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Abstract

Carbon capture and storage (CCS) can be considered as one of the key tools in the fight

against climate change, providing a promising method to reduce human-generated CO2

emissions. Despite its potential, the high cost of CCS deployment leads to an uneven

adoption across countries. This paper employs a differential game model with hetero-

geneous countries facing transboundary pollution to determine the optimal timing to

initiate CCS projects, and delivers analytical results for the existence of Markov Per-

fect Equilibria and the numerical illustration. We show that: (1) The trigger threshold

for CCS deployment depends not only on a country’s own costs, but also on the costs

of other countries and the costs associated with pollution damage. (2) The optimal

timing for different countries to initiate their CCS projects occurs when a country’s

pollution level reaches a critical threshold. (3) Countries are more inclined to free-

ride on the pollution abatement efforts of others when the pollution damage costs are

symmetric rather than asymmetric. (4) Finally, we provide sufficient conditions under

which some countries refrain from engaging in CCS, despite facing the same pollution

damage costs as others.
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1 Introduction

Carbon capture and storage (CCS) or utilization (CCU) of the captured CO2 have a crit-

ical role to play in the world’s quest for net zero, which requires a gradual phase-out of

existing coal-fired power plants and industrial facilities. These technologies offer a pathway

to significantly reduce human-generated greenhouse gas emissions while mitigating the risk

of stranded assets. According to estimates by Det Norske Veritas (DNV), a complete shift

to a fossil-free energy system by 2050 is unrealistic; instead, fossil fuels are projected to

still constitute 16% of the global energy mix by then. In this scenario, CCS is expected

to play a crucial role, accounting for 20% of the required emissions reductions (IEA, 2022;

Salt, 2022)1. It thus comes as no surprise that, in the Intergovernmental Panel on Climate

Change Working Group III Report (2022), CCS is comprised in nearly all the mitigation

pathways to limit the global temperature rise to below 1.5°C above pre-industrial levels.

Governments worldwide have acknowledged the importance of deploying CCS technolo-

gies and have integrated them into their climate strategies. The United States has developed

a comprehensive policy framework to support all stages of CCS deployment. Canada has

introduced an Investment Tax Credit (ITC) for CCUS as part of its 2021 Budget. The

adoption of the EU Green Deal, the Climate Law, and subsequent proposals to meet ambi-

tious energy and climate targets for 2030 have made CCS a critical component of the EU’s

decarbonization strategy. In China, around 10 provincial governments have included CCS

development in their decarbonization strategies (Global CCS Institute, 2023b). These are

just a few examples that illustrate the global recognition of CCS as a key tool in the fight

against climate change.

Despite these efforts, the pace of CC(U)S adoption remains sluggish and current invest-

ments in CCS projects seem too low to ensure commercial-scale deployment. On the one

hand, CCS is deemed crucial to reach emission reduction targets without prematurely aban-

doning existing technology and infrastructure. However, on the other hand, investing in

CCS may extend the reliance on fossil fuels, while diverting funds from renewable technolo-

gies which improve over time and are crucial for a sustainable long-term energy supply and

environmental equality. Given these complexities, whether to engage in CCS initiatives or

not is still under debate, as clearly stated by Moreaux et al. (2024). In the literature, there

are several studies that explore the optimal timing and conditions under which a country

(or industry) should deploy CC(U)S (Amigues et al., 2016; Durmaz, 2018; Moreaux et al.,

2024, etc.). However, these studies are silent on international competition, transboundary

pollution control, and free-riding issues. In reality, there is no supranational authority acting

as a sole government to enforce pollution control measures or providing incentives for the

implementation of CCS facilities. While international treaties and agreements set long-term

climate goals, individual countries’ efforts to implement CCS vary widely. CCS installations

are capital-intensive, requiring significant investments in R&D and the construction of facili-

1The DNV is one of the largest providers of technical consultancy and supervisory services to global
renewable energy and oil and gas industries.
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ties, as well as supportive regulatory frameworks and policies. This means that countries are

at different stages of CCS development: while some countries have taken significant steps to

deploy CCS, others are lagging far behind. Therefore, different countries must make their

optimal choices based on their specific circumstances and capacities.

In this paper, we propose a differential game model aimed at investigating the opti-

mal timing for countries facing transboundary CO2 pollution to deploy CCS. Our setting

considers the situation where technologically advanced countries with a supportive policy

environment take the lead in implementing CCS, while other countries may follow at a later

point in time. By focusing on country-specific factors, we capture the heterogeneity among

countries. We derive explicit results for the following two scenarios: (1) two countries facing

identical CO2 pollution damage costs but differing in development levels and CCS deploy-

ment costs; (2) two countries that are asymmetric in in both pollution damage and CCS

deployment costs.

We present both, general results on the trigger thresholds for CCS deployment applicable

to all countries without assuming specific functional forms and detailed analytical findings

using a linear-quadratic game framework (Boucekkine et al., 2023; Dockner et al., 2000;

Dockner and Van Long, 1993). Additionally, we identify the order and optimal timing of

the implementation of CCS facilities, which are determined by the reachability of the trigger

thresholds and depend on a country’s technological advancement, efficiency, and willingness

to invest in CCS. Nevertheless, in scenarios where pollution damage costs are symmetric,

the incentive to free-ride causes countries to depend on others to implement CCS and curb

emissions, which ultimately contributes to higher long-term pollution accumulation.

Our model also establishes sufficient conditions under which certain countries may never

trigger CCS deployment. This reluctance stems primarily from two factors: the high costs

pose a significant barrier to adoption for some countries (Bertinelli et al., 2014; Ferrari et al.,

2019), while the costs of pollution damage to a country also play a significant role (Colmer

et al., 2020; Greenstone and Jack, 2015). This finding offers clear and actionable policy

recommendations. Our model demonstrates that the threshold for triggering CCS increases

with a country’s own CCS costs but decreases with both the costs faced by rivals and the

efficiency of CCS technology. This suggests that one of the most effective ways to accelerate

CCS deployment in still-inactive countries is to advance technology, which can significantly

reduce future CCS costs and enhance its efficiency.

The remainder of the paper is organized as follows. Section 2 provides an overview of the

current state of CCS deployment and reviews the relevant literature. Section 3 presents the

model and characterizes the Markovian perfect strategic Nash equilibrium without specify-

ing the functional forms. To provide further insights, Section 4 characterizes the Markovian

subgame perfect Nash equilibrium using linear-quadratic functional forms (following More-

aux et al. (2024)) and employs a numerical simulation illustrating the theoretical findings

and extending the scope of the theoretical model. Section 5 concludes the paper.
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2 State of the art of CCS and related literature

As stated in Chen et al. (2024), CCS presents some unique features that distinguish it

from other abatement technologies. Unlike traditional methods that may simultaneously

enhance productivity and reduce CO2 emissions, CCS primarily focuses on capturing and

storing carbon emissions. Additionally, the deployment of CCS often requires a substantial

energy input, which can paradoxically increase dependence on CO2-intensive energy sources,

potentially undermining efforts to reduce reliance on fossil fuels. In this section, we will

not reiterate the distinctive features or additional costs associated with CCS deployment, as

they have been well-documented. Instead, we will focus on global CCS deployment and the

economic literature related to CCS in the context of transboundary pollution control.

2.1 Worldwide CCS deployment

As mentioned above, many governments have considered CCS as a key tool to meet their net-

zero emission targets. The United States, the United Kingdom, Canada, China, and Norway

are the leading countries in CCS deployment. In the US, 73 new facilities were added to

the pipeline in 2023, reflecting a significant expansion in this sector. The UK government

has also made a substantial commitment, allocating £20 billion in its Spring Budget of

2023 to scale up CCS projects throughout the country. China, for the first time, included

carbon capture, utilization, and storage (CCUS) in its 14th Five-Year Plan (2021-2025) and

has since introduced around 70 CCUS-related policies at the national level, underscoring

its growing emphasis on this technology (Global CCS Institute, 2022, 2023b; Ma et al.,

2023). Several European countries also have taken (or are taking) part in CCS projects to

achieve net-zero emission targets. Notably, Norway’s Sleipner CCS project, which began in

1996, stands out as one of the oldest and most successful CCS initiatives globally, having

injected over 20 million tons of CO2 into a saline aquifer beneath the North Sea. Building

on this success, the Northern Lights project in Norway, supported by Germany, aims to

establish a comprehensive CCS value chain, capturing, transporting, and storing CO2 from

industrial sources across Europe. Meanwhile, the French company TOTAL is developing the

Grandpuits CCS project to capture and store up to 650,000 tons of CO2 per year from the

Seine-et-Marne refinery (Global CCS Institute, 2023a; Reuters, 2023).

Despite CCS’s significant role in decarbonizing industries, mitigating carbon emissions,

and achieving climate change targets, its widespread deployment has been slow to take

off. In 2021, the annual capture capacity of existing facilities was approximately 45Mt

CO2 which accounts for only 0.1% of fossil fuel emissions (IEA, 2022). Durmaz (2018)

examines the factors determining the demand for CCS and concludes that CCS will not

be implemented if the cost of generating fossil energy with CCS is too high. Similarly,

Budinis et al. (2018) identify and analyze the barriers to CCS development, emphasizing

that the most significant obstacles are not exclusively technical but rather economic, with

high costs posing the greatest challenge in the short to medium term.Golombek et al. (2023)
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discuss the cooperation issues among market participants and various market imperfections

within a CCS value chain, which can result in suboptimal investment levels in CCS projects.

Moreover, several studies have developed models for CCS development roadmaps aimed at

meeting emissions targets by 2050. These include Ma et al. (2023) for China, Shackley and

Verma (2008) and Garg and Shukla (2009) for India, and Nogueira et al. (2014) for Brazil.

2.2 CCS in the context of transboundary pollution: a literature

review

The current paper contributes to the growing body of literature on the optimal timing of

CCS deployment (Amigues et al., 2016; Durmaz, 2018; Kalkuhl et al., 2015; Lafforgue et al.,

2008, etc.) and optimal pollution control (Augeraud-Véron and Leandri, 2014; Jørgensen

et al., 2010). Jørgensen et al. (2010) provide an extensive review of the economics and

management of pollution. Ayong Le Kama et al. (2013) derive the optimal rate of capture

and sequestration, and show that CCS can constitute a long-term solution to decrease carbon

emissions. Moreaux and Withagen (2015) identify the conditions under which partial or no

CCS deployment might be optimal. The recent work of Moreaux et al. (2024) extends the

model of Amigues et al. (2016) to show that if carbon capture and utilization (CCU) is

implemented, it would likely begin at the outset of the planning period and cease before the

carbon budget has been fully used up. However, if CCS is implemented at the most socially

optimal time point, this only occurs once the carbon budget has been depleted.

The current work also closely relates to the literature on transboundary pollution (Benchekroun

and Ray Chaudhuri, 2014; De Frutos et al., 2022; La Torre et al., 2021, etc.). Fanokoa

et al. (2011) and Berthod and Benchekroun (2019) focus on firms’ cooperation versus non-

cooperation strategies. La Torre et al. (2021) analyze the implications of transboundary

pollution externalities on environmental policy-making in a spatial setting and show that it

is not obvious that transboundary externalities lead to inefficiencies.

However, most of these studies focus on optimal CCS policies or the optimal timing

of CCS deployment in a one-country model, and draw upon the assumption of a uniform

policy across countries. This assumption simplifies the analysis but overlooks the significant

variations in climate policies and economic conditions across different countries. Taking

into account country heterogeneity in climate policies, Hoel (2011) focuses on carbon taxes

and subsidies as policy tools, without considering CCS technologies. In another related

study, Hoel and Jensen (2012) consider CCS and carbon taxation within a two-period model

where the length of each stage is predetermined. In contrast, our paper considers a more

dynamic approach by making the length of the stage an endogenous choice made by the

late-entrant country. This distinction allows for a more nuanced understanding of how

heterogeneous countries might strategically time their CCS initiatives in response to global

climate challenges.

