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Assessing the clinical utility of inertial
sensors for home monitoring in
Parkinson’s disease: a
comprehensive review
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Stefano Sapienza 1,2, Olena Tsurkalenko 1,2,3, Marijus Giraitis1,2,3, Alan Castro Mejia 1,2,
Gelani Zelimkhanov1,2,3, Isabel Schwaninger 1,2 & Jochen Klucken 1,2,3

This reviewscreened296articles onwearable sensors for homemonitoring of peoplewithParkinson’s
Disease within the PubMed Database, from January 2017 to May 2023. A three-level maturity
framework was applied for classifying the aims of 59 studies included: demonstrating technical
efficacy, diagnostic sensitivity, or clinical utility. As secondary analysis, user experience (usability and
patient adherence) was evaluated. The evidences provided by the studies were categorized and
stratified according to the level of maturity. Our results indicate that approximately 75% of articles
investigated diagnostic sensitivity, i.e. correlation of sensor-datawith clinical parameters. Evidence of
clinical utility, defined as improvement on health outcomes or clinical decisions after the use of the
wearables, was found only in nine papers. A third of the articles included reported evidence of user
experience. Future research should focusmore onclinical utility, to facilitate the translationof research
results within the management of Parkinson’s Disease.

Over the last 20 years, the digital transformation of medicine has evolved
tremendously due to the development of wearable sensors as clinical sup-
port tools providing objective (digital) outcomes for clinical research and in
remote monitoring applications for clinical care. The unwavering research
interest in wearable sensors relies on their ability to generate accurate,
quantitative, real-world, rater-independent, and user-derived measures for
various medical applications.

Wearable sensors, or simply “wearables”, are not limited to a specific
clinical setting, allowing for continuous or high sampling frequency
assessments that are unsustainable by standard clinical evaluations. Con-
sequently, the data generated by wearables can track the whole spectrum of
changes in the user’s functional state and link impairment to clinical
symptoms of patients. Furthermore, wearables can capture subtle, pro-
dromal, or granular variations in motor symptoms that are clinically rele-
vant but extremely difficult, if not impossible, to detect with current
evaluationmethods1,2. Finally, wearable technologies can be synergizedwith
medical profiling, data mining, and machine learning to generate indivi-
dualized health reports that inform patients, healthcare professionals, and
society. Extracted data can complement patient-reported outcomes with

digital objective biomarkers promptly detecting symptom deterioration.
The recorded diagnostic information can support healthcare professionals
in decision-making and provide a closed feedback loop during interven-
tions. Finally, they can be used as objective and evidence-based indicators to
regulate reimbursement within the healthcare ecosystem, providing addi-
tional value for payers and policymakers.

Parkinson’s Disease (PD) is an ideal target for the application of
wearable sensors. It is the second-most common progressive neurodegen-
erative disease of the central nervous system3,4, known for its diverse clinical
phenotypes, affecting both motor and non-motor domains. The former is
mainly characterized by bradykinesia, rigidity, tremor, gait and balance
impairment, while nonmotor symptoms expand across autonomic, neu-
ropsychiatric, sensory and sleep domains, whichmay be attributed to aging
rather than the underlying pathological mechanism5. For patients living
with PD, this often means a confrontation with a variety of symptoms in
their daily activities, a change in quality of life and interpersonal relation-
ships, and in later life, the need for continuous care6. The progressive nature
of PDand its heterogeneity across different patientsmakes themanagement
complex and multi-dimensional5. For this reason, the medical workups are
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also constantly evolving in parallel with the patient’s journey, trying to
balance short-term benefits with the long-term effects on the progression of
the disease.

In this context, accurately tracking PD symptoms and their oscillation
is crucial for optimal care. Typically, this is doneduring clinical assessments,
where the patient is asked to perform a series of standardized tasks. At the
same time, a trained neurologist visually evaluates the movements and
provides a score for each symptom. In parallel, the non-motor sphere is
evaluated via different questionnaires to obtain a comprehensive picture of
the subject’s conditions.

However, recent studies have demonstrated that motor symptom
severity can fluctuate rapidly, even multiple times in an average 30-min
consultation2. Consequently, due to the excessive granularity needed,
accurate tracking in time is not feasible through standard-of-care methods.
These traditionalmethodologies, such asmotor diaries and standard clinical
examinations, need to be revised to decrease the rater-dependent variance
and subjectivity, low accuracy, low sampling frequency, and low sensitivity-
to-change7,8. For this reason, wearables raise the expectation that they will
complement classical clinical examination, as they provide healthcare
professionals with objectivemeasures thatmay support clinical decisions or
yield insights into the efficacy of clinical interventions.

