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Abstract

In this thesis we study the deformation theory of the wheeled closure of the properad
of strongly homotopy Lie bialgebras, and of its variations. Our main achievement is a
computation of the cohomology groups of the derivation complexes of the aforementioned
properads in terms of various Kontsevich graph complexes. This work can be seen as an
extension of the results by S. Merkulov and T. Willwacher in the paper Deformation the-
ory of the Lie bialgebra properad [MW1], where it has been proven that the deformation
theory of the ordinary properad of homotopy Lie bialgebras Holieb is controlled by the
Grothendieck-Teichmuller Lie algebra grt. We prove that in the wheeled case the defor-
mation theory is much richer: the deformation theory of the wheeled closure of Holieb
is controlled by two copies of grt. We illustrate this surprising result by showing explic-
itly two homotopy inequivalent actions of the famous tetrahedron class on the wheeled
properad of homotopy Lie bialgebras. We also compute the cohomology groups of the
derivation complexes of homotopy quasi- and pseudo-Lie bialgebras and of their wheeled
closures.
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Chapter 1

Introduction

1.1 Background

Operads are a fairly modern addition to mathematics, first appearing in algebraic topol-
ogy during the 1960s, and the study of them has since evolved into a theory in its own
right, with multiple applications in algebra, in algebraic topology, in geometry and in
mathematical physics.

To its core, the theory of operads is a theory of the compositions of operations, where
an operad can be viewed as a space of operations together with a multiplication that
composes these operations into new ones. The three classical objects in the center are
associative algebras, Lie algebras and commutative algebras, but many other algebras
are also studied, such as Poisson algebras, Jordan algebras, pre-Lie algebras and so on.
The structure of an operad is similar to that of associative algebras, hence, many of the
techniques and results about associative algebras can be transferred to operads.

Operads have also been useful in homotopy theory. Given a chain complex with an alge-
braic structure (associative algebra, Lie algebra, etc.), one asks if it is possible to transfer
the same structure to the cohomology of this chain complex, without losing too much
information about the original structure. Although the answer is no in general, for certain
algebras it is possible to define another structure which transfers the desired algebraic
structure to the cohomology groups. For associative algebras, such structures are called
homotopy associative algebras, and are characterised by being dg algebras with a product
that is associative up to homotopy. Similarly, the equivalents for Lie algebras are called
homotopy Lie algebras.

While operads can be used to study operations with several inputs and one output (prod-
ucts), and to some degree co-operations (i.e., operations with one input and several out-
puts), they are not suitable to encode algebraic structures with both a product and a
coproduct (or generally structural operations with several inputs and outputs). Examples
of such structures have gathered more interest lately in the study of quantum groups, in-
volving structures such as bialgebras, Lie bialgebras and Hopf algebras. The more general
structure governing these are called properads.

Both operads and properads capture the idea of composing multilinear maps together in a
linear fashion, composing one map after the other. Wheeled (pr)operads were introduced
and studied in [M2, MMS], allowing the composition to be "wheeled”, connecting the out-
put of an operation to its input. Though seeming like a counterintuitive concept at first,
these wheeled pr(operads) correspond to adding trace maps to the corresponding algebras
for finite dimensional representations of pr(operads).

The main algebraic structures we study in this thesis are Lie bialgebras and homo-
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topy Lie bialgebras. A Lie bialgebra is a vector space V together with a Lie bracket
[—,—] : V®V — V and a co-bracket A : V — V ® V that satisfy a certain compa-
bility relation. Lie bialgebras were first introduced by V. Drinfeld [D1] in the context
of Yang-Baxter equations and quantum group theory. Since then they have found many
applications in many areas of pure mathematics and mathematical physics, such as the
theory of Hopf algebra deformations of universal enveloping algebras [ES], quantization
theory [EKa], string topology and symplectic field theory [CFL], Goldman-Turaev theory
of free loops in Riemann surfaces with boundaries |G, Tu|, Lagrangian Floer theory of
higher genus [Tu], and the computation of cohomology groups of moduli spaces of al-
gebraic curves with labeled punctures [MW2, AWZ]. The properad of Lie bialgebras is
denoted by Lieb and the properad of homotopy Lie bialgebras by Holieb. We will study
the more general case of Lie bialgebras with a bracket of degree ¢ and a cobracket of
degree d. We denote the corresponding properad and homotopy properad by Lieb. 4 and
Holieb, q respectively.

A derivation of an associative dg algebra A is a linear map d : A — A compatible with
the differential such that d(ab) = d(a)b+ ad(b) for all a,b € A and can be viewed as an
infinitesimal deformation of A. The derivation complex Der(A) is a dg Lie algebra where
the bracket is given by the commutator. These notions can be generalized to (pr)operads.
S. Merkulov and T. Willwacher previously studied the derivation complex Der(Holieb. q)
in [MW1] and related its cohomology to the oriented Kontsevich graph complex. We ex-
tend the study by considering the derivation complexes of the wheeled closure HolzebO

of Holieb. 4. These complexes are directly related to the deformation complexes of these
properads.

The properad Holieb. 4 is generated by corollas with n inputs and m outputs such that
m and n are greater than or equal to one and m + n is greater than or equal to three.
That is, it does not contain any ”curvature” like generators where either m or n are equal
to zero (see [M2] for full details). However, in the wheeled case, one can build from such
generating elements of Holzebod with no inputs (n = 0) or no outputs (m = 0), or both
(m = n = 0). Such graphs can stay for non-trivial cohomology classes which control
deformations of Holieb® ¢4 into its more general version Holieb®® in which curvature terms
are allowed (such a phenomenon is impossible in the case of props that are not wheeled).
It is therefore natural to consider two different deformation complexes of Holieb. 4, the
one which curved operations with no inputs and outputs can be created, and another one
where this is not the case. We study both cases for completeness, and hence consider
the two derivation complexes Der® (Holiebg 4) and Der(?—[oliebg 4), the former controlling
all possible deformations (i.e. with curvature terms allowed) of Holieb® and the latter is
the reduced version. In this thesis we will study the cohomology of the aforementioned
derivation complexes and describe them in terms of Kontsevich graph complexes.

In the article [K2], M. Kontsevich introduced the Kontsevich graph complexes GCy as a
means to study the formality conjecture in the deformation quantization theory of Poisson
structures, but have lately found use in the theory of (pr)operads [W1]. They consist of
a family of dg Lie algebras parameterized by an integer k£ where each complex GCj is
generated by undirected graphs modulo the symmetries of vertices (when k is odd) or
symmetries of edges (when k is even). Complexes where k is of the same parity are
isomorphic up to degree shifts, and so it is enough to only focus on GCy and GCs.

One important fact showed by T. Willwacher in [W1] is that there is an isomorphism of
Lie algebras H(GCy) = grt, where grt is the Grothendieck-Teichmuller Lie algebra. This
is the Lie algebra of the pro-unipotent Grothendieck-Teichmuller group GRT', introduced
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by Drinfeld [D3].

Other versions of Kontsevich graph complexes have since been introduced and shown to be
related to the original graph complexes GC;. The directed graph compler dGCj consisting
of directed graphs modulo the same symmetries as the Kontsevich graph complex is quasi
isomorphic to GC;, [W1], while the subcomplex oGCy C dGCy, of oriented graphs (graphs
with no closed path of directed edges) is quasi-isomorphic to GC;_; [W2]. Two other
related subcomplexes are dGC3, dGCZ C dGCy of sourced and targeted graphs respectively
(graphs containing at least one vertex with only outgoing edges and incoming edges re-
spectively). They are isomorphic to each other by changing the direction of all edges and
furthermore they are quasi-isomorphic to oGCy [Z2]. The complex dGCZH of graphs with
either a source vertex or a target vertex will also be of interest to us.

In chapter 3 we compute the cohomologies of Der®(Holieb.,) and Der(Holieb. ) by find-
ing explicit quasi-isomorphisms to classical Kontsevich graph complexes. Let dGC:Q’SH -

dGCj, be the subcomplex of graphs with at least one bivalent vertex or at least one source
or target vertex. Then set dGCf?”O = dGCk/dGCk:2’s+t to be the quotient complex of
graphs with neither sources nor targets, and all vertices at least trivalent.

Theorem 1.1.1 (Theorem 3.6.3). There is a quasi-isomorphism

K& dGCZh | @ dGCoyqr1 — Der®(Holieb?,)

where K is a trivial complex corresponding to a rescaling class.

The summand dGCfﬁ;&l controls cohomology classes with neither inputs nor outputs.

The presence of the latter complex is obvious, thus, the main claim above says that the
cohomology classes with at least one input or one output are controlled by the directed
graph complex dGC,yqy1-

Let dGC}° * := dGC;,/dGC; and dGC}° "' := dGC;/dGCL be the quotient complexes of
graphs with no sources and no targets respectively. There is a natural map P : dGC, —
dGC}° * @ dGC° ! given by mapping a graph to the diagonal of the quotient maps.

Theorem 1.1.2 (Theorem 3.6.4). There is a quasi-isomorphism
K @ Cone(P)[1] — Der(Holieb: ;)

where K is a trivial complex corresponding to a rescaling class and Cone(P)[1] is the
desuspended cone complex of P.

This theorem together with the observation that H°(Cone(P)[1]) = K& H%(dGC5®dGC))
when ¢ = d = 1 gives the following Corollary.

Corollary 1.1.3 (Corollary 3.6.5). There is an isomorphism of vector spaces
H°(Der(Holieb{)) = K @ grt @ grt
where K is a trivial complex corresponding to a rescaling class.

The cohomollgy group H°(GCy) is conjectured to be a free Lie group generated by the so
called wheel cohomology classes {wap41}n>1, the first ones being

D | ot
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We explicitly compute the two distinct cohomology classes in Der(?—[olieb%l) correspond-
ing to the tetrahedron graph ws (see section 3.7).

In the second article we extend the study to derivation complexes of the properads of
quasi- and pseudo-Lie bialgebras.

A quasi-Lie bialgebra is a generalization of a Lie bialgebra and is a vector space V' together
with a Lie bracket [—, —] : V®V — V, an antisymmetric cobracket A : V' — V ® V' which
satisfy the co-Jacobi identity up to a natural relation with a skew-symmetric element
¢ : K —- V®V®V. Lie bialgebras are naturally quasi-Lie bialgebras where ¢ = 0.
Quasi-Lie bialgebras were first introduced by V. Drinfeld [D2] and have later found use
in the study of quasi-surfaces [Tu], twisting operads [M3] and the theory of cohomology
groups of the moduli spaces M, of genus g algebraic curves with n punctures [M4]. The
associated properad with a bracket of degree ¢ and a cobracket of degree d is denoted by
QLieb. 4 and its homotopy properad, found by J. Granaker [G], is denoted by QHolieb, 4.

Theorem 1.1.4 (Theorem 4.5.4). There is a quasi-isomorphism of complezes
K @ oGCey 441 — Der(QHolieb. 4)
where K is a trivial complex corresponding to a rescaling class.

Consider the subcomplex dGCZQ’t C dGC;, of graphs with at least one bivalent vertex or
at least one target vertex. Let dGCE?” not . dGCk/dGCZQ’t be the quotient complex of
graphs whose vertices are at least trivalent and with no target vertices.

Theorem 1.1.5 (Theorem 4.5.5). There is a quasi-isomorphism of complezes

Ka dGCCZ—‘fZiTlt D dGCc+d+1 N Der.(QHOliebgd)

where K is a trivial complex corresponding to a rescaling class.

The complex dGCCZj’;lTlt corresponds to the trivial case of graphs with neither outputs nor
inputs. The main claim above says that the cohomology classes with at least one output

or input are controlled by the directed graph complex dGC.4g41.

Theorem 1.1.6 (Theorem 4.5.6). There is a quasi-isomorphism of complezes
K & dGCl, 4,1 — Der(QHolieb? ).
where K is a trivial complex corresponding to a rescaling class.

Pseudo-Lie bialgebras further extend quasi-Lie bialgebras in that they have an antisym-
metric product and coproduct satisfying the Jacobi-relation up to a natural relation with
amapn:V ®V ®V — K and some other compability relations. Pseudo-Lie bialgebras
has as of yet not found any applications, and they are studied in this paper for the sake
of completion. We denote the properad of pseudo-Lie bialgebras with a bracket of de-
gree ¢ and a cobracket of degree d by PLieb. 4 and its homotopy properad, studied by J.
Granaker in [G], is denoted by PHolieb, 4.

Consider the subcomplex oGCk:2 C 0oGCy, of oriented graphs with at least one bivalent
vertex. Let oGCf?’ := oGCy/ oGCf2 be the quotient complex of oriented graphs whose
vertices are at least trivalent.

Theorem 1.1.7 (Theorem 4.5.7). There is a quasi-isomorphism of complezes

K & 0GC2,, | @ 0GCeygy1 — Der(PHoliebe,q)

where K is a trivial complex corresponding to a rescaling class.
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The summand oGCCZJf 141 corresponds to the trivial case of graphs with neither outputs nor
inputs. The main claim above says that the cohomology classes with at least one output

or input are controlled by the graph complex oGC.yqy1.

For the wheeled closure of the properad PHolieb. 4, the two derivation complexes align
(Der*(PHolieb. q) = Der(PHolieb. q)) (see the introduction of article 2).

Theorem 1.1.8 (Theorem 4.5.8). There is a quasi-isomorphism of complezes

K ® dGCZ}y, 1 @ dGCeygpr — Der®(PHolieb,)

where K is a trivial complex corresponding to a rescaling class.

The complex dGCczf 141 corresponds to the trivial case of graphs with neither outputs nor
inputs. The main claim above says that the cohomology classes with at least one output

or input are controlled by the graph complex dGC,qg41.

Remark 1.1.9. Even though both the derivation complexes and the graph complexes
have dg Lie algebra structures, we do emphasize that the quasi-isomorphisms we show in
this thesis are only on the level of chain complexes. The question regarding whether the
Lie bracket is preserved under these maps or not is still open.

1.2 Structure of the manuscript

Chapter 2 serves as a background to the upcoming chapters. There we briefly define graphs
and graphs with labeled hairs, acting as a foundation to define the notion of &-algebras.
This concept generalizes and collects the notion of props, properads, operads, associative
algebras and their wheeled correspondents with a single definition, and serves as a natural
way to explain the relation between their wheeled and unwheeled versions. We proceed
to give notable examples of operads and properads. Further, we give a brief reminder of
derivation and deformation complexes of properads, and end the chapter by summarizing
the most important facts about graph complexes.

Chapter 3 is based on the article Deformation theory of the wheeled properad of strongly
homotopy Lie bialgebras and graph complexes, where we extend the result of S. Merkulov
and T. Willwacher in [MW1]. In this paper they studied the deformation complex of the
homotopy Lie bialgebra Holieb and related its cohomology to the oriented graph complex
oGC. In our investigation, we study the deformation complex of the wheeled homotopy Lie
bialgebra Holieb® and describe its cohomology in terms of well known graph complexes.
In particular we reach the result that the zeroth cohomology of the deformation complex
is isomorphic to two copies of the Grothendieck-Teichmuller Lie algebra grt (as a vector
space).

Chapter 4 is based on the article Graph complexes and Deformation theories of the
(wheeled) properads of quasi- and pseudo-Lie bialgebras. There we further extend the
investigation of the first article by considering the deformation complex of the quasi-Lie
bialgebra and pseudo-Lie bialgebra properads, and similarly relate their cohomology to
well known graph complexes.

1.3 Notation

Let S, denote the permutation group of the set {1,2,...,n}. The one dimensional sign
representation of S, is denoted by sgn,. All vector spaces are assumed to be Z graded
over a field K of characteristic zero. If V = @,., V" is a graded vector space, then V[k]
denotes the graded vector space where V[k]* = Vi**. For a properad P we denote by
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P{k} the properad being uniquely defined by the property: For any graded vector space
V', a representation of P{k} in V is identical to a representation of P in V[k].

Let I" be a graph with v vertices and e edges. The genus of a graph is the number e —v+1.
Further, for vertices in directed graphs, we consider the following conventions: A vertex
is passing if it has exactly one incoming edge and one outgoing edge attached. It is a
source if only outgoing edges are attached to it, and a target if there are only incoming
edges attached. Finally, a vertex is called generic if it is at least trivalent, and has at least
one outgoing edge and one incoming edge attached. The loop number of a graph I' is the
number b = e — v + 1, where e is the number of edges and v the number of vertices of T'.



Chapter 2

Graph complexes, properads and
their deformation theory

In the first two sections, we closely follow the paper [M5]. For the third section on
deformation theory, we follow the paper [MV].

2.1 Graphs and &-algebras

2.1.1 Graphs

Definition 2.1.1. A directed graph G is a triple (V(G), E(G),vg) where V(G) and E(G)
are finite sets and vg : E(G) — V(G)xV(G) a map such that o + (z°%, 2'") for a € E(G)
and z°%, ™ € V(G). The elements of E(G) are called edges and the elements of V(G)
are called vertices. An edge « is said to be adjacent to z° and =™, being outgoing from
2% and incoming to 2. The out-valency |z|°* of a vertex € V(G) is the number of
outgoing edges from z, the in-valency |z|™ is the number of incoming edges to z, and the
valency of x is the number |z| := |2[° + |z|™. If |2]°“ = 0, then z is a target vertex,
and if |z|™ = 0, then x is a source vertex. Vertices with valency one, two and three are
respectively called univalent, bivalent and trivalent. Let G and H be directed graphs. A
morphism ¢ : H — G is a pair of maps ¢y : V(H) — V(H) and ¢p : E(H) — E(G)
such that (py X ¢v)ovy = vg o wg. The graph H is a subgraph of G if ¢y and ¢p are
injective. The map ¢ is an isomorphism if v and @g are bijective. We usually consider
graphs up to isomorphisms.

Definition 2.1.2. Let m,n € N. A directed hairy graph with m out-hairs and n in-hairs
G(m,n) is a triple (G, h°“*, h"™) where G is a directed graph and h°** and h'™ are injective
labeling maps

R : [m] — {z € V(G) |  univalent target}

R . [n] = {x € V(G) | z univalent source}.
The elements of H(G(m,n)) := Im(h°“*) UIm(h™) are called hairs. The elements of the
complement set V(G(m,n)) = V(G)\H(G(m,n)) are called hairy vertices of G(m,n).
The set of hairy edges of G(m,n) is the edges of E(G) that are not adjacent to a hair. We
will usually call hairy vertices and hairy edges just vertices and edges respectively, when

there is no risk of confusion. Let (m,n) be the set of hairy graphs with m out-hairs and
n in-hairs. There is a right action of the group Spy x S,, on 4(m,n) as

(G, ™) (0, 7) := (G, B oo™ ! W™ o 7)

permuting the labels of hairs. Note that graphs are not necessarily connected. Let U =
Um,nZO il(m, n)

7
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Remark 2.1.3. When representing graphs pictorially, the direction of edges (and hairs)
is normally indicated. To simplify certain pictures, the direction of edges (and hairs) has
been omitted. In such a case, if an edge is attached to the upper part of a vertex, then it
is assumed to be outgoing from that vertex. Similarly, an edge attached to the lower part
of a vertex is assumed to be incoming to that edge (see figure 2.1). Similarly, the labeling
of hairs is occasionally suppressed for simplification.

R A

Figure 2.1: Convention of adding directions to undirected graphs

Remark 2.1.4. The hairy graph consisting of a single vertex with m out-hairs and n
in-hairs is called an (m,n)-corolla or corolla in general. With the above mentioned con-

12 m
vention, the (m,n)-corolla is visualized as ><
12 n

2.1.2 S-bimodules and Decorated graphs

Definition 2.1.5. An S-bimodule E is a collection of vector spaces E = {E(m,n)}mn>0
such that F(m,n) has a left S,,-action and a right S,-action for all m,n > 0.

The following construction describes how to decorate the vertices of a general graph in 4
with the elements of an S-bimodule, respecting the symmetric action.

Definition 2.1.6. Let £ = {E(m,n)}m n>0 be an S-bimodule and let G € 4. For each
vertex v € V(G), let Out, be the set of edges and hairs going away from v and In, be the
set of edges and hairs going into v. To each vertex v, we associate the vector space

E(Outy, In,) := (Out,) ®s,, E(m,n) s, (In,)

m

where m = |Out,|, n = |In,| and (Out,) is the vector space spanned by all bijections
[m] — Out, and (In,) is the vector space spanned by all bijections In, — [n]. We remark
that the space E(Out,, In,) is non-canonically isomorphic to E(m,n). There are natural
actions of Aut(Out,) and Aut(In,) on E(Out,, In,). Now suppose that |V (G)| = k. Then
define

VeV (G) [k =V (G)

This is a representation space of Aut(G). Now let G be a graph and E an S-bimodule.
Then define the vector space

G(E) = ( ® E(Outv,lnv))Aut(G).
veV(Q)

This vector space represents the graph G with vertices decorated by elements of E. Sup-
pose that (E,d) is a dg S-bimodule. Then for each graph G, we can define the chain
complex (G(E),d) whose differential is naturally induced from E(Out,, In,). Note that

12 m
when G is an (m,n)-corolla, i.e., G = >< , then G(E) = E(m,n).
12 n



CHAPTER 2. GRAPH COMPLEXES, PROPERADS AND THEIR DEFORMATION
THEORY

2.1.3 ®-algebras

Definition 2.1.7. Let G and H be graphs of 4l such that H is a connected subgraph of
G. Then let G/H be the graph obtained by replacing the subgraph H of G with a single
vertex having the same number of hairs as H, and reattaching the edges from G. Let &
be a subset of 4l and G a graph in &. A subgraph H of G is admissible in & if both H € &
and G/H € &.

Definition 2.1.8. Let & C 4. A &-algebra is a pair (P, {uctces) where
o P ={P(m,n)}mn>o is an S-bimodule.
e {uc}ces is a collection of linear S,, x S,-equivariant maps
{uc : G(P) = P(m,n)}ces(mn), m.n >0

such that ue = pg py for every admissible subgraph H of G in &. The map
Wy G(E) — (G/H)(E) acts trivially on the decorations of vertices not in H, while
the decoration of the collapsed vertex in G/H is induced by pg.

If (P, 9) is a dg S-bimodule with differential §, then there is an induced differential on G(P)
for every graph G, which we denote by dg. A dg &-algebra is a triple (P, {uc}ces, )
such that (P, {uc}tces) is a G-algebra, (P,0) is a dg S-bimodule and § o ug = ug ° dg-.