The work most closely related to ours is Bertinelli et al. (2014), who were the first
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to introduce a differential game into the economic analysis of CCS. In their study, two

competing countries decide on the level of effort to undertake to capture and store CO2. But

in this early framework, they only study symmetric outcomes where both countries engage

in CCS activities simultaneously. The study does not account for heterogeneity among

countries, and the timing of employing CCS is taken as given. Furthermore, they also take

pollutant emissions as given and thus ignore the trade-off between the use of CCS, i.e., the

effort to improve the abatement rate, and emissions reductions. Benchekroun and Mart́ın-

Herrán (2016) consider asymmetry by investigating the impact of foresight and myopia in

countries facing transboundary pollution issues. Generally, CCS costs depend not only on

the technological development level of each country but also on other factors, such as regional

geological and geographical conditions(Ferrari et al., 2019; Global CCS Institute, 2023b).

3 The game and Markovian perfect equilibrium

3.1 The game

Consider two players denoted by i and j. Denote player k’s (k = i, j) instantaneous rate of

emissions as Ek(t). Both players produce a final good with a polluting resource as the only

input. The players face an emission-consumption trade-off since they can obtain utility from

the consumption of this final good, but at the same time, the production process generates

pollution such as CO2 which yields disutility.

Pollution is of a transboundary nature in the sense that the two neighboring countries

share the same CO2 pollution state, y(t), whose evolution is given by the following equation:2

ẏ(t) = Ei(t) + Ej(t)︸ ︷︷ ︸
emissions

− β(xi(t) + xj(t))︸ ︷︷ ︸
abatement by CCS

− δy(t)︸ ︷︷ ︸
nature’s absorption

, t ∈ [0,∞), (1)

where the initial condition y(0) = y0 is given and the parameter δ ∈ [0, 1) measures the

natural absorption rate of CO2 in the atmosphere. xk is the quantity of CO2 emissions

captured by country k, i.e., the CCS technology’s instantaneous abatement rate in country

k, and β(> 0) denotes its unit abatement efficiency.

The objective of country k(= i, j) is to choose the emissions rate, Ek(t), and the abate-

ment rate, xk(t)(≥ 0), that maximize its welfare, Wk:

Wk = max
xk,Ek

∫ ∞

0

e−rt
[
Uk(Ek, xk)−Dk(y)

]
dt = max

xk,Ek

∫ ∞

0

e−rt [Uk(Ek)− Ck(xk)−Dk(y)] dt

(2)

subject to the motion of the pollution stock (1). Here, the parameter r ∈ (0, 1) is the

constant social discount rate which we assume to be the same for both countries. While

2Bertinelli et al. (2014); Dockner and Van Long (1993); Schumacher and Zou (2008) and Boucekkine
et al. (2023) employ a similar pollution accumulation process.
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this assumption simplifies the analysis, as discount rates can indeed vary across coun-

tries and influence decision-making, the quantitative results remain. The utility function

Uk(xk, Ek) represents the combined utility of pollution emissions (generated from the fi-

nal goods production) and CCS abatement. We assume separability of the utility function:

Uk(xk, Ek) = Uk(Ek)−Ck(xk). Here Uk(Ek) denotes benefit derived from production (equiv-

alently, emissions, due to the emission–consumption trade-off), which is strictly increasing

and concave with respect to emissions: U ′
k = dUk

dEk
> 0, U ′′

k < 0. On the other hand Ck(xk)

represents the cost associated with CCS deployment, which is strictly increasing and convex

with respect to the amount of abatement: C ′
k(xk) ≥ 0, C ′′

k (xk) ≤ 0 and Ck(0) = 0. In other

words, no cost are incurred when no abatement is undertaken, while increasing efforts are

needed for CCS deployment as the level of captured CO2 increases (Bertinelli et al., 2014;

Moreaux et al., 2024). Pollution damage is denoted by the function Dk(y), which is strictly

increasing with Dk(0) = 0. The accumulated pollution stock may affect the two players

differently.

In this paper, we consider only the subgame perfect Markovian Nash equilibrium in the

sense that the optimal choices (Ek and xk) of player k = i, j, depend on the pollution state:

Ek = Ek(y, t) and xk = xk(y, t) for ∀(y, t). More precisely,

Definition 1 (Markovian Perfect Nash Equilibrium, MPNE) The 2-tuple ((Ei, xi), (Ej, xj))

of functions (Ek, xk) : R+ × [0,∞) → R2
+ for k = i, j, is called a Markovian Nash equilib-

rium if, for each k ∈ {i, j}, an optimal control path (E∗
k , x

∗
k) of the above optimal con-

trol problem (2) subject to (1) exists and is given by the following Markovian strategy:

E∗
k(t) = Ek(y(t), t), x

∗
k(t) = xk(y(t), t), for all t ≥ 0. If, furthermore, the Markovian Nash

equilibrium holds for all (y, t) ∈ R+× [0,∞), then the equilibrium is also called a Markovian

(subgame) perfect Nash equilibrium.

3.2 The trigger condition of CCS

Given that the game described above is defined over an infinite time horizon and is au-

tonomous, following Kamien and Schwartz (2012)3, we can directly study the stationary

solutions. Denote the stationary Bellman value function of player k = i, j as Vk(y) for any y

with V ′
k(y) < 0; then Vk must satisfy the following Hamilton-Jacobi-Bellman equation (HJB

hereafter):

rVk(y) = max
Ek,xk

[Uk(Ek)− Ck(xk)−Dk(y) + V ′
k(y)[Ei + Ej − β(xi + xj)− δy]] ; xk ≥ 0, (3)

with the catching up transversality condition

lim
t→∞

e−rtVk(y(t)) ≤ 0.

3Generally, the value function Vk depends not only on the state variable y but also on time t. Kamien
and Schwartz (2012, p.238) demonstrate that if time enters the objective function only through the discount
term, then the value function does not depend on time t explicitly.
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For the above maximization problem, we consider only strictly concave value functions, i.e.,

V ′′
k (y) < 0. The first-order optimal conditions yield that for player k = i, j,

U ′
k(Ek) = −V ′

k(y)(> 0), k = i, j, (4)

and the Kuhn-Tucker conditions yield, for k = i, j,

xk(y) =

{
0 if C ′

k(0) ≥ −βV ′
k(y)(> 0),

(C ′
k)

−1(−βV ′
k(y)) > 0 if C ′

k(0) ≤ −βV ′
k(y),

(5)

where (C ′
k)

−1 is the inverse of the marginal deployment cost, and (V ′
k)

−1 is the inverse of the

marginal Bellman value function.

The trigger condition (5) functions similarly to Tobin’s Q, determining whether or not to

invest in CCS, depending on the marginal cost and the discounted marginal value. Note that

the right hand side of the trigger condition (5), −βV ′
k(y), is increasing in the accumulated

pollution level y since V ′
k(y) < 0. At low levels of pollution, the marginal costs of deploying

CCS outweighs the marginal benefits. However, as pollution accumulates, the threshold

for CCS deployment may be triggered. Of course, this threshold is country-specific and

depends on a country’s economic and technological development as well as the efficiency of

the deployed CCS technology.

Rewriting the trigger condition, we find that player k will initiate CCS deployment only

when the pollution level reaches the threshold

yk ≡ (V ′
k)

−1

(
−C ′

k(0)

β

)
. (6)

Condition (6) can also be interpreted as the carbon budget, i.e., the maximum amount of

CO2 that can be emitted within the framework of climate goals, or, as a condition for ceasing

CCS. More precisely, when emissions are sufficiently low – such that the natural absorption

capacity of the environment is sufficient to absorb the emitted CO2 – the accumulated

pollution will decrease to the point where the first inequality condition in (5) holds. In

such cases, CCS deployment can be ceased. This scenario could occur, for example, when

renewable energy sources dominate the energy supply and the dependence on fossil fuels is

reduced to a minimum (Moreaux et al., 2024).

Combining the optimal conditions (4) and (5), we can derive two key insights: First, the

decision to deploy CCS is determined by the carbon budget and is triggered by the level of

accumulated pollution, which is influenced by the contribution of both players, due to the

transboundary nature of pollution. Second, once CCS is triggered, player k’s deployment

fulfills the following condition:

C ′
k(xk) = βU ′

k(Ek). (7)

Applying the implicit function theorem, (4) implies that dEk

dy
= − V ′′

k (y)

U ′′
k (Ek)

< 0, indicating
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that the optimal emission level decreases as accumulated pollution increases. Similarly, with

CCS deployment in place, equation (5) shows that dxk

dy
= − V ′′

k (y)

C′′
k (xk)

> 0, meaning that CCS

deployment increases as the pollution stock rises, which is rather straightforward. Combining

these two effects, the seemingly counter intuitive result from (7), dxk

dEk
=

βU ′′
k (Ek)

C′′
k

< 0, makes

sense. More precisely, emissions Ek decrease only with increasing pollution accumulation,

which in turn requires a higher level of CCS deployment.

Nonetheless, it is important to note that there is no guarantee that the players with lower

CCS deployment costs will or should start CCS project first, as the pollution damage cost

also plays a role. This can be seen from the trigger condition given by equation (6), where

the value function has arguments of both pollution damage and deployment costs.

3.3 The Markovian Nash Equilibrium

By applying Theorem 4.4 of Dockner et al. (2000), the above first-order condition and the

accompanying analysis – where the second-order optimality conditions also hold – yield the

following straightforward results:

Proposition 1 For the above differential game,

(a) ((E∗
i (y), x

∗
i (y)), (E

∗
j (y), x

∗
j(y))), for any y ≥ 0, form a Markovian subgame perfect Nash

Equilibrium, where E∗
k(y) and x∗

k(y) are given by (4) and (5), respectively, , with k =

i, j, and Vi, Vj are the solutions of the HJB equation system (3) ;

(b) the equilibrium level of emissions E∗
k(y) is monotonically decreasing in the level of

accumulated pollution, y;

(c) the optimal level of CCS abatement x∗
k(y) is monotonically increasing in the level of

accumulated pollution, y, if not zero.

As mentioned above, the differential game is autonomous and defined over an infinite

time horizon. Consequently, the starting time of the game is less important; instead, the

starting state is of interest. Hence, we define the start of the game as the point at which

one of the two players initiate CCS deployment. If the two countries are identical, they

would both deploy CCS simultaneously. In the following, we consider heterogeneity between

countries. Without loss of generality, we assume

Assumption 1

y0 ≡ yi < yj,

meaning that player i triggers CCS deployment before player j. The game starts at the

moment when player i deploys CCS.
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3.4 Stop CCS deployment

Given the suggestions of Van der Ploeg and Withagen (2012) and Moreaux et al. (2024),

among others, ceasing CCS operations can be an optimal choice under specific conditions. In

this subsection, we explore this possibility from two perspectives: first, whether CCS, once

initiated, continues indefinitely; and second, whether CCS operations are only temporary,

meaning that CCS is phased out in the long term.

The pollution accumulation equation (1) yields that the long-run steady state is deter-

mined by the solution of

E∗
i (y) + E∗

j (y) = β(x∗
i (y) + x∗

j(y)) + δy. (8)

The left-hand-side is strictly decreasing in y, while the right-hand-side is strictly increasing.

Consequently, the long-run steady state is the intersection of the two curves. The following

result, whose proof is given in Appendix A.1, is straightforward:

Proposition 2 Let Assumption 1 hold.

(1) Suppose the following inequality holds:

E∗
i (y0) + E∗

j (y0) > βx∗
i (y0) + δy0, (9)

then there is one and only one long-run pollution steady state yss, which checks yss >

y0 = yi. Furthermore,

(1.a) player i will never stop CCS deployment;

(1.b) the steady state of pollution, yss, varies depending on whether player j deploy

CCS or not:

(1.b.1) player j never stops CCS once she triggers the deployment, then yss > yj,

(1.b.2) player j never triggers CCS if and only if yss < yj,

(2) If the opposite direction of the inequality (9) holds, CCS will never be triggered.