PD is an ideal target for the application of wearables due to the variety
of symptoms that appear throughout the stages of the disease (diagnostic
target symptom of wearables) and their sensitivity to change following an
intervention (monitoring target symptom for wearables)9. Monitoring tar-
get symptoms through wearables may help detect symptoms fluctuating
over different timeframes ranging frommonths to years (progression of the
disease), days to months (treatment kinetics), or even within minutes
(motor fluctuations, fast-responding interventions). Thus, in remote
monitoring settings, wearables must accurately measure, linking the infor-
mation recorded with relevant clinical aspects and ultimately providing
support to patients or healthcare professionals10.

During the last decades, different types of wearable sensors have been
developed by researchers to address the aforementioned challenges. Inertial
Measurement Units (IMUs) have found an immediate application in
investigating motor symptoms such as tremor, dyskinesia, bradykinesia,
andmobility impairments. Pressure sensors have also been used to evaluate
gait and balance disturbances of patients. Furthermore,wearables have been
utilized to better understand the impact of PD on biopotential signals,

generating electrocardiograms, electromyograms, and electro-
encephalograms. Finally, in recent years, electrochemical biosensors have
been gaining popularity tomonitorα-synuclein andother biomarkers of the
disease from blood samples11.

Wearables can accurately collect a huge amount of relevant medical
information from patients. However, from a practical point of view, their
application in the management of PD is still limited.

Looking at the literature onwearables and PD as a joint research topic,
since 2000, exclusively in the PubMed Central database (RRID:
SCR_004846), 950 papers related to wearables and PDhave been published
(seeFig. 1).Thisnumber is expected to exceedone thousandunits by the end
of 2023. However, when looking at healthcare procedures, a barrier to the
broader implementation of wearables in PDmanagement becomes evident.
In real-world care, treatment adjustments are generally based exclusively on
doctors’ experience, relying on information collectedduring short in-person
neurological visits. Even though some wearables reached the maximum
“Technological readiness” level TRL9 and have gained regulatory
approval12, their precise scope within PD management remains unclear13.

One of the possible causes of this translational gap is a lack of what in
this manuscript is called “clinical utility evidence”14 defined as: “an
improvement on health outcomes, diagnosis, treatment management or
prevention demonstrated after the use of the wearable sensor”. In fact, the
value of wearables for patients and doctors is ultimately determined by the
improvements they can generate in terms of health outcomes and treatment
management, rather than the technical accuracy of their measurements
only. Interestingly, different evidence evaluation frameworks have already
conceptualized this “clinical utility” concept while addressing the develop-
ment phases of diagnostic tests in healthcare15 or aspects of digital trans-
formation of technology in general16.

In general, clinical utility should be measured within the standard of
care. However, quantifying the impact of wearables in this context may be
extremely challenging, due to the huge variability in terms of patients,
settings, care pathways, and healthcare professionals. Research studies can
provide a valuable option to reduce this heterogeneity. In fact, they present
more structured assessment protocols and inclusion/exclusion criteria,
which allow to investigate more easily the clinical utility of these
technologies.

For this reason, in this review, we want to evaluate the clinical utility
evidences generated by research studies that focus on wearable sensors in

Fig. 1 | Publication trend of studies focusing on
PD and wearables. Number of articles published
from 2000 to May 2023 focusing on wearables sen-
sors and PD (screening search terms: Parkinson and
wearables); screening performed using PubMed as a
data-source (RRID: SCR_004846). In dashed red
line the estimation for the full 2023. In total the
research revealed 950 papers. This number is
expected to exceed one thousand unit by the end of
the year.
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PD applied to the home monitoring setting. The final goal is not only
clarifying their applicability in term of disease management strategy, but
also to better quantify the impact of these technologies on clinical decisions
and their effectiveness on improving health outcomes. For this reason, we
tailored the existing evidence models towards the evaluation of clinical
utility of wearables and reviewed the included studies based on their
maturity level. We narrowed our search to articles targeting wearables for
home monitoring in people with PD.

In our review process, we categorized eligible articles on wearables by
three hierarchical efficacy evidence levels: technical efficacy, diagnostic
sensitivity, and clinical utility.

In addition, as secondary analysis, we also evaluated user-
experience related aspects presented in the studies. This because the
health outcomes obtainedmight be deeply influenced by the usability of
the system and the concordance/adherence of the patients. A detailed
description of the methods that we applied, including our evaluation
framework and article assignment criteria, can be found in the final
section of this review.

Results
Article selection
Within the large spectrum of studies on wearable sensors in PD, we iden-
tified 296 articles addressing their home monitoring applicability. From
these articles, we identified through PubMed between January 2017 and
May 2023, 59 studies were eligible for inclusion after screening and full-text
eligibility assessment. Interestingly, albeit no exclusion criteria were applied
on the type of sensor technology, only a limited number of papers adopted
alternative measurement tools to inertial measurement units. More pre-
cisely, surface electromyography, pressure sensors and audio stimuli, were
utilized in one study each, while 2 articles used GPS to track participants
mobility.

