

In the name of ALLAH

FEniCS 2024

Using random circular models to simulate stochastic anisotropic flow in aquifer systems with FEniCSx

Sona Salehian Ghamsari ¹ Guendalina Palmirotta ¹ Jack S. Hale ¹ Tonie Van Dam ²

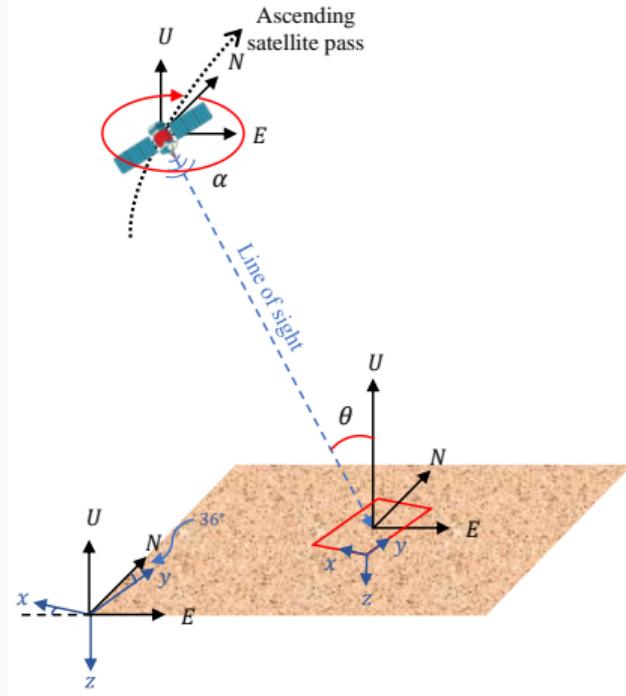
June 13, 2024

¹University of Luxembourg, Luxembourg.

²University of Utah, Utah.