When player i initiates CCS, i.e., inequality (9) holds, initially, the joint optimal emission

level is higher than the combined abatement efforts, which includes both natural absorption

and player i’s capture and storage level. Consequently, in the short term, pollution accu-

mulation levels will continue to increase. However, this process will not last forever since

joint emissions, E∗
i (y) + E∗

j (y) decrease with accumulated pollution y, while the aggregate

abatement efforts, βx∗
i (y) + δy, increase with y, regardless of whether player j implements

CCS or not. This trend will not stop until the system reaches the long-run steady state, i.e.,

ẏ = 0. In this process, if player j initiates the use of CCS, as depicted in case (1.b.1), she

will not have the option to cease CCS deployment. Nonetheless, it may happen that player

j never deploys CCS, as in case (1.b.2), a scenario which of course will postpone the time
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to reach the steady state. This may happen if player j is either less affected by pollution

accumulation or finds CCS deployment too costly.

The second part of the proposition is straightforward. When CO2 emissions are below

nature’s self-absorption capacity, CCS is not needed. This situation can occur in two distinct

scenarios: during the early stages of industrialization, when pollution levels are relatively

low, or in later stages of development, when the energy supply is predominantly non-fossil,

thus reducing emissions to a level where they no longer pose a significant problem.

The above Proposition 2 provides a different capture regime compared to the recent

contribution of Moreaux et al. (2024), who consider partial CCS and the interchangeable

use of CCU and CCS, depending on the carbon budget and the initial stock, with CCS

potentially being a temporary measure4. The reason is that our analysis does not incorporate

alternative energy consumption options, such as the transition from fossil fuels to renewable

energy sources, or the substitution between CCS and CCU, as in Van der Ploeg andWithagen

(2012) and Moreaux et al. (2024). This means that the emission level, which determines the

production of the final goods, can not be reduced to a level that is too low. However, when

considering the possibility of transitioning to renewable energy, it is plausible that CCS could

be utilized only temporarily, that is, before the pollution stock reaches the carbon budget.

Arguably, the above results rely essentially on the trigger condition (6), which is defined

by the value function from the HJB equation system (3). Without specifying functional

forms for utility, cost and damage, it is impossible to shed more light on the value function.

To better illustrate the results from the two propositions, we will employ linear-quadratic

functions (Benchekroun and van Long, 1998; Bertinelli et al., 2014; Boucekkine et al., 2023;

Dockner and Van Long, 1993; Moreaux et al., 2024) in the subsequent analysis.

With linear-quadratic functional forms, we can derive explicit conditions that determine

when both players will deploy CCS and the timing when the second player’s CCS initiation.

Furthermore, we also provide conditions under which only one player deploys CCS.

4 The linear-quadratic example

In this section we consider the following linear-quadratic functional forms : for k = i, j,

Uk(Ek) = akEk −
E2

k

2
, Ck(xk) = bk xk +

x2
k

2
and Dk(y) =

cky
2

2
,

where the positive constant productivity parameter ak, measuring the efficiency that converts

carbon emissions into the consumption good, is sufficiently large. The parameter bk denotes

the unit investment cost of CCS, including, for example, the development of country-specific

technologies, the installation of infrastructure or the maintenance costs. The parameter ck

4Moreaux et al. (2024) show that if CCS and CCU are both used over the planning period, the social
planner first uses CCU, then stops with capturing CO2 and starts using CCS once the carbon budget is
exhausted.
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represents the unit environmental damage cost. For simplicity we assume that ai = aj = a,

bk, ck > 0. Thus, the objective function becomes:

Wk = max
xk,Ek

∫ ∞

0

e−rt

 aEk −
E2

k

2︸ ︷︷ ︸
individual utility

−
(
bk xk +

x2
k

2

)
︸ ︷︷ ︸
CCS abatement cost

− ck y
2

2︸ ︷︷ ︸
pollution damage

 dt, (10)

and the HJB equation (3) for player k is

rVk(y) = max
Ek,xk

[
aEk −

E2
k

2
− ck y

2

2
−
(
bk xk +

x2
k

2

)
+V ′

k(y)[Ei + Ej − β(xi + xj)− δy]] ; xk ≥ 0,

(11)

with the transversality condition

lim
t→∞

e−rtVk(y(t)) ≤ 0.

The first-order optimal conditions yield that for player k = i, j,

Ek = a+ V ′
k(y), (12)

and the Kuhn-Tucker conditions yield

xk =

{
0, if bk + βV ′

k(y) ≥ 0,

−(bk + βV ′
k(y)) > 0 if bk + βV ′

k(y) ≤ 0.
(13)

Thus, the CCS trigger condition indicates that player k will initiate CCS only if the pollution

level reaches

yk = (V ′
k)

−1

(
−bk
β

)
, (14)

To simplify the analysis and without loss of generality, we denote the player with the lower

CCS deployment cost as player i and make the following assumption:

Assumption 2 For all x > 0, Ci(x) ≤ Cj(x), i.e., player i’s deployment costs are lower

than player j’s costs, for any level of CCS deployment.

With the linear-quadratic form, Assumption 2 is simply reduced to bi ≤ bj.

At first sight, the trigger condition in (13) appears to depend solely on the cost-effectiveness

ratio, bk/β. However, the heterogeneity across countries is twofold: it includes both the unit

cost of CCS deployment, bk, and the pollution damage cost, ck. Arguably, lower CCS costs

do not necessarily result in earlier CCS deployment, as the value function also depends on

the pollution damage cost ck.

In the following we need to distinguish among three different cases:

12



(C.1) ci = cj > 0;

(C.2) 0 = cj < ci;

(C.3) cj > ci = 0.

In order to provide explicit solutions, we normalize the smaller damage parameter to 0,

which reduces the problem to a polar case. Another polar case is when the damage costs

are symmetric for both players. The general case of asymmetric damage is, of course, in

between these two polar cases.

In the following sections, we first consider (C.1) and (C.2): Either the pollution damage

is the same for both countries (C.1) or higher for the technologically more advanced country

(C.2). We then investigate (C.3), where the technologically more advanced country has

smaller or zero environmental damage costs. In Subsection 4.3, we will also numerically

illustrate the more general cases, in between these two polar cases.

4.1 Period II: both players engage in CCS

We define period II as the stage at which both players engage in CCS. In this section, we

focus on the optimal strategies in period II. Naturally, period II only exists if the late-entrant

player actually implements CCS in finite time. In this section, we assume that this is true

and examine under what conditions period II exists. Subsection 4.2 examines the optimal

timing for the late-entrant player to initiate CCS deployment.

4.1.1 Symmetric damage: ci = cj > 0

We use the subscript s to denote this symmetric case. With the affine-quadratic functional

forms and the autonomous system defined over an infinite time horizon, the following results

can be directly derived. The detailed proof is provided in the Appendix A.2.

Proposition 3 (Existence of an affine MPE ) Suppose that the unit pollution damage cost

is identical for the two players, ci = cj ≡ c > 0, and that there exists a finite time point

Ts ∈ [0,∞) from which both players start engaging in CCS deployment. Then, for all t > Ts

and for all y,

(C1-1) there exists a unique affine Markovian subgame perfect Nash equilibrium , characterized

by {
x∗
s,k(y) = −bk − β(Bs + Csy),

E∗
s,k(y) = a+Bs + Csy

k = i, j, (15)

where

Cs =
r + 2δ −

√
(r + 2δ)2 + 12c(1 + β2)

6(1 + β2)
(< 0), Bs =

[2a+ β(bi + bj)]Cs

(r + δ)− 3(1 + β2)Cs

(< 0);
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(C1-2) the corresponding optimal pollution accumulation is given by

ys(t) = [y(Ts)− y∗s ] e
(2(1+β2)Cs−δ)t + y∗s ,

which converges asymptotically to its long-run steady state, y∗s , given by

y∗s =
2a+ β(bi + bj) + 2(1 + β2)Bs

δ − 2(1 + β2)Cs

=
(2a+ β(bi + bj))

[√
(r + 2δ)2 + 12c(1 + β2) + 5r + 4δ

]
4δ(r + δ) + 12c(1 + β2) + δ(

√
(r + 2δ)2 + 12c(1 + β2) + r)

,

with the convergence speed given by δ − 2(1 + β2)Cs;

(C1-3) the corresponding stationary value functions are

Vs,k(y) = As,k +Bsy +
Csy

2

2
, k = i, j, (16)

where

As,k =
a2 + b2k

2r
+

[2a+ β(bi + bj)]Bs

r
+

3(1 + β2)

2r
B2

s .

In the following, we assume a > −(Bs+Csy
∗
s) ensuring that the optimal emissions E∗

s,k > 0

at any time. It is evident that for any given pollution level y, the player with lower CCS

costs (bi < bj) contributes more to CO2 abatement (x∗
i > x∗

j). A player’s optimal emissions

level involves two parts: production efficiency a and pollution damage costs c. When c = 0 –

indicating that pollution damage costs are negligible – Cs = 0 and Bs = 0, and the optimal

emissions level depends only on the production efficiency parameter a. However, when

pollution damage costs are not negligible, the optimal emissions level must take into account

those costs. Consequently, efforts must be made to reduce pollution emissions Bs +Csy < 0

for all y.

We now investigate the impact of the unit pollution damage cost on E∗
s,k, x

∗
s,k and y∗s .

It is straightforward to show that the optimal emissions decrease with an increase in the

unit pollution damage cost: ∂E∗
s,k/∂c < 0. The optimal level of abatement increases and

the long-run level of accumulated pollution decreases with the unit pollution damage cost:

∂x∗
s,k/∂c > 0, ∂y∗s/∂c < 0.

As mentioned in the Introduction, CCS deployment can be very costly. Naturally, the

higher the cost of deploying CCS, the lower the optimal abatement rate of both players,

∂xs,k/∂bk < 0. When CCS costs become excessively high, both players will prefer to re-

duce emissions directly rather than investing in abatement technologies in order to stabilize

pollution accumulation, as reflected by ∂E∗
s,k/∂bk < 0. However, relying solely on emission

reductions does not fully offset the lack of abatement leading to an increase in long-term

pollution accumulation, as shown by ∂y∗s/∂bk > 0. This suggests that if transitioning to

renewable energy is costly, CCS may be an alternative approach to achieving carbon neu-
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trality.

To foster CCS deployment, governments can take several strategic actions to reduce the

costs of CCS, such as providing subsidies or investing in R&D projects.5 The dependence

of CCS adoption on deployment costs and climate change damages aligns with the existing

literature (Amigues et al., 2016; Moreaux and Withagen, 2015).

For simplicity, we define yk ≡ y(Tk), where Tk denotes the time at which player k initiates

CCS and yk represents her pollution stock at that time. We define yk as player k’s trigger

threshold, above which player k starts to initiate CCS. Taking into account the trigger

condition (14), it follows that at yk, player k’s marginal value function must satisfy

V ′
k(y) = Bs + Csyk = −bk

β
. (17)

In other words, yk = −bk/β +Bs

Cs

, k = i, j. It is straightforward to show that

∂yj
∂bi

= − β

r + δ − 3(1 + β2)Cs

< 0;
∂yj
∂bj

= − 1

βCs

(
r + δ − (3 + 2β2)Cs

r + δ − 3(1 + β2)Cs

)
> 0.

Furthermore, taking the derivatives on both sides of (17), it follows that

dV ′
j (ys)

dβ
=

V ′′
j (ys)∂ys

∂β
=

bj
β2

> 0.

By construction, the value function is strictly concave, thus ∂ys/∂β < 0.

We conclude the above analysis with the following proposition:

Corollary 1 Under the assumption of Proposition 3, the following holds:

• higher CCS costs will postpone a player’s deployment of CCS: ∂yk/∂bk > 0, for k = i, j,

• but higher rival-player costs or higher CCS efficiency will expedite one’s own CCS

deployment.