The PRISMA flow diagram generated through the review process can
be found in Fig. 2, with an overview of excluded studies17.

Article assignment
Articles were assigned to the EELs based on their research questions. The
distribution of the papers reviewed, represented in Fig. 3, shows that 56
studies out of 59 included evidence results, while three papers focused
exclusively on wearables usability and/or adherence18–20. Five articles were
assigned in multiple EELs due to overlapping aspects being evaluated: four
were assigned to bothTechnical Efficacy andDiagnostic Sensitivity levels21–24,
and one was assigned to Diagnostic Sensitivity and Clinical Utility25.
Regarding User Experience, 21 articles reported evidence of usability and
adherence within their results, and two exclusively assessed the usability
level26,27. The using environment of the research studies analyzed in this
review is the home setting. However, in the supplementary tables of this
manuscript we also reported separately the results obtained in lab envir-
onment, when present.

Level I. technical efficacy
Research questions on technical efficacy were investigated in six
articles21–24,28,29. They assessed the accuracy of sensor-based mobility mea-
sures without connecting the outcomes to clinical scores or patient phe-
notypes. Overall, the primary focus of EEL-I articles was to detect
movements of interest in a real-world environment, such as walking bouts
and activities of daily living. The most common goal shared by three out of
the six articles was accurately detecting gait segments in the unsupervised
environment23,28,29.

Patient numbers varied significantly across studies, with aminimumof
four patients22 up to a maximum of 25 people with PD21,23. Full results are
presented in Supplementary Table 1.

Level II. diagnostic sensitivity
The second level was associated with research questions on diagnostic
sensitivity. A total of 46 articles were included, which accounted for >75%of
those reviewed. Study types and research questions varied significantly
across the group, spanning from assessing the capability of gait sensors to

Ar�cles iden�fied through database 
searching (n = 296)
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of �tles and abstracts 

Screened ar�cles excluded with a reason (n=174)
• PD not primary disorder (n=17)
• No real-world environment (n=76)
• Not full text available (n=26)
• Reviews and Protocols (n=55)

Full-text ar�cles assessed for eligibility
(n=122)
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(n=59)
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• PD not primary disorder (n=9)
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Fig. 2 | PRISMA flow diagram. Articles screening procedure, including the number of papers excluded during preliminary and full text screening.
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differentiate the mobility of PD versus healthy controls or other neurode-
generative diseases26,30–34 to comparing sensor-derived parameters with
symptoms23,35–49 and clinical scores21,50,51. Differences across PD patient
phenotypes were also investigated across fallers vs. non-fallers43,44 and
freezers vs. non-freezers45,46.

Additionally, three manuscripts presented results using machine
learning models for prediction. Shah et al.31 and L. Evers et al.30, while
discriminating PD versus HC, achieved an AUC of 0.89 and 0.76, respec-
tively, whileMancini et al.45 classified freezers vs. non-freezers with anAUC
equal to 0.90. The impact of the “Real-World” noise was also assessed but
difficult to quantify. Powers et al.25 reported 8% of false positives in their
study due to manual teeth brushing and 2% linked to playing musical
instruments. Furthermore, it was observed that measures in the clinic are
often not representative of the patient’s conditions at home41, as patients’
gait at homewas slower, strides shorter, and shuffling gaitmorepresent. The
remaining results are presented in Supplementary Table 2.

Level III. clinical utility
Clinical utility as the EEL-III included nine articles (15%)25,52–59. No
increasing trend was /observed in the six years considered (0 articles until
May 2023, 1 paper in 2022, 4 studies from 2021, 2 from 2019, 0 from 2018,
and 2 from 2017. See Table S3 for details). Three articles presented inter-
ventional studies where remote monitoring wearable sensors improved
outcomes through individualizedmeasureswithin training or rehabilitation
settings57–59. Two assessed auditory stimuli for mobility training57,58. The
remaining studies explored more traditional treatment programs25,52–56.

The utility of wearables information in the context of clinical decisions
was assessed in 6 articles25,52–56. The contribution of sensor-based mea-
surements in providing sufficient additional knowledge to justify therapy
changes varied across the studies, from6%(6out of 100 participants) in25 up
to 43% (85 out of 200 participants) in ref. 56. The medical impact of
wearableswas quantified in two studies54,56, which both observed statistically
significant improvements in terms of clinical scores when sensor mea-
surements support doctors and healthcare professionals. Complete study
outcomes are listed in Supplementary Table 3.