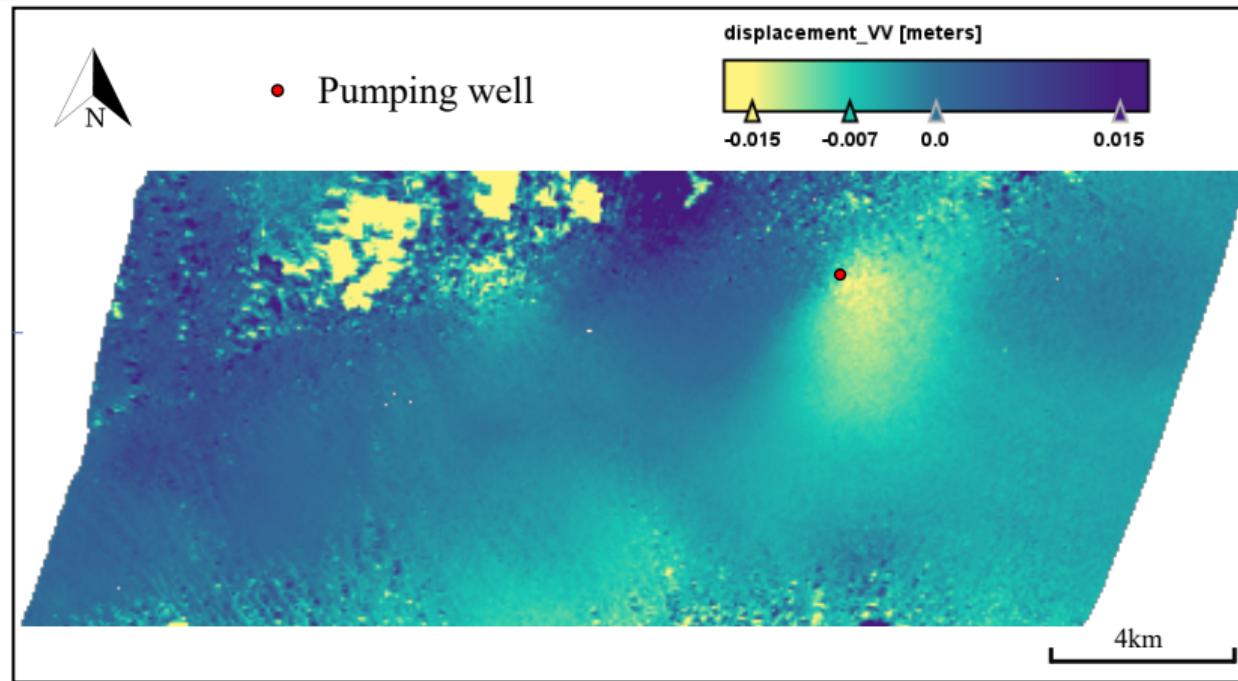
Objective

- The water flow in many aquifers is driven by strong anisotropy created by preferential flow features such as fractures and faults.
- **Overall goal:** assimilate InSAR surface displacement into an aquifer model to estimate aquifer properties.
- **In this work:** develop a flexible stochastic prior model of the anisotropic hydraulic conductivity (AHC) tensor that respects its underlying symmetry and positive definiteness.



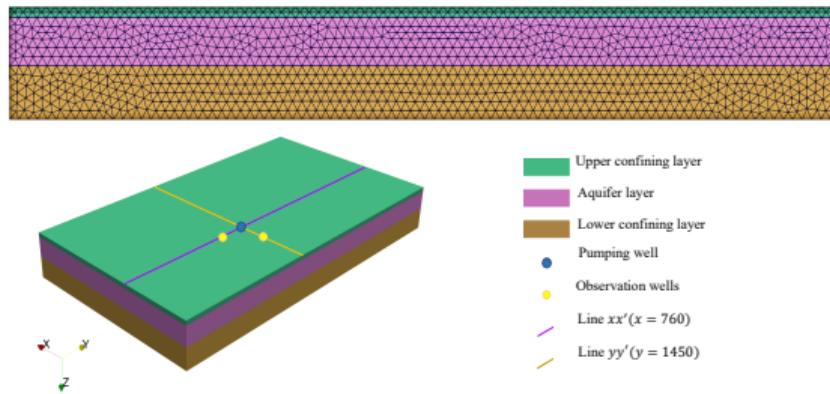
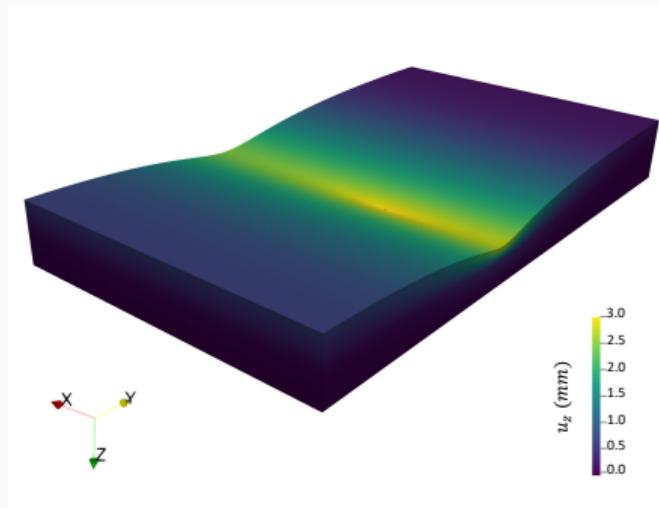
from (Salehian Ghamsari, Van Dam, & Hale, 2024)

InSAR



InSAR-observed deformation of Nevada aquifer pumping test
from (Salehian Ghamsari et al., 2024)

Poroelastic finite element model



from (Salehian Ghamsari et al., 2024)

Methodology

- *FEM* is the poroelastic finite element model,
- $u(\omega)$ (deformation, pressure, and flux) is a stochastic response due to the randomness in $k(\omega)$ (AHC):

$$k(\omega) = \begin{bmatrix} k_{xx}(\omega) & k_{xy}(\omega) \\ k_{yx}(\omega) & k_{yy}(\omega) \end{bmatrix}.$$