Furthermore, by Assumption 2

yj − yi =
bi − bj
Csβ

≥ 0.

5The EU has already financed various research projects related to CCS, including the Accelerating CCS
Technologies (ACT) project aiming at accelerating the development of CCS technologies. Additionally, the
Steelanol project, funded by the EU’s Horizon 2020 program, seeks to develop a low-carbon steel production
process using CCU technologies. The CEMCAP project focuses on developing post-combustion CO2-capture
technologies for the cement industry. In the United States, the Department of Energy has supported the
Carbon Storage Assurance Facility Enterprise (CarbonSAFE) initiative, which aims to develop and deploy
commercial-scale CCS facilities that can safely and permanently store large volumes of carbon dioxide emis-
sions. Another example of a government-supported CCS project is the Petra Nova project, which was the
world’s largest post-combustion carbon-capture facility when it began operating in 2017.
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Thus, player i will be the first to trigger CCS projects. In other words, if pollution damage

costs are symmetric for both players, the player with the lower CCS deployment costs will

intitiate the CCS project first. By definition, the game starts when one of the players triggers

CCS deployment; it follows that the initial pollution stock is given by

y0 = −bi/β +Bs

Cs

.

To show the trigger condition for the late-entrant player to deploy CCS under symmetric

costs, let us denote ys ≡ yj and Ts ≡ Tj. Thus, the trigger condition for the late-entrant

player can be expressed as:

ys = −bj/β +Bs

Cs

. (18)

Two special cases deserve further consideration: (1) In the long-run, y∗s < ys. This means

that, due to both emission reductions and abatement efforts, the long-run pollution level is

reduced to below the trigger threshold of player j. In that case, at a certain moment player

j may suspend CCS deployment. If the pollution stock continues to decrease, player i may

also suspend CCS deployment. Conversely, if (2) y∗s > ys, CCS deployment continues until

the accumulated pollution stock reaches the long-run steady-state level y∗s .

In the remainder of this study, we focus on determining the optimal timing for player

j to initiate CCS deployment, rather than the optimal timing for player j to suspend CCS

operations. Therefore, our analysis is restricted to the case where CCS deployment, once

started, is maintained. For this purpose, the following assumption is imposed:

Assumption 3 Suppose the initial and long-run pollution stocks satisfy

(y0 ≤) ys < y∗s .

It is worth noting that this assumption imposes constraints on the parameters rather than

on the (endogenous) state variable, y(t).

4.1.2 The case of extreme asymmetric damage: ci > 0 and cj = 0

We use the subscript e to denote this extreme asymmetric case. Suppose there exists a finite

time Te ∈ (0,∞) such that, from Te onwards, both players engage in CCS deployment. If we

impose a non-negativity constraint on CCS, player j’s optimal strategy is xj = 0, as shown

in the Appendix A.2. In other words, player j will never initiate CCS deployment if her

welfare is not harmed by the accumulated pollution stock.6 The optimal strategies for the

players are summarized in proposition 4, the proof of which is given in the Appendix A.2.

6If we do not impose the non-negativity constraint on CCS, the optimal strategy of player j, who does
not suffer from the pollution stock, would theoretically be xj = −bj < 0, which is an unrealistic situationas
is shown in the Appendix A.2.
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Proposition 4 Suppose the unit pollution damage costs are ci > 0 and cj = 0, and that

there exists a finite time Te ∈ [0,∞) such that from Te onwards both players engage in CCS

deployment. Then, for all t > Te and for all y,

(C.2-1) there exists a unique affine Markovian subgame perfect Nash equilibrium given by{
x∗
e,i(y) = −bi − β(Be,i + Ce,iy), x∗

e,j(y) = 0,

E∗
e,i(y) = a+Be,i + Ce,iy, E∗

e,j(y) = a,
(19)

where

Ce,i =
r + 2δ −

√
(r + 2δ)2 + 4(1 + β2)ci
2(1 + β2)

(< 0), Be,i =
[2a+ β(bi + bj)]Ce,i

(r + δ)− (1 + β2)Ce,i

(< 0);

(C.2-2) the corresponding optimal pollution accumulation is given by

ye(t) = [y(Te)− y∗e ] e
((1+β2)Ce−δ)t + y∗e ,

which converges asymptotically to its long-run steady state, y∗e , given by

y∗e =
2a+ βbi + (1 + β2)Be,j

δ − (1 + β2)Ce,i

=
(r + δ)(2a+ βbi)

δ(r + δ) + (1 + β2)ci
,

with the convergence speed δ − (1 + β2)Ce,i;

(C.2-3) the corresponding stationary value functions are

Ve,i(y) = Ae,i +Be,iy +
Ce,iy

2

2
(20)

and

Ve,j(y) = Ae,j =
a2

2r
, (21)

where

Ae,i =
a+ b2i
2r

+
2a+ β(bi + bj)

r
Bi +

1 + β2

2r
Bi

2.

It is not surprising that player j emits more CO2 emissions than player i, given that the

pollution damage cost of player j is smaller than that of player i. Additionally, x∗
e,i(y) > 0

if bi < −β(Be,i + Ce,iy), a condition we assume to hold. Consequently, in this asymmetric

case, Te = +∞, meaning that player j will not initiate CCS deployment within a finite time

frame.

In a more general scenario where the asymmetric pollution damage costs satisfy 0 < cj <

ci, the results should lie between the two corner cases discussed above. In this scenario, the

player who suffers more from pollution damage will make greater efforts to reduce emissions

and will deploy CCS earlier. Conversely, the player who suffers less from the pollution

damage will contribute less to pollution control efforts.
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4.1.3 Alternative extreme asymmetric damage case: ci = 0 and cj > 0

In this scenario, combined with Assumption 2, we consider an alternative possibility where

player j faces both higher CCS deployment costs and higher pollution damage costs. This

is in line with Greenstone and Hanna (2014), Landrigan et al. (2018), and Greenstone and

Jack (2015) which highlight the highly uneven distribution of environmental damage across

nations and regions. Lower-income populations are often disproportionately exposed to and

affected by pollution externalities, as noted by Hsiang et al. (2019); Rentschler and Leonova

(2023) and the World Economics Forum7.

Theoretically, we can apply the same calculations as outlined in the Appendix A.2 to

analyze this extreme asymmetric case. However, in this scenario, player i does not initiate

CCS projects. Instead, player j, who faces higher CCS costs and suffers more from pollution

accumulation, becomes the only player to deploy CCS. This finding is consistent with Green-

stone’s conclusion that substantial emission reductions in non-OECD countries are crucial

to limiting climate change, regardless of the actions taken by OECD countries. Low-income

countries often bear high abatement costs, given their willingness to pay (Greenstone and

Jack, 2015).

It’s important to note that low-income countries differ from developed countries in various

ways, including regulatory frameworks, access to health care, initial pollution stocks, and

population health. Consequently, the impacts of pollution in developing countries are also

likely to be different (Arceo et al., 2016; Currie et al., 2014; Graff Zivin and Neidell, 2013;

Greenstone and Jack, 2015). All these factors contribute to their willingness to invest in

improving the environmental quality.

However, as noted in the Introduction and based on current CCS deployment facts (Sec-

tion 2.2), most CCS projects are concentrated in developed economies such as the US and

EU countries, or in rapidly developing countries such as China. Conversely, less developed

economies — often characterized by lower per capita CO2 emissions — tend to lack CCS

mitigation initiatives. While low emissions play a role in this disparity, willingness to pay

for such technologies is another key factor. For countries that are less directly affected by

pollution, their commitment to CCS often depends on financial considerations.

In the context of transboundary pollution control, more developed economies generally

show a greater willingness and capacity to reduce CO2 emissions and to transition to re-

newable energy sources. In contrast, less developed economies tend to prioritize economic

growth and development over environmental concerns.

Interestingly, although player i experiences less direct pollution damage, she may be

more concerned about transboundary pollution than player j. At the aggregate level, player i

should attach greater importance to pollution damage, taking into account not only the direct

damage but also the indirect effects, the transboundary consequences, and the long-term

effects. This perspective is consistent with the findings discussed in the previous subsection.

7See https://www.weforum.org/agenda/2023/01/climate-crisis-poor-davos2023/.

18



4.1.4 Free riding scenarios

Before concluding this section, we investigate which of the two scenarios discussed above

is more prone to free-riding behavior. To make the comparison feasible, we focus on the

case where the total pollution damage in each scenario is the same: cs,i = cs,j = c in the

symmetric case and ce,i = 2c, ce,j = 0 in the extreme asymmetric case. We thus have

Ce,i =
r + 2δ −

√
(r + 2δ)2 + 8(1 + β2)c

2(1 + β2)
, Ce,j = 0.

It is straightforward to show that Ce,i < Cs, Be,i < Bs, and in turn the emission levels and

abatement efforts of each country in the two cases can be ranked accordingly:

E∗
e,i(y) < E∗

s,i(y) = E∗
s,j(y) < E∗

e,j(y),

x∗
e,i(y) > x∗

s,i(y) ≥ x∗
s,j(y) > x∗

e,j(y), ∀y.

Country i, which faces higher pollution damage costs, emits less compared to each country

in the symmetric damage cost scenario. The emissions of both countries in the symmetric

case are lower compared to the emissions of country j facing ce,j = 0. This is because the

country facing higher pollution damage costs will make greater efforts to reduce pollution,

while the country facing lower damage costs has less incentive to reduce emissions. Moreover,

the country with lower implementation costs (i.e., country i) always abates more than its

counterpart, regardless of the damage cost structure. Not surprisingly, country i (resp.

country j) emits more and abates less in the symmetric (resp. asymmetric) case.

It can be verified that Ce,i < 2Cs, Be,i < 2Bs, and in turn the aggregate emissions in the

two cases satisfy

Ee,i + Ee,j = 2a+Be,i + Ce,i y < 2Es,k = 2a+ 2Bs + 2Csy,

while the aggregate CCS abatement levels satisfy

xe,i(y) + xe,j(y) = −bi − βBe,i − βCe,iy > xs,i(y) + xs,j(y) = −bi − bj − 2βBs − 2βCsy, ∀y.

For the same pollution stock y, total emissions are higher and total abatement is lower in

the symmetric case than in the asymmetric case, indicating that a free-riding mechanism

is at work under symmetry. This finding is consistent with the results of Boucekkine et al.

(2023) and Dutta and Radner (2009), who demonstrate that symmetry often leads to more

intensive free riding. It is also consistent with the literature on unilateral pollution control

commitments, which shows that unilateral emission reductions can lead to lower cumulative

emissions in the long run (Bertinelli et al., 2018; Hoel, 1991; Zagonari, 1998, etc.).
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4.2 Existence of Period I and threshold reachability conditions

We now investigate whether player j actually triggers CCS in finite time, as assumed in

Proposition 3. More precisely, we investigate under which conditions a finite trigger time

T < +∞ exists, and analyze the players’ optimal strategies in period I. Note that if no

such finite time T exists, the two-period game is reduced to a single-period optimal control

problem for the only player deploying CCS. Arguably, if player k experiences no pollution

damage, as stated in Proposition 4, this player will never trigger CCS deployment.

In this section, we focus on the symmetric damage-cost situation: ci = cj > 0.

4.2.1 Threshold reachability conditions

Looking for optimal choices for the differential game in Period I is equivalent to looking for

a solution to HJB equation (11) with the terminal condition at y. Given that xj = 0 in the

first period, player i’s HJB equation is

rVi(y) = max
Ei,xi

[(
aEi −

E2
i

2
− ci y

2

2

)
−
(
bi xi +

x2
i

2

)
+V ′

i (y)[Ei + Ej − βxi − δy]] , ∀t ∈ [0, T ],

(22)

where the terminal condition Vi(y) is given by (16) with k = i and ci = cj ≡ c.

