effectiveness is subsequently
conducted by analyzing the detection of these introduced faults. Building upon

144

6.2. Background

this foundation, DeepMutation++[59] represents an advanced iteration, introducing
innovative mutation operators tailored for feed-forward neural networks (FNNs)
and Recurrent Neural Networks (RNNs). Notably, it possesses the capability to
dynamically mutate the run-time states of an RNN. Shen et al. proposed MuNN [61],
an intricate mutation analysis method designed explicitly for neural networks. The
method establishes five mutation operators, each rooted in the distinctive charac-
teristics of neural networks. In a remarkable stride towards practical application,
Humbatova et al. introduced DeepCrime [60], a mutation testing tool that implements
DL mutation operators based on real-world DL faults. Furthermore, Jahangirova et
al. [111] conducted a comprehensive empirical study of DL mutation operators found
in the existing literature. Their study, which includes 20 DL mutation operators such
as activation function removal and layer addition, suggests that while most operators
are useful, their configuration needs careful consideration to avoid rendering them
ineffective.

6.2.3 Test Input Prioritization for DNNs
Test prioritization [113] is a critical process in software testing that seeks to

establish an optimal sequence for unlabelled tests. Its core objective is to iden-
tify and prioritize potentially misclassified tests, enabling their early labelling and
consequently leading to a reduction in the overall labelling cost. The majority of
approaches for prioritizing tests in Deep Neural Networks (DNNs) [10, 6, 108] can
be categorized into two main groups: coverage-based and confidence-based [10].
Coverage-based approaches, exemplified by CTM [11], involve the direct extension
of conventional software system testing methods to the domain of DNN testing. In
contrast, confidence-based approaches prioritize test inputs based on the model’s level
of confidence. Specifically, these methods aim to identify inputs that are likely to be
misclassified by the DNN model, as indicated by the model assigning similar probabili-
ties to each class. DeepGini [6] stands as a classic confidence-based test prioritization
method that has been empirically shown to outperform existing coverage-based
techniques in terms of both effectiveness and efficiency. Other confidence-based test
prioritization methods, such as Vanilla Softmax, Prediction-Confidence Score (PCS),
and Entropy, have also been evaluated in recent research [9]. These metrics have
demonstrated efficacy in identifying potentially misclassified test inputs and can
assist in guiding test prioritization efforts.

While confidence-based methods can be applied to 3D point cloud data, they have
certain limitations. 3D point cloud data is typically characterized by its large-scale
and highly detailed nature, typically consisting of millions or even billions of points.
However, confidence-based methods, when prioritizing tests, primarily focus on the
uncertainty associated with the model’s classification of the test inputs, neglecting the
intrinsic raw feature information contained within the point cloud data. Furthermore,
point cloud data is prone to noise, which can adversely impact the reliability of
confidence scores assigned by these approaches. In the presence of noise, confidence-
based methods can exhibit high confidence in incorrect labels. Consequently, in
such cases, tests that will be misclassified by the model are mistakenly assigned
inappropriate confidence scores, resulting in them not being prioritized higher. These
factors collectively contribute to the diminished performance of confidence-based
methods in the context of point cloud data.

In addition to the aforementioned test prioritization methods, PRIMA [10],

145

Chapter 6. Test Input Prioritization for 3D Point Clouds

Point clouds

Feature
mutation

Mutation
Feature extraction

Input mutation features

Point clouds
classification model

Prediction

Prediction features

Uncertainty
calculation

Uncertainty features

Data
processing

Spatial
Feature extraction

Spatial features

Feature combination

Ranking model

Feature vector of training data
(with ground truth)

Feature vector of test data
(to be labeled)

Learning to rank Ranking

Prioritized
test data

Labeling

Developers

Figure 6.2: Overview of PCPrior
proposed by Wang et al., employs mutation analysis to prioritize test inputs that
can uncover faults. However, point cloud data represents unstructured sets of points
in three-dimensional space, which makes the mutation rules of PRIMA not adapted.

6.3 Approach
6.3.1 Overview

In this paper, we introduce PCPrior, a novel approach tailored for test prioritiza-
tion in the domain of 3D point cloud data. The overview of PCPrior is depicted in
Figure 6.2, which provides a visual representation of its key components. Specifically,
when given a test set T targeted at a DNN model M , we outline the fundamental
workflow of PCPrior as follows. A more comprehensive exposition of this workflow is
presented in subsequent sections.
• Feature Generation: In the initial stage, PCPrior generates four distinct types

of features for each test t ∈ T , which are purposefully designed to capture the
characteristics of 3D point cloud data. These four types of features encompass
Spatial Features, Mutation Features, Prediction Features, and Uncertainty Fea-
tures. In Figure 6.2, the matrices represent features generated from the test
inputs. Here, n denotes the number of test inputs in the test set T . Since there
are n tests in T , each matrix has n rows. Each row in the matrix represents
a feature vector generated for a specific test. From top to bottom, the first
matrix illustrates the input mutation features for all tests in the test set, with
dimensions n × j, where j denotes the number of mutation features for each
test. The second matrix represents spatial features for all tests in the test set,
having dimensions n × k, where k signifies the number of spatial features for each
test. The third matrix showcases prediction features, having dimensions n × v,
where v represents the number of prediction features for each test. The fourth
matrix displays uncertainty features, with dimensions n × w, where w denotes the
number of uncertainty features for each test. For example, in the matrix of spatial
features, {s21, s22, . . . , s2k} represent all spatial features generated for the second
test input in T . In Sections 6.3.2 to 6.3.5, we provide a detailed explanation of
the meaning, generation methods, and motivations behind each feature type.

• Feature Concatenation: For each test t ∈ T , PCPrior has generated four types
of features in the previous step. In this step, PCPrior concatenates these four
types of features, resulting in the generation of the final feature vector specifically
associated with the test t. In particular, the process is depicted in Figure 6.2
where four matrices are concatenated, forming a large matrix with dimensions of
n × (j + k + v + w).

146

6.3. Approach

• Learning to Rank: PCPrior takes the final feature vector of each test t ∈ T
and inputs it into a pre-trained ranking model, specifically LightGBM [89]. The
ranking model automatically learns the probability of misclassification for each
test based on its feature vector. PCPrior leverages these probabilities to sort the
tests, placing those with a higher probability of being misclassified by the model
at the forefront.

6.3.2 Spatial Feature Generation
Based on the test set T , we generated six types of spatial features from each point

cloud test input, including variance [247], mean [248], median [248], scale [249], skew-
ness [250], and kurtosis [250]. We provide detailed explanations of each feature below.
PCPrior leverages the spatial features of tests to identify their spatial proximity. As
illustrated in Figure 6.2, prior to the generation of spatial features, a data processing
step is executed. This step encompasses the reading and transformation of the point
cloud dataset. Upon accessing the point cloud data, the coordinates of each point
within the point cloud (commonly represented as x, y, z coordinates), along with
any supplementary attributes (such as color and intensity), are transformed into a
numpy array format.

The rationale behind generating these features stems from the observation made
by Ma et al. [20] that misclassified inputs typically locate near the decision boundary
of a DNN model. In light of this observation, our approach entails the generation of
a diverse set of spatial features from each test input, effectively capturing its unique
characteristics. As a result, each test instance is transformed into a spatial feature
vector, indirectly reflecting the test’s proximity to the decision boundary. Tests that
exhibit closer proximity to the decision boundary are considered more susceptible to
being predicted incorrectly. Motivated by this insight, PCPrior utilizes the spatial
features of test inputs to assess their probability of being misclassified. For a given
point cloud P , Formula 6.1 illustrates the process of generating its spatial features
(SF).

VSF = Concat(σ2(P), µ(P), Median(P), Scale(P), Skewness(P), Kurtosis(P))
(6.1)

In Formula 6.1, all feature computations rely on the coordinates of points in the
point cloud P along the three coordinate axes (x, y, z). Vspatial represents the
resulting spatial feature vector for the point cloud P . Below, we use variance features
as a specific example to clarify the calculation process for each type of spatial
feature. Assuming P consists of five points with coordinates along the x, y, and z
axes denoted as [x1, x2, x3, x4, x5], [y1, y2, y3, y4, y5], and [z1, z2, z3, z4, z5] respectively,
the variance for the x-axis is calculated as var([x1, x2, x3, x4, x5]) = 0.5, for the
y-axis as var([y1, y2, y3, y4, y5]) = 0.3, and for the z-axis as var([z1, z2, z3, z4, z5]) =
0.8. Consequently, the final variance feature vector of P is [0.5, 0.3, 0.8]. Similar
computations are performed for other types of spatial features. Specifically, in
Formula 6.1, σ2(P) represents the variance features of all points in the point cloud P
along each coordinate axis. µ(P) represents the mean features, Median(P) denotes
the median features, Scale(P) represents scale features, Skewness(P) indicates the
skewness features, and Kurtosis(P) corresponds to the kurtosis features.
• Variance Features [247] Variance features serve as statistical indicators for

measuring the variability or dispersion of points within a dataset. They quantify
the variances of point cloud data along each coordinate axis, thereby providing

147

Chapter 6. Test Input Prioritization for 3D Point Clouds

crucial information about the spatial distribution of points. Given a point cloud P
consisting of N points, where the x, y, z coordinates of each point are respectively
X = [x1, x2, . . . , xn], Y = [y1, y2, . . . , yn], and Z = [z1, z2, . . . , zn], Formula 6.2
illustrates the computation process for the variance feature vector of the point
cloud P .

σ2(P) = [var(X), var(Y), var(Z)] (6.2)

where var(X) represents the variance of the X-coordinates of all points in the point
cloud P . Namely, it is the variance of X = [x1, x2, . . . , xn]. var(Y) represents
the variance of Y = [y1, y2, . . . , yn], and var(Z) represents the variance of Z =
[z1, z2, . . . , zn]. Formula 6.3 precisely illustrates the computation process for the
variance of X-coordinates. The procedures for computing the variance of Y and
Z coordinates follow a similar approach.

var(X) = 1
N

N∑
i=1

(xi − µ)2 (6.3)

where var(X) represents the variance of the X-coordinates of all points in P .
Specifically, it is the variance of X = [x1, x2, . . . , xn]. µ represents the mean of
the X-coordinates of all points in P . N denotes the total number of points in P .
xi represents the X-coordinates of the i-th point in P .
Specifically, the utilization of variance features in point cloud analysis offers
notable benefits: 1) Quantifying dispersion Variance features enable a quanti-
tative assessment of the dispersion of point cloud data along different coordinate
axes. Larger variance values indicate a more scattered distribution of points along
the corresponding axis, while smaller variance values suggest a more concentrated
distribution. These insights are essential for comprehending the spatial character-
istics and shape of the point cloud. 2) Extracting shape information Variance
features facilitate the extraction of rough shape information from the point cloud.
By comparing the variances along different coordinate axes, conclusions can be
drawn regarding the extension or distribution of the point cloud in various direc-
tions. For instance, if the variance along a particular axis significantly surpasses
that of the other axes, it implies a greater extension of the point cloud’s shape in
that specific direction.

• Mean Features [248] In the context of 3D point cloud data, mean features refer
to the feature values obtained by averaging the attributes (such as coordinates,
normals, etc.) of each point in the point cloud. They represent the average
attributes of the entire point cloud and provide information about the overall
shape or other properties.
Given a point cloud P consisting of N points, with the x, y, and z coordinates
of each point represented as X = [x1, x2, . . . , xn], Y = [y1, y2, . . . , yn], and Z =
[z1, z2, . . . , zn], Formula 6.4 demonstrates the calculation process for the mean
feature vector of the point cloud P .

µ(P) = [mean(X), mean(Y), mean(Z)] (6.4)

where mean(X) denotes the mean of X = [x1, x2, . . . , xn], mean(Y) represents the
mean of Y = [y1, y2, . . . , yn], and mean(Z) signifies the mean of Z = [z1, z2, . . . , zn].
Formula 6.5 details the computation process for the mean of X-coordinates. The

148

6.3. Approach

procedures for calculating the mean of Y and Z coordinates follow a similar
approach.

mean(X) = 1
N

N∑
i=1

xi (6.5)

where mean(X) represents the mean of the X-coordinates of all points in P .
Specifically, it is the mean of X = [x1, x2, . . . , xn]. N denotes the total number of
points in P . xi represents the X-coordinates of the i-th point in P .
We utilize mean features in test prioritization for the following reasons: 1) Com-
prehensive nature Mean features consolidate the information of the entire point
cloud into a single feature vector, offering comprehensive insights about the overall
characteristics. Such comprehensive features facilitate a rapid understanding of
the global properties of the point cloud. 2) Dimensionality reduction Point
cloud data typically comprise a large number of points, each potentially possessing
multiple attributes. By employing mean features, the point cloud data can be
reduced from a high-dimensional space to a lower-dimensional feature vector,
thereby reducing computational complexity and memory consumption.

• Median Features [248] In the context of 3D point cloud data, median features
pertain to the feature values obtained by calculating the median of the coordinate
attributes (X, Y, Z) within the point cloud. They serve as indicators of the central
tendency of attribute values within the point cloud.
Given a point cloud P comprising N points, where the x, y, and z coordinates
of each point are denoted as X = [x1, x2, . . . , xn], Y = [y1, y2, . . . , yn], and Z =
[z1, z2, . . . , zn], Formula 6.6 elucidates the computation process for the median
feature vector of the point cloud P .

Median(P) = [median(X), median(Y), median(Z)] (6.6)

where median(X) refers to the median of the X-coordinates of all points in the
point cloud P (i.e., X = [x1, x2, . . . , xn]), median(Y) represents the median of
Y = [y1, y2, . . . , yn], and median(Z) signifies the median of Z = [z1, z2, . . . , zn].
Formula 6.7 precisely outlines the computation process for the median of X-
coordinates. The procedures for calculating the median of Y and Z coordinates
follow a similar approach.

median(X) =

X
(

N+1
2

)
if N is odd

X(N
2)+X(N

2 +1)
2 if N is even

(6.7)

where median(X) represents the median of the X-coordinates of all points in
P . Specifically, it is the median of X = [x1, x2, . . . , xn]. N denotes the total
number of points in P . X

(
N+1

2

)
denotes the value in X located at the middle

position. X
(

N
2

)
and X

(
N
2 + 1

)
represent the two values in X located at the

middle positions when N is even.
The utilization of median features is motivated by the following factors: 1) Median
features exhibit reduced sensitivity to outliers compared to mean features, render-
ing them more reliable and capable of providing more accurate representations
in the presence of extreme values. 2) Median features demonstrate heightened
stability by being less influenced by variations in attribute value distributions,
thereby facilitating a more consistent representation of the point cloud data.

149

Chapter 6. Test Input Prioritization for 3D Point Clouds

• Scale Features [249] In the context of 3D point cloud data, scale features refer
to the differences between the minimum and maximum values of each point in the
three dimensions (X, Y, and Z) of the point cloud. Range features can provide
information about the scale of the point cloud data, specifically the spatial extent
of the point cloud in each dimension.
Given a point cloud P consisting of N points, where the x, y, and z coordinates
of each point are represented as X = [x1, x2, . . . , xn], Y = [y1, y2, . . . , yn], and
Z = [z1, z2, . . . , zn], Formula 6.8 illustrates the computation process for the scale
feature vector of the point cloud P .

Scale(P) = [scale(X), scale(Y), scale(Z)] (6.8)

where scale(X) denotes the scale of the X-coordinates of all points in the point
cloud P (i.e., X = [x1, x2, . . . , xn]), scale(Y) represents the scale of the Y-
coordinates (i.e., Y = [y1, y2, . . . , yn]), and scale(Z) signifies the scale of the
Z-coordinates (i.e., Z = [z1, z2, . . . , zn]). Formula 6.9 precisely delineates the com-
putation process for the scale of X-coordinates. The procedures for calculating
the scale of Y and Z coordinates follow a similar approach.

scale(X) = max(X) − min(X) (6.9)

where scale(X) represents the scale of the X-coordinates of all points in P . max(X)
represents the maximum value in X = [x1, x2, . . . , xn]. min(X) represents the
minimum value in it.
The utilization of scale features lies in that they serve as descriptive features of
the point cloud data, providing an overall characterization of the spatial attributes
of the point cloud.

• Skewness Features [250] Within the context of 3D point cloud data, the skewness
feature is a statistical measure employed to quantify the degree of skewness in
the distribution of data. It assesses the extent to which the point cloud data
distribution deviates from symmetry. In a point cloud P consisting of N points,
with the x, y, and z coordinates of each point denoted as X = [x1, x2, . . . , xn], Y =
[y1, y2, . . . , yn], and Z = [z1, z2, . . . , zn], Formula 6.10 illustrates the computation
process for the skewness feature vector of the point cloud P .

Skewness(P) = [skewness(X), skewness(Y), skewness(Z)] (6.10)

where skewness(X) denotes the skewness of X = [x1, x2, . . . , xn], skewness(Y)
represents the skewness of Y = [y1, y2, . . . , yn], and skewness(Z) signifies the
skewness of Z = [z1, z2, . . . , zn]. Formula 6.11 outlines the computation process
for the skewness of the X-coordinates. The procedures for calculating the skewness
of the Y and Z coordinates follow a similar approach.

skewness(X) = 1
N

N∑
i=1

(
xi − µ

σ

)3
(6.11)

where µ represents the mean of X = [x1, x2, . . . , xn], and σ denotes the standard
deviation of X. N denotes the total number of points in P , and xi represents the
X-coordinates of the i-th point in P .
The utilization of the skewness feature is motivated by its ability to provide crucial
insights into the distribution characteristics of point cloud data. Analyzing the

150

6.3. Approach

skewness feature facilitates understanding the skewness patterns exhibited by
the point cloud data along different dimensions, i.e., whether the data values
are skewed towards the left or right. This enables the identification of inherent
asymmetry or skewness phenomena present within the data.

• Kurtosis Features [250] In the domain of 3D point cloud data analysis, the
kurtosis feature serves as a statistical measure for describing the peakedness and
shape of the data distribution. It quantifies the sharpness and peakedness of the
point cloud data distribution. Given a point cloud P consisting of N points, where
the x, y, and z coordinates of each point are denoted as X = [x1, x2, . . . , xn], Y =
[y1, y2, . . . , yn], and Z = [z1, z2, . . . , zn], Formula 6.12 illustrates the computation
process for the kurtosis feature vector of the point cloud P .

Kurtosis(P) = [kurtosis(X), kurtosis(Y), kurtosis(Z)] (6.12)

where kurtosis(X) represents the kurtosis of X = [x1, x2, . . . , xn], kurtosis(Y)
denotes the kurtosis of Y = [y1, y2, . . . , yn], and kurtosis(Z) signifies the kurtosis
of Z = [z1, z2, . . . , zn]. Formula 6.13 outlines the computation process for the
kurtosis of the X-coordinates. The procedures for calculating the kurtosis of the
Y and Z coordinates follow a similar approach.

kurtosis(X) = 1
N

N∑
i=1

(
xi − µ

σ

)4
− 3 (6.13)

where µ represents the mean of X = [x1, x2, . . . , xn], and σ denotes the standard
deviation of X. N denotes the total number of points in P , and xi represents the
X-coordinates of the i-th point in P .
The utilization of the kurtosis feature stems from its ability to provide crucial
insights into the distribution characteristics of point cloud data. By analyzing the
kurtosis feature, it becomes possible to ascertain the peakedness of data values
across different dimensions, thereby discerning the steepness of their distribution.

6.3.3 Mutation Feature Generation
Given a point cloud test set denoted as T and a DNN model denoted as M , we

employ the following approach to mutate T and generate mutation features. It is
important to note that each test sample is a point cloud composed of thousands of
points. Figure 6.1 visually presents one example of point cloud.
• Mutation generation Initially, for each test sample (a point cloud) in the test

set T , a group of points are randomly selected, and their coordinates are randomly
perturbed to generate a mutated point cloud (also called a mutant). This process
is repeated N times, each execution being independent and random, resulting in
N mutants generated for each test t ∈ T .

• Mutation feature generation For t ∈ T , the previous step yields a set of
mutants for it, denoted as {t′

1, t′
2, . . . , t′

N}. PCPrior compares the predictions
made by model M for the test t and each of its mutants t′

i, thereby constructing
a mutation feature vector specific to test t. Specifically, if model M produces
different predictions for test t and the mutant t′

i, PCPrior sets the ith element
of t’s mutation feature vector to 1; otherwise, it is set to 0. PCPrior constructs
a mutation feature vector for each t ∈ T . Given a test input t (a point cloud),
Formula 6.14 describes the above mutation feature (MF) generation process in

151

Chapter 6. Test Input Prioritization for 3D Point Clouds

PCPrior.