Types of efficacy evidence provided
Four macro types of analytical evidence have been used to prove the dif-
ferent EELs. Statistical methods were the most exploited tools to compare
groups, diagnoses, and interventions. Primarily, descriptive statistic of the
distributions examined was presented together with an associated p-value.
Rarely were Cohen-d values for the effect size or Area Under the Curve
(AUC) values presented.

Correlations analysis, described generally as correlation coefficients
and relative p-values, were themost common approaches for the analysis of

symptom severity. In some cases, confidence intervals (CI) and R2 values
were also reported. Intraclass Correlation Coefficient (ICC) was unan-
imously applied to evaluate test-retest reliability.

Articles basedonmachine learningmetrics, all providedwithmeasures
beyond pure accuracy. If the AUC was overall the most frequent outcome,
sensitivity, specificity, F1 score, and mean absolute error were used in the
different papers reviewed.

Finally, qualitative/descriptive statistics were utilized in the reviewed
papers. It is interesting to mention that this type of approach was used only
in EEL-I when feasibility was tested or when describing clinical decision
support in EEL-III.

For detailed results on the analytical evidence types, see Tables 1, 2,
and 3.

User Experience
Twenty-one articles included user experience outcomes about the usability
ofwearablesorparticipants’ adherence. Twoarticles investigated exclusively
whether the patients considered a device usable26,27, and 11 articles focused
only on adherence to the study protocol19,25,32,37,48,54,55,57,58,60,61, and 8 evaluated
both18,20,22,40,52,57,59,62.

The duration of remote data collection across the different studies
spanned from 2 days to 16months. The small sample size of the cohort was
the most frequent limitation, with only two papers that enrolled >50
participants.

The largest study that assessed usability and adherence was from Lima
et al., which included953PDparticipants inNorthAmerica (NAM)and the
Netherlands (NL), monitored for 6 or 13 weeks20,33,36. Overall, 84% of par-
ticipants contributed sensor data, although this amount was affected by the
platform usability score and self-reported user depression. Participant’s
adherence to the study protocol ranged from 62% (14.8 h/participant/day)
up to 68% (16.3 h/participant/day) in the different countries. A general
decreasing trend in time for adherence was observed in both cohorts, with
the daily accelerometer data recording a reduction of 23% in the NL after
13 weeks and 27% in NAM after 6 weeks.

Burg et al. reported on 388 people with early-stage PD where usability
wasmeasured as the participant’s ability to perform the protocol test during
the in-clinic visit, obtaining almost a perfect score (100% for tremor and
upper extremity bradykinesia and 98.5% for gait)40. Adherence was eval-
uated in terms ofmedianwear-time (21.1 h/day), and the percentage of per-
protocol remote assessments completed was 59%. Similar to the previous
study, the adherence rate decreasedwith time from80%of participants who
had at least one virtualmotor examduring thefirst week to just 40% inweek
52, with a dropout rate of 5.4%.

In general, all papers reviewed presented good results regarding
adherence and usability. Participants reported positive experiences with

Fig. 3 | Distribution of articles reviewed. Sankey
diagram of the distribution of the articles across the
different Efficacy Evidence Levels and User Experi-
ence categories.
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wearables and found them easy to use and incorporate into their daily
routines.Nevertheless, long-termdata collection stillmeasured a substantial
decrease in adherence with time. Detailed user experience results are
summarized in Supplementary Table 4.

Discussion
The primary aim of this manuscript was to assess the evidence of clinical
utility and general usability of wearables for home-monitoring applications
to understand if these are two critical elements that limit the translation of
research results into the patient’s journey in real-world healthcare scenarios.
This was evaluated through a systematic review, which categorized the level
ofmaturityofwearable technologies in researchstudies by assigning tailored
Efficacy Evidence Levels for each paper.

Most manuscripts published in literature on wearable sensors in PD
focus exclusively on technology development under a laboratory test
environment.Consequently, theywere excluded fromthis reviewduring the
screening phase. However, we could identify 59 manuscripts that transfer
wearable technology into home monitoring, which adds to the technical
measurement aspects, the real-world context, and non-standardized clinical
assessments.

The division of the articles with our framework highlighted how the
majority (>80%) is oriented toward technical efficacy or diagnostic sensi-
tivity. Consequently, it does not directly generate evidence of improvement
in health outcomes, diagnosis, treatmentmanagement, or prevention. Only
nine articles could be categorized into the EEL-III, clinical utility level. Two
major clinical contextswere associatedwith these studies.The authors either
presented an improvement in patients’ condition after sensor-based train-
ing interventions, or demonstrated the utility of wearables for healthcare
professionals during their clinical decisions.

The interventional studies testing the effect of wearables technologies
revealed that sensors could play an essential role in this type of trial with
closed-loop feedback, individualized training parameters, and primary
outcome measures. The crucial factor observed was training intensity.
Protocols with a minimum training frequency of 150min per week for at
least 6 weeks yielded considerably higher benefits than a lower training
frequency63. These findings align with previously published research on
rehabilitation training64.

