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Objective

• The water flow in many aquifers is driven

by strong anisotropy created by preferential

flow features such as fractures and faults.

• Overall goal: assimilate InSAR surface

displacement into an aquifer model to

estimate aquifer properties.

• In this work: develop a flexible stochastic

prior model of the anisotropic hydraulic

conductivity (AHC) tensor that respects its

underlying symmetry and positive

definiteness.
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InSAR
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Pumping well
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Poroelastic finite element model
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Methodology

• FEM is the poroelastic finite element model,

• u(ω) (deformation, pressure, and flux) is a stochastic response due to the

randomness in k(ω) (AHC):

k(ω) =

[
kxx(ω) kxy(ω)

kyx(ω) kyy(ω)

]
.
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Methodology

• We use random physical symmetry and positive definiteness (SPD) matrix

because of the nature of hydraulic conductivity tensor (Shivanand, Rosić, &

Matthies, 2022)

• We apply spectral decomposition, enabling separation of size/strength encoded in

eigenvalues and orientation encoded in eigenvectors

• We ensure positive definiteness using an exponential map

k = exp(H) = QΛQT .
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Random orientation with fixed scaling

1. kr(ωr) = R(ωr)k̂R(ωr)
T ,

where index “r” signifies that only the

eigenvectors are random.

2. In order to arrive at a vector space

setting:

R := exp(W )

W =

[
0 −ϕ

ϕ 0

]
.

3. ϕ is rotation angle → circular random

variable
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Random rotation angle: Mixture of 2 von Mises model

(Lark, Clifford, & Waters, 2014) applied the mixture von Mises distribution to datasets

consisting of observations of the dip direction of bedding planes.

𝜅1 𝜇1 𝜅2 𝜇2

𝑣𝑚1 𝑣𝑚2

𝑤

𝑚𝑖𝑥

𝜙
𝜙 ~ 𝑀𝑖𝑥𝑡𝑢𝑟𝑒

𝜅1, 𝜅2~ 𝐺𝑎𝑚𝑚𝑎

𝜇1, 𝜇2~ 𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠

𝑣𝑚1, 𝑣𝑚2 ~ 𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠

𝑤 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚

𝑚𝑖𝑥 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙
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Rose diagram

We use the NUTS algorithm in the MCMC

method to estimate the posterior using the

generated angles from the rose diagram as

likelihood.

From (Heilweil & Hsieh, 2006)

~120 m specifically for the aquifer test at approximately
the same radial distance from the production well but at
perpendicular orientations. The total depth of the pro-
duction well is ~180 m, with casing set to 150 m. The
drillers logs for all three wells indicate uniform fine-
grained sandstone beneath 1 to 12 m of unconsolidated
soil. Observation well A is located 117 m east-southeast
of the production well along a 110� orientation (parallel
to the 90� to 130� azimuthal cluster of fractures). The
static water level in well A before pumping was 6.4 m.

Observation well B is located 115 m south-southwest of
the production well along a 200� orientation (parallel to
the 180� to 210� azimuthal cluster of fractures). The static
water level in well B before pumping was 9.4 m. A sim-
plifying assumption was made that the orientation of
the fracturing within the aquifer is the same as that of the
surface fractures. This assumption is justified by both
regional areal photos showing the uniform direction of
these fracture lineaments and cross-sectional observations
of the planar nature of the fractures throughout the entire
exposed 2000-feet thickness of the Navajo Sandstone at
nearby Zion National Park and Snow Canyon State Park.

The multiple-well aquifer test involved pumping the
production well for ~4 d at an average rate of 4.2 m3/
min. Discharge was measured with a pito tube, v-notch
weir, and pygmy meter. The discharge from the pro-
duction well was diverted into a 0.38-m-diameter ABS
drain pipe, which transported the water 150 m away from
the well to a natural dry wash. In addition to the two
observation wells, a preexisting well (the ‘‘original’’ well)
located 3 m due east of the production well also was used
for evaluating drawdown. Water levels were measured in
the three observation wells and the production well for 4
d prior to the test, during the 4 d of pumping and for as
many as 20 d after the pump was shut off.

Measured water levels at the observation wells were
not corrected for barometric changes because the magni-
tude of drawdown and recovery at all the wells was much
larger (5.8 to 24.4 m) than the effects of barometric
changes (generally <0.3 m). Prepumping trend correc-
tions were applied to all the observation well drawdown
data because of a rise in water levels resulting from
recovery after the development of the production well
shortly before the aquifer test. Prerecovery trend correc-
tions were applied to the observation well recovery data

Figure 2. Location of the Anderson Junction aquifer test, Washington County, Utah.

Figure 3. Rose diagram showing fracture orientations (from
Hurlow 1998) and locations of production and monitoring
wells used for the Anderson Junction aquifer test, Wash-
ington County, Utah.

V.M. Heilweil, P.A. Hsieh GROUND WATER 44, no. 5: 749–753 751
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Random rotation angle: Model selection

model rank elpdloo ploo

2vm 0 29.581509 4.947668

3vm 1 29.473026 6.092196

simple 2 3.591472 1.886592
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Random orientation and scaling

1. ks(ω) = Q̂Λs(ω)Q̂
T where index “s”

shows that only random anisotropic

scaling was used.

2. R(ωr), which is a random orientation

3. We consider these two approaches

(fixed orientation and fixed scaling)

independent, so we can combine them.

4. krs(ωrs) = R(ωr)ks(ωs)R(ωr)
T ,

where index “rs” denotes a combined

rotational-scaling uncertainty.
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Implementation

Random 

Hydraulic 

Conductivity 

Tensor 

(𝑘𝑟𝑠 𝜔𝑟𝑠 )

Running 

Parallel 

Poroelastic 

Finite Element 

Model in HPC

Outputs (line 

of sight 

deformation)

Statistical 

Analysis 

(mean, 

standard 

deviation, …)
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Surface displacement

b) Mean of surface 

displacement of random AHC

c) Surface displacement of 

fixed AHC in 𝑥 direction

𝑥 direction

a) Elliptical representation of 

random AHC tensor
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Take-home messages

Aim:

• understanding aquifer system and estimating aquifer properties

• using InSAR technique instead of digging wells to make the process easier and

cheaper

Contribution:

✓ we built a poroelastic finite element model to simulate an aquifer system with

anisotropic hydraulic conductivity (AHC)

☞ we developed a flexible stochastic model of the AHC tensor

Next step:

✈ we will solve an inverse problem using InSAR data to estimate AHC
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The von-Mises disrtibution

From (Lang et al., 2020)

f(ϕ(ωr)|µ, κ) =
exp(κ cos(ϕ(ωr)− µ))

2πI0(κ)

where I0 is the modified Bessel function of order 0.



Leave-one-out cross-validation

From (Cha et al., 2020)

• ELPDloo: expected log pointwise predictive density.

Higher ELPD indicates higher out-of-sample predictive fit (“better” model).

• Ploo: Estimated effective number of parameters.
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