Remark 2.1.9. Strictly speaking, we have just defined &-algebras without units. A &-
algebra with units is the &-algebra generated by the set of graphs & U J, where J is the
collection of graphs on the form {t 1 ---1 O O --- O} with only edges and no vertices.

Example 2.1.10. We describe below the most frequent ®-algebras. Their characteristic
graphs are described in figure 2.1.3

e Let Pr® = §{. The Pr®-algebras are called wheeled props.

e Let Pr C Pr® be the subset of graphs with no closed directed paths. The Pr-
algebras are called props.

e Let PO C Pr® be the subset of connected graphs. The P©-algebras are called
wheeled properads.

e Let P C Pr of connected graphs. The P-algebras are called properads.

e Let OY C P° be the subset of graphs where each vertex has exactly one outgoing
edge or hair. The O®-algebras are called wheeled operads.

e Let O C P be the subset of graphs where each vertex has exactly one outgoing edge
or hair. The O-algebras are called operads.

e Let A C O be the subset of graphs where each vertex has exactly one incoming edge
or hair. The A-algebras are called associative algebras.

Remark 2.1.11. It was brought to the authors attention by one of the jury members of
a definition of T-algebras (Section 5.2) in [BGHZ| analogous to that of wheeled props, but
coming from the field of probability theory.

Example 2.1.12. Here follow some notable examples of &-algebras for a general set of
graphs &.
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Wheeled properad Properad Wheeled operad Operad

X R0 G| 4

Figure 2.2: Characteristic graphs for different &-algebras.

e Let V be a finite-dimensional vector space. The S-bimodule
Endy = {Hom(V®™, V®m)}m7n20

is a B-algebra where the contraction maps consist of the normal composition and
trace maps. We call this the endomorphism ®-algebra. The requirement that V is
finite-dimensional can be dropped when & does not contain any graphs with closed
loops.

e Let E = {E(m,n)}mn>0 be any S-bimodule. The free G-algebra over E is the
S-bimodule F(E) = {F(m,n)}mn>0, where F(m,n) = Dgee(m,n) G(E). The con-
traction maps are canonically defined.

e Let P be a B-algebra. A submodule Q C P is a &-subalgebra of P if the contraction
maps pg restrict as pug : G(Q) — Q(m,n) for all G € &.

e An ideal T of P is a B-subalgebra of P such that the contraction map pg restricts
as pug : G(P : I) — Z(m,n) for all G € &, where G(P : Z) is the submodule of G(P)
of graphs where at least one vertex is decorated by an element of Z. The &-quotient
algebra P /T is then defined in the natural way.

Definition 2.1.13. Let P and Q be &-algebras.

e A &-algebra morphism from P to Q is an S-bimodule morphism p : P — Q such
that for any graph G, the diagram commutes

P(m,n) — Q(m,n)
where p®¢ : G(P) — G(Q) is the map where p is applied to each vertex in G.

o A representation of P in a graded vector space V is a morphism of ®&-algebras
P — Endv.

e A free resolution of P is a free dg &-algebra (F(E), §) together with a &-algebra mor-
phism (F(E),) — P that is an isomorphism on cohomology (when P is equipped
with the trivial differential). A free resolution is minimal if the differential acts

12 m 12 m

on corollas >/< such that &( \/<\ ) € F>2(E) where F>o(FE) is the

12 n 12 n
subspace of F(E) generated by graphs with at least two vertices. The resolution is
called quadratic if the same image only contains graphs with exactly two vertices.

10
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Remark 2.1.14. The notions of free resolution and minimal resolution stem from the
theory of model categories, however, no such intuition is used when studying these objects
in this thesis.

2.1.4 Wheeled closure of a &-algebra

Definition 2.1.15. A &-algebra P is finitely generated by arity if P = F(E)/Z where
E = {E(m,n)}mn>0 is an S-bimodule and Z = {Z(m,n)}m >0 an ideal of F(E) such
that E(m,n) is finite dimensional for all m, n.

Remark 2.1.16. All the &-algebras we encounter will be finitely generated by arity.

Definition 2.1.17. Let G be a hairy graph and let h; be an out-hair and ho an in-hair
of G. A joining of hy and hy is the graph equivalent to G except that the hairs hA; and ho
have been removed and replaced by a directed edge. A wheeling of G is the graph where
one or more pairs of out-hairs and in-hairs have been grafted. Let & be a set of hairy
graphs. The wheeled closure of & is the set & containing both & and all wheeling of
graphs in &.

Remark 2.1.18. Let &—alg is the category of finitely generated by arity &-algebras
and B°—alg the category of finitely generated by arity &°-algebras. Then the functor
taking a G-algebra F/T to F©/Z° is a left adjoint to the forgetful functor from &°—alg
to &—alg.

2.2 Examples of operads and properads

2.2.1 The operad of associative algebras

Example 2.2.1. Let Ay = {A(m,n)}mn>0 be the S-bimodule where Ay(1,2) = K[S;]
and Ag(m,n) = 0 for all other m,n. The free operad F(Ap) is generated by oriented
graphs whose vertices have two incoming edges and one outgoing edge. Consider the ideal
T C F(Ap) generated by the set

|
Io:={ /.<'>3) - (4}\ o eS8, (2.1)
o o(2) o(3)

1) o(2)

The operad of associative algebras is the quotient operad Ass := F(Ag)/Z. If V is a

vector space, then there is a 1-1 correspondence between associative algebra structures on
1

V' and representations p : Ass — Endy. In the correspondence, the element p( /l\ ) €

12
Endy(1,2) = Hom(V ® V, V) corresponds to an associative product on V.

Example 2.2.2. The wheeled operad of associative algebras is the quotient operad Ass® :=

F(Ap)/T where the generators are the same as above in the category of wheeled operads.

Then the wheeled operad F(Ap) additionally includes wheeled graphs such as /Q

Remark 2.2.3. If V is a finite dimensional vector space, then there is a 1-1 correspondence
between associative algebra structures on V and representations p : Ass® — Endy. A

11
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graph of Ass® containing a wheel, say /Q , corresponds to an element p( /Q ) €

1
Hom(V,K). This is effectively a trace map induced by the product /l\

1 2

Example 2.2.4. Let A = {A(m,n)}mn>0 be the S-bimodule where

A(l,n) =K[S,] = < A >aeSn

o(1) o(2) o(n)

for n > 2 and A(m,n) = 0 otherwise. The free operad F(A) together with the differential
0 that act on generating corollas as

o(l) ... o(n) o‘(l)...a(k)//\\J’(k+l+l)...a(n)
o(k+1)...0(k+1)

is a minimal resolution of Ass, which we denote by Hoass.

In general, the wheeled closure of a minimal resolution is not in general a minimal resolu-
tion, exemplified by the &“-algebra Ass® described below.

Example 2.2.5. Let A° = {A“(m,n)}m.n>0 be the S-bimodule such that

A°(1,n) =K[S,][n —2] = < A >cr€Sn for n > 2

o(1) o(2) o(n)

n—1 n—1

A°(0,n) = @K[Sn]()ﬁx(]ﬂ,p [n] = @ < m >0€Sn for n > 2

c(1)a(2) o(p) o(p+1) o(n)
and A(m,n) = 0 otherwise. Here C), x C),_,, denotes the subgroup of S,, generated by two

elements (12---p) and (p+ 1---n). The differential of the first kind of generator is the
same as for Hoass, while it acts on the second type of generator as

1 2 p p+l n n

P n—2
k=2 k=2
k+1 P pHl n
1 ... k

5<//‘N> N f{lz...p) f;ﬂ,_,n (1 - 5

_1)pHk(+n—p)+1 >
12 ' p pHhHl
p+1... ptk

12
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2.2.2 The operad of Commutative algebras

Example 2.2.6. Let Cy = {Cy(m,n)}mn>0 be the S-bimodule where Cp(1,2) = K and
Co(m,n) = 0 for all other m,n. The free operad F(Cjy) is generated by oriented graphs
whose vertices have two incoming edges and one outgoing edge. Consider the ideal Z C
F(Cy) generated by the same set Iy as in (2.1). The operad of commutative algebras is
the quotient operad Com := F(Cp)/T.

2.2.3 The operad of Lie algebras

Example 2.2.7. Let Lo = {Lo(m,n)}m n>0 be the S-bimodule where Lo(1,2) = sgn, and
Lo(m,n) = 0 for all other m,n. Consider the ideal Z in the free operad F(Lg) generated
by the linear combination

RPSPIPS

The operad of Lie-algebras is the quotient operad Lie := F(Ly)/Z.
If V is a vector space, then there is a 1-1 correspondence between Lie-algebra structures
on V and representations p : Lie — Endy .

Example 2.2.8. Let L = {L(m,n)}mn>0 be the S-bimodule where

L(1,n) = sgn, [n — 2] = < )\ >
12 n-in
for n > 2 and L(m,n) = 0 otherwise. The free operad F(L) together with the differential
0 that act on generating corollas as

5( )\ ) — Z (_1)0(11712)+(|h\+1)|12\

[H}ZIluIQ
[11]>2, |12]>2

(2.2)

172 niln

is a minimal resolution of Lie, which we denote by Holie.

Remark 2.2.9. In contrast to the operad of associative algebras Ass, the wheeled closure
Holie® of Holie is a minimal resolution of Lie®. That is Holie® := F(L) together with
the differential (2.2) is a minimal resolution of Lie® (see Theorem 4.1.1 in [M2]).

Representations of Holie are called homotopy Lie algebras (or Loo-algebras). A homotopy
Lie algebra is a graded vector space V together with an infinite family of multilinear maps
Q= {Q(") : VA — V1,51 of degree n—2 satisfying the strong homotopy Jacobi identities

Z Z X(Ja Ula"-aUn)(_l)i(j_l)Q(j)(Q(i)(va(l)7'-'7vo(i))>va(i+1)7"'7va(n)) =0
i+j=n+1 oceShuff (i,n—1i)

for every n > 1. Here Shuff(p, ¢) denotes the set of (p, q)-shuffles and y is a signature of
the permutation. In the first three instances, we get the equations

QW o Q(l)(vl) -0
QW (v1,v9) = QP(QW (v1),v2) — (=)@ QW (v3), v1)
]({123) Q(Q)(Q(Q)(U?nm),vz) = Q(g)(Q(l)(v1)w2,v3) -1-7{ Q(l)(Q(3)(U1,U2,v3)),

(123) (123)

13
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The first one tells us that Q(Y) squares to zero and the second that Q1) is a derivative with
respect to Q@ hence QM) is a differential. The third equation shows that Q2 satisfy the
Jacobi identity up to some relations. In particular, when Q™ = 0 for n > 3, then this
structure is exactly a dg Lie algebra. We say that a homotopy Lie algebra V is filtered
if there is a sequence Vp =V D Vi D V5 D --- such that (2, V; = {0} and there is an
no € N such that Q) : VA" — V restricts to QU : VA" — V,, for n > ny.

2.2.4 The properad of Lie bialgebras

Definition 2.2.10. Let k£ € Z. A Lie k-bialgebra is a vector space V together with a
Lie bracket [—,—] : VAV — V (satisfying the Jacobi identity) of degree —k and a Lie
cobracket A : V. — V AV (satisfying the co-Jacobi identity) of degree 0 that satisfy the
([-, =], A)-compability relation

A([a, b)) = » Alty(ad, ® ID)A(D). (2.3)

for any a,b € V. Here ady(x) = [a, z], the map Alt,, : V" — V®" is the operator

Altn(z1 @ ®@an) = Y (DN @,0) @+ ® To(n)

O'ESn

for any linear map f : VO — V®™ and

k

7% )f(m,--' k) = 3 (=D @y Tonyw)
I

i=1

where o = (12---k) € Si and ¢* is the composition of o with itself i times. The usual
notion of a Lie bialgebra is obtained for & = 0.

Definition 2.2.11. Let Lby = {Lby(m, n)}m n>0 be the S-bimodule where Lby(m,n) =0
for all m,n except

1 1
Lbo(1,2):11®sgn2[k]:</l\ :—/i\>
C e .
Lb0(2,1):sgn2®11:<\T/:—\T/>
1 1

Further let Z be the ideal of the free properad F(Lby) generated by the elements

A K NN
T h -t A A

The properad of Lie k-bialgebras Lieby is the quotient properad F(Lby)/Z.

14
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Definition 2.2.12. Let Holieb, be the free dg properad generated by the S-bimodule
Lb = {Lb(m,n) }mn>o0 where

Lb(m,n) = sgn,, ® sgn®|k+1l[( -+ (k+1)(n—-1)—1]

( 1 2 m
X \o\+(k+1)\7'| >.</ P CES,, TE Sn> >1
1) 7(2) 7(n) L2 "

and the differential is given on generators as

5( N/ ): Z S (1) uEHAI )

[m]=0LUI2 [n]=J1UJ2
L2 " |20, |I2|>1]1[>1,]J2| >0

Proposition 2.2.13. The properad Holieby is a minimal resolution of Lieby,.

Proof. This was shown in [V, M1]. O
Remark 2.2.14. Let ¢,d € Z. We can generalize the notion of a Lie k-bialgebra to a
(¢, d)-shifted Lie bialgebra where the Lie bracket has degree 1 — ¢ and the Lie cobracket has
degree 1 —d. Then the properad of (c, d)-shifted Lie-bialgebras is the properad Lieb, 4 :=
Liebeyq—2{1—c} governing a degree shifted Lie-bialgebras where the Lie-bracket has degree
1 — d and the Lie-cobracket has degree 1 — ¢. The standard Lie-bialgebra properad is

regained when ¢ = d = 1. We can equivalently define this properad as the quotient
properad below.

Definition 2.2.15. Let Lieb. 4 be the quotient properad F(Lb. q)/Z.q where Lb. q is the

S-bimodule where
Lbea(1,2) = sguy[1 - )\ )\
Lbcq(2,1) =sgny[1 — (] Y \T/

and Lb. q(m,n) = 0 for all other m,n and Z. 4 is the ideal of F(Lb. 4) generated by the

v NN
Ao Ao A

15
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Definition 2.2.16. Let Holieb. 4 free dg properad generated by the S-bimodule Lb. 4 =
{Lb¢q(m,n)}mn>0 where

Lbeg(m,n) = sgn’ @ sgn&"[c(m — 1) + d(n — 1) — 1]

o(1) 0(2) o(m) 12 /m
- { _ (—1)clot+r] |0 €Sms 7€ Sn) o
7(1) 7(2) 7(n) 1 2 n e

and the differential is given as in equation (2.4).
Proposition 2.2.17. The properad Holieb. 4 is a minimal resolution of Lieb. 4.

Proof. This was shown in [V, M1]. O

Remark 2.2.18. Note that Holiebg is not a minimal resolution of Eiebg, and the exis-
tence of such a minimal model is not shown.

Remark 2.2.19. It is still an open problem to find a minimal resolution of Lieb}f.

2.2.5 The properad of quasi-Lie bialgebras

Definition 2.2.20. A quasi-Lie k-bialgebra is a Z-graded vector space V together with
the maps

[—,—]: V2 S VK]
A:V VN2
¢: K — V]

of degree —k, 0 and k respectively, such that [—, —] satisfies the Jacobi identity, A satisfies
the modified co-Jacobi identity

%Altg(A ®Id)A(a) = [Alts(a ® 1 ® 1), ]

as well as the ([—, —], §)-compability relation (2.3) and the (A, ¢)-compability relation
Alty (A ®id ® id)(¢) = 0.
Remark 2.2.21. A quasi-Lie bialgebra naturally is a Lie bialgebra when ¢ = 0.

Definition 2.2.22. The properad of quasi-Lie k-bialgebras Qlieby, is the quotient properad
F(QLby)/T where QLby = {QLbo(m,n)}mn>0 is the S-bimodule with QLby(m,n) = 0

except for
1 1
QLin(1.2) = Li@sgnylk] = (A == & )
1 2 2 1
1 2 2 1
QLb0(2,1)=sgn2®11:< Y S Y >
1 1

1 2 3 (D) o(2)a(3) >
0€ES3

QLbo(3,0) = sgny @ 1o[—k] :< N2 o] ¢ NK

16



CHAPTER 2. GRAPH COMPLEXES, PROPERADS AND THEIR DEFORMATION
THEORY

and Z is the ideal generated by the elements

1 2 3 3 1
1 2 3 3 1 3 1 9
W g kA

Z: 1 2 2 1 2

2
1 4

2
2 3 1 3 1 2
Definition 2.2.23. Let QHolieby be the free dg properad generated by the S-bimodule

Qlb = {QLb(m,n)}m n>0 where
Lb(m,n) = sgn,, @ sgn* U [(m — 1) + (k+1)(n — 1) — 1]

o(1) o(2) o(m) te om
_ < >/\ _ (_1)|0'\+(k+1)\7'| X ‘ o E Sm7 S S’”«>m21,n20
m+n>3
r(1) 7(2) 7(n) L2 " -

and the differential is given on generators as

12 m

(K)- 5, 5 e

=1 uls [n]=J1UJ2
L2 " |11]>0,|72|>1 | J1]>0,] J2| >0

This minimal resolution contains an additional generator \l/ compared to Holieby.
Remark 2.2.24. We similarly define the degree shifted versions Qlieb. g := Qliebciq—2{1—
c} and QHolieb. 4 := QHolieb.q_2{1 — d} of these properads.

Proposition 2.2.25. The properads QHolieb, and QHolieb. 4 are minimal resolutions of
Qlieby, and Qlieb. 4 respectively.

Proof. This was shown in [Gr]. O

2.2.6 The properad of pseudo-Lie bialgebras

Definition 2.2.26. A pseudo-Lie k-bialgebra is a Z-graded vector space together with
the maps

n: V¥ v
[ -]: V=V
A:V VM
¢:K— V"

of degree —2k, —k, 0 and k respectively such that the following equations are satisfied

17
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1. (Modified Jacobi-relation)

f; el = 75 e A1 (6) A (0)

sy sy

[\

. (Modified co-Jacobi-relation)

SAI(A © T0)A(w) = [Alts(a @ 191), ]

3. (Modified ([—, —], A)-compability)

A([a,0]) = ]{bAltz(ada ©I)AD) + Y (61 ® d2)n(¢3, a,b)
@ ¢

4. ((A, ¢)-compability)

Alty(A®Id®Id)(¢) =0

5. (([-~, =], m)-compability)

n(Alty([a,b],c,d)) =0

Remark 2.2.27. When n = 0, then we retain the definition of a quasi-Lie bialgebra, and
when 1 = ¢ = 0 we retain the definition of a Lie-bialgebra.

Definition 2.2.28. The properad of pseudo-Lie k-bialgebras Plieby is the quotient prop-
erad F(PLbg)/Z where PLby = {PLby(m,n) }m n>o0 is the S-bimodule where PLby(m,n) =
0 except for

PLby(0,3) =1y ® sgng[2k] = < L /T\ = o] /T\ >JES3

2 3 o(1)o(2)a(3)

1 1
PLn(1.2) = Li@sgnylk] = (A == & )
1 1 2 2 2 2 1 1
Png(Q,l):sgn2®11:<\T/ :—Y>
1 1

Png(B,O):sgn3®10[—k]:< N = |o|

18
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and Z is the ideal generated by the elements

1 2 3 1

1 2 3 1 3 1 9

YT Y T IATIATIA
\ \ \

1 2 2 1 2

Definition 2.2.29. Let PHolieb, be the dg free properad generated by the S-bimodule
PLb = {PLb(m,n)}mn>0 where

PLb(m,n) = sgn,, @ sgn2FU[(m - 1) + (k+1)(n —1) — 1]

n

o(1) 0(2) o(m) 12 om
_ < _ (= 1)+ DI |6 €Sm, 7€ Sn> .
A oS3
W) 7@ 7(n) 12 on )

and the differential is given on generators as

(5( >/< ): Z Z (—1)7(Abl)FIn|(R+1)

[m]:[1u12 [n}=J1L|J2
L2 n |111>0,| 12| >0 | J1[>0,] J2| >0

This properad contains the additional generator /T\ compared to QHolieby.

Remark 2.2.30. We similarly define the degree shifted versions Plieb, 4 := Pliebeyq—2{1—
c} and PHolieb. g := PHolieb.q—2{1 — ¢} of these properads.

Proposition 2.2.31. The properads PHolieby, and PHolieb.q are minimal resolutions of
Plieby, and Plieb. 4 respectively.

Proof. This was shown in [Gr]. O

2.3 Deformation theory

2.3.1 Derivation complexes

Definition 2.3.1. Suppose that P and Q are (dg) properads with composition maps
{uE : G(P) = P(m,n)}ces and {ug : G(Q) — Q(m,n)}ges. and let p: P — Q be
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a morphism of (dg) properads. Let d € Z and Q[d] := {Q(m,n)[d]}m n>0 be the degree
shifted S-bimodule and set P & Q[d] := {P(m,n) & Q[d]}mn>0. Then there is a (dg)
properad {ug : G(P @ Q[d]) — P(m,n)® Q[d](m,n)}ces induced by p such that for each
decorated graph g € G(P & Q|d]) either

e 1c(g) = pl(g) if g is only decorated by elements of P.

e ug(g) = ,ug(p(g)) if g exactly one vertex is decorated by an element of both @ and
the rest decorated by elements of P, where p(g) is the map that applies p to all
elements of P.

e uc(g) = 0if g has two or more vertices decorated by elements of Q.

A derivaton of degree d of p is a morphism of S-bimodules D : P — Q such that the
associated map Id + D : P — P @ Q]d] is a morphism of properads. Denote the space of

derivations of p by Der(P 2, Q). This is a dg vector space with the differential
6D =6dg0D — (—1)PID o ép. (2.5)

When P = F(E) for some S-bimodule E, then a derivation is uniquely determined by the
images of generators, hence

Der(f<E> ﬁ) Q) = H HomSm XSp (E(m> n)a Q(m7 n))

m,n>0

where Homg , xs,, (E(m,n),E(m,n)) is the space of all S, X S,,-equivariant linear maps (of
any degree). In the special case when P = Q and p = id, then Der(P) := Der(P i, P)
is a dg Lie algebra with Lie bracket

[Dy, DoJ(a) = Di(Da(a)) — (—1)!P1P2IDy( Dy (a)).
If P = F(E), then

Der(F(E)) = H Homg, xs, (E(m,n), F(E)(m,n)).
m,n>0
2.3.2 Deformation complexes

The following theorem is from [MV].

