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Abstract

In this thesis we study the deformation theory of the wheeled closure of the properad
of strongly homotopy Lie bialgebras, and of its variations. Our main achievement is a
computation of the cohomology groups of the derivation complexes of the aforementioned
properads in terms of various Kontsevich graph complexes. This work can be seen as an
extension of the results by S. Merkulov and T. Willwacher in the paper Deformation the-
ory of the Lie bialgebra properad [MW1], where it has been proven that the deformation
theory of the ordinary properad of homotopy Lie bialgebras Holieb is controlled by the
Grothendieck-Teichmuller Lie algebra grt. We prove that in the wheeled case the defor-
mation theory is much richer: the deformation theory of the wheeled closure of Holieb
is controlled by two copies of grt. We illustrate this surprising result by showing explic-
itly two homotopy inequivalent actions of the famous tetrahedron class on the wheeled
properad of homotopy Lie bialgebras. We also compute the cohomology groups of the
derivation complexes of homotopy quasi- and pseudo-Lie bialgebras and of their wheeled
closures.
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Chapter 1

Introduction

1.1 Background

Operads are a fairly modern addition to mathematics, first appearing in algebraic topol-
ogy during the 1960s, and the study of them has since evolved into a theory in its own
right, with multiple applications in algebra, in algebraic topology, in geometry and in
mathematical physics.

To its core, the theory of operads is a theory of the compositions of operations, where
an operad can be viewed as a space of operations together with a multiplication that
composes these operations into new ones. The three classical objects in the center are
associative algebras, Lie algebras and commutative algebras, but many other algebras
are also studied, such as Poisson algebras, Jordan algebras, pre-Lie algebras and so on.
The structure of an operad is similar to that of associative algebras, hence, many of the
techniques and results about associative algebras can be transferred to operads.

Operads have also been useful in homotopy theory. Given a chain complex with an alge-
braic structure (associative algebra, Lie algebra, etc.), one asks if it is possible to transfer
the same structure to the cohomology of this chain complex, without losing too much
information about the original structure. Although the answer is no in general, for certain
algebras it is possible to define another structure which transfers the desired algebraic
structure to the cohomology groups. For associative algebras, such structures are called
homotopy associative algebras, and are characterised by being dg algebras with a product
that is associative up to homotopy. Similarly, the equivalents for Lie algebras are called
homotopy Lie algebras.

While operads can be used to study operations with several inputs and one output (prod-
ucts), and to some degree co-operations (i.e., operations with one input and several out-
puts), they are not suitable to encode algebraic structures with both a product and a
coproduct (or generally structural operations with several inputs and outputs). Examples
of such structures have gathered more interest lately in the study of quantum groups, in-
volving structures such as bialgebras, Lie bialgebras and Hopf algebras. The more general
structure governing these are called properads.

Both operads and properads capture the idea of composing multilinear maps together in a
linear fashion, composing one map after the other. Wheeled (pr)operads were introduced
and studied in [M2, MMS], allowing the composition to be ”wheeled”, connecting the out-
put of an operation to its input. Though seeming like a counterintuitive concept at first,
these wheeled pr(operads) correspond to adding trace maps to the corresponding algebras
for finite dimensional representations of pr(operads).

The main algebraic structures we study in this thesis are Lie bialgebras and homo-

1



1.1. BACKGROUND

topy Lie bialgebras. A Lie bialgebra is a vector space V together with a Lie bracket
[−,−] : V ⊗ V → V and a co-bracket ∆ : V → V ⊗ V that satisfy a certain compa-
bility relation. Lie bialgebras were first introduced by V. Drinfeld [D1] in the context
of Yang-Baxter equations and quantum group theory. Since then they have found many
applications in many areas of pure mathematics and mathematical physics, such as the
theory of Hopf algebra deformations of universal enveloping algebras [ES], quantization
theory [EKa], string topology and symplectic field theory [CFL], Goldman-Turaev theory
of free loops in Riemann surfaces with boundaries [G, Tu], Lagrangian Floer theory of
higher genus [Tu], and the computation of cohomology groups of moduli spaces of al-
gebraic curves with labeled punctures [MW2, AWZ]. The properad of Lie bialgebras is
denoted by Lieb and the properad of homotopy Lie bialgebras by Holieb. We will study
the more general case of Lie bialgebras with a bracket of degree c and a cobracket of
degree d. We denote the corresponding properad and homotopy properad by Liebc,d and
Holiebc,d respectively.

A derivation of an associative dg algebra A is a linear map d : A → A compatible with
the differential such that d(ab) = d(a)b + ad(b) for all a, b ∈ A and can be viewed as an
infinitesimal deformation of A. The derivation complex Der(A) is a dg Lie algebra where
the bracket is given by the commutator. These notions can be generalized to (pr)operads.
S. Merkulov and T. Willwacher previously studied the derivation complex Der(Holiebc,d)
in [MW1] and related its cohomology to the oriented Kontsevich graph complex. We ex-
tend the study by considering the derivation complexes of the wheeled closure Holieb⟲c,d
of Holiebc,d. These complexes are directly related to the deformation complexes of these
properads.

The properad Holiebc,d is generated by corollas with n inputs and m outputs such that
m and n are greater than or equal to one and m + n is greater than or equal to three.
That is, it does not contain any ”curvature” like generators where either m or n are equal
to zero (see [M2] for full details). However, in the wheeled case, one can build from such
generating elements of Holieb⟲c,d with no inputs (n = 0) or no outputs (m = 0), or both
(m = n = 0). Such graphs can stay for non-trivial cohomology classes which control
deformations of Holieb⟲c,d into its more general version Holieb⟲• in which curvature terms
are allowed (such a phenomenon is impossible in the case of props that are not wheeled).
It is therefore natural to consider two different deformation complexes of Holiebc,d, the
one which curved operations with no inputs and outputs can be created, and another one
where this is not the case. We study both cases for completeness, and hence consider
the two derivation complexes Der•(Holieb⟲c,d) and Der(Holieb⟲c,d), the former controlling

all possible deformations (i.e. with curvature terms allowed) of Holieb⟲ and the latter is
the reduced version. In this thesis we will study the cohomology of the aforementioned
derivation complexes and describe them in terms of Kontsevich graph complexes.

In the article [K2], M. Kontsevich introduced the Kontsevich graph complexes GCk as a
means to study the formality conjecture in the deformation quantization theory of Poisson
structures, but have lately found use in the theory of (pr)operads [W1]. They consist of
a family of dg Lie algebras parameterized by an integer k where each complex GCk is
generated by undirected graphs modulo the symmetries of vertices (when k is odd) or
symmetries of edges (when k is even). Complexes where k is of the same parity are
isomorphic up to degree shifts, and so it is enough to only focus on GC2 and GC3.

One important fact showed by T. Willwacher in [W1] is that there is an isomorphism of
Lie algebras H0(GC2) ∼= grt, where grt is the Grothendieck-Teichmuller Lie algebra. This
is the Lie algebra of the pro-unipotent Grothendieck-Teichmuller group GRT , introduced

2



CHAPTER 1. INTRODUCTION

by Drinfeld [D3].

Other versions of Kontsevich graph complexes have since been introduced and shown to be
related to the original graph complexes GCk. The directed graph complex dGCk consisting
of directed graphs modulo the same symmetries as the Kontsevich graph complex is quasi
isomorphic to GCk [W1], while the subcomplex oGCk ⊆ dGCk of oriented graphs (graphs
with no closed path of directed edges) is quasi-isomorphic to GCk−1 [W2]. Two other
related subcomplexes are dGCs

k, dGC
t
k ⊆ dGCk of sourced and targeted graphs respectively

(graphs containing at least one vertex with only outgoing edges and incoming edges re-
spectively). They are isomorphic to each other by changing the direction of all edges and
furthermore they are quasi-isomorphic to oGCk [Z2]. The complex dGCs+t

k of graphs with
either a source vertex or a target vertex will also be of interest to us.

In chapter 3 we compute the cohomologies of Der•(Holieb⟲c,d) and Der(Holieb⟲c,d) by find-

ing explicit quasi-isomorphisms to classical Kontsevich graph complexes. Let dGC=2,s+t
k ⊆

dGCk be the subcomplex of graphs with at least one bivalent vertex or at least one source
or target vertex. Then set dGC≥3,⟲

k := dGCk/dGC
=2,s+t
k to be the quotient complex of

graphs with neither sources nor targets, and all vertices at least trivalent.

Theorem 1.1.1 (Theorem 3.6.3). There is a quasi-isomorphism

K⊕ dGC≥3,⟲
c+d+1 ⊕ dGCc+d+1 → Der•(Holieb⟲c,d)

where K is a trivial complex corresponding to a rescaling class.

The summand dGC≥3,⟲
c+d+1 controls cohomology classes with neither inputs nor outputs.

The presence of the latter complex is obvious, thus, the main claim above says that the
cohomology classes with at least one input or one output are controlled by the directed
graph complex dGCc+d+1.

Let dGCno s
k := dGCk/dGC

s
k and dGCno t

k := dGCk/dGC
t
k be the quotient complexes of

graphs with no sources and no targets respectively. There is a natural map P : dGCk →
dGCno s

k ⊕ dGCno t
k given by mapping a graph to the diagonal of the quotient maps.

Theorem 1.1.2 (Theorem 3.6.4). There is a quasi-isomorphism

K⊕ Cone(P )[1] → Der(Holieb⟲c,d)

where K is a trivial complex corresponding to a rescaling class and Cone(P )[1] is the
desuspended cone complex of P .

This theorem together with the observation that H0(Cone(P )[1]) ∼= K⊕H0(dGCs
2⊕dGCt

2)
when c = d = 1 gives the following Corollary.

Corollary 1.1.3 (Corollary 3.6.5). There is an isomorphism of vector spaces

H0(Der(Holieb⟲1,1))
∼= K⊕ grt⊕ grt

where K is a trivial complex corresponding to a rescaling class.

The cohomollgy group H0(GC2) is conjectured to be a free Lie group generated by the so
called wheel cohomology classes {ω2n+1}n≥1, the first ones being

ω3 = , ω5 = +
5

2
, ω7 = + · · ·

3



1.1. BACKGROUND

We explicitly compute the two distinct cohomology classes in Der(Holieb⟲1,1) correspond-
ing to the tetrahedron graph ω3 (see section 3.7).

In the second article we extend the study to derivation complexes of the properads of
quasi- and pseudo-Lie bialgebras.

A quasi-Lie bialgebra is a generalization of a Lie bialgebra and is a vector space V together
with a Lie bracket [−,−] : V ⊗V → V , an antisymmetric cobracket ∆ : V → V ⊗V which
satisfy the co-Jacobi identity up to a natural relation with a skew-symmetric element
ϕ : K → V ⊗ V ⊗ V . Lie bialgebras are naturally quasi-Lie bialgebras where ϕ = 0.
Quasi-Lie bialgebras were first introduced by V. Drinfeld [D2] and have later found use
in the study of quasi-surfaces [Tu], twisting operads [M3] and the theory of cohomology
groups of the moduli spaces Mg,n of genus g algebraic curves with n punctures [M4]. The
associated properad with a bracket of degree c and a cobracket of degree d is denoted by
QLiebc,d and its homotopy properad, found by J. Gran̊aker [G], is denoted by QHoliebc,d.

Theorem 1.1.4 (Theorem 4.5.4). There is a quasi-isomorphism of complexes

K⊕ oGCc+d+1 → Der(QHoliebc,d)

where K is a trivial complex corresponding to a rescaling class.

Consider the subcomplex dGC=2,t
k ⊆ dGCk of graphs with at least one bivalent vertex or

at least one target vertex. Let dGC≥3, no t
k := dGCk/dGC

=2,t
k be the quotient complex of

graphs whose vertices are at least trivalent and with no target vertices.

Theorem 1.1.5 (Theorem 4.5.5). There is a quasi-isomorphism of complexes

K⊕ dGC≥3,no t
c+d+1 ⊕ dGCc+d+1 → Der•(QHolieb⟲c,d)

where K is a trivial complex corresponding to a rescaling class.

The complex dGC≥3,no t
c+d+1 corresponds to the trivial case of graphs with neither outputs nor

inputs. The main claim above says that the cohomology classes with at least one output
or input are controlled by the directed graph complex dGCc+d+1.

Theorem 1.1.6 (Theorem 4.5.6). There is a quasi-isomorphism of complexes

K⊕ dGCt
c+d+1 → Der(QHolieb⟲c,d).

where K is a trivial complex corresponding to a rescaling class.

Pseudo-Lie bialgebras further extend quasi-Lie bialgebras in that they have an antisym-
metric product and coproduct satisfying the Jacobi-relation up to a natural relation with
a map η : V ⊗ V ⊗ V → K and some other compability relations. Pseudo-Lie bialgebras
has as of yet not found any applications, and they are studied in this paper for the sake
of completion. We denote the properad of pseudo-Lie bialgebras with a bracket of de-
gree c and a cobracket of degree d by PLiebc,d and its homotopy properad, studied by J.
Gran̊aker in [G], is denoted by PHoliebc,d.

Consider the subcomplex oGC=2
k ⊆ oGCk of oriented graphs with at least one bivalent

vertex. Let oGC≥3
k := oGCk/oGC

=2
k be the quotient complex of oriented graphs whose

vertices are at least trivalent.

Theorem 1.1.7 (Theorem 4.5.7). There is a quasi-isomorphism of complexes

K⊕ oGC≥3
c+d+1 ⊕ oGCc+d+1 → Der(PHoliebc,d)

where K is a trivial complex corresponding to a rescaling class.

4



CHAPTER 1. INTRODUCTION

The summand oGC≥3
c+d+1 corresponds to the trivial case of graphs with neither outputs nor

inputs. The main claim above says that the cohomology classes with at least one output
or input are controlled by the graph complex oGCc+d+1.

For the wheeled closure of the properad PHoliebc,d, the two derivation complexes align
(Der•(PHoliebc,d) = Der(PHoliebc,d)) (see the introduction of article 2).

Theorem 1.1.8 (Theorem 4.5.8). There is a quasi-isomorphism of complexes

K⊕ dGC≥3
c+d+1 ⊕ dGCc+d+1 → Der•(PHolieb⟲c,d)

where K is a trivial complex corresponding to a rescaling class.

The complex dGC≥3
c+d+1 corresponds to the trivial case of graphs with neither outputs nor

inputs. The main claim above says that the cohomology classes with at least one output
or input are controlled by the graph complex dGCc+d+1.

Remark 1.1.9. Even though both the derivation complexes and the graph complexes
have dg Lie algebra structures, we do emphasize that the quasi-isomorphisms we show in
this thesis are only on the level of chain complexes. The question regarding whether the
Lie bracket is preserved under these maps or not is still open.

1.2 Structure of the manuscript

Chapter 2 serves as a background to the upcoming chapters. There we briefly define graphs
and graphs with labeled hairs, acting as a foundation to define the notion of G-algebras.
This concept generalizes and collects the notion of props, properads, operads, associative
algebras and their wheeled correspondents with a single definition, and serves as a natural
way to explain the relation between their wheeled and unwheeled versions. We proceed
to give notable examples of operads and properads. Further, we give a brief reminder of
derivation and deformation complexes of properads, and end the chapter by summarizing
the most important facts about graph complexes.

Chapter 3 is based on the article Deformation theory of the wheeled properad of strongly
homotopy Lie bialgebras and graph complexes, where we extend the result of S. Merkulov
and T. Willwacher in [MW1]. In this paper they studied the deformation complex of the
homotopy Lie bialgebra Holieb and related its cohomology to the oriented graph complex
oGC. In our investigation, we study the deformation complex of the wheeled homotopy Lie
bialgebra Holieb⟲ and describe its cohomology in terms of well known graph complexes.
In particular we reach the result that the zeroth cohomology of the deformation complex
is isomorphic to two copies of the Grothendieck-Teichmuller Lie algebra grt (as a vector
space).

Chapter 4 is based on the article Graph complexes and Deformation theories of the
(wheeled) properads of quasi- and pseudo-Lie bialgebras. There we further extend the
investigation of the first article by considering the deformation complex of the quasi-Lie
bialgebra and pseudo-Lie bialgebra properads, and similarly relate their cohomology to
well known graph complexes.

1.3 Notation

Let Sn denote the permutation group of the set {1, 2, ..., n}. The one dimensional sign
representation of Sn is denoted by sgnn. All vector spaces are assumed to be Z graded
over a field K of characteristic zero. If V =

⊕
i∈Z V

i is a graded vector space, then V [k]
denotes the graded vector space where V [k]i = V i+k. For a properad P we denote by
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1.3. NOTATION

P{k} the properad being uniquely defined by the property: For any graded vector space
V , a representation of P{k} in V is identical to a representation of P in V [k].
Let Γ be a graph with v vertices and e edges. The genus of a graph is the number e−v+1.
Further, for vertices in directed graphs, we consider the following conventions: A vertex
is passing if it has exactly one incoming edge and one outgoing edge attached. It is a
source if only outgoing edges are attached to it, and a target if there are only incoming
edges attached. Finally, a vertex is called generic if it is at least trivalent, and has at least
one outgoing edge and one incoming edge attached. The loop number of a graph Γ is the
number b = e− v + 1, where e is the number of edges and v the number of vertices of Γ.
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Chapter 2

Graph complexes, properads and
their deformation theory

In the first two sections, we closely follow the paper [M5]. For the third section on
deformation theory, we follow the paper [MV].

2.1 Graphs and G-algebras

2.1.1 Graphs

Definition 2.1.1. A directed graph G is a triple (V (G), E(G), νG) where V (G) and E(G)
are finite sets and νG : E(G) → V (G)×V (G) a map such that α 7→ (xout, xin) for α ∈ E(G)
and xout, xin ∈ V (G). The elements of E(G) are called edges and the elements of V (G)
are called vertices. An edge α is said to be adjacent to xout and xin, being outgoing from
xout and incoming to xin. The out-valency |x|out of a vertex x ∈ V (G) is the number of
outgoing edges from x, the in-valency |x|in is the number of incoming edges to x, and the
valency of x is the number |x| := |x|out + |x|in. If |x|out = 0, then x is a target vertex,
and if |x|in = 0, then x is a source vertex. Vertices with valency one, two and three are
respectively called univalent, bivalent and trivalent. Let G and H be directed graphs. A
morphism φ : H → G is a pair of maps φV : V (H) → V (H) and φE : E(H) → E(G)
such that (φV × φV ) ◦ νH = νG ◦ φE . The graph H is a subgraph of G if φV and φE are
injective. The map φ is an isomorphism if φV and φE are bijective. We usually consider
graphs up to isomorphisms.

Definition 2.1.2. Let m,n ∈ N. A directed hairy graph with m out-hairs and n in-hairs
G(m,n) is a triple (G, hout, hin) where G is a directed graph and hout and hin are injective
labeling maps

hout : [m] → {x ∈ V (G) | x univalent target}
hin : [n] → {x ∈ V (G) | x univalent source}.

The elements of H(G(m,n)) := Im(hout) ∪ Im(hin) are called hairs. The elements of the
complement set V (G(m,n)) = V (G)\H(G(m,n)) are called hairy vertices of G(m,n).
The set of hairy edges of G(m,n) is the edges of E(G) that are not adjacent to a hair. We
will usually call hairy vertices and hairy edges just vertices and edges respectively, when
there is no risk of confusion. Let U(m,n) be the set of hairy graphs with m out-hairs and
n in-hairs. There is a right action of the group Sopm × Sn on U(m,n) as

(G, hout, hin)(σ, τ) := (G, hout ◦ σ−1, hin ◦ τ)

permuting the labels of hairs. Note that graphs are not necessarily connected. Let U =⋃
m,n≥0 U(m,n).
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2.1. GRAPHS AND G-ALGEBRAS

Remark 2.1.3. When representing graphs pictorially, the direction of edges (and hairs)
is normally indicated. To simplify certain pictures, the direction of edges (and hairs) has
been omitted. In such a case, if an edge is attached to the upper part of a vertex, then it
is assumed to be outgoing from that vertex. Similarly, an edge attached to the lower part
of a vertex is assumed to be incoming to that edge (see figure 2.1). Similarly, the labeling
of hairs is occasionally suppressed for simplification.

1

1

2

1

1

2

1

1

1

1

Figure 2.1: Convention of adding directions to undirected graphs

Remark 2.1.4. The hairy graph consisting of a single vertex with m out-hairs and n
in-hairs is called an (m,n)-corolla or corolla in general. With the above mentioned con-

vention, the (m,n)-corolla is visualized as

1 2
···

m

1 2
···

n

.

2.1.2 S-bimodules and Decorated graphs

Definition 2.1.5. An S-bimodule E is a collection of vector spaces E = {E(m,n)}m,n≥0

such that E(m,n) has a left Sm-action and a right Sn-action for all m,n ≥ 0.

The following construction describes how to decorate the vertices of a general graph in U
with the elements of an S-bimodule, respecting the symmetric action.

Definition 2.1.6. Let E = {E(m,n)}m,n≥0 be an S-bimodule and let G ∈ U. For each
vertex v ∈ V (G), let Outv be the set of edges and hairs going away from v and Inv be the
set of edges and hairs going into v. To each vertex v, we associate the vector space

E(Outv, Inv) := ⟨Outv⟩ ⊗Sm E(m,n)⊗Sn ⟨Inv⟩

where m = |Outv|, n = |Inv| and ⟨Outv⟩ is the vector space spanned by all bijections
[m] → Outv and ⟨Inv⟩ is the vector space spanned by all bijections Inv → [n]. We remark
that the space E(Outv, Inv) is non-canonically isomorphic to E(m,n). There are natural
actions of Aut(Outv) and Aut(Inv) on E(Outv, Inv). Now suppose that |V (G)| = k. Then
define⊗

v∈V (G)

E(Outv, Inv) :=
( ⊕
i:[k]→V (G)

E(Outi(1), Ini(1))⊗ · · · ⊗ E(Outi(k), Ini(k))
)
Sk
.

This is a representation space of Aut(G). Now let G be a graph and E an S-bimodule.
Then define the vector space

G⟨E⟩ :=
( ⊗
v∈V (G)

E(Outv, Inv)
)
Aut(G)

.

This vector space represents the graph G with vertices decorated by elements of E. Sup-
pose that (E, δ) is a dg S-bimodule. Then for each graph G, we can define the chain
complex (G⟨E⟩, δ) whose differential is naturally induced from E(Outv, Inv). Note that

when G is an (m,n)-corolla, i.e., G =

1 2
···

m

1 2
···

n

, then G⟨E⟩ ∼= E(m,n).
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2.1.3 G-algebras

Definition 2.1.7. Let G and H be graphs of U such that H is a connected subgraph of
G. Then let G/H be the graph obtained by replacing the subgraph H of G with a single
vertex having the same number of hairs as H, and reattaching the edges from G. Let G
be a subset of U and G a graph in G. A subgraph H of G is admissible in G if both H ∈ G
and G/H ∈ G.

Definition 2.1.8. Let G ⊆ U. A G-algebra is a pair (P, {µG}G∈G) where

• P = {P(m,n)}m,n≥0 is an S-bimodule.

• {µG}G∈G is a collection of linear Sm × Sn-equivariant maps

{µG : G⟨P⟩ → P(m,n)}G∈G(m,n), m, n ≥ 0

such that µG = µG/H ◦ µ′
H for every admissible subgraph H of G in G. The map

µ′
H : G⟨E⟩ → (G/H)⟨E⟩ acts trivially on the decorations of vertices not in H, while

the decoration of the collapsed vertex in G/H is induced by µH .

If (P, δ) is a dg S-bimodule with differential δ, then there is an induced differential on G⟨P⟩
for every graph G, which we denote by δG. A dg G-algebra is a triple (P, {µG}G∈G, δ)
such that (P, {µG}G∈G) is a G-algebra, (P, δ) is a dg S-bimodule and δ ◦ µG = µG ◦ δG.

Remark 2.1.9. Strictly speaking, we have just defined G-algebras without units. A G-
algebra with units is the G-algebra generated by the set of graphs G ∪ I, where I is the
collection of graphs on the form {↑ ↑ · · · ↑ ⟲ ⟲ · · · ⟲} with only edges and no vertices.

Example 2.1.10. We describe below the most frequent G-algebras. Their characteristic
graphs are described in figure 2.1.3

• Let Pr⟲ = U. The Pr⟲-algebras are called wheeled props.

• Let Pr ⊆ Pr⟲ be the subset of graphs with no closed directed paths. The Pr-
algebras are called props.

• Let P⟲ ⊆ Pr⟲ be the subset of connected graphs. The P⟲-algebras are called
wheeled properads.

• Let P ⊆ Pr of connected graphs. The P-algebras are called properads.

• Let O⟲ ⊆ P⟲ be the subset of graphs where each vertex has exactly one outgoing
edge or hair. The O⟲-algebras are called wheeled operads.

• Let O ⊆ P be the subset of graphs where each vertex has exactly one outgoing edge
or hair. The O-algebras are called operads.

• Let A ⊆ O be the subset of graphs where each vertex has exactly one incoming edge
or hair. The A-algebras are called associative algebras.

Remark 2.1.11. It was brought to the authors attention by one of the jury members of
a definition of T -algebras (Section 5.2) in [BGHZ] analogous to that of wheeled props, but
coming from the field of probability theory.

Example 2.1.12. Here follow some notable examples of G-algebras for a general set of
graphs G.
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Wheeled properad Properad Wheeled operad Operad

, , , ,

Figure 2.2: Characteristic graphs for different G-algebras.

• Let V be a finite-dimensional vector space. The S-bimodule

EndV = {Hom(V ⊗n, V ⊗m)}m,n≥0

is a G-algebra where the contraction maps consist of the normal composition and
trace maps. We call this the endomorphism G-algebra. The requirement that V is
finite-dimensional can be dropped when G does not contain any graphs with closed
loops.

• Let E = {E(m,n)}m,n≥0 be any S-bimodule. The free G-algebra over E is the
S-bimodule F⟨E⟩ = {F(m,n)}m,n≥0, where F(m,n) =

⊕
G∈G(m,n)G⟨E⟩. The con-

traction maps are canonically defined.

• Let P be a G-algebra. A submodule Q ⊂ P is a G-subalgebra of P if the contraction
maps µG restrict as µG : G⟨Q⟩ → Q(m,n) for all G ∈ G.

• An ideal I of P is a G-subalgebra of P such that the contraction map µG restricts
as µG : G⟨P : I⟩ → I(m,n) for all G ∈ G, where G⟨P : I⟩ is the submodule of G⟨P⟩
of graphs where at least one vertex is decorated by an element of I. The G-quotient
algebra P/I is then defined in the natural way.

Definition 2.1.13. Let P and Q be G-algebras.

