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e The water flow in many aquifers is driven
by strong anisotropy created by preferential
flow features such as fractures and faults.

e Overall goal: assimilate InSAR surface
displacement into an aquifer model to
estimate aquifer properties.

e In this work: develop a flexible stochastic
prior model of the anisotropic hydraulic
conductivity (AHC) tensor that respects its

underlying symmetry and positive

definiteness. from (Salehian Ghamsari, Van Dam, &
Hale, 2024) ’
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InNSAR-observed deformation of Nevada aquifer pumping test
from (Salehian Ghamsari et al., 2024) 3



Poroelastic finite element model
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from (Salehian Ghamsari et al., 2024)



Methodology

e FEM is the poroelastic finite element model,

e u(w) (deformation, pressure, and flux) is a stochastic response due to the
randomness in k(w) (AHC):



Methodology

e We use random physical symmetry and positive definiteness (SPD) matrix
because of the nature of hydraulic conductivity tensor (Shivanand, Rosi¢, &
Matthies, 2022)

e We apply spectral decomposition, enabling separation of size/strength encoded in
eigenvalues and orientation encoded in eigenvectors

e We ensure positive definiteness using an exponential map

k= exp(H) = QAQ".



Random orientation with fixed scaling

1. ko (wy) = R(w,)kR(w,)T,

where index “r" signifies that only the

. ---- xdirection
eigenvectors are random.
2. In order to arrive at a vector space [ -l —
setting: = \\\
5 —
R :=exp(W) “ R
0 —
W = ¢
o 0
East
3. ¢ is rotation angle — circular random
variable



Random rotation angle: Mixture of 2 von Mises model

(Lark, Clifford, & Waters, 2014) applied the mixture von Mises distribution to datasets
consisting of observations of the dip direction of bedding planes.

o) () ) () () wame~ Gamma

U1, U~ VonMises

(o) CORNCD R
w ~ Uniform

mix ~ Categorical

a ¢ ~ Mixture



We use the NUTS algorithm in the MCMC
method to estimate the posterior using the

generated angles from the rose diagram as
likelihood.
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From (Heilweil & Hsieh, 2006)



Random rotation angle: Model selection

model rank elpd;, Ploo

2vm 0 29.581509 4.947668
3vm 1 29.473026 6.092196
simple 2 3.591472  1.886592

Mixture of 2 von Mises model (2vm)
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Random orientation and scaling

1. ks(w) = @As(w)@T where index “s"
shows that only random anisotropic

---- xdirection

scaling was used.

2. R(wy), which is a random orientation |-

= = N

3. We consider these two approaches R \\\\;
(fixed orientation and fixed scaling)
independent, so we can combine them.

4. kps(wrs) = R(wy)ks(ws)R(w)T, —

where index “rs” denotes a combined
rotational-scaling uncertainty.

11



Implementation

Random
Hydraulic
Conductivity
Tensor

(krs(wrs))

Running
Parallel
Poroelastic
Finite Element
Model in HPC

Outputs (line
of sight
deformation)

Statistical
Analysis
(mean,
standard
deviation, ...)
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Surface displacement

North

----  x direction

a) Elliptical representation of
random AHC tensor

b) Mean of surface
displacement of random AHC

c¢) Surface displacement of
fixed AHC in x direction
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Take-home messages

Aim:

e understanding aquifer system and estimating aquifer properties
e using InSAR technique instead of digging wells to make the process easier and
cheaper

Contribution:

v/ we built a poroelastic finite element model to simulate an aquifer system with
anisotropic hydraulic conductivity (AHC)

1= we developed a flexible stochastic model of the AHC tensor
Next step:

= we will solve an inverse problem using INSAR data to estimate AHC
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The von-Mises disrtibution
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From (Lang et al., 2020)

_exp(kcos(d(wy) — p))
F((wr)lp, k) = 27 Lo (1)

where I is the modified Bessel function of order 0.



Leave-one-out cross-validation
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From (Cha et al., 2020)
e KLPD,, expected log pointwise predictive density.
Higher ELPD indicates higher out-of-sample predictive fit (“better” model).

e P,,. Estimated effective number of parameters.
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