Methodology

- We use random physical symmetry and positive definiteness (SPD) matrix because of the nature of hydraulic conductivity tensor (Shivanand, Rosić, & Matthies, 2022)
- We apply spectral decomposition, enabling separation of size/strength encoded in eigenvalues and orientation encoded in eigenvectors
- We ensure positive definiteness using an exponential map

$$k = \exp(H) = Q\Lambda Q^T.$$

Random orientation with fixed scaling

1. $k_r(\omega_r) = R(\omega_r) \hat{k} R(\omega_r)^T$,

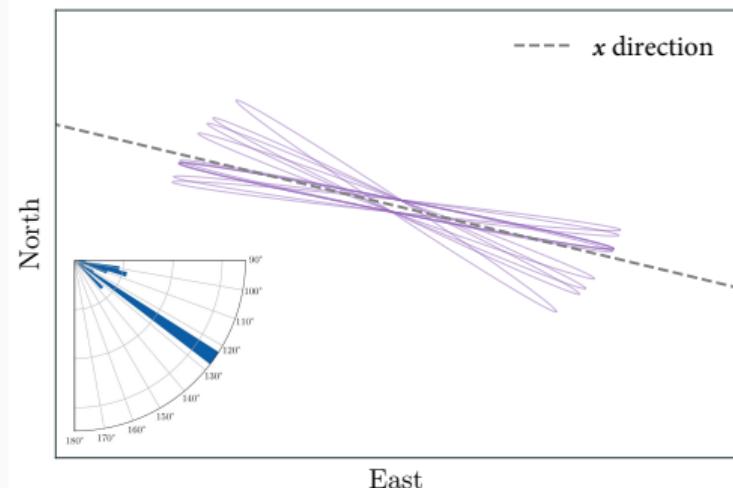
where index “r” signifies that only the eigenvectors are random.

2. In order to arrive at a vector space setting:

$$R := \exp(W)$$

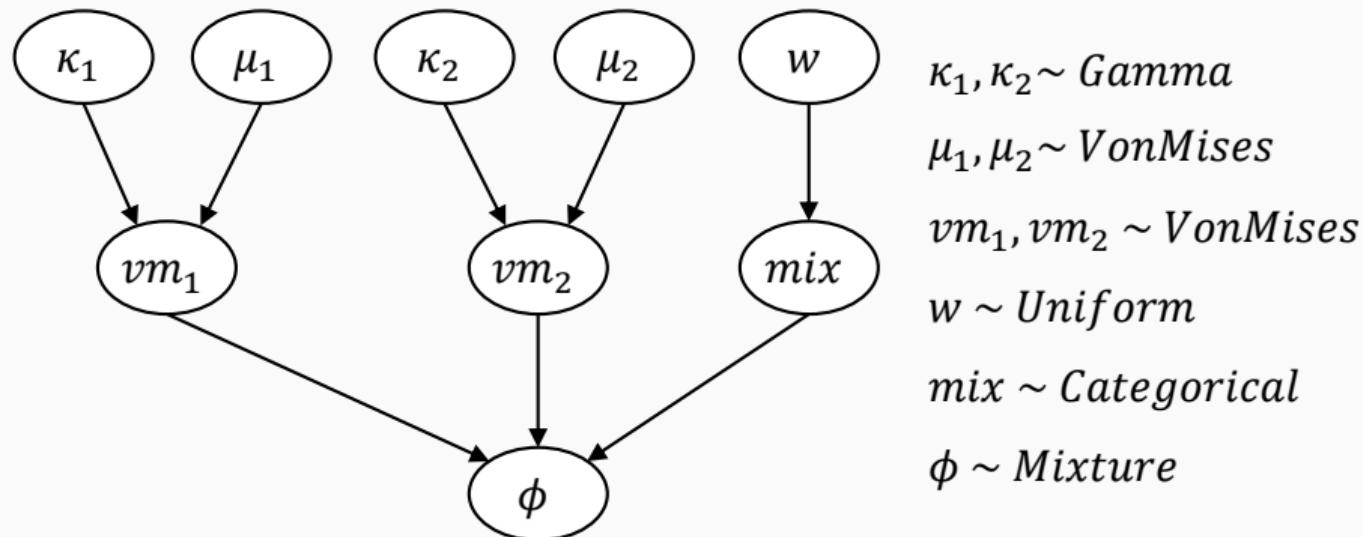
$$W = \begin{bmatrix} 0 & -\phi \\ \phi & 0 \end{bmatrix}$$