• A G-algebra morphism from P to Q is an S-bimodule morphism ρ : P → Q such
that for any graph G, the diagram commutes

G⟨P⟩ G⟨Q⟩

P(m,n) Q(m,n)

ρ⊗G

µG µG

ρ

where ρ⊗G : G⟨P⟩ → G⟨Q⟩ is the map where ρ is applied to each vertex in G.

• A representation of P in a graded vector space V is a morphism of G-algebras
P → EndV .

• A free resolution of P is a free dg G-algebra (F⟨E⟩, δ) together with a G-algebra mor-
phism (F⟨E⟩, δ) → P that is an isomorphism on cohomology (when P is equipped
with the trivial differential). A free resolution is minimal if the differential acts

on corollas

1 2
···

m

1 2
···

n

such that δ(

1 2
···

m

1 2
···

n

) ∈ F≥2⟨E⟩ where F≥2⟨E⟩ is the

subspace of F⟨E⟩ generated by graphs with at least two vertices. The resolution is
called quadratic if the same image only contains graphs with exactly two vertices.
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Remark 2.1.14. The notions of free resolution and minimal resolution stem from the
theory of model categories, however, no such intuition is used when studying these objects
in this thesis.

2.1.4 Wheeled closure of a G-algebra

Definition 2.1.15. A G-algebra P is finitely generated by arity if P = F⟨E⟩/I where
E = {E(m,n)}m,n≥0 is an S-bimodule and I = {I(m,n)}m,n≥0 an ideal of F⟨E⟩ such
that E(m,n) is finite dimensional for all m,n.

Remark 2.1.16. All the G-algebras we encounter will be finitely generated by arity.

Definition 2.1.17. Let G be a hairy graph and let h1 be an out-hair and h2 an in-hair
of G. A joining of h1 and h2 is the graph equivalent to G except that the hairs h1 and h2
have been removed and replaced by a directed edge. A wheeling of G is the graph where
one or more pairs of out-hairs and in-hairs have been grafted. Let G be a set of hairy
graphs. The wheeled closure of G is the set G⟲ containing both G and all wheeling of
graphs in G.

Remark 2.1.18. Let G−alg is the category of finitely generated by arity G-algebras
and G⟲−alg the category of finitely generated by arity G⟲-algebras. Then the functor
taking a G-algebra F/I to F⟲/I⟲ is a left adjoint to the forgetful functor from G⟲−alg
to G−alg.

2.2 Examples of operads and properads

2.2.1 The operad of associative algebras

Example 2.2.1. Let A0 = {A(m,n)}m,n≥0 be the S-bimodule where A0(1, 2) = K[S2]
and A0(m,n) = 0 for all other m,n. The free operad F⟨A0⟩ is generated by oriented
graphs whose vertices have two incoming edges and one outgoing edge. Consider the ideal
I ⊆ F⟨A0⟩ generated by the set

I0 :=
{

σ(1) σ(2)

σ(3) −
σ(2) σ(3)

σ(1) : σ ∈ S3
}
. (2.1)

The operad of associative algebras is the quotient operad Ass := F⟨A0⟩/I. If V is a
vector space, then there is a 1-1 correspondence between associative algebra structures on

V and representations ρ : Ass → EndV . In the correspondence, the element ρ(

1 2

1

) ∈

EndV (1, 2) = Hom(V ⊗ V, V ) corresponds to an associative product on V .

Example 2.2.2. The wheeled operad of associative algebras is the quotient operadAss⟲ :=
F⟨A0⟩/I where the generators are the same as above in the category of wheeled operads.

Then the wheeled operad F⟨A0⟩ additionally includes wheeled graphs such as .

Remark 2.2.3. If V is a finite dimensional vector space, then there is a 1-1 correspondence
between associative algebra structures on V and representations ρ : Ass⟲ → EndV . A
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graph of Ass⟲ containing a wheel, say , corresponds to an element ρ( ) ∈

Hom(V,K). This is effectively a trace map induced by the product

1 2

1

.

Example 2.2.4. Let A = {A(m,n)}m,n≥0 be the S-bimodule where

A(1, n) = K[Sn] =
〈

•
. . .

σ(1) σ(2) σ(n)

〉
σ∈Sn

for n ≥ 2 and A(m,n) = 0 otherwise. The free operad F⟨A⟩ together with the differential
δ that act on generating corollas as

δ
(

•

σ(1) ... σ(n)

)
=

n−2∑
k=0

n−k∑
l=2

(−1)k+l(n−k−l)+1 •
σ(1)...σ(k) σ(k+l+1)...σ(n)

•

σ(k+1)...σ(k+l)

is a minimal resolution of Ass, which we denote by Hoass.

In general, the wheeled closure of a minimal resolution is not in general a minimal resolu-
tion, exemplified by the G⟲-algebra Ass⟲ described below.

Example 2.2.5. Let A⟲ = {A⟲(m,n)}m,n≥0 be the S-bimodule such that

A⟲(1, n) = K[Sn][n− 2] =
〈

•
. . .

σ(1) σ(2) σ(n)

〉
σ∈Sn

for n ≥ 2

A⟲(0, n) =
n−1⊕
p=1

K[Sn]Cp×Cn−p [n] =
n−1⊕
p=1

〈
▼

...
σ(1)σ(2) σ(p)

...
σ(n)σ(p+1)

〉
σ∈Sn

for n ≥ 2

and A(m,n) = 0 otherwise. Here Cp×Cn−p denotes the subgroup of Sn generated by two
elements (12 · · · p) and (p + 1 · · ·n). The differential of the first kind of generator is the
same as for Hoass, while it acts on the second type of generator as

δ
(

▼
...

1 2 p
...

np+1

)
=

∮
(12···p)

∮
p+1···n

(
•

...
1 2 p

...
np+1__

+

p∑
k=2

(−1)kn ▼
...

k+1 p
...

np+1
•

1 ... k

+
n−2∑
k=2

(−1)p+k(1+n−p)+1
▼

...
1 2 p

...
np+k+1

•

p+1 ... p+k

)
.
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2.2.2 The operad of Commutative algebras

Example 2.2.6. Let C0 = {C0(m,n)}m,n≥0 be the S-bimodule where C0(1, 2) = K and
C0(m,n) = 0 for all other m,n. The free operad F(C0) is generated by oriented graphs
whose vertices have two incoming edges and one outgoing edge. Consider the ideal I ⊆
F(C0) generated by the same set I0 as in (2.1). The operad of commutative algebras is
the quotient operad Com := F(C0)/I.

2.2.3 The operad of Lie algebras

Example 2.2.7. Let L0 = {L0(m,n)}m,n≥0 be the S-bimodule where L0(1, 2) = sgn2 and
L0(m,n) = 0 for all other m,n. Consider the ideal I in the free operad F(L0) generated
by the linear combination

I =
〈

1 2

3
+

2 3

1
+

3 1

2

〉
.

The operad of Lie-algebras is the quotient operad Lie := F(L0)/I.
If V is a vector space, then there is a 1-1 correspondence between Lie-algebra structures
on V and representations ρ : Lie → EndV .

Example 2.2.8. Let L = {L(m,n)}m,n≥0 be the S-bimodule where

L(1, n) = sgnn[n− 2] =
〈

••
...

1 2 n-1 n

〉
for n ≥ 2 and L(m,n) = 0 otherwise. The free operad F⟨L⟩ together with the differential
δ that act on generating corollas as

δ
(

••
...

1 2 n-1 n

)
=

∑
[n]=I1⊔I2

|I1|≥2, |I2|≥2

(−1)σ(I1,I2)+(|I1|+1)|I2| •
•
...︸ ︷︷ ︸
I1

︸ ︷︷ ︸
I2

...
(2.2)

is a minimal resolution of Lie, which we denote by Holie.

Remark 2.2.9. In contrast to the operad of associative algebras Ass, the wheeled closure
Holie⟲ of Holie is a minimal resolution of Lie⟲. That is Holie⟲ := F⟨L⟩ together with
the differential (2.2) is a minimal resolution of Lie⟲ (see Theorem 4.1.1 in [M2]).

Representations of Holie are called homotopy Lie algebras (or L∞-algebras). A homotopy
Lie algebra is a graded vector space V together with an infinite family of multilinear maps
Q = {Q(n) : V ∧n → V }n≥1 of degree n−2 satisfying the strong homotopy Jacobi identities∑
i+j=n+1

∑
σ∈Shuff(i,n−i)

χ(σ, v1, ..., vn)(−1)i(j−1)Q(j)(Q(i)(vσ(1), ..., vσ(i)), vσ(i+1), ..., vσ(n)) = 0

for every n ≥ 1. Here Shuff(p, q) denotes the set of (p, q)-shuffles and χ is a signature of
the permutation. In the first three instances, we get the equations

Q(1) ◦Q(1)(v1) = 0

Q(1)(v1, v2) = Q(2)(Q(1)(v1), v2)− (−1)|v1||v2|Q(2)(Q(1)(v2), v1)∮
(123)

Q(2)(Q(2)(v3, v1), v2) =

∮
(123)

Q(3)(Q(1)(v1), v2, v3) +

∮
(123)

Q(1)(Q(3)(v1, v2, v3)).
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The first one tells us that Q(1) squares to zero and the second that Q(1) is a derivative with
respect to Q(2), hence Q(1) is a differential. The third equation shows that Q(2) satisfy the
Jacobi identity up to some relations. In particular, when Q(n) = 0 for n ≥ 3, then this
structure is exactly a dg Lie algebra. We say that a homotopy Lie algebra V is filtered
if there is a sequence V0 = V ⊇ V1 ⊇ V2 ⊇ · · · such that

⋂∞
i=0 Vi = {0} and there is an

n0 ∈ N such that Q(n) : V ∧n → V restricts to Q(n) : V ∧n → Vn for n ≥ n0.

2.2.4 The properad of Lie bialgebras

Definition 2.2.10. Let k ∈ Z. A Lie k-bialgebra is a vector space V together with a
Lie bracket [−,−] : V ∧ V → V (satisfying the Jacobi identity) of degree −k and a Lie
cobracket ∆ : V → V ∧ V (satisfying the co-Jacobi identity) of degree 0 that satisfy the
([−,−],∆)-compability relation

∆([a, b]) =

∮
(ab)

Alt2(ada ⊗ Id)∆(b). (2.3)

for any a, b ∈ V . Here ada(x) = [a, x], the map Altn : V ⊗n → V ⊗n is the operator

Altn(x1 ⊗ · · · ⊗ xn) =
∑
σ∈Sn

(−1)|σ|(xσ(1) ⊗ · · · ⊗ xσ(n))

for any linear map f : V ⊗n → V ⊗m and∮
(x1···xk)

f(x1, · · · , xk) =
k∑

i=1

(−1)|σ
i|f(x(σi)(1), · · · , x(σi)(k))

where σ = (12 · · · k) ∈ Sk and σi is the composition of σ with itself i times. The usual
notion of a Lie bialgebra is obtained for k = 0.

Definition 2.2.11. Let Lb0 = {Lb0(m,n)}m,n≥0 be the S-bimodule where Lb0(m,n) = 0
for all m,n except

Lb0(1, 2) = 11 ⊗ sgn2[k] =
〈

1 2

1

= −
2 1

1 〉

Lb0(2, 1) = sgn2 ⊗ 11 =
〈 1 2

1

= −
2 1

1

〉
.

Further let I be the ideal of the free properad F⟨Lb0⟩ generated by the elements

I :



1 2

3
+

2 3

1
+

3 1

2
,

1 2

3 +

2 3

1 +

3 1

2

1 2

1 2

−

1

1

2

2

−

1

2

2

1

+ (−1)k

2

1

1

2

+ (−1)k

2

2

1

1

.

The properad of Lie k-bialgebras Liebk is the quotient properad F⟨Lb0⟩/I.
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Definition 2.2.12. Let Holiebk be the free dg properad generated by the S-bimodule
Lb = {Lb(m,n)}m,n≥0 where

Lb(m,n) = sgnm ⊗ sgn⊗|k+1|
n [(m− 1) + (k + 1)(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)|σ|+(k+1)|τ |

1 2
···

m

1 2
···

n

: σ ∈ Sm, τ ∈ Sn
〉

m,n≥1
m+n≥3

and the differential is given on generators as

δ
( 1 2

···
m

1 2
···

n

)
=

∑
[m]=I1⊔I2

|I1|≥0,|I2|≥1

∑
[n]=J1⊔J2

|J1|≥1,|J2|≥0

(−1)σ(I1⊔I2)+|I1|(|I2|+1) •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

. (2.4)

Proposition 2.2.13. The properad Holiebk is a minimal resolution of Liebk.

Proof. This was shown in [V, M1].

Remark 2.2.14. Let c, d ∈ Z. We can generalize the notion of a Lie k-bialgebra to a
(c, d)-shifted Lie bialgebra where the Lie bracket has degree 1−c and the Lie cobracket has
degree 1− d. Then the properad of (c, d)-shifted Lie-bialgebras is the properad Liebc,d :=
Liebc+d−2{1−c} governing a degree shifted Lie-bialgebras where the Lie-bracket has degree
1 − d and the Lie-cobracket has degree 1 − c. The standard Lie-bialgebra properad is
regained when c = d = 1. We can equivalently define this properad as the quotient
properad below.

Definition 2.2.15. Let Liebc,d be the quotient properad F⟨Lbc,d⟩/Ic,d where Lbc,d is the
S-bimodule where

Lbc,d(1, 2) = sgn2[1− d] =
〈

1 2

1

= −
2 1

1 〉

Lbc,d(2, 1) = sgn2[1− c] =
〈 1 2

1

= −
2 1

1

〉
.

and Lbc,d(m,n) = 0 for all other m,n and Ic,d is the ideal of F⟨Lbc,d⟩ generated by the
elements

Ic,d :



1 2

3
+

2 3

1
+

3 1

2
,

1 2

3 +

2 3

1 +

3 1

2

1 2

1 2

−

1

1

2

2

− (−1)p

1

2

2

1

− (−1)q

2

1

1

2

− (−1)p+q

2

2

1

1

.
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2.2. EXAMPLES OF OPERADS AND PROPERADS

Definition 2.2.16. Let Holiebc,d free dg properad generated by the S-bimodule Lbc,d =
{Lbc,d(m,n)}m,n≥0 where

Lbc,d(m,n) = sgn⊗c
m ⊗ sgn⊗n

n [c(m− 1) + d(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)c|σ|+d|τ |

1 2
···

m

1 2
···

n

| σ ∈ Sm, τ ∈ Sn
〉

m,n≥1
m+n≥3

and the differential is given as in equation (2.4).

Proposition 2.2.17. The properad Holiebc,d is a minimal resolution of Liebc,d.

Proof. This was shown in [V, M1].

Remark 2.2.18. Note that Holieb⟲k is not a minimal resolution of Lieb⟲k , and the exis-
tence of such a minimal model is not shown.

Remark 2.2.19. It is still an open problem to find a minimal resolution of Lieb⟲k .

2.2.5 The properad of quasi-Lie bialgebras

Definition 2.2.20. A quasi-Lie k-bialgebra is a Z-graded vector space V together with
the maps

[−,−] : V ∧2 → V [k]

∆ : V → V ∧2

ϕ : K → V ∧3[−k]

of degree −k, 0 and k respectively, such that [−,−] satisfies the Jacobi identity, ∆ satisfies
the modified co-Jacobi identity

1

2
Alt3(∆⊗ Id)∆(a) = [Alt3(a⊗ 1⊗ 1), ϕ]

as well as the ([−,−], δ)-compability relation (2.3) and the (∆, ϕ)-compability relation

Alt4(∆⊗ id⊗ id)(ϕ) = 0.

Remark 2.2.21. A quasi-Lie bialgebra naturally is a Lie bialgebra when ϕ = 0.

Definition 2.2.22. The properad of quasi-Lie k-bialgebrasQliebk is the quotient properad
F⟨QLb0⟩/I where QLb0 = {QLb0(m,n)}m,n≥0 is the S-bimodule with QLb0(m,n) = 0
except for

QLb0(1, 2) = 11 ⊗ sgn2[k] =
〈

1 2

1

= −
2 1

1 〉

QLb0(2, 1) = sgn2 ⊗ 11 =
〈 1 2

1

= −
2 1

1

〉

QLb0(3, 0) = sgn3 ⊗ 10[−k] =
〈

1 2 3
= |σ|

σ(1)σ(2)σ(3)
〉
σ∈S3
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and I is the ideal generated by the elements

I :



1 2

3
+

2 3

1
+

3 1

2

1 2

3 +

2 3

1 +

3 1

2 + 1 2

3

+ 2 3

1

+ 3 1

2

1 2

1 2

−

1

1

2

2

−

1

2

2

1

+ (−1)k

2

1

1

2

+ (−1)k

2

2

1

1

1 2

3 4

− 1 3

2 4

+ 1 4

2 3

+ 2 3

1 4

− 2 4

1 3

+ 3 4

1 2

Definition 2.2.23. Let QHoliebk be the free dg properad generated by the S-bimodule
Qlb = {QLb(m,n)}m,n≥0 where

Lb(m,n) = sgnm ⊗ sgn⊗|k+1|
n [(m− 1) + (k + 1)(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)|σ|+(k+1)|τ |

1 2
···

m

1 2
···

n

| σ ∈ Sm, τ ∈ Sn
〉
m≥1,n≥0
m+n≥3

and the differential is given on generators as

δ
( 1 2

···
m

1 2
···

n

)
=

∑
[m]=I1⊔I2

|I1|≥0,|I2|≥1

∑
[n]=J1⊔J2

|J1|≥0,|J2|≥0

(−1)σ(I1⊔I2)+|I1|(|I2|+1) •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

.

This minimal resolution contains an additional generator compared to Holiebk.

Remark 2.2.24. We similarly define the degree shifted versionsQliebc,d := Qliebc+d−2{1−
c} and QHoliebc,d := QHoliebc+d−2{1− d} of these properads.

Proposition 2.2.25. The properads QHoliebk and QHoliebc,d are minimal resolutions of
Qliebk and Qliebc,d respectively.

Proof. This was shown in [Gr].

2.2.6 The properad of pseudo-Lie bialgebras

Definition 2.2.26. A pseudo-Lie k-bialgebra is a Z-graded vector space together with
the maps

η : V ∧3 → V

[−,−] : V ∧2 → V

∆ : V → V ∧2

ϕ : K → V ∧3

of degree −2k, −k, 0 and k respectively such that the following equations are satisfied

17
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1. (Modified Jacobi-relation)

∮
a,b,c

[[a, b], c] =

∮
a,b,c

η(a, b,∆1(c))∆2(c)

2. (Modified co-Jacobi-relation)

1

2
Alt3(∆⊗ Id)∆(a) = [Alt3(a⊗ 1⊗ 1), ϕ]

3. (Modified ([−,−],∆)-compability)

∆([a, b]) =

∮
a,b

Alt2(ada ⊗ Id)∆(b) +
∑
ϕ

(ϕ1 ⊗ ϕ2)η(ϕ3, a, b)

4. ((∆, ϕ)-compability)

Alt4(∆⊗ Id⊗ Id)(ϕ) = 0

5. (([−,−], η)-compability)

η(Alt4([a, b], c, d)) = 0

Remark 2.2.27. When η = 0, then we retain the definition of a quasi-Lie bialgebra, and
when η = ϕ = 0 we retain the definition of a Lie-bialgebra.

Definition 2.2.28. The properad of pseudo-Lie k-bialgebras Pliebk is the quotient prop-
erad F⟨PLb0⟩/I where PLb0 = {PLb0(m,n)}m,n≥0 is the S-bimodule where PLb0(m,n) =
0 except for

PLb0(0, 3) = 10 ⊗ sgn3[2k] =
〈

1 2 3
= |σ|

σ(1)σ(2)σ(3)

〉
σ∈S3

PLb0(1, 2) = 11 ⊗ sgn2[k] =
〈

1 2

1

= −
2 1

1 〉

PLb0(2, 1) = sgn2 ⊗ 11 =
〈 1 2

1

= −
2 1

1

〉

PLb0(3, 0) = sgn3 ⊗ 10[−k] =
〈

1 2 3
= |σ|

σ(1)σ(2)σ(3)
〉
σ∈S3

18



CHAPTER 2. GRAPH COMPLEXES, PROPERADS AND THEIR DEFORMATION
THEORY

and I is the ideal generated by the elements

I :



1 2

3
+

2 3

1
+

3 1

2
+ 1 2

3

+ 2 3

1

+ 3 1

2

1 2

3 +

2 3

1 +

3 1

2 + 1 2

3

+ 2 3

1

+ 3 1

2

1 2

1 2

−

1

1

2

2

−

1

2

2

1

+ (−1)k

2

1

1

2

+ (−1)k

2

2

1

1

+
1 2

1 2

1 2

3 4

− 1 3

2 4

+ 1 4

2 3

+ 2 3

1 4

− 2 4

1 3

+ 3 4

1 2

1 2

3 4

− 1 3

2 4

+ 1 4

2 3

+ 2 3

1 4

− 2 4

1 3

+ 3 4

1 2

Definition 2.2.29. Let PHoliebk be the dg free properad generated by the S-bimodule
PLb = {PLb(m,n)}m,n≥0 where

PLb(m,n) = sgnm ⊗ sgn⊗|k+1|
n [(m− 1) + (k + 1)(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)|σ|+(k+1)|τ |

1 2
···

m

1 2
···

n

| σ ∈ Sm, τ ∈ Sn
〉

m,n≥0
m+n≥3

and the differential is given on generators as

δ
( 1 2

···
m

1 2
···

n

)
=

∑
[m]=I1⊔I2

|I1|≥0,|I2|≥0

∑
[n]=J1⊔J2

|J1|≥0,|J2|≥0

(−1)σ(I1⊔I2)+|I1|(|I2|+1) •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

.

This properad contains the additional generator compared to QHoliebk.

Remark 2.2.30. We similarly define the degree shifted versions Pliebc,d := Pliebc+d−2{1−
c} and PHoliebc,d := PHoliebc+d−2{1− c} of these properads.

Proposition 2.2.31. The properads PHoliebk and PHoliebc,d are minimal resolutions of
Pliebk and Pliebc,d respectively.

Proof. This was shown in [Gr].

2.3 Deformation theory

2.3.1 Derivation complexes

Definition 2.3.1. Suppose that P and Q are (dg) properads with composition maps
{µP

G : G⟨P⟩ → P(m,n)}G∈G and {µQ
G : G⟨Q⟩ → Q(m,n)}G∈G. and let ρ : P → Q be
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a morphism of (dg) properads. Let d ∈ Z and Q[d] := {Q(m,n)[d]}m,n≥0 be the degree
shifted S-bimodule and set P ⊕ Q[d] := {P(m,n) ⊕ Q[d]}m,n≥0. Then there is a (dg)
properad {µG : G⟨P ⊕Q[d]⟩ → P(m,n)⊕Q[d](m,n)}G∈G induced by ρ such that for each
decorated graph g ∈ G⟨P ⊕ Q[d]⟩ either

• µG(g) = µP
G(g) if g is only decorated by elements of P.

• µG(g) = µQ
G(ρ(g)) if g exactly one vertex is decorated by an element of both Q and

the rest decorated by elements of P, where ρ(g) is the map that applies ρ to all
elements of P.

• µG(g) = 0 if g has two or more vertices decorated by elements of Q.

A derivaton of degree d of ρ is a morphism of S-bimodules D : P → Q such that the
associated map Id +D : P → P ⊕Q[d] is a morphism of properads. Denote the space of

derivations of ρ by Der(P ρ−→ Q). This is a dg vector space with the differential

δD = δQ ◦D − (−1)|D|D ◦ δP . (2.5)

When P = F⟨E⟩ for some S-bimodule E, then a derivation is uniquely determined by the
images of generators, hence

Der(F⟨E⟩ ρ−→ Q) ∼=
∏

m,n≥0

HomSm×Sn(E(m,n),Q(m,n))

where HomSm×Sn(E(m,n), E(m,n)) is the space of all Sm×Sn-equivariant linear maps (of

any degree). In the special case when P = Q and ρ = id, then Der(P) := Der(P id−→ P)
is a dg Lie algebra with Lie bracket

[D1, D2](a) = D1(D2(a))− (−1)|D1||D2|D2(D1(a)).

If P = F⟨E⟩, then

Der(F⟨E⟩) ∼=
∏

m,n≥0

HomSm×Sn(E(m,n),F⟨E⟩(m,n)).

2.3.2 Deformation complexes

The following theorem is from [MV].

Theorem 2.3.2. Let (P = F⟨E⟩, δ) be any dg (wheeled) properad generated by an S-
bimodule E = {E(m,n)}m,n≥0. Let Q = {Q(m,n)}m,n≥0 be any dg (wheeled) properad.
Let ρ : P → Q be a morphism of dg (wheeled) properads. Then

1. The graded vector space

Def(P ρ−→ Q) :=
∏

m,n≥0

HomSm×Sn(E(m,n),Q(m,n))[1]

where HomSm×Sn(E(m,n),Q(m,n)) is the space of all Sm × Sn-equivariant linear
maps (of any degree). Its differential is the same as equation 2.5. This is a canoni-
cally filtered homotopy Lie-algebra called the deformation complex of the morphism
f .

2. If δ(E(m,n)) ⊆ F≤2⟨E⟩ ⊆ P, then Def(P f−→ Q) is a dg Lie algebra.
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Remark 2.3.3. In this thesis, we will always encounter case (2), and will mainly focus
on the chain complex structure rather than the Lie-algebra structure. For full details,
including definitions of filtered homotopy Lie structures, we refer to [MV].

Remark 2.3.4. We have an isomorphism of complexes

Def(P f−→ Q) ∼= Hom(E,Q)[1] ∼= Der(P f−→ Q)[1].

This isomorphism does not, however, preserve the Lie bracket.

Example 2.3.5. Let us describe the complex Def(P f−→ Q) in the concrete example when
P = Q = Holieb as seen in [MW1]. Then

Def(Holiebc,d
id−→ Holiebc,d) =

∏
m,n≥1
m+n≥3

HomSm×Sn(
〈 1 2

···
m

1 2
···

n

〉
,Holiebc,d(m,n))[1]

= (Holiebc,d(m,n)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n )Sm×Sn [c(1−m) + d(1− n)]

where Holiebc,d(m,n) is the subspace of oriented graphs with m out-hairs and n in-hairs.
The differential acts on graphs by splitting a vertex into two vertices with an edge attached,
and then summing over all possible reattachments of hairs and edges.