Thus, taking Ej as given, the first-order condition with respect to player i’s optimal

emission level and abatement rate yields, ∀y, ∀t ∈ [0, T ]:

Ei(y) = a+ V ′
i (y) and xi = −bi − βV ′

i (y). (23)

Similarly, player j’s HJB equation can be simplified as

rVj(y) = max
Ej

[
aEj −

E2
j

2
− cj y

2

2
+ V ′

j (y) [Ei + Ej − βxi − δy]

]
, ∀t ∈ [0, T ], (24)

where the terminal condition Vj(y) is given by (16) with k = j and ci = cj ≡ c.

Thus, player j’s optimal emission choice is, ∀y, ∀t ∈ [0, T ],

Ej(y) = a+ V ′
j (y). (25)

Substituting each player’s optimal choices above into the right hand side of their HJB

equations, we obtain the following equivalent HJB equations:
rVi =

a2 + b2i
2

+ (2a+ βbi)V
′
i +

(1 + β2)

2
(V ′

i )
2 + V ′

i V
′
j − δyV ′

i −
ciy

2

2

rVj(y) =
a2

2
+ (2a+ βbi)V

′
j +

(V ′
j )

2

2
+ (1 + β2)V ′

i V
′
j − δyV ′

j −
cjy

2

2
.

(26)

20



To solve the above system of value functions, we take the derivatives with respect to

y on both sides of the two HJB equations and denote the marginal value functions by

Pi(y) = V ′
i (y), Pj(y) = V ′

j (y). The HJB equations above can then be rewritten as [(1 + β2)Pi + Pj − δy + (2a+ βbi)]P
′
i (y) = (r + δ − P ′

j)Pi + ciy,

[(1 + β2)Pi + Pj − δy + (2a+ βbi)]P
′
j(y) = (r + δ − (1 + β2)P ′

i )Pj + cjy,
(27)

which are nonlinear differential equations of the marginal value functions, Pi(y) and Pj(y).

The terminal conditions of the differential equations system (27) are given by the con-

tinuity of the shadow values at the switching times (Boucekkine et al., 2013; Makris, 2001;

Tomiyama, 1985):

Pi(y) = V ′
i (y) = Bi + Ciy; Pj(y) = V ′

j (y) = Bj + Cjy (28)

and Vi(y) is given by (16) with k = i and Vj(y) is given by (16) with k = j and c1 = c2 = c.

For a more general situation 0 ≤ ci, cj < +∞ and ci ̸= cj, the explicit forms of the MPEs

are difficult to obtain. Nonetheless, the HJB equation systems for the value functions are

the same as in (26), or equivalently in (27). We will solve the general asymmetric case in

the numerical section.

If we can solve the marginal value system (27) embodied in the terminal condition (28)

for Pi(y) and Pj(y) with y0 ≤ y ≤ y, and then substitute Pi(y) and Pj(y) into the system

(26), the value functions Vi(y) and Vj(y) can be obtained by solving

Vk(y) = Vk(y)−
∫ y

y

Pk(y(s))ds, k = i, j, ∀y ∈ [y0, y].

Having obtained the above results, we can further investigate (a) whether player j triggers

CCS deployment in finite time and (b) if j does trigger CCS, the timing Tj, and the optimal

choices of both players in this period.8

Given the optimal emissions Ei and Ej and player i’s abatement rate, xi, there are

two possible scenarios: (1) the pollution accumulation level is not high enough in finite

time to prompt player j to start deploying CCS; (2) the pollution stock continues to grow

and eventually reaches the trigger threshold y. In other words, according to the pollution

accumulation equation evaluated at y, if

ẏ(y) = Ei(y) + Ej(y)− βxi(y)− δy ≤ 0, (29)

the trigger threshold y is never reached. The reason for this is straightforward. Equation

(29) indicates that before y is reached, the pollution stock has already reached its long-run

steady state, given by ẏ = 0, and is asymptotically stable. Thus, either y is the steady state

8In the Appendix A.3, we demonstrate the reachability conditions.
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that can only be reached asymptotically, or it is unattainable. However, if the sign in (29)

is reversed, the pollution accumulation stock has not yet reached its long-run steady state

before the threshold level y is reached. In this case the trigger threshold will be reached in

finite time. The following reachability conditions are detailed in Appendix A.3:

Proposition 5 (Reachability conditions of y) Suppose there exists a solution (Pi(y), Pj(y))

to differential system (27) with the terminal condition (28). Then the following holds:

(5.1) The threshold y will never be reached if one of the following conditions holds:

(5.a) If 2a+ βbi < δy;

(5.b) If 2a+ βbi > δy and

|(1 + β2)∆i −∆j| ≥
3

2
(2a+ βbi − δy)2; (30)

(5.c) If 2a+ βbi > δy,

|(1 + β2)∆i −∆j| <
2
√
3− 3

4
(2a+ βbi − δy)2, (31)

and

max{(1 + β2)∆i, ∆j} > 0; (32)

(5.2) If 2a+ βbi > δy, inequality (31) holds but

max{(1 + β2)∆i, ∆j} ≤ 0. (33)

Then for any initial condition y0 < y, there exists a finite time Ts ∈ (0,∞) such that

at Ts, y = y(Ts) is reached and

Ts =

∫ y

y0

1

2a+ βbi − δy + (1 + β2)Pi(y) + Pj(y)
dy,

where the net-value-functions-at-threshold ∆i and ∆j are

∆i = 2rVi(y)− b2i −
(
a2 − ciy

2
)
, ∆j = 2rVj(y)−

(
a2 − cjy

2
)
.

In the above proposition, (5.1) provides sufficient conditions for player j never to initiate

a CCS project, while (5.2) provides a sufficient condition for player j to trigger CCS in finite

time.

Note that condition (5.a) indicates that if player j’s trigger threshold is too high, player

j will not deploy CCS. This is because the pollution stock will have asymptotically reached

its long-run steady-state before reaching the trigger condition. It is worth noting that the
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inequality condition depends on ȳ, the production efficiency parameter a and the unit de-

ployment cost and the abatement efficiency parameter, βbi, but does not depend on the unit

damage costs ci, cj.

Nonetheless, condition (5.b) indicates that a relatively low trigger threshold alone does

not guarantee that player j will adopt CCS technologies. The decision also depends on

the difference in the net value functions, |(1 + β2)∆i − ∆j|. If the difference is large, as

shown in (30), it may prevent player j from initiating CCS. This situation may arise if

either player j derives significantly less benefit from CCS deployment than player i, i.e.,

(1 + β2)∆i > ∆j +
3
2
(2a + βbi − δy)2, or if player j’s net welfare remains sufficiently high

even without deploying CCS, i.e., ∆j > (1 + β2)∆i +
3
2
(2a+ βbi − δy)2.

In contrast, if the difference is not too large, such that condition (33) holds, there is

still no guarantee that player j will trigger CCS in finite time, since CCS adoption also

depends on the sign of the net value functions at the threshold, as depicted in (5.c). The

intuition behind (5.2) can be combined with the reachability conditions in (5.2) by rewriting

the inequality condition (33) as follows

rVi −
b2i
2

≤ a2

2
− ciy

2

2
(34)

for player i and

rVj ≤
a2

2
− cjy

2

2
(35)

for player j. The left-hand side of (34) (resp. (35)) is the discounted social welfare net

of CCS costs. The right-hand side reflects the gain from emissions (production) net of

pollution accumulation damage, with the squared terms of a and bi arising from the quadratic

functional forms, which are nonessential for our analysis. Given the assumption that both

players face the same level of pollution damage, the inequality condition (33) via (34) and

(35) indicates that player i’s CCS deployment alone is not sufficient to control pollution

accumulation. Consequently, player j will need to initiate CCS deployment as well.

In a linear-quadratic setting, the trigger condition is essentially a combination of the

conditions outlined in (31) and (33). As a special case, when r → 0+, the condition (33) is

more likely to be met. This implies that a more patient late entrant is more likely to initiate

CCS deployment compared to a less patient late entrant.

It is worth pointing out that Proposition 5 provides sufficient conditions while may being

neither necessary nor exhaustive.9

9For example, if 2a+ βbi > δy and 2
√
3−3
4 (2a+ βbi − δy)2 < |(1 + β2)∆i −∆j | < 3

2 (2a+ βbi − δy)2, then
Proposition 5 does not provide any result.
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4.2.2 Optimal strategies when player j never deploys CCS

In this section, we investigate the optimal strategies of the players and the resulting pollution

accumulation outcome when player j never initiates CCS. The analysis is similar to that in

Section 4.2 in terms of the game structure, with the only difference being the absence of the

reachability conditions and trigger times. The structure of the differential game is similar

to the setup in Section 4.1 in the sense that the game is autonomous and defined over an

infinite time horizon. Thus, the same Bellman value functions and HJB equations, i.e., (22)

and (24), should hold ∀t ≥ 0. Consequently, similar methods to those used in Section 4.1

can be employed to look for a Markovian perfect Nash equilibrium under both symmetric

and asymmetric cost structures.

Suppose ci = cj = c. Even though both players face the same pollution damage costs,

this does not necessarily imply that both players will engage in CCS deployment at the same

time or even at all. If the reachability conditions outlined in Proposition 5 fail to hold, the

inactive player will never trigger CCS and the MPE can be characterized as follows (the

proof is given in the Appendix A.4).

Proposition 6 Suppose ci = cj = c and one of the conditions in (5.1) of Proposition 5 holds.

In this case, player i deploys CCS at t = 0 while player j never initiates CCS deployment.

Furthermore, there exists an affine MPE, which is given by

Êi(y) = a+ V̂ ′
i (y), x̂i = −bi − βV̂ ′

i (y) and Êj(y) = a+ V̂ ′
j (y), x̂j = 0, ∀t ≥ 0,∀y,

where the affine-quadratic value functions V̂i(y) = Âi+B̂iy+
Ĉiy

2

2
and V̂j(y) = Âj+B̂jy+

Ĉjy
2

2

are given in the Appendix A.4.

It is straightforward to show that the pollution accumulation, following the equilibrium

outlined in Proposition 6, yields the long-run steady state

ŷ =
2a+ βbi + (1 + β2)B̂i + B̂j

δ − (1 + β2)Ĉi − Ĉj

.

It is worth mentioning that the two steady states ŷ and y∗s cannot be directly compared

as they are obtained from different conditions. More precisely, ŷ is the direct consequence of

(5.1) in Proposition 5. Failing to reach the threshold ys means that for given bi, bj, and for a

given CCS efficiency parameter, β, ys is too high for player j to initiate CCS projects, while

y∗s comes from Assumption 3 combined with the sufficient condition (5.2) in Proposition 5.

Nevertheless, according to Assumption 3, for given bi, bj, and β, ys must be above y∗s , and

so is ŷ. Otherwise, the threshold condition ys must be triggered in finite time. Therefore,

the long-term cumulative pollution is higher if only one player deploys CCS than if both

players do so.
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4.3 Numerical illustration

To illustrate the findings related to CCS efficiency, β, and time preference, r, particularly in

the context of the asymmetric pollution damage situation, we rely on numerical simulations.

4.3.1 Parameter setting and calibration

The model features the following set of parameters: {r, δ, β, a, ci, cj, bi, bj}. The first three

are standard parameters, while the last five require a more careful selection and calibration.

Following the literature (Hoel and Karp, 2002; Nordhaus, 2007; Stern, 2006), we set the

rate of time preference r to 0.022 as a benchmark, and allow r to take different values

while holding the other parameters constant at the benchmark level in order to investigate

the impact of the policymakers’ patience. The capacity of nature to absorb CO2 as noted

by Benchekroun and Ray Chaudhuri (2014); Mason et al. (2017) among others, is set to

δ = 0.015.