VMF [k] =

1 if M (tk) ̸= M(t)
0 if M (tk) = M(t)

(6.14)

where VMF represents the mutation feature vector generated for the test input
t. VMF [k] denotes the k-th value of this feature vector. M(tk) represents the
prediction of the 3D shape classification model M for mutant tk, and M(t)
represents the prediction for the original test input t.
The principle behind leveraging the mutation features of test inputs for test

prioritization is that: A test input t is considered more likely to be misclassified if
the evaluated model’s predictions for many mutants of t differ from the prediction for
t. This principle draws inspiration from mutation testing techniques employed in
traditional software engineering [56, 57]. Besides, our mutation feature generation
approach offers several advantages:
❶ Capturing Model Sensitivity. The mutation feature generation approach

allows to capture the sensitivity of model M to perturbations in the test input. By
comparing the predictions of model M for the original test t and its corresponding
mutants t′

i, we can identify test instances where even small changes in the input
result in different model predictions. Such instances are considered more likely to
be misclassified by the DNN model.

❷ Fine-Grained Analysis. By constructing a mutation feature vector specific
to each test t ∈ T , we obtain a fine-grained analysis of the model’s behavior
for individual test cases. The mutation feature vector captures the differences
between the original test and each of its mutants.

❸ Interpretability. The mutation feature vectors provide an interpretable repre-
sentation of the model’s behavior. Each element of the vector indicates whether
the evaluated model’s result for a specific mutant differs from its result for the
original test.

6.3.4 Prediction Feature Generation
The Prediction Feature (PF) captures the probability information of a given test

sample belonging to each class. To obtain the Prediction Feature (PF) for a test
t ∈ T , initially, we input this test into the target prediction model M . This model is
the 3D shape classification model that we evaluated. The model outputs a vector for
the test t, denoted as {p1, p2, . . . , pn}, where this vector represents the probabilities of
test t belonging to each category. Here, pi denotes the model’s prediction probability
for test t belonging to category i. For instance, a feature vector [0.1, 0.1, 0.8] signifies
that, according to the predictions made by model M , the test input t has a 10%
probability of belonging to the first class, a 10% probability of belonging to the
second class, and an 80% probability of belonging to the third class. The utilization
of Prediction Features has been observed in several prior studies focusing on DNN
test optimization, such as Li et al.[48] and Feng et al.[6].

Given 3D shape classification model M and a test input t, the prediction feature
vector of t is obtained based on Formula 6.15.

VP F (t) = M(t) = ⟨pt,1, pt,2, · · · , pt,C⟩ (6.15)

where M(t) denotes the prediction probability vector of model M for the test t. pt,i

represents the probability predicted by model M that the test input t belongs to the
i-th category. C signifies the total number of predicted categories by the model M .

152

6.3. Approach

6.3.5 Uncertainty Feature Generation
The Uncertainty Features (UF) capture the model’s confidence associated with

its classification results for each test input t ∈ T . To obtain the UF, we employ
six widely used confidence-based metrics [9, 6, 88], namely DeepGini, Vanilla SM,
PCS, Entropy, Margin, and Least Confidence. These metrics are selected due to
their extensive adoption in quantifying uncertainty in DNN classification tasks and
their demonstrated effectiveness [101, 9]. The process of constructing the uncertainty
feature vector for each test input t ∈ T is as follows:
• Confidence score calculation We calculate the confidence scores for each test

input t using the aforementioned six confidence-based metrics.
• Feature generation The uncertainty feature vector is generated by concatenating

the obtained confidence scores from the six metrics. Consequently, for each test
t ∈ T , a feature vector [S1, S2, S3, S4, S5, S6] is built, where each element Si

represents the confidence score calculated by the ith confidence-based metric for
the test input t.
For a given test input t, Formula 6.16 outlines the process of generating its

uncertainty features (UF). In Formula 6.16, DeepGini(t) denotes the uncertainty
score calculated by DeepGini [6] specifically for the test t, whereas the remaining terms
represent uncertainty scores computed by other metrics for measuring uncertainty.

VUF (t) = Concat(DeepGini(t), Margin(t), Entropy(t), LC(t), V anilla(t), PCS(t))
(6.16)

6.3.6 Feature Concatenation
For each test input t ∈ T , we integrate four distinct types of features, namely

Spatial Features (SF), Mutation Features (MF), Prediction Features (PF), and
Uncertainty Features (UF), to construct a final representative feature vector. This
feature vector encompasses the relevant information extracted from all feature types
associated with the given test input. Subsequently, the constructed feature vector
is fed into the ranking models, which are designed to evaluate the likelihood of
misclassification for the test input based on its final feature vector. In the subsequent
section, we provide a detailed exposition of the methodology employed in the ranking
model.

6.3.7 Learning-to-rank
In this step, we employ the LightGBM ranking model [89] to leverage the feature

vector of a given test instance t ∈ T in order to predict its misclassification score.
LightGBM is a well-regarded machine learning algorithm based on the Gradient
Boosting Decision Tree (GBDT) methodology, renowned for its effectiveness and
accuracy. However, due to the binary nature of LightGBM’s output, which is not
aligned with our objective of estimating the probability of misclassification for a test
input, we introduce certain modifications to the original LightGBM algorithm. More
specifically, rather than obtaining a binary classification output from the ranking
models, which indicates whether the test will be predicted incorrectly, we extract
the intermediary output. This intermediate result conveys valuable information
regarding the probability of misclassification for each test input.

Upon completion of the training phase (described in Section 6.3.8) of LightGBM,
when a feature vector of a test instance is provided as input to the ranking model, we

153

Chapter 6. Test Input Prioritization for 3D Point Clouds

extract an intermediate value predicted by LightGBM. In the following, we provide
a detailed explanation of how the intermediate value is obtained from LightGBM.
Initially, the original LightGBM was a binary classification model. For a given
test, it can categorize the test into two classes based on its final feature vector
(obtained from the above steps), where an output of 0 indicates that the test will be
correctly predicted by the model, and an output of 1 indicates that the test will be
incorrectly predicted. Its internal logic operates as follows: For a test ti, LightGBM
first generates an intermediate value, which signifies the probability of the test
being incorrectly predicted by the model. If this intermediate value exceeds 0.5,
LightGBM will classify it as 1, indicating that the test is likely to be misclassified by
the model. Conversely, if the value is below 0.5, it will be classified as 0, suggesting
that the test is likely to be correctly predicted. In PCPrior, rather than letting
LightGBM carry out classification, we directly extract this intermediate value for the
purpose of test prioritization. Tests with higher intermediate values are considered
more likely to be incorrectly predicted and are, therefore, assigned a higher priority.

Specifically, when PCPrior is used for test prioritization, the detailed process of
learning-to-rank is as follows: For each test ti ∈ T , based on its final feature vector,
the LightGBM model generates an intermediate value for it, which we denote as Fi,
representing the probability of test ti being predicted incorrectly by the model M .
It ranges from 0 to 1. If Fi for a test is closer to 1, it indicates that the test is more
likely to be predicted incorrectly by the model. PCPrior ranks all the tests in the
test set based on their Fi value. Tests with higher Fi will be prioritized higher.

In the following, we explain the reasons for choosing the LightGBM model as the
default model for PCPrior:
• Improved effectiveness. In RQ2 (cf. Section 6.5.2), we evaluated the effective-

ness of different ranking models on test prioritization. We found that LightGBM
and XGBoost performed best across all subjects. However, in most cases of our
experiments, LightGBM outperformed XGBoost.

• Faster training speed. Moreover, prior work [89] has indicated that LightGBM
trains faster than XGBoost. Therefore, compared to XGBoost, LightGBM is
more efficient.

6.3.8 Usage of PCPrior
Through the utilization of ranking models, the PCPrior framework is able to

predict a misclassification score for each test input within a given test set. These
predicted scores are then employed for test prioritization, prioritizing test inputs
with higher scores. Specifically, the ranking models undergo pre-training prior to the
execution of PCPrior. The training process is presented as follows:
❶ Training Set Construction: Given a DNN model M with a point cloud dataset

D, the dataset D is initially split into two partitions: the training set R and the
test set T , following a 7:3 ratio [92]. The test set remains untouched to evaluate
the performance of PCPrior. Based on the training set R, our objective is to
build a training set R′ for training the ranking models. Firstly, we generate four
types of features for each training input ri ∈ R, using the procedures described
in Sections 6.3.2 to 6.3.5. Then, we obtain the final feature vector Vi for each
training input ri, following the guidelines in Section 6.3.6. This final feature
vector is utilized to construct the training set R′, which serves as the training data
for the ranking models. Secondly, we input each training input ri ∈ R into the

154

6.4. Study design

original model and obtain its classification results, denoted as Li. By comparing
Li with the ground truth of ri, we determine whether ri is misclassified by the
model M . If ri is misclassified, it is labeled as 1; otherwise, it is labeled as 0. This
process enables the label construction of the ranking model training set R′.

❷ Ranking Model Training: Using the training set R′, we proceed to train the
ranking models. Upon completion of the training process, the ranking model
is capable of producing a misclassification score for a given input, based on the
feature vector generated by PCPrior.

6.4 Study design
In this section, we provide a comprehensive exposition of the details pertaining

to our study design. Specifically, Section 6.4.1 elucidates the research questions
that served as the guiding framework for our investigation. Within Sections 6.4.2
and 6.4.3, we meticulously present the point cloud subjects and measurement metrics
that were employed to assess the effectiveness of PCPrior. Furthermore, Section 6.4.4
showcases the five DNN test prioritization methods that were employed as com-
parative approaches against PCPrior. In Section 6.4.5, we elucidate the design
and characteristics of PCPrior variants. Additionally, Section 6.4.6 exhibits the
implementation and configuration setup that were utilized in our study.

6.4.1 Research Questions
Our experimental evaluation answers the research questions below.

• RQ1: How does PCPrior perform in prioritizing test inputs for 3D
point clouds?
In contrast to existing test prioritization methodologies, our proposed approach,
PCPrior, leverages the unique characteristics of point clouds for test prioritization.
In this research question, we evaluate the effectiveness of PCPrior by comparing it
with existing test prioritization approaches that have been demonstrated effective
in prior studies [6, 9] and random selection (baseline).

• RQ2: How do different ranking models affect the effectiveness of
PCPrior?
In the original implementation of PCPrior, the LightGBM ranking algorithm [89]
was employed to leverage the generated features of test inputs for test prioritiza-
tion. In this research question, we explore the utilization of alternative ranking
algorithms, namely Logistic Regression [251], XGBoost [13], and Random For-
est [90], with the objective of examining the influence of ranking models on the
effectiveness of PCPrior. To this end, we design a set of variants for PCPrior,
each incorporating one of the aforementioned ranking models, while maintaining
consistency with the remaining workflow.

• RQ3: How does the selection of main parameters of PCPrior affect its
effectiveness?
We conducted an in-depth investigation of the main parameters in PCPrior, with
the aim of evaluating whether PCPrior can consistently outperform the compared
test prioritization approaches when these parameters undergo modifications.

• RQ4: How does PCPrior and its variants perform on noisy 3D point
clouds?
In addition to assessing PCPrior and its variants on natural datasets, we undertake
an evaluation that encompasses noisy 3D point clouds, thereby facilitating an

155

Chapter 6. Test Input Prioritization for 3D Point Clouds

in-depth examination of their effectiveness.
• RQ5: To what extent does each type of features contribute to the

effectiveness of PCPrior?
In PCPrior, we generate four different types of features from each test input for test
prioritization, namely Spatial Features, Mutation Features, Prediction Features
and Uncertainty Features, as elaborated in Section 6.3. In this research question,
we compare the contributions of different types of features on the effectiveness of
PCPrior.

• RQ6: Can PCPrior and uncertainty-based methods be employed to
guide the retraining process for enhancing a 3D shape classification
model?
Faced with a substantial volume of unlabeled inputs and a constrained time
budget, manually labeling all inputs for retraining a 3D shape classification model
becomes impractical. Active learning is acknowledged as a practical solution
for reducing data labeling costs [252]. This approach focuses on selecting an
informative subset of samples to retrain the model, aiming to improve model
performance with minimal labeling costs. In this research question, we investigate
the effectiveness of PCPrior and uncertainty-based metrics in selecting informative
retraining inputs to improve the performance of 3D shape classification models.

6.4.2 Models and Datasets
The effectiveness of PCPrior and the compared test prioritization approaches [6, 9]

was evaluated using a set of 165 subjects. Essential details regarding these subjects
are presented in Table 6.1, which highlights the matching relationship between the
point cloud dataset and the DNN models. In particular, the "#Size" column indicates
the size of the dataset, while the "Type" column denotes the type of the dataset,
with "Original" representing natural data and "Noisy" indicating noisy data.

Among the 165 subjects, 15 subjects (3 point cloud datasets × 5 models) were
generated using natural datasets, while the remaining 150 subjects were generated
using noisy datasets. To generate a noisy dataset from the original test set T , each
test instance t ∈ T undergoes a modification. Specifically, within each test instance t
(a point cloud), approximately 30% of the points undergo a random offset, while the
remaining 70% of the points remain unchanged. The 30% ratio is derived from the
reasonable range of noise injection proportions provided in the existing work [253].
The 150 subjects derived from noisy data were obtained as follows: For each original
dataset, we generated 10 noisy datasets, resulting in a total of 30 noisy datasets.
Each noisy dataset was paired with five different models, resulting in a total of 150
subjects (30 datasets × 5 models).

In the following part, we present the description of the 3D point cloud datasets
and DNN models utilized in our study.
6.4.2.1 Datasets

In our research, we employed three prominent point cloud datasets, namely
ModelNet40 [39], ShapeNet [40], and S3DIS [41]. These datasets are widely adopted
within the academic community and have consistently served as benchmarks for
several state-of-the-art point cloud studies [254, 255, 256].
• ModelNet40 [39]: ModelNet40 consists of 12,311 point clouds in 40 categories

(e.g., airplane, car, plant, lamp). It encompasses synthetic object point clouds

156

6.4. Study design

Table 6.1: 3D Point cloud datasets and models
ID Dataset # Size Model Type
1 ModelNet 12311 DGCNN Original, Noisy
2 ModelNet 12311 PointConv Original, Noisy
3 ModelNet 12311 MSG Original, Noisy
4 ModelNet 12311 SSG Original, Noisy
5 ModelNet 12311 PointNet Original, Noisy
6 S3DIS 9813 DGCNN Original, Noisy
7 S3DIS 9813 PointConv Original, Noisy
8 S3DIS 9813 MSG Original, Noisy
9 S3DIS 9813 SSG Original, Noisy
10 S3DIS 9813 PointNet Original, Noisy
11 ShapeNet 53107 DGCNN Original, Noisy
12 ShapeNet 53107 PointConv Original, Noisy
13 ShapeNet 53107 MSG Original, Noisy
14 ShapeNet 53107 SSG Original, Noisy
15 ShapeNet 53107 PointNet Original, Noisy

and stands as a paramount benchmark for point cloud analysis. Renowned for its
diverse range of categories, meticulous geometric shapes, and methodical dataset
construction, ModelNet40 has garnered significant popularity in the research
community [254].

• ShapeNet [40]: ShapeNet dataset is a widely recognized and extensively used
benchmark in the field of 3D shape classification. The ShapeNet dataset utilized in
our study consists of 50 categories and a total of 53,107 samples. These categories
include chairs, tables, cars, airplanes, animals, etc.

• Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [41]: The S3DIS
dataset is widely recognized for its comprehensive representation of diverse indoor
environments, encompassing various real-world scenes encountered in indoor
settings. The S3DIS dataset utilized in our study consists of 9,813 samples,
classified into 13 categories (e.g., office, meeting room, and open space).

6.4.2.2 Models

• PointConv [17]: PointConv is a convolutional neural network operator specifically
designed for processing 3D point clouds characterized by non-uniform sampling.
By training multi-layer perceptrons using local point coordinates, PointConv
approximates continuous weight and density functions within convolutional filters.
In this way, deep convolutional networks can be directly constructed on 3D point
clouds, enabling efficient and effective analysis and processing.

• Dynamic Graph Convolutional Neural Network (DGCNN) [16]: DGCNN
is a deep learning architecture specifically designed for processing and analyzing
3D point cloud data. The key idea behind DGCNN is to exploit the intrinsic
spatial relationships present in point clouds by modeling them as graphs. By
leveraging graph convolutions and dynamically adapting the graph structure
based on the input data, DGCNN can effectively learn and process point cloud
representations, making it suitable for point cloud classification tasks.

• PointNet [38]: PointNet is a widely-adopted deep learning architecture specifically
tailored for 3D point cloud data. The architecture includes a shared multi-layer

157

Chapter 6. Test Input Prioritization for 3D Point Clouds

perceptron (MLP) with max-pooling to extract local features from individual
points and a symmetric function to aggregate the global features across all points.
By employing T-Net layers, PointNet is able to learn transformation matrices
that aid in aligning and transforming input point clouds, enhancing the model’s
robustness to input variations. PointNet has demonstrated impressive capabilities
in 3D shape classification tasks, establishing it as an effective approach for point
cloud analysis.

• MSG [42]: MSG refers to multi-scale grouping. The MSG approach involves
sampling representative points and grouping nearby points within a specified
radius. This allows for the extraction of local features at multiple scales, enabling
hierarchical feature learning from point sets.

• SSG [42]: SSG, an acronym for Single-Scale Grouping, denotes a simplified
variant of the multi-scale grouping architecture. The essence of SSG lies in the
partitioning of a point cloud into local regions of fixed size while disregarding the
consideration of multiple scales. Within each region, a representative subset of
points is judiciously sampled, and proximate points falling within a predefined
radius are grouped together. This approach facilitates local feature extraction
while avoiding the intricate intricacies associated with handling diverse scales.

6.4.3 Measurements
The goal of PCPrior is to prioritize the possibly-misclassified test inputs in the

context of 3D point cloud data. Thus following the existing work [6], we adopted
Average Percentage of Fault-Detection (APFD) and Percentage of Fault Detected
(PFD) to measure the effectiveness of PCPrior, the compared approaches, and the
variants of PCPrior.
• Average Percentage of Fault-Detection (APFD) APFD [11] is a widely

recognized metric for assessing the effectiveness of prioritization techniques. A
higher APFD value indicates a quicker rate of detecting misclassifications. The
calculation of APFD values is based on Formula 6.17.

APFD = 1 −
∑k

i=1 oi

kn
+ 1

2n
(6.17)

where n denotes the total number of test inputs, and the variable k represents the
number of test inputs in T that will be incorrectly predicted by the model. The
index oi pertains to the position of the ith misclassified test within the prioritized
test set. Specifically, oi represents an integer value indicating the position of the
ith misclassified test within the prioritized test set.
Based on the existing study [6], we normalize the APFD values to [0,1]. A
prioritization approach is considered better when the APFD value is closer to 1.
This is because: a larger APFD value corresponds to a smaller value of ∑k

i=1 oi.
Here, ∑k

i=1 oi represents the total index sum of misclassified tests within the
prioritized list. A smaller ∑k

i=1 oi implies that the evaluated test prioritization
method assigns higher priority to misclassified tests, positioning them at the front
of the ranked test set. This effective detection of misclassified tests demonstrates
the efficacy of the test prioritization approach. Therefore, a larger APFD value
serves as an indicator of better effectiveness for test prioritization strategies.

• Percentage of Fault Detected (PFD) PFD refers to the proportion of detected
misclassified test inputs among all misclassified tests. Higher PFD values indicate

158

6.4. Study design

better test prioritization effectiveness. PFD is calculated based on Formula 6.18.

PFD = #Nd

#N
(6.18)

where #Nd is the number of misclassified test inputs that have been detected.
#N denotes the total number of misclassified tests. In our study, we evaluated the
PFD of PCPior and the compared test prioritization approaches against different
ratios of prioritized tests. We utilize PFD-n to denote the first n% prioritized
test inputs.

6.4.4 Compared Approaches
This study employed five comparative approaches, which included a baseline

approach (random selection) and four DNN test prioritization techniques. The
selection of these methods was driven by multiple factors: 1) These approaches
can be adapted for test prioritization in the context of 3D point cloud data; 2)
These approaches were proposed within the DL testing community and have been
previously demonstrated as effective for DNNs; 3) These approaches provide open-
source implementations.
• Random selection [102] Random selection is the baseline in our study. Random

selection involves the randomized determination of the execution order for test
inputs. This means that the sequencing of test inputs is established in a completely
arbitrary manner, devoid of any predetermined patterns or logical arrangements.