3. ϕ is rotation angle \rightarrow circular random variable



Random rotation angle: Mixture of 2 von Mises model

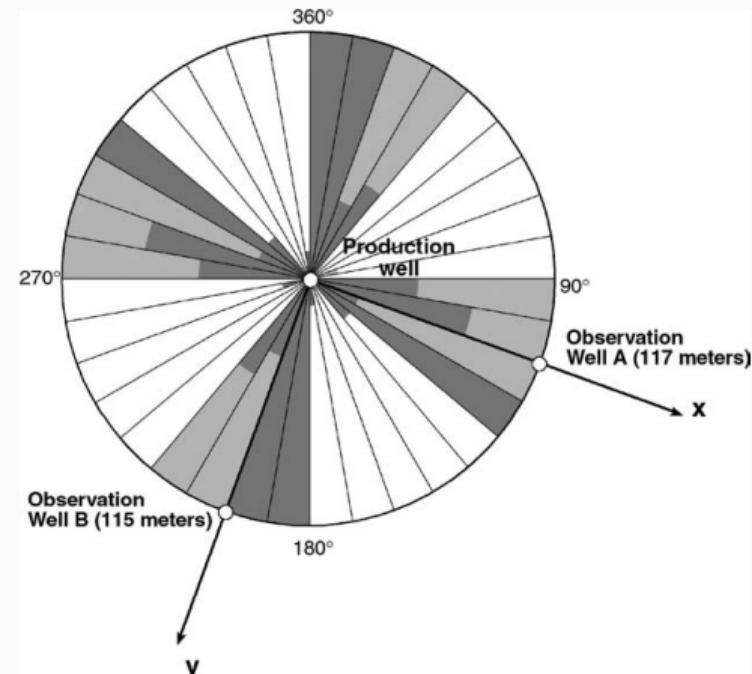
(Lark, Clifford, & Waters, 2014) applied the mixture von Mises distribution to datasets consisting of observations of the dip direction of bedding planes.



Rose diagram

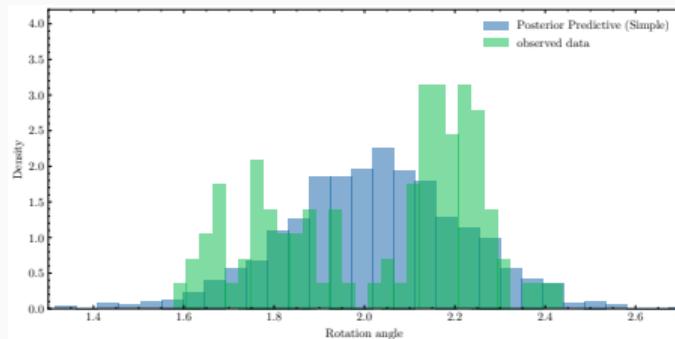
We use the NUTS algorithm in the MCMC method to estimate the posterior using the generated angles from the rose diagram as likelihood.

From (Heilweil & Hsieh, 2006)

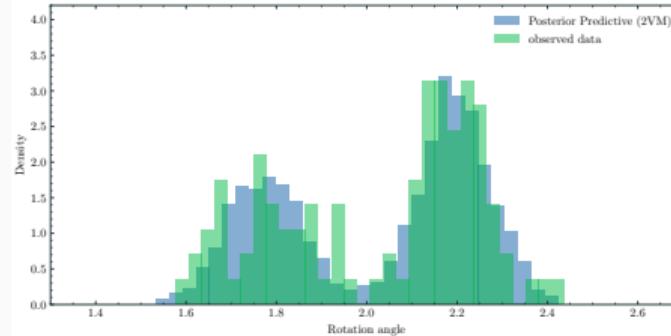


Random rotation angle: Model selection

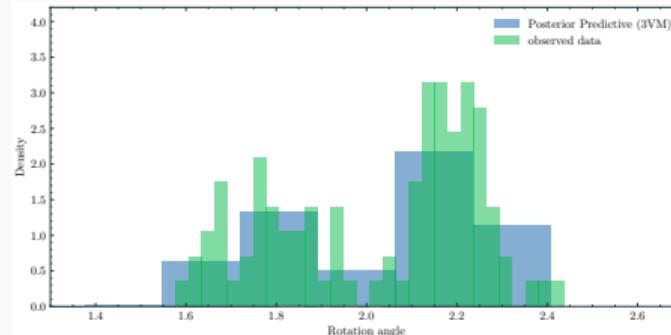
model	rank	$elpd_{loo}$	p_{loo}
2vm	0	29.581509	4.947668
3vm	1	29.473026	6.092196
simple	2	3.591472	1.886592



Simple von Mises model (simple)