2.4 Graph complexes

2.4.1 The Kontsevich graph complex

Definition 2.4.1. Let VvEecgra be the set of connected directed graphs with e edges and
v vertices. The edges and vertices are labeled from 1 to e and 1 to v respectively. Both
tadpoles and multiple edges are allowed in the graphs. Let k ∈ Z and let VvEeGCk be the
graded K vector space concentrated in degree (v− 1)k+ (1− k)e generated by VvEecgra.
There is a natural right action of Sv × Se × S×e

2 on the vector space permuting the labels
of vertices, permuting the labels of edges, and reversing the direction of an edge. The full
and connected Kontsevich graph complex (cfGCk, d) is the chain complex where

cfGCk :=


∏

e,v

(
V̄vĒeGCk ⊗ sgne

)
Sv×Se×S×e

2

for k even,∏
e,v

(
V̄vĒeGCk ⊗ sgnv ⊗ sgn⊗e

2

)
Sv×Se×S×e

2

for k odd.

The subscript denotes taking the space of coinvariants under the group actions. The
degree one differential d acts on graphs Γ as

d(Γ) := δ(Γ)− δ′(Γ)− δ′′(Γ) =
∑

x∈V (Γ)

δx(Γ)− δ′x(Γ)− δ′′x(Γ)

where V (Γ) is the set of vertices of Γ, δx(Γ) is the sum of graphs where the vertex x
has been replaced by two vertices with one edge between them, and the sum is over all
reattachments of edges to these two vertices. The expression δ′x(Γ) denotes the graph
where an outgoing univalent vertex has been attached to x, and vice versa for δ′′x(Γ) with
an incoming univalent vertex. The signs of the resulting graphs are determined so that
the new edge is labeled e+1, the source vertex of the edge e+1 is labeled with the original
vertex x, and the target vertex is labeled with v + 1. Note that no univalent vertices are
created under the action of the differential since any such graphs in δx and δ′x + δ′′x cancel
each other.
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Elements of cfGCk can be viewed as equivalence classes of undirected graphs up to a sign
depending on labelings on vertices or edges. When representing a graph, we normally pick
a representative graph with fixed labelings on edges and vertices, as well as directions of
edges.

Example 2.4.2. Consider a vertex x with one outgoing edge and two incoming edges in
some representative graph Γ in cfGCk. Pictorially, we draw this as

x

i2 i3

i1

where eventual vertices and edges not adjacent to x have been omitted. Then δx acts on
Γ as

δx

(
x

i2 i3

i1
)

= x v+1
e+1

i2 i3

i1

+ x v+1
e+1

i2 i3

i1

+ x v+1
e+1

i3 i2

i1

+ x v+1
e+1

i2 i3

i1

+ x v+1
e+1

i3 i2

i1

+ x v+1
e+1

i3i2

i1

+ x v+1
e+1

i2 i3

i1

+ x v+1
e+1

i2 i3

i1

.

Similarly, δ′x and δ′′x act on Γ as

δ′x

(
x

i2 i3

i1
)

= x v+1
e+1

i2 i3

i1

, δ′′x

(
x

i2 i3

i1
)

= x v+1
e+1

i2 i3

i1

.

Remark 2.4.3. The graph complex (fGCk, d) of not necessarily connected graphs can be
described in terms of the complex of connected graphs, so no information is lost by con-
sidering the smaller complex. More specifically, cfGCk = S+(fGCk[−k])[k], where S+(V )
denotes the (completed) symmetric product space of the (dg) vector space V [W1].

Remark 2.4.4. From the definition of cfGCk, we note that complexes of the same parity
are isomorphic up to a degree shift. The only two crucial complexes to study are thus
cfGC2 and cfGC3. As we will soon see, we know much more about the first one compared
to the latter.

Definition 2.4.5. Let Γ be a graph with e edges and v vertices. The loop number of Γ is
the integer b = e− v + 1.

Remark 2.4.6. The loop number of a graph is invariant under the differential.

The term full refers to that there is no restriction on which types of graphs we consider
as generators. Let GCk be the subcomplex of cfGCk of graphs with no univalent vertices,
and no bivalent vertices (except if the loop number of the graph is one). We call GCk the
Kontsevich graph complex. The inclusion

GCk ↪→ cfGCk

is a quasi-isomorphism [W2]. The cohomology of the subcomplex b1GCk of GCk consisting
of graphs with loop number one is fully described as

H(b1GCk) =
⊕
i≥1

i≡2k+1 mod 4

K[k − i]

where K[k− i] denotes the loop-graph containing i edges. The cohomology of GC2 is only
partially understood in negative degrees and degree zero. The following remarkable result
was shown by T. Willwacher in [W1].

22



CHAPTER 2. GRAPH COMPLEXES, PROPERADS AND THEIR DEFORMATION
THEORY

Theorem 2.4.7. There is a Lie algebra structure on H0(GC2) that is isomorphic to the
Grothendieck-Teichmuller Lie algebra grt.

H0(GC2) ∼= grt

Furthermore the cohomology in negative degrees vanishes.

H<0(GC2) = 0.

In the dual complex gck where the differential is defined by contracting edges, the zeroth
homology contains the the wheel classes {ω2n+1}n∈N:

ω3 = ω5 = ω7 = · · ·

It is conjectured that these are the only classes of homology zero. In GC2, the first wheel
classes are represented by the following graphs:

, +
5

2

We lack major results about the cohomology of GC3 except that it is concentrated in
negative degrees. This result can be derived from a more general statement using loop
numbers.

Proposition 2.4.8. Let b ≥ 2 and bbGCk be the subcomplex of GCk of graphs with loop
number b. Then H l(bbGCk) = 0 for (3− k)b− 3 < l.

Proof. The degree of a graph Γ ∈ bbGCk can be rewritten as

|Γ| = (v − 1)k − (k − 1)e = (v − e− 1)k + e = −bk + e.

Now 3v ≤ 2e since the vertices of Γ are at least trivalent. Then we get the inequality

2b = 2e− 2v + 2 ≥ v + 2 =⇒ v ≤ 2b− 2.

Finally, the degree of |Γ| ≤ (3− k)b− 3 since

|Γ| = −bk + e = −bk + (b+ v − 1) = (1− k)b+ v − 1 ≤ (1− k)b+ 2b− 3 = (3− k)b− 3.

Since b and k are independent from Γ, there are no graphs of such degrees in bbGCk.

Corollary 2.4.9. H l(GC3) = 0 for l > −3.

2.4.2 The directed graph complex and its subcomplexes

Definition 2.4.10. The full and connected directed Kontsevich graph complex (cfdGCk, d)
is the complex where

cfdGCk :=


∏

e,v

(
V̄vĒeGCk ⊗ sgne

)
Sv×Se

for k even,∏
e,v

(
V̄vĒeGCk ⊗ sgnv

)
Sv×Se

for k odd.

The generators of this complex are equivalence classes of directed graphs. The differential
is defined using the same formula d(Γ) = δ(Γ)− δ′(Γ)− δ′′(Γ) in definition 2.4.1 and with
the same sign conventions.
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2.4. GRAPH COMPLEXES

Remark 2.4.11. The directed graph complex similarly decomposes over loop numbers
as cfdGCk =

⊕
i≥0 bifdGCk.

Definition 2.4.12. Let b1dGCk ⊆ b1fdGCk be the subcomplex of graphs with no univalent
vertices, and bidGCk ⊆ bifdGCk the subcomplex of graphs with neither univalent nor
passing vertices for i ≥ 2. Set dGCk =

⊕
i≥1 bidGCk.

Proposition 2.4.13. The inclusion dGCk ↪→ cfdGCk is a quasi-isomorphism.

Proof. This was shown for the oriented graph complex in [Z1], but the same arguments
apply here.

Proposition 2.4.14. Let GC → dGCk be the chain morphism mapping an undirected
graph Γ to the sum of directed graphs of the same underlying shape, summing over all
possible directions on edges on Γ. Then this map is a quasi-isomorphism.

Proof. See Appendix K of [W1].

2.4.3 Subcomplexes of dGCk

There are several subcomplexes of dGCk whose cohomology has been studied and shown
to be related to other graph complexes. Here is an overview of the most important ones.

• The oriented graph complex oGCk. This is the subcomplex of graphs that do not
contain any closed paths of directed edges. M. Zivkovic found an explicit chain-map
dGCk → oGCk+1, which he also showed to be a quasi-isomorphism [Z1].

• The sourced graph complex dGCs
k. It is the subcomplex of graphs that contain at

least one source vertex. The inclusion oGCk ↪→ dGCs
k is a quasi-isomorphism [Z2].

• The targeted graph complex dGCt
k. It is the subcomplex of graphs that contain at

least one target vertex. It is naturally isomorphic to dGCs
k by the map that reverses

the direction of all edges of a graph. Similarly, the inclusion oGCk ↪→ dGCt
k is a

quasi-isomorphism [Z2].

• The sourced or targeted graph complex dGCs+t
k . It is the subcomplex of graphs with

at least one source or one target vertex. We have that H l(dGCs+t
3 ) = 0 for l ≤ 1

[Z3].

• The sourced and targeted graph complex dGCst
k . This is the subcomplex of graphs that

contain at least one source and one target vertex. There is a short exact sequence

0 // dGCst
k

// dGCs
k ⊕ dGCt

k
// dGCs+t

k
// 0

Γ � // (Γ,Γ)

(Γ1,Γ2)
� // Γ1 − Γ2

Since H l(dGCs+t
3 ) = 0 for l ≤ 1 one sees that H0(dGCst

3 ) = H0(dGCs
3) ⊕ H(dGCt

3)
[Z3]. In particular, we get the remarkable result:

Corollary 2.4.15. H0(dGCst
3 ) = H0(GC2)⊕H0(GC2) = grt⊕ grt.
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dGCs
k

oGCk dGCst
k dGCs+t

k dGCk

dGCt
k

Figure 2.3: Diagram of the subcomplexes of dGCk.

Additionally, we will be interested in the completely wheeled graph complex dGC⟲
k . This

complex is defined as the quotient complex dGCk/dGC
s+t
k . Hence it consists of graphs

where all vertices are at least trivalent, and each vertex has at least one incoming and one
outgoing edge. We get the short exact sequence

0 // dGCs+t
k

// dGCk
// dGC⟲

k
// 0

From this short exact sequence, we can derive the following result.

Lemma 2.4.16. H l(dGC⟲
3 ) = 0 for − 2 ≤ l ≤ 1.

Proof. This follows by noting that H l(dGCs+t
3 ) = 0 for l ≤ 1 and H l(dGC3) = 0 for

l ≥ −2.
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Chapter 3

Derivations of Lie bialgebras

In this chapter we compute the cohomology of the two derivation complexesDer(Holieb⟲c,d)

and Der•(Holieb⟲c,d) by establishing explicit quasi-isomorphisms to directed Kontsevich
graph complexes. We end the chapter by explicitly computing two cohomology classes
of H0(Der(Holieb⟲1,1)). The content of this chapter is largely based on the article De-
formation theory of the wheeled properad of strongly homotopy Lie bialgebras and graph
complexes.

3.1 Derivation complexes of Holieb⟲c,d

Definition 3.1.1. Let Holieb•c,d be the free dg properad generated by the S-bimodule
Lb•c,d = {Lb•c,d(m,n)}m,n≥0 where

Lb•c,d(m,n) = sgn⊗c
m ⊗ sgn⊗d

n [c(m− 1) + d(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)c|σ|+d|τ |

1 2
···

m

1 2
···

n

| σ ∈ Sm, τ ∈ Sn
〉
m,n≥0

and whose differential acts on generators as

δ
( 1 2

···
m

1 2
···

n

)
=

∑
[m]=I1⊔I2

∑
[n]=J1⊔J2

(−1)σ(I1⊔I2)+|I1|(|I2|+1) •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

.

Definition 3.1.2. Let Holieb+c,d be the free dg properad generated by the S-bimodule

Lb+c,d = {Lb+c,d(m,n)}m,n≥0 where

Lb+c,d(m,n) = sgn⊗c
m ⊗ sgn⊗d

n [c(m− 1) + d(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)c|σ|+d|τ |

1 2
···

m

1 2
···

n

| σ ∈ Sm, τ ∈ Sn
〉
m,n≥1

and whose differential acts on generators as

δ
( 1 2

···
m

1 2
···

n

)
=

∑
[m]=I1⊔I2

|I1|≥0,|I2|≥1

∑
[n]=J1⊔J2

|J1|≥1,|J2|≥0

(−1)σ(I1⊔I2)+|I1|(|I2|+1) •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

.
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Holieb+c,d :

Holieb•c,d : ,
···
≥1

,
···
≥1

,

Figure 3.1: Additional generators of Holieb+c,d and Holieb•c,d compared to Holiebc,d

Remark 3.1.3. The definition of these complexes only differs from that of Holiebc,d
in that they have additional generators (see Figure 3.1) and that their differentials are
modified accordingly. Furthermore, there are natural projections

π• : Holieb•c,d ↠ Holiebc,d and π+ : Holieb+c,d ↠ Holiebc,d

which are dg morphisms. The morphism π• factors through π+ as

Holieb•c,d ↠ Holieb+c,d ↠ Holiebc,d.

Definition 3.1.4. Let the properad Ĥoliebc,d be the loop number completion of Holiebc,d.
This properad has a complete topology such that the derivations are considered as con-
tinuous. We use the same notation for the loop number completion of other properads.

Definition 3.1.5. The complex Der•(Holieb⟲c,d) is the derivation complex with respect
to the morphism

π•,⟲ : Ĥolieb
•,⟲
c,d ↠ Ĥolieb

⟲

c,d

induced by π•. Similarly, let Der(Holieb⟲c,d) be the derivation complex with respect to the
morphism

π+,⟲ : Ĥolieb
+,⟲

c,d ↠ Ĥolieb
⟲

c,d

induced by π+. The differential d on both complexes is given by the vertex splitting
differential dspl from Holiebc,d with the additional terms of attaching (m,n) corollas to
every hair for all integers m,n:

dΓ = dsplΓ±
∑
m,n

1 2 ··· m Γ

1 2 ··· n

∓
∑
m,n

1 2 ··· m

1 2 ··· n Γ

(3.1)

The sign rule for this formula can be found in [MW1].

Remark 3.1.6. Since the properads of the derivation complexes are free, they can be
described as

Der•(Holieb⟲c,d)
∼=

∏
m,n≥0

(Holieb⟲c,d(m,n)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n )Sm×Sn [1 + c(1−m) + d(1− n)]

Der(Holieb⟲c,d)
∼=

∏
m,n≥1

(Holieb⟲c,d(m,n)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n )Sm×Sn [1 + c(1−m) + d(1− n)].

where Holieb⟲c,d(m,n) is the set of generating graphs of Holieb⟲c,d with m outputs and n
inputs.
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CHAPTER 3. DERIVATIONS OF LIE BIALGEBRAS

The loop number of a graph in any of the derivation complexes remains invariant under
the differential, and so the complex splits over loop numbers. The components of graphs
with loop number zero in both complexes are identical, and we denote this complex by
Derb=0(Holieb⟲c,d)

Theorem 3.1.7. The cohomology of Derb=0(Holieb⟲c,d) is generated by the series of single
vertex graphs

∑
m,n≥1
m+n≥3

(m+ n− 2)
· · ·

· · ·

︷ ︸︸ ︷
︸ ︷︷ ︸

m

n

.

Proof. The component Derb=0(Holieb⟲c,d) is isomorphic to the component of graphs with

loop number zero in the derivation complex Der(Holieb↑c,d) of the unwheeled properads.
The cohomology of the latter was computed in [MW1] to be generated by the series of
graphs above.

3.2 The bi-weighted graph complex

When studying the complex Der•(Holieb∗⟲c,d), one notes that the sign rules of the differ-
ential are rather complicated when expressed in terms of generating corollas using the
defining formula (3.1). In this section we introduce the bi-weighted graph complex fwGCk,
and show that it is isomorphic to Der•(Holieb⟲c,d). The sign rules of fwGCk are the same
as for the Kontsevich graph complexes, i.e., based on ordering of edges or vertices, and
are generally easier to work with.

3.2.1 Definition of the bi-weighted graph complex

Let Γ be a directed graph and x a vertex of Γ. Let |x|out denote the number of outgoing
edges from x, and similarly let |x|in denote the number of incoming edges to x. A bi-weight
of a vertex x is a pair of non-negative integers (wout

x , win
x ) satisfying

1. wout
x + |x|out ≥ 1,

2. win
x + |x|in ≥ 1,

3. wout
x + win

x + |x|out + |x|in ≥ 3.

We refer to wout
x as the out-weight and win

x the in-weight of x respectively. A graph whose
vertices all carry bi-weights is called a bi-weighted graph.

Example 3.2.1. We include the bi-weights of a vertex when drawing a bi-weighted graph

as
wout

x

win
x

. A bi-weighted graph might then look like

2
1

1
2

0
0

0
3

0
1

3
0

.
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3.2. THE BI-WEIGHTED GRAPH COMPLEX

Let VvEewcgra be the set of connected bi-weighted graphs with e edges and v vertices
labeled from 1 to e and from 1 to v respectively. Let k ∈ Z and let

VvEewGCk := ⟨VvEewcgra⟩[−(v − 1)k − (1− k)e]

be the graded vector space overK of formal power series of bi-weighted graphs concentrated
in degree (v−1)k+(1−k)e. We have an action of Sv×Se on the vector space by permuting
labels of vertices and edges respectively.

Definition 3.2.2. The bi-weighted graph complex (fwGCk, d) is the chain complex where

fwGCk :=


∏

v,e

(
V̄vĒeWGCd ⊗ sgne

)
Sv×Se

for k even,∏
v,e

(
V̄vĒeWGCd ⊗ sgnv

)
Sv×Se

for k odd.

The differential d is defined on a graph Γ as

d(Γ) := δ(Γ)− δ′(Γ)− δ′′(Γ) =
∑

x∈V (Γ)

δx(Γ)− δ′x(Γ)− δ′′x(Γ)

where V (Γ) is the set of vertices of Γ, δx(Γ) denotes the splitting of the vertex x similar
to the vertex splitting in dGCk with the addition that we sum over all possible ways of
redistributing the bi-weight of x to the two new vertices. The δ′x(Γ) is the sum of graphs
where the out-weight of x is decreased by one and has one outgoing edge added being
attached to a new univalent vertex. The summation is over all possible bi-weights on the
new vertex. The δ′′x(Γ) is defined similarly but where the in-weight is decreased by one
and the edge is incoming to x. The signs of the graphs under the action of the differential
are the same as for δ, δ′, and δ′′ in dGCk.

We pictorially represent the action of dx on a vertex x as

dx

(
m
n

···

···

)
=

∑
m=m1+m2
n=n1+n2

m1
n1

m2
n2

· · ·

· · ·

−
∑

i≥1,j≥0
i+j≥2

m−1
n

i
j···

···

−
∑

i≥0,j≥1
i+j≥2

m
n−1

i
j

···

···

We tacitly assume in this formula that any term (if any) with negative in- or out-weight
is set to zero. Similarly, any graph with vertices of a bi-weight not satisfying condition 3
above is also set to zero. Some examples of vertices with invalid bi-weights are

1
0

0
0

1
1

0
4

1
0

−1
2

Remark 3.2.3. Contrary to dGCk, the creation of new univalent vertices of graphs in
fwGCk do not in general cancel under the action of the differential. If dunix is the part
of the differential that increases the number of univalent vertices, then dunix acting on a
vertex can look like

dunix

(
3
0

)
= 0

0

3
0

+ 1
0

2
0

−
∑

i≥1,j≥0
i+j≥2

2
0

i
j
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CHAPTER 3. DERIVATIONS OF LIE BIALGEBRAS

3.2.2 A special kind of bi-weight

Definition 3.2.4. Let r ≥ 0 be an integer. The symbol ∞r when used as an in-weight or
out-weight denotes the sum of graphs

∞r
n

···

···

=
∑
i≥r

i
n

···

···

, m∞r

···

···

=
∑
i≥r

m
i

···

···

For graphs with two or more of these symbols decorating vertices, the sum is distributed
as in the example below:

4∞1

∞0
0

∞2
0

∞1∞1
0∞0

∞1
0

2∞1

=
∑
il≥0
jm≥1
kn≥2

4
j1

i1
1

k1
0

j3
j4

0
i2

j5
0

2
j6

Any term of such a sum containing a vertex of invalid bi-weight is set to zero.

Using this convention, the differential is described as

dx

(
m
n

···

···

)
=

∑
m=m1+m2
n=n1+n2

m1
n1

m2
n2

· · ·

· · ·

− m−1
n

∞1∞0···

···

− m
n−1

∞0∞1

···

···

Remark 3.2.5. New univalent target vertices cancel under the differential when the out-
weight of a vertex is 0 or ∞1, and similarly for new univalent source vertices.

3.2.3 The bi-weighted graph complex and the deformation complex

Definition 3.2.6. Let fwGC+
k be the subcomplex of fwGCk generated by graphs having

at least one vertex with an out-weight greater than zero, and at least one vertex an with
in-weight greater than zero. These two vertices are allowed to be the same vertex.

The complex fwGCk is constructed to be isomorphic to the derivation complexDer•(Holieb⟲c,d).
We interpret the bi-weight of a vertex as the number of outgoing and incoming hairs that
are attached to it. We define the map

F : Der•(Holieb⟲c,d) → fwGCc+d+1

where a graph Γ with unlabeled hairs (up to symmetry/skew-symmetry) is mapped to the
bi-weighted graph F (Γ) of the same shape and where the bi-weights of vertices correspond
to the number of in- and out-hairs of the vertices in Γ.

Proposition 3.2.7. The map F : Der•(Holieb⟲c,d) → fwGCc+d+1 is a chain map of degree
0 such that

1. the map F is an isomorphism of complexes,

2. the map F restricts to an isomorphism F+ : Der(Holieb⟲c,d) → fwGC+
c+d+1.
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Proof. Proving that F is an isomorphism is done by inspection. We do, however, need to
show that F is of degree 0. Recall that the derivation complex decomposes as

Der•(Holieb⟲c,d) =
∏

m,n≥0

(
Holieb⟲c,d(m,n)⊗sgn⊗|c|

m ⊗sgn⊗|d|
n

)Sm×Sn [1+c(m−1)+d(n−1)]

where Holieb⟲c,d(m,n) is the vector space of graphs with m out-hairs and n in-hairs. Let Γ
be a graph in the derivation complex. For each vertex x of Γ, let |x|out denote the number
of outgoing half-edges and |x|in the number of incoming half-edges. Then

|Γ| =
∑

x∈V (Γ)

(
1− (|x|out − 1)− (|x|in − 1)

)
− 1− c(1−m)− d(1− n)

=
∑

x∈V (Γ)

(
1 + c+ d

)
− (1 + c+ d)−

∑
x∈V (Γ)

(
c|x|out +m|x|in

)
+ cm+ dn

= |V (Γ)− 1|(c+ d+ 1)− |E(Γ)|(c+ d) = |F (Γ)|

One remarks that F+ is a bijection by noting that bi-weights are symbolizing hairs and
Der(Holieb⟲c,d) can be seen as generated by graphs with at least one out-hair and one
in-hair attached.

3.2.4 Decomposition over decorations and loop numbers

Let fwGC0
k be the subcomplex of fwGCk generated by graphs whose vertices are only

decorated by 0
0 , and fwGC∗

k its complement. Then the complex fwGCk split as

fwGCk = fwGC0
k ⊕ fwGC∗

k.

Proposition 3.2.8. Let dGC≥3,⟲
k ⊆ dGC⟲

k be the subcomplex of graphs with all vertices at

least trivalent. Then the complex fwGC0
k is isomorphic to dGC≥3,⟲

k of graphs with neither
sources nor targets.

Proof. By direct inspection of the graphs, where all vertices can be decorated by 0
0 , one

easily sees that they need to be at least trivalent and have at least one incoming and one
outgoing vertex. This corresponds to the graphs in dGC≥3,⟲

k . One also notes that the
differentials act in the same manner.

Recall that the loop number of a graph is preserved under the differential. Consider the
decompositions

fwGCk = b0wGCk ⊕ wGCk

fwGC∗
k = b0wGC

∗
k ⊕ wGC∗

k

fwGC+
k = b0wGC

+
k ⊕ wGC+

k

where b0wGCk, b0wGC
∗
k and b0wGC

+
k are the subcomplexes of graphs with loop number

zero and wGCk, wGC∗
k and wGC+

k the subcomplex of graphs with loop number one and
higher. We note that graphs with loop number zero cannot be completely bald, and
so b0wGCk = b0wGC

∗
k. Further note that there are no closed loops in a graph with loop

number zero, and so they contain at least one source and one target vertex. These vertices
must have positive in-weight and out-weight respectively, and so b0wGCk = b0wGC

+
k .

Proposition 3.2.9. The cohomology of the complex of graphs with loop number zero
b0wGCk is generated by the series∑

i,j≥1
i+j≥3

(i+ j − 2) i
j

.
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Proof. These graphs correspond to the part of the deformation complex of graphs with
loop number zero, whose cohomology was computed to be the counterpart of this graph
in Theorem 3.1.7.

3.3 Special in-vertices and special out-vertices

In this section we will define three subcomplexes qGCk ⊂ wGCk, qGC∗
k ⊂ wGC∗

k and
qGC+

k ⊂ wGC+
k consisting of graphs whose vertices are decorated by four types of deco-

rations: ∞1
∞1

, ∞1
0 , 0

∞1
and 0

0 . The main goal is to show that these inclusions are quasi-
isomorphisms. We do this by considering two consecutive filtrations on the complexes over
special-in and special-out vertices respectively. We then show that the associated spectral
sequences agree on some page.

3.3.1 Convergence of filtrations and their associated spectral sequences

In this paper, we will consider many arguments where we consider the filtration of a chain
complex and then study the associated spectral sequences. All the spectral sequences we
construct in this way will converge. To see this, we do a similar trick of shifting the degrees
of the complexes as seen in [W1]. Let the new degree of a graph be k(v − 1)− (k − 1)e+
(k − 1

2)(e − v) = 1
2(v + e) − k. The cohomology of both complexes agrees up to degree

shifts. Further, any filtration in the old grading corresponds to a filtration with the new
grading. We see that the number of underlying directed graphs of the bi-weighted graphs
contained in each degree is finite. Any filtration we do consider will be over the number
of vertices of certain types, and so the filtration will be bounded and hence converge to
the desired cohomology. The cohomology of the original complex is then acquired from
the shifted version.

3.3.2 Filtration over special in-vertices

Definition 3.3.1. Let Γ be a bi-weighted graph. A vertex x of Γ is a special in-vertex if

i) either x is a univalent vertex with one outgoing edge and out-weight zero, i.e on the

form 0
n

ii) or x becomes a univalent vertex of type i) after recursive removal of all special-in
vertices of type i) from Γ (see figure 3.2).