Theorem 2.3.2. Let (P = F(E),0) be any dg (wheeled) properad generated by an S-
bimodule E = {E(m,n)}mn>0. Let Q@ = {Q(m,n)}mn>0 be any dg (wheeled) properad.
Let p: P — Q be a morphism of dg (wheeled) properads. Then

1. The graded vector space

Def(P % Q)= ] Homs, xs, (E(m,n), Qm,n))[1

m,n>0

where Homg,, «s, (E(m,n), Q(m,n)) is the space of all Sy, X S,-equivariant linear
maps (of any degree). Its differential is the same as equation 2.5. This is a canoni-
cally filtered homotopy Lie-algebra called the deformation complex of the morphism

f.

2. If 5(E(m,n)) C F<2(E) C P, then Def(P ER Q) is a dg Lie algebra.
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Remark 2.3.3. In this thesis, we will always encounter case (2), and will mainly focus
on the chain complex structure rather than the Lie-algebra structure. For full details,
including definitions of filtered homotopy Lie structures, we refer to [MV].

Remark 2.3.4. We have an isomorphism of complexes
Def(P L Q) = Hom(E, Q)[1] = Der(P L Q)[1).
This isomorphism does not, however, preserve the Lie bracket.

Example 2.3.5. Let us describe the complex Def(P i> Q) in the concrete example when
P = Q = Holieb as seen in [MW1]. Then

12 m
De f(Holieb. q d Holieb, q) H Homg,, «s, (< X >, Holiebe q(m,n))[1]
s 12 n

= (Holiebe, 4(m,n) © sgn@ld @ sgn@ldSm>Snle(1 —m) + d(1 — n)]

where Holieb. 4(m,n) is the subspace of oriented graphs with m out-hairs and n in-hairs.
The differential acts on graphs by splitting a vertex into two vertices with an edge attached,
and then summing over all possible reattachments of hairs and edges.

2.4 Graph complexes

2.4.1 The Kontsevich graph complex

Definition 2.4.1. Let V,E.cgra be the set of connected directed graphs with e edges and
v vertices. The edges and vertices are labeled from 1 to e and 1 to v respectively. Both
tadpoles and multiple edges are allowed in the graphs. Let k € Z and let V,E.GC}, be the
graded K vector space concentrated in degree (v — 1)k + (1 — k)e generated by V,E.cgra.
There is a natural right action of S, x S¢ x S;° on the vector space permuting the labels
of vertices, permuting the labels of edges, and reversing the direction of an edge. The full
and connected Kontsevich graph complex (cfGCy,d) is the chain complex where

IL.. (\_/vEeGCk ® sgne) for k even,
’ Sy XSe xSy ®

IL.. (\77JE,3GC/C ® sgn, ® sgn?e> for k odd.
’ SuXSexS5 ¢

cfGCy, :=

The subscript denotes taking the space of coinvariants under the group actions. The
degree one differential d acts on graphs I as

d(T) :=6(T) = §'(T) = 6" (T) = > 6,(T) = &,() — 55(T)

zeV(T)

where V(I') is the set of vertices of I', §,(I') is the sum of graphs where the vertex x
has been replaced by two vertices with one edge between them, and the sum is over all
reattachments of edges to these two vertices. The expression 0, (I') denotes the graph
where an outgoing univalent vertex has been attached to z, and vice versa for ¢§”(I") with
an incoming univalent vertex. The signs of the resulting graphs are determined so that
the new edge is labeled e+ 1, the source vertex of the edge e+1 is labeled with the original
vertex x, and the target vertex is labeled with v + 1. Note that no univalent vertices are
created under the action of the differential since any such graphs in §, and §, + 6/ cancel
each other.
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Elements of ¢cfGCj can be viewed as equivalence classes of undirected graphs up to a sign
depending on labelings on vertices or edges. When representing a graph, we normally pick
a representative graph with fixed labelings on edges and vertices, as well as directions of
edges.

Example 2.4.2. Consider a vertex x with one outgoing edge and two incoming edges in
some representative graph I' in ¢fGCy. Pictorially, we draw this as

i1 @

gl
Y

where eventual vertices and edges not adjacent to z have been omitted. Then J, acts on
I as

i1 @ i1 O [ 331 i1 @ i1 @
T e+1 e—&—lT Te—&-l e+1
@ = z @—@ v+l T+ re—@ v+l + =z g—? v+l + =z *—? v+1
1207\,\013 12.]\\013 i2.]\ i3 i3 @ @ i2 2 @ @ i3
[ 251 ® i1 @ [ 251
e+1 e+1I ;;e-i—l e+1
+ =z Q—>I v+l + re—@ v+l + = Qv+l + =z .?;\:H .
3 12 12 I : 13 12 3 12 i3

Similarly, ¢/, and 67 act on I" as

i1 @ i1 . i1 @ i1
5;( x I ) T .ﬂ. v+l 5;:( x 2 ) = e+1T *—@ v+l -
ig./\,\.zé 12./\\013 iQCZ\,\.ig 12.]"‘\.13
Remark 2.4.3. The graph complex (fGCy, d) of not necessarily connected graphs can be
described in terms of the complex of connected graphs, so no information is lost by con-

sidering the smaller complex. More specifically, cfGCy = ST (fGCy[—k])[k], where ST (V)
denotes the (completed) symmetric product space of the (dg) vector space V' [W1].

Remark 2.4.4. From the definition of cfGCy, we note that complexes of the same parity
are isomorphic up to a degree shift. The only two crucial complexes to study are thus
cfGCy and cfGC3. As we will soon see, we know much more about the first one compared
to the latter.

Definition 2.4.5. Let I be a graph with e edges and v vertices. The loop number of T is
the integer b =e — v + 1.

Remark 2.4.6. The loop number of a graph is invariant under the differential.

The term full refers to that there is no restriction on which types of graphs we consider
as generators. Let GC be the subcomplex of cfGCy of graphs with no univalent vertices,
and no bivalent vertices (except if the loop number of the graph is one). We call GCj, the
Kontsevich graph complex. The inclusion

is a quasi-isomorphism [W2]. The cohomology of the subcomplex by GCy, of GCj, consisting
of graphs with loop number one is fully described as

HbiGG) = & Kk
i>1
i=2k+1 mod 4

where K[k — 7] denotes the loop-graph containing i edges. The cohomology of GCs is only
partially understood in negative degrees and degree zero. The following remarkable result
was shown by T. Willwacher in [W1].
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Theorem 2.4.7. There is a Lie algebra structure on H(GCy) that is isomorphic to the
Grothendieck-Teichmuller Lie algebra grt.

H 0(GCg) = get
Furthermore the cohomology in negative degrees vanishes.
H<%(GCy) = 0.

In the dual complex gc;, where the differential is defined by contracting edges, the zeroth
homology contains the the wheel classes {way+1 }nen:

It is conjectured that these are the only classes of homology zero. In GCy, the first wheel

classes are represented by the following graphs:

We lack major results about the cohomology of GCs except that it is concentrated in
negative degrees. This result can be derived from a more general statement using loop
numbers.

N | Ot

Proposition 2.4.8. Let b > 2 and byGCy be the subcomplex of GCy of graphs with loop
number b. Then H'(byGCy) = 0 for (3 — k)b —3 < L.

Proof. The degree of a graph I' € by, GC, can be rewritten as
Tl=(w—-1Dk—(k—1e=(v—e—1)k+e=—bk+e.
Now 3v < 2e since the vertices of I' are at least trivalent. Then we get the inequality
20=2e—20+2>v+2 — v <20—2.
Finally, the degree of |I'| < (3 — k)b — 3 since
| =—-bk+e=—-bk+(b+v—-—1)=1—-kb+v—-1<(1-k)b+20—3=(3—Fk)b—3.
Since b and k are independent from I', there are no graphs of such degrees in byGC,. [

Corollary 2.4.9. H'(GC3) =0 forl > —3.

2.4.2 The directed graph complex and its subcomplexes

Definition 2.4.10. The full and connected directed Kontsevich graph complex (cfdGCy, d)
is the complex where

[l (VUEBGCk ® Sgne)S for k even,

v Xde

[l (VUEQGCk ® sgmv>S for k odd.

v Xde

cfdGCy, :=

The generators of this complex are equivalence classes of directed graphs. The differential
is defined using the same formula d(T") = §(I") — ¢'(T") — §”(T") in definition 2.4.1 and with
the same sign conventions.
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Remark 2.4.11. The directed graph complex similarly decomposes over loop numbers
as CfdGCk = 69120 bzfdGCk

Definition 2.4.12. Let bydGC; C b1fdGC;, be the subcomplex of graphs with no univalent
vertices, and b;dGC; C b;fdGCg the subcomplex of graphs with neither univalent nor
passing vertices for i > 2. Set dGCy = P~ b;idGCy.

Proposition 2.4.13. The inclusion dGCj, — cfdGCy, is a quasi-isomorphism.

Proof. This was shown for the oriented graph complex in [Z1], but the same arguments
apply here. ]

Proposition 2.4.14. Let GC — dGCy be the chain morphism mapping an undirected
graph T' to the sum of directed graphs of the same underlying shape, summing over all
possible directions on edges on I'. Then this map is a quasi-isomorphism.

Proof. See Appendix K of [W1]. O

2.4.3 Subcomplexes of dGC,

There are several subcomplexes of dGC; whose cohomology has been studied and shown
to be related to other graph complexes. Here is an overview of the most important ones.

e The oriented graph complex oGCyg. This is the subcomplex of graphs that do not
contain any closed paths of directed edges. M. Zivkovic found an explicit chain-map
dGCj, — 0GCg1, which he also showed to be a quasi-isomorphism [Z1].

The sourced graph compler dGCi. It is the subcomplex of graphs that contain at
least one source vertex. The inclusion 0GCy, — dGCj, is a quasi-isomorphism [Z2].

The targeted graph complez dGCL. Tt is the subcomplex of graphs that contain at
least one target vertex. It is naturally isomorphic to dGCj, by the map that reverses
the direction of all edges of a graph. Similarly, the inclusion 0GCy — dGC is a
quasi-isomorphism [Z2].

The sourced or targeted graph complex dGCZ‘H. It is the subcomplex of graphs with
at least one source or one target vertex. We have that H'(dGC5™) =0 for [ < 1
[Z3].

The sourced and targeted graph complex dGCZt. This is the subcomplex of graphs that
contain at least one source and one target vertex. There is a short exact sequence

0 —= dGC}' —= dGC}, & dGC}, —— dGC3H —— 0

| E—C 0

(I'1,T9) ———T'1 — Ty

Since H'(dGC5™") = 0 for I < 1 one sees that H(dGC§') = HO(dGC5) @ H(dGCY)
[Z3]. In particular, we get the remarkable result:

Corollary 2.4.15. H(dGC§") = H(GCy) @ HY(GCy) = grt @ grt.
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dGC;
0GC;, — dGCj! dGCiH —— dGCy,

e
\ dGC}

Figure 2.3: Diagram of the subcomplexes of dGCy.

Additionally, we will be interested in the completely wheeled graph complex dGC?. This
complex is defined as the quotient complex dGCy/ dGCZth. Hence it consists of graphs
where all vertices are at least trivalent, and each vertex has at least one incoming and one
outgoing edge. We get the short exact sequence

OHdGCZH dGC, dGC}f —0
From this short exact sequence, we can derive the following result.
Lemma 2.4.16. H'(dGCy) =0 for —2 <1< 1.

Proof. This follows by noting that H!(dGC5™") = 0 for I < 1 and H'(dGC3) = 0 for
> -2. O
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Chapter 3

Derivations of Lie bialgebras

In this chapter we compute the cohomology of the two derivation complexes Der(’}—loliebg )
and Der'(?—[oliebg ;) by establishing explicit quasi-isomorphisms to directed Kontsevich
graph complexes. We end the chapter by explicitly computing two cohomology classes
of H O(Der(Holieb%)). The content of this chapter is largely based on the article De-
formation theory of the wheeled properad of strongly homotopy Lie bialgebras and graph
complezes.

3.1 Derivation complexes of Holiebgd

Definition 3.1.1. Let Holieb; ; be the free dg properad generated by the S-bimodule
Lbzad - {Lb;,d(m)n)}m,nZO where

Lb? 4(m,n) = sgny’ © sgn®e(m — 1) +d(n — 1) — 1]
o(1) 0(2) o(m) 12 om
— < \/ _ (_1)c|o|+d\r| \// | oc Sm re Sn>
A.. ’ min20
7(1) 7(2) 7(n) 1 2 n

and whose differential acts on generators as

5( X ): Z Z (71)0(1'1UI2)+|11\(|12\+1)

[m]:[lufg [n]:J1L|J2

Definition 3.1.2. Let Holiebid be the free dg properad generated by the S-bimodule
Lb:d = {Lb(—;i—d(m7n)}m,n20 where

Lbzd(m, n) = sgn® @ sgn®[c(m — 1) + d(n — 1) — 1]

o(1) 0'(2) o(m) 12 om

/ clo|+d|T] \
(XK == X loesmres)
(1) 7(2) 7(n) 1 2 n

and whose differential acts on generators as

12 m

5( >>.< >: 3 S (c1)r U AR )

[m]=1UI> [n]=J1UJ2
L2 " |1[>0,|T2|>1]J1[>1,]J2| >0

27
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Holieb:d : +

>1
Holieb?, - +\/ DA
>1

Figure 3.1: Additional generators of ’Holieb: 4 and Holieb? ; compared to Holiebe 4

Remark 3.1.3. The definition of these complexes only differs from that of Holieb. 4
in that they have additional generators (see Figure 3.1) and that their differentials are
modified accordingly. Furthermore, there are natural projections

7 : Holieby ; — Holieb. 4 and at ’Holiebjd — Holiebc q
which are dg morphisms. The morphism 7® factors through 7+ as

Holieb? y — Holieb! , — Holieb q.

Definition 3.1.4. Let the properad 7—[/011'\6190,0{ be the loop number completion of Holieb, q.
This properad has a complete topology such that the derivations are considered as con-
tinuous. We use the same notation for the loop number completion of other properads.

Definition 3.1.5. The complex Der'(?’-[oliebéj ) is the derivation complex with respect
to the morphism

a*0 Wb::j — %ﬁbf’d
induced by 7®. Similarly, let Der(?—[oliebgd) be the derivation complex with respect to the
morphism

atO @b:f — bed
induced by m+. The differential d on both complexes is given by the vertex splitting

differential d*P! from Holieb. 4 with the additional terms of attaching (m,n) corollas to
every hair for all integers m, n:

1 2 m

I 1.2 m
dr =dv'r 3" 3 % (3.1)
mn g <y N ey

1 r
The sign rule for this formula can be found in [MW1].

Remark 3.1.6. Since the properads of the derivation complexes are free, they can be
described as

Der'(Holiebgd) = H (”Holiebgd(m, n) ® sgnZlel @ sgn@ldSm>xSn(1 4 (1 —m) + d(1 — n)]
m,n>0

Der(?—[oliebgd) = H (Hol@'ebgd(m, n) @ sgn2ll @ sgn@ldSm>Sn i1 4 (1 —m) 4+ d(1 - n)].
m,n>1

bC)

where Holieb ;(m,n) is the set of generating graphs of Holieb.

inputs.

4 With m outputs and n
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The loop number of a graph in any of the derivation complexes remains invariant under
the differential, and so the complex splits over loop numbers. The components of graphs
with loop number zero in both complexes are identical, and we denote this complex by
Derbzo(Holiebgd)

Theorem 3.1.7. The cohomology of Derbzo(HoliebSd) is generated by the series of single
vertex graphs

N

m,n>1
m+n>3

=
S (m+n—2) >/

Proof. The component Dery—g (’Holz'ebéD ;) 1s isomorphic to the component of graphs with

loop number zero in the derivation complex Der(’HoliebZ 4) of the unwheeled properads.
The cohomology of the latter was computed in [MWI1] to be generated by the series of
graphs above. O

3.2 The bi-weighted graph complex

When studying the complex Der®(Holieb:"), one notes that the sign rules of the differ-
ential are rather complicated when expreésed in terms of generating corollas using the
defining formula (3.1). In this section we introduce the bi-weighted graph complex fwGCy,
and show that it is isomorphic to Der® (’Holz’ebg 4)- The sign rules of fwGC,, are the same
as for the Kontsevich graph complexes, i.e., based on ordering of edges or vertices, and
are generally easier to work with.

3.2.1 Definition of the bi-weighted graph complex

Let T" be a directed graph and z a vertex of I'. Let |z|s, denote the number of outgoing
edges from z, and similarly let |x|;, denote the number of incoming edges to . A bi-weight
of a vertex x is a pair of non-negative integers (w2, w) satisfying

T x

1. wgm + ’-x‘out > 1,

We refer to w2 as the out-weight and wi" the in-weight of x respectively. A graph whose

vertices all carry bi-weights is called a bi-weighted graph.

Example 3.2.1. We include the bi-weights of a vertex when drawing a bi-weighted graph

as . A bi-weighted graph might then look like

29



3.2. THE BI-WEIGHTED GRAPH COMPLEX

Let V,E.wcgra be the set of connected bi-weighted graphs with e edges and v vertices
labeled from 1 to e and from 1 to v respectively. Let k € Z and let

V,EewGCy, := (V,Eewegra)[—(v — 1)k — (1 — k)e]

be the graded vector space over K of formal power series of bi-weighted graphs concentrated
in degree (v—1)k+(1—k)e. We have an action of S, xS, on the vector space by permuting
labels of vertices and edges respectively.

Definition 3.2.2. The bi-weighted graph complex (fwGCy,d) is the chain complex where

1. (vaeWGCd ® Sgn&)s 5 for k even,

v X e

[, (vaeWGCd ® sgnv>s for k odd.

v XSe

fwGCy, :=

The differential d is defined on a graph I' as

d(T) = 3(0) = &' (0) = o"(D) = Y dal (T) — &,(I)

zeV ()

where V(I') is the set of vertices of I', §,(I") denotes the splitting of the vertex = similar
to the vertex splitting in dGC; with the addition that we sum over all possible ways of
redistributing the bi-weight of z to the two new vertices. The §,(T") is the sum of graphs
where the out-weight of x is decreased by one and has one outgoing edge added being
attached to a new univalent vertex. The summation is over all possible bi-weights on the
new vertex. The §7(T') is defined similarly but where the in-weight is decreased by one
and the edge is incoming to x. The signs of the graphs under the action of the differential
are the same as for 4,4’ and §” in dGCy.

We pictorially represent the action of d, on a vertex x as

()= 3 ‘ DN )

/\ m= m1+m2 ) f
n=ni+nz z+]>2 z+j>

é
6$i

3

We tacitly assume in this formula that any term (if any) with negative in- or out-weight
is set to zero. Similarly, any graph with vertices of a bi-weight not satisfying condition 3
above is also set to zero. Some examples of vertices with invalid bi-weights are

N7/ T N7
(00 (1 (1 (=1
\0/ k%J L/ 4 \?j %2{

Remark 3.2.3. Contrary to dGCy, the creation of new univalent vertices of graphs in
fwGCy do not in general cancel under the action of the differential. If d%™ is the part
of the differential that increases the number of univalent vertices, then d“" acting on a
vertex can look like

(&mf)\f WS> f/.
\0/

ZZZJSQO f \
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3.2.2 A special kind of bi-weight

Definition 3.2.4. Let r > 0 be an integer. The symbol oo, when used as an in-weight or
out-weight denotes the sum of graphs

For graphs with two or more of these symbols decorating vertices, the sum is distributed
as in the example below:

Any term of such a sum containing a vertex of invalid bi-weight is set to zero.

Using this convention, the differential is described as

Remark 3.2.5. New univalent target vertices cancel under the differential when the out-
weight of a vertex is 0 or co1, and similarly for new univalent source vertices.
3.2.3 The bi-weighted graph complex and the deformation complex

Definition 3.2.6. Let fWGC]—: be the subcomplex of fwGCy generated by graphs having
at least one vertex with an out-weight greater than zero, and at least one vertex an with
in-weight greater than zero. These two vertices are allowed to be the same vertex.

The complex fwGCy, is constructed to be isomorphic to the derivation complex Der® (?—loliebg 2)
We interpret the bi-weight of a vertex as the number of outgoing and incoming hairs that
are attached to it. We define the map

F: Der'(?—[oliebgd) — fwGCrygi1

where a graph I' with unlabeled hairs (up to symmetry/skew-symmetry) is mapped to the
bi-weighted graph F'(T") of the same shape and where the bi-weights of vertices correspond
to the number of in- and out-hairs of the vertices in IT'.

Proposition 3.2.7. The map F : Der®(Holieb? ;) — fwGCeiq11 is a chain map of degree
0 such that

1. the map F is an isomorphism of complezxes,

2. the map F restricts to an isomorphism F'* : Der(?—[oliebgd) — fWGC;dH.
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Proof. Proving that F' is an isomorphism is done by inspection. We do, however, need to
show that F' is of degree 0. Recall that the derivation complex decomposes as

Der'(?—[oliebgd): H (Holiebgd(m,n)®sgnf2‘c|®sgn§‘d‘)SmXS”[1+c(m—1)+d(n—1)]

m,n>0

where ”Holiebg 4(m,n) is the vector space of graphs with m out-hairs and n in-hairs. Let I
be a graph in the derivation complex. For each vertex x of I, let |x|s,: denote the number
of outgoing half-edges and |z|;, the number of incoming half-edges. Then

D= > (1= (alout — 1) = (|2lin — 1)) = L = (1 — m) — d(1 —n)

zeV (D)
= Z (I+c+d)—(1+c+d) — Z (c|@|out + m|z]in) + cm + dn
zeV () 2eV(I)

= [V(I) = (e +d+1) = [EI)|(c+d) = [F(D)|

One remarks that F'T is a bijection by noting that bi-weights are symbolizing hairs and
Der(?—[olz‘ebg)d) can be seen as generated by graphs with at least one out-hair and one
in-hair attached. O

3.2.4 Decomposition over decorations and loop numbers

Let waCg be the subcomplex of fwGC; generated by graphs whose vertices are only
decorated by 8, and fwGCj, its complement. Then the complex fwGCy, split as

fwGCj, = fwGCY @ fwGC}.

Proposition 3.2.8. Let dGCf?”0 C dGCg be the subcomplex of graphs with all vertices at
least trivalent. Then the complex fWGC% s isomorphic to dGCE?”O of graphs with neither

sources nor targets.