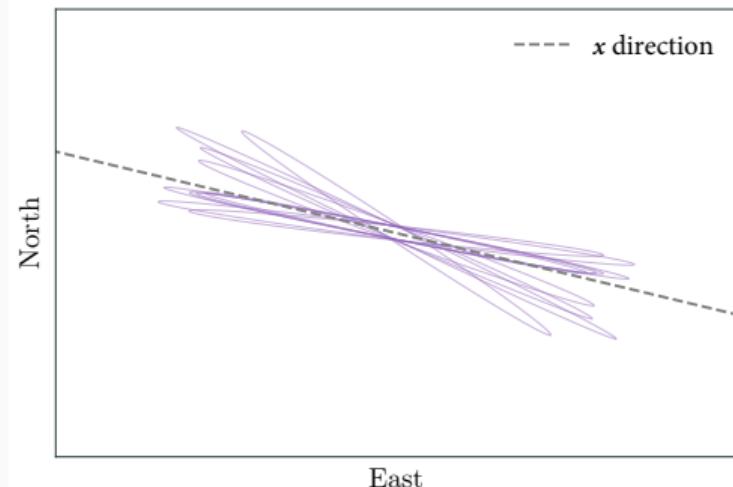
Mixture of 2 von Mises model (2vm)



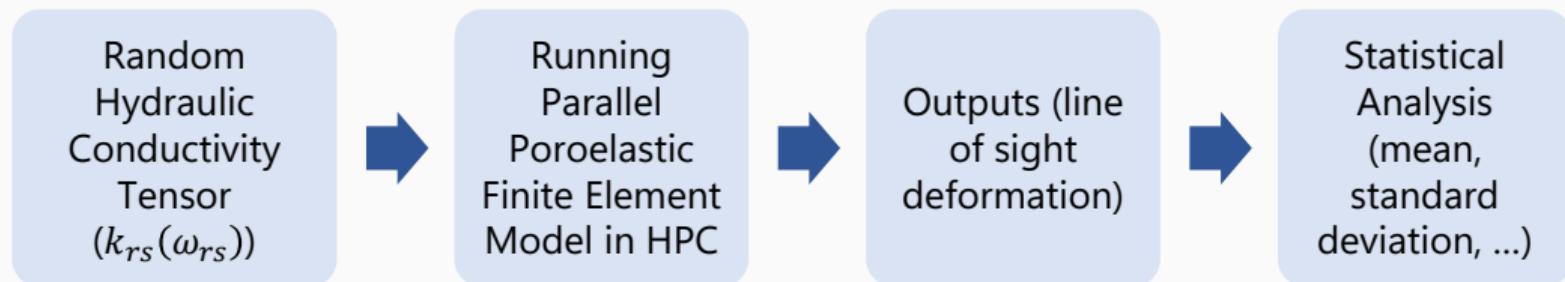
Mixture of 3 von Mises model (3vm)