2
3

0
3

0
1

0
4

0
0

0
2

0
2

0
2

0
2

0
6

2
3

0
3

0
1

0
0

0
2

0
2

2
3

0
3

0
0

2
3

Figure 3.2: Example of recursive removal of special-in vertices of the rightmost graph. All
vertices except the top one are special in-vertices.

Any vertex that is not a special in-vertex is called an in-core vertex. The special in-vertices
of a graph form trees with a flow towards some in-core vertex and where the trees have no
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3.3. SPECIAL IN-VERTICES AND SPECIAL OUT-VERTICES

out-hairs. Given an arbitrary graph Γ in wGCk, we define the associated in-core graph γ
as the one spanned by in-core vertices with their in-weight forgotten. Then every vertex x
in γ has three integer parameters associated to it, |x|out, |x|in and wout

x . Note that every
graph contains at least one in-core vertex, and so every graph has an associated in-core
graph.

Consider the filtration of wGCk over the number of in-core vertices, i.e., the sequence of
complexes wGCk = F0wGCk ⊆ F1wGCk ⊆ F2wGCk ⊆ ... where FiwGCk is the subcomplex
of wGCk generated by graphs containing i or more special in-vertices. Let {Sin

r wGCk}r≥0

be the associated spectral sequence.

Proposition 3.3.2. The page one complex Sin
1 wGCk is generated by directed graphs Γ

whose vertices V (Γ) are independently decorated by one out-weight m and with two possible
symbols 0 or ∞1 as in-decorations, subject to the following conditions:

1. If x ∈ V (Γ) is a source, then

x = m∞1

···
≥1

with m+ |x|out ≥ 2 and |x|out ≥ 1

2. If x ∈ V (Γ) is a target with precisely one in-edge, then

x = m∞1
with m ≥ 1, or x = m

0 with m ≥ 2

3. If x ∈ V (Γ) is a target with at least two in-edges, then

x = m∞1

···
≥2

with m ≥ 1, or x = m
0
···
≥2

with m ≥ 1

4. If x ∈ V (Γ) is passing (one in-edge and one out-edge), then

x = m∞1
with m ≥ 0, or x = m

0 with m ≥ 1

5. If x ∈ V (Γ) is of none of the types above (i.e., x is at least trivalent and has at least
one in-edge and at least one out-edge), then

x = m∞1

···

···

with m ≥ 0, or x = m
0
···

···

with m ≥ 0

The differential acts on a graph Γ ∈ Sin
1 wGCk with vertices of the types (1)-(5) above as

d(Γ) =
∑

x∈V (Γ) dx(Γ). The map dx acts on vertices with in-weight ∞1 and 0 respectively
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as

dx

(
m∞1

···

···

)
=

∑
m=m1+m2

(
m1∞1

m2∞1

· · ·

· · ·

+ m1
0

m2∞1

· · ·

· · ·

+ m1∞1

m2
0

· · ·

· · ·

)

− m−1
∞1

∞1∞0···

···

− m∞1
∞1∞1

···

···

− m
0 ∞1∞1

···

···

dx

(
m
0

···

···

)
=

∑
m=m1+m2

m1
0

m2
0

· · ·

· · ·

− m−1

0

∞1∞0···

···

Any term on the right-hand side containing at least one vertex not of the type (1)− (5) is
set to zero.

The rule of the differential follows from the bi-weight types of the vertices mentioned
above. So we only need to show that the cohomology of Sin

0 wGCk is generated by graphs
with such bi-weights. The differential acts on the initial page Sin

0 wGCd by only creating
special-in vertices and leaves the connected in-core graph unchanged. Hence the complex
decomposes into a direct sum parameterized by the set of all possible in-core graphs

Sin
0 wGCk

∼=
⊕
γ

inCore(γ)

where inCore(γ) is the subcomplex of Sin
0 wGCk of all graphs whose associated in-core graph

is γ. The complex inCore(γ) decomposes further into a tensor product of complexes

inCore(γ) ∼=
( ⊗

x∈V (γ)

T in
x

)Aut(γ)

with one complex T in
x for each x in V (γ) and where Aut(γ) is the group of automorphisms

of γ acting by permuting the complexes of the tensor complex to preserve signs. Each com-
plex T in

x consists of trees of special in-vertices attached to an in-core vertex x and the differ-
ential acts by only creating special in-vertices on x and in the trees. The complexes T in

x de-
pend on x only via the number of outgoing and incoming edges attached to x in the in-core
graph as well as on the out-weight wout

x . The in-weight of x is not fixed. The complexes T in
x

which have the same values of the parameters |x|out, |x|in and wout
x are isomorphic to each

other, so we will often write T in
v

∼= T in
|x|out,|x|in,wout

x
. So we have to study a family of com-

plexes T in
a,b,c parameterized by integers a, b, c ≥ 0 such that a+c ≥ 1 and (a, b, c) ̸= (1, 0, 0).

The first condition guarantees that the in-core vertex has at least one out-edge or out-
weight, and the second condition corresponds to the invalid configuration where the in-core
vertex would be a special-in vertex. The in-weight of the core vertex in T in

a,b,c is any num-

ber win
x satisfying the condition win

x + b + #(in-edges from special in-vertices) ≥ 1 and
win
x + a + b + c +#(in-edges from special in-vertices) ≥ 3. Proposition 3.3.2 now follows

from the following lemma.
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Lemma 3.3.3. The cohomology of T in
a,b,c is generated by one or two classes containing

the in-core vertex decorated by some bi-weights depending on the parameters a, b, c. More
precisely

For a ≥ 1 H(T in
a,0,c) =

〈
c∞1

〉
, when c ≥ 0 and a+ c ≥ 2

H(T in
0,1,c) =


〈

c∞1

〉
if c = 1〈

c∞1
, c

0

〉
if c ≥ 2

H(T in
1,1,c) =


〈

c∞1

〉
if c = 0〈

c∞1
, c

0

〉
if c ≥ 1

For b ≥ 2 H(T in
0,b,c) =

〈
c∞1

, c
0

〉
, when c ≥ 1

For a, b ≥ 1 and a+ b ≥ 3 H(T in
a,b,c) =

〈
c∞1

, c
0

〉
, when c ≥ 0

The differential in T in
a,b,c acts on graphs such that the number of univalent special in-

vertices stays the same or is increased. Consider the filtration on T in
a,b,c by the number of

univalent vertices (considering the graph consisting of only the root vertex v as having
one univalent vertex). Let gr(T in

a,b,c) be the associated graded complex. It decomposes as

gr(T in
a,b,c) =

⊕
N≥1 uNT in

a,b,c where uNT in
a,b,c is spanned by trees with precisely N univalent

special in-vertices. Lemma 3.3.3 follows from the following results:

Lemma 3.3.4. The cohomology H(u1T in
a,b,c) is generated by the same elements given in

Lemma 3.3.3.

Lemma 3.3.5. The complex uNT in
a,b,c is acyclic for N ≥ 2.

Proof of Lemma 3.3.4: We start by computing the cohomology of u1T in
a,b,c. The graphs in

this complex are on the form

c
n0

0
n1

· · · 0
nl−1

0
nl

· · ·

· · · ︸ ︷︷ ︸
l

︷ ︸︸
︷a

︷︸︸
︷
b

with l ≥ 0. If l = 0, then n0 ≥ 1 when (a, b, c) is either of the three cases (0, 1, 1), (1, 0, 0)
or (a, 0, c) for a ≥ 1 and c ≥ 0. In any other case for (a, b, c) we have that n0 ≥ 0. If l ≥ 1,
then n0 ≥ 0, ni ≥ 1 for 1 ≤ i ≤ l − 1 and nl ≥ 2. If l = 0, the induced differential acts on
the root vertex as

d
(

c
n0

··· )
=

∑
n0=n′

0+n′′
0

n′
0≥0, n′′

0≥2

c
n′
0

0
n′′
0

···

−

c
n0−1

0∞2

···
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and when l ≥ 1, it acts on the root vertex as

d
(

c
n0

··· )
=

∑
n0=n′

0+n′′
0

n′
0≥0, n′′

0≥1

c
n′
0

0
n′′
0

···

.

Also for l ≥ 1 there are passing vertices and a univalent vertex in the graph. The differ-
ential acts on these vertices as

d
(

0
ni

)
=

∑
ni=n′

i+n′′
i

n′
i,n

′′
i ≥1

0
n′
i

0
n′′
i

, d
(

0
nl

)
=

∑
nl=n′

l+n′′
l

n′
l≥1, n′′

l ≥2

0
n′
l

0
n′′
l

−

0
nl−1

0∞2

.

We can already identify the first cohomology classes generated by the graph consisting of

one core vertex on the form c
0

(whenever this in-weight is possible). The remaining

graphs to study are then on the form above with n0 ≥ 1 if l = 0, and n0 ≥ 0, n1, ..., nl−1 ≥ 1
and nl ≥ 2 if l ≥ 1. Let (I, d) be the complex generated by these graphs (i.e., the complex

where we exclude the graphs c
0

from u1T in
a,b,c when present). It is easy to verify that

that c∞1
is a cycle in (I, d). The lemma follows if we can show that the cohomology of

I is one-dimensional. There is a filtration of I over the total in-weight of a graph, as the
total in-weight can only remain invariant or increase under the action of the differential.
Let {TrI}r≥0 be the associated spectral sequence. The following two results conclude the
proof.

Lemma 3.3.6. The cohomology of (T0I, d) is generated by the graph consisting of a single

in-core vertex with in-weight 1. That is H(I, δ) =
〈

c
1

〉
.

Proof. We construct an isomorphic complex using the bar and cobar-construction. Let
V = V−1 ⊕ V0 be a graded vector space with V0 = K and V−1 = Ka. We consider
the augmented dga-algebra structure on V where the product is defined by µ(a, a) = 0,
and the differential d is zero. The bar complex B(V ) = (T c(V ), dB) satisfies dB = 0.
Recall that T c(V ) = K ⊕ sV a ⊕ (sV a)⊗2 ⊕ ... . All elements are of zero degree and we
denote the generator of (sV a)⊗n by sa ⊗ · · · ⊗ sa = [sa]n. Also recall the coproduct is
defined as ∆([sa]n) =

∑n−1
i=1 [sa]

i ⊗ [sa]n−i. Next consider the cobar complex Ω(B(V )) =

(T (s−1T c(sV )), dΩ). The degrees of the elements are ranging from 0 to −∞. A general
element of degree −k is on the form s−1[sa]p1 ⊗ · · · ⊗ s−1[sa]pk . The differential dΩ is now
defined as dΩ(s

−1[sa]p1 ⊗ · · · ⊗ s−1[sa]pk) =
∑k

i=1(−1)1−is−1[sa]p1 ⊗ · · · ⊗∆(s−1[sa]pi)⊗
· · · ⊗ s−1[sa]pk . If we reverse the grading of Ω(B(V )) and consider the reduced complex,
it is easy to check that Ω(B(V )) is isomorphic (T0I, d) as a complex. In this isomorphism
the element s−1[sa]p1⊗· · ·⊗s−1[sa]pk maps to the graph with k vertices, the in-core vertex
having in-weight p1−1 and the i : th vertex having in-weight pi for i ≥ 2. Now Ω(B(V )) is
quasi-isomorphic to V (for example, see [LV]). H(V ) is generated by 1K and a. Hence we
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note that [s−1sa] is the only cohomology class of Ω(B(V )), which corresponds in (T0I, d)
to the single vertex graph with in-weight one.

Corollary 3.3.7. The cohomology group of (I, d) is generated by the graph

c∞1
=

∞∑
i=1

c
i

.

Proof. By the above argument, we already know that H(I, d) is one-dimensional and that

its generating class given by c
1

plus higher in-weight terms. It is straight-forward to

see that the sum c∞1
is a cycle that satisfies this property.

Proof of Lemma 3.3.5. We need to show that uNT in
a,b,c is acyclic for N ≥ 2. We say that

a vertex x is a branch vertex if there are at least two paths starting at two different
univalent special in-vertices and ending at x (see figure 3.3). The number of branch
vertices either remains the same or increases under the action of the differential, and so
we consider the filtration over the number of branch vertices. In the associated graded
complex gr(uNT in

a,b,c) the non branch vertices of a graph are attached to branch vertices
as strings of passing vertices, and the differential acts by prolonging these strings. The
differential can not increase the in-weight of a branch vertex. We consider the filtration
over the total sum of the in-weights of the branch vertices. The differential of the associated
graded complex gr(gr(uNT in

a,b,c)) now acts only on the non branch vertices. The branch
vertices and the number of non branch vertices that are attached to a branch vertex are
invariant under the differential. By contracting the strings of non branch vertices in a
graph Γ into N hairs, we get a branch graph Γbr whose vertices are branch vertices. Then
the complex splits as

gr(gr(uNT in
a,b,c)) =

⊕
Γbr

branchGraph(Γbr)

summed over the set of all branch graphs Γbr. These complexes decompose as

branchGraph(Γbr) =
( ⊗
h∈H(Γbr)

I
)Aut(Γbr)

whereH(Γbr) is the set of hairs in Γbr and I is the complex from Lemma 3.3.7 and Aut(Γbr)
is the group of symmetries of Γbr acting with the appropriate signs. Since this group is
finite, Maschke’s Theorem gives

H
(( ⊗

h∈H(Γbr)

I
)Aut(Γbr)

)
∼=
(
H
( ⊗
h∈H(Γbr)

I
))Aut(Γbr) ∼=

( ⊗
h∈H(Γbr)

H(I)
)Aut(Γbr)

Now H(I) is generated by one element by Corollary 3.3.7. In a branch graph, there is
at least one vertex with two or more hairs. Hence the cohomology classes are zero in
branchGraph(Γbr) due to symmetries, finishing the proof.

Lastly, we consider the complexes wGC∗
k and wGC+

k . Let {S
in
r wGC∗

k}r≥0 and {Sin
r wGC+

k }r≥0

be the spectral sequences associated to the filtration over the number of in-core vertices.

Proposition 3.3.8. The page one complex Sin
1 wGC∗

k is a subcomplex of Sin
1 wGCk generated

by directed graphs whose vertices are independently decorated by the two types
{

m∞1

}
m≥0

and
{

m
0

}
m≥0

subject to the conditions of Proposition 3.3.2 as well as the additional

condition that either
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Figure 3.3: Picture of a graph and its corresponding branch graph.

• at least one vertex is decorated with the bi-weight m∞1
for some m ≥ 0, or

• at least one vertex is decorated with the bi-weight m
0

for some m ≥ 1.

Furthermore, the page one complex Sin
1 wGC+

k is a subcomplex of Sin
1 wGC∗

k where each graph
additionally satisfies that either

• one vertex is decorated with the bi-weight m∞1
for some m ≥ 1, or

• two vertices are decorated with the bi-weights m
0

and 0∞1
respectively for some

m ≥ 1.

Proof. Similar to the case of Sin
0 wGCk, both Sin

0 wGC∗
k and Sin

0 wGC+
k decompose over in-

core graphs γ as

Sin
0 wGC∗

k
∼=
⊕
γ

inCore∗(γ)

Sin
0 wGC+

k
∼=
⊕
γ

inCore+(γ)

where inCore∗(γ) and inCore+(γ) are the complex generated by graphs having γ as their
in-core graph. These complexes do not however decompose into a tensor product over the
tree complexes T in

x , since some of the tensors will not represent graphs in these complexes.
For example, a graph having all vertices decorated by 0

0 or a graph having only zero out-
weights or zero in-weights respectively. The tree complexes T in

x split into (at most) four
complexes as T in

x = T in
x (0) ⊕ T in

x (out) ⊕ T in
x (in) ⊕ T in

x (out ∧ in), where T in
x (0) is the

complex where all bi-weights are zero, T in
x (out) is the complex where all in bi-weights

are zero and at least one vertex is decorated with positive out bi-weight, T in
x (in) is the

complex where all out bi-weights are zero and at least one vertex is decorated with positive
in bi-weight, and T in

x (out∧ in) is the complex where at least one vertex is decorated with
positive out bi-weight and at least one vertex with positive in bi-weight. Depending on
the vertex x, some of the three first complexes might be zero in the decomposition of T out

x .
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It is easy to verify that the differential preserves the decomposition. We then get that

inCore∗(γ) =
⊕
I

(
T out
x1

(I1)⊗ T out
x2

(I2)⊗ ...⊗ T out
xk

(Ik)
)

inCore+(γ) =
⊕
J

(
T out
x1

(J1)⊗ T out
x2

(J2)⊗ ...⊗ T out
xk

(Jk)
)

where the first sum runs over signatures I = (I1, I2, ..., Ik) ∈ {0, in, out, in ∧ out}k
such that there is an i such that Ii ̸= 0. Similarly the second sum runs over signatures
J = (J1, J2, ..., Jk) ∈ {0, in, out, in ∧ out}k such that either there is an i such that
Ji = out ∧ in, or there are i, j such that Ji = in and Jj = out. Lemma 3.3.3 gives us that

H(T out
x (out ∧ in)) =

〈
m∞1

: m ≥ 1
〉

H(T out
x (out)) =

〈
m
0

: m ≥ 1
〉

H(T out
x (in)) =

〈
0∞1

〉
H(T out

x (0)) =
〈

0
0

〉
The proposition immediately follows by comparing the condition for the signatures I and
J with the proposition statement.

3.3.3 Filtrations over special out-vertices

We define special out-vertices by analogy to the special in-vertices introduced above.

Definition 3.3.9. A vertex x in a graph Γ is called a special out-vertex if

i) either x is a univalent vertex with one incoming edge and in-weight zero, i.e on the

form m
0

ii) or v becomes a univalent vertex of type i) after recursive removal of all special-out
vertices of type i) from Γ.

Vertices that are not special out-vertices are called out-core vertices or just core vertices.
Note that there are no special-in vertices in any graph of Sin

1 wGCk, but there are graphs
with special out-vertices (see figure 3.4). Given an arbitrary graph Γ in Sin

1 wGCk, we define
the associated core graph γ as the graph spanned by core vertices with their out-weight
forgotten. Similar to before, we consider the filtration of Sin

1 wGCk over the number of
core-vertices and let {Sout

r wGCk}r≥0 be the associated spectral sequence. The differential
acts by only creating special out-vertices and leaves the connected core-graph unchanged.

Proposition 3.3.10. The page one complex Sout
1 wGCd is generated by graphs Γ whose

vertices V (Γ) are independently decorated with four possible bi-weights ∞1∞1
, 0∞1

, ∞1
0

,

and 0
0

subject to the following conditions:

1. If x ∈ V (Γ) is univalent, then

x =
∞1∞1

or x =
∞1∞1
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Figure 3.4: Example of a graph in Sin
1 wGCk where out-core vertices are colored gray and

the special out-vertices are colored white.

2. If x ∈ V (Γ) is a source with at least two out-edges, then

x =
∞1∞1

···
≥2

or x = 0∞1

···
≥2

3. If x ∈ V (Γ) is a target with at least two in-edges, then

x =
∞1∞1

···
≥2

or x =
∞1
0
···
≥2

4. If x ∈ V (Γ) is passing (one in-edge and one out-edge), then

x =
∞1∞1

, x = 0∞1
or x =

∞1
0

5. If x ∈ V (Γ) is none of the above types (i.e., x is at least trivalent and has at least
one in-edge and at least one out-edge), then

x =
∞1∞1

···

···

, x = 0∞1

···

···

, x =
∞1
0
···

···

or x = 0
0
···

···

Let Γ be a graph in Sout
1 wGCd and x some vertex of Γ. Further, let a, b, c and d be

either of the symbols ∞1 or 0. Then we set
(
a
b ,

c
d

)
x
to denote the sum over all possible

reattachments of the edges attached to x among two new vertices x′ and x′′ (connected by
a single edge going from x′ to x′′) of bi-weight a

b and c
d respectively. The reattachments
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are done in such a way that the resulting vertices are of the types (1)− (5) described above.
Using earlier notation for vertex splitting, we get

(a
b
,
c

d

)
x
:= a

b
c
d

· · ·

· · ·

The differential d acts on graphs Γ ∈ Sout
1 wGCk as d(Γ) =

∑
x∈V (Γ) dx(Γ). The map dx

acts on vertices with the four different bi-weights in the following way:

dx

( ∞1∞1

···

···

)
=
(∞1

∞1
,
∞1

∞1

)
x
+
( 0

∞1
,
∞1

∞1

)
x
+
(∞1

0
,
∞1

∞1

)
x
+
(∞1

∞1
,

0

∞1

)
x
+
(∞1

∞1
,
∞1

0

)
x

+
(0
0
,
∞1

∞1

)
x
+
(∞1

0
,

0

∞1

)
x
+
( 0

∞1
,
∞1

0

)
x
+
(∞1

∞1
,
0

0

)
x

−

(
∞1∞1

∞1∞1···

···

+ 0∞1

∞1∞1···

···

+ ∞1∞1
∞1∞1

···

···

+ ∞1
0

∞1∞1

···

···

)

dx

(
0∞1

···

···

)
=
( 0

∞1
,

0

∞1

)
x
+
(0
0
,

0

∞1

)
x
+
( 0

∞1
,
0

0

)
x

−

(
0∞1

∞1∞1

···

···

+ 0
0

∞1∞1

···

···

)

dx

( ∞1
0

···

···

)
=
(∞1

0
,
∞1

0

)
x
+
(0
0
,
∞1

0

)
x
+
(∞1

0
,
0

0

)
x

−

(
∞1
0

∞1∞1···

···

+ 0
0

∞1∞1···

···

)

dx

(
0
0

···

···

)
=
(0
0
,
0

0

)
x

The first page Sout
0 wGCk decomposes into a directed sum parameterized by the set of all

possible core graphs

Sout
0 wGCk

∼=
⊕
γ

outCore(γ)
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where outCore(γ) is the subcomplex of Sout
0 wGCk of graphs with associated core graph γ.

Further outCore(γ) decomposes into a tensor product of complexes

outCore(γ) ∼=
( ⊗

x∈V (γ)

T out
x

)Aut(γ)

with one complex T out
x for each vertex x in V (γ), and Aut(γ) is the group of automorphisms

of γ acting on the tensor product. Each complex T out
x consists of trees of special out-

vertices attached to a core vertex x, and the differential acts by only creating special
out-vertices on x and in the tree. The complex T out

x depends on x only via the number
of outgoing and incoming edges attached to x in the core graph as well as on the in-
weight win

x . Note that here the in-weight can be assigned one of the symbols 0 or ∞1.
The complexes T out

x having the same values of the parameters |x|out, |x|in, and win
x are

isomorphic, and we often write T out
x

∼= T out
|x|out,|x|in,win

x
. Hence we study the family of

complexes T out
a,b,c parameterized by integers a, b ≥ 0 and c ∈ {0,∞1} such that a ≥ 0, b ≥ 1

and a + b ≥ 2 when c = 0, and a, b ≥ 0 and a + b ≥ 1 when c = ∞1. The out-weight of
the core vertex in T out

a,b,c is any number wout
x satisfying the conditions

wout
x + a+#(out-edges from special out-vertices) ≥ 1

a+ b+ wout
x + |c|+#(out-edges from special out-vertices) ≥ 3

where |0| := 0 and |∞1| := 1. Proposition 3.3.10 follows from these remarks together with
the following lemma.

Lemma 3.3.11. The cohomology of T out
a,b,c is generated by one or two classes containing

the out-core vertex decorated by some bi-weights depending on the parameters a, b, c. More
precisely

H(T out
1,0,∞1

) =
〈 ∞1∞1

〉
H(T out

0,1,∞1
) =

〈 ∞1∞1

〉
H(T out

1,1,∞1
) =

〈 ∞1∞1
, 0∞1

〉
, H(T out

1,1,0) =
〈 ∞1

0

〉
For a ≥ 2 H(T out

a,0,∞1
) =

〈 ∞1∞1
, 0∞1

〉
For b ≥ 2 H(T out

0,b,∞1
) =

〈 ∞1∞1

〉
, H(T out

0,b,0) =
〈 ∞1

0

〉
For a, b ≥ 1 and a+ b ≥ 3 H(T out

a,b,∞1
) =

〈 ∞1∞1
, 0∞1

〉
, H(T out

a,b,0) =
〈 ∞1

0
, 0

0

〉
Proof. The proof is similar to the proof for Proposition 3.3.10, using the same filtrations
and decompositions together with Corollary 3.3.7.

Now we turn to the complexes Sin
1 wGC∗

k and Sin
1 wGC+

k . Let {S
out
r wGC∗

k}r≥0 and
{Sout

r wGC+
k }r≥0 be the spectral sequences associated to the filtrations over the number of

out-core vertices.

Proposition 3.3.12. The page one complex Sout
1 wGC∗

k is a subcomplex of Sout
1 wGCk gen-

erated by directed graphs whose vertices are independently decorated by the bi-weights ∞1∞1
,

0∞1
, ∞1

0
, and 0

0
subject to the conditions of Proposition 3.3.10 as well as the ad-

ditional condition that at least one vertex is not decorated by 0
0

. Furthermore, the
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page one complex Sout
1 wGC+

k is a subcomplex of Sout
1 wGC∗

k where each graph additionally
satisfies that either

• at least one vertex is decorated with the bi-weight ∞1∞1
, or

• at least two vertices are decorated with the bi-weights 0∞1
and ∞1

0
respectively.

Proof. The proof is analogous to that of Proposition 3.3.8.

3.3.4 The 4-type graph complex qGCk

Definition 3.3.13. Let qGCk be the subcomplex of wGCk consisting of graphs whose
vertices can independently be decorated by four types of decorations ∞1

∞1
, ∞1

0 , 0
∞1

and 0
0 .

The possible decorations of a vertex depend on its type. More concretely

• A univalent vertex can only be decorated by ∞1
∞1

.

• A source vertex can be decorated by ∞1
∞1

and 0
∞1

.

• A target vertex can be decorated by ∞1
∞1

and ∞1
0 .

• A passing vertex can be decorated by ∞1
∞1

, ∞1
0 and 0

∞1
.

• A generic vertex can be decorated by ∞1
∞1

, ∞1
0 , 0

∞1
and 0

0 .

Let qGC∗
k and qGC+

k be the subcomplexes of qGCk where

• qGC∗
k is generated by graphs where at least one vertex is not decorated by 0

0 .

• qGC+
k is generated by graphs with at least one vertex decorated by ∞1

∞1
or two vertices

decorated by 0
∞1

and ∞1
0 respectively.

The differential acts on vertices in the same way as the differential in Proposition 3.3.10.
Note that qGC∗

k ⊂ wGC∗
k and qGC+

k ⊂ wGC+
k .