When investigating clinical decision support, the primary aimofdigital
technologies was to provide doctors with a better overview of the individual
patient’s motor symptom severity and fluctuation. This allowed a perso-
nalized treatment selection and a more accurate evaluation of the therapy
effects in time.However, the final impact of sensors on health outcomes has
been assessed quantitatively only in two studies. In the work from A. Far-
zanehfar et al.56, sensor-based therapy modification led to a decrease of 6
MDS-UPDRS III and 12 total MDS-UPDRS points compared to regular
assessment. Similarly, Isaacson et al.54 observed a significant least square
mean improvement of 2.6 points in UPDRS II and a descriptive improve-
ment of 4 points in UPDRS III. The remaining four studies in the EEL-III
group presented qualitative results on clinical utility.

This imbalance between quantitative vs. qualitative results highlights a
critical gap in the assessment of clinical utility. In the future, it would be
essential having harmonized conditions and study designs to assess and
compare the clinical utility of the different digital technologies. Ideally, for
the specific case of Parkinson’s, the wearables effect should be evaluated on
long-term disease progression, rapid changes due to interventional trials,
and standard-of-care treatment cycles65.

A better evaluation framework for clinical utility of studies would lead
not only to an improved care for patients, but also to validated metrics to
assess wearables outcomes and support clinical decision-making. It is
important mentioning in this regard, the results of a recent scoping review
on the clinical adoption of gait analysis technologies (whichwas not specific
to the clinical and usability settings covered in thismanuscript)66. This work
identified asmajor barriers to adoption of sensors, as reported by healthcare
professionals, the underlying interpretability of the measurements in the
clinical decision context, and the lack of literacy availablewith reference dataT
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to establish objective comparisons. These findings highlight the necessity of
more numerous and structured clinical utility studies.

Within the diagnostic sensitivity category EEL-II, the studies reviewed
presented a broad range of targetedmotor symptomswithin heterogeneous
applications, participants, and sample sizes.

Studies converge in claiming the feasibility of “symptoms monitoring”
and “treatment monitoring”: continuously tracking in the home environ-
ment clinically relevant information about the severity of patient motor
symptoms25,30,35,37,47,61,62,67. This tracking is affected by “Real-World” noise,
i.e., movements from unsupervised daily activities mimicking PD symp-
toms, which may lead to errors in the sensor report and false alarms. A
robust strategy to filter this type of interference still needs to be found.

Also, studies consistently agree thatmeasurements in the unsupervised
environment are not just an extension of what is observed in the lab but a
new perspective that substantially differs. Nonetheless, links and correla-
tionswere found across the two settings21,25,41,68, highlighting the importance
of having lab measurements and unsupervised scripted tasks in the home
environment as a reference.

When investigating patients’ stratification, wearable sensors demon-
strated sufficient sensitivity to capture variations between inter and intra-
disease69. Combined with artificial intelligence, sensor-derived data and
digital outcomes can discriminate PD vs. HC and different PD patient sub-
types, such as fallers vs. non-fallers43,44 or freezers vs. non-freezers45,46. Long-
term, digital outcomes could be essential in diagnosing and identifying
potentially harmful patient risk factors. However, especially in this field, it is
essential tomention how the proper evaluation of the results should revolve
primarily on clinical utility efficacy aspects rather than the pure numerical
performance of the algorithm. It must be proven that these smart models
can still provide additional value to healthcare professionals in real-world
applications, which present additional constraints compared to a research
environment.

Surprisingly, only a few articles included analyses associated with non-
motor symptoms despite the complex multidimensional nature of Parkin-
son’s disease.Apossible explanation is the additional hardware and software
required to evaluate the non-motor sphere (e.g., symptom questionnaires,
patient diaries, or qualitative interviews), consequently limiting the number
of validated devices on the market that monitor motor and non-motor
symptoms. This gap represents a huge growth opportunity for the future,
particularly if we consider the extreme relevance of non-motor symptoms
from a clinical perspective and their significant impact on the quality of life
of people with PD.

The articles in the Technical efficacy group focused on proving feasi-
bility or identifying movements and segments of interest, such as walking
periods, whose characteristics can be linked to clinically relevant informa-
tion in follow up studies. This category was the smallest as expected. In fact,
more controlled and less noisy environments are usually preferred when
evaluating this type of research questions. All the works in this category
showed promising results. In the work of Reykov et al.23, walking segments
in the unsupervised environment were detected with a specificity and sen-
sitivity of 91% for PD patients. Excellent performance was achieved also in
the studyofNouriani et al.24wherewalking, standing, and turninghave been
detectedwith anaccuracyof above 99%.However, a common limitationwas
the small sample size,with the biggest study that enrolled 25peoplewithPD.