Regarding β, unit CCS efficiency, Budinis et al. (2018) estimate that the capture rate

of CCS technology should range between 85% to 90%. However, a recent review by the

Institute for Energy Economics and Financial Analysis (IEEFA) highlights that no exist-

ing project has consistently achieved such a high carbon capture rate (Schlissel and Juhn,

2023). Furthermore, as noted in Section 2, CCS actually increases the energy input require-

ment, suggesting the need to consider an even lower efficiency parameter. Therefore, in the

following analysis, we take β = 0.56 as a benchmark and study the impact of varying β.

In a linear-quadratic setting considering international cooperation to mitigate pollution

damage, Mason et al. (2017), following the calibration by Karp and Zhang (2006, 2012),

estimates that the pollution damage parameter c lies within the range of 0.00001 ≤ c ≤ 0.005.

For our numerical analysis, we set ci, cj ∈ (0.0002, 0.0004) and consider both symmetric and

asymmetric damage scenarios, thus extending the scope of the above theoretical study.

Different from Moreaux et al. (2024), where the initial pollution condition can be chosen

for a specific year, we rearrange the timeline and set the initial condition as the trigger

condition when player i starts to deploy CCS. In other words, the initial condition, y0, and

the cost parameter, bi, are determined by the trigger condition (13), i.e., y0 = (V ′
i )

−1
(
− bi

β

)
,

where (V ′
i )

−1 is the inverse function to be solved in the numerical analysis below. It is

important to note that y0 will vary depending on the various parameter settings.

Moreaux et al. (2024) calibrate separately the capture, transport, and storage costs of

CCS. Combining their examples with the willingness to pay, we set bi = 13US$/tCO2. The

CCS cost for player j, bj, should be higher than bi. Therefore, different values can be

considered, including scenarios where player j never triggers CCS deployment. Considering

the reachability condition in Proposition 5, we set bj = 20US$/tCO2.

As mentioned in Mason et al. (2017), the range of the productivity parameter a, which

converts the CO2 emissions into the final consumption goods, can be quite large. In our
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analysis we set a = 116, which satisfies all the inequality conditions imposed in the theoretical

framework above.

The benchmark parameters are presented in the following table:

Table 1: Benchmark parameter setting

Parameters Interpretation Benchmark Value

r Discount rate 0.022
δ Nature’s CO2 absorption rate 0.015
β CCS efficiency 0.58
ci player i’s unit environmental damage cost 0.000282
cj player j’s unit environmental damage cost 0.000282
bi Deployment cost of player i 13
bj Deployment cost of player j 20
a Productivity 116

4.3.2 Numerical analysis

The contributions of this numerical study are threefold: (1) to illustrate the theoretical

findings derived above; (2) to perform a numerical analysis of more general cases where

ci > cj and ci < cj; and (3) to further investigate the impact of policymakers’ time preference

r and efficiency parameter β on social welfare, emissions and CCS abatement.

Value functions, emissions and CCS deployment across two periods

Under different environmental damage scenarios, i.e., various combinations of ci and cj,

Figure 1 illustrates the strictly concave and decreasing parts of the value functions (social

welfare) for the two players, Vi and Vj, in terms of pollution accumulation. The horizontal

axis represents pollution accumulation (y), while the vertical axis represents social welfare.

In this and all subsequent figures, the red curve represents player j and the blue curve

represents player i. Figure (1a) depicts the symmetric case where ci = cj, while Figures (1b)

and (1c) show the asymmetric cases where ci < cj and ci > cj, respectively. The vertical

black dotted line marks the trigger pollution level (y) for player j, indicating the start of the

second period.
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Figure 1: Effect of different unit environmental damage costs on social welfare.

Under different environmental damage scenarios, i.e., various combinations of ci and cj,

Figure 1 illustrates the strictly concave and decreasing parts of the value functions (social

welfare) for the two players, Vi and Vj, in terms of pollution accumulation. The horizontal

axis represents pollution accumulation (y), while the vertical axis represents social welfare.

In this and all subsequent figures, the red curve represents player j and the blue curve

represents player i. Figure (1a) depicts the symmetric case where ci = cj, while Figures (1b)

and (1c) show the asymmetric cases where ci < cj and ci > cj, respectively. The vertical

black dotted line marks the trigger pollution level (y) for player j, indicating the start of the

second period.

According to the theoretical framework, player i initiates CCS deployment earlier than

player j due to a lower deployment costs. Figure (1a) and (1c) demonstrate that when

ci ≥ cj, the delayed CCS deployment by player j results in a social welfare advantage for

her, regardless of whether she ultimately deploys CCS. This advantage is evident as the red

curve consistently dominates the blue curve. Player j benefits from player i’s abatement

efforts, achieving a higher welfare level by delaying or even avoiding CCS deployment, which

indicates a free-riding behavior. In Figure (1c), the welfare gain for player j over player i is

more pronounced when there is a disparity in pollution damage, i.e. when ci > cj.

However, when ci < cj, with all other factors being equal, player j’s value function
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(red curve) is dominated by player i’s value function (blue curve). In this scenario, the

impact of pollution damage outweighs the benefits of free-riding. Although player i starts

CCS deployment earlier and faces relatively less pollution damage, the overall reduction in

accumulated pollution is insufficient. As a result, the damage to player j increases, eventually

forcing her to deploy CCS as well. This can be observed in Figures 2 and 3, which show

emissions and CCS abatement, respectively. As before, the vertical black dotted line marks

the trigger pollution level at which player j begins CCS deployment, and the solid (dotted)

curves represent the first (second) period.

1000 1500 2000 2500 3000 3500 4000

80

85

90

95

100

For ci = cj

Ei in period I
Ej in period I 
Ei in in period II
Ej in period II
y(T)

(a) Emissions with ci = cj

1500 1750 2000 2250 2500 2750 3000 3250

80

85

90

95

100

105

For ci < cj

Ei in period I
Ej in period I 
Ei in in period II
Ej in period II
y(T)

(b) Emissions with ci < cj

500 1000 1500 2000 2500 3000 3500 4000 4500

80

85

90

95

100

For ci > cj

Ei in period I
Ej in period I 
Ei in in period II
Ej in period II
y(T)

(c) Emissions with ci > cj

Figure 2: Emissions over two periods for various damage scenarios.

Figure 2 illustrates emissions across two periods under both symmetric and asymmetric

pollution damage scenarios, based on our set of benchmark parameters. It is evident that

the player who experiences less pollution damage tends to emit more. Specifically, when

ci < cj, player i’ emission (blue curve) exceed those of player j (red curve), as shown in

Figure (2b). Conversely, when player i faces greater damage (ci > cj), her emissions are

lower in both periods, as depicted in Figure (2c). In the symmetric case shown in Figure

(2a) where ci = cj, player i emits more in the first period while being the only one deploying

CCS. However, in the second period, both players emit at the same level, consistent with

the predictions of Proposition 3.

Figure 3 displays CCS deployment over two periods under both symmetric and asym-
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metric pollution damage scenarios, using the same set of benchmark parameters.
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Figure 3: CCS deployment across the two periods

As expected, in Figure (3b), where ci < cj, player j initiates her CCS deployment much

earlier compared to the other two scenarios shown in Figures (3a) and (3c).

The impact of the efficiency parameter β

The impact of the CCS efficiency parameter is presented in Figure 4. The solid curves

represent the benchmark case (β = 0.56), while the dashed and dotted curves correpsond to

β = 0.58 and β = 0.6, respectively. In this figure, we only plot the first period. The second

period begins where the current curves stop.
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Figure 4: Effect of β on the value functions.

On the one hand, Figure 4 confirms the statement from Figure 1 that, regardless of

the efficiency of the CCS facilities β, (1) the player who suffers more from accumulated

pollution experiences relatively lower social welfare, and (2) player j free rides on player i’s

CCS efforts when they face the same pollution damage. On the other hand, Figure 4 shows

that higher CCS efficiency leads to a monotonic increase in both players’ social welfare. Most

importantly, higher efficiency (larger β values) prompts player j to initiate CCS deployment

earlier, irrespective of the damage scenario. As expected, Figure (4b) further illustrates that

when player j suffers more from pollution damages than player i, she starts CO2 abatement

earlier than in the other two cases, depicted in Figures (4a) and (4c).

The impact of the policymakers’ patience r

Unlike the efficiency parameter (β), which has a symmetric and monotonic impact on the

players’ welfare (with social welfare increasing as CCS efficiency improves), the effect of the

time preference reflecting the decision makers’ patience, r, is different for the two players

depending on the unit environmental damage cost (ci, cj) and the level of accumulated pol-

lution. This finding is illustrated in Figure 5, where the solid, dashed and dotted curves

represent the benchmark case and the alternative cases with r = 0.020 and 0.024, respec-
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tively.
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Figure 5: Effect of r on the value functions

Figures (5a)-(5c) illustrate three different damage scenarios with ci = cj, ci < cj, and

ci > cj, respectively. In the symmetric cost scenario (Figure 5a), social welfare decreases

symmetrically with the discount rate r for both players. An impatient policymaker often

prioritizes immediate gains over long-term sustainability. This short-term focus can lead

to decisions that increase pollution by raising current emission levels and reducing current

CCS efforts, ultimately diminishing the overall welfare. This trend is illustrated in Figures

(6a) and (7a), which show the levels of emissions and CCS abatement for different values of

r, respectively. However, as the accumulated pollution level y increases, the advantage in

social welfare for a patient one diminishes. Just before transitioning into the second period,

an opposite trend appears to emerge.
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Figure 6: Effect of r on emissions

Figure (5c), where ci > cj, further illustrates this pattern: social welfare is higher when

r is smaller at low levels of pollution. However, as pollution levels rise, the benefits of

a lower r diminish, especially for player i who faces higher climate change damage costs

and initiates CCS earlier. On the one hand, as pollution accumulates and reaches higher

levels, the marginal damage from additional pollution increases sharply. Consequently, even

for a policymaker with a higher discount rate, her efforts toward pollution control become

crucial (Figures (6c) and Figures (7c)). On the other hand, at low levels of accumulated

pollution, a more patient policymaker (with a lower r) prioritizes long-term outcomes and is

thus willing to invest in emission reductions and CCS abatement to mitigate future climate

change damage. Since pollution is still manageable, the costs of these efforts remain relatively

low, and the benefits of preventing future damage are significant. As a result, a more patient

one experiences higher net social welfare because her forward-looking action is effective and

not overly burdensome at this stage. In contrast, as pollution levels increase, the dynamics

shift. A patient policymaker who has consistently invested in emission reductions and CCS

abatement now faces substantial cumulative costs from these ongoing efforts due to the

convex nature of these expenses. As shown in Figures (6c) and Figures (7c), the trajectories

for emissions (for both player i and player j ) and CCS abatement (for player i) are steeper

at lower values of r compared to higher values. While the benefits of preventing future
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damage remain, the cost burden has escalated significantly due to the sustained pollution

control efforts over time. As pollution continues to accumulate, these rising costs can start

to outweigh the benefits.
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Figure 7: Effect of r on the CCS deployment of player i in period I.

A notable exception is observed in Figure (5b), where ci < cj. In this case, the social

welfare trends for the two player (player i and j) move in opposite directions with respect to

the parameter r. Player j with higher climate damage costs, paradoxically benefits from a

higher discount rate. Furthermore, player i’s welfare remains consistently higher than that of

player j. Although both players’ emissions increase with r, as shown in Figure (6b), player i

emits more than player j, enjoys higher current consumption, and thus achieves higher social

welfare. This pattern differs from those in (6a) and (6c). Additionally, Figure (7b) shows

that player i’s contribution to CCS deployment is also lower than in the other two cases

depicted in Figure 7, which prompts player j to deploy CCS earlier when r is smaller.
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Figure 8: Effect of β and r on the optimal trigger time T

Figure 8 illustrates the moment when the second period begins, expressed in terms of β

or r, assuming that the second period exists. The information provided is twofold: on one

hand, the benchmark parameters were selected to ensure that Condition (5.2) in Proposition

5 holds, meaning that within a finite time T , player j initiates her CCS deployment. On

the other hand, it demonstrates how T varies across different damage scenarios (ci, cj), CCS

efficiency (β), and time preference (r).