Remark 3.3.14. We will use the following convention: when specifying the decorations of
a general graph, the univalent vertices are excluded from this specification. For example,
”A graph where all vertices are decorated by ∞1

0 ” should be interpreted as a graph where
all non-univalent vertices are decorated by ∞1

0 and the univalent vertices decorated by
their only possible decoration ∞1

∞1
.

Proposition 3.3.15. The three inclusions qGCk ↪→ wGCk, qGC
∗
k ↪→ wGC∗

k, and qGC+
k ↪→

wGC+
k are quasi-isomorphims.

Proof. Consider the filtration over special in-vertices as seen in the previous section of
both wGCk and qGCk. The filtration is preserved by the inclusions since no graph in qGCk

contains special in-vertices, and furthermore, the differential is trivial in the associated
complex of qGCk. On the second page, we consider a second filtration over special out-
vertices. The two complexes agree on the second page of the associated spectral sequence
by Proposition 3.3.10. This proves that the inclusion is a quasi-isomorphism. The proof
is analogous for the other two inclusions with the help of Proposition 3.3.12

Remark 3.3.16. We notice the splitting of qGCk = qGC0
k ⊕ qGC∗

k where qGC0
k is the

complex of graphs where all vertices are decorated by 0
0 and qGC∗

k is the complex of
graphs with at least one vertex not decorated by 0

0 . This is analogous to the splitting
fwGCk = fwGC0

k ⊕ fwGC∗
k in section 3.2.4, and it is immediate by Proposition 3.2.8 that

qGC0
k
∼= dGC⟲

k . In the remainder of the paper we focus on studying qGC∗
k and qGC+

k .
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3.4 Reducing qGC∗
k to the mono-decorated graph complex

fM∗
k

3.4.1 Removing 0
0
decorations from qGC∗

k

Let qGC∗,0
k ⊂ qGC∗

k be the subcomplex generated by graphs with at least one vertex
decorated by 0

0 . Consider the short exact sequence

0 → qGC∗,0
k ↪→ qGC∗

k → tGC∗
k → 0

where the quotient complex tGC∗
k is generated by graphs with no decoration 0

0 . Similarly,
let qGC+,0 ⊂ qGC+

k be the complex spanned by graphs with at least one decoration 0
0 and

tGC+
k := qGC+

k /qGC
+,0
k the quotient complex of graphs with at least one vertex decorated

by ∞1
∞1

, or a pair of vertices decorated by 0
∞1

and ∞1
0 , with no vertices decorated by 0

0 .

Proposition 3.4.1. The two projections qGC∗
k → tGC∗

k and qGC+
k → tGC+

k are
quasi-isomorphisms.

Proof. It is enough to show that qGC∗,0
k and qGC+,0

k are acyclic. Consider the filtration

of qGC∗,0
k over the number of non-passing vertices, and let P0qGC

∗,0
k be the first page of

the associated spectral sequence. The differential acts by only creating passing vertices.
Consider the filtration of P0qGC

∗,0
k over the number of vertices not decorated by ∞1

∞1
. The

differential on the first page of the d spectral sequence D0P0qGC
∗,0
k only creates passing

vertices decorated by ∞1
∞1

. To each graph in this complex, we can associate an ∞1
∞1

-skeleton
graph by removing passing vertices decorated by ∞1

∞1
and replacing them by a single edge.

The ∞1
∞1

-skeleton graph is invariant under the action of the differential, hence the complex
split as

gr(P0qGC
∗,0
k ) =

⊕
γ

C∗(γ)

where C∗(γ) is the associated complex of graphs with ∞1
∞1

-skeleton γ. Note that no graph
has the associated ∞1

∞1
-skeleton graph with one single vertex and one edge, since any such

graph has no vertex decorated by 0
0 . We claim the following:

• If γ has at least one vertex decorated by ∞1
∞1

, then H(C∗(γ)) = 0.

• If γ has no vertices decorated by ∞1
∞1

and at least one decorated by ∞1
0 or 0

∞1
, then

H(C∗(γ)) = ⟨γ⟩.

• If γ is only decorated by 0
0 and has at least one univalent vertex, thenH(C∗(γ)) = ⟨γ⟩.

• If γ is only decorated by 0
0 , then H(C∗(γ)) = 0.

In the three first cases, the complex can be written as

C∗(γ) ∼=
( ⊗

e∈E(γ)

Ee
)Aut(γ)

(3.2)

where Ee is the associated complex of passing vertices decorated by ∞1
∞1

on the edge e
in the skeleton. In the first case, there is one edge e′ in γ such that one of its adjacent
vertices is decorated by ∞1

∞1
and the other by another decoration. One computes that Ee′

is acyclic. In the second and third cases, all Ee are isomorphic, consisting of the complex
of passing vertices decorated by ∞1

∞1
. One sees that H(Ee) is generated by the graph of two

vertices and an edge with no passing vertices, giving the desired result. In the fourth case,
the complex does not decompose as a tensor product. Instead it split as a direct sum of
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tensor products, where in each product at least one complex Ee has at least one passing
vertex decorated by ∞1

∞1
. This complex is equivalent to the tensor above when removing

the initial graph with no passing vertices, which we saw was a cycle in the second case.
Hence the complex is acyclic. The cohomology of D0P0qGC

∗,0 now consists of graphs only
decorated by ∞1

0 , 0
∞1

and 0
0 with at least one vertex decorated by 0

0 . The differential
acts by creating passing vertices. It is easy to see that these graphs form a subcomplex
of P0qGC

∗,0
k , and so the second page D1P0qGC

∗,0 of the spectral sequence is described
with the full differential. We claim that D1P0qGC

∗,0 is acyclic. By considering a similar
filtration over the number of vertices not decorated by ∞1

0 , one finds that this page of the

spectral sequence is acyclic, finishing the proof. The proof to show that qGC+,0
k is acyclic

follows the same argument above using the same filtrations.

3.4.2 Subcomplex of monodecorated graphs

Definition 3.4.2. Let Γ be an undecorated directed graph. We define Γ
0

∞1 to be the
graph Γ where all non-univalent vertices are decorated by 0

∞1
and the univalent vertices

are decorated by ∞1
∞1

. If Γ contains a target vertex (which cannot be decorated by 0
∞1

),

then we set Γ
0

∞1 = 0. Similarly, define Γ
∞1
0 .

Definition 3.4.3. Let Γ be a directed graph without any univalent vertices. Define
Γω ∈ tGC+

k to be the sum of graphs

Γω =
∑
d

Γd

where d is a decoration of all vertices of Γ, Γd is the bi-weighted graph with underlying
graph Γ decorated by the bi-weights of b, and the sum is over all possible decorations d of
Γ where at least one vertex is decorated by ∞1

∞1
or a pair of vertices are decorated by ∞1

0

and 0
∞1

. Equivalently, if Γ
∞0
∞0 denotes the graph Γ where all vertices are decorated by ∞0

∞0

(when expanded, terms of graphs including vertices decorated by 0
0 are considered zero),

then Γω = Γ
∞0
∞0 − Γ

∞1
0 − Γ

0
∞1 .

Remark 3.4.4. Let d = ds + du be the decomposition of the differential of tGC+
k where

du is the part of where a new univalent vertex is created and ds the part where no new
univalent vertices are created (also known as splitting). We see that ds(Γ

ω) = (dsΓ)
ω.

Further, we see that du(Γ
ω) = −(du(Γ

∞1
0 ) + du(Γ

0
∞1 )). Due to Γ

∞1
0 and Γ

0
∞1 being zero

for some graphs, we have more specifically that

• If Γ contains both at least one source and one target, then du(Γ
ω) = 0.

• If Γ contains at least one source but no targets, then du(Γ
ω) = −du(Γ

0
∞1 ).

• If Γ contains at least one target but no sources, then du(Γ
ω) = −du(Γ

∞1
0 ).

• If Γ contains neither sources nor targets, then duΓ
ω = −(duΓ

0
∞1 + duΓ

∞1
0 ).

Definition 3.4.5. The subcomplex mGC+
k ⊂ tGC+

k is the complex generated by graphs
on three forms:

1. Graphs on the form Γω with Γ a directed graph with no univalent vertices.

2. Graphs on the form Γ
0

∞1 with Γ a directed graph with at least one univalent source,
and no targets of any valency.
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3. Graphs on the form Γ
∞1
0 with Γ a directed graph with at least one univalent target,

and no sources of any valency.

Similarly, the subcomplex mGC∗
k ⊂ tGC∗

k is the complex generated by graphs in three
forms:

1. Graphs on the form Γω with Γ a directed graph with no univalent vertices.

2. Graphs on the form Γ
0

∞1 with Γ a directed graph containing no targets of any valency.

3. Graphs on the form Γ
∞1
0 with Γ a directed graph containing no sources of any

valency.

Proposition 3.4.6. The two inclusions mGC+
k → tGC+

k and mGC∗
k → tGC∗

k are
quasi-isomorphisms.

Consider the short exact sequences

0 → mGC+
k → tGC+

k → Q+
k → 0

0 → mGC∗
k → tGC∗

k → Q∗
k → 0

where Q∗
k = tGC∗

k/mGC∗
k and Q+

k = tGC+
k /mGC+

k . We observe that Q∗
k = Q+

k . The complex
Q+

k is generated by graphs Γ ∈ tGC+
k on the forms

1. Γ has no univalent vertices and has at least one vertex not decorated by ∞1
∞1

.

2. Γ = Γ
∞1
0 and has at least one univalent target.

3. Γ = Γ
0

∞1 and has at least one univalent source.

4. Γ has at least one univalent vertex and at least two non-univalent vertices with
different decorations.

The proposition follows if we show that Q+
k is acyclic. Consider the subcomplex Q+,1

k ⊂ Q+
k

of graphs with at least one univalent vertex. We get the induced short exact sequence

0 → Q+,1
k → Q+

k → Q+,≥2
k → 0.

The complex Q+,≥2
k is spanned by graphs on the form (1) as above, and Q+,1

k is spanned
by graphs on the form (2)-(4). The acyclicity of Q+

k follows from the following proposition.

Proposition 3.4.7. The complexes Q+,1
k and Q+,≥2

k are acyclic.

Proof. First consider the filtration of Q+,≥2
k over the number of non-passing vertices and

let P0Q
+,≥2
k be the first page of the spectral sequence. On this page, the differential acts

by only creating passing vertices. We will show that this page is acyclic. Consider the
filtration on P0Q

+,≥2
k over the number of vertices not decorated by ∞1

∞1
and let D0P0Q

+,≥2
k

be the first page of the associated spectral sequence. Here the differential acts by only
creating passing vertices decorated by ∞1

∞1
. Similar to Proposition 3.4.1, the complex

decompose over ∞1
∞1

-skeleton graphs as

D0P0Q
+,≥2
k =

⊕
γ

C+(γ)

where C+(γ) is the complex of graphs with ∞1
∞1

-skeleton γ. We claim the following

• If γ has at least one vertex decorated by ∞1
∞1

, then C+(γ) ≃ 0.
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• If γ is only decorated by ∞1
0 , then C+(γ) ≃ 0.

• If γ is only decorated by 0
∞1

, then C+(γ) ≃ 0.

• If γ is decorated by both ∞1
0 and 0

∞ (but not ∞1
∞1

), then H(C+(γ)) = ⟨γ⟩.

These results follow by using similar arguments as in Proposition 3.4.1. Let D1P0Q
+,≥2
k

be the second page of the spectral sequence. By the result above, it consists of graphs
with at least a pair of vertices decorated by ∞1

0 and 0
∞1

. Consider the filtration over
the number of vertices not decorated by ∞1

0 . Using similar arguments as above on the

associated spectral sequence, we get that D1P0Q
+,≥2
k is acyclic. The proof showing that

Q+,1
k is acyclic is similar, noting that the differential acting on univalent sources only

creates passing vertices decorated by 0
∞1

and univalent targets only create passing vertices
decorated by ∞1

0 .

3.4.3 Removing long antennas

Consider the two subcomplexes mGC∗
k(

∞1
0 ) and mGC∗

k(
0

∞1
) of mGC∗

k of graphs whose non-

univalent vertices are decorated by ∞1
0 and 0

∞1
respectively.

Proposition 3.4.8. The complexes mGC∗
k(

∞1
0 ) and mGC∗

k(
0

∞1
) are acyclic.

Proof. The two complexes are isomorphic by swapping decorations and reversing the ori-
entation of all edges; hence, it is enough to show that mGC∗

k(
∞1
0 ) is acyclic. Let the

core of a graph be the graph remaining after iterative removal of univalent vertices. Any
vertex in the core graph is called a core-vertex. Vertices that are not core vertices are
called antenna vertices. The number of core vertices can only remain the same or increase
under the action of the differential. Consider the filtration of mGC∗

k(
∞1
0 ) over the number

of core-vertices in a graph. Let gr(mGC∗
k(

∞1
0 )) be the associated graded complex. The

differential acts by creating antenna vertices, but the core graph is invariant. Hence we
get the decomposition

gr(mGC∗
k(
∞1

0
)) =

⊕
γ

Core(γ)

where the summation is over all possible core graphs γ and Core(γ) is the complex of
graphs with core graph γ. This complex further decomposes as

Core(γ) ∼=
( ⊗

x∈V (γ)

Tx
)Aut(γ)

where Tx is the associated complex of antenna-vertices attached to the vertex x. The
complex Tx is composed of directed trees with a designated core vertex x. All edges in
any such graph are directed away from x. The proof follows if we show that Tx is acyclic.
Consider the filtration on Tx over the number of univalent vertices (considering the core
vertex x to be univalent only when it is the only vertex in the graph). Let gr Tx be
the associated graded complex. The differential acts by splitting vertices such that no
new univalent vertices are created (except in the case of the one vertex graph). Hence it
decomposes as gr Tx =

⊕
N≥1 uNTx where uNTx is the complex of graphs with N univalent

vertices. It is easy to see that u1Tx is acyclic. Consider uNTx for N ≥ 2. Similar to the
proof of Lemma 3.3.5, call a vertex y of Γ ∈ uNTx a branch vertex if there are at least
two outgoing edges from y, or if there is a directed path from y to a vertex z that has
at least two outgoing edges from it. The number of such vertices remains the same or is
increased under the action of the differential. Consider the filtration over the number of
branch vertices on uNTx. Following the same arguments as in the proof of Lemma 3.3.5,
we get that uNTx is acyclic, finishing the proof.

48



CHAPTER 3. DERIVATIONS OF LIE BIALGEBRAS

We have the following decomposition

mGC∗
k = fM∗

k ⊕ fMa≥2
k

mGC+
k = fM+

k ⊕ fMa≥2
k

where fMa≥2
k is the subcomplex of graphs containing at least one antenna with two or

more vertices.

Proposition 3.4.9. The two injections fM∗
k ↪→ mGC∗

k and fM+
k ↪→ mGC+

k are
quasi-isomorphisms.

Proof. The statement follows if we show that fMa≥2
k is acyclic. Note that fMa≥2

k decompose
over graphs whose non-univalent vertices are decorated by ∞1

0 and 0
∞1

respectively, i.e

fMa≥2
k = fMa≥2

k (∞1
0 ) ⊕ fMa≥2

k ( 0
∞1

). Further note that mGC∗
k(

∞1
0 ) = fM∗,a=0,1

k (∞1
0 ) ⊕

fMa≥2
k (∞1

0 ). Hence acyclicity of mGC∗
k(

∞1
0 ) from Proposition 3.4.8 gives that fMa≥2

k (∞1
0 )

is also acyclic.

3.5 Cohomology of fM∗
k and fM+

k

3.5.1 A commutative diagram of graph complexes

Let fM+,1
k be the subcomplex of fM+

k of graphs with at least one univalent vertex. Further
let fM∗

k(
∞1
0 ) and fM∗

k(
0

∞1
) be the subcomplexes of fM∗

k of graphs whose non-univalent

vertices are decorated by ∞1
0 and 0

∞1
respectively. Note that fM+,1

k is a subcomplex

of fM∗
k(

∞1
0 ) ⊕ fM∗

k(
0

∞1
) and can be rewritten as fM+,1

k = fM∗,1
k (∞1

0 ) ⊕ fM∗,1
k ( 0

∞1
) where

fM∗,1
k (∞1

0 ) is the subcomplex of fM∗
k of graphs with at least one univalent vertex and

where all non-univalent vertices are decorated by ∞1
0 , and similarly for fM∗,1

k ( 0
∞1

). We get
the following commutative diagram

0

��

0

��

0

��

0 // fM+,1
k

//

��

fM+
k

//

��

fM+,≥2
k

id
��

// 0

0 // fM∗
k(

∞1
0 )⊕ fM∗

k(
0

∞1
)

��

// fM∗
k

��

// fM+,≥2
k

//

��

0

0 // fM∗,≥2
k (∞1

0 )⊕ fM∗,≥2
k ( 0

∞1
)

id //

��

fM∗,≥2
k (∞1

0 )⊕ fM∗,≥2
k ( 0

∞1
) //

��

0 //

��

0

0 0 0
(3.3)

where fM∗,≥2
k (∞1

0 ) is the quotient complex of graphs with no univalent vertices, and all

vertices are decorated by ∞1
0 , and similarly for fM∗,≥2

k ( 0
∞1

)). Further, fM+,≥2
k is the quo-

tient complex of graphs with no univalent vertices, and each graph is of the form Γω. We
already showed in Proposition 3.4.8 that fM∗

k(
∞1
0 ) and fM∗

k(
0

∞1
) are acyclic, and so we get

the following corollaries.

Corollary 3.5.1.

• The projection fM∗
k → fM+,≥2

k is a quasi-isomorphism.

• The connecting morphisms δ : H•(fM∗,≥2
k (∞1

0 )⊕ fM∗,≥2
k ( 0

∞1
)) → H•+1(fM+,1

k ) is an
isomorphism.
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3.5.2 The cohomology of fM∗
k

Let fM∗
k = b1M

∗
k ⊕ M∗

k where b1M
∗
k is the subcomplex of graphs with loop number one,

and M∗
k is the subcomplex of graphs with loop number two and higher. All complexes in

the commutative diagram (3.3) above split in the same manner, and we use an analogous
notation for their splittings.

Proposition 3.5.2. The map a : dGCk → fM+,≥2
k where a(Γ) = Γω is a quasi-isomorphism.

In particular, the restriction to graphs of loop number one a1 : b1dGCk → b1M
+,≥2
k is an

isomorphism.

Proof. Consider a filtration over fM≥2
k over the number of non-passing vertices. The dif-

ferential on the associated graded sequence acts on edges by creating new passing vertices,
and it is straightforward to control that the cohomology is generated by graphs with no
passing vertices. Hence on the second page the map is an isomorphism, giving that a is a
quasi-isomorphism. By direct inspection, one sees that a1 is already an isomorphism.

3.5.3 The cohomology of fM+
k

Proposition 3.5.3. Let fs : dGCk/dGC
s
k → fM∗,≥2

k (∞1
0 ) be the map where fs(Γ) = Γ

∞1
0 ,

and let f t : dGCk/dGC
t
k → fM∗,≥2

k ( 0
∞1

) be the map where f t(Γ) = Γ
0

∞1 . These maps are

quasi-isomorphisms. In particular, the restriction fs
1 : b1dGCk/dGC

s
k → b1M

∗,≥2
k is an

isomorphism. The analogously defined map f t
1 is also an isomorphism.

Proof. The first part follows by the filtration over the number of non-passing vertices. The
latter part follows by noting that graphs with loop number one and no univalent vertices
have either both a source and a target or neither.

We can already get the following proposition.

Proposition 3.5.4. H•(fM+
3 ) = grt⊕ grt.

Proof. Consider the short exact sequence

0 // fM+,≥1
3

// fM+
3

// fM+,≥2
3

// 0 .

We extract the following exact sequence from the induced long exact sequence

H−1(dGC3) // H−1(dGC3/dGC
s
3)⊕H−1(dGC3/dGC

t
3) // H0(fM+

k )
// H0(dGC3)

by using Proposition 3.5.3 and the quasi-isomorphisms induced from the diagram (3.3).
Now sinceHk(dGC3) = 0 for k ≥ −2, we get the isomorphismH0(mGC3) ∼= H−1(dGC3/dGC

s
3)⊕

H−1(dGC3/dGC
t
3). Using the same trick on the long exact sequence on cohomology in-

duced by the short exact sequence

0 → dGCs
3 → dGC3 → dGC3/dGC

s
3 → 0

we get that H−1(dGC3/dGC
s
3)

∼= H0(dGCs
3). Similarly, H−1(dGC3/dGC

t
3)

∼= H0(dGCt
3).

It was shown in [Z2] that there are quasi-isomorphisms dGCk → dGCs
k+1 and dGCk →

dGCt
k+1, and so in particular

H0(dGCs
3) = H0(dGCt

3) = H0(dGC2) = grt

which gives the proposition.
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From the same short exact sequence of complexes of restricted to graphs of loop number
one

0 // b1M
+,1
k

// b1M
+
k

// b1M
+,≥2
k

// 0 .

we can derive the cohomology of b1M
+
k .

Proposition 3.5.5. The cohomology of b1M
+
k is given by

H•(b1M
+
k ) =

⊕
i≥1

i≡1 mod 2

Ci

where Ci =

{
K[k − (i+ 1)] if i ≡ 2k + 1 mod 4

K[k − (i+ 1)]⊕K[k − (i+ 1)] if i ≡ 2k + 3 mod 4

Proof. We first show that the connecting morphism

δ : H i(b1M
+,≥2
k ) → H i+1(b1M

+,1
k )

is injective. The injection b1 : b1GCk → b1M
+,≥2
k mapping an undirected graph Γ to the

sum of graphs over all possible ways of adding directions on the edges of Γ is a quasi-
isomorphism. Let [Γ] ∈ H i(b1GCk) be a non-zero equivalence class, where Γ is a loop
graph with i vertices. Then i ≥ 1 and i ≡ 2k + 1 mod 4, since otherwise [Γ] = 0. The
sum b1(Γ) contains the loop graph with only passing vertices, call it Γ⟲, while all other
terms are graphs with at least one source and one target. The connecting morphism

δ : H i(b1M
+,≥2
k ) → H i+1(b1M

+,1
k )

is the univalent part du of the differential, and is hence zero on graphs with both a source
and a target. Hence we gather δ ◦ b1(Γ) = du(Γ

⟲). We can clearly see that this element
belongs in the diagonal of

H i+1(b1M
+,1
k ) = b1M

+,1
k (

∞1

0
)⊕ b1M

+,1
k (

0

∞1
),

that it is non-zero and this assignment is unique. Hence the long exact sequence on
cohomology splits as short exact sequences

0 // H i−k(b1M
+,≥2
k ) // H i−k+1(b1M

+,1
k ) // H i−k+1(b1M

+
k )

// 0 .

When i is even, the whole sequence is zero. When i ≡ 2k+3 mod 4, then H i−k(b1M
+,≥2
k )

acyclic, and so

H i−k+1(b1M
+
k )

∼= H i−k+1(b1M
+,1
k ) = K[k − i− 1]⊕K[k − i− 1].

When i ≡ 2k + 1 mod 4, then we get the short exact sequence

0 // K[k − i] // K[k − i− 1]⊕K[k − i− 1] // H i−k+1(b1M
+
k )

// 0

where the first map is the connecting morphism δ, being identified with the suspended
diagonal map. Hence we gather that

H i−k+1(b1M
+
k )

∼= (K[k − i− 1]⊕K[k − i− 1])/δ(K[k − i]) ∼= K[k − i− 1].
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3.5.4 Describing fM+
k as a mapping cone

So far we have only been able to describe the cohomology of fM+
k via a short exact sequence.

In this section we will show where this short exact sequence originates from, and that there
is fM+

k quasi-isomorphic to a mapping cone of directed graph complexes. Let

P1 : dGCk → dGCk/dGC
s
k and P2 : dGCk → dGCk/dGC

t
k

be the projections and

P = P1 ⊕ P2 : dGCk → dGCk/dGC
s
k ⊕ dGCk/dGC

t
k

their sum. The suspended mapping cone of P is the complex Cone(P )[1] = dGCk ⊕(
dGCk/dGC

s
k[1]⊕ dGCk/dGC

t
k[1]
)
with differential dc where

dc(Γ, (Γ1,Γ2)) = (dsΓ, (−P1(Γ)− dsΓ1,−P2(Γ)− dsΓ2)).

The mapping cone naturally fits in the short exact sequence

0 // dGCk/dGC
s
k[1]⊕ dGCk/dGC

t
k[1]

// Cone(P )[1] // dGCk
// 0

which resembles the short exact sequence

0 // fM+,1
k

// fM+
k

// fM+,≥2
k

// 0

in that the cohomology of the leftmost and rightmost complexes is the same. We will
relate these two short exact sequences with three injective chain maps a, b and a ⊕ b,
giving us the commutative diagram

0

��

0

��

0

��
0 // dGCk/dGC

s
k[1]⊕ dGCk/dGC

t
k[1]

b
��

// Cone(P )[1] //

a⊕b
��

dGCk

a
��

// 0

0 // fM+,1
k

//

��

fM+
k

//

��

fM+,≥2
k

��

// 0

0 // Q1
//

��

Q2
//

��

Q3
//

��

0

0 0 0

If we show that a and b are quasi-isomorphisms, then the lower short exact sequence is
acyclic, implying main Theorem 2.

Theorem 3.5.6. The map a⊕ b : Cone(P )[1] → fM+
k is a quasi-isomorphism.

The proof follows from the two following propositions.

Proposition 3.5.7. Let b : dGCk/dGC
s
k[1] ⊕ dGCk/dGC

t
k[1] → fM+,1

k be the map defined

by b(Γ1,Γ2) =
(
du(Γ

0
∞1
1 ) + du(Γ

∞1
0

2 )
)
. Then b is a chain map, and furthermore it is a

quasi-isomorphism.
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Proof. For abbreviation, let Ck = dGCk/dGC
s
k ⊕ dGCk/dGC

t
k, and Ck[1] be the suspension.

We first check that the differentials commute. The differential of the degree shifted complex
C[1] is of the form −ds. So

b ◦ d(Γ1,Γ2) = b
(
− ds(Γ1),−ds(Γ2)

)
= −du

(
(ds(Γ1))

0
∞1 + (ds(Γ2))

∞1
0
)

= −duds
(
Γ

0
∞1
1 + Γ

∞1
0

2

)
.

On the other hand, du ◦ du = 0, and dsdu + duds = 0 in fM+
k , so

d ◦ b(Γ1,Γ2) = d
(
du(Γ

0
∞1
1 ) + du(Γ

∞1
0

2 )
)

= dsdu(Γ
0

∞1
1 + Γ

∞1
0

2 ) + dudu(Γ
0

∞1
1 + Γ

∞1
0

2 )

= −duds(Γ
0

∞1
1 + Γ

∞1
0

2 ).