• DeepGini [6] DeepGini utilizes the Gini coefficient, which is a statistical metric
used to assess the probability of misclassification, in order to facilitate the ranking
of test inputs. The Gini score is calculated according to Formula 6.19, which is
presented below:

G(t) = 1 −
N∑

i=1
(pi(t))2 (6.19)

where G(t) represents the probability of the test input t being misclassified. pi(t)
denotes the probability that the test input t is predicted to belong to label i. N
represents the total amount of categories that the input can be assigned to.

• Prediction-Confidence Score (PCS) PCS [9] assigns rankings to test inputs
based on the difference between the predicted class and the second most confident
class in the softmax likelihood. A smaller difference indicates that the model
is less certain about the prediction for a particular test input. These uncertain
tests are given higher priority and are placed at the front of the test set. The
calculation of this difference is defined by Formula 6.20 as follows:

P (x) = lk(x) − lj(x) (6.20)

where lk(x) refers to the most confident prediction probability. lj(x) refers to the
second most confident prediction probability.

• Vanilla Softmax [9] Vanilla Softmax measures the difference between the maxi-
mum activation probability in the output softmax layer and the ideal value of 1 for
each test input. This disparity reflects the degree of uncertainty associated with
the model’s predictions. Test inputs with larger disparities are considered more
likely to be misclassified by the model. The specific computation of this disparity

159

Chapter 6. Test Input Prioritization for 3D Point Clouds

is illustrated by Formula 6.21, which provides a clear and concise representation
of the underlying mathematical calculations.

V(x) = 1 − Cmax
c=1

lc(x) (6.21)

where lc(x) belongs to a valid softmax array in which all values are between 0 and
1, and their sum is 1.

• Entropy [9] Entropy serves as a criterion for ranking test inputs based on
the entropy of their softmax likelihood. Higher entropy values indicate greater
uncertainty in the model’s predictions for those inputs. Consequently, test inputs
with higher entropy are considered more likely to be misclassified by the model.
As a result, they are given higher priority and placed at the beginning of the test
set.

6.4.5 Variants of PCPrior
We conducted an investigation into the influence of different ranking models on the

effectiveness of PCPrior. To this end, we proposed five variants of PCPrior, namely
PCPriorL, PCPriorX , PCPriorR, PCPriorD, and PCPriorT , which utilize Logistic
Regression [251], XGBoost [13], Random Forest [90], DNNs [257], and TabNet [258]
as the ranking model, respectively. It is essential to emphasize that apart from the
variation in ranking models, the execution workflow of these derived variants remains
identical to that of the original PCPrior approach.

Furthermore, we extended the modifications applied to the LightGBM ranking
model of PCPrior to the ranking models employed by the variants of PCPrior.
Specifically, instead of making the ranking models provide a binary classification
output (i.e., indicating whether the test will be predicted incorrectly by the model), we
extract the intermediate output, which can indicate the probability of misclassification
for each test input. Consequently, we obtain a misclassification score for each test
input, which can be effectively utilized for test prioritization. In the following sections,
we provide a comprehensive explanation of the specific ranking models utilized in
each variant of PCPrior.
• PCPriorL: In the context of PCPriorL, we employ the Logistic Regression

algorithm [91] as the ranking model. Logistic Regression is a statistical modeling
technique that employs a logistic function to establish the relationship between a
categorical dependent variable and one or more independent variables.

• PCPriorX: In the context of PCPriorX , we utilize the XGBoost ranking algo-
rithm [13] to estimate the misclassification score of a test input based on its
corresponding feature vector. XGBoost is a powerful gradient-boosting technique
that integrates decision trees to enhance prediction accuracy. By leveraging its
ensemble learning capabilities, XGBoost effectively captures complex relationships
within the data, enabling accurate estimation of the likelihood of misclassification
for each test input.

• PCPriorR: In the context of PCPriorR, we employ the Random Forest algo-
rithm [90] as the ranking model. Random Forest is an ensemble learning algorithm
that constructs multiple decision trees. The predictions from individual trees are
combined using averaging or voting mechanisms to produce the final prediction.
Random Forest is known for its ability to handle high-dimensional data and
capture intricate interactions among features. By leveraging these strengths,

160

6.5. Results and analysis

PCPriorR accurately estimates the misclassification score for each test input,
aiding in effective test prioritization.

• PCPriorD: In the context of PCPriorD, we utilize a DNN model as the ranking
model, derived from a prior investigation [257]. This DNN model is capable of
producing a misclassification score for a given test input, relying on its feature
vector generated by PCPrior.

• PCPriorT : In the context of PCPriorT , we utilize TabNet [258] as the ranking
model. TabNet is a DNN architecture specifically designed for tabular data. It
has been demonstrated to be more effective than XGBoost and LightGBM in a
previous study [258].

6.4.6 Implementation and Configuration
We implemented PCPrior in Python, utilizing the PyTorch 2.0.0 framework [103].

To enable comparison with other approaches, we integrated existing implementations
of the compared methods [9, 6] into our experimental pipeline, specifically tailored
for test prioritization of 3D point cloud data. To generate mutation features, we
created 30 mutants for each test sample. Regarding the configuration of the ranking
models employed in PCPrior, we utilized XGBoost 1.7.4, LightGBM 3.3.5, and
scikit-learn 1.0.2 frameworks. Furthermore, we made specific parameter selections:
for LightGBM, the learning rate was set to 0.1; for Logistic Regression, the parameter
max_iter was set to 100; for XGBoost, the learning rate was set to 0.3; and for the
random forest algorithm, the number of estimators was set to 100. Our experimental
setup involved conducting experiments on NVIDIA Tesla V100 32GB GPUs. For
the data analysis, we utilized a MacBook Pro laptop running Mac OS Big Sur 11.6,
equipped with an Intel Core i9 CPU and 64 GB of RAM. In total, we conducted
experiments on 165 subjects, consisting of 15 subjects based on natural inputs and
150 subjects based on noisy inputs.

6.5 Results and analysis
6.5.1 RQ1: Performance of PCPrior
Objectives: We investigate the effectiveness and efficiency of PCPrior, comparing
it with several existing test prioritization approaches.
Experimental design: We conducted experiments to evaluate the performance of
PCPrior from the following three aspects.
• Effectiveness evaluation on natural datasets. We employed a set of 15

subjects constructed from 3D point cloud datasets to evaluate the effectiveness of
PCPrior. Table 3.1 presents the basic information of these subjects. In order to
assess the performance of PCPrior, we carefully selected four test prioritization
approaches, namely DeepGini, Vanilla SM, PCS, and entropy, alongside a baseline
method (i.e., random selection), for comparative analysis. Moreover, we utilized
two measurement metrics, specifically the Average Percentage of Fault-Detection
(APFD) and the Percentage of Fault Detected (PFD), to evaluate the effective-
ness of PCPrior and the compared approaches. A detailed explanation of the
calculations for these metrics can be found in Section 6.4.3.

• Statistical analysis. Due to the inherent randomness in the model training
process, we performed statistical analysis by conducting the experiments ten times.
Specifically, for each subject, which refers to a point cloud dataset paired with a

161

Chapter 6. Test Input Prioritization for 3D Point Clouds

DNN model, we generated ten distinct models through separate training processes.
The average results are reported in our experimental findings. Moreover, for each
subject, we calculated the variance of ten repeated experimental results for each
test prioritization method to demonstrate the stability of PCPrior better.
To further validate the stability and reliability of the experimental findings, we
calculated p-values associated with the results. Specifically, we employed the
paired two-sample t-test [104] to calculate the p-value, a commonly used
statistical method for evaluating differences between two related data sets. The
essential steps involved are: 1) selecting two related sets of data, 2) computing
the difference for each corresponding pair of data points, and 3) analyzing these
differences to ascertain if there is a statistically significant disparity between the
two data sets. In the paired two-sample t-test approach, the significance of the
results is determined by the p-value. Generally, if the p-value is less than 10−05,
it is considered that the difference between the two sets of data is statistically
significant [105]. Additionally, we quantify the magnitude of the difference between
the two sets of results through the Effect Size. Specifically, we use Cohen’s d
for measuring the effect size [106]. Wherein, |d| < 0.2 – “negligible,” |d| < 0.5 –
“small,” |d| < 0.8 – “medium,” otherwise – “large”. To ensure that the difference
between the results of PCPrior and the compared approach is "non-negligible",
we require that the value of d is greater than or equal to 0.2.

• Efficiency evaluation. In addition to evaluating the effectiveness of PCPrior,
we conducted an assessment of its efficiency and compared it with the selected
test prioritization methods. Specifically, we quantified the time required for each
step of PCPrior to measure its efficiency. By analyzing the execution time of
PCPrior, we aim to gain insights into its computational efficiency and its potential
for practical application in real-world scenarios.

Results: The experimental findings pertaining to Research Question 1 (RQ1) are
presented in Table 6.2, Table 6.3, Table 6.4, Table 6.5, Table 6.6, Table 6.7 and
Figure 6.3. Table 6.2 and Table 6.3 offer a comparative analysis, employing the
APFD metric, between PCPrior and the comparative methods. Conversely, Table 6.6
and Figure 6.3 provide an assessment of effectiveness using the PFD metric. It is
important to note that we highlight the approach with the highest effectiveness
for each case in grey. Additionally, Table 6.7 offers a comparison of the efficiency
between PCPrior and the evaluated test prioritization approaches.

Notably, Table 6.2 reveals that across all 15 subjects, PCPrior consistently outper-
forms all comparative methods in terms of its APFD. Specifically, the range of APFD
values for PCPrior spans from 0.781 to 0.905, while the range for the comparative
methods lies between 0.495 and 0.853. Moreover, Table 6.3 further highlights the
average APFD value for PCPrior and its relative improvement compared to the
comparative methods. We see that PCPrior achieves an average APFD of 0.836,
whereas the average APFD of the comparative methods falls within the range of
0.501 to 0.754. The improvement observed in PCPrior, relative to the comparative
methods, ranges from 10.99% to 66.94%. These findings demonstrate that PCPrior
performs better than all the comparative test prioritization methods in terms of the
APFD metric.

The comparative analysis presented in Table 6.6 employs the PFD metric to
exhibit the comparison between PCPrior and various DNN test prioritization meth-
ods. Notably, from prioritizing 10% to 70% of the dataset, PCPrior consistently

162

6.5. Results and analysis

Table 6.2: Effectiveness comparison among PCPrior, DeepGini, VanillaSM, PCS,
Entropy and random selection in terms of the APFD values on natural datasets

ModelNet S3DIS ShapeNetApproach DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet
Random 0.503 0.503 0.489 0.482 0.509 0.514 0.493 0.505 0.509 0.504 0.502 0.495 0.496 0.501 0.511
DeepGini 0.763 0.719 0.757 0.748 0.734 0.715 0.700 0.699 0.703 0.653 0.846 0.740 0.824 0.837 0.793
VanillaSM 0.768 0.725 0.763 0.754 0.737 0.718 0.702 0.702 0.705 0.657 0.850 0.745 0.827 0.839 0.797
PCS 0.770 0.729 0.767 0.756 0.737 0.717 0.699 0.700 0.702 0.657 0.853 0.746 0.830 0.841 0.800
Entropy 0.751 0.707 0.743 0.735 0.724 0.703 0.692 0.690 0.696 0.644 0.831 0.728 0.813 0.829 0.780
PCPrior 0.807 0.781 0.809 0.796 0.793 0.833 0.827 0.815 0.820 0.817 0.905 0.852 0.897 0.904 0.891

Table 6.3: Effectiveness improvement of PCPrior over the compared approaches in
terms of the APFD values on natural datasets

Approach # Best cases Average APFD Improvement(%)
Random 0 0.501 66.94
DeepGini 0 0.749 11.72
VanillaSM 0 0.753 11.14
PCS 0 0.754 10.99
Entropy 0 0.738 13.38
PCPrior 15 0.836 -

outperforms all comparative methods in terms of PFD. To facilitate a more intuitive
comparison, Figure 6.3 showcases two line graphs with PFD as the y-axis, illustrating
the cases of ModelNet dataset with DGCNN model and ShapeNet dataset with
PointNet model, respectively. All the results can be found on our Github2. In the
figures, PCPrior is depicted by the red lines, while the baseline is represented by
the pink lines. Visual analysis reveals that PCPrior consistently achieves a higher
PFD value when contrasted with DeepGini, entropy, Vanilla SM, PCS, and random
methods. These experimental results demonstrate that PCPrior outperforms all
comparative test prioritization methods in terms of the PFD metric.

As stated in the experimental design, a statistical analysis was conducted to ensure
the stability of our findings. To this end, all experiments were repeated ten times for
each subject. The statistical analysis reveals a p-value lower than 10−05, providing
strong evidence that PCPrior consistently outperforms the compared approaches
in the context of test prioritization. Table 6.4 presents detailed results from the
statistical analysis. The analysis employs two primary metrics: p-value and effect
size. As outlined in the experimental design, a p-value less than 10−05 indicates that
the difference between two data sets is statistically significant [105]. Furthermore,
an effect size ≥ 0.2 suggests that the difference is "non-negligible." In Table 6.4,
we observed that all the p-values between PCPrior and the compared approaches
consistently fall below 10−05, indicating that PCPrior statistically outperforms all
the compared test prioritization methods. For example, the p-value for the difference
in experimental results between PCPrior and DeepGini is 2.039 × 10−07. The p-value
between PCPrior and VanillaSM is 4.403 × 10−07. Additionally, the experimental
results for both PCPrior and the compared approaches show effect sizes exceeding 0.2,
confirming a non-negligible difference. Moreover, we found that all the effect sizes are
even greater than 0.8. For example, the effect size of PCPrior and VanillaSM is 2.273.
According to Cohen’s d [106], this means that the difference in experimental results
between PCPrior and the compared methods is not only statistically significant but
also relatively "large" in scale.

Moreover, for each case, we calculated the variance of ten repeated experimental
results with respect to each test prioritization method, as presented in Table 6.5. It

2https://github.com/yinghuali/PCPrior/tree/main/result

163

https://github.com/yinghuali/PCPrior/tree/main/result

Chapter 6. Test Input Prioritization for 3D Point Clouds

Table 6.4: Statistical analysis on natural test inputs (in terms of p-value and effect
size)

Random DeepGini VanillaSM PCS Entropy
PCPrior (p-value) 3.444 × 10−14 2.039 × 10−07 4.403 × 10−07 8.663 × 10−07 3.071 × 10−08

PCPrior (effect size) 7.854 2.423 2.273 2.148 2.822

Table 6.5: Variance in experimental results (×10−3) for PCPrior and the compared
approaches across ten repetitions

ModelNet S3DIS ShapeNetApproach DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet
Random 0.044 0.012 0.056 0.026 0.054 0.079 0.036 0.102 0.089 0.035 0.037 0.008 0.018 0.047 0.021
DeepGini 0.026 0.200 0.050 0.021 0.031 0.071 0.405 0.026 0.045 0.038 0.027 0.064 0.015 0.009 0.035
VanillaSM 0.022 0.196 0.042 0.022 0.025 0.071 0.396 0.027 0.052 0.029 0.025 0.065 0.015 0.010 0.036
PCS 0.013 0.209 0.031 0.024 0.022 0.068 0.430 0.030 0.051 0.024 0.022 0.070 0.015 0.012 0.033
Entropy 0.030 0.199 0.061 0.021 0.039 0.075 0.404 0.019 0.036 0.053 0.035 0.054 0.020 0.008 0.033
PCPrior 0.005 0.112 0.022 0.011 0.042 0.030 0.375 0.014 0.017 0.030 0.008 0.073 0.003 0.001 0.002

Table 6.6: Average comparison results among PCPrior and the compared approaches
on natural data in terms of PFD

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70
Random 0.100 0.206 0.300 0.398 0.498 0.602 0.699
DeepGini 0.263 0.467 0.641 0.774 0.874 0.935 0.973
VanillaSM 0.269 0.483 0.658 0.785 0.875 0.936 0.973
PCS 0.261 0.488 0.664 0.794 0.881 0.938 0.974
Entropy 0.253 0.452 0.612 0.746 0.851 0.923 0.968

ModelNet

PCPrior 0.305 0.567 0.760 0.882 0.950 0.983 0.994
Random 0.101 0.202 0.297 0.400 0.499 0.602 0.705
DeepGini 0.222 0.402 0.554 0.684 0.789 0.873 0.929
VanillaSM 0.228 0.409 0.563 0.688 0.790 0.874 0.929
PCS 0.222 0.410 0.556 0.690 0.789 0.875 0.928
Entropy 0.212 0.391 0.535 0.663 0.775 0.867 0.926

S3DIS

PCPrior 0.341 0.629 0.829 0.931 0.972 0.989 0.995
Random 0.099 0.200 0.297 0.395 0.495 0.597 0.694
DeepGini 0.386 0.632 0.789 0.878 0.928 0.959 0.979
VanillaSM 0.399 0.647 0.793 0.879 0.928 0.959 0.979
PCS 0.403 0.656 0.801 0.884 0.932 0.960 0.979
Entropy 0.368 0.597 0.758 0.860 0.919 0.955 0.977

ShapeNet

PCPrior 0.555 0.865 0.961 0.984 0.992 0.996 0.998

is important to note that the unit for the table is 10−3. For instance, in the second
row, the first number, 0.026, represents that for the ModelNet dataset, under the
DGCNN model, the variance of ten repeated experimental results for the DeepGini
method is 0.026×10−3. The cases highlighted in grey represent the test prioritization
method with the minimum variance for each subject. We see that for 66.7% (10 out
of 15) of subjects, PCPrior has the smallest variance. Furthermore, the variance
range for PCPrior is 0.001 × 10−3 to 0.375 × 10−3. In contrast, the variance range
for comparative methods is 0.008 × 10−3 to 0.430 × 10−3. The above experimental
results indicate that the variance of PCPrior’s results is generally lower compared to
the comparative test prioritization methods, suggesting that PCPrior is relatively
more stable.

Table 6.7 provides a comprehensive comparison of the efficiency between PCPrior
and the compared test prioritization approaches. A noteworthy distinction between
our proposed method and the comparative approaches pertains to the requirement of
training a ranking model and generating features. As can be observed from Table 6.7,
the overall time taken by PCPrior is approximately 6 minutes and 32 seconds.
Specifically, the average training time for the PCPrior ranking model amounts to
32 seconds, while the average time for feature generation is 6 minutes. The final

164

6.5. Results and analysis

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

�
�
�

�������

��������

�������

���������

���

������

a) ModelNet, DGCNN
��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

�
�
�

�������

��������

�������

���������

���

������

b) ShapeNet, PointNet
Figure 6.3: Test prioritization effectiveness among PCPrior and the compared
approaches for ModelNet with DGCNN and ShapeNet with PointNet. X-Axis: the
percentage of prioritized tests; Y-Axis: the percentage of detected miscalssified tests.
Table 6.7: Time cost of PCPrior and the compared test prioritization approaches

Time cost Approach
PCPrior Random DeepGini VanillaSM PCS Entropy

Feature generation 6 min - - - - -
Ranking model training 32 s - - - - -

Prediction <1 s <1 s <1 s <1 s <1 s <1 s

prediction time of the compared approaches is less than 1s. Although PCPrior is
not as efficient as confidence-based test prioritization approaches, the effectiveness
improvement of PCPrior relative to confidence-based methods is 10.99%~13.38%.
Considering the trade-off between effectiveness and efficiency, PCPrior remains a
practical option.

Answer to RQ1: PCPrior consistently demonstrates better performance compared
to all the evaluated test prioritization approaches (i.e., DeepGini, Vanilla SM,
PCS, Entropy, and Random) in the field of test prioritization for 3D point cloud
data, as assessed by both the APFD and PFD metrics. Specifically, the average
improvement achieved in terms of APFD ranges from 10.99% to 66.94%. While
PCPrior is not as efficient as confidence-based methods, considering the trade-off
between effectiveness and efficiency, it remains a practical option.