Proof. By direct inspection of the graphs, where all vertices can be decorated by %, one
easily sees that they need to be at least trivalent and have at least one incoming and one
outgoing vertex. This corresponds to the graphs in dGCfg’o. One also notes that the
differentials act in the same manner. O

Recall that the loop number of a graph is preserved under the differential. Consider the
decompositions

fWGCk = b()WGCk @ WGCk
fwGC}, = bowGCj, & wGC},
fwGC; = bowGC; ® wGC;

where bowGCy, bpwGCj, and bQWGC;: are the subcomplexes of graphs with loop number
zero and wGCy, wGCj and WGC: the subcomplex of graphs with loop number one and
higher. We note that graphs with loop number zero cannot be completely bald, and
so bowGCj, = bowGCj.. Further note that there are no closed loops in a graph with loop
number zero, and so they contain at least one source and one target vertex. These vertices
must have positive in-weight and out-weight respectively, and so bowGC;, = bowGC;

Proposition 3.2.9. The cohomology of the complex of graphs with loop number zero
bowGCy, is generated by the series

S (i+5-2) v.
7,7>1

i+j2>3
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Proof. These graphs correspond to the part of the deformation complex of graphs with
loop number zero, whose cohomology was computed to be the counterpart of this graph
in Theorem 3.1.7. 0

3.3 Special in-vertices and special out-vertices

In this section we will define three subcomplexes qGC; C wGCj, qGC; C wGCj, and
qGCz C WGC; consisting of graphs whose vertices are decorated by four types of deco-
rations: %, T 0%1 and %. The main goal is to show that these inclusions are quasi-
isomorphisms. We do this by considering two consecutive filtrations on the complexes over
special-in and special-out vertices respectively. We then show that the associated spectral

sequences agree on some page.

3.3.1 Convergence of filtrations and their associated spectral sequences

In this paper, we will consider many arguments where we consider the filtration of a chain
complex and then study the associated spectral sequences. All the spectral sequences we
construct in this way will converge. To see this, we do a similar trick of shifting the degrees
of the complexes as seen in [W1]. Let the new degree of a graph be k(v —1) — (kK —1)e +
(k—3)(e —v) = 3(v+e) — k. The cohomology of both complexes agrees up to degree
shifts. Further, any filtration in the old grading corresponds to a filtration with the new
grading. We see that the number of underlying directed graphs of the bi-weighted graphs
contained in each degree is finite. Any filtration we do consider will be over the number
of vertices of certain types, and so the filtration will be bounded and hence converge to
the desired cohomology. The cohomology of the original complex is then acquired from
the shifted version.

3.3.2 Filtration over special in-vertices

Definition 3.3.1. Let I" be a bi-weighted graph. A vertex x of I' is a special in-vertex if

i) either x is a univalent vertex with one outgoing edge and out-weight zero, i.e on the

7
form

ii) or x becomes a univalent vertex of type i) after recursive removal of all special-in

vertices of type i) from I' (see figure 3.2).
@) T oD T D
T a e T

A S o

@ @ © @

Figure 3.2: Example of recursive removal of special-in vertices of the rightmost graph. All
vertices except the top one are special in-vertices.

Any vertex that is not a special in-vertex is called an in-core vertex. The special in-vertices
of a graph form trees with a flow towards some in-core vertex and where the trees have no
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out-hairs. Given an arbitrary graph I' in wGCg, we define the associated in-core graph ~y
as the one spanned by in-core vertices with their in-weight forgotten. Then every vertex x
in v has three integer parameters associated to it, |z|out, || and w2, Note that every
graph contains at least one in-core vertex, and so every graph has an associated in-core

graph.

Consider the filtration of wGCj, over the number of in-core vertices, i.e., the sequence of
complexes wGCj, = FowGC; C F1wGC, C FowGCy, C ... where F;wGC;, is the subcomplex
of wGCy, generated by graphs containing i or more special in-vertices. Let {S"*wGCg},>0
be the associated spectral sequence.

Proposition 3.3.2. The page one complex S"wGCy, is generated by directed graphs T
whose vertices V (T') are independently decorated by one out-weight m and with two possible
symbols 0 or 001 as in-decorations, subject to the following conditions:

1. If x € V(T') is a source, then

>1

N2

T = with m + |Z|oue > 2 and |x|pur > 1
2. If x € V(') is a target with precisely one in-edge, then

with m > 1, 07":(:: with m > 2

8
I
H@

3. If x € V(') is a target with at least two in-edges, then

@) ~
T = with m > 1, orx = with m > 1
= \0J =

AN 7N

>2 >2
4. If x € V(I') is passing (one in-edge and one out-edge), then

T
with m > 0, orx: with m > 1

T

8]
I
~(35)-

5. If x € V(T') is of none of the types above (i.e., x is at least trivalent and has at least
one in-edge and at least one out-edge), then

R Ko 2
ez, 2= s

T = with m > 0, or x = with m > 0
7R - 7N -

The differential acts on a graph T € Si"wGCy, with vertices of the types (1)-(5) above as
d(T') = > sev(r) dz('). The map dy acts on vertices with in-weight 0oy and 0 respectively
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as
o ) = m:g;m < + + ‘ )

Any term on the right-hand side containing at least one vertex not of the type (1) — (5) is
set to zero.

The rule of the differential follows from the bi-weight types of the vertices mentioned
above. So we only need to show that the cohomology of S{"wGCy, is generated by graphs
with such bi-weights. The differential acts on the initial page S&*wGCy by only creating
special-in vertices and leaves the connected in-core graph unchanged. Hence the complex
decomposes into a direct sum parameterized by the set of all possible in-core graphs

SirwGCy, = @ inCore(7)
g

where inCore() is the subcomplex of S{"wGCj, of all graphs whose associated in-core graph
is 7. The complex inCore(y) decomposes further into a tensor product of complexes

inCore() g( ® 7¥H>Aut(7)

z€V(y)

with one complex 7, for each z in V() and where Aut(v) is the group of automorphisms
of v acting by permuting the complexes of the tensor complex to preserve signs. Each com-
plex T,/ consists of trees of special in-vertices attached to an in-core vertex x and the differ-
ential acts by only creating special in-vertices on z and in the trees. The complexes 7, de-
pend on x only via the number of outgoing and incoming edges attached to x in the in-core
graph as well as on the out-weight w?%. The in-weight of x is not fixed. The complexes T,
which have the same values of the parameters |7|out, || and wS% are isomorphic to each

X
other, so we will often write 7" = |;7‘1 i weut So we have to study a family of com-
outs Wy

plexes 7;”; . barameterized by integers a, b, ¢ > 0 such that a+c > 1 and (a, b, c) # (1,0,0).
The first condition guarantees that the in-core vertex has at least one out-edge or out-
weight, and the second condition corresponds to the invalid configuration where the in-core
vertex would be a special-in vertex. The in-weight of the core vertex in a”g .
ber w® satisfying the condition wi™ + b + #(in-edges from special in-vertices) > 1 and
wi™ 4+ a + b+ ¢ + #(in-edges from special in-vertices) > 3. Proposition 3.3.2 now follows
from the following lemma.

is any num-
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Lemma 3.3.3. The cohomology of ahl;c is generated by one or two classes containing
the in-core vertex decorated by some bi-weights depending on the parameters a,b,c. More
precisely

Fora>1 H( aﬁc): whenc>0anda+c>2

@
~_

| <> ife=1

H( 0,1,c): <’ > ife>2

H(T{% ) = <> e

v <, > ifc>1
Forb>2 H(73727C):<, >, when ¢ > 1
Fora,b>1anda+b>3 H(ﬁjﬁvc):<,>, when ¢ > 0

The differential in ;7276 acts on graphs such that the number of univalent special in-
in

vertices stays the same or is increased. Consider the filtration on 7% . by the number of
univalent vertices (considering the graph consisting of only the root vertex v as having
one univalent vertex). Let gr(ﬁz .) be the associated graded complex. It decomposes as
gr(T% ) = @y unT, % . where unT. " is spanned by trees with precisely N univalent
speciéf in-vertices. Lemma 3.3.3 follows from the following results:

in
a,b,c

Lemma 3.3.4. The cohomology H (uy
Lemma 3.5.5.

) is generated by the same elements given in

Lemma 3.3.5. The complex uy ;7270 1s acyclic for N > 2.

in
a,b,c*

Proof of Lemma 3.3.4: We start by computing the cohomology of uq The graphs in

this complex are on the form

o~

with [ > 0. If [ = 0, then ng > 1 when (a, b, ¢) is either of the three cases (0,1, 1), (1,0,0)
or (a,0,c) for a > 1 and ¢ > 0. In any other case for (a, b, c) we have that ng > 0. If I > 1,
then ng >0, n; >1for1 <¢<[l—1andn; > 2. If ] =0, the induced differential acts on
the root vertex as

P
C C

N/ 7 no—1
n 0

no=ng+n( /g\ %
np>0, ny>2 77 9

"o %2/
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and when [ > 1, it acts on the root vertex as

Also for [ > 1 there are passing vertices and a univalent vertex in the graph. The differ-
ential acts on these vertices as

We can already identify the first cohomology classes generated by the graph consisting of

one core vertex on the form (e (whenever this in-weight is possible). The remaining

graphs to study are then on the form above with ng > 1ifl =0, and ng > 0, n1,...,n;_1 > 1
and n; > 2if [ > 1. Let (Z, d) be the complex generated by these graphs (i.e., the complex

where we exclude the graphs from wuq a”g . when present). It is easy to verify that

that is a cycle in (Z,d). The lemma follows if we can show that the cohomology of

7 is one-dimensional. There is a filtration of Z over the total in-weight of a graph, as the
total in-weight can only remain invariant or increase under the action of the differential.
Let {T,Z},>0 be the associated spectral sequence. The following two results conclude the
proof. O

Lemma 3.3.6. The cohomology of (TvZ,d) is generated by the graph consisting of a single
in-core vertex with in-weight 1. That is H(Z,d) = <@>

Proof. We construct an isomorphic complex using the bar and cobar-construction. Let
V = V_1 & Vy be a graded vector space with 1 = K and V_; = Ka. We consider
the augmented dga-algebra structure on V' where the product is defined by u(a,a) = 0,
and the differential d is zero. The bar complex B(V) = (T¢(V),dp) satisfies dg = 0.
Recall that 7¢(V) = K® sVa @ (sVa)®2 @ ... . All elements are of zero degree and we
denote the generator of (sVa)®" by sa ® --- ® sa = [sa]™. Also recall the coproduct is
defined as A([sa]”) = 32" '[sa]’ ® [sa]®~*. Next consider the cobar complex Q(B(V)) =
(T(s71T¢(sV)),dq). The degrees of the elements are ranging from 0 to —co. A general
element of degree —k is on the form s~ ![sa]’! ® - - - ® s~ 1[sa]Pk. The differential dg is now
defined as dqo(s™1[sa]P* ®@ -+ ® s 1[sa]Pk) = Zle(—l)lfisfl[sa]pl ® - @ A(s™[sa]Pi) @
-+~ ® s~ ![sa]Pk. If we reverse the grading of Q(B(V)) and consider the reduced complex,
it is easy to check that Q(B(V)) is isomorphic (TpZ,d) as a complex. In this isomorphism
the element s~ ![sa]P* ®- - -®s~![sa]P* maps to the graph with k vertices, the in-core vertex
having in-weight p; —1 and the ¢ : th vertex having in-weight p; for i > 2. Now Q(B(V)) is
quasi-isomorphic to V' (for example, see [LV]). H (V) is generated by 1k and a. Hence we
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note that [s~!sa] is the only cohomology class of Q(B(V)), which corresponds in (TpZ, d)
to the single vertex graph with in-weight one. O

Corollary 3.3.7. The cohomology group of (Z,d) is generated by the graph
. D

=1

Proof. By the above argument, we already know that H(Z, d) is one-dimensional and that

its generating class given by @ plus higher in-weight terms. It is straight-forward to

see that the sum is a cycle that satisfies this property. O

Proof of Lemma 3.3.5. We need to show that uN’EiZC is acyclic for N > 2. We say that
a vertex x is a branch vertex if there are at least two paths starting at two different
univalent special in-vertices and ending at = (see figure 3.3). The number of branch
vertices either remains the same or increases under the action of the differential, and so
we consider the filtration over the number of branch vertices. In the associated graded
complex gr(unT,™ ) the non branch vertices of a graph are attached to branch vertices
as strings of passiﬁg vertices, and the differential acts by prolonging these strings. The
differential can not increase the in-weight of a branch vertex. We consider the filtration
over the total sum of the in-weights of the branch vertices. The differential of the associated
graded complex gr(gr(unT.%.)) now acts only on the non branch vertices. The branch
vertices and the number of non branch vertices that are attached to a branch vertex are
invariant under the differential. By contracting the strings of non branch vertices in a
graph I' into IV hairs, we get a branch graph I'y, whose vertices are branch vertices. Then

the complex splits as

gr(gr(uNﬁﬁc)) = @ branchGraph(I',)
1_‘b'r
summed over the set of all branch graphs I'y,.. These complexes decompose as
branchGraph(T,) = ( Q) )"

hEH(FbT')

where H (I',) is the set of hairs in I'y, and Z is the complex from Lemma 3.3.7 and Aut(T'y,)
is the group of symmetries of I'y,. acting with the appropriate signs. Since this group is
finite, Maschke’s Theorem gives

H(( @ M) =(n( @ )" @ mayt
heH(Ty,) heH (L) heH (L)

Now H(Z) is generated by one element by Corollary 3.3.7. In a branch graph, there is
at least one vertex with two or more hairs. Hence the cohomology classes are zero in
branchGraph(T'y,) due to symmetries, finishing the proof. O

Lastly, we consider the complexes wGCj, and wGC}. Let {S"wGC}},>0 and {S7"wGC} },>0
be the spectral sequences associated to the filtration over the number of in-core vertices.

Proposition 3.3.8. The page one complex Si"wGCj is a subcomplex of Si"wGCy, generated

by directed graphs whose vertices are independently decorated by the two types {} .
m2z

and {} o subject to the conditions of Proposition 3.53.2 as well as the additional
m

condition that either
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@

Figure 3.3: Picture of a graph and its corresponding branch graph.

o at least one vertex is decorated with the bi-weight for some m >0, or

o at least one vertex is decorated with the bi-weight % for some m > 1.

Furthermore, the page one complex Si"wGC;ﬁ is a subcomplex of S"wGC}, where each graph
additionally satisfies that either

e one vertex is decorated with the bi-weight for some m > 1, or

e two vertices are decorated with the bi-weights @ and @ respectively for some
m > 1.

Proof. Similar to the case of S{"wGCy, both S{"wGCj, and S WGC+ decompose over in-
core graphs v as

SimwGC} = @ inCore™(7y)

g
SEwGC; = @ inCore™ (v)
g

where inCore*(7) and inCore™ () are the complex generated by graphs having v as their
in-core graph. These complexes do not however decompose into a tensor product over the
tree complexes T, since some of the tensors will not represent graphs in these complexes.
For example, a graph having all vertices decorated by % or a graph having only zero out-
weights or zero in-weights respectively. The tree complexes 7" split into (at most) four
complexes as T, = T,"(0) ® T,"(out) @ T"(in) @ T (out A in), where T;"(0) is the
complex where all bi-weights are zero, T,"(out) is the complex where all in bi-weights
are zero and at least one vertex is decorated with positive out bi-weight, 7.7 (in) is the
complex where all out bi-weights are zero and at least one vertex is decorated with positive
in bi-weight, and T, (out A in) is the complex where at least one vertex is decorated with
positive out bi-weight and at least one vertex with positive in bi-weight. Depending on
the vertex x, some of the three first complexes might be zero in the decomposition of 7,24
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It is easy to verify that the differential preserves the decomposition. We then get that

inCore*(y) = EP (T5"(1) © T3 (1) ® ... ® T3 (1))
I

inCore™ (7) = @ (T3(J1) @ T2 (J2) ® .. ® T2 ()
J

where the first sum runs over signatures I = (Iy,Is,...,Iy) € {0, in, out, in A out}*
such that there is an ¢ such that I; # 0. Similarly the second sum runs over signatures
J = (J1,Jo, ..., Ji) € {0, in, out, in A out}* such that either there is an i such that
Ji = out A'in, or there are 7, j such that J; = in and J; = out. Lemma 3.3.3 gives us that

H (T2 (out Ain)) = < tm > 1>
H(T (out)) = < m>1)

(T i) = ((40)
HT0) = ()

The proposition immediately follows by comparing the condition for the signatures I and
J with the proposition statement. ]

3.3.3 Filtrations over special out-vertices

We define special out-vertices by analogy to the special in-vertices introduced above.
Definition 3.3.9. A vertex x in a graph I is called a special out-vertex if

i) either x is a univalent vertex with one incoming edge and in-weight zero, i.e on the

form

ii) or v becomes a univalent vertex of type i) after recursive removal of all special-out
vertices of type i) from T

Vertices that are not special out-vertices are called out-core vertices or just core vertices.

Note that there are no special-in vertices in any graph of Si"wGCy,, but there are graphs
with special out-vertices (see figure 3.4). Given an arbitrary graph I in S"wGCy,, we define
the associated core graph ~ as the graph spanned by core vertices with their out-weight
forgotten. Similar to before, we consider the filtration of S{"wGCj, over the number of
core-vertices and let {S2“'wGCy},>0 be the associated spectral sequence. The differential
acts by only creating special out-vertices and leaves the connected core-graph unchanged.

out

Proposition 3.3.10. The page one complex S{**wGCqy is generated by graphs I' whose

vertices V(I') are independently decorated with four possible bi-weights @, @, @,
and (0N subject to the following conditions:

1. If x € V(I') is univalent, then
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B-P-&

%/\7

N

»\ A D

Figure 3.4: Example of a graph in Si"wGC,, where out-core vertices are colored gray and
the special out-vertices are colored white.

@\

2. If x € V(T) is a source with at least two out-edges, then

>2 >2
N7 =7
% &%

3. If x € V(T) is a target with at least two in-edges, then
@@

7N 7N

>2 >2

4. If x € V(I') is passing (one in-edge and one out-edge), then

8

I
~(38)-

8

I
~(3e)-

Q

3

8

I
(=)~

5. If x € V(T') is none of the above types (i.e., x is at least trivalent and has at least
one in-edge and at least one out-edge), then

A NP NP N=7
AR AT AT 7N

Let T be a graph in S{“wGCy and x some vertex of U'. Further, let a,b,c and d be
either of the symbols co; or 0. Then we set (b? g) to denote the sum over all possible

reattachments of the edges attached to x among two new vertices ' and x” (connected by
a single edge going from x' to ") of bi-weight § and § respectively. The reattachments
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are done in such a way that the resulting vertices are of the types (1) — (5) described above.
Using earlier notation for vertex splitting, we get

N/
(3.~ O—D

The differential d acts on graphs T' € S{“wGCy as d(T') = > zev(r)da('). The map d,
acts on vertices with the four different bi-weights in the following way:

01 X071 0 01 01 01 [e.e}] 0 01 X071
o(&)) -G o). ) G G ) &)
v 01 X071 :Jc+ 01 01 x+ 0 1 m+ 01 X071 x+ 01 0 T

7N
o), ) G ) (50,
(001 (001
e
A R ARG RS
N/
1 ) () G ()
N/ N/
_< + )
FAEY )
d ( _ (001 001 0 oo1 oo; 0
* ) _<0’ 0>x+(0’ o)x <0’0)x
(&)
7R 7N
V-7
dx() -(50)

The first page SS“wGCy, decomposes into a directed sum parameterized by the set of all
possible core graphs

SgwGCy, = @outCore(fy)
g
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out

where outCore() is the subcomplex of S§"*wGC}, of graphs with associated core graph .
Further outCore(vy) decomposes into a tensor product of complexes

outCore() %< ® 7;°“t>

with one complex 7,°“ for each vertex = in V(v), and Aut(7y) is the group of automorphisms
of v acting on the tensor product. Each complex T,°“! consists of trees of special out-
vertices attached to a core vertex z, and the differential acts by only creating special
out-vertices on z and in the tree. The complex T,°“* depends on z only via the number
of outgoing and incoming edges attached to x in the core graph as well as on the in-
weight wi". Note that here the in-weight can be assigned one of the symbols 0 or coj.
The complexes T,°% having the same values of the parameters |x|out, |7|in, and wi" are

isomorphic, and we often write 7,04t = Tout Hence we study the family of

|x‘out7|x‘inaw}zn'

complexes Tout

o b Parameterized by integers a,b > 0 and ¢ € {0,001} such that a > 0, b > 1
and a +b > 2 when ¢ =0, and a,b > 0 and a + b > 1 when ¢ = co;. The out-weight of

the core vertex in 7% is any number w2 satisfying the conditions
)

w2 4 a + #(out-edges from special out-vertices) > 1
a+ b+ w4+ |c| + #(out-edges from special out-vertices) > 3

where |0| := 0 and |oco1| := 1. Proposition 3.3.10 follows from these remarks together with
the following lemma.

Lemma 3.3.11. The cohomology of 7;0})”50 is generated by one or two classes containing
the out-core vertex decorated by some bi-weights depending on the parameters a,b, c. More
precisely

H(T{50,) =

H(Tout ) —

0,1,001

a1t = (550)

17535 = (%55)
17z = (555, €D)

Proof. The proof is similar to the proof for Proposition 3.3.10, using the same filtrations
and decompositions together with Corollary 3.3.7. 0

Fora>2 H(T’ )=

a,0,001

Forb>2 H(TZM, )=

0,b,001

<
<
H(Te,) =
<
<

~_—

Fora,b>1anda+b>3 H(T" ):<

a,b,001

~_

- ~—_ ~—
~_—

Now we turn to the complexes S{"wGCj, and Si"wGC; . Let {S¢“wGCj},>¢ and
{S,?“thC; }r>0 be the spectral sequences associated to the filtrations over the number of
out-core vertices.

out out

Proposition 3.3.12. The page one complex S{**wGCj, is a subcomplex of S{**wGCy, gen-
erated by directed graphs whose vertices are independently decorated by the bi-weights ,

@, W7 and o subject to the conditions of Proposition 3.3.10 as well as the ad

ditional condition that at least one vertex is not decorated by . Furthermore, the
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page one complex Sf“thC;gF is a subcomplex of S¢“'wGC}, where each graph additionally

satisfies that either

e at least one vertex is decorated with the bi-weight , or

e at least two vertices are decorated with the bi-weights m and @ respectively.
NN

Proof. The proof is analogous to that of Proposition 3.3.8. 0

3.3.4 The 4-type graph complex qGC,

Definition 3.3.13. Let qGC, be the subcomplex of wGCy consisting of graphs whose

vertices can independently be decorated by four types of decorations %, o1 9 and 8.