Hence b ◦ d = d ◦ b. Lastly, we show that b∗ : H•(Ck[1]) → H•(fM+,1
k ) is an iso-

morphism. We note that the chain map h : Ck → fM∗,≥2
k ( 0

∞1
) ⊕ fM∗,≥2

k (∞1
0 ) where

(Γ1,Γ2) 7→ (Γ1(
0

∞1
),Γ2(

∞1
0 )) is an isomorphism. Furthermore, Corollary 3.5.1 gives that

the connecting morphism δ : H•(fM∗,≥2
k ( 0

∞1
)⊕ fM∗,≥2

k (∞1
0 )) → H•+1(fM+,1

k ) is an isomor-
phism, and is given by δ[Γ] = [duΓ]. Hence we get the following chain of isomorphisms of
cohomology groups

0 // H•(Ck[1])
id[1] // H•−1(Ck)

h // H•−1(fM∗,≥2
k ( 0

∞1
)⊕ fM∗,≥2

k (∞1
0 ))

−δ // H•(fM+,1
k ) // 0

We can easily see that the composition of these maps is equal to b∗, finishing the proof.

Let a : dGCk → mGC+,≥2
k be the quasi-isomorphism from Proposition 3.5.2 where a(Γ) =

Γω. From the short exact sequence

0 // fM+,1
k

// fM+
k

// fM+,≥2
k

// 0

we see that fM+
k
∼= fM+,≥2

k ⊕ fM+,1
k as a vector space. Let a ⊕ b : Cone(P )[1] → fM+

k be
the linear map defined using a and b the decomposition of fM+

k .

Proposition 3.5.8. The map a⊕ b is a chain map.

Proof. Let (Γ, (Γ1,Γ2)) ∈ Cone(P )[1]. Then

(a⊕ b) ◦ dc
(
Γ, (Γ1,Γ2)

)
= a(

(
ds(Γ)

)
+ b
(
− P1(Γ)− ds(Γ1),−P2(Γ)− ds(Γ2)

)
=
(
ds(Γ)

)ω − du
(
(P1(Γ))

0
∞1 + ((ds(Γ1))

0
∞1

)
− du

(
(P2(Γ))

∞1
0 + ((ds(Γ2))

∞1
0
)

= ds(Γ
ω)− du

(
(Γ

0
∞1 ) + ds(Γ

0
∞1
1 )

)
− du

(
(Γ

∞1
0 )− ds(Γ

∞1
0

2 )
)

= ds(Γ
ω) + du(Γ

ω) + dsdu(Γ
0

∞1
1 ) + dsdu(Γ

∞1
0

2 )

= d
(
Γω + du(Γ

0
∞1
1 ) + du(Γ

∞1
0

2 )
)

= d ◦ (a⊕ b)
(
Γ, (Γ1,Γ2)

)
,

showing that g is a chain map.
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3.5.5 A second long exact sequence with H•(fM+
k )

We finish this chapter by describing a second long exact sequence with H•(fM+
k ). Let us

use the abbreviation Ck for dGCk, and similarly for other subcomplexes of dGCk. Fur-
ther, if A → B is a chain map of two chain complexes A,B, we write A ⊕c B[1] for the
corresponding suspended mapping cone. We remark that Cst

k is the kernel of the map
P : Ck → Ck/C

s
k ⊕ Ck/C

t
k, and hence it is a subcomplex of Cone(P )[1]. Further the map-

ping cone Cs+t
k ⊕c (C

s+t
k /Cst

k )[1] is a subcomplex of Cone(P )[1]. We can check that the
following diagram commutes

0

��

0

��

0

��
0 // Cst ⊕c 0 //

id
��

Cs+t
k ⊕c (C

s+t
k /Cst

k )[1]
//

��

Cs+t
k /Cst

k ⊕c (C
s+t
k /Cst)[1]

��

// 0

0 // Cst ⊕c 0 //

��

Ck ⊕c (Ck/C
s
k ⊕ Ck/C

t
k)[1]

//

��

Ck/C
st
k ⊕c (Ck/C

s
k ⊕ Ck/C

t
k)[1]

��

// 0

0 // 0 //

��

C⟲
k ⊕c (C

⟲
k ⊕ C⟲

k )[1]
id //

��

C⟲
k ⊕c (C

⟲
k ⊕ C⟲

k )[1]
//

��

0

0 0 0

where we recall that C⟲
k := Ck/C

s+t
k .

Proposition 3.5.9.

1. Cst
k ⊕c 0 ∼= Cst.

2. The complex C⟲
k ⊕c (C

⟲
k ⊕ C⟲

k )[1] is quasi-isomorphic to C⟲
k [1].

3. The complex Cs+t
k /Cst

k ⊕c (C
s+t
k /Cst)[1] is acyclic.

Proof. (1) follows by direct inspection. (2) follows by first considering the short exact
sequence

0 // C⟲
k [1]⊕ C⟲

k [1]
// C⟲

k ⊕c (C
⟲
k ⊕ C⟲

k )[1]
// C⟲

k
// 0

noting that the connecting morphism is the diagonal map H•(C⟲
k ) → H•(C⟲

k )⊕H•(C⟲
k ),

and thus it is injective. In particular, the induced map H•(C⟲
k ⊕c (C

⟲
k ⊕ C⟲

k )[1]) → C⟲
k

is zero. By exactness of the long exact sequence, we get H•(C⟲
k ⊕c (C

⟲
k ⊕ C⟲

k )[1])
∼=

H•(C⟲
k [1] ⊕ C⟲

k [1])/H
•(C⟲

k [1])
∼= C⟲

k [1]. (3) follows from the fact that a mapping cone
Cone(f) is acyclic if and only if f is a quasi-isomorphism. This complex is the mapping
cone of the identity morphism, and hence the cone is acyclic.

By reading the diagram, we get the following corollary by considering the induced long
exact sequence produced by the middle column or row.

Corollary 3.5.10. There is a long exact sequence on cohomology

· · · // H•−2(dGC⟲
k )

// H•(dGCst
k )

// H•(fM+
k )

// H•−1(dGC⟲
k )

// H•+1(dGCst
k )

// · · ·

By Lemma 2.4.16, H l(dGC⟲
3 ) = 0 for −2 ≤ l ≤ 1. In particular, H0(fM+

3 )
∼= H0(dGCst

3 ).
Finally, H0(dGCst

3 ) = grt⊕ grt by Proposition 3.4.6, giving us a second proof of the main
theorem.
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3.6 Main theorems

In this section, we first give a review of the bi-weighted complexes that have been defined
in the previous sections, followed by stating and proving the main theorems of this chapter.

3.6.1 Summary of bi-weighted graph complexes

The complex fwGCk is the complex of all possible bi-weighted graphs. The complex fwGC+
k

is the subcomplex of fwGCk of graphs that have at least one vertex with positive out-weight
and one vertex with positive in-weight.

The full bi-weighted graph complex fwGCk split as

fwGCk = fwGC0
k ⊕ fwGC∗

k

where fwGC0
k is the subcomplex of graphs where all vertices are decorated by 0

0 and wGC∗
k

its complement. The complex fwGC0
k is isomorphic to the complex dGC≥3,⟲

k (see Proposi-
tion 3.2.8.

The complexes wGC∗
k and wGC+

k split as

wGC∗
k = b0wGCk ⊕ wGC∗

k and wGC+
k = b0wGCk ⊕ wGC+

k

where b0wGCk is the subcomplex of graphs with loop number zero, and wGC∗
k and wGC+

k

are the subcomplexes of graphs with loop number greater than or equal to one. The
cohomology of b0wGCk is generated by the following series (see Proposition 3.2.9):∑

i,j≥1
i+j≥3

(i+ j − 2) i
j

The complex qGC∗
k is the subcomplex of wGC∗

k of graphs whose vertices are independently
decorated by the four bi-weights ∞1

∞1
, ∞1

0 , 0
∞1

and 0
0 such that no graph is only decorated

by 0
0 and that univalent vertices are only decorated by ∞1

∞1
. The complex qGC+

k is the

subcomplex of qGC+
k of graphs where at least one vertex is decorated by ∞1

∞1
or a pair of

vertices are decorated by ∞1
0 and 0

∞1
. It follows that qGC+

k is a subcomplex of wGC+
k .

The complex tGC∗
k is the quotient complex qGC∗

k/qGC
∗,0
k where qGC∗,0

k ⊆ qGC∗
k is the

subcomplex of graphs with at least one vertex decorated by 0
0 . In other words, tGC∗

k is
generated by graphs whose vertices are independently decorated by the three bi-weights
∞1
∞1

, ∞1
0 and 0

∞1
. The complex tGC+

k is the subcomplex of tGC∗
k of graphs where at least

one vertex is decorated by ∞1
∞1

or a pair of vertices are decorated by ∞1
0 and 0

∞1
. It follows

that tGC+
k is a quotient complex of qGC+

k .

We recall two definitions.

• Let Γ be an undecorated directed graph. Set Γ
∞1
0 to be the decorated graph in

tGC∗
k of the same shape as Γ where all univalent vertices are decorated by ∞1

∞1
and

all non-univalent vertices are decorated by ∞1
0 . We similarly define Γ

0
∞1 .

• Let Γ be an undecorated directed graph without any univalent vertices. We then set
Γω ∈ tGC+

k to be the sum of graphs

Γω =
∑
d

Γd.

where d is a full decoration of Γ, Γd is the graph Γ decorated by d, and the sum
is over all possible decorations d of Γ such that at least one vertex has positive
out-weight one has positive in-weight.
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The complex mGC∗
k is a subcomplex of tGC∗

k generated by graphs on the forms Γω, Γ
∞1
0

and Γ
0

∞1 for all directed graphs Γ. The complex mGC+
k is a subcomplex of mGC∗

k such
that no graph is only decorated by ∞1

0 or only 0
∞1

. It follows that mGC+
k is a subcomplex

of tGC+
k .

We recall that an antenna vertex of a directed graph Γ is either univalent, or becomes
univalent at some stage after recursively removing univalent vertices from Γ. An antenna
of Γ is a connected subgraph γ of Γ consisting of antenna vertices such that there are
no other antenna vertex adjacent to γ. The complex fM∗

k is the subcomplex of mGC∗
k of

graphs whose antennas contain at most one vertex. Similarly, fM+
k is the subcomplex of

mGC+
k of graphs whose antennas only contain one vertex.

The complexes that have been used in this chapter are related as follows:

wGC∗
k qGC∗

k tGC∗
k mGC∗

k fM∗
k dGCk

wGC+
k qGC+

k tGC+
k mGC+

k fM+
k Cone(P )[1]

where Cone(P )[1] is the desuspended cone complex of the chain map

P : dGCk → dGCno s
k ⊕ dGCno t

k .

Proposition 3.6.1. Let dGCk → wGC∗
k be the map where a graph Γ is mapped to the sum

of all possible bi-weights to put on Γ, excluding the decoration with only 0
0 . Then this map

is a quasi-isomorphism.

Proof. This map restricts to chain maps to all of the complexes in the diagram above,
making it commute. One checks that all of these maps are quasi-isomorphisms, starting
with that the restriction to dGCk is an isomorphism.

Proposition 3.6.2. Consider the decomposition

Cone(P )[1] = dGCk ⊕
(
dGCk/dGC

s
k[1]⊕ dGCk/dGC

t
k[1]
)
.

Let Cone(P )[1] → wGC+
k be the map where

• A graph Γ ∈ dGCk is mapped to the sum of all possible bi-weights to put on Γ such
that at least one vertex has positive in-weight and one vertex has positive out-weight.

• A graph Γ ∈ dGCk/dGC
t
k[1] is mapped to du(Γ

0
∞0 ), where Γ

0
∞0 is the graph Γ with all

vertices decorated by 0
∞0

and du is the differential of wGC∗
k only creating univalent

vertices.

• A graph Γ ∈ dGCk/dGC
t
k[1] is mapped to du(Γ

∞0
0 ), where Γ

∞0
0 is the graph Γ with all

vertices decorated by ∞0
0 and du is the differential of wGC∗

k only creating univalent
vertices.

Then this map is a quasi-isomorphism.

Proof. The argument is equivalent to that of Proposition 3.6.1.
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3.6.2 Main theorems and proofs

Theorem 3.6.3. There is a quasi-isomorphism

K⊕ dGC≥3,⟲
c+d+1 ⊕ dGCc+d+1 → Der•(Holieb⟲c,d).

Proof. This follows from the decomposition of Der•(Holieb⟲c,d) over graphs of loop number

zero and bi-weighted graphs only decorated by 0
0 , together with the quasi-isomorphism of

Proposition 3.2.9, Proposition 3.2.8 and Proposition 3.6.1.

Theorem 3.6.4. There is a quasi-isomorphism

K⊕ Cone(P )[1] → Der(Holieb⟲c,d)

where Cone(P )[1] is the desuspended cone complex of the chain map P : dGCk → dGCno s
k ⊕

dGCno t
k .

Proof. This follows from the decomposition of Der(Holieb⟲c,d) over graphs of loop number
zero, together with the quasi-isomorphisms of Proposition 3.2.9 and Proposition 3.6.2.

Corollary 3.6.5. There is an isomorphism of vector spaces

H0(Der(Holieb⟲1,1))
∼= K⊕ grt⊕ grt.

Proof. This follows directly from Proposition 3.5.4.

3.7 Explicit example of two cohomology classes of Der(Holieb⟲1,1)

One of the simplest cohomology classes in H0(GC2) = grt is given by the tetrahedron class

which has loop number three. We have an explicit morphism of complexes H0(dGCst
3 ) →

H0(Der(Holieb⟲1,1)) given by attaching hairs to a cohomology class of dGCst
3 as described

in Corollary 3.5.10. Therefore, to see the above mentioned two homotopy inequivalent
actions of the tetrahedron class on Holieb⟲1,1, we have to find explicit incarnations of the

tetrahedron class in dGCst
3 . In this section we explicitly describe these two incarnations

denoted by αs and αt, both having loop number three.

3.7.1 A reduced version of dGCst
k

Following S. Merkulovs paper [M3], we consider a ”smaller” version d̂GC
st

k of the complex
dGCst

k , which is quasi-isomorphic to it. First, define the graph complex dGCk generated
by graphs whose vertices are at least trivalent and which have four kinds of edges:

• Solid edges of degree zero

• Dotted s-edges of degree one s

• Dotted t-edges of degree one t

• wavy edges of degree two
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Let Γ be a graph and let e be the total number of edges, v the number of vertices, e1 the
number of s-edges and t-edges, and e2 the number of wavy edges. Then the degree of Γ is

|Γ| = (v − 1)k + (1− k)e+ e1 + 2e2.

The space is defined as the graphs invariant under permutations of vertices or edges
depending on the parity of k, with the change that labels of non-solid edges can only be
permuted with edges of the same type. Further permutations of dotted edges give the sign
of the permutation for k odd. Further, the non-solid edges satisfy the relations

• s = (−1)k+1 s

• t = (−1)k+1 t

• = (−1)k+1

The differential is defined as d = dV +dE , where dV acts by splitting vertices so that neither
univalent nor bivalent vertices are created, and with the same sign rule as in dGCd. The
term dE acts on edges accordingly:

• dE = t − s

• dE
s =

• dE
t =

• dE = 0

We say that a vertex in such a graph is a solid source if the attached edges are solid and
outgoing or t-dotted. A vertex is a solid target if the attached edges are solid and incoming

or s-dotted. Consider the subcomplex dGC
st
k of dGCk generated by graphs that either

• have at least one solid source and one solid target,

• have at least one dotted s-edge and one solid target,

• have at least one dotted t-edge and one solid source,

• have at least one dotted s-edge and one dotted t-edge,

• have at least one wavy edge.

Consider the map f : dGC
st
k → dGCst

k where a graph is mapped to the graph in dGCst
k

where solid edges remain the same, but s-dotted, t-dotted, and wavy edges are replaced
by the following edges:

• s 7→

• t 7→

• 7→ + (−1)k

Then the map f is a quasi-isomorphism [M3]. Consider the subcomplex Zd of dGC
st
k of

graphs that either

• have at least one s-edge and one t-edge,

• have at least one s-edge and one wavy edge,

• have at least one tedge and one wavy edge,
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• have at least two wavy edges.

This subcomplex is acyclic, hence the projection dGC
st
k → dGC

st
k /Zd is a quasi-isomorphism.

Let d̂GC
st

k = dGC
st
k /Zd. This complex consists of graphs that either

• have only solid edges such that there is at least one solid source and one solid target,

• have only solid and dotted s-edges such that there is at least one solid target and
one dotted s-edge,

• have only solid and dotted t-edges such that there is at least one solid source and
one dotted t-edge,

• have only solid and wavy edges such that there is at least one wavy edge.

We will use this complex when finding the cohomology classes.

3.7.2 Calculating the cohomology classes

Let γs and γt be the graphs

γs =
s s

γt =
t t

Note that γs is in d̂GC
s

3 but not in d̂GC
st

3 . Similarly, γt is in d̂GC
t

3 but not in d̂GC
st

3 . The
vertices of γs are all trivalent, and so the differential acts by only changing solid edges to
s-edges. We have omitted the s on s-edges for clarity in the following pictures. Hence

αs := d(γs) = + + +

αt := d(γt) = + + +

Note that each graph contains a source and a target vertex, and hence αs and αt are cycles

in d̂GC
st

3 .

Theorem 3.7.1. The elements αs and αt are non-trivial cycles of d̂GC
st

3 . Furthermore,

they represent two different cohomology classes in H(d̂GC
st

3 ).

Let X and A be the spaces of graphs of loop number three with at least one source
and target vertex of degree −1 and 0 respectively. Then the differential is a linear map
d : X → A and we want to show that there is no βs ∈ X so that d(βs) = αs. To prove
this statement at this stage, we would need to compute the differential of hundreds of
graphs in X and check that αs is linearly independent of them. Instead, we can reduce
this problem to giving us only a handful of graphs to study. Let As be the subspace of
A of graphs spanned by tetrahedron graphs with three s-edges. Note that αs ∈ As. The
graphs a1, ..., a10 in figure 3.5 form a basis for As.

Let A be the orthogonal complement of As so that A = As ⊕A and let ps : A
s ⊕A → As

be the projection. Let X be the kernel of the map ps ◦ d : X → As and Xs its orthogonal
complement so that X = Xs ⊕X. The space Xs is spanned by the graphs x1, ..., x11 in
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a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

Figure 3.5: Basis of As

x1 x2 x3 x4 x5 x6

x7 x8 x9 x10 x11

Figure 3.6: Basis of Xs

figure 3.6. Let ιs : Xs → Xs⊕X be the inclusion map. We get the following commutative
diagram:

Xs ⊕X
d // As ⊕A

ps
��

Xs

ιs

OO

pa◦ d ◦ιs // As

Lemma 3.7.2. Let as ∈ As. If there is an element b ∈ X = Xs ⊕X such that d(b) = as,
then there is bs ∈ Xs such that ιs ◦ d ◦ ps(bs) = as.

Proof. Suppose that such an element b exists. Then b = bs + b where bs ∈ Xs and b ∈ X.
Now d(bs + b) = a. The space X is the kernel space of ps ◦ d, and so ps ◦ d(b) = 0. Hence
ps ◦ d(b) = ps ◦ d(bs) = as. Finally, bs ∈ Xs and so ps ◦ d ◦ ιs(bs) = a.

Proof of Theorem 3.7.1. By the contrapositive statement of Lemma 3.7.2, it is sufficient
for us to show that there is no βs ∈ Xs so that ps ◦ d ◦ ιs(β

s) = αs. We have already
established the basis a1...a10 of A

s and x1...x11 of X
s. In this basis, αs = a1+a5+a7−a10.

We compute the image of each vector x1...x11 under the differential and get a matrix
representation of the map ds ◦ d ◦ ps : Xs → As as seen in figure 3.7. By using the
application wolfram-alpha, we can, with Gaussian elimination, see that αs is not in the

image of ds◦d◦ps. Hence we conclude that αs is a non-trivial cycle of d̂GC
st

3 . The argument
to show that αt is a non-trivial cycle is analogous by considering the same graphs as for αt

but with all solid edges reversed and all s-edges turned into t-edges. Finally, let us show

that αs and αt represent different equivalence classes in H(d̂GC
st

3 ). For a contraction,
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

ds(x1) = a1 + a4 − a7 − a9

ds(x2) = a2 + a4 − a8 + a9

ds(x3) = a2 + a3 − a8 − a9

ds(x4) = a2 + a5 − a7 + a9

ds(x5) = a2 + a6 + a8 − a10

ds(x6) = a2 + a5 + a8 + a10

ds(x7) = a2 + a4 + a7 + a10

ds(x8) = a7 + a8 − a9 + a10

ds(x9) = −a4 + a5 − a7 + a8

ds(x10) = −a5 + a6 − 2a10

ds(x11) = −a3 + a4 + 2a9



1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1
1 1 0 0 0 0 1 0 −1 0 1
0 0 0 1 0 1 0 0 1 −1 0
0 0 0 0 1 0 0 0 0 1 0
−1 0 0 −1 0 0 1 1 −1 0 0
0 −1 −1 0 1 1 0 1 1 0 0
−1 1 −1 1 0 0 0 −1 0 0 2
0 0 0 0 −1 1 1 1 0 −2 0
0 0 0 0 0 0 0 0 −1 0 0



Figure 3.7: Matrix representation of the map ds = ps ◦ d ◦ ιs : Xs → As.

suppose that there exists β ∈ X such that d(β) = αs − αt. Let At and Xt be ”targeted”
versions of the spaces As and Xs. More concretely, they are the vector spaces generated
by the graphs in Figure 4 and 5 but where the solid edges have the opposite direction and
the s-edges have been replaced by t-edges. It is clear that As ∩At = Xs ∩Xt = {0}. Let
Â be the obvious (say orthogonal) complement of the subspace As ⊕ At of A, and let X̂
be the similar complement of the subspace Xs ⊕Xt in X so that A = As ⊕ At ⊕ Â and
X = Xs ⊕Xt ⊕ X̂. Let p : As ⊕At ⊕ Â → As ⊕At be the projection map. We note that
X̂ is the kernel of the map p ◦ d : X → As ⊕At. By Lemma 3.7.2, there is a β′ ∈ Xs ⊕Xt

so that p ◦ d(β′) = αs − αt. Now β′ = βs + βt for some βs ∈ Xs and βt ∈ Xt. Further,
Xt is a subspace of X, the kernel of the map ps ◦ d : X → As. Hence p ◦ d(βs) = αs. But
this contradicts αs being a non-trivial cycle, finishing the proof.

The epimorphism dGCst
3 → d̂GC

st

3 is a quasi-isomorphism, so it remains to find a lift of
αs and αt to cycles in dGCst

3 . Let us introduce a new kind of edge, defined as a linear

combination of an s-edge and a t-edge = s − t . The differential split as
d = dV +dE where dV acts on vertices by vertex splitting and dE acts on edges accordingly:

d( ) = , d( ) = 0

Consider the graph

Γs = =
s s − t s − s t

+
t t

Note that γs is the first term, while the other terms γs are in dGCst
3 . Hence d(Γs) =

d(γs) + d(γs) = αs + d(γs) is a cycle, and it is a lift of αs. The corresponding lift of αt is
d(Γt), where

Γt = =
s s − t s − s t

+
t t

Now we get an explicit action of these classes on Holieb⟲1,1 as the derivations D1 and D2,
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which respectively act on (m,n) corollas as

D1

( 1 2 ··· m

1 2
···

n

)
=
∑

1 2

· · ·
m

1 2

· · ·
n

+
∑

1 2

· · ·
m

1 2

· · ·
n

+
∑

1 2

· · ·
m

1 2

· · ·
n

+
∑

1 2

· · ·
m

1 2

· · ·
n

D2

( 1 2 ··· m

1 2
···

n

)
=
∑

1 2

· · ·
m

1 2

· · ·
n

+
∑

1 2

· · ·
m

1 2

· · ·
n

+
∑

1 2

· · ·
m

1 2

· · ·
n

+
∑

1 2

· · ·
m

1 2

· · ·
n

.

These formulae give us the required explicit homotopy inequivalent actions of the tetra-
hedron class in the Kontsevich graph complex GC2 as derivations of the wheeled properad
Holieb⟲1,1.

62



Chapter 4

Derivations of quasi- and
pseudo-Lie bialgebras

In this chapter we compute the cohomology of the derivation complexes of the quasi-
Lie bialgebra properad and the pseudo-Lie bialgebra properad. We do this in both the
wheeled and unwheeled cases. The cohomology is computed by establishing explicit quasi-
isomorphisms to directed Kontsevich graph complexes. The content of this chapter is
largely based on the article Graph complexes and Deformation theories of the (wheeled)
properads of quasi- and pseudo-Lie bialgebras [F2].

4.1 Derivation complexes of the quasi- and pseudo-Lie bial-
gebra properads

4.1.1 The derivation complexes of wheeled quasi-Lie bialgebra properad

Definition 4.1.1. Let QHolieb+c,d be the free dg properad generated by the S-bimodule

QLb+c,d = {QLb•c,d(m,n)}m,n≥0 where

QLb+c,d(m,n) = sgn⊗c
m ⊗ sgn⊗d

n [c(m− 1) + d(n− 1)− 1]

=
〈 σ(1) σ(2)

···
σ(m)

τ(1) τ(2)
···

τ(n)

= (−1)c|σ|+d|τ |

1 2
···

m

1 2
···

n

| σ ∈ Sm, τ ∈ Sn
〉
m≥1
n≥0

and whose differential acts on generators as

δ
( 1 2

···
m

1 2
···

n

)
=

∑
[m]=I1⊔I2

|I1|≥0,|I2|≥1

∑
[n]=J1⊔J2

(−1)σ(I1⊔I2)+|I1|(|I2|+1) •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

.

Remark 4.1.2. The complexes QHolieb+c,d and Holieb•c,d only differ from QHoliebc,d in
that they have additional generators (see Figure 4.1.1) and that the differential is modified
accordingly. Furthermore, the natural projections

Qπ+ : QHolieb+c,d ↠ QHoliebc,d and Pπ• : Holieb•c,d ↠ QHoliebc,d

are morphisms of dg properads. The morphism Qπ• factors through Qπ+ as

Holieb•c,d ↠ QHolieb+c,d ↠ QHoliebc,d.
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4.1. DERIVATION COMPLEXES OF THE QUASI- AND PSEUDO-LIE
BIALGEBRA PROPERADS

QHolieb+c,d : , ,

Holieb•c,d : , , ,
···
≥1

,

Figure 4.1: Additional generators of QHolieb+c,d and Holieb•c,d compared to QHoliebc,d.