6.5.2 RQ2: Influence of ranking models
Objectives: We investigate the impact of various ranking models on the effectiveness
of PCPrior.
Experimental design: We proposed five variants of PCPrior that incorporate differ-
ent ranking models. In addition to the ranking models, the other procedures of these
methods remain identical to PCPrior. The five variants are PCPriorL, PCPriorX ,
PCPriorR, PCPriorD, and PCPriorT , which utilize Logistic Regression [251], XG-
Boost [13], Random Forest [90], DNNs [257], and TabNet [258] as the ranking model,
respectively. We evaluated the impact of these ranking models on the effectiveness of
PCPrior by assessing the performance of these variants on natural datasets utilizing
both the APFD and PFD metrics.
Results: The experimental results for Research Question 2 (RQ2) are presented in
Table 6.8 and Table 6.9. Table 6.8 showcases the comparison between PCPrior and

165

Chapter 6. Test Input Prioritization for 3D Point Clouds

Table 6.8: Effectiveness comparison among PCPrior and PCPrior Variants in terms
of the APFD values on natural datasets

ModelNet S3DIS ShapeNetApproach DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet
PCPriorL 0.792 0.766 0.781 0.766 0.756 0.732 0.709 0.710 0.707 0.666 0.855 0.789 0.841 0.849 0.804
PCPriorX 0.802 0.778 0.804 0.791 0.792 0.832 0.821 0.818 0.817 0.815 0.910 0.856 0.896 0.907 0.892
PCPriorR 0.790 0.765 0.794 0.773 0.769 0.781 0.791 0.758 0.773 0.775 0.883 0.817 0.868 0.878 0.865
PCPriorD 0.793 0.769 0.791 0.779 0.767 0.748 0.744 0.740 0.741 0.723 0.871 0.831 0.871 0.877 0.858
PCPriorT 0.779 0.758 0.765 0.778 0.766 0.739 0.728 0.724 0.724 0.701 0.899 0.850 0.890 0.894 0.885
PCPrior 0.807 0.781 0.809 0.796 0.793 0.833 0.827 0.815 0.820 0.817 0.905 0.852 0.897 0.904 0.891

its variants in terms of the APFD metric, while Table 6.9 presents their comparison
based on the PFD metric.

In Table 6.8, we see that PCPrior, which employs LightGBM as the ranking
model, performs the best in 66.67% (10 out of 15) of the cases. PCPriorX , which
utilizes XGBoost as the ranking model, performs the best in the remaining 33.3% (5
out of 15) cases. Furthermore, Table 6.9 presents a comparison of the effectiveness
of PCPrior and its variants from the perspective of the PFD metric. We see that
PCPrior performs the best in 61.9% (13 out of 21) cases, while PCPriorX performs
the best in 38.1% (8 out of 21) of the cases. The aforementioned experimental results
illustrate that the ranking models employed by PCPrior and PCPriorX , specifically
LightGBM and XGBoost, can better utilize the generated test input features for test
prioritization.

Surprisingly, despite existing studies [258] mentioning that TabNet is more
effective than XGBoost and LightGBM in their evaluated datasets when applied to
PCPrior for the purpose of test prioritization, the effectiveness of PCPrior (which
utilizes the LightGBM model) is higher than that of PCPriorT (which utilize the
TabNet model). We can see that, in Table 6.8, PCPrior’s APFD ranges from 0.781
to 0.905, while PCPriorT ’s APFD ranges from 0.701 to 0.894. This suggests that,
compared to TabNet, LightGBM performs better in leveraging the features (generated
by PCPrior) for test prioritization. Some potential reasons include: 1) Different
datasets and their distributions can impact the training of classification models,
thereby affecting their performance; 2) The size of the dataset can also influence the
model’s performance. The experimental results demonstrate that LightGBM is more
suitable and compatible with the feature dataset constructed by PCPrior.

Answer to RQ2: PCPrior and PCPriorX exhibits better effectiveness in test pri-
oritization compared to other PCPrior variants, thereby suggesting that the ranking
model employed by PCPrior and PCPriorX , namely LightGBM, and XGBoost,
can better utilize the generated features of test inputs for test prioritization.

6.5.3 RQ3: Impact of Main Parameters in PCPrior
Objectives: We investigate the impact of main parameters on the effectiveness of
PCPrior for test prioritization.
Experimental design: Building upon the parameter selection and consideration of
parameter values in previous research [10], we conducted a systematic investigation
to analyze the impact of key parameters in PCPrior. Specifically, we focused on three
parameters: max_depth (representing the maximum tree depth for each LightGBM
model), colsample_bytree (indicating the sampling ratio of feature columns when
constructing each tree), and learning_rate (referring to the boosting learning rate)
in the LightGBM ranking algorithm. For our investigation, we performed experiments
on all subjects within the natural dataset. By observing the performance variations

166

6.5. Results and analysis

Table 6.9: Average comparison results among PCPrior and PCPrior Variants in
terms of the PFD values on natural datasets

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

PCPriorL 0.283 0.515 0.707 0.832 0.913 0.964 0.985
PCPriorX 0.304 0.554 0.744 0.876 0.949 0.981 0.992
PCPriorR 0.289 0.530 0.716 0.842 0.920 0.968 0.990
PCPriorD 0.295 0.541 0.719 0.847 0.927 0.967 0.985
PCPriorT 0.283 0.524 0.706 0.831 0.903 0.950 0.981

ModelNet

PCPrior 0.305 0.567 0.760 0.882 0.950 0.983 0.994
PCPriorL 0.226 0.424 0.578 0.712 0.811 0.885 0.932
PCPriorX 0.335 0.619 0.831 0.934 0.975 0.988 0.996
PCPriorR 0.285 0.524 0.709 0.841 0.922 0.969 0.990
PCPriorD 0.262 0.467 0.634 0.770 0.857 0.916 0.959
PCPriorT 0.243 0.440 0.612 0.743 0.835 0.903 0.952

S3DIS

PCPrior 0.341 0.629 0.829 0.931 0.972 0.989 0.995
PCPriorL 0.427 0.690 0.832 0.907 0.944 0.967 0.980
PCPriorX 0.561 0.871 0.964 0.987 0.993 0.995 0.997
PCPriorR 0.485 0.767 0.899 0.955 0.981 0.991 0.995
PCPriorD 0.476 0.776 0.905 0.954 0.975 0.983 0.990
PCPriorT 0.543 0.843 0.948 0.976 0.986 0.992 0.995

ShapeNet

PCPrior 0.555 0.865 0.961 0.984 0.992 0.996 0.998

of PCPrior as these parameters changed, we aimed to gain insights into the influence
of parameters on the effectiveness of PCPrior.
Results: The experimental results of RQ3 are presented in Figure 6.4, showcasing
the effectiveness of PCPrior under diverse parameter settings based on average APFD
values across the 15 subjects. The solid red line represents PCPrior, while the dashed
lines depict the comparative methods. The findings demonstrate that PCPrior
consistently outperforms all the test prioritization methods across various parameter
configurations, as evident from the visual analysis of Figure 6.4. Furthermore, it can
be observed that the parameter colsample_bytree, which determines the sampling
ratio of feature columns during the construction of each tree, has a relatively modest
impact on the effectiveness of PCPrior. PCPrior exhibits relative stability when this
parameter is adjusted. Conversely, the parameters max_depth (representing the
maximum tree depth for each LightGBM model) and learning_rate (referring to
the boosting learning rate) have a relatively larger influence on the effectiveness of
PCPrior. Remarkably, regardless of the extent to which the parameters influence
PCPrior’s effectiveness, we see that PCPrior can consistently outperform all the
compared methods across different parameter settings.

Answer to RQ3: PCPrior consistently outperforms other test prioritization
methods across various parameter settings. The parameter colsample_bytree has
a minor impact on PCPrior’s effectiveness, while the parameters max_depth and
learning_rate have a relatively larger impact. However, despite these fluctuations,
PCPrior consistently remains more effective than the comparative methods.

6.5.4 RQ4: Effectiveness on Noisy Test Inputs
Objectives: We further investigate the effectiveness of PCPrior and its variants on
noisy data.
Experimental design: In the initial phase, we introduce noise to the original 3D
point cloud datasets, namely ModelNet40, ShapeNet, and S3DIS, to create noisy data.
To generate a noisy dataset from an initial test set denoted as T , each test instance

167

Chapter 6. Test Input Prioritization for 3D Point Clouds

� � � � �
����

����

����

����

����

����

����

�������

��������

�������

���������

���

a) ModelNet, max_depth
��� ��� ��� ��� ���

����

����

����

����

����

����

����

�������

��������

�������

���������

���

b) ModelNet, cols_bytree
����� ���� ���� ��� ���

����

����

����

����

����

����

����

�������

��������

�������

���������

���

c) ModelNet, learning_rate

� � � � �
����

����

����

����

����

����

����

�������

��������

�������

���������

���

d) S3DIS, max_depth
��� ��� ��� ��� ���

����

����

����

����

����

����

����

����

�������

��������

�������

���������

���

e) S3DIS, cols_bytree
����� ���� ���� ��� ���

����

����

����

����

����

����

����

����

�������

��������

�������

���������

���

f) S3DIS, learning_rate

� � � � �

����

����

����

����

����

�������

��������

�������

���������

���

g) ShapeNet, max_depth
��� ��� ��� ��� ���

����

����

����

����

����

�������

��������

�������

���������

���

h) ShapeNet, cols_bytree
����� ���� ���� ��� ���

����

����

����

����

����

�������

��������

�������

���������

���

i) ShapeNet, learning_rate
Figure 6.4: Impact of main parameters in PCPrior

t ∈ T undergoes a specific modification. Specifically, within each test instance t (a
point cloud), approximately 30% of the points are subjected to a random offset in
the x, y, and z coordinates, while the remaining 70% of the points remain unaltered.
The decision to select 30% of the points in a point cloud for displacement is because:
if a large number of the points were to be shifted, it would lead to a significant
number of tests being misclassified by the original model. In such a scenario, all test
prioritization methods could identify a large number of misclassified tests. This, in
turn, could affect the evaluation of PCPrior. Therefore, we opted to carefully select
the modification ratio that is not excessively high for the evaluation of PCPrior.
As a result, we generate ten noisy datasets for each original dataset, resulting in a
total of 30 (3 × 10) noisy datasets. Each of these noisy datasets is paired with five
different models, resulting in a total of 150 (30 × 5) subjects. Finally, we compared
the effectiveness of PCPrior, its variants, and all the comparative test prioritization
approaches on the generated 150 noisy subjects. On the generated noise subjects, we
assessed the effectiveness of PCPrior, the confidence-based test prioritization methods,
along with PCPrior variants that employed Logistic Regression [251], XGBoost [13],
Random Forest [90], DNNs [257], and TabNet [258] as ranking models, respectively.
We also included random selection as a baseline for comparison.
Statistical analysis Similar to RQ1, due to the inherent randomness in the model
training process, we performed the experiments ten times and conducted a statistical
analysis. Like in RQ1, the statistical analysis method we used is the paired two-sample
t-test [104]. We calculated the p-value and effect size for the experimental results.
We consider that if the p-value is less than 10−05, the difference between the two
sets of data is statistically significant [105]. Moreover, to ensure that the difference

168

6.5. Results and analysis

Table 6.10: Effectiveness comparison among PCPrior and the compared approaches
in terms of the average APFD values on noisy datasets

ModelNet S3DIS ShapeNetApproach DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet
Random 0.501 0.501 0.501 0.499 0.502 0.501 0.503 0.500 0.501 0.499 0.499 0.499 0.499 0.499 0.499
DeepGini 0.743 0.695 0.700 0.679 0.708 0.587 0.542 0.555 0.533 0.592 0.752 0.641 0.677 0.718 0.642
VanillaSM 0.750 0.698 0.705 0.686 0.712 0.588 0.542 0.555 0.533 0.594 0.758 0.644 0.685 0.723 0.647
PCS 0.754 0.698 0.707 0.688 0.714 0.585 0.541 0.551 0.531 0.594 0.762 0.643 0.693 0.728 0.650
Entropy 0.728 0.685 0.688 0.666 0.697 0.582 0.540 0.553 0.532 0.587 0.735 0.633 0.661 0.704 0.633
PCPriorL 0.782 0.745 0.732 0.717 0.728 0.610 0.568 0.597 0.617 0.636 0.785 0.737 0.794 0.824 0.670
PCPriorX 0.793 0.761 0.767 0.754 0.765 0.726 0.667 0.687 0.663 0.751 0.864 0.774 0.838 0.856 0.787
PCPriorR 0.779 0.742 0.741 0.725 0.739 0.693 0.655 0.676 0.654 0.725 0.825 0.750 0.822 0.838 0.764
PCPriorD 0.782 0.748 0.747 0.727 0.741 0.647 0.633 0.651 0.639 0.672 0.838 0.765 0.821 0.839 0.773
PCPriorT 0.766 0.739 0.746 0.730 0.743 0.654 0.637 0.659 0.641 0.694 0.856 0.772 0.830 0.848 0.785
PCPrior 0.794 0.762 0.770 0.755 0.766 0.728 0.668 0.690 0.665 0.753 0.862 0.776 0.837 0.855 0.788

between the results of PCPrior and the compared approach is non-negligible, the
effect size should be greater than or equal to 0.2.

Results: The experimental results for RQ4 are presented in Table 6.10, Table 6.11,
Table 6.12, Table 6.13, Table 6.14, and Figure 6.5. Specifically, Table 6.10 and
Table 6.11 provide a comparative analysis of the effectiveness of PCPrior (including
its variants) and various test prioritization methods in the context of noisy data,
using the APFD metric. On the other hand, Table 6.13 and Table 6.14 present the
comparative evaluation based on the PFD metric.
Table 6.11: Performance improvement of PCPrior over the compared approaches
in terms of APFD on 150 noisy subjects

Approach # Best cases Average APFD Improvement(%)
Random 0 0.500 53.00
DeepGini 0 0.651 17.51
VanillaSM 0 0.655 16.79
PCS 0 0.656 16.62
Entropy 0 0.642 19.16
PCPriorL 0 0.703 -
PCPriorX 35 0.763 -
PCPriorR 0 0.742 -
PCPriorD 0 0.735 -
PCPriorT 0 0.740 -
PCPrior 115 0.765 -

Table 6.10 shows the comparison results of PCPrior, its variants, and comparative
methods on noisy test inputs in terms of APFD. We found that the effectiveness of
PCPrior and its variants surpasses that of all compared test prioritization methods in
each case. Specifically, the APFD values for PCPrior range from 0.665 to 0.862. For
PCPrior’s variants, the APFD values range from 0.568 to 0.864. For the compared
test prioritization methods, the APFD values range from 0.499 to 0.762. Furthermore,
Table 6.11 provides a more detailed analysis by presenting the number of cases in
which each test prioritization method performs the best, the average APFD value,
and the improvement of PCPrior relative to each comparative method. We see
that, on noisy test inputs, PCPrior’s average APFD is 0.765, while the range for its
variants is 0.703 to 0.763. The average APFD range for the benchmark methods
is 0.500 to 0.656. Notably, PCPrior performs the best in 76.7% (115 out of 150)
Table 6.12: Statistical analysis on noisy test inputs (in terms of p-value and effect
size)

Random DeepGini VanillaSM PCS Entropy
PCPrior (p-value) 1.156 × 10−10 1.688 × 10−08 3.521 × 10−08 5.049 × 10−08 3.385 × 10−09

PCPrior (effect size) 4.329 2.958 2.792 2.713 3.352

169

Chapter 6. Test Input Prioritization for 3D Point Clouds

Table 6.13: Effectiveness comparison of PCPrior and the compared approaches in
terms of the PFD values on noisy datasets

#Best cases in PFD Average PFDData Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40
Random 0 0 0 0 0.099 0.201 0.300 0.402
DeepGini 0 0 0 0 0.219 0.404 0.564 0.701
VanillaSM 0 0 0 0 0.225 0.417 0.577 0.712
PCS 0 0 0 0 0.220 0.416 0.583 0.719
Entropy 0 0 0 0 0.210 0.387 0.542 0.677
PCPriorL 1 0 0 0 0.246 0.459 0.635 0.772
PCPriorX 19 17 20 13 0.264 0.494 0.687 0.830
PCPriorR 1 1 0 0 0.252 0.465 0.641 0.777
PCPriorD 0 0 0 0 0.250 0.468 0.647 0.787
PCPriorT 0 0 0 0 0.252 0.470 0.651 0.790

ModelNet

PCPrior 29 32 30 37 0.265 0.497 0.689 0.833
Random 0 0 0 0 0.099 0.201 0.302 0.402
DeepGini 0 0 0 0 0.133 0.258 0.375 0.486
VanillaSM 0 0 0 0 0.135 0.260 0.377 0.489
PCS 0 0 0 0 0.130 0.255 0.373 0.485
Entropy 0 0 0 0 0.131 0.254 0.370 0.480
PCPriorL 0 0 0 0 0.151 0.291 0.419 0.541
PCPriorX 8 8 6 7 0.188 0.369 0.536 0.689
PCPriorR 0 0 0 0 0.182 0.350 0.509 0.654
PCPriorD 0 0 0 0 0.173 0.331 0.476 0.608
PCPriorT 0 0 0 0 0.176 0.339 0.488 0.623

S3DIS

PCPrior 42 42 44 43 0.189 0.370 0.539 0.692
Random 0 0 0 0 0.099 0.199 0.298 0.399
DeepGini 0 0 0 0 0.212 0.390 0.544 0.675
VanillaSM 0 0 0 0 0.221 0.403 0.557 0.685
PCS 0 0 0 0 0.221 0.411 0.568 0.694
Entropy 0 0 0 0 0.201 0.372 0.519 0.649
PCPriorL 0 0 0 0 0.277 0.519 0.703 0.822
PCPriorX 17 24 39 30 0.317 0.616 0.841 0.951
PCPriorR 0 0 0 0 0.303 0.567 0.769 0.894
PCPriorD 0 0 0 0 0.308 0.585 0.792 0.912
PCPriorT 0 0 0 0 0.314 0.606 0.826 0.939

ShapeNet

PCPrior 33 26 11 20 0.318 0.614 0.838 0.949

Table 6.14: Average effectiveness comparison of PCPrior and the compared ap-
proaches in terms of the PFD values on noisy datasets

#Best cases in PFD Average PFDApproach PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40
Random 0 0 0 0 0.099 0.201 0.300 0.401
DeepGini 0 0 0 0 0.188 0.351 0.494 0.621
VanillaSM 0 0 0 0 0.194 0.36 0.504 0.629
PCS 0 0 0 0 0.190 0.361 0.508 0.633
Entropy 0 0 0 0 0.181 0.337 0.477 0.602
PCPriorL 1 0 0 0 0.225 0.423 0.585 0.712
PCPriorX 44 49 65 50 0.256 0.493 0.688 0.823
PCPriorR 1 1 0 0 0.246 0.461 0.639 0.775
PCPriorD 0 0 0 0 0.244 0.461 0.639 0.769
PCPriorT 0 0 0 0 0.248 0.472 0.655 0.784
PCPrior 104 100 85 100 0.257 0.494 0.689 0.825

170

6.5. Results and analysis

10% 20% 30% 40% 50% 60% 70%

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
Entropy
VanillaSM
PCS
Random
PCPriorL

PCPriorX

PCPriorR

PCPriorD

PCPriorT

PCPrior

a) ModelNet (noisy), PointNet
10% 20% 30% 40% 50% 60% 70%

0.2

0.4

0.6

0.8

1.0

P
FD

DeepGini
Entropy
VanillaSM
PCS
Random
PCPriorL

PCPriorX

PCPriorR

PCPriorD

PCPriorT

PCPrior

b) ShapeNet (noisy), DGCNN
Figure 6.5: Test prioritization effectiveness among PCPrior and the compared
approaches for ModelNet(Noisy) with PointNet and ShapeNet(Noisy) with DGCNN
on noisy datasets. X-Axis: the percentage of prioritized tests; Y-Axis: the percentage
of detected misclassified tests.
of the cases, while PCPriorX performs the best in 23.3% (35 out of 150) of the
cases. PCPrior continues to outperform the variants of PCPrior that utilize DNN
ranking models (PCPriorT and PCPriorN) in all cases. Moreover, PCPrior shows an
improvement ranging from 16.62% to 53.00% over all the comparative methods. The
above experimental results demonstrate that, under the APFD measurement, the
average effectiveness of PCPrior surpasses all its variants and comparative methods
on noisy datasets.

The results from the statistical analysis on noisy test inputs are presented in
Table 6.12. We see that the p-values for the experimental results of PCPrior and
each of the compared methods are all less than 10−05, indicating that PCPrior
statistically outperforms all the test prioritization methods on noisy datasets. For
instance, the p-value between PCPrior and DeepGini is 1.688 × 10−08. The p-value
between PCPrior and PCS is 5.049 × 10−08. Furthermore, all the effect sizes of
PCPrior and the compared approaches exceed 0.2, demonstrating a non-negligible
difference. Notably, all the effect sizes are greater than 0.8. For example, the effect
size between PCPrior and VanillaSM is 2.792, and the effect size between PCPrior
and Entropy is 3.352. According to Cohen’s d [106], this implies that the difference
in experimental results between PCPrior and the compared methods is not only
statistically significant but also relatively "large" in scale.