In Figure 8, the green, blue, and red curves correspond to the three different scenarios:

ci > cj, ci = cj, and ci < cj. The vertical axis indicates the trigger moment T , while the

horizontal axis represents β (Figure 8a), respectively r (Figure 8b).

It is expected that when ci < cj, player j who faces a higher accumulated pollution

damage, will trigger her CCS deployment earlier, regardless of the pollution level y, CCS

efficiency β,or time preference r. It is straightforward that player j prefers to delay the

deployment of CCS technologies when she is less affected by the pollution damage (as shown

by the green curves consistently being above the blue and red ones).

All curves in Figures 8a and 8b are monotonic. An increase in the CCS efficiency pa-

rameter (β) prompts player j to deploy CCS earlier, assuming all other parameters remain

constant. Conversely, an increase in the time preference (r) delays player j’s CCS deploy-

ment, which is consistent with the pattern shown in Figure 6.

5 Conclusion

In this paper, we employed a differential game model to investigate the optimal timing

for different countries to engage in CCS deployment. We characterize the structure of the

equilibria, the dynamics of pollution accumulation that maximize social welfare and the

respective long-run pollution accumulation. We also determine the conditions under which
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a country should start CCS deployment, providing valuable guidance for policymakers in

designing strategies for effective pollution control and CCS implementation..

The main findings of this paper can be summarized as follows. (i) Even when countries

face the same level of pollution damage costs, differences in development levels, financial

resources, and institutional capacities can lead to varied timings for implementing CCS

technologies. In some cases, countries may never initiate CCS. (ii) Regardless of the costs

and the development level, countries that suffer less from pollution accumulation have fewer

incentives to invest in CCS, despite their CO2 emissions negatively affecting others. This

disparity underscores the need for international cooperation to address the global impact of

pollution effectively. (iii) When countries face symmetric pollution damage costs, they are

more likely to free-ride on a neighboring country’s CCS investment efforts compared to sce-

narios with asymmetric damage costs. As a result, symmetric pollution damage costs tends

to result in higher long-run pollution accumulation compared to the asymmetric damage

cost case.

Despite the ongoing advancements in the development and deployment of CCS tech-

nologies, significant challenges remain, particularly in reducing CCS costs and removing

regulatory barrier in order to ensure commercial-scale deployment. As a result, continued

investment in research, development, and the deployment of CCS technologies is essential

for scaling up these technologies and achieving significant emissions reductions. This pa-

per offers the first steps toward establishing a comprehensive framework for the theoretical

analysis of CCS, as well as for the even more promising CCUS technologies.

Ultimately, the deployment of CCS technologies must be a global effort, requiring col-

laboration among all countries to develop and deploy these technologies effectively. Only

through such collective action can we achieve significant emissions reductions and make

meaningful progress in combating climate change.

A Appendix

A.1 Proof of Proposition 2

Following the optimal choice of emissions and CCS abatement, recall that the pollution

accumulation equation is given by

ẏ = [E∗
i (y) + E∗

j (y)]− [β(X∗
i (y) + x∗

j(y)) + δy],

with a given initial condition y0 = yi. From Proposition 1, the first term on the right hand

side of the equation is decreasing, while the second term is increasing with respect to y. In

other words, there is one and only one potential long-run steady state given by the solution

of equation (8), or

E∗
i (y) + E∗

j (y) = β(X∗
i (y) + x∗

j(y)) + δy. (36)
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Thus, depending on at the initial condition y0 = yi, there are two possibilities: Either

E∗
i (y0) +E∗

j (y0) > βX∗
i (y0) + δy0 or the inequality holds in the opposite direction. Figure 9

illustrates the first case while a similar figure can depict the latter one.
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Figure 9: Illustration of the state equation

In Figures 9, LHS and RHS represent the left-hand-side, respectively the right-hand-side

of the steady state equation (36), in terms of y.

In Figure 9, depending on trigger condition of player j, two cases emerge: if the trigger

condition is such that yj > yss, player j will never start deploying CCS. In this scenario, the

unique long-run steady state is yss which satisfies yss > y0 = yi. However, if yj < yss, player

j will, sooner or later, trigger CCS deployment. In this case, the LHS curve shifts from the

solid curve to the dashed one, and the long-run steady state will be yssij , which corresponds

to the long-run steady state when both players deploy CCS. As a result, yssij < yss. This

proves the first part of Proposition 2.

Alternatively, consider the scenario where player i starts CO2 abatement and it satisfies

E∗
i (y0) + E∗

j (y0) < βX∗
i (y0) + δy0, where the pollution level immediately drops below the

trigger condition of player i. Under these circumstances, there is not even the need for

player i to start CCS deployment, not to mention player j. This scenario can occur when

the emissions from both countries are relatively low compared to the natural absorption

capacity.

That completes the proof.
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A.2 Proof of Proposition 3 and 4

We complete the proof in 3 steps: Step 1 is about the common parts of Proposition 3 and 4;

Step 2 sets out the proof for Proposition 3, and Step 3 finishes the proof of Proposition 4.

Step 1: The common part.

Recall that the HJB equation of player k is given by

rVk(y) = max
Ek,xk

[(
akEk −

E2
k

2
− ck y

2

2
−
(
bk xk +

x2
k

2

))
+V ′

k(y)[Ei + Ej − β(xi + xj)− δy]] .

The optimality conditions yield, for k = i, j and t ≥ T ,

Ek = ak + V ′
k(y)

and

xk = −(bk + βV ′
k(y)).

Given the linear-quadratic structure of the optimal control problem, a linear-quadratic

guess of the Bellman value function is made

Vk(y) = Ak +Bky +
Ck

2
y2

where Ak, Bk and Ck are constants to be determined. It is easy to see that V ′
k(y) = Bk+Cky.

Thus

Ek = ak +Bk + Cky

and

xk = −[bk + β(Bk + Cky)].

Substituting xk into the HJB equations and comparing the coefficients of powers of y, it

follows that, for i and j, respectively
rAi =

a2+b2i
2

+ (2a+ β(bi + bj))Bi +
(1+β2)(B2

i +2BiBj)

2
,

(r + δ)Bi = (1 + β2)[BiCi +BiCj +BjCi] + (2a+ β(bi + bj))Ci,

(r + 2δ)Ci = (1 + β2)C2
i + 2(1 + β2)CiCj − ci

rAj =
a2+b2j

2
+ (2a+ β(bi + bj))Bj +

(1+β2)(B2
j+2BiBj)

2
,

(r + δ)Bj = (1 + β2)[BjCj +BiCj +BjCi] + (2a+ β(bi + bj))Cj,

(r + 2δ)Cj = (1 + β2)C2
j + 2(1 + β2)CiCj − cj

(37)

For general damage cost structure 0 < ci, cj < +∞, it is difficult to obtain explicit
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solution from the last two equations. In the following, we will thus consider two special

cases.

Step 2: Symmetric costs: ci = cj = c

With the assumption that ci = cj = c, it can be shown that Vi is a valid value function

if and only if Ci = Cj ≡ Cs. As a result, the last equation in (37) is a quadratic equation of

the variable Cs. Usually, there are two real roots: one positive and one negative,

Cs =
r + 2δ ±

√
(r + 2δ)2 + 12c(1 + β2)

6(1 + β2)
.

Picking only the root with the negative sign yields a valid concave value function. We thus

have

Cs =
(r + 2δ)−

√
(r + 2δ)2 + 12c(1 + β2)

6(1 + β2)
(< 0).

Substituting Cs into the second equation in (37), it follows that Bi = Bj ≡ Bs, where

the expression of Bs is provided in Proposition 1.

Substituting x∗
s,k(y), E

∗
s,k(y) into the dynamic equation of pollution accumulation, it fol-

lows that

ẏ = E1 + E2 − β(x1 + x2)− δy = [2a+ β(bi + bj) + 2(1 + β2)Bs] + [2(1 + β2)Cs − δ]y.

With this, the steady state and trajectory path are straightforward to derive and given in

the Proposition.

The uniqueness of the affine strategy follows the same argument as in Boucekkine et al.

(2021).

Step 3: Asymmetric costs: ci > 0 and cj = 0

With the assumption that ci > 0 and cj = 0, it is easy to see that the last equation in

(37) yields a concave value function for players i and j, if and only if

Ce,j = 0 and Ce,i =
r + 2δ −

√
(r + 2δ)2 + 4ci(1 + β2)

2(1 + β2)
.

In other words, if Ce,j ̸= 0, there is no valid value function for player i.

Accordingly, we have

Be,j = 0 and Be,i =
(2a+ β(bi + bj))Ce,i

r + δ − (1 + β2)Ce,i

(< 0),

and

Ae,j =
a2 + b2j
2r

and Ae,i =
a2 + b2i
2r

+
2a+ β(bi + bj)

r
Be,i +

1 + β2

2r
B2

e,i.
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Thus, it is straightforward to show that,

Ve,i(y) = Ae,i +Be,iy +
Ce,iy

2

2
and Ve,j(y) = Ae,j,

That completes the proof.

A.3 Proof of Proposition 5

Whether the trigger condition y is reachable or not essentially depends on the terminal

condition (28). We complete the analysis in three steps. Step 1 presents the explicit forms

of the terminal conditions Pi(y) and Pj(y); in Step 2 we rewrite the dynamic equation of

pollution accumulation using the explicit forms obtained from the first step; and in Step 3

we derive the results of Proposition 5 from the newly formed dynamic equation.

Step 1: The explicit forms of Pi(y) and Pj(y)

We rewrite the affine-quadratic form of (28) in the following way: (1 + β2)P 2
i (y) + 2[(2a+ βbi)− δy]Pi(y) + 2Pj(y)Pi(y)− [2rVi(y) + ciy

2 − (a2 + b2i )] = 0,

P 2
j (y) + 2[(2a+ βbi)− δy]Pj(y) + 2(1 + β2)Pi(y)Pj(y)− [2rVj(y) + cjy

2 − a2] = 0.

To shorten the notation, we set µ ≡ 2Pi(y)Pj(y), and

∆i ≡ 2rVi(y) + ciy
2 − (a2 + b2i ), ∆j ≡ 2rVj(y) + cjy

2 − a2.

It follows that the roots of Pi(y) and Pj(y) are given by

Pi(y) =
−(2a+ βbi − δy)±

√
(2a+ βbi − δy)2 + [(1 + β2)(∆i − µ)]

1 + β2
(38)

and

Pj(y) = −(2a+ βbi − δy)±
√

(2a+ βbi − δy)2 + [∆j − (1 + β2)µ]. (39)

Given that at y, the marginal value function Pk(y) = BII + CIIy ≤ 0 for both k = i, j,

only the negative roots can be taken. Furthermore, if both roots are negative, we take the

most concave one when y < y and y → y−. Therefore

(For Pi) • In (38), the positive sign is taken, if

2a+ βbi − δy > 0 and ∆i < µ.

• In (38), the negative sign is taken, if

2a+ βbi − δy > 0;
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or

2a+ βbi − δy < 0 and ∆i > µ.

(For Pj) • In (39), the positive sign is taken, if

2a+ βbi − δy > 0 and ∆j < (1 + β2)µ.

• In (39), the negative sign is taken, if

2a+ βbi − δy > 0;

or

2a+ βbi − δy < 0 and ∆j > (1 + β2)µ.

To clear the notation, let’s set σk = 1 if the positive sign is taken and σk = −1 if the

negative sign is taken in (38) or (39), respectively.

Thus, µ must be a solution of

(1 + β2)µ = 2
[
−(2a+ βbi − δy)±

√
(2a+ βbi − δy)2 + [(1 + β2)(∆i − µ)]

]
[
−(2a+ βbi − δy)±

√
(2a+ βbi − δy)2 + [∆j − (1 + β2)µ]

]
.