Recall that we use the notation Q̂Holiebc,d to denote the loop number completion of
QHoliebc,d (and similarly for any other properad). We define the following derivation
complexes of QHoliebc,d analogously to those in Definition 3.1.5.

Definition 4.1.3. The complex Der•(QHolieb⟲c,d) is the derivation complex with respect
to the morphism

Qπ•,⟲ : Ĥolieb
•,⟲
c,d ↠ Q̂Holieb

⟲

c,d

induced by Qπ•. Similarly, let Der(QHolieb⟲c,d) be the derivation complex with respect
to the morphism

Qπ+,⟲ : Q̂Holieb
+,⟲

c,d ↠ Q̂Holieb
⟲

c,d

induced by Qπ+. The differential d on both complexes is given by the vertex splitting
differential dspl from QHoliebc,d with the additional terms of attaching (m,n) corollas to
every hair for all integers m,n:

dΓ = dsplΓ±
∑
m,n

1 2 ··· m Γ

1 2 ··· n

∓
∑
m,n

1 2 ··· m

1 2 ··· n Γ

(4.1)

The sign rule for this formula can be found in [MW1].

Definition 4.1.4. Consider the natural projection morphism Pπ• : Holieb•c,d ↠ PHoliebc,d
of dg properads. Let Der(PHolieb⟲c,d) be the derivation complex with respect to the mor-
phism

Pπ•,⟲ : Ĥolieb
•,⟲
c,d ↠ ̂PHolieb

⟲

c,d

induced by Pπ•. The differential is defined as in Equation 4.1 above.

Remark 4.1.5. Since the derivation complexes are induced by maps from a free properad,
they can be described as

Der•(QHolieb⟲c,d)
∼=

∏
m,n≥0

(QHolieb⟲c,d(m,n)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n )Sm×Sn [1 + c(1−m) + d(1− n)]

Der(QHolieb⟲c,d)
∼=
∏
m≥1
n≥0

(QHolieb⟲c,d(m,n)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n )Sm×Sn [1 + c(1−m) + d(1− n)]

Der(PHolieb⟲c,d)
∼=

∏
m,n≥0

(PHolieb⟲c,d(m,n)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n )Sm×Sn [1 + c(1−m) + d(1− n)]

where QHolieb⟲c,d(m,n) is the set of generating graphs of QHolieb⟲c,d with m outputs and

n inputs, and respectively for PHolieb⟲c,d(m,n).
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4.1.2 The derivation complexes of the unwheeled quasi- and pseudo-Lie
bialgebra properads

Definition 4.1.6. Let Der(QHolieb↑c,d) be the derivation complex with respect to the
morphism

Qπ+ : Q̂Holieb
+

c,d ↠ Q̂Holiebc,d.

Similarly let Der(PHolieb↑c,d) be the derivation complex with respect to the morphism

Pπ• : Ĥolieb
•
c,d ↠ ̂PHoliebc,d.

The differential is defined as in Equation 4.1 above.

Similar to the derivation complexes of Holieb⟲c,d, the loop number of a graph in the deriva-
tion complexes above remains invariant under the differential. The components of graphs
with loop number zero in the derivation complexes of quasi-Lie bialgebras above are all
the same, and we denote it by Derb=0(QHoliebc,d). The analogous statement is true
for the quasi-Lie bialgebra complexes and we denote the corresponding component by
Derb=0(PHoliebc,d).

Theorem 4.1.7. The cohomology of Derb=0(QHoliebc,d) is generated by the series of
single vertex graphs

∑
m≥1,n≥0
m+n≥3

(m+ n− 2)
· · ·

· · ·

︷ ︸︸ ︷
︸ ︷︷ ︸

m

n

.

Furthermore, the cohomology of Derb=0(PHoliebc,d) is generated by the series of single
vertex graphs

∑
m,n≥0
m+n≥3

(m+ n− 2)
· · ·

· · ·

︷ ︸︸ ︷
︸ ︷︷ ︸

m

n

.

Proof. This can be proven using similar methods as for Theorem 3.1.7.

4.2 Graph complexes

4.2.1 The quasi and pseudo bi-weighted graph complex

In Chapter 3, we defined the bi-weighted graph complex fwGCk as a tool to easier compute
the cohomology of Der(Holieb⟲c,d). Here we follow the same idea and define two new
complexes fwQGCk and fwPGCk to study the derivations of the quasi- and pseudo-Lie
bialgebra properads. We refer to our previous paper for full details. Let Γ be a directed

graph, and let x be a vertex of Γ. Recall that a bi-weight on x is a pair of non-negative
integers (wout

x , win
x ) satisfying

wout
x + |x|out ≥ 1

win
x + |x|in ≥ 1

wout
x + win

x + |x|out + |x|in ≥ 3.

Further recall that a bi-weighted graph is a graph Γ with a bi-weight on each vertex and
that fwGCk is the chain complex spanned by all bi-weighted graphs.
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Definition 4.2.1. Let Γ be a directed graph and x a vertex of Γ. A quasi bi-weight
(wout

x , win
x )q on x and a pseudo bi-weight (wout

x , win
x )p on x respectively, is a pair of non-

positive integers satisfying

(wout
x , win

x )q (wout
x , win

x )p
wout
x + |x|out ≥ 1

win
x + |x|in ≥ 0

wout
x + win

x + |x|out + |x|in ≥ 3

wout
x + |x|out ≥ 0

win
x + |x|in ≥ 0

wout
x + win

x + |x|out + |x|in ≥ 3

A quasi bi-weighted graph is a directed graph whose vertices are all decorated by quasi
bi-weights. We similarly define a pseudo bi-weighted graph. Quasi and pseudo bi-weighted
vertices are represented in the same manner as bi-weighted vertices, and the type of bi-
weight will be understood from its context. The quasi bi-weighted graph complex is the
chain complex fwQGCk generated by quasi bi-weighted graphs. Similarly the pseudo bi-
weighted graph complex is the chain complex fwPGCk generated by pseudo bi-weighted
graphs. The differentials of both complexes act similar to the differential in wGCk by
splitting vertices and attaching univalent vertices, but where the bi-weight limits of each
complex are considered. Hence in all three cases the differential acts on a graph Γ as

d(Γ) := δ(Γ)− δ′(Γ)− δ′′(Γ) =
∑

x∈V (Γ)

δx(Γ)− δ′x(Γ)− δ′′x(Γ).

where we pictorially represent dx(Γ) = δx(Γ)− δ′x(Γ)− δ′′x(Γ) in both complexes as

dx

(
m
n

···

···

)
=

∑
m=m1+m2
n=n1+n2

m1
n1

m2
n2

· · ·

· · ·

−
∑

i≥1,j≥0
i+j≥2

m−1
n

i
j···

···

−
∑

i≥0,j≥1
i+j≥2

m
n−1

i
j

···

···

Remark 4.2.2. We will sometimes use the following notation for brevity when describing
the splitting term δx of the differential:

δx

(
m
n

···

···

)
=

∑
m=m1+m2
n=n1+n2

(m1

n1
,
m2

n2

)
x
, where

(m1

n1
,
m2

n2

)
x
:= m1

n1

m2
n2

· · ·

· · ·

.

Any invalid assignment of bi-weights to a vertex makes the whole graph zero. Note that
this can be different in each of the three complexes (see Figure 4.2).

Remark 4.2.3. Similar to the differential of fwGCk, the differentials of fwQGCk and
fwPGCk do not in general cancel the creation of new univalent vertices in any of the bi-

weighted complexes. However, vertices on the form ∞0
∞0

do not create any new univalent

vertices under the action of the differential. Here we are once again using the convention
of decorations introduced in Definition 3.2.4.

Proposition 4.2.4. Let the maps

F : Der•(Holieb⟲c,d) → fwGCc+d+1

qF : Der•(QHolieb⟲c,d) → fwQGCc+d+1

pF : Der•(PHolieb⟲c,d) → fwPGCc+d+1
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Invalid in every complex 0
2 , 0

0 , −1
2

Valid in fwPGCk
0
2 , 0

2

Valid in fwQGCk
2
0 , 4

0

Valid in fwGCk
0
1

Figure 4.2: Examples of valid and invalid decorations of graphs in the three bi-weighted
complexes.

be defined by mapping the graph representation of an element with out-hairs and in-hairs to
a bi-weighted graphs of the same shape where the hairs have been interpreted as bi-weights.
Then these maps are chain maps of degree 0, and furthermore they are isomorphisms.

Proof. The proof is equivalent to that of Proposition 3.2.7.

4.2.2 Subcomplexes of fwGCk, fwQGCk and fwPGCk

Definition 4.2.5. Let fwGC+
k be the subcomplex of fwGCk of graphs having at least one

vertex with a positive out-weight and at least one vertex with a positive in-weight. Let
fwQGC+

k be the subcomplex of fwQGCk of graphs having at least one vertex with positive
out-weight.

Proposition 4.2.6. The isomorphisms from Proposition 4.2.4 restrict to isomorphisms

F :Der(Holieb⟲c,d) → fwGC+
c+d+1

qF :Der(QHolieb⟲c,d) → fwQGC+
c+d+1

Proof. This follows by inspection.

Definition 4.2.7. Let fowGCk be the subcomplex of fwGCk of graphs containing no closed
paths. Similarly, define fowQGCk and fowPGCk.

Proposition 4.2.8. The isomorphisms from Proposition 4.2.4 restrict to isomorphisms

F : Der(Holieb↑c,d) → fowGCc+d+1

qF : Der(QHolieb↑c,d) → fowQGCc+d+1

pF : Der(PHolieb↑c,d) → fowPGCc+d+1

Proof. This follows by inspection.
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4.2.3 Loop number zero

All graph complexes above split over their loop number b = e − v + 1. Let b0wGCk be
the subcomplex of fwGCk of graphs with loop number b = 0 and let wGCk denote the
subcomplex of graphs with looper number one and higher. Hence fwGCk = b0wGCk ⊕
wGCk. Similarly, let b0wQGCk and b0wPGCk be the subcomplexes of graphs with loop
number b = 0, and wQGCk and wPGCk the subcomplexes of graphs with loop number
greater than zero.

Proposition 4.2.9. The cohomologies of b0wGCk, b0wQGCk and b0wPGCk are generated
by the single vertex graph ∑

i,j≥0
i+j≥3

(i+ j − 2) i
j

where any graph containing a vertex of invalid bi-weight is zero.

Proof. The proof has already been done for the complex b0wGCk. The proof naturally
extends to the quasi- and pseudo cases.

The oriented graph complexes decompose in a similar manner, where the loop number zero
component are equivalent to the complexes above. Denote their subcomplexes of graphs
whose loop number greater than zero by owGCk, owQGCk and owPGCk respectively.

4.3 Special in-vertices and special out-vertices

4.3.1 Special in-vertices

Recall that a special in-vertex is a vertex on the form 0
n or is on this form after a

recursive removal of special-in vertices of this form. Any vertex that is not a special-in
vertex is called an in-core vertex.

Definition 4.3.1. Let SwGCk be the subcomplex of wGCk of graphs Γ whose vertices V (Γ)
are independently decorated by the modified bi-weights m

∞1
and m

0 for m ∈ N subject to
the following conditions:

(1) If x ∈ V (Γ) is a source, then

x = m∞1

···
≥1

with m+ |x|out ≥ 2

(2) If x ∈ V (Γ) is a univalent target, then

x = m∞1
with m ≥ 1, or x = m

0 with m ≥ 2

(3) If x ∈ V (Γ) is a target with at least two in-edges, then

x = m∞1

···
≥2

with m ≥ 1, or x = m
0
···
≥2

with m ≥ 1

68
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(4) If x ∈ V (Γ) is passing (one in-edge and one out-edge), then

x = m∞1
with m ≥ 0, or x = m

0 with m ≥ 1

(5) If x ∈ V (Γ) is of none of the types above (i.e., x is at least trivalent and has at least
one in-edge and at least one out-edge), then

x = m∞1

···

···

with m ≥ 0, or x = m
0
···

···

with m ≥ 0

Definition 4.3.2. Let SwQGCk be the subcomplex of wQGCk of graphs Γ whose vertices
V (Γ) are independently decorated by the modified bi-weights m

∞1
and m

0 for m ∈ N subject
to the same conditions (2)−(5) as in Definition 4.3.1 together with the additional modified
condition

(1′) If x ∈ V (Γ) is a source, then

x = m∞1

···
≥1

with m+ |x|out ≥ 2, or x = m
0

···
≥1

with m+ |x|out ≥ 3.

Definition 4.3.3. Let SwPGCk be the subcomplex of wPGCk of graphs Γ whose vertices
V (Γ) are independently decorated by the modified bi-weights m

∞1
, m

0 and 0
∞2

for m ∈ N
subject to the conditions (1′) and (4)− (5) as in Definition 4.3.2 and 4.3.1, together with
the additional modified conditions

(2′) If x ∈ V (Γ) is a univalent target, then

x = m∞1
with m ≥ 1, x = m

0 with m ≥ 2, or x = 0∞2

(3′) If x ∈ V (Γ) is a target with at least two in-edges, then

x = m∞1

···
≥2

with m ≥ 0, or x = m
0
···
≥2

with m+ |x|in ≥ 3

Remark 4.3.4. The differentials of the complexes above are induced by the differential
from the complex they are embedded in and act on a graph Γ as d(Γ) =

∑
x∈V (Γ) dx(Γ).

The map dx acts differently on vertices depending on which of the three complexes above
we consider. It can generally be described using the formulas of Figure 4.3, where any term
containing a vertex with an invalid bi-weight for the specific complex the computation is
done in is set to zero. Note for example that the decoration 0

∞2
is only valid in SwPGCk.

Proposition 4.3.5. The three inclusions

SwGCk ↪→ wGCk , SwQGCk ↪→ wQGCk and SwPGCk ↪→ wPGCk

are quasi-isomorphisms.
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dx

(
m∞1

···

···

)
=

∑
m=m1+m2

(
m1∞1

m2∞1

· · ·

· · ·

+ m1
0

m2∞1

· · ·

· · ·

+ m1∞1

m2
0

· · ·

· · ·

)

− m−1
∞1

∞1∞0···

···

− m−1
∞1

0∞2···

···

− m∞1
∞1∞1

···

···

− m
0

∞1∞1

···

···

− m∞1
∞2
0

···

···

− m
0

∞2
0

···

···

dx

(
m
0

···

···

)
=

∑
m=m1+m2

m1
0

m2
0

· · ·

· · ·

− m−1

0

∞1∞0···

···

− m−1
∞1

0∞2···

···

dx

(
0∞2

)
= 0∞1

0∞2

− 0∞1
∞1∞1

− 0∞1
∞2
0

Figure 4.3: General formula describing how the differentials of SwGCk, SwQGCk and
SwPGCk act on a vertex x. Any term containing an invalid decoration for the considered
complex is set to zero.
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Proof. The statement was already proved for the first inclusion in Proposition 3.3.2, and
the proof for the other two inclusions follows the same line of argument with some extra
cases to consider.
To show the second statement, let gr SwQGCk be the associated graded of the filtration
over the number of in-core vertices in a graph. This complex decompose over in-core
graphs as

gr SwQGCk =
⊕

QinCore(γ)

where QinCore(γ) is the subcomplex of graphs with in-core graph γ. This complex further
decomposes as

QinCore(γ) ∼=
( ⊗

x∈V (γ)

qT in
x

)Aut(γ)

where qT in
x is the complex of in-core trees attached to the vertex x in γ. We first note

that if |x|in ≥ 1, then qT in
x

∼= T in
x , which shows cases (2) − (5). Suppose that |x|in = 0.

Then qT in
x contains a subcomplex C generated by single vertex graphs on the form m

0

···
≥1

for m ≥ 0 such that m+ |x|out ≥ 3. These are all non-trivial cycles, and the complex split
as qT in

x = C ⊕T in
x . The cohomology of T in

x is given by condition (1), and so this gives the
modified condition (1′) and proves the second statement.
Finally to show the last statement, Let gr SwPGCk be the associated graded of the filtration
of wPGCk over the number of core-vertices in a graph. This complex decomposes over in-
core graphs γ as

gr SwPGCk =
⊕
γ

PinCore(γ)

and further

PinCore(γ) ∼=
( ⊗

x∈V (γ)

pT in
x

)Aut(γ)

where pT in
x is the complex of in-core trees attached to the vertex x in γ. Recall that |x|out,

|x|in and wout
x are invariant in pT in

x . By observation, we gather the following:

• If |x|out, |x|in ≥ 1, then pT in
x = T in

x .

• If |x|in = 0, then pT in
x = qT in

x .

• If |x|out = 0 and wout
x ≥ 1, then pT in

x = T in
x .

These cases correspond to the conditions (4) − (5), (1′) and (2) − (3) respectively. One
last case remains. Suppose that |x|out = 0 and wout

x = 0. We will show that H(pT in
x ) is

generated by the following one-vertex graphs

0∞2
, 0∞1

, 0∞1

···
≥3

, 0
0
···
≥3

depending on the value of |x|in. The proof of this statement is similar to that of Lemma
3.3.4 and Lemma 3.3.5 so we do only give a brief outline here.
Consider the filtration of pT in

x over the number of univalent special-in vertices, where we
consider the graph containing a single vertex as having one such vertex. The associated
graded complex split as gr pT in

x =
⊕

N≥1 uNpT in
x where uNpT in

x is the subcomplex of

graphs with N univalent special-in vertices. We can show that uNpT in
x is acyclic for

N ≥ 2 by considering the filtration over the number of branch vertices. A vertex y is
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a branch vertex if there are at least two directed paths from a univalent vertex to y.
Secondly, we consider the filtration over the total in-weights of the branch vertices. The
in-core vertex is always a branch vertex, and the differential does not depend on the bi-
weight of the core-vertex. Hence the proof now is equivalent to that of Lemma 3.3.5.
Lastly, we note that the one vertex graphs above are non-trivial cycles of u1pT in

x . By the
same methods as in the proof of Lemma 3.3.4 we show that the cohomology of u1pT in

x is
one or two-dimensional, finishing the proof.

Definition 4.3.6. Let SowGCk be the subcomplex of SwGCk of oriented graphs. Similarly,
define SowQGCk and SowPGCk as subcomplexes of SwQGCk and SwPGCk respectively.
These complexes are subcomplexes of owGCk, owQGCk and owPGCk.

Corollary 4.3.7. The inclusions

SowGCk ↪→ owGCk , SowQGCk ↪→ owQGCk and SowPGCk ↪→ owPGCk

are quasi-isomorphisms.

Proof. Let growGCk be the associated graded complex to the filtration of owGCk over the
number of core-vertices in a graph. The complex decompose over oriented core graphs γ
as

gr owGCk =
⊕
γ

inCore(γ)

where inCore(γ) is the subcomplex of graphs with in-core γ. These are the same complexes
as in Proposition 3.3.2, giving the same cohomology classes, which gives the result for the
first inclusion. The same argument applies to the two other cases.

Definition 4.3.8. Let SwGC+
k be the subcomplex of SwGCk of graphs that contain at least

one vertex with out-decoration m ≥ 1 and one vertex with in-decoration ∞1. Further,
let SwQGC+

k be the subcomplex of SwQGCk of graphs that contain at least one vertex
with out-decoration m ≥ 1. These complexes are subcomplexes of wGC+

k and wQGC+
k

respectively.

Proposition 4.3.9. The inclusions

SwGC+
k ↪→ wGC+

k and SwQGC+
k ↪→ wQGC+

k

are quasi-isomorphisms.

Proof. The first case was already proven in Proposition 3.3.8, but we do here give an
alternate proof that can be generalized to the second case. Consider the commutative
diagram of short exact sequences

0

��

0

��

0

��
0 // SwGC+

k

��

// SwGCk
//

��

SwGC∼
k

��

// 0

0 // wGC+
k

��

// wGCk
//

��

wGC∼
k

��

// 0

0 // Q+
k

��

// Qk
//

��

Q∼
k

��

// 0

0 0 0

72



CHAPTER 4. DERIVATIONS OF QUASI- AND PSEUDO-LIE BIALGEBRAS

where Q+
k , Qk and Q∼

k are the appropriate quotient complexes. Note in particular that
wGC∼

k is the quotient complex of bi-weighted graphs that do not both have a positive
out-weight and positive in-weight at the same time. It decomposes as

wGC∼
k = wGCout

k ⊕ wGCin
k ⊕ wGC0

k

where wGCout
k is the complex of graphs with at least one vertex with positive out-weight,

wGCout
k the complex of graphs with at least one vertex with positive in-weight, and wGC0

k

the complex of graphs with neither positive out-weights nor in-weights. The complex
SwGC∼

k is a subcomplex of wGC∼
k of graphs whose vertices are either only decorated by

0
∞1

and 0
0 , or

m
0 and 0

0 for m ≥ 1. It similarly decomposes as

SwGC∼
k = SwGCout

k ⊕ SwGCin
k ⊕ SwGC0

k

where is the subcomplex of graphs with at least one vertex decorated by m
0 m ≥ 1. By

Proposition 3.3.2, the inclusion SwGCk ↪→ wGCk is a quasi-isomorphism, and so Qk is
acyclic. If we show that the inclusion SwGC∼

k ↪→ wGC∼
k is a quasi-isomorphism, we get

that both Q∼
k and Q+

k are acyclic, and that the inclusion SwGC+
k ↪→ wGC+

k is a quasi-
isomorphism. Equivalently, we show that the inclusions

SwGCout
k ↪→ wGCout

k , SwGCin
k ↪→ wGCout

k and SwGC0
k ↪→ wGC0

k

are quasi-isomorphisms. Consider the filtration of these complexes over the number of
in-core vertices. The associated graded gr wGCout

k contain no special-in vertices since
any such vertex necessarily has a positive in-weight, and so the differential is trivial and
easily seen to be equal to SwGCk. Consider the associated graded of wGCin

k ⊕ wGC0
k. It

decomposes over in-core graphs γ as

gr(wGCin
k ⊕ wGC0

k) =
⊕
γ

inCoreout,0(γ)

where inCoreout,0(γ) is the complex of graphs with in-core γ. The complex further decom-
poses as

inCoreout,0(γ) ∼=
( ⊗

x∈V (γ)

T in,∼
x

)Aut(γ)

where T in,∼
x is the complex of special-in trees attached to x. This complex is isomorphic

to T in
|x|out,|x|in,0 as seen in Lemma 3.3.3. Hence T in,∼

x is acyclic when x is a target vertex,

and otherwise generated by the single vertex graph decorated by 0
∞1

and 0
0 (when x is

generic). This completes the first part of the proof. The argument for the second proof is
similar, instead using the tree complexes qT in

x from Proposition 3.3.2.

4.3.2 Special out-vertices

Recall that a special out-vertex is a vertex on the form m
0 or becomes on this same form

after an iterative removal of such vertices from the graph. Vertices that are not special
out-vertices are called out-core vertices or just core vertices.

Definition 4.3.10. Let qGCk be the subcomplex of SwGCk of graphs Γ whose vertices
V (Γ) are independently decorated by the bi-weights ∞1

∞1
, ∞1

0 , 0
∞1

and 0
0 subject to the

following conditions:

(1) If x ∈ V (γ) is a univalent vertex, then it is decorated by ∞1
∞1

.

(2) If x ∈ V (γ) is a source, then it is either decorated by ∞1
∞1

or 0
∞1

.
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(3) If x ∈ V (γ) is a target, then it is either decorated by ∞1
∞1

or ∞1
0 .

(4) If x ∈ V (γ) is a passing vertex, then it is either decorated by ∞1
∞1

, ∞1
0 or 0

∞1
.

(5) If x ∈ V (γ) is a generic vertex, then it is either decorated by ∞1
∞1

, ∞1
0 , 0

∞1
or 0

0 .

Definition 4.3.11. Let qQGCk be the subcomplex of SwQGCk of graphs Γ whose vertices
V (Γ) are independently decorated by the bi-weights ∞1

∞1
, ∞1

0 , 0
∞1

, 0
0 and ∞2

0 subject to the
conditions (3)-(5) of Definition 4.3.10 in addition to the following modified conditions:

(1′) If x ∈ V (γ) is a univalent source, then it is decorated by ∞1
∞1

or ∞2
0 .

(1′′) If x ∈ V (γ) is a univalent target, then it is decorated by ∞1
∞1

.

(2′) If x ∈ V (γ) is a bivalent source, then it is either decorated by ∞1
∞1

or 0
∞1

.

(2′′) If x ∈ V (γ) is an at least trivalent source, then it is either decorated by ∞1
∞1

, 0
∞1

or
0
0 .

Definition 4.3.12. Let qPGCk be the subcomplex of SwPGCk of graphs Γ whose vertices
V (Γ) are independently decorated by the bi-weights ∞1

∞1
, ∞1

0 , 0
∞1

, 0
0 ,

∞2
0 and 0

∞2
subject

to the conditions of Definition 4.3.11, except where condition (3) has been replaced by the
two modified conditions:

(3′) If x ∈ V (γ) is a bivalent target, then it is either decorated by ∞1
∞1

or ∞1
0 .

(3′′) If x ∈ V (γ) is an at least trivlanet target, then it is either decorated by ∞1
∞1

, ∞1
0 or

0
0 .

Remark 4.3.13. The differentials of the complexes above are induced by the differential
from the complex they are embedded in and act on a graph Γ as d(Γ) =

∑
x∈V (Γ) dx(Γ).

The latter map further decomposes as dx(Γ) = δx(Γ) − δ′x(Γ) − δ′′x(Γ), where the first
map denotes vertex splitting, the second attaching a univalent target to x, and the third
attaching a univalent source to x. These maps act differently on vertices depending on
which of the three complexes above we consider. It can generally be described using the
formulas of figure 4.3.2, where any term containing a vertex with an invalid bi-weight for
the specific complex the computation is done in is set to zero.

Proposition 4.3.14. The three inclusions

SwGCk ↪→ qGCk , SwQGCk ↪→ qQGCk and SwPGCk ↪→ qPGCk

are quasi-isomorphisms.