In parallel to evidence, in this manuscript, we evaluated “User experi-
ence” through adherence and usability. Overall, wearables received a high
usability rating and were well accepted by the patients in the different
cohorts. However, the duration of the studies evaluated was limited in some
cases26,27, which calls for long-term evaluation of these aspects.

Furthermore, the drop in the adherence in time remains a challenge to
be addressed in future work. In the context of wearable technologies, the
potential bias due to the ‘novelty effect’ must be considered70. However,
reasons for discontinuation of use need to be systematically identified and
tackled, including, e.g., privacy concerns, lack of digital health literacy71,
motivations behind unwillingness of long-term/continuous use72,73. Family
problems can also play a role. In this case, also caregivers need to be included

in the overall usage concept of technical devices, allowing forflexibility given
heterogenous personal care needs. To achieve long-term adherence and fit
to people’s everyday life, patient-centeredapproaches to design and evaluate
body worn devices are highly recommended, e.g., through co-design and
value-based studies74, taking into consideration needs for informed
decision-making and autonomy75,76.

Finally, it is important to highlight that only 21 out of 59 articles
provided usability or adherence outcomes, most of which were feasibility
studies with small sample sizes. Furthermore, measurement methods for
user experiencewere highly variable across articles, with a limited number
using standardized usability evaluations and the rest using self-developed,
non-validated user questionnaires. For this reason, it is essential to con-
sistently introduce usability assessments as a regular practice, irrespective
of the cohort under investigation or the type of study undertaken, while
using systematic criteria for evaluating and iterating on user experience
and by conducting both quantitative and qualitative research in a sys-
tematic way17. Patient engagement strategies and a patient-centered
design for user experience should be explicitly implemented for long data
acquisition periods to mitigate the drop in concordance/adherence
observed in many longitudinal projects. In future work, an iterative
approach to designing and evaluating a holistic user experience likely
prevent expensive changes to mature prototypes that showed low
adherence in clinical studies.

To complete this discussion section, it is important to highlight also
two main limitations of the current work, which are essential to the correct
interpretation of the clinical utility results of this manuscript. First, part of
the devices eventually integrated within standard of care procedures, are
developed completely inside the manufacturer validation pipeline. Conse-
quently, their development does not generate research studies that can be
evaluated in this review.

Second, our EEL framework was primarily developed to categorize the
paper screened in this review. A comprehensive and accurate evaluation of
the clinical utility of wearables would require a “Health Technology Assess-
ment” approach that explores multiple domains in parallel to evidence and
user experience, see Fig. 4. Additionally, this evaluation should be carried
not in research studies, as performed in this manuscript, but within the
multiple Real-Word clinical pathways of the people with PD. However, this
was beyond the scope of our manuscript.

Recently, the (state-of-the-art) management strategy of PD started a
profound transformation following the advent of Precision Medicine.
Generic treatments have been replaced by individualized interventions
tailored on the necessities of the single patient, and subjective evaluations
substituted by objective data driven assessments. The combination of
innovative technologies and algorithms, such as wearable sensors and
machine learning models, triggered this change making new types of
information available to healthcare professionals. This has impacted the
decision-making process, which has shifted toward a “Quadruple Decision-
Making Model” that is not anymore exclusively based on professional
expertize, but combines expert opinion, patient preferences, scientific evi-
dence, and big data approaches76.

At the same time, this transformation is slowly but steadily shifting the
role itself of wearables technologies. They are not expected anymore to
simply replicate of what is done in regular hospital assessments. They are
requested to provide a different perspective and added value. In summary,
they need to provide clinical utility evidence.

The results of this manuscript, shows that wearable sensors, such as
PKG,MM4PD, Kinesia 360, Ambulosono among others (see also the work
ofC).Moreau et al. for an anthology of themost used body-warn sensors for
PD13, can already play a relevant role as clinical decision support tools for
neurologists or during individualized rehabilitation programs. Conse-
quently, the low amount of clinical utility evidence observed in the research
papers screened, seems to be motivated more by a lack of study designs
investigating these factors, rather than the technological readiness of the
systems. To maximize the potential of wearable sensors and their positive
impact on the care strategy of PD is essential investigate deeper the clinical
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utility of these technologies and to generate validated referencemetrics that
can be used in the different care pathways.

Since the introduction of new devices within the medical procedures
often comes with changes in professional roles and tasks77, new types of
specialized trainings will be required (as was the case in articles reviewed50),
and as offered by professional healthcare networks in some countries78.
Firstly, for healthcare professionals to use novel devices and integrate the
sensor information into their care routines. Secondarily, for patients to learn
how to properly handle these new tools.