Table 6.13 and Table 6.14 present a comparative analysis regarding the PFD
metric. It is observed that in Table 6.13, the best performance is consistently achieved
by PCPrior or its variants across all cases. Table 6.14 provides a deeper analysis of this
finding. When considering different percentages of test data prioritization, PCPrior
consistently outperforms other approaches in terms of effectiveness, as evidenced by
the highest number of best-performing cases and the highest average PFD values.
Figure 6.5 visually demonstrates the performance comparison of PCPrior, its variants,
and the comparative methods on noisy data. The solid lines depict PCPrior and its
variant methods, while the dashed lines represent the comparative methods. We see
that across the noisy dataset, PCPrior and all its variants exhibit higher effectiveness
compared to all comparative methods. Furthermore, PCPrior demonstrates superior
performance when compared to its variants.

171

Chapter 6. Test Input Prioritization for 3D Point Clouds

Answer to RQ4: PCPrior consistently exhibits superior performance in compari-
son to all the test prioritization approaches considered in the context of noisy data,
as evaluated by APFD and PFD. Notably, the average improvement achieved in
terms of APFD ranges from 16.62% to 53.00%, highlighting the significant effective-
ness of PCPrior over the compared methods. Furthermore, PCPrior consistently
outperforms its variants in a majority of cases.

6.5.5 RQ5: Feature contribution analysis
Objectives: We investigate the contributions of each type of features on the
effectiveness of PCPrior for test prioritization. Our investigation revolves around
two primary sub-questions, as outlined below:
• RQ-5.1 Based on the ablation study, to what extent does each type of features

contribute to the effectiveness of PCPrior?
• RQ-5.2 What is the distribution of feature types among the top-N most con-

tributing features towards PCPrior?
Experimental design: We conduct two experiments below to answer the above
two sub-questions.
[Experiment ❶] In the original PCPrior framework, a comprehensive set of four
feature types is generated, namely mutation features (MF), spatial features (SF), un-
certainty features (UF), and prediction features (PF). To compare the contributions
of each feature type on PCPrior’s effectiveness, we conducted a carefully designed
ablation study following the prior work [107]. More specifically, we individually
removed one type of features and evaluated PCPrior’s effectiveness under these
modified conditions. For instance, to assess the contribution of SF features, PCPrior
is executed with SF features excluded while retaining the other three feature types.
The resulting performance of PCPrior is then evaluated under these adjusted circum-
stances. Similarly, to gauge the contribution of MF features, PCPrior is executed
without generating MF features while keeping generating the other three feature
types. The performance of PCPrior is subsequently assessed in this context. By
conducting the aforementioned ablation study, we can determine the contribution of
each feature type to the overall effectiveness of PCPrior.
[Experiment ❷] The method we employed to evaluate the contributions of features
is the cover metric within the XGBoost algorithm [13]. Initially, we utilized the cover
metric to compute the importance scores of each feature used by PCPrior for test
prioritization. Subsequently, we selected the top-N most important features based
on these scores. By analyzing the categorization of these features, we investigated
the contributions of different feature types to the effectiveness of PCPrior. Below,
we provide an overview of how XGBoost quantifies feature importance.

The cover metric employed in XGBoost serves as a means to quantify the
importance of features by assessing the average coverage of individual instances
across the leaf nodes within a decision tree. This metric operates by evaluating
the frequency with which a specific feature is utilized for partitioning the data
across the entirety of the ensemble’s trees. The coverage values associated with
each feature across all trees are subsequently aggregated, resulting in a cumulative
coverage value. To obtain the average coverage of each instance by the leaf nodes, the
cumulative coverage value is normalized in relation to the total number of instances.
Consequently, the derived coverage value of a given feature plays a crucial role in
determining its significance, with features that demonstrate higher coverage values

172

6.5. Results and analysis

Table 6.15: Ablation study on different features of PCPrior: Mutation Features(MF),
Spatial Features(SF), Uncertainty Features(UF), Prediction Features(PF). ‘w/o’
means ‘without’

DatasetApproach ModelNet S3DIS ShapeNet Average

PCPrior w/o MF 0.788 0.811 0.875 0.825
PCPrior w/o SF 0.769 0.699 0.841 0.769
PCPrior w/o UF 0.785 0.816 0.871 0.824
PCPrior w/o PF 0.782 0.778 0.874 0.811
PCPrior 0.797 0.822 0.890 0.836

being considered more important.
Results: The experimental results of RQ5.1 are presented in Table 6.15. In this
table, ‘w/o’ stands for ‘without.’ For example, ‘PCPrior w/o SF’ refers to executing
PCPrior without generating the spatial features. From Table 6.15, we see that the
original PCPrior achieves the highest average effectiveness. Removing any type of
feature results in a decrease in the effectiveness of PCPrior, demonstrating that each
type of features contributes to PCPrior’s effectiveness. For instance, on the Modelnet
dataset, the average APFD value of the original PCPrior is 0.797. Removing spatial
features results in a decline of PCPrior’s average APFD to 0.769, while the removal
of mutation features causes a decrease to 0.788, uncertainty features to 0.785, and
prediction features to 0.782.

Furthermore, among all four types of features, spatial features demonstrate the
highest average contributions. This inference is drawn from the following findings:
When removing spatial features, PCPrior’s effectiveness shows the largest average
decrease. Specifically, when removing spatial features (SF features), the average
APFD decreases by 0.067. In comparison, the removal of mutation features (MF)
leads to an average APFD decrease of 0.011, uncertainty features (UF) result in
an average APFD decrease of 0.012, and prediction features (PF) show an average
APFD decrease of 0.025. Moreover, across all datasets, removing spatial features
results in the highest average decrease in PCPrior’s effectiveness.

Answer to RQ5.1:The ablation study demonstrates that each type of features
contributes to the effectiveness of PCPrior. Moreover, spatial features show the
highest average contributions.

The findings of RQ5.2 are presented in Table 6.16, where the scores represent
the importance levels of each feature. For each combination of model and dataset,
we present the top-N features that contribute the most. It is worth noting that
abbreviations SF, MF, PF, and UF are used to represent spatial features, mutation
features, prediction features, and uncertainty features, respectively. Moreover, the
numbers after the feature abbreviations indicate the indices of the corresponding
features. For instance, SF-23 represents the spatial feature with index 23. From
Table 6.16, it can be observed that all four types of features consistently appear
among the top-N most contributing features across various subjects. As an example,
in the case of the PointConv subject with the S3DIS dataset, SF features account for
50%, UF features account for 30%, MF features account for 10%, and PF features
account for 10%. Remarkably, among the 15 subjects investigated, in 93.3% (14 out
of 15) of the cases, the top 10 contributing features include three or more distinct

173

Chapter 6. Test Input Prioritization for 3D Point Clouds

Table 6.16: Top-10 most contributing features on the effectiveness of PCPrior
Data Rank DGCNN PointConv MSG SSG PointNet

Feature Value Feature Value Feature Value Feature Value Feature Value

ModelNet

1 SF-23 348 MF-132 272 SF-f23 271 SF-46 261 MF-120 309
2 MF-141 203 MF-126 261 PF-112 260 MF-147 238 PF-112 276
3 MF-143 197 SF-52 243 MF-120 210 MF-114 225 MF-144 265
4 PF-112 195 PF-112 221 MF-143 173 PF-112 224 SF-52 256
5 MF-137 187 MF-125 219 MF-127 167 MF-131 199 SF-28 210
6 MF-145 178 MF-139 214 SF-52 163 MF-127 196 PF-90 174
7 SF-22 171 MF-129 213 SF-28 160 MF-122 155 SF-69 167
8 MF-123 169 MF-135 207 MF-135 141 SF-42 142 SF-1 166
9 MF-131 167 UF-118 206 SF-f22 138 SF-29 131 MF-139 165
10 MF-136 155 MF-124 201 PF-88 134 SF-25 128 SF-25 164

S3DIS

1 UF-85 166 SF-18 168 UF-85 175 UF-87 190 UF-87 156
2 PF-75 112 UF-85 140 UF-87 151 SF-55 161 UF-85 119
3 SF-61 111 SF-61 127 UF-86 115 UF-86 148 SF-65 115
4 SF-60 106 UF-87 123 SF-28 114 SF-19 128 SF-68 106
5 SF-62 105 MF-106 100 MF-91 111 SF-20 110 PF-74 105
6 SF-2 94 PF-80 99 PF-73 110 UF-90 107 PF-82 94
7 UF-86 93 SF-60 99 SF-62 107 PF-84 102 SF-17 87
8 PF-74 86 SF-62 93 SF-16 102 SF-65 101 UF-90 86
9 SF-35 83 SF-4 92 MF-95 98 MF-99 99 PF-79 86
10 SF-16 82 UF-86 90 PF-74 96 PF-78 98 PF-80 85

ShapeNet

1 PF-122 908 MF-135 1223 UF-122 952 UF-122 984 UF-122 1021
2 MF-151 554 MF-141 1059 UF-124 518 MF-156 536 PF-101 502
3 MF-148 542 UF-130 934 MF-155 505 UF-124 527 PF-100 435
4 MF-140 539 MF-153 850 MF-145 503 SF-70 496 PF-110 523
5 MF-145 498 MF-143 801 MF-136 475 PF-107 477 PF-94 415
6 SF-42 486 PF-122 798 PF-121 467 SF-42 476 SF-71 398
7 PF-107 486 MF-154 776 MF-153 460 MF-149 435 UF-124 391
8 PF-116 424 MF-150 749 UF-126 446 MF-155 408 SF-42 389
9 PF-109 423 MF-148 725 SF-42 446 PF-104 405 PF-87 383
10 PF-110 376 PF-121 701 SF-71 429 MF-131 404 PF-90 371

174

6.5. Results and analysis

feature types. These experimental findings provide robust evidence that all three
feature categories play pivotal roles in the effectiveness of PCPrior.

Answer to RQ5.2: All four types of features, namely spatial features, mutation
features, uncertainty features, and prediction features, exhibit consistent presence
among the top-N most influential features across diverse subjects.

6.5.6 RQ6: Retraining 3D shape classification models with
PCPrior and uncertainty-based methods

Objectives: We investigate whether PCPrior and uncertainty-based test prioritiza-
tion approaches are effective in selecting informative retraining inputs to enhance
the performance of a 3D shape classification model.
Experimental design: Building on the previous research [105], we structured our
retraining experiments in the following manner. First, we randomly divided the
point cloud dataset into three parts: the training set, the candidate set, and the test
set, in a 4:4:2 ratio. The candidate set was used for retraining, while the test set
was reserved for evaluation purposes and remained untouched. In the first phase, we
trained a 3D shape classification model using only the initial training set. In the
second round, we integrate an extra 10% of new inputs from the candidate set into
the current training set without replacement. The chosen inputs for inclusion are
those prioritized in the top 10% by PCPrior and the compared test prioritization
approaches. The prioritization range we selected for retraining is from 10% to 70%.
We chose this range because, according to the experimental results (cf. Section 6.5.1),
when prioritizing up to 70%, PCPrior can identify the majority of misclassified
inputs in the dataset (99.6%), as indicated in Table 6.6. For example, in the
ShapeNet dataset, within the 70% prioritized test set, PCPrior has identified 99.8%
of misclassified inputs. Given that the primary objective of this research question is
to validate PCPrior’s effectiveness in retraining, we chose a retraining range of up to
70%. Following prior work [105], we retrained the model using the expanded training
set, ensuring equal treatment of both old and new training data. This retraining
was repeated in five rounds. The reason for opting to conduct retraining five times
is that the training process of DNN models involves various random factors, and
conducting multiple rounds of retraining can contribute to ensuring the stability
and reproducibility of the results. On the other hand, excessive retraining can lead
the model to over-optimize for a specific dataset, resulting in overfitting. Therefore,
based on the experimental experience of existing studies [259], we choose to conduct
five rounds of retraining. To account for the inherent randomness in model training,
we repeated all experiments three times and reported the average results across these
repetitions.
Results: The experimental results for RQ6 are presented in Table 6.17, which
illustrates the average accuracy of 3D shape classification models after retraining.
In each case, we have highlighted the approach with the highest effectiveness in
grey for a quick and straightforward interpretation of the findings. As shown
in Table 6.17, PCPrior and all uncertainty-based approaches demonstrate better
average effectiveness compared to random selection. However, the improvements they
achieved are relatively small. For instance, when selecting 10% of tests for retraining
the original model, PCPrior’s selected samples result in a post-retrain model accuracy
of 0.851, while uncertainty-based methods range from 0.846 to 0.850. In contrast, the

175

Chapter 6. Test Input Prioritization for 3D Point Clouds

Table 6.17: The average accuracy value after retraining with 10%~70% prioritized
tests

Accuracy of percentage of datasetsApproach 10% 20% 30% 40% 50% 60% 70% Average

Random 0.847 0.855 0.865 0.872 0.879 0.886 0.887 0.870
DeepGini 0.846 0.866 0.872 0.880 0.889 0.896 0.898 0.878
VanillaSM 0.850 0.867 0.870 0.881 0.890 0.891 0.898 0.878
PCS 0.846 0.861 0.868 0.884 0.888 0.893 0.898 0.877
Entropy 0.846 0.861 0.869 0.881 0.886 0.895 0.896 0.876
PCPrior 0.851 0.868 0.873 0.883 0.888 0.898 0.901 0.880

random selection yields an accuracy of 0.847. Similarly, when choosing 70% of tests
for retraining the original model, PCPrior’s selected samples result in a post-retrain
model accuracy of 0.901, while uncertainty-based methods range from 0.896 to 0.898.
In comparison, the random selection yields an accuracy of 0.887.

The reasons for the aforementioned findings, where PCPrior and uncertainty-
based methods show only small improvements over random selection in enhancing
model accuracy, include:
• Lack of Diversity: PCPrior and uncertainty-based methods focus on identifying

corner cases, which are tests that the model finds more challenging. Consequently,
the tests identified can lack diversity. In contrast, random selection provides a
broader and more diverse set of samples, contributing to the model learning more
comprehensive data features and thereby improving its generalization capability.

• Overfitting Risk: Concentrating on samples the model is most likely to predict
incorrectly can lead to overfitting. These samples can exhibit certain extreme
or uncommon features, causing the model to overly adapt to these specific cases
after retraining and ignoring more widespread patterns.
Moreover, another observation from the results in Table 6.17 is that PCPrior

performs better than uncertainty-based methods on average. Specifically, PCPrior
performs the best in 75% (6 out of 8) cases, while uncertainty-based methods perform
the best in only 25% (2 out of 8) cases. Moreover, after retraining the original model
with tests selected by PCPrior, the average accuracy of the resulting model is 0.880.
In contrast, for uncertainty-based methods, the range is from 0.876 to 0.878.

Answer to RQ6: PCPrior and uncertainty-based methods perform better than the
random selection approach. However, the improvement achieved is relatively modest,
suggesting that these prioritization approaches, aimed at identifying potentially
misclassified tests, can guide the retraining of 3D shape classification models but
with limited effectiveness. Additionally, PCPrior demonstrates better effectiveness
compared to uncertainty-based test prioritization methods.

6.6 Discussion
6.6.1 Limitations of PCPrior

PCPrior suffers from a notable limitation regarding its ability to ensure the
diversity of the selected data, which has also been recognized in previous investigations
on uncertainty-based test prioritization techniques [6]. This concern arises from
the fact that neither PCPrior nor these earlier approaches account for diversity

176

6.6. Discussion

during the process of prioritizing test inputs. However, despite this shared limitation,
PCPrior has demonstrated considerable effectiveness in identifying a substantial
majority of misclassified test inputs by leveraging a small proportion of prioritized
test cases. The experimental results illustrate that PCPrior can detect over 95% of
misclassified tests on natural datasets by prioritizing a mere 50% of the test inputs.
This noteworthy performance highlights PCPrior’s ability to efficiently identify a
significant proportion of misclassified tests using a reduced set of prioritized tests,
even without explicitly ensuring the diversity. While prioritizing diverse misclassified
tests undoubtedly enhances overall testing quality, in practical scenarios with limited
time and resource constraints, prioritizing a significant majority of misclassified
tests can still be a viable strategy. Therefore, the capacity of PCPrior to identify a
significant proportion of misclassified tests while operating within the constraints of
a reduced number of prioritized tests becomes particularly advantageous in situations
where time and resources are scarce.

Another limitation is that PCPrior is specifically designed for classification models
and cannot be adapted for regression models. This is primarily due to two reasons:
1) PCPrior requires generating mutation features from tests for test prioritization.
However, for a given test, generating mutation features involves comparing whether
the model’s predictions for this test and its variants are the same. This approach
is not applicable to regression models because the predictions of regression models
are continuous numerical values. 2) PCPrior requires generating prediction features
and uncertainty features for test prioritization. For a given test, the generation of
these two types of features requires the model to predict the probabilities of this
test belonging to each category. Therefore, PCPrior cannot be applied to regression
models.

6.6.2 Generality of PCPrior
Our experimental findings have validated the effectiveness of PCPrior based on a

large number of subjects, encompassing both natural and noisy scenarios. Although
our study initially focused on three datasets, PCPrior can be generalized to a broader
range of 3D shape classification domains. The adaptability of PCPrior stems from
its core process, which is the generation of four types of features: spatial features,
mutation features, prediction features, and uncertainty features. PCPrior can perform
test prioritization through an automated pipeline when the evaluated model and
dataset meet the criteria for generating these four types of features. Below, we
provide a detailed explanation of the specific conditions that the evaluated model
and dataset require to meet in order to utilize PCPrior:
• Requirement 1: Point Cloud Dataset. The generation of spatial features

and mutation features requires the dataset to be a point cloud dataset. This is
because these two features are specifically tailored for point cloud data. For a
given point cloud dataset, PCPrior can automatically generate its spatial feature
and mutation features.

• Requirement 2: Classification Tasks. The generation of the prediction
features and uncertainty features necessitates that both the model and the dataset
be oriented toward classification tasks. This is because these two types of features
are generated from the model’s predictions for each test within the test set.
Specifically, for a given test, the generation of these two types of features requires
the model to predict the probabilities of this test belonging to each category.

177

Chapter 6. Test Input Prioritization for 3D Point Clouds

Models and datasets that meet the above conditions can use PCPrior for test
prioritization, making PCPrior widely applicable in a diverse range of 3D shape
classification tasks.

6.6.3 Threats to Validity
6.6.3.1 Internal Threats to Validity.

Internal threats to validity primarily arise from the implementation of our pro-
posed PCPrior methodology and the compared approaches. To address these threats,
we implemented PCPrior using the widely adopted PyTorch library. Additionally,
we utilized the original implementations of the compared approaches as provided
by their respective authors, minimizing potential implementation biases. Another
internal threat emerges from the inherent randomness associated with model training.
To mitigate this threat and ensure the stability of our experimental results, we
conducted a statistical analysis. Specifically, we performed ten repetitions of the
training process and calculated the statistical significance of the experimental results,
thereby reducing the influence of randomness.
6.6.3.2 External Threats to Validity.

External threats to validity primarily reside in the 3D point cloud dataset and
DNN models employed in our study. To mitigate these threats, we adopted a large
number of subjects, encompassing both natural and noisy data, thus ensuring a
comprehensive exploration of various scenarios. By including diverse data types, we
aimed to enhance the robustness and generalizability of our findings. As a future
direction, we aim to extend the application of PCPrior to 3D point cloud datasets
characterized by diverse properties, thereby broadening the scope and applicability
of our proposed methodology.

6.7 Related Work
6.7.1 Test Prioritization Techniques

Test prioritization aims to determine the optimal order for executing test cases,
thereby enabling the early detection of system bugs. The idea was first mentioned by
Wong et al. [260]. In field of conventional software engineering [77, 166, 167, 261, 79],
several corresponding studies have been conducted. Di Nardo et al. [79] conducted a
study evaluating the effectiveness of coverage-based prioritization strategies using
real-world regression faults. Their research shed light on the efficiency of different
techniques in detecting bugs. Henard et al. [77] conducted a comprehensive investi-
gation to compare existing test prioritization approaches, specifically focusing on
white-box and black-box strategies. Their findings revealed minimal distinctions
between these two categories of strategies. Chen et al. [167] proposed the LET
(Learning-based and Execution Time-aware Test prioritization) technique for pri-
oritizing test programs in compiler testing, demonstrating its effectiveness. LET
employs a learning process to identify program features and predict the bug-revealing
probability of new test programs, along with a scheduling process that prioritizes
test programs based on their bug-revealing probabilities.

Furthermore, several studies have focused on addressing the test prioritization

178

6.7. Related Work

problem using mutation testing techniques [56, 57, 58, 111, 47]. Shin et al.[57] pro-
posed a diversity-aware mutation adequacy criterion to guide test case prioritization
and empirically evaluated mutation-based prioritization techniques using large-scale
developer-written test cases. Papadakis et al.[58] introduced the concept of mutating
Combinatorial Interaction Testing models and prioritizing tests based on their ability
to detect mutants. They demonstrated a strong correlation between the number of
model-based mutants killed and code-level faults detected by the test cases.