(40)

Step 2: Forming the new pollution accumulation equation

Recall that the dynamic equation of pollution accumulation is given by

ẏ = Ei + Ej − βxi − δy

= a+ V ′
i (y) + a+ V ′

j (y)− β(−bi − βV ′
i (y))− δy

= 2a+ βbi − δy + (1 + β2)Pi(y) + Pj(y),

determined by the optimal choices (23) and (25).

Let’s define

fi(y) ≡ (1 + β2)Pi(y) +
2a+ βbi − δy

2
and fj(y) ≡ Pj(y) +

2a+ βbi − δy

2
.

Then

ẏ = fi(y) + fj(y), ∀y ≤ y. (41)

Furthermore, from (38) and (39), it is easy to see that at y = y

fi(y) + fj(y) = −(2a+ βbi − δy) + σi

√
(2a+ βbi − δy)2 + [(1 + β2)(∆i − µ)]

+σj

√
(2a+ βbi − δy)2 + [∆j − (1 + β2)µ].

(42)
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Apparently,

• If fi(y) + fj(y) > 0: At y, from equation (41), ẏ = fi(y) + fj(y) > 0. At y, pollution

accumulation is thus still increasing, meaning that the trigger condition will be reached

in finite time T .

• If fi(y) + fj(y) ≤ 0: At y, ẏ ≤ 0, indicating that y can never be reached because

the dynamic system has already surpassed its asymptotic stable long-run steady state

(where ẏ = 0).

Therefore, the reachability conditions are essentially determined by fi(y)+ fj(y) ⋚ 0. In

the following section of this proof, we will examine the specific conditions under which each

of theses possibilities occurs.

Step 3: The reachability conditions

The reachability conditions can be derived in four parts:

Part 3.a: Suppose 2a+ βbi < δy.

By (42), we must take σi = −1, σj = −1 and µ ≤ min
{
∆i,

∆j

1+β2

}
. Hence, the right hand

side of (42) is increasing in µ and is no more than its value at µ = min
{
∆i,

∆j

1+β2

}
. Then it

is straightforward to show that,

−
√
(2a+ βbi − δy)2 + [(1 + β2)(∆i − µ)] < −|2a+ βbi − δy|

and

−
√

(2a+ βbi − δy)2 + [∆j − (1 + β2)µ] < −|2a+ βbi − δy|.

Thus,

fi(y) + fj(y) < −(2a+ βbi − δy)− 2|2a+ βbi − δy| = −|2a+ βbi − δy| < 0.

As a consequence, y can never be reached.

Part 3.b: Suppose 2a+ βbi > δy.

We shall show that for either σi = −1 or σj = −1, there is fi(y) + fj(y) < 0.

Let us start with σi = −1 and σj = 1. In that case

fi(y) + fj(y) = −(2a+ βbi − δy)−
√
(2a+ βbi − δy)2 + (1 + β2)(∆i − µ)

+
√

(2a+ βbi − δy)2 + (∆j − (1 + β2)µ)

= Pj(y)−
√

(2a+ βbi − δy)2 + (1 + β2)(∆i − µ)

< 0

given the marginal value function Pj(y) ≤ 0 from the last section. The same calculations
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hold if we take σi = 1 and σj = −1.

As a byproduct of Pj(y) ≤ 0 and Pi(y) ≤ 0, together with the assumption that 2a+βbi >

δy, we must have

∆i − µ < 0 and ∆j − (1 + β2)µ < 0.

That is,

(1 + β2)µ > max{(1 + β2)∆i,∆j}. (43)

We can thus conclude that, as long as one of the σi or σj take −1, we always have

fi(y) + fj(y) < 0. Therefore, fi(y) + fj(y) > 0 is only possible if σi = σj = 1. However, we

shall prove that under condition (30), this is not true.

We argue by contradiction that fi(y) + fj(y) > 0, meaning

fi(y) + fj(y) = −(2a+ βbi − δy) +
√

(2a+ βbi − δy)2 + (1 + β2)(∆i − µ)

+
√

(2a+ βbi − δy)2 + (∆j − (1 + β2)µ) > 0,

which is equivalent to√
(2a+ βbi − δy)2 + (1 + β2)(∆i − µ) +

√
(2a+ βbi − δy)2 + (∆j − (1 + β2)µ)

> 2a+ βbi − δy.

By the concavity of the square-root function,√
(2a+ βbi − δy)2 + (1 + β2)(∆i − µ) +

√
(2a+ βbi − δy)2 + (∆j − (1 + β2)µ)

< 2

√
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
− (1 + β2)µ.

Linking the last two inequality together, it follows that

(2a+ βbi − δy)2 < 4

[
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
− (1 + β2)µ

]
,

which yields

(1 + β2)µ <
3

4
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
. (44)

Furthermore, given µ = 2Pi(y)Pj(y) > 0, it is necessary that the right hand side of the

above inequality is non-negative:

(1 + β2)∆i +∆j ≥ −3

2
(2a+ βbi − δy)2 .
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Since

(1 + β2)∆i +∆j

2
=

1

2

[
max{(1 + β2)∆i, ∆j}+min{(1 + β2)∆i, ∆j}

]
,

by condition (30) we have

max{(1 + β2)∆i, ∆j} = |(1 + β2)∆i −∆j|+min{(1 + β2)∆i, ∆j}

≥ 3

2
(2a+ βbi − δy)2 +min{(1 + β2)∆i, ∆j}

=
3

2
(2a+ βbi − δy)2 + (1 + β2)∆i +∆j −max{(1 + β2)∆i, ∆j}.

As a consequence,

max{(1 + β2)∆i, ∆j} ≥ 3

4
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
.

Combining this with (43), it follows that

(1 + β2)µ > max{(1 + β2)∆i, ∆j} ≥ 3

4
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
. (45)

Obviously, the inequalities (44) and (45) constitute a contradiction. This proves that

under condition (3.b), fi(y) + fj(y) < 0. Thus, y can never be reached.

Part 3.c: Suppose 2a+ βbi − δy > 0, max{(1 + β2)∆i,∆j} > 0 and

|(1 + β2)∆i −∆j| <
2
√
3− 3

4
(2a+ βbi − δy)2,

then fi(y) + fj(y) ≤ 0.

We argue by contradiction that fi(y) + fj(y) > 0. As already proven in Part 3.b, it is

necessary that

max{(1 + β2)∆i,∆j} < (1 + β2)µ ≤ 3

4
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
.

Now consider both sides of equation (40), especially at the two end points of the above

interval of (1 + β2)µ.

At (1+β2)µ = max{(1+β2)∆i,∆j}, it is easy to see that the right hand side of equation

(40) is zero, and by the assumption that max{(1 + β2)∆i,∆j} > 0, the left hand side of

equation (40) is (1 + β2)µ > 0.
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At (1 + β2)µ = 3
4
(2a+ βbi − δy)2 +

(1+β2)∆i+∆j

2
, the right hand side (RHS) of (40) is

RHS = 2

[
(2a+ βbi − δy)−

√
(2a+ βbi − δy)2

4
+

(1 + β2)∆i −∆j

2

]
[
(2a+ βbi − δy)−

√
(2a+ βbi − δy)2

4
+

∆j − (1 + β2)∆i

2

]
< 2

[
(2a+ βbi − δy)− (2a+ βbi − δy)

2

]
[
(2a+ βbi − δy)−

√
(2a+ βbi − δy)2

4
− |∆j − (1 + β2)∆i|

2

]

< (2a+ βbi − δy)2

[
1−

√
4− 2

√
3

2

]
=

3−
√
3

2
(2a+ βbi − δy)2,

(46)

in which we used the inequality condition (31) in the second last inequality.

On the other hand, the left hand side (LHS) of (40) is

LHS = (1 + β2)µ =
3

4
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2

=
3

4
(2a+ βbi − δy)2 +max{(1 + β2)∆i, ∆j} −

|(1 + β2)∆i −∆j|
2

>
3

4
(2a+ βbi − δy)2 − 2

√
3− 3

4
(2a+ βbi − δy)2

=
3−

√
3

2
(2a+ βbi − δy)2,

(47)

in which we used the condition max{(1 + β2)∆i, ∆j} > 0.

Furthermore, it is easy to check that the right hand side of (40) is increasing with µ. The

above analysis thus demonstrates that the left hand side of equation (40) is always larger

than the right hand side. As a result there is no solution for µ. In other words, y is not

reachable under the conditions specified in (3.c).

Part 3.d: The conditions in (3.d) are very much the same as in (3.c) with the only

difference being that max{(1 + β2)∆i, ∆j} < 0.

y is reachable if and only if fi(y) + fj(y) > 0, which is equivalent to the inequality (44):

(1 + β2)µ ≤ 3

4
(2a+ βbi − δy)2 +

(1 + β2)∆i +∆j

2
.

It is easy to check that with the condition that max{(1 + β2)∆i, ∆j} < 0, at µ = 0, the
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left hand side of (40) is 0, while the right hand side is[
(2a+ βbi − δy)−

√
(2a+ βbi − δy)2 + (1 + β2)∆i

]
[
(2a+ βbi − δy)−

√
(2a+ βbi − δy)2 +∆j

]
≥ 0.

Similar to the above analysis of (46) and (47), we can show that for equation (40) there

exists a unique positive solution for µ. At this point, fi(y) + fj(y) > 0. Hence, y is reached

in finite time defined as T .

That completes the proof.

A.4 Proof of Proposition 6

Given the HJB equations are the same as in (22) for player i and the same as in (24) for

player j, the same first order conditions can be obtained. However, in this section, the

autonomous game is defined over an infinite time horizon, and we can thus guess the same

linear-quadratic strategy as in the proof of Proposition 1. We thus try a linear-quadrativ

form of the value functions:

Vi(y) = Ai +Biy +
Ciy

2

2
and Vj(y) = Aj +Bjy +

Cjy
2

2

with the coefficients being undetermined. Substituting the value functions and marginal

value functions into the HJB equations, rearranging terms, and comparing coefficients of

powers for y, it follows that
rAi =

a2+b2i
2

+ (2a+ βbi)Bi +
1+β2

2
B2

i +BiBj,

(r + δ − (1 + β2)Ci)Bi = (2a+ βbi)Ci +BiCj +BjCi,

(r + 2δ)Ci = (1 + β2)C2
i + 2CiCj − ci,

rAj =
a2

2
+ (2a+ βbi)Bj +

1
2
B2

j + (1 + β2)BiBj,

(r + δ − Cj)Bj = (2a+ βbi)Cj + (1 + β2)(BiCj +BjCi),

(r + 2δ)Cj = C2
j + 2(1 + β2)CiCj − cj,

(48)

It is easy to see that even with ci = cj, the system in (48) differs from the system in (37)

where both players engage in CCS deployment.

Obviously, the 3rd and the 6th equations are only related to thevariables Ci, Cj and are

independent of the others. They can thus be solved separately first. Once Ci and Cj are

solved, they can be substituted into the 2nd and the 5th equations, and the variables Bi and

Bj can be solved. Variables Ai and Aj follow easily from the 1st and 4th equations. More
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precisely, we pick up the 3rd and the 6th equations, rearrange terms and obtain: (1 + β2)C2
i − (r + 2δ)Ci + 2CiCj = ci,

C2
j − (r + 2δ)Cj + (1 + β2) 2CiCj = cj.

(49)

With ci = cj = c, the above system (49) can be re-written as follows (1 + β2)C2
i − (r + 2δ)Ci + 2CiCj = c,

C2
j − (r + 2δ)Cj + (1 + β2) 2CiCj = c.

By applying Descartes’s rule of signs we show that the above 2nd degree polynomial system

has one and only one pair of negative roots, denoted as (Ĉi, Ĉj). Substituting these values

into (48), the linear algebra system can be solved explicitly in terms of Bi and Bj. We denote

the solution by B̂i and B̂j. The same can be done for Âi and Âj.

This pair is the only pair that yields affine-quadratic concave value functions for players

i and j.

That completes the proof.
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