Random orientation and scaling

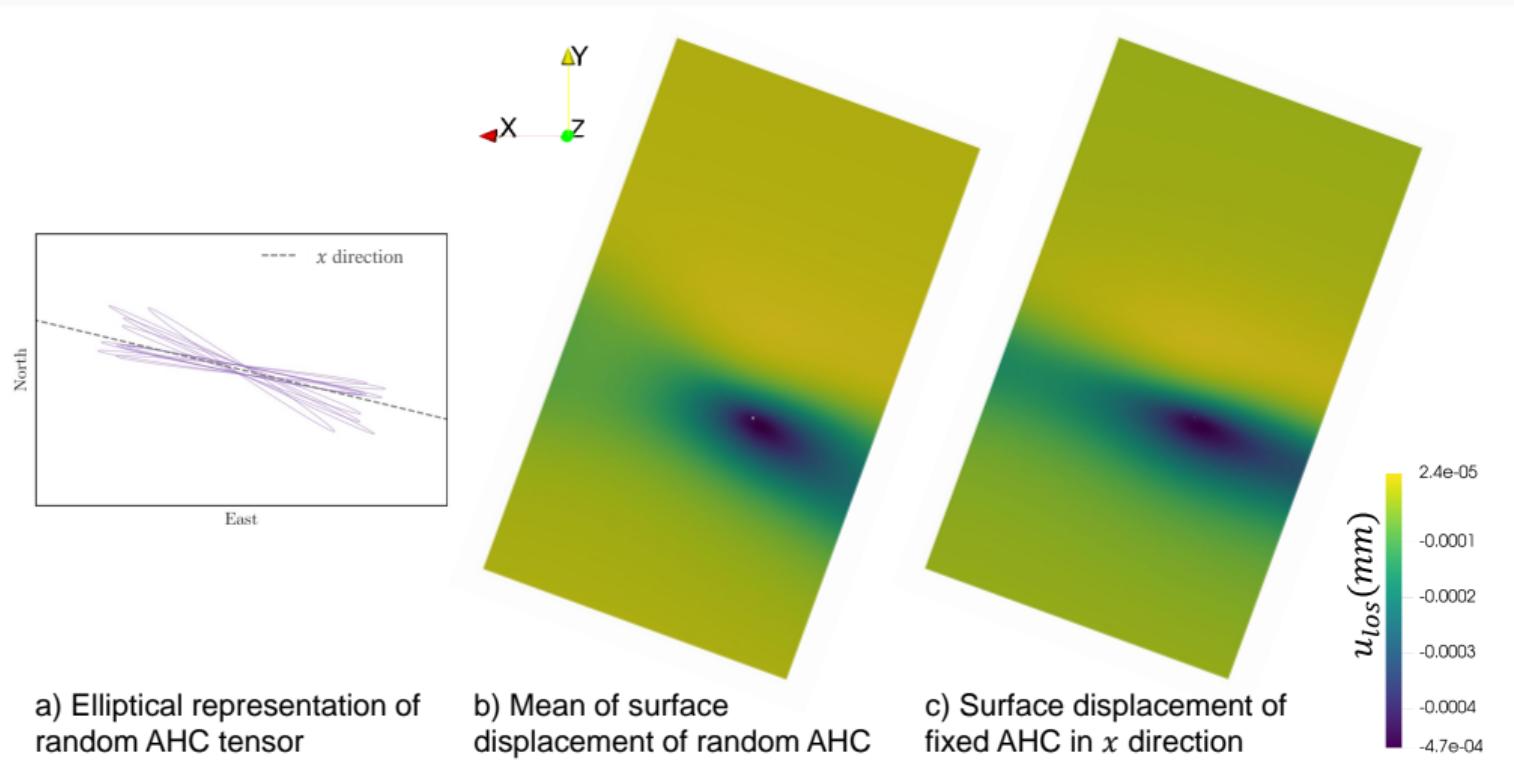
1. $k_s(\omega) = \hat{Q}\Lambda_s(\omega)\hat{Q}^T$ where index “s” shows that only random anisotropic scaling was used.
2. $R(\omega_r)$, which is a random orientation
3. We consider these two approaches (fixed orientation and fixed scaling) independent, so we can combine them.
4. $k_{rs}(\omega_{rs}) = R(\omega_r)k_s(\omega_s)R(\omega_r)^T$, where index “rs” denotes a combined rotational-scaling uncertainty.



Implementation



Surface displacement



Take-home messages

Aim:

- understanding aquifer system and estimating aquifer properties
- using InSAR technique instead of digging wells to make the process easier and cheaper

Contribution:

- ✓ we built a poroelastic finite element model to simulate an aquifer system with anisotropic hydraulic conductivity (AHC)
- ☞ we developed a flexible stochastic model of the AHC tensor

Next step:

- ↗ we will solve an inverse problem using InSAR data to estimate AHC

Acknowledgement

I would like to thank **Damian Ndiwago** from the University of Luxembourg for his helping for model selection.

This work was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), grant reference PRIDE/17/12252781.

☞ If you are interested in my research it would be great to chat with you further at this email address: sona.salehianghamsari@uni.lu

Any Question?

References

Cha, G.-W., Moon, H., Kim, Y.-M., Hong, W.-H., Hwang, J.-H., Park, W.-J., & Kim, Y.-C. (2020, 09). Development of a prediction model for demolition waste generation using a random forest algorithm based on small datasets. *International journal of environmental research and public health*, 17. doi: 10.3390/ijerph17196997

Heilweil, V. M., & Hsieh, P. A. (2006). Determining Anisotropic Transmissivity Using a Simplified Papadopoulos Method. *Groundwater*, 44(5), 749–753. doi: 10.1111/j.1745-6584.2006.00210.x