Regarding test prioritization for DNNs, Feng et al.[6] proposed DeepGini, which
identifies possibly misclassified tests based on model uncertainty. DeepGini assumes
that a test is more likely to be mispredicted if the DNN outputs similar probabilities
for each class. Weiss et al.[9] conducted a comprehensive investigation of various
DNN test input prioritization techniques, including several uncertainty-based metrics
such as Vanilla Softmax, Prediction-Confidence Score (PCS), and Entropy. Moreover,
Wang et al. [10] developed PRIMA, an intelligent mutation analysis-based approach,
specifically tailored for prioritizing test inputs in DNNs. However, the mutation rules
of PRIMA are not adapted to handle 3D point data, which constitutes unstructured
sets of points in three-dimensional space. To address this limitation, we propose
PCPrior, a novel test prioritization technique that is specifically designed for 3D
point cloud data. PCPrior effectively generates a set of features to facilitate test
prioritization.

6.7.2 Mutation Testing for DNNs
In the field of mutation testing for DNNs, various studies [61, 20, 59, 111, 60]

have been conducted, focusing on the development of different mutation operators
and frameworks. Shen et al. introduced MuNN [61], a mutation analysis method
specifically designed for neural networks. MuNN defined five mutation operators
based on the characteristics of neural networks. The research findings highlighted
that mutation analysis exhibited strong domain-specific characteristics, indicating
the necessity of domain-specific mutation operators to enhance the analysis process.
Ma et al. [20] proposed DeepMutation, a methodology for assessing the quality of test
data in DL systems using mutation testing. They devised a collection of source-level
and model-level mutation operators to introduce faults into the training data, training
programs, and DL models. Subsequently, Hu et al. [59] extended DeepMutation
to DeepMutation++ by introducing a new set of mutation operators for feed-
forward neural networks (FNNs) and Recurrent Neural Networks (RNNs) and enabled
dynamic mutation of run-time states in RNNs. Jahangirova et al. [111] conducted
a comprehensive empirical study on the DL mutation operators in the existing
literature. Their investigation shed light on the necessity for a stochastic definition
of mutation killing. Furthermore, they successfully identified a subset of mutation
operators that exhibit high effectiveness, along with the associated configurations
that yield the highest efficacy. Humbatova et al. presented DeepCrime [60], the first
mutation testing tool that implemented a set of DL mutation operators based on
real DL faults. This tool provided a comprehensive framework for evaluating the
robustness and fault tolerance of DNNs.

6.7.3 Deep Neural Network Testing
In addition to test input prioritization, test selection [105] is another approach

for improving the efficiency of DNN testing. The goal of test selection is to estimate

179

Chapter 6. Test Input Prioritization for 3D Point Clouds

the accuracy of the entire set by only labeling a selected subset of test inputs,
thereby reducing the labeling cost associated with DNN testing. Several effective
test selection methods have been proposed in the literature [46, 48, 49, 105, 262]. Li
et al.[48] introduced Cross Entropy-based Sampling (CES), a method for selecting
a representative subset of test inputs to estimate the accuracy of the entire testing
set. CES minimizes the cross-entropy between the selected set and the original test
set to ensure that the distribution of the selected test set is similar to that of the
original set. Chen et al.[46] proposed Practical Accuracy Estimation (PACE) for test
selection. The basic principle of PACE involves clustering all the tests in the test set
and using the MMD-critic algorithm [49] to perform prototype selection. For the
remaining test inputs that do not belong to any group, adaptive random testing is
employed for test selection.

In addition to focusing on improving the efficiency of DNN testing, many studies
in the field of DNN testing [8, 7, 20, 52, 59, 51] concentrate on measuring the adequacy
of DNNs. Pei et al.[8] proposed neuron coverage, a metric for evaluating how well a
test set covers the logic of a DNN model. Ma et al.[7] introduced DeepGauge, a set of
coverage criteria to measure the test adequacy of DNNs. DeepGauge considers neuron
coverage as an important indicator of the effectiveness of a test input. Moreover,
they proposed new metrics with different granularities based on neuron coverage to
differentiate adversarial attacks from legitimate test data. Kim et al. [52] proposed
surprise adequacy as a measure of identifying the effectiveness of a test input within
a test set. Surprise adequacy focuses on measuring the surprise of a test input with
respect to the training set, where surprise is defined as the difference in the activation
value of neurons when faced with this new test input. Dola et al. [53] proposed
the Input Distribution Coverage (IDC) framework to evaluate the black-box test
adequacy of DNNs. The framework utilizes a Variational Autoencoder (VAE) to
transform test inputs into feature vectors, establishing a coverage domain. Within
this domain, Combinatorial Interaction Testing (CIT) metrics are applied to measure
test coverage. Riccio et al. [263] introduced the notion of "mutation adequacy" to
assess the effectiveness of test sets in identifying artificially injected faults (mutations)
in deep learning systems. Moreover, they proposed DEEPMETIS as a solution to
enhance the mutation adequacy of the test set (i.e., improving the test set’s ability
to detect mutations).

Furthermore, several studies focused on utilizing the decision boundary to enhance
the quality assurance of DL-based software. Riccio et al. [264] proposed the notion
of the "frontier of behaviors" referring to the inputs at which a DL system begins to
exhibit misbehavior. This concept serves as a metric for evaluating the quality of DL
systems. The assessment involves determining whether the frontier of misbehaviors
extends beyond the system’s validity domain, in which case the quality check is
deemed successful. Conversely, if the frontier intersects with the validity domain,
it indicates quality deficiencies in the system. Biagiola et al. [265] introduced an
innovative approach to assessing the adaptability of reinforcement learning (RL)
systems, focusing on their capacity to adjust to dynamic environments. Their method
involves computing the adaptation boundary within a changing environment and
presenting them through two-dimensional or multi-dimensional adaptability/anti-
regression heatmaps. These visualizations serve to quantify the system’s adaptability
and anti-regression capabilities. Fahmy et al. [266] introduced Simulator-based
Explanations for DNN Failures (SEDE) as a technique aimed at bolstering the quality

180

6.8. Conclusion

assurance of DNNs within safety-critical systems. SEDE proficiently identifies and
simulates events that trigger hazards, leading to DNN failures. This is achieved by
generating images with features akin to those causing failures, which are then used
for retraining, ultimately improving DNN accuracy.

6.8 Conclusion
To address the issue of high labeling costs for 3D point cloud data, we propose a

novel approach called PCPrior, which aims to prioritize test inputs that are likely to
be misclassified. By focusing on these challenging inputs, developers can allocate
their limited labeling budgets more efficiently, ensuring that the most critical test
cases are labeled first, which can lead to cost savings and a more cost-effective testing
process. The core idea behind PCPrior is that test inputs closer to the decision
boundary of the model are more likely to be predicted incorrectly. In order to capture
the spatial relationship between a point cloud test and the decision boundary, we
adopt a vectorization approach that transforms the point cloud data into a low-
dimensional space, towards revealing the underlying proximity between the point
cloud data and the decision boundary indirectly. To implement the vectorization
strategy, we generate four distinct types of features for each point cloud (test):
Spatial Features, Mutation Features, Prediction Features, and Uncertainty Features.
For each test input, the four generated features are concatenated into a final feature
vector. Subsequently, PCPrior employs a ranking model to automatically learn the
probability of a test input being mispredicted by the model based on its final feature
vector. Finally, PCPrior utilized the obtained probability values to rank all the test
inputs. In order to assess the performance of PCPrior, we conducted a comprehensive
evaluation involving a diverse set of 165 subjects. These subjects encompass both
natural datasets and noise datasets. We compared the effectiveness of PCPrior with
several established test prioritization approaches that have exhibited effectiveness
in prior studies. The empirical results demonstrate the remarkable effectiveness of
PCPrior. Specifically, on natural datasets, PCPrior consistently performs better
than all the comparative test prioritization approaches, yielding an improvement
ranging from 10.99% to 66.94% in terms of APFD. Moreover, on noisy datasets, the
improvement ranges from 16.62% to 53%.
Availability. All artifacts are available in the following public repository:

https://github.com/yinghuali/PCPrior

181

https://github.com/yinghuali/PCPrior

Chapter 6. Test Input Prioritization for 3D Point Clouds

182

7 Conclusion and Future Work

In this chapter, we provide a conclusion to this dissertation and present promising
directions for future research.

Contents
7.1 Conclusion . 184
7.2 Future Work . 184

Chapter 7. Conclusion and Future Work

7.1 Conclusion
This dissertation focused on test prioritization for deep neural networks. Specifi-

cally, we concentrate on four special test prioritization scenarios: video classification,
GNN classification, compressed DNN classification, and 3D shape classification. Be-
low, we provide detailed explanations of the test prioritization methods we proposed
for each specific scenario.

In the first part, we proposed VRank, a test prioritization approach specifically
designed for video test inputs. The core idea is that test inputs situated closer to the
decision boundary of the model are at a higher risk of being predicted incorrectly.
To capture the spatial relationship between a video test and the decision boundary,
we designed four types of feature generation strategies tailored to video-type tests.
Each of these feature types captures essential aspects of the video tests and the
model’s classification behavior specific to videos. The evaluation results affirmed the
effectiveness of VRank on both the natural and noisy datasets.

In the second part, we proposed NodeRank, a GNN-oriented test prioritization
approach. NodeRank leverages mutation testing to prioritize graph-structured test
inputs. The core idea is that a test is considered more likely to be misclassified if it
can kill many mutated models and produce different prediction results with many
mutated inputs. The evaluation results demonstrated that NodeRank outperformed
all the compared test prioritization approaches on both natural and adversarial test
inputs.

In the third part, we proposed PriCod, a test prioritization approach tailored
to compressed DNNs. PriCod leverages the behavior disparities caused by model
compression, along with the embeddings of test inputs, to effectively prioritize
potentially misclassified tests. The core premise is that significant behavior disparities
between the models indicate potential misclassifications and that inputs near decision
boundaries are more likely to be misclassified. The evaluation results demonstrated
the effectiveness of PriCod on natural, noisy, and adversarial test inputs, showing
that PriCod outperforms all the compared test prioritization approaches across all
three types of scenarios.

In the final part, we proposed PCPrior, a test prioritization method specifically
designed for 3D point clouds. PCPrior leverages the unique characteristics of 3D
point clouds to prioritize tests. The core idea is that test input close to the decision
boundary of the model is more likely to be misclassified. To this end, we carefully
designed a group of feature generation strategies tailored to 3D point clouds and
utilized the generated features for each test for test prioritization. Our evalua-
tion demonstrated that PCPrior outperformed all the compared test prioritization
approaches in both natural and noisy scenarios.

7.2 Future Work
In this section, we discuss some promising future directions.

• Test prioritization for LLMs with a focus on identifying test inputs that
will lead the model to generate low-quality or inaccurate outputs As
the utility of Large Language Models (LLMs) expands across various domains, the
demand for robust and reliable models increases. A critical aspect of achieving
this is through effective testing. One promising direction is to develop test
prioritization approaches to identify and prioritize tests (typically questions) that

184

7.2. Future Work

will lead the model to output low-quality or inaccurate answers. Identifying and
prioritizing such challenging tests can accelerate the LLM debugging process and
enhance overall testing efficiency, enabling further optimization of LLMs.

• Test prioritization for LLMs with a focus on identifying test inputs that
will lead the model to generate sensitive, private, or aggressive outputs
Besides generating low-quality or inaccurate outputs, LLMs can inadvertently
produce sensitive, private, or aggressive content. Identifying and prioritizing the
tests that will lead the model to output such content is crucial in mitigating
potential risks. Therefore, another promising direction we focus on is to perform
test prioritization from this perspective, with the aim of preventing privacy
breaches and the spread of harmful content.

• Prioritizing speech test inputs In this dissertation, we have focused on four
specific test prioritization scenarios: 3D shape classification, GNN classification,
compressed DNN classification, and video classification. There are also some other
special scenarios that deserve attention, such as speech classification. Specifically,
with the wide adoption of automated speech recognition (ASR) systems, testing
and enhancing ASR systems has become increasingly crucial. However, collecting
and executing speech test cases is generally costly and time-consuming. Therefore,
prioritizing potentially misclassified speech test cases and labeling such inputs
first can contribute to quick debugging and enhance testing efficiency.

• Applying the proposed test prioritization methods to active learning
The aim of test prioritization is to find tests that are more likely to be incorrectly
predicted by models. In the field of active learning, theoretically, these tests
can also be used to retrain models to enhance their performance. Therefore, a
promising research direction is to evaluate whether our proposed test prioritization
method can be effectively applied in the field of active learning to improve model
performance. This can be achieved by comparing the effectiveness of our proposed
method versus existing active learning methods.

• Expanding to large-scale datasets In the future, we plan to extend our
proposed test prioritization methods to large-scale datasets. This will involve
addressing several technical challenges: 1) Increasing complexity of ranking
models In large-scale datasets, simpler ranking models may suffer from under-
fitting during training. Therefore, it will be necessary to design more complex
ranking models that can handle the increased feature dimensionality. 2) Compu-
tational resource demands Large-scale datasets require more computational
resources. Our proposed test prioritization approaches, which rely on extracting
and processing complex features to train the internal ranking model, could become
slow without sufficient computational power. To address this, optimizing the
computational efficiency of the feature extraction and model training processes
will be critical to ensure scalability.

• Addressing limitations of the proposed test prioritization approaches.
Our current test prioritization methods face some limitations: 1) Overfitting
on small datasets In scenarios with small datasets, the ranking models in our
methods can suffer from overfitting during training, which can lead to a decline
in performance. 2) Imbalance in training samples when DNN accuracy
is high When the DNN model has very high accuracy, the number of incorrect
predictions in the training data can become very small. This can lead to an
imbalance in the training samples, which can affect the ranking model’s ability to

185

Chapter 7. Conclusion and Future Work

learn and classify incorrect predictions. To address these issues, in future work,
we will focus on the following improvements: 1) we will adopt data augmentation
techniques in small dataset scenarios to generate more relevant samples for training
the ranking model, thereby reducing the risk of overfitting. 2) For cases where
the DNN model has high accuracy, we will employ oversampling techniques to
increase the number of minority class samples in the training set. This will help
balance the minority and majority classes, enabling better training of the ranking
model.

186

Research Activities

In this chapter, we present the research activities conducted throughout my Ph.D.
journey. Specifically, we outline 1) the papers to which we contributed and 2) the
venues where I have served.

List of Papers

Papers included in this dissertation:

• Yinghua Li, Xueqi Dang, Lei Ma, Jacques Klein, Yves Le Traon, Tegawendé F.
Bissyandé. Test Input Prioritization for 3D Point Clouds. ACM Transactions
on Software Engineering and Methodology (TOSEM). Accepted for publication
on Jan. 15, 2024.

• Yinghua Li, Xueqi Dang, Weiguo Pian, Andrew Habib, Jacques Klein,
Tegawendé F. Bissyandé. Test Input Prioritization for Graph Neural Networks.
IEEE Transactions on Software Engineering (TSE). Accepted for publication
on Mar. 31, 2024.

• Yinghua Li, Xueqi Dang, Lei Ma, Jacques Klein, Tegawendé F. Bissyandé.
Prioritizing Test Cases for Deep Learning-based Video Classifiers. Empirical
Software Engineering (EMSE). Accepted for publication on Jun. 20, 2024.

• Yinghua Li, Xueqi Dang, Jacques Klein, Yves Le Traon, Tegawendé F.
Bissyandé. PriCod: Prioritizing Test Inputs for Compressed Deep Neural
Networks. Under Review in ACM Transactions on Software Engineering and
Methodology (TOSEM), 2024.

Papers not included in this dissertation:

• Yinghua Li, Xueqi Dang, Haoye Tian, Tiezhu Sun, Zhijie Wang, Lei Ma,
Jacques Klein, Tegawendé F. Bissyandé. An Empirical Study of AI Techniques
in Mobile Applications. Under Review in Journal of Systems and Software
(JSS), 2024.

• Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F.
Bissyandé, Yves Le Traon. Test input prioritization for Machine Learning
Classifiers. IEEE Transactions on Software Engineering (TSE). Accepted for
publication on Dec. 25, 2023.

Chapter 7. Conclusion and Future Work

• Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F. Bis-
syandé, Yves Le Traon. GraphPrior: Mutation-based Test Input Prioritization
for Graph Neural Networks. ACM Transactions on Software Engineering and
Methodology (TOSEM). Accepted for publication on Jun. 13, 2023.

• Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kaboré, Kui Liu,
Andrew Habib, Jacques Klein, Tegawendé F. Bissyandé. Predicting Patch
Correctness Based on the Similarity of Failing Test Cases. ACM Transactions
on Software Engineering and Methodology (TOSEM). Accepted for publication
on Jan. 10, 2022.

• Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil Koyuncu,
Andrew Habib, Li Li, Junhao Wen, Jacques Klein, Tegawendé F. Bissyandé.
The Best of Both Worlds: Combining Learned Embeddings with Engineered
Features for Accurate Prediction of Correct Patches. ACM Transactions on
Software Engineering and Methodology (TOSEM). Accepted for publication
on Nov. 1, 2022.

• Weiguo Pian, Yinghua Li, Tiezhu Sun, Yewei Song, Xunzhu Tang, Andrew
Habib, Jacques Klein, Tegawendé F. Bissyandé. You Don’t Have to Say Where
to Edit! Joint Learning to Localize and Edit Source Code. Under Review in
ACM Transactions on Software Engineering and Methodology (TOSEM), 2024.

Services

Reviewer:
• ACM Transactions on Software Engineering and Methodology
• IEEE Transactions on Industrial Informatics
• IEEE Transactions on Reliability
• Empirical Software Engineering
• Soft Computing

External Reviewer:
• ISSTA’22, ISSTA’23, ISSTA’24
• ESEC/FSE’22
• ASE’22
• SANER’22

188

Bibliography

[1] Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception
for connected autonomous vehicles based on 3d point clouds,” in 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS),
pp. 514–524, IEEE, 2019.

[2] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting
point cloud classification: A new benchmark dataset and classification model
on real-world data,” in Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1588–1597, 2019.

[3] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang,
“The apolloscape dataset for autonomous driving,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pp. 954–960,
2018.

[4] X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-Vincentelli,
“A lidar point cloud generator: from a virtual world to autonomous driving,”
in Proceedings of the 2018 ACM on International Conference on Multimedia
Retrieval, pp. 458–464, 2018.

[5] Z. Batmaz, A. Yurekli, A. Bilge, and C. Kaleli, “A review on deep learning for
recommender systems: challenges and remedies,” Artificial Intelligence Review,
vol. 52, pp. 1–37, 2019.

[6] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini: prioritizing
massive tests to enhance the robustness of deep neural networks,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 177–188, 2020.

[7] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li,
Y. Liu, et al., “Deepgauge: Multi-granularity testing criteria for deep learning
systems,” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 120–131, 2018.

[8] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium on
Operating Systems Principles, pp. 1–18, 2017.

[9] M. Weiss and P. Tonella, “Simple techniques work surprisingly well for neu-
ral network test prioritization and active learning (replicability study),” in
Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 139–150, 2022.

189

Bibliography

[10] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang, “Prioritizing test
inputs for deep neural networks via mutation analysis,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 397–409,
IEEE, 2021.

[11] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Software testing, verification and reliability, vol. 22, no. 2,
pp. 67–120, 2012.

[12] Y. Lou, J. Chen, L. Zhang, and D. Hao, “A survey on regression test-case
prioritization,” in Advances in Computers, vol. 113, pp. 1–46, Elsevier, 2019.

[13] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pp. 785–794, 2016.

[14] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A closer look
at spatiotemporal convolutions for action recognition,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pp. 6450–6459,
2018.

[15] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning
with graph embeddings,” in International conference on machine learning,
pp. 40–48, PMLR, 2016.

[16] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph cnn for learning on point clouds,” ACM Transactions on
Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[17] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d
point clouds,” in Proceedings of the IEEE/CVF Conference on computer vision
and pattern recognition, pp. 9621–9630, 2019.

[18] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao, “Deep learning
for image and point cloud fusion in autonomous driving: A review,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 722–739,
2021.

[19] Y. Tian, W. Zhang, M. Wen, S.-C. Cheung, C. Sun, S. Ma, and Y. Jiang,
“Finding deviated behaviors of the compressed dnn models for image classifica-
tions,” ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 5, pp. 1–32, 2023.

[20] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu,
J. Zhao, et al., “Deepmutation: Mutation testing of deep learning systems,” in
2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), pp. 100–111, IEEE, 2018.

[21] L. Wang, W. Li, W. Li, and L. Van Gool, “Appearance-and-relation networks
for video classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1430–1439, 2018.

190

Bibliography

[22] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, pp. 4489–4497, 2015.