Proof. The first inclusion was shown to be a quasi-isomorphism in Proposition 3.3.10.
For the second inclusion, consider the filtration of SwQGCk over the number of out-core
vertices in a graph. Then the associated graded split over out-core graphs

gr SwQGCk =
⊕
γ

outQCore(γ)

where outQCore(γ) is the complex of graphs with out-core γ. This complex further split
as

outQCore(γ) ∼=
( ⊗

x∈V (γ)

qT out
x

)Aut(γ)
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δx

( ∞1∞1

···

···

)
=
(∞1

∞1
,
∞1

∞1

)
x
+
( 0

∞1
,
∞1

∞1

)
x
+
(∞1

0
,
∞1

∞1

)
x
+
(∞1

∞1
,

0

∞1

)
x
+
(∞1

∞1
,
∞1

0

)
x

+
(0
0
,
∞1

∞1

)
x
+
(∞1

0
,

0

∞1

)
x
+
( 0

∞1
,
∞1

0

)
x
+
(∞1

∞1
,
0

0

)
x

δ′x

( ∞1∞1

···

···

)
= ∞1∞1

∞1∞1···

···

+ 0∞1

∞1∞1···

···

+ ∞1∞1

0∞2···

···

+ 0∞1

0∞2···

···

δ′′x

( ∞1∞1

···

···

)
= ∞1∞1

∞1∞1

···

···

+ ∞1
0

∞1∞1

···

···

+ ∞1∞1
∞2
0

···

···

+ ∞1
0

∞2
0

···

···

δx

(
0∞1

···

···

)
=
( 0

∞1
,

0

∞1

)
x
+
(0
0
,

0

∞1

)
x
+
( 0

∞1
,
0

0

)
x

δ′x

(
0∞1

···

···

)
= 0

δ′′x

(
0∞1

···

···

)
= 0∞1

∞1∞1

···

···

+ 0
0

∞1∞1

···

···

+ 0∞1
∞2
0
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+ 0
0

∞2
0

···

···

δx

( ∞1
0

···

···

)
=
(∞1

0
,
∞1

0

)
x
+
(0
0
,
∞1

0

)
x
+
(∞1

0
,
0

0

)
x

δ′x

( ∞1
0

···

···

)
= ∞1

0

∞1∞1···

···

+ 0
0

∞1∞1···

···

+ ∞1
0

0∞2···

···

+ 0
0

0∞2···

···

δ′′x

( ∞1
0

···

···

)
= 0

δx

(
0
0

···

···

)
=
(0
0
,
0

0

)
x

δ′x

(
0
0

···

···

)
= δ′′x

(
0
0

···

···

)
= 0

Figure 4.4: General formula describing how the differentials of qGCk, qQGCk and qPGCk

act on vertices. Any term containing an invalid decoration for the considered complex is
set to zero.
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where qT out
x is the complex of out-tree graphs attached to x. We note that qT out

x = T out
x

when x is not a source or has in-weight ∞1, and so these results follow from Proposition
??. Assume |x|in = 0 and win

x = 0 and consider the three cases |x|out = 1, |x|out = 2, and
|x|out ≥ 3. By the same arguments as in Proposition ??, we compute the cohomology of
qT out

x and see that it agrees with the proposition. For the third inclusion, consider the
filtration of SwPGCk over the number of out-core vertices. The associated graded complex
split over out-core graphs as

gr SwPGCk =
⊕
γ

outPCore(γ)

where outPCore(γ) is the complex of graphs with out-core γ. This complex further de-
compose as

outPCore(γ) ∼=
( ⊗

x∈V (γ)

pT out
x

)Aut(γ)

where pT out
x is the complex of special-out trees attached to x. If x is a passing or generic

vertex, then pT out
x = T out

x . If x is a source, then pT out
x = qT out

x . The last case to consider
is when |x|out = 0. In the three cases |x|out = 1, |x|out = 2 and |x|out ≥ 3 we can show
with the same arguments as in Proposition ?? that the cohomology of pT out

x agrees with
the proposition.

Definition 4.3.15. Let oqGCk be the subcomplex of qGCk of oriented graphs. Similarly,
define oqQGCk and oqPGCk as subcomplexes of qQGCk and qPGCk. These complexes are
subcomplexes of SowGCk, SowQGCk and SowPGCk respectively.

Corollary 4.3.16. The inclusions

oqGCk ↪→ SowGCk , oqQGCk ↪→ SowQGCk and oqPGCk ↪→ SowPGCk

are quasi-isomorphisms.

Proof. This follows by considering the same filtrations as in Proposition 4.3.14 and noting
that the decompositions are preserved as in Corollary 4.3.7.

Definition 4.3.17. Let qGC+
k be the subcomplex of SwGCk of graphs that have either

at least one vertex with bi-weight ∞1
∞1

, or a pair of vertices decorated by ∞1
0 and 0

∞1

respectively. Further, let qQGC+
k be the subcomplex of SwQGCk of graphs with at least

one vertex decorated by ∞1
∞1

, or a vertex decorated by ∞1
0 (or ∞2

0 ). These complexes are

subcomplexes of SwGC+
k and SwQGC+

k respectively.

Proposition 4.3.18. The inclusions

qGC+
k ↪→ SwGC+

k and qQGC+
k ↪→ SwQGC+

k

are quasi-isomorphisms.

Proof. By setting up a similar diagram as in Proposition 4.3.9, one can prove the above
statements with similar arguments. We leave the details to the reader.

4.4 Further reductions of the derivation complexes

4.4.1 0
0
-decorations

The complex qQGCk split as

qQGCk = qQGC0
k ⊕ qQGC∗

k
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where qQGC0
k is the complex of graphs whose all vertices are decorated by 0

0 , and qQGC∗
k

is the complex of graphs with at least one vertex with a positive out-weight or a positive
in-weight. The complex qPGCk split similarly as

qPGCk = qPGC0
k ⊕ qPGC∗

k.

Proposition 4.4.1. Let dGC2
k ⊂ dGCk be the subcomplex of graphs with at least one

bivalent vertex, and let dGC2+t
k ⊆ dGCk be the complex of graphs with at least one bivalent

vertex or one target vertex. Then

qQGC0
k
∼= dGCk/dGC

2+t
k and qPGC0

k
∼= dGCk/dGC

2
k

Proof. Consider a graph in qQGC0
k. Only vertices that are at least trivalent and not sources

can be decorated by 0
0 . Let f : dGCk → qQGC0

k be the map where a graph Γ is mapped to
the graph f(Γ) where all vertices of Γ have been decorated by the bi-weight 0

0 . Any graph
where such an assignment is not possible is mapped to zero. One readily checks that this
is a chain map, and that the kernel of the map is spanned by graphs with at least one
bivalent vertex or at least one target vertex, completing the proof. A similar argument
can be made for qPGC0

k.

The complex oqQGCk does not contain any graphs that are only decorated by 0
0 , but the

complex oqPGCk does contain such graphs.

Proposition 4.4.2. Let oGC2
k ⊆ oGCk be the subcomplex of graphs with at least one

bivalent vertex and oGC≥3
k := oGCk/oGC

2
k be the quotient complex of graphs where all

vertices are at least trivalent. Then oqPGC0
k
∼= oGC≥3

k .

Proof. This can be shown using the same argument as in Proposition 4.4.1.

Definition 4.4.3. Let qQGC0,∗
k ⊆ qQGC∗

k be the subcomplex of graphs with at least one

vertex decorated by 0
0 and set tQGC∗

k = qQGC∗
k/qQGC

∗,0
k . Similarly, define qPGC0,∗

k ⊆
qPGC∗

k as the analogous subcomplex and tPGC∗
k the corresponding quotient.

Proposition 4.4.4. The projections

qQGC∗
k → tQGC∗

k and qPGC∗
k → tPGC∗

k

are quasi-isomophisms.

Proof. It is enough to show that qQGC0,∗
k and qPGC0,∗

k are acyclic. The argument is
equivalent to the proof of Proposition 3.4.1 by considering a filtration over the number of
non-passing vertices. The details are left to the reader.

Remark 4.4.5. There are similar propositions for qQGC+
k and the oriented subcomplexes

with the same proofs. Denote their corresponding quotient complex of graphs with three
decorations: ∞1

∞1
, ∞1

0 and 0
∞1

by tQGC+
k , otGCk, otQGCk and otPGCk.

4.4.2 Monodecorated graphs

We remind the reader of the special decorations of graphs seen in Definition 3.4.2. The
decorated graphs here are in tQGC∗

k. If Γ is a directed graph without univalent vertices,

then Γ
∞1
0 is the decorated graph of the shape Γ where all vertices are decorated by ∞1

0 .

We similarly define Γ
0

∞1 . Further, Γω is the sum of all possible decorations of Γ (in tQGC∗
k)

such that at least one vertex is decorated by ∞1
∞1

or a pair of vertices is decorated by ∞1
0

and 0
∞1

.
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Remark 4.4.6. The differential of tQGC∗
k decomposes as d = ds + du where du increases

the number of univalent vertices of a graph by one, and ds splits vertices without creating

univalent ones. One can verify that du(Γ
ω + Γ

∞1
0 + Γ

0
∞1 ) = 0. One can further see that

Γ
0

∞1 = 0 if Γ contains a target vertex. Hence we gather that

du(Γ
ω) =

{
−du(Γ

∞1
0 ) if there is a target vertex in Γ.

−du(Γ
∞1
0 )− du(Γ

0
∞1 ) if there is no target vertex in Γ.

The graphs in du(Γ
∞1
0 ) have the shape of Γ together with a ”special” univalent vertex

attached on the form:
∞1∞1

+ (−1)k+1 ∞2
0 . Similarly the graphs in du(Γ

0
∞1 ) have the

shape of Γ together with another ”special” univalent vertex attached on the form
∞1∞1

+

∞2
0 . This motivates the next definition.

Definition 4.4.7. The subcomplex mQGC∗
k ⊆ tQGC∗

k is the complex on the form

mQGC∗
k = C≥2 ⊕ C1(

∞1

0
)⊕ C1(

0

∞1
).

where

• C≥2 is the subspace (not subcomplex) of graphs of the forms Γ
∞1
0 , Γ

0
∞1 and Γω for

Γ with no univalent vertices.

• C1(∞1
0 ) be the subcomplex of tGC∗

k of graphs whose non-univalent vertices are dec-
orated by ∞1

0 and where the only univalent vertices are attached to non-antenna

vertices and are of the special type
∞1∞1

+ (−1)k+1 ∞2
0 .

• C1( 0
∞1

) be the similar subcomplex of tGC∗
k of graphs only decorated by 0

∞1
with

univalent vertices of the type
∞1∞1

+
∞2
0 .

Remark 4.4.8. By the previous remark, we see that the differential is closed on this
subspace, and it is thus a chain complex.

Proposition 4.4.9. The inclusion mQGC∗
k ↪→ tQGC∗

k is a quasi-isomorphism.

Proof. First consider the subcomplex tQGC
1,

∞1
0

, 0
∞1

k ⊆ tQGC∗
k of graphs with at least one

univalent vertex and a pair of non-univalent vertices decorated by ∞1
0 and 0

∞1
respectively.

One can show that this complex is acyclic by considering the filtration over the number of
non-passing vertices. Hence the quotient complex s1tQGCk is quasi-isomorphic to tQGC∗

k.
One also notes that mQGC∗

k is also a subcomplex of this quotient complex. Next, consider
the subcomplex s2tQGCk of s1tQGCk of graphs with non-univalent vertices as in mQGC∗

k,
and all other types of graphs with at least one univalent vertex as in s1tQGCk. The
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quotient complex consists of graphs with no univalent vertices and where at least two
vertices have different decorations. This complex is acyclic, as seen by considering the
filtration over the number of non-passing vertices. Next, consider the subcomplex s3tQGCk

of s2tQGCk containing the same graphs having no univalent vertices, and additionally
graphs with at least one univalent vertex but no non-univalent vertices decorated by ∞1

∞1
.

The quotient complex is generated by graphs with at least one univalent vertex, and all
non-univalent vertices are decorated by ∞1

∞1
. This complex is acyclic, as seen by considering

the filtration over the number of non-passing vertices. Let s4tQGCk be the subcomplex
of s3tQGCk containing the same graphs having no univalent vertices, and additionally
graphs with univalent vertices on the following forms: Let Γ be a graph without univalent
vertices. Then we consider graphs Γ

∞1
0 where at least one vertex has the univalent vertex

∞1∞1
+(−1)k+1 ∞2

0 attached. Similarly, we also consider graphs Γ
0

∞1 where at least one

vertex has the univalent vertex
∞1∞1

+
∞2
0 attached. Let s4tQGC

1
k be the corresponding

complex of graphs with at least one univalent vertex, and similarly for s3tQGCk. We get
the commutative diagram

0

��

0

��

0

��
0 // s4tQGC

1
k

//

��

s4tQGCk
//

��

s4tQGC
≥2
k

//

��

0

0 // s3tQGC
1
k

//

��

s3tQGCk
//

��

s3tQGC
≥2
k

//

��

0

0 // A //

��

B //

��

0 //

��

0

0 0 0

By showing that the inclusion s4tQGC
1
k ↪→ s3tQGC

1
k is a quasi-isomorphism, we also show

that the inclusion for the full complexes is a quasi-isomorphism. The complex s3tQGC
1
k

split as s3tQGC
1
k(

∞1
0 ) ⊕ s3tQGC

1
k(

0
∞1

) where each complex contains the graphs where all

non-univalent vertices are decorated by ∞1
0 and 0

∞1
respectively. We consider a vertex

an antenna-vertex if it is either univalent or becomes univalent after iterative removal of
univalent vertices in a graph. Consider the filtration of both complexes over the number
of non-bivalent non-antenna vertices. In the associated graded, the differential acts on
by creating bivalent antenna vertices. All graphs of gr s4tQGC

1
k are non-trivial cycles,

and so we need to show that the cohomology of gr s3tQGC
1
k is generated by the same

graphs. Consider first the filtration over the number of non-passing vertices. We see that
H(gr s3tQGC

1
k(

0
∞1

)) is generated exactly by the graphs in s4tQGC
1
k(

0
∞1

). We further get

that H(gr s3tQGC
1
k(

∞1
0 )) is generated by graphs with no passing antenna-vertices and

univalent vertices of two types, either
∞1∞1

or
∞2
0 . Note that there is only one possible

decoration for a univalent vertex, depending on if it is a source or a target. On the next
page of the spectral sequence, the antenna-vertices form trees, where chains of bivalent
vertices are composed of edges alternating directions. Call such an edge a zig-zag edge.
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The case when zig-zag edges are adjacent to two at least trivalent vertices and how the
differential acts on them has been studied in [Z2] (where they are called skeleton edges).
The more important case here is the case when a zig-zag edge is adjacent to a univalent

vertex. They are on the form
m

:= · · ·
m

where m is the number of

normal edges in the zig-zag edge and its direction is the direction of the last edge attached
to the univalent vertex. The differential acts on zig-zag edges as

d
( 2m+1 )

= (−1)k+1 2m+2
+ (−1)k+1 2m+2

d
( 2m+1 )

= − 2m+2 − 2m+2

d
( 2m )

=
2m+1

+ (−1)k+1 2m+1

d
( 2m )

= − 2m+1
+ (−1)k

2m+1

We see that its cohomology is generated by + (−1)k+1 . The complex de-

composes over graphs with the same skeleton graphs, i.e., the resulting graph obtained by
replacing sequences of bivalent vertices with one single edge. These complexes decompose
into tensor products over the edges of the skeleton graphs, similar to the decompositions in
Proposition ??, we get that the cohomology of gr s3tQGC

1
k(

∞1
0 )) is generated the desired

one.

Definition 4.4.10. Let mQGC+
k be the subcomplex of mQGC∗

k on the form

mQGC+
k = C≥2,+ ⊕ C1(

∞1

0
)⊕ C1(

0

∞1
)

where C1(∞1
0 ) and C1( 0

∞1
) are as in Definition 4.4.7 and C≥2,+ ⊆ C≥2 is the subspace

generated by graphs of the forms Γω and Γ
∞1
0 .

Corollary 4.4.11. The inclusion mQGC+
k ↪→ tQGC+

k is a quasi-isomorphism.

Proof. Consider the diagram

0 0 0

0 mQGC+
k mQGC∗

k mQGC∼
k 0

0 tQGC+
k tQGC+

k tQGC∼
k 0

0 Q+
k Q∗

k Q∼
k 0

0 0 0

induced by the inclusions, and where the other complexes are the appropriate quotient
complexes. One checks that it commutes, and further that mQGC∼

k = tQGC∼
k and so

Q∗
k
∼= Q+

k . Proposition 4.4.9 gives that Q∗
k is acyclic since the inclusion mQGC∗

k ↪→ tQGC∗
k

is a quasi-isomorphism.
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Definition 4.4.12. Let omQGCk ⊆ mQGCk be the subcomplex of oriented graphs.

Proposition 4.4.13. The inclusion omQGCk ↪→ otQGCk is a quasi-isomorphism.

Proof. The argument is the same as the proof of Proposition 4.4.9, noting that all the
arguments are independent of the orientation of a graph since the filtrations are done with
respect to passing vertices and antennas.

4.4.3 Final steps

Definition 4.4.14. Let C(∞1
0 ) and C( 0

∞1
) be the subcomplexes of mQGC∗

k of graphs whose

non-univalent vertices are decorated by ∞1
0 and 0

∞1
respectively.

Proposition 4.4.15. Consider the short exact sequence

0 // C(∞1
0 )⊕ C( 0

∞1
) // mQGC∗

k
// mQGCk(ω) // 0 .

Then

1. The complexes C(∞1
0 ) and C( 0

∞1
) are acyclic.

2. The complex mQGCk(ω) is isomorphic to dGCk.

In particular, there is a quasi-isomorphism mQGC∗
k → dGCk.

Proof. The proof is the same as the proof of Proposition 3.4.8 in Chapter 3, by considering
a filtration over the number of non-passing vertices.

Corollary 4.4.16. Let omQGCk(ω) be the subcomplex of mQGCk(ω) of oriented graphs.
Then the induced projection omQGCk → omQGCk(ω) is a quasi-isomorphism. Furthermore
omQGCk(ω) ∼= oGCk.

Proof. The same arguments as in Proposition 4.4.15 give the result since it is independent
of the orientation of a graph.

Definition 4.4.17. Let C(∞1
0 ) be the subcomplex of mQGC+

k of graphs where all non-
univalent vertices are decorated with ∞1

0 , and let Q := mQGC+
k /C(

∞1
0 ).

Proposition 4.4.18. The complex C(∞1
0 ) is acyclic. In particular the projection

mQGC+
k → Q is a quasi-isomorphism.

Proof. The proof follows by considering the filtration over the number of non-univalent
vertices.

Proposition 4.4.19. Let Qt be the subcomplex of Q of graphs with at least one target
vertex when excluding antenna-vertices. Then the inclusion is a quasi-isomorphism. Fur-
thermore, the complex Qt is isomorphic to dGCt

k.

Proof. One shows that the quotient Q/Qt is acyclic by the same argument as in Proposi-
tion 4.4.18. The second part follows by inspection.

Definition 4.4.20. Let C be the subcomplex of tPGC∗
k of graphs with at least one univalent

vertex and graphs with univalent on the forms Γ
∞1
0 and Γ

0
∞1 .

Proposition 4.4.21. Consider the short exact sequence

0 // C // tPGC∗
k

// tPGCk(ω) // 0

where tPGCk(ω) is the complex of graphs without univalent vertices on the form Γω. Then
projection tPGC∗

k → tPGCk(ω) is quasi-isomorphism. Furthermore, the complex tPGCk(ω)
is isomorphic to dGCk.
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Proof. It is enough to show that C is acyclic. The proof is similar to that of Proposition
4.4.9. First consider the subcomplex s1tQGCk of graphs with at least one non-univalent
vertex decorated by ∞1

0 or 0
∞1

. The quotient complex is acyclic. Secondly, consider
the subcomplex of graphs with at least a pair of non-univalent vertices decorated by
∞1
0 and 0

∞1
respectively. This complex is acyclic, and let s2tPGCk be the corresponding

quotient complex. It splits as C(∞1
0 ) ⊕ C( 0

∞1
) of graphs where all non-univalent vertices

are decorated by ∞1
0 and 0

∞1
respectively. Consider the subcomplex of C(∞1

0 ) of graphs

with at least one univalent vertex 0∞2
. This complex is acyclic. The quotient complex

has only two types of univalent vertices on the form
∞1∞1

and
∞2
0 . By considering the

filtration over the number of non-bivalent non-antenna vertices, we can show that this
complex is acyclic on the first page. The proof is analogous to showing that C( 0

∞1
) is

acyclic.

Corollary 4.4.22. Let otPGCk(ω) be the subcomplex of tPGCk(ω) of oriented graphs.
Then the induced projection optGCk → optGCk(ω) is a quasi-isomorphism. Furthermore,
otPGCk(ω) ∼= oGCk.

Proof. The same argument as in Proposition 4.4.21 gives the results since it is independent
of the orientation of a graph.

4.5 Main results

In this section, we first give a review of the quasi bi-weighted complexes that have been
defined in the previous sections, followed by stating and proving the main theorems of this
chapter.

4.5.1 Summary of quasi bi-weighted graph complexes

The complex fwQGCk is the complex of all possible quasi bi-weighted graphs. The complex
fwQGC+

k is the subcomplex of fwQGCk of graphs that have at least one vertex with positive
out-weight.

The complexes fwQGCk and fwQGC+
k split as

fwQGCk = b0wQGCk ⊕ wQGCk and fwQGC+
k = b0wQGCk ⊕ wQGC+

k

where b0wQGC
0
k is the subcomplex of graphs with loop number zero and wQGCk and

wQGC+
k are the respective complements. The cohomology of b0wQGC

0
k is generated by the

graph following graph (see Proposition 4.2.9)∑
i,j≥0
i+j≥3

(i+ j − 2) i
j

The complex qQGC∗
k is the subcomplex of wQGC∗

k of graphs whose vertices are indepen-
dently decorated by the five bi-weights ∞1

∞1
, ∞1

0 , 0
∞1

, 0
0 and ∞2

0 such that univalent vertices

are only decorated by ∞1
∞1

(or ∞2
0 when they are sources). The complex qQGC+

k is the sub-

complex of qQGC+
k of graphs where at least one vertex is decorated by ∞1

∞1
or ∞1

0 ( or ∞2
0 ).

It follows that qQGC+
k is a subcomplex of wQGC+

k .
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The complex qQGCk split as

qQGCk = qQGC0
k ⊕ qQGC∗

k

where qQGC0
k is the subcomplex of graphs whose vertices are only decorated by 0

0 and
qQGC∗

k its complement. The complex qQGC0
k is isomorphic to the complex dGCk/dGC

2+t
k ,

where dGC2+t
k ⊆ dGCk is the subcomplex of graphs with at least one bivalent vertex or

one target vertex (see Proposition 4.4.1).

The complex tQGC∗
k is the quotient complex qQGC∗

k/qQGC
∗,0
k where qQGC∗,0

k ⊆ qGC∗
k is

the subcomplex of graphs with at least one vertex decorated by 0
0 . In other words, tQGC∗

k

is generated by graphs whose vertices are independently decorated by the four bi-weights
∞1
∞1

, ∞1
0 , 0

∞1
and ∞2

0 . The complex tQGC+
k is the subcomplex of tQGC∗

k of graphs where

at least one vertex is decorated by ∞1
∞1

or ∞1
0 (or ∞2

0 ). It follows that tQGC+
k is a quotient

complex of qQGC+
k .

The complex mQGC∗
k is a subcomplex of tQGC∗

k on the form

mQGC∗
k = C≥2 ⊕ C1(

∞1

0
)⊕ C1(

0

∞1
).

The complex mGC+
k is a subcomplex of mGC∗

k. (see full details of these complexes in
Definition 4.4.7).

The complex mQGC∗
k(ω) is a quotient complex of mQGC∗

k (see Proposition 4.4.15). The
complex Q is a quotient complex of mQGCk (see Definition 4.4.17), and Qt is a subcomplex
of Q (see Proposition 4.4.19).

The complexes that have been used in this chapter are related as follows:

qQGC∗
k tQGC∗

k mQGC∗
k mQGC∗

k(ω) dGCk

qQGC+
k tQGC+

k mQGC+
k mQGC+

k (ω) Q Qt dGCt
k

Proposition 4.5.1. Let dGCk → wQGCk be the map where a graph Γ is mapped to the
sum of all possible bi-weights to put on Γ excluding the decoration with only 0

0 . Then this
map is a quasi-isomorphism up to the subcomplex of graphs with loop number zero and
graphs only decorated by 0

0 .

Proof. This map restricts to chain maps to all of the complexes in the diagram above,
making it commute. One checks that all of these maps are quasi-isomorphisms, starting
with that the restriction to dGCk is an isomorphism.

Proposition 4.5.2. Let dGCt
k → wQGC+

k be the map where a graph Γ is mapped to the
sum of all possible bi-weights to put on Γ excluding the decoration with only 0

0 . Then this
map is a quasi-isomorphism up to the subcomplex of graphs with loop number zero.

Proof. The argument is equivalent to that of Proposition 4.5.1.

Proposition 4.5.3. Let oGCt
k → owQGCk be the map where a graph Γ is mapped to the

sum of all possible bi-weights to put on Γ excluding the decoration with only 0
0 . Then this

map is a quasi-isomorphism up to the subcomplex of graphs with loop number zero.

Proof. The argument is equivalent to that of Proposition 4.5.1.
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4.5.2 Deformation theory of quasi-Lie bialgebras

Theorem 4.5.4. There is a quasi-isomorphism of complexes

K⊕ oGCc+d+1 → Der(QHoliebc,d).

Proof. This follows from the decomposition ofDer(QHoliebc,d) over graphs of loop number
zero together with the quasi-isomorphism of Theorem 4.1.7 and Corollary 4.4.22.

Theorem 4.5.5. There is a quasi-isomorphism of complexes

K⊕ dGC≥3,no t
c+d+1 ⊕ dGCc+d+1 → Der•(QHolieb⟲c,d).

Proof. This follows from the decomposition of Der•(QHolieb⟲c,d) over graphs of loop num-

ber zero and quasi bi-weighted graphs only decorated by 0
0 , together with the quasi-

isomorphism of Theorem 4.1.7, Proposition 4.4.1 and Proposition 4.4.15.

Theorem 4.5.6. There is a quasi-isomorphism of complexes

K⊕ dGCt
c+d+1 → Der(QHolieb⟲c,d).

Proof. This follows from the decomposition ofDer(QHolieb⟲c,d) over graphs of loop number
zero together with the quasi-isomorphism of Theorem 4.1.7 and Proposition 4.4.19.

4.5.3 Deformation theory of pseudo-Lie bialgebras

The results and arguments from the previous section also apply to the subcomplexes of
wPGCk and owPGCk. We get the following results.

Theorem 4.5.7. There is a quasi-isomorphism of complexes

K⊕ oGC≥3
c+d+1 ⊕ oGCc+d+1 → Der(PHoliebc,d).

Proof. This follows with the above remark together with Theorem 4.1.7, Proposition 4.4.2
and Corollary 4.4.22.

Theorem 4.5.8. There is a quasi-isomorphism of complexes

K⊕ dGC≥3
c+d+1 ⊕ dGCc+d+1 → Der•(PHolieb⟲c,d).

Proof. This follows with the above remark together with Theorem 4.1.7, Proposition 4.4.1
and Proposition 4.4.21.
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