To conclude, this manuscript presents a review of the clinical utility
evidences of wearable sensors in research studies focusing on people with
PD in the home environment. The results showed that within the large
production of articles centered on this topic, only a very limited number of
studies generate evidence about clinical utility. This phenomenon could
explain, in part, the gap between technical readiness and usage within
standard of care that is observed for wearable technologies in PD.

As alreadymentioned, analyzing the limitations of theEEL framework,
the fully comprehensive evaluation of the impact of wearables in PD
management would require a more complex and multi perspective
approach.However, it is important to consider that research trials, thanks to
the possibility of shaping the studydesigns and selecting inclusion/exclusion
criteria of the participants, offer amore controlled and suitable environment
to investigate pure clinical utility. They can create the ideal conditions to

limit the interference of external factors while maximizing the impact of
wearable tools on healthcare outcomes. For this reason, they play a vital role
in the generation of clinical utility evidence.

Ultimately, the results of our work strongly suggest that the scarcity of
clinical utility evidence is induced primarily by the lack of study designs
tailored to quantify improvement in health outcomes, and not by existing
technical hardware/software limitations.Wearables nowadays can generate
accurate and relevant diagnostic information (as shown by the EEL-II) that,
if used, clearly provides a benefit to patients and doctors (EEL-III). For this
reason, we encourage future researchers to focus more on clinical utility
studies, generating results that will shape the future care strategies for
Parkinson’s Disease.

Methods
To evaluate and assign the selected research articles to different maturity
levels basedon the given evidence,we generated an “Efficacy Evidence Level”
model (EEL) tailored towards the three essential milestones wearables need
to achieve. They have to undergo a prove of technical precision and accu-
racy, a validation of their in home-based applications, and the proof of
clinical utility for their measures or parameters, i.e., being beneficiary for
individual patients and/or their healthcare professionals. The EEL model
builds on two evaluation frameworks with a more general comprehensive
evaluation scope (Fig. 5). In 1991, Fryback and Thornbury (FT) proposed a

Evidence Evalua�on

Integra�on into
Healthcare System

Technical Efficacy
In the home se�ng, does the wearable sensor 
measure what it purports to measure?

Cost Evalua�on 

Social Evalua�on

Regulatory Evalua�on

User Experience Evalua�on

Diagnos�c Sensi�vity Efficacy
How well the sensor derived informa�on correlate 
or are sensi�ve to change with respect to clinical
parameters or pa�ent phenotype?

Diagnos�c Thinking Efficacy
Does the outcome of sensor help clinicians to come 
to a diagnosis? 

Therapeu�c Efficacy
Does the sensor measurement aid in planning
treatment or change/cancel planned treatment?

Pa�ent Outcome Efficacy
Do pa�ents benefit from the use of the sensor?

Clinical U�lity Efficacy
Demonstrated 

improvement on health 
outcomes, diagnosis, 

treatment management or 
preven�on.

Adherence Efficacy
How the par�cipant’s behavior in 
using the sensor corresponds with
the agreed recommenda�ons?

Usability Efficacy
Is the user sa�sfied of the 
func�onality and effec�veness of 
the wearable sensor?

Fig. 4 | Multi-perspective evidence model. Multi-perspective model to evaluate the maturity level of wearable technologies toward a standard of care integration, with
different sciences contributing to translating research concepts into clinical care.
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model to categorize diagnostic tests in general, where their maturity was
classified into six levels of efficacy, spanning from technical efficacy if the test
correctlymeasures what it is supposed to in a laboratory setting, up to social
efficacy, where cost-benefit and cost-effectiveness have to be proven15.
Adapted versions of this model have been utilized in more recent works,
such as the 2020 review by K. van Leeuwen et al., who classified AI-based
commercially available products in radiology79. In 2020, a different
approachwas proposed byGoldsack et al.16: theV3 framework evaluates the
maturity level of biometric monitoring technologies according to 4 valida-
tion classes and presents Clinical Utility as the maximum level of maturity,
i.e., if it has been demonstrated an improvement on health outcomes,
diagnosis, treatment management or prevention.

For feasibility reasons, we tailored the evaluation items of the two
models to the clinical utility of wearables for homemonitoring in PD. Thus,
our framework is composed of three hierarchical EELs defined as follows:
1. Technical efficacy: the first EEL evaluates the accuracy of the infor-

mation being measured by the sensor.
2. Diagnostic sensitivity: the second EEL analyzes how well sensor-

derived information correlate or are sensitive to change compared to
clinical parameters or patient phenotype. Four application domains
can be foreseen: distinguishing across different conditions, stratifying
across patients intra-disease, evaluating symptoms severity, and
evaluating changes in patient conditions on long or short timeframes
(disease progression and treatment cycles, respectively).