[23] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri, “Convnet architecture
search for spatiotemporal feature learning,” arXiv preprint arXiv:1708.05038,
2017.

[24] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video
recognition,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6202–6211, 2019.

[25] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph
domains,” in Proceedings. 2005 IEEE international joint conference on neural
networks, vol. 2, pp. 729–734, 2005.

[26] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20,
no. 1, pp. 61–80, 2008.

[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in International Conference on Learning
Representations, 2018.

[28] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep
learning apps on smartphones,” in The World Wide Web Conference, pp. 2125–
2136, 2019.

[29] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your weight (s): A large-scale
study on insufficient machine learning model protection in mobile apps,” in
30th USENIX Security Symposium (USENIX Security 21), pp. 1955–1972,
2021.

[30] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A comprehensive
survey on model compression and acceleration,” Artificial Intelligence Review,
vol. 53, pp. 5113–5155, 2020.

[31] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quan-
tization: Towards lossless cnns with low-precision weights,” arXiv preprint
arXiv:1702.03044, 2017.

[32] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang, et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning and
Systems, vol. 3, pp. 800–811, 2021.

[33] M. Thakkar and M. Thakkar, “Introduction to core ml framework,” Beginning
Machine Learning in iOS: CoreML Framework, pp. 15–49, 2019.

[34] U. Fadlilah, B. Handaga, et al., “The development of android for indonesian
sign language using tensorflow lite and cnn: an initial study,” in Journal of
Physics: Conference Series, vol. 1858, p. 012085, IOP Publishing, 2021.

191

Bibliography

[35] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton,
and A. Frenkel, “On the segmentation of 3d lidar point clouds,” in 2011 IEEE
International Conference on Robotics and Automation, pp. 2798–2805, IEEE,
2011.

[36] W. Lemkens, P. Kaur, K. Buys, P. Slaets, T. Tuytelaars, and J. De Schut-
ter, “Multi rgb-d camera setup for generating large 3d point clouds,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1092–1099, IEEE, 2013.

[37] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning represen-
tations and generative models for 3d point clouds,” in International conference
on machine learning, pp. 40–49, PMLR, 2018.

[38] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 652–660, 2017.

[39] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1912–1920,
2015.

[40] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, et al., “Shapenet: An information-rich
3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[41] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and
S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1534–
1543, 2016.

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural information
processing systems, vol. 30, 2017.

[43] H. Zheng, J. Chen, and H. Jin, “Certpri: Certifiable prioritization for deep
neural networks via movement cost in feature space,” in 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 1–13,
IEEE, 2023.

[44] Z. Wei, H. Wang, I. Ashraf, and W. Chan, “Predictive mutation analysis of test
case prioritization for deep neural networks,” in 2022 IEEE 22nd International
Conference on Software Quality, Reliability and Security (QRS), pp. 682–693,
IEEE, 2022.

[45] Y. Tao, C. Tao, H. Guo, and B. Li, “Tpfl: Test input prioritization for deep
neural networks based on fault localization,” in International Conference on
Advanced Data Mining and Applications, pp. 368–383, Springer, 2022.

192

Bibliography

[46] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical accuracy
estimation for efficient deep neural network testing,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–35,
2020.

[47] X. Dang, Y. Li, M. Papadakis, J. Klein, T. F. Bissyandé, and Y. Le Traon,
“Test input prioritization for machine learning classifiers,” IEEE Transactions
on Software Engineering, 2024.

[48] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting operational dnn
testing efficiency through conditioning,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 499–509, 2019.

[49] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn
to criticize! criticism for interpretability,” Advances in neural information
processing systems, vol. 29, 2016.

[50] J. Zhou, F. Li, J. Dong, H. Zhang, and D. Hao, “Cost-effective testing of a deep
learning model through input reduction,” in 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pp. 289–300, IEEE,
2020.

[51] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct: Tomo-
graphic combinatorial testing for deep learning systems,” in 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 614–618, IEEE, 2019.

[52] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing using
surprise adequacy,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 1039–1049, IEEE, 2019.

[53] S. Dola, M. B. Dwyer, and M. L. Soffa, “Input distribution coverage: Measuring
feature interaction adequacy in neural network testing,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 3, pp. 1–48, 2023.

[54] P. Delgado-Pérez, I. Habli, S. Gregory, R. Alexander, J. Clark, and I. Medina-
Bulo, “Evaluation of mutation testing in a nuclear industry case study,” IEEE
Transactions on Reliability, vol. 67, no. 4, pp. 1406–1419, 2018.

[55] D. Schuler and A. Zeller, “Javalanche: Efficient mutation testing for java,”
in Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pp. 297–298, 2009.

[56] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in
software evolution,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pp. 46–57, IEEE, 2015.

[57] D. Shin, S. Yoo, M. Papadakis, and D.-H. Bae, “Empirical evaluation of
mutation-based test case prioritization techniques,” Software Testing, Verifica-
tion and Reliability, vol. 29, no. 1-2, p. e1695, 2019.

193

Bibliography

[58] M. Papadakis, C. Henard, and Y. L. Traon, “Sampling program inputs with
mutation analysis: Going beyond combinatorial interaction testing,” in Sev-
enth IEEE International Conference on Software Testing, Verification and
Validation, ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA,
pp. 1–10, IEEE Computer Society, 2014.

[59] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++: A mu-
tation testing framework for deep learning systems,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 1158–
1161, IEEE, 2019.

[60] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: mutation testing
of deep learning systems based on real faults,” in Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 67–78, 2021.

[61] W. Shen, J. Wan, and Z. Chen, “Munn: Mutation analysis of neural networks,”
in 2018 IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 108–115, IEEE, 2018.

[62] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM conference on recommender
systems, pp. 191–198, 2016.

[63] S. Ghosh, S. J. Sunny, and R. Roney, “Accident detection using convolutional
neural networks,” in 2019 International Conference on Data Science and
Communication (IconDSC), pp. 1–6, IEEE, 2019.

[64] A. K. Agrawal, K. Agarwal, J. Choudhary, A. Bhattacharya, S. Tangudu,
N. Makhija, and B. Rajitha, “Automatic traffic accident detection system
using resnet and svm,” in 2020 Fifth International Conference on Research in
Computational Intelligence and Communication Networks (ICRCICN), pp. 71–
76, IEEE, 2020.

[65] S. Bouhsissin, N. Sael, and F. Benabbou, “Enhanced vgg19 model for accident
detection and classification from video,” in 2021 International Conference on
Digital Age & Technological Advances for Sustainable Development (ICDATA),
pp. 39–46, IEEE, 2021.

[66] L. Peng, H. Wang, and J. Li, “Uncertainty evaluation of object detection
algorithms for autonomous vehicles,” Automotive Innovation, vol. 4, no. 3,
pp. 241–252, 2021.

[67] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore, “Testing
deep neural networks,” arXiv preprint arXiv:1803.04792, 2018.

[68] O. Team, “Open source computer vision library,” 2023. Accessed May 2023.

[69] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification via
convolutional deep neural network,” in Proceedings of COLING 2014, the
25th international conference on computational linguistics: technical papers,
pp. 2335–2344, 2014.

194

Bibliography

[70] Y. Li, X. Dang, H. Tian, T. Sun, Z. Wang, L. Ma, J. Klein, and T. F. Bissyande,
“Ai-driven mobile apps: an explorative study,” arXiv preprint arXiv:2212.01635,
2022.

[71] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomputing,
vol. 234, pp. 11–26, 2017.

[72] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,” Journal
of Systems and Software, vol. 84, no. 4, pp. 544–558, 2011.

[73] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar: Model-based
quantitative analysis of stateful deep learning systems,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 477–487,
2019.

[74] D. Cheng, C. Cao, C. Xu, and X. Ma, “Manifesting bugs in machine learning
code: An explorative study with mutation testing,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pp. 313–324,
IEEE, 2018.

[75] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box fairness
testing of machine learning models,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 625–635, 2019.

[76] H. Do and G. Rothermel, “On the use of mutation faults in empirical assess-
ments of test case prioritization techniques,” IEEE Transactions on Software
Engineering, vol. 32, no. 9, pp. 733–752, 2006.

[77] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Compar-
ing white-box and black-box test prioritization,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pp. 523–534, IEEE,
2016.

[78] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge,” in Pro-
ceedings of the eighteenth international symposium on Software testing and
analysis, pp. 201–212, 2009.

[79] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-based test
case prioritisation: An industrial case study,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pp. 302–311,
IEEE, 2013.

[80] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case prioritization
using ordered sequences of program entities,” Software Quality Journal, vol. 22,
pp. 335–361, 2014.

195

Bibliography

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[82] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature
embedding,” in Proceedings of the 22nd ACM international conference on
Multimedia, pp. 675–678, 2014.

[83] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclidean distance
geometry and applications,” SIAM review, vol. 56, no. 1, pp. 3–69, 2014.

[84] M. Malkauthekar, “Analysis of euclidean distance and manhattan distance
measure in face recognition,” in Third International Conference on Computa-
tional Intelligence and Information Technology (CIIT 2013), pp. 503–507, IET,
2013.

[85] F. Pillichshammer, “On the sum of squared distances in the euclidean plane,”
Archiv der Mathematik, vol. 74, no. 6, pp. 472–480, 2000.

[86] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang, and
I. Cohen, “Pearson correlation coefficient,” Noise reduction in speech processing,
pp. 1–4, 2009.

[87] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[88] D. Wang and Y. Shang, “A new active labeling method for deep learning,” in
2014 International joint conference on neural networks (IJCNN), pp. 112–119,
IEEE, 2014.

[89] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” Advances in
neural information processing systems, vol. 30, 2017.

[90] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[91] T. P. Minka, “A comparison of numerical optimizers for logistic regression,”
Unpublished draft, pp. 1–18, 2003.

[92] Q. H. Nguyen, H.-B. Ly, L. S. Ho, N. Al-Ansari, H. V. Le, V. Q. Tran,
I. Prakash, and B. T. Pham, “Influence of data splitting on performance of
machine learning models in prediction of shear strength of soil,” Mathematical
Problems in Engineering, vol. 2021, pp. 1–15, 2021.

[93] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[94] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

196

Bibliography

[95] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep
learning in image classification problem,” in 2018 international interdisciplinary
PhD workshop (IIPhDW), pp. 117–122, IEEE, 2018.

[96] L. Taylor and G. Nitschke, “Improving deep learning with generic data aug-
mentation,” in 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1542–1547, IEEE, 2018.

[97] S. Paul, “Video classification with transformers.,” 2023. Accessed 10 January
2024.

[98] L. Kezebou, V. Oludare, K. Panetta, J. Intriligator, and S. Agaian, “Highway
accident detection and classification from live traffic surveillance cameras:
a comprehensive dataset and video action recognition benchmarking,” in
Multimodal Image Exploitation and Learning 2022, vol. 12100, pp. 240–250,
SPIE, 2022.

[99] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a large
video database for human motion recognition,” in 2011 International conference
on computer vision, pp. 2556–2563, IEEE, 2011.

[100] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[101] Q. Hu, Y. Guo, M. Cordy, X. Xie, W. Ma, M. Papadakis, and Y. Le Traon,
“Towards exploring the limitations of active learning: An empirical study,”
in 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 917–929, IEEE, 2021.

[102] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization:
A family of empirical studies,” IEEE transactions on software engineering,
vol. 28, no. 2, pp. 159–182, 2002.

[103] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

[104] T. K. Kim, “T test as a parametric statistic,” Korean journal of anesthesiology,
vol. 68, no. 6, pp. 540–546, 2015.

[105] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test selection
for deep learning systems,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–22, 2021.

[106] K. Kelley and K. J. Preacher, “On effect size.,” Psychological methods, vol. 17,
no. 2, p. 137, 2012.

[107] L. Du, “How much deep learning does neural style transfer really need? an
ablation study,” in Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pp. 3150–3159, 2020.

197

Bibliography

[108] X. Dang, Y. Li, M. Papadakis, J. Klein, T. F. Bissyandé, and Y. L. Traon,
“Graphprior: Mutation-based test input prioritization for graph neural net-
works,” ACM Transactions on Software Engineering and Methodology, 2023.

[109] Y. Li, X. Dang, L. Ma, J. Klein, Y. L. Traon, and T. F. Bissyandé, “Test input
prioritization for 3d point clouds,” ACM Transactions on Software Engineering
and Methodology, jan 2024.

[110] T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam, and D. Cofer, “In-
put prioritization for testing neural networks,” in 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest), pp. 63–70, IEEE, 2019.

[111] G. Jahangirova and P. Tonella, “An empirical evaluation of mutation operators
for deep learning systems,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp. 74–84, IEEE, 2020.

[112] L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y. Wang, “Combinatorial
testing for deep learning systems,” arXiv preprint arXiv:1806.07723, 2018.

[113] P. Tonella, P. Avesani, and A. Susi, “Using the case-based ranking methodology
for test case prioritization,” in 2006 22nd IEEE international conference on
software maintenance, pp. 123–133, IEEE, 2006.

[114] H. de S. Campos Junior, M. A. P. Araújo, J. M. N. David, R. Braga, F. Campos,
and V. Ströele, “Test case prioritization: a systematic review and mapping of
the literature,” in Proceedings of the XXXI Brazilian Symposium on Software
Engineering, pp. 34–43, 2017.

[115] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical comparison
of static and dynamic test case prioritization techniques,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 559–570, 2016.

[116] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases
for regression testing,” IEEE Transactions on software engineering, vol. 27,
no. 10, pp. 929–948, 2001.

[117] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying
graph convolutional networks,” in International conference on machine learning,
pp. 6861–6871, PMLR, 2019.

[118] M. Jiang, Z. Li, S. Zhang, S. Wang, X. Wang, Q. Yuan, and Z. Wei, “Drug–
target affinity prediction using graph neural network and contact maps,” RSC
advances, vol. 10, no. 35, pp. 20701–20712, 2020.

[119] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular generative graph neural
networks for drug discovery,” Neurocomputing, vol. 450, pp. 242–252, 2021.

[120] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “Graphaf: a flow-
based autoregressive model for molecular graph generation,” arXiv preprint
arXiv:2001.09382, 2020.

198

Bibliography

[121] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in
recommender systems: a survey,” ACM Computing Surveys, vol. 55, no. 5,
pp. 1–37, 2022.

[122] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,” in
Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 974–983, 2018.

[123] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural
networks for social recommendation,” in The world wide web conference, pp. 417–
426, 2019.

[124] C. Li, J. Ma, X. Guo, and Q. Mei, “Deepcas: An end-to-end predictor of
information cascades,” in Proceedings of the 26th international conference on
World Wide Web, pp. 577–586, 2017.

[125] L. Zhang, X. Sun, Y. Li, and Z. Zhang, “A noise-sensitivity-analysis-
based test prioritization technique for deep neural networks,” arXiv preprint
arXiv:1901.00054, 2019.

[126] I. D. Mienye and Y. Sun, “A survey of ensemble learning: Concepts, algorithms,
applications, and prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022.

[127] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018.

[128] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–34,
Springer, 2012.

[129] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” IEEE transactions on software engineering, vol. 37, no. 5, pp. 649–678,
2010.

[130] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans, “Towards
security-aware mutation testing,” in 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pp. 97–102,
IEEE, 2017.

[131] Z.-H. Zhou and Z.-H. Zhou, “Ensemble learning,” Machine learning, pp. 181–
210, 2021.

[132] A. Mohammed and R. Kora, “An effective ensemble deep learning framework for
text classification,” Journal of King Saud University-Computer and Information
Sciences, vol. 34, no. 10, pp. 8825–8837, 2022.

[133] P. Goel, R. Jain, A. Nayyar, S. Singhal, and M. Srivastava, “Sarcasm detection
using deep learning and ensemble learning,” Multimedia Tools and Applications,
pp. 1–24, 2022.

[134] D. Che, Q. Liu, K. Rasheed, and X. Tao, “Decision tree and ensemble learn-
ing algorithms with their applications in bioinformatics,” Software tools and
algorithms for biological systems, pp. 191–199, 2011.

199

Bibliography

[135] J. Chen, Z. Li, and S. Qin, “Ensemble learning for assessing degree of humor,”
in 2022 International Conference on Big Data, Information and Computer
Network (BDICN), pp. 492–498, IEEE, 2022.

[136] F. Divina, A. Gilson, F. Goméz-Vela, M. García Torres, and J. F. Torres,
“Stacking ensemble learning for short-term electricity consumption forecasting,”
Energies, vol. 11, no. 4, p. 949, 2018.

[137] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Infor-
mation and computation, vol. 108, no. 2, pp. 212–261, 1994.

[138] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks
via meta learning,” arXiv preprint arXiv:1902.08412, 2019.

[139] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and X. Lin,
“Topology attack and defense for graph neural networks: An optimization
perspective,” arXiv preprint arXiv:1906.04214, 2019.

[140] A. Bojchevski and S. Günnemann, “Adversarial attacks on node embeddings via
graph poisoning,” in International Conference on Machine Learning, pp. 695–
704, PMLR, 2019.

[141] Y. Li, W. Jin, H. Xu, and J. Tang, “Deeprobust: A pytorch library for
adversarial attacks and defenses,” arXiv preprint arXiv:2005.06149, 2020.

[142] Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the inconsistency
problem of applying graph neural network to fraud detection,” in Proceedings
of the 43rd international ACM SIGIR conference on research and development
in information retrieval, pp. 1569–1572, 2020.

[143] C. Sun, A. Shrivastava, C. Vondrick, R. Sukthankar, K. Murphy, and C. Schmid,
“Relational action forecasting,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 273–283, 2019.

[144] W. Pian, Y. Wu, X. Qu, J. Cai, and Z. Kou, “Spatial-temporal dynamic
graph attention networks for ride-hailing demand prediction,” arXiv preprint
arXiv:2006.05905, 2020.

[145] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[146] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[147] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” Advances in neural information processing systems, vol. 30,
2017.

[148] J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar, “Topology adaptive graph
convolutional networks,” arXiv preprint arXiv:1710.10370, 2017.

[149] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foundations and
Trends® in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

200

Bibliography

[150] R. E. Wright, “Logistic regression.,” 1995.

[151] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation studies to
uncover structure of learned representations in artificial neural networks,” in
Proceedings on the International Conference on Artificial Intelligence (ICAI),
pp. 185–191, The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2019.

[152] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in Computers,
vol. 112, pp. 275–378, Elsevier, 2019.

[153] S. Geisler, T. Schmidt, H. Şirin, D. Zügner, A. Bojchevski, and S. Günnemann,
“Robustness of graph neural networks at scale,” Advances in Neural Information
Processing Systems, vol. 34, pp. 7637–7649, 2021.

[154] X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang,
“Tdgia: Effective injection attacks on graph neural networks,” in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 2461–2471, 2021.

[155] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural
networks for graph data,” in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, pp. 2847–2856,
2018.

[156] J. Ma, S. Ding, and Q. Mei, “Towards more practical adversarial attacks on
graph neural networks,” Advances in neural information processing systems,
vol. 33, pp. 4756–4766, 2020.

[157] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu, “Adversarial
examples on graph data: Deep insights into attack and defense,” arXiv preprint
arXiv:1903.01610, 2019.

[158] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a
feather, from statistical descriptors to parametric models,” in Proceedings of the
29th ACM international conference on information & knowledge management,
pp. 1325–1334, 2020.

[159] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[160] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in
neural networks: A survey,” IEEE transactions on pattern analysis and machine
intelligence, vol. 44, no. 9, pp. 5149–5169, 2021.

[161] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,”
Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, 2020.

[162] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess
randomized algorithms in software engineering,” in Proceedings of the 33rd
international conference on software engineering, pp. 1–10, 2011.

201

Bibliography

[163] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini encyclopedia
of psychology, pp. 1–1, 2010.

[164] G. Chryssolouris, M. Lee, and A. Ramsey, “Confidence interval prediction for
neural network models,” IEEE Transactions on neural networks, vol. 7, no. 1,
pp. 229–232, 1996.

[165] J. Cohen, “A power primer.,” 2016.

[166] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to prioritize
test programs for compiler testing,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp. 700–711, IEEE, 2017.

[167] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Coverage prediction for accelerating compiler testing,” IEEE Transactions on
Software Engineering, vol. 47, no. 2, pp. 261–278, 2018.

[168] N. Gökçe, M. Eminov, and F. Belli, “Coverage-based, prioritized testing using
neural network clustering,” in Computer and Information Sciences–ISCIS
2006: 21th International Symposium, Istanbul, Turkey, November 1-3, 2006.
Proceedings 21, pp. 1060–1071, Springer, 2006.