0’ oo
The possible decorations of a vertex depend on its type. More concretely

e A univalent vertex can only be decorated by >>1.
1

X1 and —=.

e A source vertex can be decorated by o oy

XL gnd =L,

e A target vertex can be decorated by ~ 0

e A passing vertex can be decorated by Zt, <5+ and o

0 o1 *
e A generic vertex can be decorated by %, s 0%1 and 8.

Let qGCj, and qGC,'; be the subcomplexes of qGC;, where
e qGC;} is generated by graphs where at least one vertex is not decorated by 8.

. qGCkF is generated by graphs with at least one vertex decorated by % or two vertices

decorated by 0%1 and Gt respectively.

The differential acts on vertices in the same way as the differential in Proposition 3.3.10.
Note that qGCj, C wGC}, and qGC; C wGC; .

Remark 3.3.14. We will use the following convention: when specifying the decorations of
a general graph, the univalent vertices are excluded from this specification. For example,
”A graph where all vertices are decorated by %5*” should be interpreted as a graph where
all non-univalent vertices are decorated by %5 and the univalent vertices decorated by
their only possible decoration %

Proposition 3.3.15. The three inclusions qGC;, — wGCy, qGC; — wGCj;, and qGCk+ —

wG C: are quasi-isomorphims.

Proof. Consider the filtration over special in-vertices as seen in the previous section of
both wGCj, and qGC,,. The filtration is preserved by the inclusions since no graph in qGC,
contains special in-vertices, and furthermore, the differential is trivial in the associated
complex of qGC,. On the second page, we consider a second filtration over special out-
vertices. The two complexes agree on the second page of the associated spectral sequence
by Proposition 3.3.10. This proves that the inclusion is a quasi-isomorphism. The proof
is analogous for the other two inclusions with the help of Proposition 3.3.12 0

Remark 3.3.16. We notice the splitting of qGC, = qGC% @ qGC;, where qGC% is the
complex of graphs where all vertices are decorated by 8 and qGCj, is the complex of
graphs with at least one vertex not decorated by %. This is analogous to the splitting
fwGCj, = fwGC) @ fwGC}, in section 3.2.4, and it is immediate by Proposition 3.2.8 that
qGC% i dGC}f. In the remainder of the paper we focus on studying qGC;, and qGC,Jg.
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3.4 Reducing qGC; to the mono-decorated graph complex
fM;,

3.4.1 Removing % decorations from qGCj

Let qGCZ’0 C qGCj be the subcomplex generated by graphs with at least one vertex
decorated by 8. Consider the short exact sequence

0 = qGC;” < qGC; — tGCh — 0

where the quotient complex tGCj, is generated by graphs with no decoration %. Similarly,
let qGCHY ¢ qGC; be the complex spanned by graphs with at least one decoration 8 and

tGC; = qGCg / qGCz’0 the quotient complex of graphs with at least one vertex decorated
by %, or a pair of vertices decorated by o%l and G-, with no vertices decorated by 8.

Proposition 3.4.1. The two projections qGC;, — tGC; and qGC,": — tGCﬁ are
quasi-isomorphisms.

Proof. 1t is enough to show that qGCZ’0 and qGC,j’0 are acyclic. Consider the filtration
of qGCZ’0 over the number of non-passing vertices, and let PquC}':0 be the first page of
the associated spectral sequence. The differential acts by only creating passing vertices.
Consider the filtration of PquC’,;’0 over the number of vertices not decorated by % The

differential on the first page of the d spectral sequence DoPquC,:’O only creates passing
vertices decorated by % To each graph in this complex, we can associate an %—skeleton
graph by removing passing vertices decorated by % and replacing them by a single edge.
The %—skeleton graph is invariant under the action of the differential, hence the complex
split as
gr(PoaGC;") = P (v)
¥

where C*(~) is the associated complex of graphs with %—skeleton ~. Note that no graph
has the associated %—skeleton graph with one single vertex and one edge, since any such

graph has no vertex decorated by %. We claim the following:

e If v has at least one vertex decorated by 2t then H(C*(v)) = 0.

e If v has no vertices decorated by % and at least one decorated by %t or 0%1, then
H(C*(7)) = {7)-

If  is only decorated by § and has at least one univalent vertex, then H(C*(v)) = (7).

If 7y is only decorated by 3, then H(C*(v)) = 0.

In the three first cases, the complex can be written as

C*(v)%( (09 Ee)Aut(W) (3.2)

e€E(y)

where &, is the associated complex of passing vertices decorated by % on the edge e
in the skeleton. In the first case, there is one edge €’ in v such that one of its adjacent
vertices is decorated by * and the other by another decoration. One computes that &
is acyclic. In the second and third cases, all & are isomorphic, consisting of the complex
of passing vertices decorated by % One sees that H (&) is generated by the graph of two
vertices and an edge with no passing vertices, giving the desired result. In the fourth case,

the complex does not decompose as a tensor product. Instead it split as a direct sum of
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tensor products, where in each product at least one complex &, has at least one passing
vertex decorated by % This complex is equivalent to the tensor above when removing
the initial graph with no passing vertices, which we saw was a cycle in the second case.
Hence the complex is acyclic. The cohomology of DyPyqGC*° now consists of graphs only
decorated by G, 0%1 and % with at least one vertex decorated by %. The differential
acts by creating passing vertices. It is easy to see that these graphs form a subcomplex
of PquC*’O, and so the second page D1PyqGC*" of the spectral sequence is described
with the full differential. We claim that D;PyqGC*" is acyclic. By considering a similar
filtration over the number of vertices not decorated by %5, one finds that this page of the
spectral sequence is acyclic, finishing the proof. The proof to show that qGCz’0 is acyclic

follows the same argument above using the same filtrations. O

3.4.2 Subcomplex of monodecorated graphs

0
Definition 3.4.2. Let I' be an undecorated directed graph. We define I'>1 to be the
graph I' where all non-univalent vertices are decorated by 0%1 and the univalent vertices

are decorated by % If T' contains a target vertex (which cannot be decorated by O%l),

0 oo
then we set I'>*1 = (. Similarly, define o,

Definition 3.4.3. Let I' be a directed graph without any univalent vertices. Define
Iv e tGCkJr to be the sum of graphs

=Y T,
d

where d is a decoration of all vertices of I, I'; is the bi-weighted graph with underlying
graph I' decorated by the bi-weights of b, and the sum is over all possible decorations d of

I" where at least one vertex is decorated by % or a pair of vertices are decorated by %G+

0
00

(when expanded, terms of graphs including vertices decorated by % are considered zero),
0 =) 0
then I = '=0 — 0 —'>1.

g
and o%. Equivalently, if I'>0 denotes the graph I' where all vertices are decorated by
1

Remark 3.4.4. Let d = ds + d,, be the decomposition of the differential of tGC;r where

dy is the part of where a new univalent vertex is created and ds the part where no new

univalent vertices are created (also known as splitting). We see that ds(I'”) = (dsI')“.
0

o 0 ) 0
Further, we see that dy, (') = —(dy(I' 0" ) 4 dy(I'®1)). Due to ' 0" and I'*1 being zero
for some graphs, we have more specifically that

o If I' contains both at least one source and one target, then d, (I'*) = 0.

0

e If I" contains at least one source but no targets, then d,(I'V) = —d, (I">1).

e If I" contains at least one target but no sources, then d,(I'Y) = —du(I‘%).
0 oo

e If I" contains neither sources nor targets, then d,I'Y = —(d,['>1 + duFTl).

Definition 3.4.5. The subcomplex mGC; C tGCZ is the complex generated by graphs
on three forms:

1. Graphs on the form I'Y with I' a directed graph with no univalent vertices.

0
2. Graphs on the form I'>e1 with I" a directed graph with at least one univalent source,
and no targets of any valency.
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3. Graphs on the form 5" with T a directed graph with at least one univalent target,
and no sources of any valency.

Similarly, the subcomplex mGC; C tGCj is the complex generated by graphs in three
forms:

1. Graphs on the form I'Y with I a directed graph with no univalent vertices.

0
2. Graphs on the form I'>*1 with I" a directed graph containing no targets of any valency.

3. Graphs on the form o with T a directed graph containing no sources of any
valency.

Proposition 3.4.6. The two inclusions mGC; — tGC} and mGC; — tGCj are
quasi-isomorphisms.

Consider the short exact sequences

0 — mGC = tGCf - Qf =0
0 — mGC, - tGC;, - Q; — 0

where Q; = tGC},/mGCj, and Q$ = tGCg/mGCz. We observe that Q; = QZF. The complex
Q;: is generated by graphs I' € tGC; on the forms

01

1. T has no univalent vertices and has at least one vertex not decorated by R

2. T =T0 and has at least one univalent target.

0
3. I' =T'>>1 and has at least one univalent source.

4. T has at least one univalent vertex and at least two non-univalent vertices with
different decorations.

The proposition follows if we show that Q;: is acyclic. Consider the subcomplex QZ’l C Q:
of graphs with at least one univalent vertex. We get the induced short exact sequence

0= Q" = Qf - Q™ —o.

The complex Q; 22 is spanned by graphs on the form (1) as above, and Q;“l is spanned
by graphs on the form (2)-(4). The acyclicity of Q: follows from the following proposition.

Proposition 3.4.7. The complexes Qk’1 and Qk’22 are acyclic.

Proof. First consider the filtration of Q, 22 gver the number of non-passing vertices and
let POQ;:’ZQ be the first page of the spectral sequence. On this page, the differential acts

by only creating passing vertices. We will show that this page is acyclic. Consider the
filtration on POQ;:’22 over the number of vertices not decorated by % and let DOPOQZ“22

be the first page of the associated spectral sequence. Here the differential acts by only
creating passing vertices decorated by =L. Similar to Proposition 3.4.1, the complex

co1”
decompose over zi—skeleton graphs as

DoPy Q= = et (v)
v

where C*(v) is the complex of graphs with ooL-skeleton . We claim the following

e If v has at least one vertex decorated by %, then CT () ~ 0.
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e If 7 is only decorated by g+, then C*(y) ~ 0.

e If 7 is only decorated by oTl? then C* () ~ 0.
e If v is decorated by both 21 and 2 (but not L), then H(CT (7)) = (7).

These results follow by using similar arguments as in Proposition 3.4.1. Let DlPon’22
be the second page of the spectral sequence. By the result above, it consists of graphs
with at least a pair of vertices decorated by ' and 01. Consider the filtration over
the number of vertices not decorated by . Usmg similar arguments as above on the
associated spectral sequence, we get that DlPon’22 is acyclic. The proof showing that
Q:’l is acyclic is similar, noting that the differential acting on univalent sources only
creates passing vertices decorated by 0%1 and univalent targets only create passing vertices
decorated by 5*. O

3.4.3 Removing long antennas

Consider the two subcomplexes mGCy () and mGCj (L -) of mGCj; of graphs whose non-

univalent vertices are decorated by 5t and — rebpectlvely

Proposition 3.4.8. The compleres mGCy(%t) and mGC}Z(OTl) are acyclic.

Proof. The two complexes are isomorphic by swapping decorations and reversing the ori-
entation of all edges; hence, it is enough to show that mGCj () is acyclic. Let the
core of a graph be the graph remaining after iterative removal of umvalent vertices. Any
vertex in the core graph is called a core-vertex. Vertices that are not core vertices are
called antenna vertices. The number of core vertices can only remain the same or increase
under the action of the differential. Consider the filtration of mGCy () over the number
of core-vertices in a graph. Let gr(mGCj (%)) be the associated graded complex. The
differential acts by creating antenna vertlces but the core graph is invariant. Hence we
get the decomposition

r(mGC( Core(y
k

where the summation is over all possible core graphs ~ and Core(7y) is the complex of
graphs with core graph ~. This complex further decomposes as

Core(7) %( ® E)Aut('ﬁ

zeV ()

where 7, is the associated complex of antenna-vertices attached to the vertex x. The
complex 7T, is composed of directed trees with a designated core vertex z. All edges in
any such graph are directed away from z. The proof follows if we show that 7, is acyclic.
Consider the filtration on 7, over the number of univalent vertices (considering the core
vertex z to be univalent only when it is the only vertex in the graph). Let gr T, be
the associated graded complex. The differential acts by splitting vertices such that no
new univalent vertices are created (except in the case of the one vertex graph). Hence it
decomposes as gr T, = @y~ un Tz where unT, is the complex of graphs with N univalent
vertices. It is easy to see that u;7; is acyclic. Consider un7, for N > 2. Similar to the
proof of Lemma 3.3.5, call a vertex y of I' € unT, a branch vertex if there are at least
two outgoing edges from y, or if there is a directed path from y to a vertex z that has
at least two outgoing edges from it. The number of such vertices remains the same or is
increased under the action of the differential. Consider the filtration over the number of
branch vertices on un7T,. Following the same arguments as in the proof of Lemma 3.3.5,
we get that uy7, is acyclic, finishing the proof. O
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We have the following decomposition
>2
mGCj, = fM}, & fM}=
+_ et a>2
mGC; = fM;” @ M,
where szEZ is the subcomplex of graphs containing at least one antenna with two or
more vertices.

Proposition 3.4.9. The two injections fMj — mGC; and fMf < mGC; are
quasi-isomorphisms.

Proof. The statement follows if we show that ﬂ\/la22 is acyclic. Note that fMZ22 decompose
over graphs whose non-univalent vertices are decorated by %5+ and 01 respectively, i.e

M= = fMI=2(221) @ fM=?(22). Further note that mGCi(%5) = fMp*~>!(%%) @

fMa>2(ool) Hence acyclicity of mGCj(%5*) from Proposition 3.4.8 gives that fl\/|a>2(°81)
is also acyclic. O

3.5 Cohomology of fM; and fM;

3.5.1 A commutative diagram of graph complexes

Let fMJr ' be the subcomplex of ﬂ\/l+ of graphs with at least one univalent vertex. Further
01

let M3 (—) and fMj (-2 -) be the subcomplexes of fMj, of graphs whose non-univalent
vertices are decorated by %5+ and 001 respectively. Note that fM+’ is a subcomplex
of fM;(5) @ fM; (52 ) and can be rewritten as fM;"" = fMZ’l(%) ® My (22 ) where

M) 1(ﬂ) is the subcomplex of fMj of graphs With at least one univalent vertex and

where all non-univalent vertices are decorated by %G, and similarly for M} ( 01 ). We get
the following commutative diagram
0 0 0
0 Mt M, M= ——=0
id
0 M7 (%) ® M (2-) M M7 ——0
*,>2 *,>2 *,>2 *,>2
0 — M= (554) @ fM, (ogl) = M= (S5 @ M= () 0 0
0 0 0
(3.3)

where fM*’zz(%) is the quotient complex of graphs with no univalent vertices, and all

vertices are decorated by %Gt, and similarly for ﬂ\/l*’ZZ( -)). Further, fMJ“— is the quo-
tient complex of graphs Wlth no univalent vertices, and each graph is of the form I'. We
already showed in Proposition 3.4.8 that fMj;(23t) and fMj (-2 -) are acyclic, and so we get
the following corollaries.

Corollary 3.5.1.

o The projection fMy, — ﬂ\/l,j’22 1§ a quasi-isomorphism.

e The connecting morphisms ¢ : H'(fMZ’Z2(°%) @® fMy >2( =) — H‘H(ﬂ\/IJ“ ) is an
isomorphism.

49



3.5. COHOMOLOGY OF fM; AND fM

3.5.2 The cohomology of fM}

Let fM} = biM} @ M; where b;Mj is the subcomplex of graphs with loop number one,
and M7 is the subcomplex of graphs with loop number two and higher. All complexes in
the commutative diagram (3.3) above split in the same manner, and we use an analogous
notation for their splittings.

Proposition 3.5.2. The map a : dGCj, — ﬂ\/I:’ZQ where a(I') = I'Y is a quasi-isomorphism.
In particular, the restriction to graphs of loop number one aj : b1dGCy, — by I\/IZ’22 is an
1somorphism.

Proof. Consider a filtration over fM,f2 over the number of non-passing vertices. The dif-
ferential on the associated graded sequence acts on edges by creating new passing vertices,
and it is straightforward to control that the cohomology is generated by graphs with no
passing vertices. Hence on the second page the map is an isomorphism, giving that a is a
quasi-isomorphism. By direct inspection, one sees that a; is already an isomorphism. [J

3.5.3 The cohomology of fM;

Proposition 3.5.3. Let f*:dGC;/dGC; — ﬂ\/l;’zz(%) be the map where f5(I") = o,
0
and let f': dGCy/dGCl — fMZ’ZQ(O%) be the map where fY(T') = I'=1. These maps are

quasi-isomorphisms. In particular, the restriction f{ : bidGCy/dGC; — b1l\/|2’22 s an
isomorphism. The analogously defined map f* is also an isomorphism.

Proof. The first part follows by the filtration over the number of non-passing vertices. The
latter part follows by noting that graphs with loop number one and no univalent vertices
have either both a source and a target or neither. O

We can already get the following proposition.
Proposition 3.5.4. H*(fMJ) = gt & grt.

Proof. Consider the short exact sequence

0—>fM; =" MF M3 =% —=0.

We extract the following exact sequence from the induced long exact sequence
H~Y(dGC3) — H~(dGC3/dGCS) ® H~1(dGC3/dGC,) —— Ho(ﬂ\/l;) — HY(dGC3)

by using Proposition 3.5.3 and the quasi-isomorphisms induced from the diagram (3.3).
Now since H*(dGC3) = 0 for k > —2, we get the isomorphism H°(mGC3) = H~!(dGC3/dGCS)D
H~'(dGC3/dGC). Using the same trick on the long exact sequence on cohomology in-
duced by the short exact sequence

0 — dGC3 — dGC3 — dGC3/dGC; — 0
we get that H~'(dGC3/dGC§) = HY(dGCS). Similarly, H!(dGC3/dGCY) = HO(dGCY).
It was shown in [Z2] that there are quasi-isomorphisms dGC;, — dGCj,, and dGCj —
dGCj ;, and so in particular

H°(dGC5) = H(dGCE) = HY(dGCy) = grt

which gives the proposition. O

50



CHAPTER 3. DERIVATIONS OF LIE BIALGEBRAS

From the same short exact sequence of complexes of restricted to graphs of loop number
one
0—>bM" ——= b M ——=b;M=* 0.

we can derive the cohomology of by I\/I;.

Proposition 3.5.5. The cohomology of by M: s given by

H'bM)= P o

i>1
i=1 mod 2
Kk — (2 +1)] ifi=2k+1 mod4
where C; =
Kk—(i+1)]eKk—-(i+1)] ifi=2k+3 mod4

Proof. We first show that the connecting morphism
§: Hi(byM[7%) — H* Y (byMh)

is injective. The injection by : b1GCp — by I\/IZ’22 mapping an undirected graph I' to the
sum of graphs over all possible ways of adding directions on the edges of I' is a quasi-
isomorphism. Let [['] € H'(b;GCg) be a non-zero equivalence class, where I' is a loop
graph with i vertices. Then ¢ > 1 and i = 2k + 1 mod 4, since otherwise [I'] = 0. The
sum by (') contains the loop graph with only passing vertices, call it T'®, while all other
terms are graphs with at least one source and one target. The connecting morphism

§: Hi(bM[7%) — H* Y (byMh)

is the univalent part d,, of the differential, and is hence zero on graphs with both a source
and a target. Hence we gather § o by(T") = d,,(I'®). We can clearly see that this element
belongs in the diagonal of

. 00 0
HZ+1(b1MZ_’1) = blMl—:’l(Tl) D blM;:’l(gl)v

that it is non-zero and this assignment is unique. Hence the long exact sequence on
cohomology splits as short exact sequences

0 —= HF (b M7 —— HiZF L (b M) —— HF 1 (b M) —— 0.

When i is even, the whole sequence is zero. When ¢ = 2k +3 mod 4, then H"*k(blM;“ZQ)

acyclic, and so
H7 bM) = H oMY =Kk —i — 1] @ K[k —i — 1].
When ¢ = 2k +1 mod 4, then we get the short exact sequence
0—=Kk—i] —=Kk—i—-1aKk—i—1]—=H 7 (bM}) ——=0

where the first map is the connecting morphism §, being identified with the suspended
diagonal map. Hence we gather that

H™" oM =2 (Klk —i — @ K[k —i — 1)) /6(K[k —i]) 2 K[k —i — 1].
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3.5.4 Describing fM, as a mapping cone
So far we have only been able to describe the cohomology of fMg via a short exact sequence.
In this section we will show where this short exact sequence originates from, and that there
is ﬂ\/l; quasi-isomorphic to a mapping cone of directed graph complexes. Let

P dGCk — dGCk/dGCZ and Py : dGCk — dGCk/dGC};
be the projections and

P =P &P, :dGC;, — dGC,/dGC} @ dGCy/dGC,

their sum. The suspended mapping cone of P is the complex Cone(P)[1] = dGCj @
(dGCy,/dGC;[1] @ dGCy,/dGCL[1]) with differential d,. where

d.(T, (T'1,T2)) = (dsT, (= P1(T") — dsT'1, —P2(T) — ds'2)).
The mapping cone naturally fits in the short exact sequence

0 —= dGC;,/dGCi[1] @ dGCy/dGCL[1] —= Cone(P)[1] dGC 0

which resembles the short exact sequence
0— M ——= M) —— M2 ——0
in that the cohomology of the leftmost and rightmost complexes is the same. We will

relate these two short exact sequences with three injective chain maps a, b and a @ b,
giving us the commutative diagram

0 0 0
0 — dGCy/dGC;[1] ® dGCy,/dGCE[1] — Cone(P)[1] dGCy, 0
b abb a
0 Mt M, M= ——=0
0 Q1 Q2 Q3 0
0 0 0

If we show that a and b are quasi-isomorphisms, then the lower short exact sequence is
acyclic, implying main Theorem 2.

Theorem 3.5.6. The map a ® b : Cone(P)[1] — fM;CIr s a quasi-isomorphism.
The proof follows from the two following propositions.

Proposition 3.5.7. Let b : dGC},/dGC;[1] @ dGCy/dGCE[1] — ﬂ\/lkhl be the map defined
0

o EJY
by b(T1,T2) = (du(T7™) + du(Iy° ). Then b is a chain map, and furthermore it is a
quasi-isomorphism.
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Proof. For abbreviation, let C;, = dGCy/dGC;, @ dGCy/dGC}, and Ci[1] be the suspension.
We first check that the differentials commute. The differential of the degree shifted complex
C[1] is of the form —d,. So

bod(I'y,Ts) = b( — ds(T1), —ds(Ts))
= dy ((du(T ))o«u+(ds( T3)) o)

0

= —dydy (T +T,0).