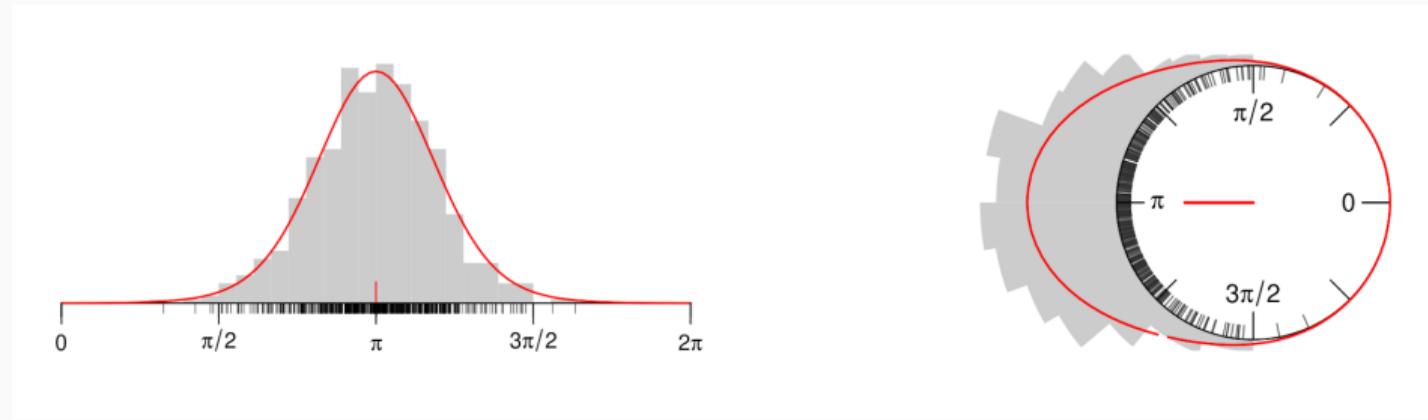
Lang, M. N., Schlosser, L., Hothorn, T., Mayr, G. J., Stauffer, R., & Zeileis, A. (2020). *Circular regression trees and forests with an application to probabilistic wind direction forecasting*. doi: 10.48550/arXiv.2001.00412

Lark, R., Clifford, D., & Waters, C. (2014). Modelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions. *Solid Earth*, 5(2), 631–639. doi: 10.5194/se-5-631-2014

Salehian Ghamsari, S., Van Dam, T., & Hale, J. (2024). Can the anisotropic hydraulic conductivity of an aquifer be determined using surface displacement data? a case study. Retrieved from <https://orbilu.uni.lu/handle/10993/61290>

Shivanand, S. K., Rosić, B., & Matthies, H. G. (2022). *Stochastic modelling of symmetric positive definite material tensors*. doi: 10.48550/arXiv.2109.07962

The von-Mises distribution

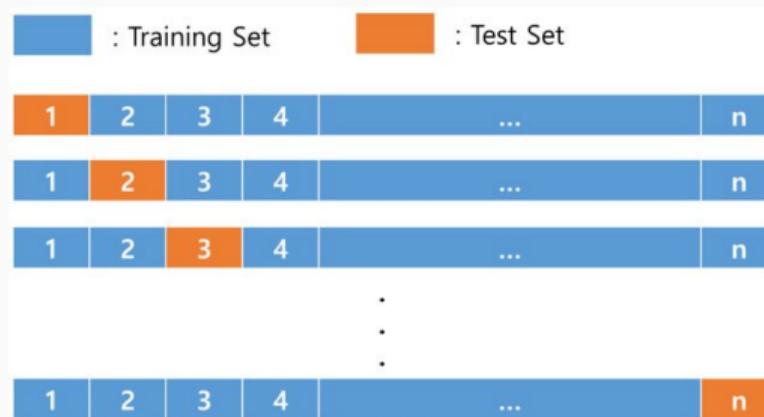


From (Lang et al., 2020)

$$f(\phi(\omega_r) | \mu, \kappa) = \frac{\exp(\kappa \cos(\phi(\omega_r) - \mu))}{2\pi I_0(\kappa)}$$

where I_0 is the modified Bessel function of order 0.

Leave-one-out cross-validation



From (Cha et al., 2020)

- $ELPD_{loo}$: expected log pointwise predictive density.
Higher ELPD indicates higher out-of-sample predictive fit (“better” model).
- P_{log} : Estimated effective number of parameters.