[169] F. Belli and C. J. Budnik, “Test minimization for human-computer interaction,”
Applied Intelligence, vol. 26, pp. 161–174, 2007.

[170] N. GÖKÇE, F. Belli, M. EMİNLİ, and B. T. Dincer, “Model-based test
case prioritization using cluster analysis: a soft-computing approach,” Turkish
Journal of Electrical Engineering and Computer Sciences, vol. 23, no. 3, pp. 623–
640, 2015.

[171] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators for testing
android apps,” Information and Software Technology, vol. 81, pp. 154–168,
2017.

[172] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards mutation analysis
of android apps,” in 2015 IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 1–10, IEEE,
2015.

[173] A. Guerriero, R. Pietrantuono, and S. Russo, “Operation is the hardest teacher:
estimating dnn accuracy looking for mispredictions,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp. 348–358, IEEE,
2021.

[174] Y. Li, X. Dang, L. Ma, J. Klein, Y. L. Traon, and T. F. Bissyandé, “Test input
prioritization for 3d point clouds,” ACM Transactions on Software Engineering
and Methodology, 2023.

[175] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation
and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[176] N. Mairittha, T. Mairittha, and S. Inoue, “On-device deep learning inference
for efficient activity data collection,” Sensors, vol. 19, no. 15, p. 3434, 2019.

202

Bibliography

[177] N. Mairittha, T. Mairittha, and S. Inoue, “On-device deep personalization for
robust activity data collection,” Sensors, vol. 21, no. 1, p. 41, 2020.

[178] N. Mairittha, T. Mairittha, and S. Inoue, “Improving activity data collection
with on-device personalization using fine-tuning,” in Adjunct Proceedings of
the 2020 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International Symposium on
Wearable Computers, pp. 255–260, 2020.

[179] H. V. Nguyen and L. Bai, “Cosine similarity metric learning for face verification,”
in Asian conference on computer vision, pp. 709–720, Springer, 2010.

[180] W.-Y. Chiu, G. G. Yen, and T.-K. Juan, “Minimum manhattan distance
approach to multiple criteria decision making in multiobjective optimization
problems,” IEEE Transactions on Evolutionary Computation, vol. 20, no. 6,
pp. 972–985, 2016.

[181] T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for
data fusion,” Information Fusion, vol. 57, pp. 115–129, 2020.

[182] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing: Survey,
landscapes and horizons,” IEEE Transactions on Software Engineering, vol. 48,
no. 1, pp. 1–36, 2020.

[183] Z. Aghababaeyan, M. Abdellatif, L. Briand, S. Ramesh, and M. Bagherzadeh,
“Black-box testing of deep neural networks through test case diversity,” IEEE
Transactions on Software Engineering, 2023.

[184] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case generation
as a many-objective optimisation problem with dynamic selection of the targets,”
IEEE Transactions on Software Engineering, vol. 44, no. 2, pp. 122–158, 2017.

[185] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empirical com-
parison of state-of-the-art search-based test case generators,” Information and
Software Technology, vol. 104, pp. 236–256, 2018.

[186] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[187] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[188] T. Klove, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays under
the chebyshev distance,” IEEE Transactions on Information Theory, vol. 56,
no. 6, pp. 2611–2617, 2010.

[189] V. González-Castro, R. Alaiz-Rodríguez, and E. Alegre, “Class distribution
estimation based on the hellinger distance,” Information Sciences, vol. 218,
pp. 146–164, 2013.

[190] V. M. Panaretos and Y. Zemel, “Statistical aspects of wasserstein distances,”
Annual review of statistics and its application, vol. 6, pp. 405–431, 2019.

203

Bibliography

[191] V. Chandrasekaran and P. Shah, “Relative entropy optimization and its appli-
cations,” Mathematical Programming, vol. 161, pp. 1–32, 2017.

[192] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[193] Y. Luo, M. Wang, H. Zhou, Q. Yao, W.-W. Tu, Y. Chen, W. Dai, and
Q. Yang, “Autocross: Automatic feature crossing for tabular data in real-
world applications,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1936–1945, 2019.

[194] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” 2009.

[195] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-
based plant disease detection,” Frontiers in plant science, vol. 7, p. 1419,
2016.

[196] N. Sharma, V. Jain, and A. Mishra, “An analysis of convolutional neural
networks for image classification,” Procedia computer science, vol. 132, pp. 377–
384, 2018.

[197] Zeroshot, “Twitter financial news topic dataset,” 2023.

[198] H. Hu, Y. Huang, Q. Chen, T. Y. Zhuo, and C. Chen, “A first look at on-
device models in ios apps,” ACM Transactions on Software Engineering and
Methodology, vol. 33, no. 1, pp. 1–30, 2023.

[199] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang, et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning and
Systems, vol. 3, pp. 800–811, 2021.

[200] M. Thakkar, Beginning machine learning in ios: CoreML framework. Apress,
2019.

[201] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing
systems, vol. 25, 2012.

[202] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[203] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[204] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[205] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4700–4708, 2017.

204

Bibliography

[206] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks:
Lstm cells and network architectures,” Neural computation, vol. 31, no. 7,
pp. 1235–1270, 2019.

[207] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru) neural
networks,” in 2017 IEEE 60th international midwest symposium on circuits
and systems (MWSCAS), pp. 1597–1600, IEEE, 2017.

[208] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[209] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,”
arXiv preprint arXiv:1712.09665, 2017.

[210] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the phys-
ical world,” in Artificial intelligence safety and security, pp. 99–112, Chapman
and Hall/CRC, 2018.

[211] X. Gao, Y. Feng, Y. Yin, Z. Liu, Z. Chen, and B. Xu, “Adaptive test selection
for deep neural networks,” in Proceedings of the 44th International Conference
on Software Engineering, pp. 73–85, 2022.

[212] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp), pp. 39–57,
Ieee, 2017.

[213] H. Al-Qadasi, Y. Falcone, and S. Bensalem, “Difficulty and severity-oriented
metrics for test prioritization in deep learning systems,” in 2023 IEEE Interna-
tional Conference On Artificial Intelligence Testing (AITest), pp. 40–48, IEEE,
2023.

[214] N. Alshahwan, M. Harman, and A. Marginean, “Software testing research
challenges: An industrial perspective,” in 2023 IEEE Conference on Software
Testing, Verification and Validation (ICST), pp. 1–10, IEEE, 2023.

[215] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection
and prioritization using machine learning: a systematic literature review,”
Empirical Software Engineering, vol. 27, no. 2, p. 29, 2022.

[216] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression
test selection techniques,” Information and Software Technology, vol. 52, no. 1,
pp. 14–30, 2010.

[217] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression
testing in continuous integration development environments,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 235–245, 2014.

[218] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression test
case prioritization,” IEEE Transactions on software engineering, vol. 33, no. 4,
pp. 225–237, 2007.

205

Bibliography

[219] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-based testing
through test case diversity,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 22, no. 1, pp. 1–42, 2013.

[220] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon,
“Bypassing the combinatorial explosion: Using similarity to generate and prior-
itize t-wise test configurations for software product lines,” IEEE Transactions
on Software Engineering, vol. 40, no. 7, pp. 650–670, 2014.

[221] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test cases
with string distances,” Automated Software Engineering, vol. 19, no. 1, pp. 65–
95, 2012.

[222] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the 40th in-
ternational conference on software engineering, pp. 303–314, 2018.

[223] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” arXiv preprint arXiv:2002.12543,
2020.

[224] Z. Wu, Z. Wang, J. Chen, H. You, M. Yan, and L. Wang, “Stratified random
sampling for neural network test input selection,” Information and Software
Technology, vol. 165, p. 107331, 2024.

[225] Y. Hao, Z. Huang, H. Guo, and G. Shen, “Test input selection for deep neural
network enhancement based on multiple-objective optimization,” in 2023 IEEE
International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 534–545, IEEE, 2023.

[226] X. Wu, J. Shen, W. Zheng, L. Lin, Y. Sui, and A. O. A. Semasaba, “Rnntcs:
A test case selection method for recurrent neural networks,” Knowledge-Based
Systems, vol. 279, p. 110955, 2023.

[227] Z. Liu, Y. Feng, Y. Yin, and Z. Chen, “Deepstate: Selecting test suites
to enhance the robustness of recurrent neural networks. in 2022 ieee/acm
44th international conference on software engineering (icse). 598–609,” Google
Scholar Google Scholar Digital Library Digital Library, 2022.

[228] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing,” in International Conference on
Machine Learning, pp. 4901–4911, PMLR, 2019.

[229] A. H. Yahmed, H. B. Braiek, F. Khomh, S. Bouzidi, and R. Zaatour, “Diverget:
a search-based software testing approach for deep neural network quantization
assessment,” Empirical Software Engineering, vol. 27, no. 7, p. 193, 2022.

[230] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser: Detecting
disagreements for deep neural networks,” International Joint Conferences on
Artificial Intelligence Organization, 2019.

206

Bibliography

[231] B. Mahmood, S. Han, and D.-E. Lee, “Bim-based registration and localization
of 3d point clouds of indoor scenes using geometric features for augmented
reality,” Remote Sensing, vol. 12, no. 14, p. 2302, 2020.

[232] B. Mahmood and S. Han, “3d registration of indoor point clouds for augmented
reality,” in ASCE International Conference on Computing in Civil Engineering
2019, pp. 1–8, American Society of Civil Engineers Reston, VA, 2019.

[233] D. Borrmann, A. Nuechter, and T. Wiemann, “Large-scale 3d point cloud
processing for mixed and augmented reality,” in 2018 IEEE International Sym-
posium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. xxxv–
xxxv, IEEE, 2018.

[234] S. Ortega, J. M. Santana, J. Wendel, A. Trujillo, and S. M. Murshed, “Gener-
ating 3d city models from open lidar point clouds: Advancing towards smart
city applications,” Open Source Geospatial Science for Urban Studies: The
Value of Open Geospatial Data, pp. 97–116, 2021.

[235] C.-Y. Chiu, M. Thelwell, T. Senior, S. Choppin, J. Hart, and J. Wheat,
“Comparison of depth cameras for three-dimensional reconstruction in medicine,”
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, vol. 233, no. 9, pp. 938–947, 2019.

[236] J. Shao, W. Zhang, N. Mellado, P. Grussenmeyer, R. Li, Y. Chen, P. Wan,
X. Zhang, and S. Cai, “Automated markerless registration of point clouds
from tls and structured light scanner for heritage documentation,” Journal of
Cultural Heritage, vol. 35, pp. 16–24, 2019.

[237] Y. Wang and J. M. Solomon, “Deep closest point: Learning representations
for point cloud registration,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 3523–3532, 2019.

[238] Q. Wang and M.-K. Kim, “Applications of 3d point cloud data in the construc-
tion industry: A fifteen-year review from 2004 to 2018,” Advanced Engineering
Informatics, vol. 39, pp. 306–319, 2019.

[239] M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, “Complex-yolo: An
euler-region-proposal for real-time 3d object detection on point clouds,” in
Proceedings of the European conference on computer vision (ECCV) workshops,
pp. 0–0, 2018.

[240] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep
learning advances in computer vision with 3d data: A survey,” ACM computing
surveys (CSUR), vol. 50, no. 2, pp. 1–38, 2017.

[241] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep
learning for computer vision?,” Advances in neural information processing
systems, vol. 30, 2017.

[242] J. Zhang, X. Zhao, Z. Chen, and Z. Lu, “A review of deep learning-based
semantic segmentation for point cloud,” IEEE access, vol. 7, pp. 179118–179133,
2019.

207

Bibliography

[243] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, and C. Wellington, “3d point
cloud processing and learning for autonomous driving: Impacting map creation,
localization, and perception,” IEEE Signal Processing Magazine, vol. 38, no. 1,
pp. 68–86, 2020.

[244] F. Pomerleau, F. Colas, R. Siegwart, et al., “A review of point cloud registration
algorithms for mobile robotics,” Foundations and Trends® in Robotics, vol. 4,
no. 1, pp. 1–104, 2015.

[245] Z. Zhang, Y. Dai, and J. Sun, “Deep learning based point cloud registration:
an overview,” Virtual Reality & Intelligent Hardware, vol. 2, no. 3, pp. 222–246,
2020.

[246] S. A. Bello, S. Yu, C. Wang, J. M. Adam, and J. Li, “Deep learning on 3d
point clouds,” Remote Sensing, vol. 12, no. 11, p. 1729, 2020.

[247] M. G. Larson, “Analysis of variance,” Circulation, vol. 117, no. 1, pp. 115–121,
2008.

[248] S. Basu and A. DasGupta, “The mean, median, and mode of unimodal distri-
butions: a characterization,” Theory of Probability & Its Applications, vol. 41,
no. 2, pp. 210–223, 1997.

[249] Y. Qian, P. Cao, W. Yin, F. Dai, F. Hu, Z. Yan, et al., “Calculation method
of surface shape feature of rice seed based on point cloud,” Computers and
Electronics in Agriculture, vol. 142, pp. 416–423, 2017.

[250] S. Kokoska and D. Zwillinger, CRC standard probability and statistics tables
and formulae. Crc Press, 2000.

[251] S. Sperandei, “Understanding logistic regression analysis,” Biochemia medica,
vol. 24, no. 1, pp. 12–18, 2014.

[252] M. Prince, “Does active learning work? a review of the research,” Journal of
engineering education, vol. 93, no. 3, pp. 223–231, 2004.

[253] K. M. Al-Gethami, M. T. Al-Akhras, and M. Alawairdhi, “Empirical evaluation
of noise influence on supervised machine learning algorithms using intrusion
detection datasets,” Security and Communication Networks, vol. 2021, pp. 1–28,
2021.

[254] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep learning
for 3d point clouds: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 43, no. 12, pp. 4338–4364, 2020.

[255] X. Liu, M. Yan, and J. Bohg, “Meteornet: Deep learning on dynamic 3d point
cloud sequences,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9246–9255, 2019.

[256] T. Huang and Y. Liu, “3d point cloud geometry compression on deep learning,”
in Proceedings of the 27th ACM international conference on multimedia, pp. 890–
898, 2019.

208

Bibliography

[257] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[258] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 35, pp. 6679–
6687, 2021.

[259] Q. Hu, Y. Guo, M. Cordy, X. Xie, L. Ma, M. Papadakis, and Y. Le Traon,
“An empirical study on data distribution-aware test selection for deep learning
enhancement,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 4, pp. 1–30, 2022.

[260] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set minimization on fault detection effectiveness,” in Proceedings of the 17th
international conference on Software engineering, pp. 41–50, 1995.

[261] J. Chen, “Learning to accelerate compiler testing,” in Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings,
pp. 472–475, 2018.

[262] S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-driven deep
learning system testing,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 702–713, 2020.

[263] V. Riccio, N. Humbatova, G. Jahangirova, and P. Tonella, “Deepmetis: Aug-
menting a deep learning test set to increase its mutation score,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 355–367, IEEE, 2021.

[264] V. Riccio and P. Tonella, “Model-based exploration of the frontier of behaviours
for deep learning system testing,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 876–888, 2020.

[265] M. Biagiola and P. Tonella, “Testing the plasticity of reinforcement learning-
based systems,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 4, pp. 1–46, 2022.

[266] H. Fahmy, F. Pastore, L. Briand, and T. Stifter, “Simulator-based explanation
and debugging of hazard-triggering events in dnn-based safety-critical systems,”
ACM Transactions on Software Engineering and Methodology, vol. 32, no. 4,
pp. 1–47, 2023.

209

	Introduction
	Motivation
	Limitations of Existing Approaches
	Video classification
	GNN classification
	Compressed DNN classification
	3D shape classification

	The Main Contributions
	Roadmap

	Background and Related Work
	Deep Neural Networks Across Diverse Domains
	DNNs for Video Classification
	Graph Neural Networks
	DNN Model Compression
	Deep Learning for 3D Point Clouds

	Test Input Prioritization for DNNs
	DNN Testing
	Mutation Testing

	Prioritizing Test Cases for Deep Learning-based Video Classifiers
	Introduction
	Background
	DNNs and DNN Testing
	DNNs for Video Classification
	Test Input Prioritization for DNNs

	Approach
	Overview
	Step 1: Video-oriented Feature Generation
	Step 2: Learning-to-rank
	Step 3: Test Prioritization
	Variants of VRank
	Usage of VRank

	Study design
	Research questions
	Subjects
	DNN Models
	Datasets

	Noise generation techniques
	Compared Approaches
	Measurements
	Implementation and Configuration

	Results and analysis
	RQ1: Effectiveness and efficiency of VRank
	RQ2: Effectiveness on noisy test inputs
	RQ3: Impact of different ranking models
	RQ4: Feature contribution analysis
	Impact of the number of extracted frames on the effectiveness of VRank.

	Discussion
	Limitations
	Threats to Validity

	Related Work
	Test Prioritization in DNN Testing
	Deep Neural Network Testing
	Test Prioritization for Traditional Software

	Conclusion

	Test Input Prioritization for Graph Neural Networks
	Introduction
	Background
	Graph Neural Networks
	Mutation Testing
	Ensemble Learning

	Approach
	Overview
	Specifying Mutation Rules
	Graph structure mutation (GSM)
	Node feature mutation (NFM)
	GNN model mutation (GMM)

	Constructing Mutation Features Vectors
	Building an Ensemble Ranking Model
	Usage of NodeRank

	Evaluation Design
	Research Questions
	Performance Metric
	Compared Approaches
	GNN Subjects
	Graph datasets
	GNN models

	Graph Adversarial Attacks
	Variants of NodeRank
	NodeRankS
	NodeRankV

	Implementation and Configuration

	Experimental Results
	RQ1: Performance of NodeRank
	RQ2: Prioritization of Adversarial Inputs
	RQ3: Influence of Ensemble Learning Methods
	RQ4: Ablation Study of Mutation Operators
	RQ5: Investigating the Contributions of Model Mutation Rules on NodeRank Effectiveness
	RQ6: Influence of Mutation Operator Parameters on NodeRank

	Discussion
	Generality of NodeRank
	Challenges of NodeRank
	Differences in Approaches for NodeRank
	Threats to Validity

	Related Work
	Test Prioritization Techniques
	Mutation Testing
	Deep Neural Network Testing

	Conclusion

	PriCod: Prioritizing Test Inputs for Compressed Deep Neural Networks
	Introduction
	Background
	DNNs and DNN testing
	DNN Model Compression
	Confidence-based Test Prioritization for DNNs

	Approach
	Preliminary Study
	Overview of PriCod
	Deviation Features Generation
	Embedding Features Generation
	Feature Fusion
	Feature-based Ranking
	Variants of PriCod

	Study design
	Research Questions
	Models and Datasets
	Datasets
	Compressed DNN models

	Noise Generation Techniques
	Adversarial Techniques
	Compared Approaches
	Measurements
	Average Percentage of Fault Detection (APFD)
	Percentage of Fault Detected (PFD)

	Im plementation and Configuration

	Results and analysis
	RQ1: Performance of PriCod on Natural Test Inputs
	RQ2: Effectiveness on Noisy Test Inputs
	RQ3: Effectiveness on Adversarial Test Inputs
	RQ4: Impact of fusion strategies
	RQ5: Feature contribution analysis
	RQ6: Exploring whether uncertainty-based metrics can enhance the effectiveness of PriCod

	Discussion
	Limitations of PriCod
	Threats to Validity

	Related Work
	Test prioritization for Deep Neural Networks
	Test Prioritization for Traditional Software
	Deep Neural Network Testing
	Test Generation approaches for Compressed DNN models

	Conclusion

	Test Input Prioritization for 3D Point Clouds
	Introduction
	Background
	Deep Learning for 3D Point Clouds
	Mutation Testing
	Test Input Prioritization for DNNs

	Approach
	Overview
	Spatial Feature Generation
	Mutation Feature Generation
	Prediction Feature Generation
	Uncertainty Feature Generation
	Feature Concatenation
	Learning-to-rank
	Usage of PCPrior

	Study design
	Research Questions
	Models and Datasets
	Datasets
	Models

	Measurements
	Compared Approaches
	Variants of PCPrior
	Implementation and Configuration

	Results and analysis
	RQ1: Performance of PCPrior
	RQ2: Influence of ranking models
	RQ3: Impact of Main Parameters in PCPrior
	RQ4: Effectiveness on Noisy Test Inputs
	RQ5: Feature contribution analysis
	RQ6: Retraining 3D shape classification models with PCPrior and uncertainty-based methods

	Discussion
	Limitations of PCPrior
	Generality of PCPrior
	Threats to Validity
	Internal Threats to Validity.
	External Threats to Validity.

	Related Work
	Test Prioritization Techniques
	Mutation Testing for DNNs
	Deep Neural Network Testing

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