On the other hand, d, o d, = 0, and dsd,, + duds = 0 in M, so

0 07

dob(Ty,T2) = d(du(T7") + du(T,°))
_0 _0 oo
Ay dy (T 4+ T, ) + duda (T +T50°)
_0

= dydy (T +T,0 ).

Hence bod = dob. Lastly, we show that b* : H®(Ck[l]) — H'(sz’l) is an iso-
morphism. We note that the chain map h : C, — fMZ’Z2(O%) @ fM:’Z2(%) where
(T'1,Ty) — (Fl(o%l)’ I'2(%*)) is an isomorphism. Furthermore, Corollary 3.5.1 gives that
the connecting morphism 0 : H’(fMZ’ZQ( 0 -) & ﬂ\/l*’>2(Ool ) — H’“(fMJr 1) is an isomor-
phism, and is given by §[I'] = [d,I']. Hence we get the following chain of isomorphisms of
cohomology groups

id[1]

0 —— H*(Cx[1]) —> H*"1(C},) — > H= 1 (M 22 (L -) @ fMp=3(25)

0 B (M) —— 0

We can easily see that the composition of these maps is equal to b*, finishing the proof. [

Let a : dGCy — mGC;hzz be the quasi-isomorphism from Proposition 3.5.2 where a(I") =
I'“. From the short exact sequence

+,1 +,>2
0 — M, M M22 —0

we see that fM} = fMj’22 @ fM;:’l as a vector space. Let a & b : Cone(P)[1] — fM] be
the linear map defined using a and b the decomposition of fM,:“.

Proposition 3.5.8. The map a ® b is a chain map.
Proof. Let (T, (T'1,T'2)) € Cone(P)[1]. Then
(a®b)ode(T,(T1,T2)) = a((ds(T)) +b( — Pi(T) — ds(T1), —Po(T) — ds(T'2))

= (d,(1)* = du(PUT) =T + (1) =) = du (D) T + ((ds(T2)) F)

')
= A1) du(T¥) £ du(TF)) — du ((0F) = (7))
(T + dy(T) + dydy(TT) + dodu (T30
=d(IT¥ + du(rf‘%) + du(FQT))
=do(a®b)(T,(T1,T2)),
showing that ¢ is a chain map. O
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3.5.5 A second long exact sequence with H*(fM)

We finish this chapter by describing a second long exact sequence with H*® (fMZ). Let us
use the abbreviation Cj for dGCj, and similarly for other subcomplexes of dGC;. Fur-
ther, if A — B is a chain map of two chain complexes A, B, we write A @®. B[1] for the
corresponding suspended mapping cone. We remark that C;' is the kernel of the map
P:C, — C/C; @ Ci,/CL, and hence it is a subcomplex of Cone(P)[1]. Further the map-
ping cone Cit* &, (C;1/C)[1] is a subcomplex of Cone(P)[1]. We can check that the
following diagram commutes

0 0 0

0——=C" .0

Citt @ (/GO ———= G /G @ (G /CH[1] ———0
id

0——=C* @, 0— Cf B (Cp/C5 @ Cpp/CL)[1] —— Cir/C5F @, (Ci/C5 @ C/CE)[1] ——=0

D C O id C C
0 0 Cy @ (C & C)[1] Cy ®e (Cf & C)[1] ———=0

0 0 0
where we recall that C; := Cj/Cit.
Proposition 3.5.9.
1. C¥t . 0= CH,
2. The complex C;) &, (Cy & C})[1] is quasi-isomorphic to Ci[1].
3. The complex C;**/Cst @, (C3H/CH)[1] is acyclic.

Proof. (1) follows by direct inspection. (2) follows by first considering the short exact
sequence

0— 1)@ Pl — CF 6 (G ® )] —= Cf —0

noting that the connecting morphism is the diagonal map H*(C{) — H*(C}) ® H*(CY),
and thus it is injective. In particular, the induced map H*(C} &, (Cy @ C)[1]) — C}
is zero. By exactness of the long exact sequence, we get H*(Cy @, (C; @ CJ)[1]) =
H*(CJ[1] @ C[1])/H*(C[1]) = CP[1]. (3) follows from the fact that a mapping cone
Cone(f) is acyclic if and only if f is a quasi-isomorphism. This complex is the mapping
cone of the identity morphism, and hence the cone is acyclic. O

By reading the diagram, we get the following corollary by considering the induced long
exact sequence produced by the middle column or row.

Corollary 3.5.10. There is a long exact sequence on cohomology
= H*2(dGCY) — H*(dGC}!) — H*(fM}}) —— H*1(dGC}) — H**!(dGC}) — - --

By Lemma 2.4.16, H'(dGC§) = 0 for —2 <[ < 1. In particular, H(fM3]) = H(dGC§').
Finally, H°(dGC§') = gtt @ grt by Proposition 3.4.6, giving us a second proof of the main
theorem.
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3.6 Main theorems

In this section, we first give a review of the bi-weighted complexes that have been defined
in the previous sections, followed by stating and proving the main theorems of this chapter.

3.6.1 Summary of bi-weighted graph complexes

The complex fwGCy, is the complex of all possible bi-weighted graphs. The complex waCg
is the subcomplex of fwGCy, of graphs that have at least one vertex with positive out-weight
and one vertex with positive in-weight.

The full bi-weighted graph complex fwGCj, split as
fwGCj, = fwGCY @ fwGC;

where fwGCY is the subcomplex of graphs where all vertices are decorated by % and wGC},

its complement. The complex waCg is isomorphic to the complex dGC,%‘g’O (see Proposi-
tion 3.2.8.

The complexes wGCj, and WGC;: split as
wGC}, = bowGC;, & wGC;  and WGC; = bowGC; @ WGCz

where bowGCy, is the subcomplex of graphs with loop number zero, and wGCj, and WGC;
are the subcomplexes of graphs with loop number greater than or equal to one. The
cohomology of bowGCy, is generated by the following series (see Proposition 3.2.9):
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The complex qGCj; is the subcomplex of wGC}, of graphs whose vertices are independently
decorated by the four bi-weights %, T o%l and % such that no graph is only decorated
by 8 and that univalent vertices are only decorated by % The complex qGCz is the

subcomplex of qGCkF of graphs where at least one vertex is decorated by 1

L or a pair of
01

vertices are decorated by %t and O%. It follows that qGCk|r is a subcomplex of WGC:.

The complex tGCj is the quotient complex qGCZ/qGCZ’0 where qGC}:’0 C qGCj, is the
subcomplex of graphs with at least one vertex decorated by %. In other words, tGCj, is
generated by graphs whose vertices are independently decorated by the three bi-weights
001 001

1 2L and O%. The complex tGCLF is the subcomplex of tGCj, of graphs where at least

oco1’? 0
one vertex is decorated by % or a pair of vertices are decorated by 5t and O%. It follows
that tGCg is a quotient complex of chz.

We recall two definitions.

e Let I' be an undecorated directed graph. Set I'o to be the decorated graph in
tGCj, of the same shape as I' where all univalent vertices are decorated by 2% and

0
all non-univalent vertices are decorated by 5. We similarly define I'>1.

e Let I' be an undecorated directed graph without any univalent vertices. We then set
I'v e tGC,:r to be the sum of graphs

v = Zrd.
d

where d is a full decoration of I', I'y is the graph I' decorated by d, and the sum
is over all possible decorations d of I' such that at least one vertex has positive
out-weight one has positive in-weight.
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The complex mGC, is a subcomplex of tGCj generated by graphs on the forms I'*, o

0
and ['>1 for all directed graphs I". The complex mGCg is a subcomplex of mGCj, such
that no graph is only decorated by %* or only 0%1. It follows that mGC,": is a subcomplex

of tGC; .

We recall that an antenna vertex of a directed graph I' is either univalent, or becomes
univalent at some stage after recursively removing univalent vertices from I'. An antenna
of I is a connected subgraph v of I' consisting of antenna vertices such that there are
no other antenna vertex adjacent to v. The complex fMj is the subcomplex of mGC}, of
graphs whose antennas contain at most one vertex. Similarly, fMX is the subcomplex of
mGCg of graphs whose antennas only contain one vertex.

The complexes that have been used in this chapter are related as follows:

wGC; +—— qGC; — tGC}, +—— mGCj, +—— M} «—— dGCy,

wGC +—— qGC — tGC) +—— mGC; > M Cone(P)[1]
where Cone(P)[1] is the desuspended cone complex of the chain map
P :dGCj, — dGC}° * @ dGCRe t.
Proposition 3.6.1. Let dGC, — wGCj; be the map where a graph I' is mapped to the sum
of all possible bi-weights to put on I', excluding the decoration with only 8. Then this map
18 a quasi-isomorphism.
Proof. This map restricts to chain maps to all of the complexes in the diagram above,

making it commute. One checks that all of these maps are quasi-isomorphisms, starting
with that the restriction to dGCy is an isomorphism. O

Proposition 3.6.2. Consider the decomposition
Cone(P)[1] = dGCj, ® (dGC;/dGCE[1] @ dGCk/dGC',Q[l]).
Let Cone(P)[1] — wGC}} be the map where

o A graph I' € dGCy, is mapped to the sum of all possible bi-weights to put on I' such
that at least one vertex has positive in-weight and one vertex has positive out-weight.

0 0
o A graph T € dGCy,/dGCE[1] is mapped to d,(T'>=0), where T'>=0 is the graph T with all
vertices decorated by O%O and d,, is the differential of wGCy, only creating univalent
vertices.
o A graphT € dGCy,/dGCL[1] is mapped to du(F%), where T is the graph T with all

vertices decorated by 5% and d, is the differential of wGCy, only creating univalent
vertices.

Then this map is a quasi-isomorphism.

Proof. The argument is equivalent to that of Proposition 3.6.1. O
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3.6.2 Main theorems and proofs

Theorem 3.6.3. There is a quasi-isomorphism

K ®dGCy, | ® dGCei g1 — Der®(Holieb,).

Proof. This follows from the decomposition of Der'(’l—[olieb’;5 ) over graphs of loop number

zero and bi-weighted graphs only decorated by %, together with the quasi-isomorphism of
Proposition 3.2.9, Proposition 3.2.8 and Proposition 3.6.1. O

Theorem 3.6.4. There is a quasi-isomorphism
K @ Cone(P)[1] — Der(Holieb: ;)

where Cone(P)[1] is the desuspended cone complex of the chain map P : dGC, — dGC}° *®
dGCpe L.

Proof. This follows from the decomposition of Der(?’-loliebéD 4) over graphs of loop number
zero, together with the quasi-isomorphisms of Proposition 3.2.9 and Proposition 3.6.2. [

Corollary 3.6.5. There is an isomorphism of vector spaces
H(Der(Holieb?)) = K & get & grt.

Proof. This follows directly from Proposition 3.5.4. O

3.7 Explicit example of two cohomology classes of Der(Holieb? )

One of the simplest cohomology classes in H°(GCy) = grt is given by the tetrahedron class

A

which has loop number three. We have an explicit morphism of complexes H° (dGCgt) —
H O(Der(Holiebfl)) given by attaching hairs to a cohomology class of dGC§' as described
in Corollary 3.5.10. Therefore, to see the above mentioned two homotopy inequivalent
actions of the tetrahedron class on Holieb(ﬁ 1, we have to find ezplicit incarnations of the

tetrahedron class in dGC5'. In this section we explicitly describe these two incarnations
denoted by o and of, both having loop number three.

3.7.1 A reduced version of dGC}’

—— st
Following S. Merkulovs paper [M3], we consider a "smaller” version dGCZ of the complex
dGC:', which is quasi-isomorphic to it. First, define the graph complex dGC;, generated
by graphs whose vertices are at least trivalent and which have four kinds of edges:

e Solid edges of degree zero e—>e
e Dotted s-edges of degree one ,..%,,
e Dotted t-edges of degree one ,..",,

o wavy edges of degree tWo o~ se

57
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Let I' be a graph and let e be the total number of edges, v the number of vertices, e; the
number of s-edges and t-edges, and ey the number of wavy edges. Then the degree of I is

Il=(w-1Dk+ (1—k)e+ e + 2es.

The space is defined as the graphs invariant under permutations of vertices or edges
depending on the parity of k, with the change that labels of non-solid edges can only be
permuted with edges of the same type. Further permutations of dotted edges give the sign
of the permutation for k£ odd. Further, the non-solid edges satisfy the relations

o 5., = (—l)k'H o<’
] .4..t..). = (_1)k+1 .(t .
® e — (_1)k+1 e

The differential is defined as d = dy +dg, where dy acts by splitting vertices so that neither
univalent nor bivalent vertices are created, and with the same sign rule as in dGCy. The
term dg acts on edges accordingly:

o dpe—se = oty — .5,
L4 dE oms-->o = en/>e
L4 dE r-»t--)o = en/>e

® di enprse =10

We say that a vertex in such a graph is a solid source if the attached edges are solid and
outgoing or t-dotted. A vertex is a solid target if the attached edges are solid and incoming
or s-dotted. Consider the subcomplex dGCZt of dGCj, generated by graphs that either

e have at least one solid source and one solid target,

have at least one dotted s-edge and one solid target,

have at least one dotted t-edge and one solid source,

have at least one dotted s-edge and one dotted t-edge,

have at least one wavy edge.

Consider the map f : dGCZt — dGCZt where a graph is mapped to the graph in dGCZt
where solid edges remain the same, but s-dotted, t-dotted, and wavy edges are replaced
by the following edges:

o v et (1) vt

Then the map f is a quasi-isomorphism [M3]. Consider the subcomplex Z; of dGCZt of
graphs that either

e have at least one s-edge and one t-edge,
e have at least one s-edge and one wavy edge,

e have at least one tedge and one wavy edge,
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CHAPTER 3. DERIVATIONS OF LIE BIALGEBRAS

e have at least two wavy edges.

This subctomplex is acyclic, hence the projection dGCZt — dGCit /Z4 is a quasi-isomorphism.
st
Let dGC,, = dGCZt /Z4. This complex consists of graphs that either

e have only solid edges such that there is at least one solid source and one solid target,

e have only solid and dotted s-edges such that there is at least one solid target and
one dotted s-edge,

e have only solid and dotted t-edges such that there is at least one solid source and
one dotted t-edge,

e have only solid and wavy edges such that there is at least one wavy edge.

We will use this complex when finding the cohomology classes.

3.7.2 Calculating the cohomology classes
Let v* and +* be the graphs

NS = s4£s A= t T t
o‘/—\o o/—\o

— —— st —t —— st
Note that v* is in dGC; but not in dGC; . Similarly, 4" is in dGC4 but not in dGC; . The
vertices of v* are all trivalent, and so the differential acts by only changing solid edges to
s-edges. We have omitted the s on s-edges for clarity in the following pictures. Hence

Note that each graph contains a source and a target vertex, and hence o and ! are cycles
—— st
in dGCj .

—— st
Theorem 3.7.1. The elements o and o' are non-trivial cycles of dGC; . Furthermore,

—— st
they represent two different cohomology classes in H(dGCg ).

Let X and A be the spaces of graphs of loop number three with at least one source
and target vertex of degree —1 and 0 respectively. Then the differential is a linear map
d: X — A and we want to show that there is no ° € X so that d(8°) = a®. To prove
this statement at this stage, we would need to compute the differential of hundreds of
graphs in X and check that o is linearly independent of them. Instead, we can reduce
this problem to giving us only a handful of graphs to study. Let A® be the subspace of
A of graphs spanned by tetrahedron graphs with three s-edges. Note that o® € A®. The
graphs aq, ..., a1p in figure 3.5 form a basis for A®.

Let A be the orthogonal complement of A° so that A= A°*® A and let py: AS® A — A°
be the projection. Let X be the kernel of the map psod: X — A% and X* its orthogonal
complement so that X = X® @ X. The space X* is spanned by the graphs z1, ..., 211 in
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[ 4 [ 4
A RS

al as as ay as
I» 2 L. 2 2
./\. =/ v . =/ ‘4,,"*. =/ v . =/ “"«‘g.

Figure 3.5: Basis of A°

Figure 3.6: Basis of X*

figure 3.6. Let ¢* : X® — X®@® X be the inclusion map. We get the following commutative
diagram:

XpX 4 A0 4A

LST lps
o d otg

xs Pa? @0 gs

Lemma 3.7.2. Let a® € A%. If there is an element b € X = X* @ X such that d(b) = a®,
then there is b° € X*® such that vs o d o ps(b%) = a®.

Proof. Suppose that such an element b exists. Then b = b* 4+ b where b* € X* and b € X.
Now d(b* 4 b) = a. The space X is the kernel space of ps o d, and so ps o d(b) = 0. Hence
ps 0 d(b) = ps 0 d(b®) = a®. Finally, b* € X*® and so ps o d o 15(b°) = a. O

Proof of Theorem 3.7.1. By the contrapositive statement of Lemma 3.7.2, it is sufficient
for us to show that there is no 5 € X*® so that ps o d o 15(8°) = a®. We have already
established the basis a1...a19 of A® and x1...2z17 of X*. In this basis, &® = a1 +as+a7—a1g.
We compute the image of each vector zj...r;; under the differential and get a matrix
representation of the map ds odo ps : X® — A® as seen in figure 3.7. By using the
application wolfram-alpha, we can, with Gaussian elimination, see that o is not in the
image of dsodops. Hence we conclude that o® is a non-trivial cycle of d/G\Cgt The argument
to show that o' is a non-trivial cycle is analogous by considering the same graphs as for a!
but with all solid edges reversed and all s-edges turned into t-edges. Finally, let us show

—— st
that o® and of represent different equivalence classes in H (dGC; ). For a contraction,
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ds(x1) =a1+as—ar—ag

dy(zs) = ap+as — ag + ag 1 0 0 0 0 00 0 0 0 0
do(ra) —aytas—as—a o 1 1 1 1 11 0 0 0 0
s\h3 S A o 0 1 0 0 00 0 0 0 -1
ds(xs) = ag+as—a7+ag 1 1 0 0 0 01 0 -1 0 1
ds(ws) =as+as+ag —ai O 0 0O 1 0 10 0 1 -1 0
ds($6) =as + a5+ ag + ag 0 0 0 0 1 0 0 O 0 1 0
e I A R
d - — T

s(78) ar + as — ap + 1o 11 -1 1 0 00 -1 0 0 2
ds(xg) = —as+as—ar+ag 0 0 0 0 -111 1 0 -2 0
ds(z10) = —as+ as — 2a10 0O 0 0 0 0 00 -1 0 0
ds(wu) = —a3 +as + 2@9

Figure 3.7: Matrix representation of the map ds = psodots: X° — A%,

suppose that there exists 8 € X such that d(8) = o® — al. Let A® and X be "targeted”
versions of the spaces A° and X®. More concretely, they are the vector spaces generated
by the graphs in Figure 4 and 5 but where the solid edges have the opposite direction and
the s-edges have been replaced by t-edges. It is clear that A* N A' = X* N Xt = {0}. Let
A be the obvious (say orthogonal) complement of the subspace A% @ A? of A, and let X
be the similar complement of the subspace X* @ X! in X so that A = A @ A' @ A and
X=X'®X'®X. Let p: ASDA' D A — A® @ Al be the projection map. We note that
X is the kernel of the map pod: X — A @ A'. By Lemma 3.7.2, there is a 3/ € X* @ X!
so that pod(f') = a®* — al. Now ' = 3* + 8¢ for some 3° € X and B¢ € X*!. Further,
X' is a subspace of X, the kernel of the map psod: X — A°. Hence pod(5°) = o®. But
this contradicts a® being a non-trivial cycle, finishing the proof. O

st
The epimorphism dGC§ — dGC; is a quasi-isomorphism, so it remains to find a lift of
o and o' to cycles in dGCS'. Let us introduce a new kind of edge, defined as a linear

combination of an s-edge and a t-edge ._|_. = o.%5¢ — o.l,. The differential split as
d = dy +dg where dy acts on vertices by vertex splitting and dg acts on edges accordingly:

d(oe) = e, d(—=)=0

Consider the graph

* . > .
LN, N N N

Note that +* is the first term, while the other terms 7° are in dGC§'. Hence d(I'*) =
d(v%) + d(7*) = o® + d(5°) is a cycle, and it is a lift of a®. The corresponding lift of a! is
d(T?), where

It l\\ _ s*lfs B t*l*S B s‘l»t n tl»t
o/ \= ./ So o/ So o/ \= o‘/—\o

Now we get an explicit action of these classes on Holieb?l as the derivations D; and D,

61
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which respectively act on (m,n) corollas as

1

e/ Ny

1/7tx\n /Ttx\

o K )= A T AN
TN

These formulae give us the required explicit homotopy inequivalent actions of the tetra-
hedron class in the Kontsevich graph complex GCy as derivations of the wheeled properad
Holieby .
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Chapter 4

Derivations of quasi- and
pseudo-Lie bialgebras

In this chapter we compute the cohomology of the derivation complexes of the quasi-
Lie bialgebra properad and the pseudo-Lie bialgebra properad. We do this in both the
wheeled and unwheeled cases. The cohomology is computed by establishing explicit quasi-
isomorphisms to directed Kontsevich graph complexes. The content of this chapter is
largely based on the article Graph complexes and Deformation theories of the (wheeled)
properads of quasi- and pseudo-Lie bialgebras [F2)].

4.1 Derivation complexes of the quasi- and pseudo-Lie bial-
gebra properads

4.1.1 The derivation complexes of wheeled quasi-Lie bialgebra properad

Definition 4.1.1. Let Q?—Loliebjd be the free dg properad generated by the S-bimodule
QLbcd = {QLb;d(m7n)}m,n20 where

QLbj’d(m, n) = sgn® @ sgn®[c(m — 1) + d(n — 1) — 1]

o(1) 0(2) o(m) 12 om
\ clo|+d|r| \<
= =(-1 0 E€Sn, TESy),,
< )< =1) A7\ | >nz>§
(1) 7(2) 7(n) 12 n

and whose differential acts on generators as

1 2 m
Y ) _ Z Z o (L UL)+ |11 (|2 ]+1)
{..\

[m]l=LUlz [n]=J1UJ2
! " [11[>0,]12]>1

Remark 4.1.2. The complexes Q?—[olzeb+ d and Holieb? d only differ from QHolieb. 4 in
that they have additional generators (see Flgure 4.1.1) and that the differential is modified
accordingly. Furthermore, the natural projections

Qnt: Q?—loliebid — QHolieb.q and Pr® : Holieb, ; — QHolieb. g
are morphisms of dg properads. The morphism Qn® factors through Qm™

Holiebt ; — QHoliebzd — QHolieb, 4.
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4.1. DERIVATION COMPLEXES OF THE QUASI- AND PSEUDO-LIE
BIALGEBRA PROPERADS

Q?—[oliebzd : i \o/ l

Holieb; ; : l, N ,l N

Figure 4.1: Additional generators of Q’Holiebjd and Holieb? ; compared to QHolieb, 4.