3. Clinical utility: the third level of EEL considers towhich extent the data
measured by the sensors can be translated into practical knowledge
supporting personalized clinical decisions and positive effects on the
individual patient’s clinical outcome.

The definitions for the first two levels were inspired by the FT model,
whereas the clinical utility EELwas adjusted to the V3 clinic grade accuracy
scale, as the latterfitsbetter to evaluate the evidenceofwearable technologies
from feasibility studies.

Together with the evidence level, a separate analysis focusing on user
experience has been performed. User Experience can be independently

evaluated at different levels of maturity. In fact, multiple reviewed articles
from all the EELs investigated these aspects. For this reason, user experience
has been analyzed in parallel to the primary evidence efficacy framework.

Article selection and structured reviewing procedure
The systematic review of the articles was performed according to the
PRISMA principles17. The research was conducted using the PubMed
Central database (RRID: SCR_004846) and included studies with publica-
tion dates between January 2017 and May 2023. Only original, full-text
articles published in English that described the usage ofwearable sensors for
homemonitoringofpeoplewithPDwere included in the review.All types of
body worn technologies were considered for this review. However, manu-
scripts based exclusively on surveys without a real usage of devices were
excluded. Specific search terms were used for a detailed literature review:
(Parkinson*) AND (measure OR monitoring) AND (free-living OR daily
livingORcontinuousOR24-hORhomeORunsupervised)AND(sensors),
located within the title, abstract, or full text.

The article filtering process was composed of two phases. First, text
availability, titles, and abstracts were checked as a preliminary screening of
the extracted links. Second, the full texts of the selected manuscripts were
further analyzed to include articles for final review.

The modified AXIS appraisal tool method was utilized to analyze the
risk of bias80,81. Each article was scored between 0 and 13, summing the
numberofpositive answers in the reviewer’s assessment (see Supplementary
Table 5). Papers with scores below 10 points were considered at medium-
high risk of bias and consequently excluded from the review.

Five independent reviewers (GZ, MJ, OT, AC, SS) selected and eval-
uated the studies. In case of disagreement, the articles were discussed with
non-reviewing co-authors. To be included in the review, the article had to
meet the criteria listed below:

Inclusion criteria

• Type of paper: original, full-text, peer-reviewed, journal or articles
• Time frame: January 2017–May 2023

Fig. 5 | Evidence level frameworks. Framework for Efficacy Evidence Levels (EELs) utilized for categorizing the articles within this manuscript. The EELmodel is presented
together with the Fryback and Thornbury15 and the V3 models16 in order to facilitate the comparison across different frameworks.
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• Participants: people with PD
• Environment for assessment: Home monitoring
• Information source: wearable sensors

Exclusion criteria

• Type of paper: conference articles.
• Studies conducted in artificial “home-like” environments.
• Reviews, meta-analyses, and papers not reporting original data.
• Article only describes the protocol or study design without concrete

results.
• Article without access to the full-text version.
• Articles with an AXIS score below 10 points.
• Surveys without usage of wearables
• No body-worn sensors

EEL-framework categorization
Finally, the articles included were categorized according to the EEL fra-
mework based on their research questions. Papers investigating pure
technical precision, without correlating sensor-derived measures with any
medical parameters, were assigned to the “Technical Efficacy” group, EEL-I.
In the EEL-II, “Diagnostic Sensitivity”, were included studies that applied
statistical analysis, algorithms, or machine learning models to link sensor
outcomes with clinical scores and patient profiles, cross-sectionally or
longitudinally. Finally, in the “Clinical Utility” grade, EEL-III, were assigned
paperswhere sensor-derivedmeasureswereutilized to enhancepatient care.
This was achieved either by improving decision-making from healthcare
professionals through relevant information or actively tailoring interven-
tions according to the device measurements.

Studies were assigned to more than one category when they presented
multiple research questions associated with the different levels of our fra-
mework. Detailed results from the reviewed articles are shown in separate
tables related to each level of the EEL framework (Supplementary Tables
1, 2 and 3).

User experience evaluation
In addition to categorizing the 3 EELs, we evaluated the user experience
aspects presented in the reviewed studies. User Experience has been con-
sidered by reviewing adherence and usability results62,69. The WHO defines
adherence as “the degree towhich the person’s behavior correspondswith the
agreed recommendations from a healthcare provider” and measured
regarding data contribution and task completion rates82. According to ISO
norms, usability is defined as “the degree to which a given user’s goal is
achieved in terms of effectiveness, efficiency, and satisfaction”83. These two
aspects are positively correlated and vital when considering the imple-
mentationanddiffusionof remotemonitoringwearable sensors inhealthcare.

Data availability
The data source utilized to generate Fig. 1 and the PRISMA diagram are
available in Zenodo repository (REF: 10.5281/zenodo.11349002).
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