Recall that we use the notation Q%bcﬁd to denote the loop number completion of
QHolieb. 4 (and similarly for any other properad). We define the following derivation
complexes of QHolieb, 4 analogously to those in Definition 3.1.5.

Definition 4.1.3. The complex De?”'(Q’Holiebé5 ;) is the derivation complex with respect
to the morphism

0,0 — O
Qm*© : Holieb, 4, — QHolieb, 4
induced by @Q7®. Similarly, let Der(QHoliebS ;) be the derivation complex with respect
to the morphism
+.0 — +7O = O
Qn™" : QHolieb, ; — QHolieb, 4
induced by Q7. The differential d on both complexes is given by the vertex splitting

differential d*?' from QHolieb. 4 with the additional terms of attaching (m,n) corollas to
every hair for all integers m, n:

1.2 .. m_T

1 .
dl = d*P'T + Z F Z

M Tt n L n T

2 . m

The sign rule for this formula can be found in [MW1].

Definition 4.1.4. Consider the natural projection morphism Pw® : Holieb? ; — PHoliebcq
of dg properads. Let Der(P”Holiebgd) be the derivation complex with respect to the mor-
phism
0.0 ——— 0,0 — O
Pr*= : Holieb, ; — PHolieb, 4
induced by P7w®. The differential is defined as in Equation 4.1 above.

Remark 4.1.5. Since the derivation complexes are induced by maps from a free properad,
they can be described as

Der'(QHoliebgd) = H (Q”Holiebgd(m, n) @ sgnZll @ sgn@ldSm>Sn1 4 (1 —m) +d(1 — n)]

m,n>0

Der(QHoliebgd) = H (QHoliebgd(m, n) @ sgn2ll @ sgn@ldSm>Sn1 4 (1 —m) 4+ d(1 — n)]

m>1
n>0

Der(P?{oliebgd) = H (PHoliebgd(m, n) @ sgn2ld @ sgn@ld)Sm>Sn[1 L ¢(1 —m) 4 d(1 — n)]

m,n>0

where Q?—[oliebgd(m, n) is the set of generating graphs of Q?—[oliebgd with m outputs and
n inputs, and respectively for PHoliebgd(m, n).
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4.1.2 The derivation complexes of the unwheeled quasi- and pseudo-Lie
bialgebra properads

Definition 4.1.6. Let Der(Q?—[oliebzd) be the derivation complex with respect to the
morphism

Qr* : QHolich, ; — QHoliche .

Similarly let Der(PHoliebe ;) be the derivation complex with respect to the morphism

Pr*®: mb;d — P@)l\iebcvd.
The differential is defined as in Equation 4.1 above.

Similar to the derivation complexes of Holiebg 4» the loop number of a graph in the deriva-
tion complexes above remains invariant under the differential. The components of graphs
with loop number zero in the derivation complexes of quasi-Lie bialgebras above are all
the same, and we denote it by Dery—o(QHolieb.4). The analogous statement is true
for the quasi-Lie bialgebra complexes and we denote the corresponding component by
DC?”b:(](PHOZiequ).

Theorem 4.1.7. The cohomology of Dery—o(QHolieb. q) is generated by the series of
single vertex graphs

m
—
> (m+n-2) \< :
m>1,n>0 /\ :
m—+n>3 ~——

n

Furthermore, the cohomology of Dery—o(PHolieb.q) is generated by the series of single
vertex graphs

m,n>0 ,\

m—+n>3

m
—
Z (m+n—2) /\\/ )
n
Proof. This can be proven using similar methods as for Theorem 3.1.7. O

4.2 Graph complexes

4.2.1 The quasi and pseudo bi-weighted graph complex

In Chapter 3, we defined the bi-weighted graph complex fwGCy, as a tool to easier compute
the cohomology of Der(?—[oliebgd). Here we follow the same idea and define two new
complexes fwQGC; and fwPGC; to study the derivations of the quasi- and pseudo-Lie

bialgebra properads. We refer to our previous paper for full details. Let I' be a directed
graph, and let x be a vertex of I'. Recall that a bi-weight on x is a pair of non-negative
integers (w2, w'™) satisfying

T T

U)ZUt + ’x|out > 1

WP + Wi+ |2|out + |2|in > 3.

Further recall that a bi-weighted graph is a graph I' with a bi-weight on each vertex and
that fwGCy is the chain complex spanned by all bi-weighted graphs.
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Definition 4.2.1. Let I be a directed graph and z a vertex of I'. A quasi bi-weight
(wg"t,wi”)q on z and a pseudo bi-weight (wo"t, wm)p on x respectively, is a pair of non-

positive integers satisfying

(wg"™, wi') (wg™, wi),
wg“t + |x|our > 1 wg“t + |z|out >0
wy" + |$|m >0 wy" + |$|m >0
W + W 4+ 2| gyt + |T]in >3 W + W 4+ 2| ot + |T]in >3

A quasi bi-weighted graph is a directed graph whose vertices are all decorated by quasi
bi-weights. We similarly define a pseudo bi-weighted graph. Quasi and pseudo bi-weighted
vertices are represented in the same manner as bi-weighted vertices, and the type of bi-
weight will be understood from its context. The quasi bi-weighted graph complex is the
chain complex fwQGCy generated by quasi bi-weighted graphs. Similarly the pseudo bi-
weighted graph complex is the chain complex fwPGCj generated by pseudo bi-weighted
graphs. The differentials of both complexes act similar to the differential in wGCj by
splitting vertices and attaching univalent vertices, but where the bi-weight limits of each
complex are considered. Hence in all three cases the differential acts on a graph I' as

d(T) := §(I) — &'(T") — 8" (T Z Ja( (T) — 05(T).
zeV (D

where we pictorially represent d(I') = 6,(I") — ¢.(T') — §2(T") in both complexes as

( ) mw;rmz" z‘zlz,j:zo z>ozj:21 /i)
7N n=nitny P S A iz N W,

Remark 4.2.2. We will sometimes use the following notation for brevity when describing
the splitting term &, of the differential:

Any invalid assignment of bi-weights to a vertex makes the whole graph zero. Note that
this can be different in each of the three complexes (see Figure 4.2).

Remark 4.2.3. Similar to the differential of fwGC, the differentials of fwQGC; and
fwPGCj do not in general cancel the creation of new univalent vertices in any of the bi-

weighted complexes. However, vertices on the form % do not create any new univalent

vertices under the action of the differential. Here we are once again using the convention
of decorations introduced in Definition 3.2.4.

Proposition 4.2.4. Let the maps
F : Der®(Holieb? ;) — fwGCeyat1

qF : Der'(Q”Holz'ebgd) — fwQGC, g1
pF : Der*(PHolieb ;) — fwPGCeyay
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T
Invalid in every complex @ , @ , @
T

Valid in fwPGCj, % ,

\2/

7R

T

Valid in fwQGC, )

Valid in fwGC,,

Figure 4.2: Examples of valid and invalid decorations of graphs in the three bi-weighted
complexes.

be defined by mapping the graph representation of an element with out-hairs and in-hairs to
a bi-weighted graphs of the same shape where the hairs have been interpreted as bi-weights.
Then these maps are chain maps of degree 0, and furthermore they are isomorphisms.

Proof. The proof is equivalent to that of Proposition 3.2.7. O

4.2.2 Subcomplexes of fwGC;, fwQGC, and fwPGC,

Definition 4.2.5. Let waCg be the subcomplex of fwGC;, of graphs having at least one
vertex with a positive out-weight and at least one vertex with a positive in-weight. Let
fWQGCZ_ be the subcomplex of fwQGC;, of graphs having at least one vertex with positive
out-weight.

Proposition 4.2.6. The isomorphisms from Proposition 4.2.4 restrict to isomorphisms

F :Der(?—[oliebgd) — fwGCT

c+d+1
qF :Der(Q’Holiebgd) — fWQGC;_dH
Proof. This follows by inspection. O

Definition 4.2.7. Let fowGCy be the subcomplex of fwGCy, of graphs containing no closed
paths. Similarly, define fowQGC; and fowPGCy.

Proposition 4.2.8. The isomorphisms from Proposition 4.2.4 restrict to isomorphisms

F': Der(Holieb, ;) — fowGCoy gt
qF : Der(Q?—loliebZd) — fowQGC, g1
pF : Der(PHolieb! ;) — fowPGCeiai

Proof. This follows by inspection. O
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4.2.3 Loop number zero

All graph complexes above split over their loop number b = e — v + 1. Let bowGCy be
the subcomplex of fwGCy of graphs with loop number b = 0 and let wGC; denote the
subcomplex of graphs with looper number one and higher. Hence fwGCy = bowGCj &
wGCg. Similarly, let bgwQGC; and bowPGCj be the subcomplexes of graphs with loop
number b = 0, and wQGC; and wPGC;, the subcomplexes of graphs with loop number
greater than zero.

Proposition 4.2.9. The cohomologies of bgwGCy, bgwQGC;, and bowPGCy are generated

by the single vertex graph
> (i+i-2) ()
\J/

4,70
i+5>3

where any graph containing a vertex of invalid bi-weight is zero.

Proof. The proof has already been done for the complex bgwGCg. The proof naturally
extends to the quasi- and pseudo cases. O

The oriented graph complexes decompose in a similar manner, where the loop number zero
component are equivalent to the complexes above. Denote their subcomplexes of graphs
whose loop number greater than zero by owGCg, owQGC; and owPGC;, respectively.

4.3 Special in-vertices and special out-vertices

4.3.1 Special in-vertices

T

Recall that a special in-vertex is a vertex on the form or is on this form after a

recursive removal of special-in vertices of this form. Any vertex that is not a special-in
vertex is called an in-core vertex.

Definition 4.3.1. Let SwGCj, be the subcomplex of wGCy, of graphs I' whose vertices V (I)

m

are independently decorated by the modified bi-weights o and 7 for m € N subject to
the following conditions:

(1) If x € V(I') is a source, then

>1
N7

T = with m+ |x|out > 2

(2) If x € V(I') is a univalent target, then

with m > 1, orm:withm22
T

xTr =

H@

(3) If x € V(I') is a target with at least two in-edges, then

o -
T = with m > 1, or x = with m > 1
21 or = () with m >

AR 7K

>2 >2
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(4) If x € V(T) is passing (one in-edge and one out-edge), then

T
with m > 0, orxzwithle

T

8
I
~(8)-

(5) If z € V(I) is of none of the types above (i.e., x is at least trivalent and has at least
one in-edge and at least one out-edge), then

ASA A
ez, 5=

T = with m > 0, or x = with m >0
7N - VANEN

Definition 4.3.2. Let SWQGCy be the subcomplex of wQGCy, of graphs I' whose vertices
V(I") are independently decorated by the modified bi-weights 2, and 77 for m € N subject
to the same conditions (2) —(5) as in Definition 4.3.1 together with the additional modified
condition

(1') If z € V(') is a source, then

>1 >1

N g N7
T = With m+ |Z|owt > 2, or z = with m + |x|oue > 3.

Definition 4.3.3. Let SWPGCj be the subcomplex of wPGCj, of graphs I' whose vertices
V(I') are independently decorated by the modified bi-weights O%, o and 0%2 for m € N
subject to the conditions (1') and (4) — (5) as in Definition 4.3.2 and 4.3.1, together with
the additional modified conditions

(2") If x € V(T') is a univalent target, then

m ' :
= thm > 1, = th m > 2, =
X 1 m -~ X 1 m or r

(3") If x € V(I') is a target with at least two in-edges, then

T = withmZO, or ¥ = Withm—i—]x\inZB

7R
>2 >2

Remark 4.3.4. The differentials of the complexes above are induced by the differential
from the complex they are embedded in and act on a graph I' as d(I') = 3, oy () da ().
The map d, acts differently on vertices depending on which of the three complexes above
we consider. It can generally be described using the formulas of Figure 4.3, where any term
containing a vertex with an invalid bi-weight for the specific complex the computation is

done in is set to zero. Note for example that the decoration 0%2 is only valid in SwWPGCy.

Proposition 4.3.5. The three inclusions
SwGCy — wGCj, , SwQGC, — wQGC, and SwPGCy — wPGC,

are quasi-isomorphisms.
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Nl A N/
-7
(@) - T (BB BB &®)
o o o

g P,
N/ S 4 K. 7
A T o R %
@ - e _ e

Figure 4.3: General formula describing how the differentials of SwGCj, SwQGC; and
SwPGCy, act on a vertex x. Any term containing an invalid decoration for the considered
complex is set to zero.
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Proof. The statement was already proved for the first inclusion in Proposition 3.3.2, and
the proof for the other two inclusions follows the same line of argument with some extra
cases to consider.

To show the second statement, let gr SWQGC; be the associated graded of the filtration
over the number of in-core vertices in a graph. This complex decompose over in-core
graphs as

gr SWQGCy, = @QinCore(v)

where QinCore(7) is the subcomplex of graphs with in-core graph «. This complex further

decomposes as

QinCore(’y) g( ® q7;m>Aut(’Y)

z€V ()

where ¢ is the complex of in-core trees attached to the vertex z in 7. We first note

that if x|, > 1, then ¢7 = T, which shows cases (2) — (5). Suppose that |z|;, = 0.
>1

N7

Then ¢7,™ contains a subcomplex C generated by single vertex graphs on the form

for m > 0 such that m + |z|,u > 3. These are all non-trivial cycles, and the complex split
as qT," = C®T;™. The cohomology of T, is given by condition (1), and so this gives the
modified condition (1’) and proves the second statement.

Finally to show the last statement, Let gr SWPGCy, be the associated graded of the filtration
of wPGCj, over the number of core-vertices in a graph. This complex decomposes over in-
core graphs v as

gr SWPGCy = @ PinCore(7)
v

and further
) Aut(v)

PinCore(7) %( ® pTim

zeV(v)

where p7;m is the complex of in-core trees attached to the vertex x in . Recall that ||y,

|z|;n and wo are invariant in p7.". By observation, we gather the following:

o If |z|out, |7|in > 1, then pT," = T,
e If |x|;, = 0, then pT™ = ¢T;™.
o If ‘$|Out =0 and wgut > 1, then pﬁ” — 7;1n

These cases correspond to the conditions (4) — (5), (1) and (2) — (3) respectively. One
last case remains. Suppose that |z|p: = 0 and w2 = 0. We will show that H(pT;") is
generated by the following one-vertex graphs

(D (DY (D (D
SZA VRV RRNP

7R AR AR
T >3 3

W4

depending on the value of |z|;,. The proof of this statement is similar to that of Lemma
3.3.4 and Lemma 3.3.5 so we do only give a brief outline here.

Consider the filtration of p7,® over the number of univalent special-in vertices, where we
consider the graph containing a single vertex as having one such vertex. The associated
graded complex split as gr pT" = @ N>1 unpT,™ where unpT,™ is the subcomplex of
graphs with N univalent special-in vertices. We can show that uypT." is acyclic for
N > 2 by considering the filtration over the number of branch vertices. A vertex y is
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a branch vertex if there are at least two directed paths from a univalent vertex to y.
Secondly, we consider the filtration over the total in-weights of the branch vertices. The
in-core vertex is always a branch vertex, and the differential does not depend on the bi-
weight of the core-vertex. Hence the proof now is equivalent to that of Lemma 3.3.5.
Lastly, we note that the one vertex graphs above are non-trivial cycles of u1p7,. By the
same methods as in the proof of Lemma 3.3.4 we show that the cohomology of ujpT," is
one or two-dimensional, finishing the proof. ]

Definition 4.3.6. Let SowGCy, be the subcomplex of SwWGCy, of oriented graphs. Similarly,
define SowQGC; and SowPGCj, as subcomplexes of SWQGC, and SwPGCj, respectively.
These complexes are subcomplexes of owGCj, owQGC;, and owPGCy.

Corollary 4.3.7. The inclusions
SowGCj, — owGCj, , SowQGC, — owQGC; and SowPGCj — owPGC,

are quasi-tsomorphisms.

Proof. Let growGCj, be the associated graded complex to the filtration of owGCy, over the
number of core-vertices in a graph. The complex decompose over oriented core graphs =y
as

gr owGCy, = @ inCore(7)
g

where inCore(7y) is the subcomplex of graphs with in-core 7. These are the same complexes
as in Proposition 3.3.2, giving the same cohomology classes, which gives the result for the
first inclusion. The same argument applies to the two other cases. ]

Definition 4.3.8. Let SWGC;;Ir be the subcomplex of SWGCy, of graphs that contain at least
one vertex with out-decoration m > 1 and one vertex with in-decoration oco;. Further,
let SWQGC—,: be the subcomplex of SWQGC, of graphs that contain at least one vertex
with out-decoration m > 1. These complexes are subcomplexes of WGC; and WQGC;
respectively.

Proposition 4.3.9. The inclusions
SWGCZF — WGC; and SWQGC; — WQGCk+
are quasi-isomorphisms.

Proof. The first case was already proven in Proposition 3.3.8, but we do here give an
alternate proof that can be generalized to the second case. Consider the commutative
diagram of short exact sequences
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where Q:, Qr and Qj are the appropriate quotient complexes. Note in particular that
wGC} is the quotient complex of bi-weighted graphs that do not both have a positive
out-weight and positive in-weight at the same time. It decomposes as

wGCy = wGCy™ @ wGC}" @ wGC))

where wGC{" is the complex of graphs with at least one vertex with positive out-weight,

wGC{“ the complex of graphs with at least one vertex with positive in-weight, and wGCY

the complex of graphs with neither positive out-weights nor in-weights. The complex

SwGCj is a subcomplex of wGC}' of graphs whose vertices are either only decorated by
0

o7 and 8, or 7 and % for m > 1. It similarly decomposes as

SWGC; = SWGC2™ @ SWGCI™ & SwGCY

where is the subcomplex of graphs with at least one vertex decorated by 7+ m > 1. By
Proposition 3.3.2, the inclusion SwGC; — wGCj is a quasi-isomorphism, and so Qj is
acyclic. If we show that the inclusion SwGC; — wGC} is a quasi-isomorphism, we get
that both Qp and Qg are acyclic, and that the inclusion SWGCk+ — WGC;F is a quasi-
isomorphism. Equivalently, we show that the inclusions

SWGCY < wGCo" | SwGCE" < wGCP™  and SwGC) — wGC)

are quasi-isomorphisms. Consider the filtration of these complexes over the number of
in-core vertices. The associated graded gr WGCz“t contain no special-in vertices since
any such vertex necessarily has a positive in-weight, and so the differential is trivial and
easily seen to be equal to SwWGC;. Consider the associated graded of WGC? <) WGC%. It
decomposes over in-core graphs ~ as

gr(wGC" & wGCY) = @ inCore®“0 ()
g

where inCore
poses as

out0(~) is the complex of graphs with in-core 4. The complex further decom-

inCOreOUt’O("Y) ~ ( ® ﬁn’N>AUt(7)
zeV(y)

where 7, is the complex of special-in trees attached to z. This complex is isomorphic

to 7|';’|‘ ollin,0 38 SCen in Lemma 3.3.3. Hence T, is acyclic when z is a target vertex,
outs mn

and otherwise generated by the single vertex graph decorated by O%l and % (when z is
generic). This completes the first part of the proof. The argument for the second proof is
similar, instead using the tree complexes ¢7." from Proposition 3.3.2. O

4.3.2 Special out-vertices

Recall that a special out-vertex is a vertex on the form or becomes on this same form

after an iterative removal of such vertices from the graph. Vertices that are not special
out-vertices are called out-core vertices or just core vertices.

Definition 4.3.10. Let qGC, be the subcomplex of SwGCy, of graphs I' whose vertices

V(T) are independently decorated by the bi-weights 21, %1 0

ST 055 5op and % subject to the
following conditions:

(1) If z € V(7) is a univalent vertex, then it is decorated by Zt.

0
oo *

(2) If z € V(7) is a source, then it is either decorated by ' or
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(3) If z € V() is a target, then it is either decorated by 2L or <5*.

1 0
(4) If x € V() is a passing vertex, then it is either decorated by %, ot or O%.
(5) If z € V(7) is a generic vertex, then it is either decorated by S, !, 0%1 or 9.

Definition 4.3.11. Let qQGC,, be the subcomplex of SWQGC, of graphs I' whose vertices
V(I") are independently decorated by the bi-weights % o1 00 and 22 subject to the

>0 Y001’ 0

conditions (3)-(5) of Definition 4.3.10 in addition to the following modified conditions:

(1) If € V(7) is a univalent source, then it is decorated by 2t or %32.

(1) If 2 € V(7) is a univalent target, then it is decorated by '

(2) If # € V(7) is a bivalent source, then it is either decorated by ' or 0%1.

(2") If x € V(7) is an at least trivalent source, then it is either decorated by 22t 0%1 or

0
0

Definition 4.3.12. Let qPGC;, be the subcomplex of SWPGCy, of graphs I' whose vertices
V(I") are independently decorated by the bi-weights %, s 0%17 %, %% and 0%2 subject
to the conditions of Definition 4.3.11, except where condition (3) has been replaced by the
two modified conditions:

(3") If x € V() is a bivalent target, then it is either decorated by 32! or %5t

(3") If 2 € V(7) is an at least trivlanet target, then it is either decorated by 2, G- or

0

0"
Remark 4.3.13. The differentials of the complexes above are induced by the differential
from the complex they are embedded in and act on a graph I' as d(I') = >~ cy/(r) da ().
The latter map further decomposes as d,(I') = §,(T") — 6.(T) — §2(T"), where the first
map denotes vertex splitting, the second attaching a univalent target to x, and the third
attaching a univalent source to x. These maps act differently on vertices depending on
which of the three complexes above we consider. It can generally be described using the
formulas of figure 4.3.2, where any term containing a vertex with an invalid bi-weight for
the specific complex the computation is done in is set to zero.

Proposition 4.3.14. The three inclusions
SwGCy — qGC, , SwQGC; — qQGC;, and SwPGCy — qPGC,
are quasi-isomorphisms.

Proof. The first inclusion was shown to be a quasi-isomorphism in Proposition 3.3.10.
For the second inclusion, consider the filtration of SWQGC; over the number of out-core
vertices in a graph. Then the associated graded split over out-core graphs

gr SWQGC,, = @othCore(fy)
¥

where outQCore(7y) is the complex of graphs with out-core . This complex further split

- )Aut(w

outQCore(7) g( ® qToM

zeV(v)
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Figure 4.4: General formula describing how the differentials of qGC;,, qQGC,, and qPGC,
act on vertices. Any term containing an invalid decoration for the considered complex is
set to zero.
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where ¢T.°“ is the complex of out-tree graphs attached to x. We note that ¢7,2%t = T.°4
when z is not a source or has in-weight oo, and so these results follow from Proposition
??. Assume |7|;, = 0 and w®™ = 0 and consider the three cases |Z|ous = 1, |2|owt = 2, and
|Z|out > 3. By the same arguments as in Proposition 7?7, we compute the cohomology of
qT" and see that it agrees with the proposition. For the third inclusion, consider the
filtration of SWPGCy, over the number of out-core vertices. The associated graded complex
split over out-core graphs as

gr SWPGCy, = @outPCore(y)
v

where outPCore(y) is the complex of graphs with out-core . This complex further de-
compose as

outPCore(7y) = ( ® pEout)Aut(v)

z€V(7)

where p7.2% is the complex of special-out trees attached to z. If z is a passing or generic
vertex, then pT7.2% = T2u!. If x is a source, then pT.2" = qT.2%". The last case to consider
is when |2|pye = 0. In the three cases |z|ow = 1, |Z|owr = 2 and |x|pue > 3 we can show
with the same arguments as in Proposition ?? that the cohomology of p7,2%! agrees with
the proposition. O

Definition 4.3.15. Let 0qGC,, be the subcomplex of qGC,, of oriented graphs. Similarly,
define 0qQGC,, and oqPGC,, as subcomplexes of qQGC;, and qPGC,,. These complexes are
subcomplexes of SowGCj, SowQGC; and SowPGC respectively.

Corollary 4.3.16. The inclusions
0qGC;, — SowGCy , 0qQGC;, — SowQGC, and oqPGC, — SowPGCy

are quasi-isomorphisms.

Proof. This follows by considering the same filtrations as in Proposition 4.3.14 and noting
that the decompositions are preserved as in Corollary 4.3.7. O

Definition 4.3.17. Let qGC; be the subcomplex of SwWGCy of graphs that have either

at least one vertex with bi-weight =L, or a pair of vertices decorated by %t and s
1 01

respectively. Further, let qQGCZ be the subcomplex of SWQGC;, of graphs with at least

one vertex decorated by %, or a vertex decorated by %* (or %52). These complexes are

subcomplexes of SWGCZ and SWQGCZ respectively.

Proposition 4.3.18. The inclusions
qGCﬁ s SWGC/,JCr and qQGC/}CF — SWQGC:
are quasi-isomorphisms.

Proof. By setting up a similar diagram as in Proposition 4.3.9, one can prove the above
statements with similar arguments. We leave the details to the reader. O

4.4 Further reductions of the derivation complexes

4.4.1 8-decorations

The complex qQGC,, split as

qQGC,, = qQGCY @ qQGC;
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where qQGCg is the complex of graphs whose all vertices are decorated by %, and qQGC},
is the complex of graphs with at least one vertex with a positive out-weight or a positive
in-weight. The complex qPGC,, split similarly as

qPGC,, = qPGCY @ qPGC.

Proposition 4.4.1. Let dGCi C dGCp be the subcomplex of graphs with at least one
bivalent vertex, and let dGCiH C dGCy be the complex of graphs with at least one bivalent
verter or one target vertex. Then

qQGCY = dGCy,/dGCI™  and  qPGC) = dGC;/dGC3

Proof. Consider a graph in qQGCg. Only vertices that are at least trivalent and not sources
can be decorated by %. Let f:dGCy — qQGC% be the map where a graph I' is mapped to
the graph f(I') where all vertices of I" have been decorated by the bi-weight %. Any graph
where such an assignment is not possible is mapped to zero. One readily checks that this
is a chain map, and that the kernel of the map is spanned by graphs with at least one
bivalent vertex or at least one target vertex, completing the proof. A similar argument
can be made for qPGCY. O

The complex 0qQGC;, does not contain any graphs that are only decorated by %, but the
complex oqPGC,, does contain such graphs.

Proposition 4.4.2. Let oGCi C oGCy be the subcomplex of graphs with at least one
bivalent vertex and oGCE3 = oGCk/oGCi be the quotient complex of graphs where all
vertices are at least trivalent. Then oqPGCY = oGCES.

Proof. This can be shown using the same argument as in Proposition 4.4.1. O

Definition 4.4.3. Let qQGC%* C qQGC;, be the subcomplex of graphs with at least one

vertex decorated by % and set tQGC; = qQGCZ/qQGCZ’O. Similarly, define qPGCg’* -
qPGCj; as the analogous subcomplex and tPGCj, the corresponding quotient.

Proposition 4.4.4. The projections
qQGC; — tQGC; and qPGC; — tPGC},
are quasi-isomophisms.

Proof. 1t is enough to show that qQGCZ’* and qPGCZ’* are acyclic. The argument is
equivalent to the proof of Proposition 3.4.1 by considering a filtration over the number of
non-passing vertices. The details are left to the reader. O

Remark 4.4.5. There are similar propositions for qQGC,j and the oriented subcomplexes
with the same proofs. Denote their corresponding quotient complex of graphs with three
decorations: %, %+ and O%l by tQGC;, otGCy, otQGC;, and otPGCy.

4.4.2 Monodecorated graphs

We remind the reader of the special decorations of graphs seen in Definition 3.4.2. The
decorated graphs here are in tQGCy. If T is a directed graph without univalent vertices,

then T 0" is the decorated graph of the shape I' where all vertices are decorated by *.

0
We similarly define I'1. Further, I'“’ is the sum of all possible decorations of I" (in tQGCj,)
such that at least one vertex is decorated by % or a pair of vertices is decorated by gt

and .
o1
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Remark 4.4.6. The differential of tQGC;, decomposes as d = ds + d,, where d,, increases
the number of univalent vertices of a graph by one, and d splits vertices without creating

univalent ones. One can verify that d,(I'Y + ro + I'~1) = 0. One can further see that

0
I'e1 =0 if I' contains a target vertex. Hence we gather that

0, (1) —du(I’%) if there is a target vertex in I.
- oo 0
h —dy(T0") — dy(T'>1) if there is no target vertex in I

1

The graphs in d,(I'"0 ) have the shape of I" together with a ”special” univalent vertex

0
attached on the form: + (-1 k“. Similarly the graphs in d,(I'>1) have the
AR Y o

7

shape of I together with another ”special” univalent vertex attached on the form +

|
. This motivates the next definition.

Definition 4.4.7. The subcomplex mQGC; C tQGCj, is the complex on the form

0
mQGC; = e c! () e Cl ().

where

o 0
e C=? is the subspace (not subcomplex) of graphs of the forms o, =1 and I'* for
I with no univalent vertices.

° Cl(%) be the subcomplex of tGC}, of graphs whose non-univalent vertices are dec-
orated by %5t and where the only univalent vertices are attached to non-antenna

+ o
7

. Cl(—l) be the similar subcomplex of tGCj, of graphs only decorated by 0%1 with

vertices and are of the special type

H@

0
oo

univalent vertices of the type +
i

Remark 4.4.8. By the previous remark, we see that the differential is closed on this
subspace, and it is thus a chain complex.

Proposition 4.4.9. The inclusion mQGC;, — tQGCj, is a quasi-isomorphism.

1 0
Proof. First consider the subcomplex tQGC: 0 tQGC;, of graphs with at least one
univalent vertex and a pair of non-univalent vertices decorated by %+ and o%l respectively.
One can show that this complex is acyclic by considering the filtration over the number of
non-passing vertices. Hence the quotient complex s;tQGCy, is quasi-isomorphic to tQGC.
One also notes that mQGCj;, is also a subcomplex of this quotient complex. Next, consider
the subcomplex sotQGCy, of s1tQGCy, of graphs with non-univalent vertices as in mQGCy,

and all other types of graphs with at least one univalent vertex as in s;tQGCj;. The
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quotient complex consists of graphs with no univalent vertices and where at least two
vertices have different decorations. This complex is acyclic, as seen by considering the
filtration over the number of non-passing vertices. Next, consider the subcomplex sstQGC;,
of s9tQGC;, containing the same graphs having no univalent vertices, and additionally
graphs with at least one univalent vertex but no non-univalent vertices decorated by %
The quotient complex is generated by graphs with at least one univalent vertex, and all
non-univalent vertices are decorated by % This complex is acyclic, as seen by considering
the filtration over the number of non-passing vertices. Let s4tQGC; be the subcomplex
of s3tQGC; containing the same graphs having no univalent vertices, and additionally
graphs with univalent vertices on the following forms: Let I' be a graph without univalent
vertices. Then we consider graphs T°0" where at least one vertex has the univalent vertex

+ (-1) v attached. Similarly, we also consider graphs I'~1 where at least one
T J

vertex has the univalent vertex + attached. Let S4tQGC,1c be the corresponding
i l

complex of graphs with at least one univalent vertex, and similarly for s3tQGC,. We get
the commutative diagram

0 — 54tQGCE — 54;tQGC, — 54;tQGCL> —= 0

0 — s53tQGCE — s3tQGC), — s3tQGCL> ——0

0 A B 0 0

0 0 0

By showing that the inclusion S4tQGC,1C — 53tQGC,1C is a quasi-isomorphism, we also show
that the inclusion for the full complexes is a quasi-isomorphism. The complex 53tQGC,1€
split as sﬁQGC,ﬁ(%) @ 53tQGC,1€(O%1) where each complex contains the graphs where all

non-univalent vertices are decorated by % and O%l respectively. We consider a vertex

an antenna-vertez if it is either univalent or becomes univalent after iterative removal of
univalent vertices in a graph. Consider the filtration of both complexes over the number
of non-bivalent non-antenna vertices. In the associated graded, the differential acts on
by creating bivalent antenna vertices. All graphs of gr S4tQGC/,1€ are non-trivial cycles,
and so we need to show that the cohomology of gr 53tQGC,1C is generated by the same
graphs. Consider first the filtration over the number of non-passing vertices. We see that
H(gr 53tQGC,1€(O%1)) is generated exactly by the graphs in S4tQGC]1,(O.%1). We further get
that H(gr s;»,tQGC}C(%)) is generated by graphs with no passing antenna-vertices and

univalent vertices of two types, either or . Note that there is only one possible
T !

decoration for a univalent vertex, depending on if it is a source or a target. On the next
page of the spectral sequence, the antenna-vertices form trees, where chains of bivalent
vertices are composed of edges alternating directions. Call such an edge a zig-zag edge.
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4.4. FURTHER REDUCTIONS OF THE DERIVATION COMPLEXES

The case when zig-zag edges are adjacent to two at least trivalent vertices and how the
differential acts on them has been studied in [Z2] (where they are called skeleton edges).

The more important case here is the case when a zig-zag edge is adjacent to a univalent
m

m .
vertex. They are on the form e~ >e:= 3—. .. —>ec—e—>e where m is the number of

normal edges in the zig-zag edge and its direction is the direction of the last edge attached
to the univalent vertex. The differential acts on zig-zag edges as

A »R5e) = (DM SRS (CDRL SRR
d( »Re) = - W2 S22,
d( » R = S (CR SRR
d( > ) = - SRG. b (D SR

We see that its cohomology is generated by —»—>e + (=1)**1 »<«—. The complex de-

composes over graphs with the same skeleton graphs, i.e., the resulting graph obtained by
replacing sequences of bivalent vertices with one single edge. These complexes decompose
into tensor products over the edges of the skeleton graphs, similar to the decompositions in
Proposition 7?7, we get that the cohomology of gr s;ﬁQGCi(%)) is generated the desired
one. O

Definition 4.4.10. Let mQGCLF be the subcomplex of mQGC}, on the form

)&l (—)

0 01

001

mQGC = C=*T @ CcY(

where C*(%L) and Cl(o%l) are as in Definition 4.4.7 and C=%% C C=? is the subspace

generated by graphs of the forms I'Y and o,
Corollary 4.4.11. The inclusion mQGC? — tQGCﬁ is a quasi-isomorphism.

Proof. Consider the diagram

0 0 0
0 —— mQGC} —— mQGC; —— mQGCy —— 0
0 —— tQGC{ —— tQGC; —— tQGCy —— 0

0 Q Q Q; 0

=+

~ v

0 0 0

induced by the inclusions, and where the other complexes are the appropriate quotient
complexes. One checks that it commutes, and further that mQGC; = tQGC} and so
Q; = Ql‘:. Proposition 4.4.9 gives that Q} is acyclic since the inclusion mQGC}, — tQGCj,
is a quasi-isomorphism. O
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Definition 4.4.12. Let omQGC; € mQGC, be the subcomplex of oriented graphs.
Proposition 4.4.13. The inclusion omQGC; — otQGC;. is a quasi-isomorphism.

Proof. The argument is the same as the proof of Proposition 4.4.9, noting that all the
arguments are independent of the orientation of a graph since the filtrations are done with
respect to passing vertices and antennas. ]

4.4.3 Final steps
Definition 4.4.14. Let C(%3!) and C(-X -) be the subcomplexes of mQGC}, of graphs whose

001

non-univalent vertices are decorated by =5+ and 071 respectively.

Proposition 4.4.15. Consider the short exact sequence

0—C(%8) & (L) —> mQGC; —> mQGCy(w) — 0.

0
Then
1. The complexzes C(%5*) and C(O%l) are acyclic.
2. The complex mQGCy(w) is isomorphic to dGCy.

In particular, there is a quasi-isomorphism mQGCj;, — dGCy.

Proof. The proof is the same as the proof of Proposition 3.4.8 in Chapter 3, by considering
a filtration over the number of non-passing vertices. O

Corollary 4.4.16. Let omQGCy(w) be the subcomplex of mQGCy(w) of oriented graphs.
Then the induced projection omQGCy, — omQGCy(w) is a quasi-isomorphism. Furthermore
omQGCy(w) = oGCy.

Proof. The same arguments as in Proposition 4.4.15 give the result since it is independent
of the orientation of a graph. O

Definition 4.4.17. Let C(%3*) be the subcomplex of mQGC;r of graphs where all non-
univalent vertices are decorated with 21, and let Q := mQGC; /C(2%L).

Proposition 4.4.18. The complex C(%*) is acyclic. In particular the projection
mQGC; — Q is a quasi-isomorphism.

Proof. The proof follows by considering the filtration over the number of non-univalent
vertices. U

Proposition 4.4.19. Let Q! be the subcomplex of Q of graphs with at least one target
verter when excluding antenna-vertices. Then the inclusion is a quasi-isomorphism. Fur-
thermore, the complex Q! is isomorphic to dGCfC.

Proof. One shows that the quotient Q/Q! is acyclic by the same argument as in Proposi-
tion 4.4.18. The second part follows by inspection. O

Definition 4.4.20. Let C be the subcomplex of tPGCk of graphs with at least one univalent

vertex and graphs with univalent on the forms o and F°°1

Proposition 4.4.21. Consider the short exact sequence
0 — C —tPGC}, —=tPGCy(w) —=0

where tPGCy(w) is the complex of graphs without univalent vertices on the form I'“. Then
projection tPGCj, — tPGCy(w) is quasi-isomorphism. Furthermore, the complex tPGCg(w)
1s isomorphic to dGCyg.
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Proof. 1t is enough to show that C is acyclic. The proof is similar to that of Proposition
4.4.9. First consider the subcomplex s1tQGCy of graphs with at least one non-univalent

vertex decorated by Gt or o%l. The quotient complex is acyclic. Secondly, consider
the subcomplex of graphs with at least a pair of non-univalent vertices decorated by

5+ and 0%1 respectively. This complex is acyclic, and let sotPGC; be the corresponding

quotient complex. It splits as C(%*) © C (%) of graphs where all non-univalent vertices
are decorated by 5t and % respectively. Consider the subcomplex of C(%*) of graphs

with at least one univalent vertex . This complex is acyclic. The quotient complex
T

has only two types of univalent vertices on the form @ and @ By considering the
T l

filtration over the number of non-bivalent non-antenna vertices, we can show that this
complex is acyclic on the first page. The proof is analogous to showing that C (O%l) is
acyclic. O

Corollary 4.4.22. Let otPGCy(w) be the subcomplex of tPGCy(w) of oriented graphs.
Then the induced projection optGC;, — optGCy(w) is a quasi-isomorphism. Furthermore,
OtPGCk(w) = oGC,.

Proof. The same argument as in Proposition 4.4.21 gives the results since it is independent
of the orientation of a graph. O

4.5 Main results

In this section, we first give a review of the quasi bi-weighted complexes that have been
defined in the previous sections, followed by stating and proving the main theorems of this
chapter.

4.5.1 Summary of quasi bi-weighted graph complexes

The complex fwQGC}, is the complex of all possible quasi bi-weighted graphs. The complex
fWQGC]—: is the subcomplex of fwQGCy, of graphs that have at least one vertex with positive
out-weight.

The complexes fwQGC; and fWQGCZ— split as
fwQGCj, = bgwQGC;, & wQGC;, and fwQGC; = bowQGC), & WQGCJr

where bowQGCQ is the subcomplex of graphs with loop number zero and wQGC; and
WQGC;: are the respective complements. The cohomology of bgWQGC% is generated by the
graph following graph (see Proposition 4.2.9)

Z(i+j—2)

1,720
i+5>3

The complex qQGC, is the subcomplex of wQGC}, of graphs whose vertices are indepen-

dently decorated by the five bi-weights > °°1 » %5 o%l, o and %52 such that univalent vertices
01

are only decorated by Z= (or %% when they are sources). The complex qQGC/,"CF is the sub-
complex of qQGCJr of graphs Where at least one vertex is decorated by 2=t or %+ (‘or %).

It follows that qQGCk is a subcomplex of WQGCZ;.
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The complex qQGC,, split as
dQGC;, = qQGC), @ qQGC},

where qQGCg is the subcomplex of graphs whose vertices are only decorated by % and
qQGC;j, its complement. The complex qQGCg is isomorphic to the complex dGCk/dGCzH,
where dGCz'Ht C dGCy is the subcomplex of graphs with at least one bivalent vertex or
one target vertex (see Proposition 4.4.1).

The complex tQGC}, is the quotient complex qQGCZ/qQGCZ’O where qQGCZ’0 C qGCj is
the subcomplex of graphs with at least one vertex decorated by %. In other words, tQGC},
is generated by graphs whose vertices are independently decorated by the four bi-weights
o1 oo 0 4pd °5%. The complex tQGC; is the subcomplex of tQGC} of graphs where

001’ 0 001
at least one vertex is decorated by 32t or 55t (or %2). It follows that tQGC; is a quotient

complex of qQGC;
The complex mQGCj, is a subcomplex of tQGC}, on the form

£ _ 22 11y o 0
mQGC; = €26 () @ ¢ ().

The complex mGC}C|r is a subcomplex of mGCy. (see full details of these complexes in

Definition 4.4.7).

The complex mQGCj(w) is a quotient complex of mQGC;, (see Proposition 4.4.15). The
complex Q is a quotient complex of mMQGCy, (see Definition 4.4.17), and Q' is a subcomplex
of Q (see Proposition 4.4.19).

The complexes that have been used in this chapter are related as follows:

4QGC; —» tQGC; +—— mQGC; —» mQGC}(w) «—— dGCy

4QGC; — tQGC; «—— mQGC; —» mQGC} (w) Q+— O dGC}

Proposition 4.5.1. Let dGC;, — wQGCy be the map where a graph I' is mapped to the
sum of all possible bi-weights to put on I' excluding the decoration with only %. Then this
map is a quasi-isomorphism up to the subcomplex of graphs with loop number zero and
graphs only decorated by %.

Proof. This map restricts to chain maps to all of the complexes in the diagram above,
making it commute. One checks that all of these maps are quasi-isomorphisms, starting
with that the restriction to dGCj is an isomorphism. O

Proposition 4.5.2. Let dGCi — WQGC; be the map where a graph I' is mapped to the
sum of all possible bi-weights to put on I' excluding the decoration with only 8. Then this
map s a quasi-isomorphism up to the subcomplex of graphs with loop number zero.

Proof. The argument is equivalent to that of Proposition 4.5.1. ]

Proposition 4.5.3. Let oGCl, — owQGCy, be the map where a graph T' is mapped to the
sum of all possible bi-weights to put on I' excluding the decoration with only %. Then this
map s a quasi-isomorphism up to the subcomplex of graphs with loop number zero.

Proof. The argument is equivalent to that of Proposition 4.5.1. O
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4.5.2 Deformation theory of quasi-Lie bialgebras

Theorem 4.5.4. There is a quasi-isomorphism of complezes
K & oGCtgt+1 — Der(QHolieb. q).

Proof. This follows from the decomposition of Der(QHolieb. q) over graphs of loop number
zero together with the quasi-isomorphism of Theorem 4.1.7 and Corollary 4.4.22. ]

Theorem 4.5.5. There is a quasi-isomorphism of complexes

K dGCCZE;;flt ®dGCeyar1 — Der'(QHoliebSd).

Proof. This follows from the decomposition of Der'(Q’:'—[oliebf:3 ) over graphs of loop num-

ber zero and quasi bi-weighted graphs only decorated by %, together with the quasi-
isomorphism of Theorem 4.1.7, Proposition 4.4.1 and Proposition 4.4.15. O

Theorem 4.5.6. There is a quasi-isomorphism of complexes
K & dGCl, 441 — Der(QHolieb],).

Proof. This follows from the decomposition of Der(Q?—[oliebS ) over graphs of loop number
zero together with the quasi-isomorphism of Theorem 4.1.7 and Proposition 4.4.19. O
4.5.3 Deformation theory of pseudo-Lie bialgebras

The results and arguments from the previous section also apply to the subcomplexes of
wPGC and owPGCj. We get the following results.

Theorem 4.5.7. There is a quasi-isomorphism of complezes

K ® 0GC2,, | @ 0GCeygs1 — Der(PHoliebq).

Proof. This follows with the above remark together with Theorem 4.1.7, Proposition 4.4.2
and Corollary 4.4.22. O

Theorem 4.5.8. There is a quasi-isomorphism of complezes

K & dGCZ},, 1 @ dGCoygs1 — Der®(PHolieb?,).

Proof. This follows with the above remark together with Theorem 4.1.7, Proposition 4.4.1
and Proposition 4.4.21. ]
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