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A B S T R A C T

Background: Prolonged levodopa treatment in Parkinson’s disease (PD) often leads to motor complications,
including levodopa-induced dyskinesia (LID). Despite continuous levodopa treatment, some patients do not
develop LID symptoms, even in later stages of the disease.
Objective: This study explores machine learning (ML) methods using baseline clinical characteristics to predict the
development of LID in PD patients over four years, across multiple cohorts.
Methods: Using interpretable ML approaches, we analyzed clinical data from three independent longitudinal PD
cohorts (LuxPARK, n = 356; PPMI, n = 484; ICEBERG, n = 113) to develop cross-cohort prognostic models and
identify potential predictors for the development of LID. We examined cohort-specific and shared predictive
factors, assessing model performance and stability through cross-validation analyses.
Results: Consistent cross-validation results for single and multiple cohort analyses highlighted the effectiveness of
the ML models and identified baseline clinical characteristics with significant predictive value for the LID
prognosis in PD. Predictors positively correlated with LID include axial symptoms, freezing of gait, and rigidity in
the lower extremities. Conversely, the risk of developing LID was inversely associated with the occurrence of
resting tremors, higher body weight, later onset of PD, and visuospatial abilities.
Conclusions: This study presents interpretable ML models for dyskinesia prognosis with significant predictive
power in cross-cohort analyses. The models may pave the way for proactive interventions against dyskinesia in
PD by optimizing levodopa dosing regimens and adjunct treatments with dopamine agonists or MAO-B in-
hibitors, and by employing non-pharmacological interventions such as dietary adjustments affecting levodopa
absorption for high-risk LID patients.

1. Introduction

Levodopa is a drug commonly prescribed for the treatment of Par-
kinson’s disease (PD) [1]. It relieves motor symptoms [2], but prolonged
use can lead to motor complications, including levodopa-induced
dyskinesia (LID) [3]. These hyperkinetic movements can be attributed

to the development of abnormal pre- and post-synaptic plasticity in the
basal ganglia network induced by levodopa in the context of degener-
ation of nigral neurons [4]. Although delaying levodopa treatment has
been suggested to reduce the risk of LID [5], evidence supporting this
strategy remains inconclusive.

LID affects approximately 30% of PD patients within the initial five
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to six years of levodopa treatment [2]. In a smaller subgroup, however,
20–30% of treated patients will experience LID symptoms within an
average of 20.5 months [6]. After ten years of continuous treatment, the
majority of individuals report experiencing adverse effects associated
with LID [4]. The impact of LID on quality of life is significant, affecting
daily activities, communication and increasing the risk of falls [6].
However, the factors that determine why the delay in the onset of LID
varies widely among PD patients on similar treatment regimens remain
elusive. Identifying risk factors that predispose patients to develop LID
could pave the way for the design of personalized medicine approaches
to improve prevention and early treatment efficacy by individually
adjusting pharmacological and non-pharmacological interventions (e.g.,
preferred use of controlled release formulations of levodopa for patients
at high risk of developing LID [2], early consideration of Deep Brain
Stimulation as an alternative treatment option [1], or guiding patients
on dietary adjustments that can affect levodopa absorption and meta-
bolism [7]).

While previous studies have improved our understanding of the
factors that influence LID development in PD, they have primarily
focused on single-cohort analyses, which may have potential cohort-
specific biases. Furthermore, most prior studies did not optimize the
predictive models for sparsity and interpretability, and no testing of the
robustness and reproducibility in a cross-study setting was performed.
To help address these gaps, our study aims to construct prognostic
models for LID risk using baseline clinical characteristics from three
distinct PD cohorts, focusing on sparse and interpretable modeling ap-
proaches to complement the previous investigations and increase model
robustness and explainability. The main goal is to obtain prognostic
models that are biologically plausible, independently confirmed in
different cohorts, and suitable for future cross-study applications.

The application of machine learning (ML) techniques enables the
creation of accurate, multivariate prognostic risk models that can
identify multiple interrelated risk factors [8]. We also address challenges
such as systematic biases in cross-cohort studies by using cross-cohort
normalization methods to ensure the reliability and robustness of the
results [8]. This work establishes the foundation for future studies on
early preventive and therapeutic interventions against LID in PD.

2. Methods

2.1. Inclusion criteria

PD patients were evaluated using the Movement Disorders Society-
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), which in-
cludes assessing motor complications and identifying dyskinesia symp-
toms during clinical visits. LID occurrence was defined as a score ≥1 on
MDS-UPDRS Part IV, item 4.1 (time spent with dyskinesias), item 4.2
(functional impact of dyskinesias), or by the presence of dyskinesia
identified in the clinical motor examination. If any relevant assessments
indicated the presence of dyskinesia during a clinical visit, the corre-
sponding patient was defined to have PD with LID. As the evaluation of
LID was integrated into the MDS-UPDRS Part IV score, we excluded the
total MDS-UPDRS Part IV score from any further analysis. Importantly,
the LuxPARK cohort participants were assessed solely during the ON
state. Due to this limitation, all analyses focused only on data obtained
during the ON stage, and assessments in the OFF state from other cohorts
were excluded.

To evaluate potential factors influencing LID symptom occurrence,
we extracted baseline clinical features and longitudinal LID status re-
cords for PD patients from all three cohorts, covering up to four years
from baseline. We analyzed the data over this four-year period for
classification analysis, ensuring consistency and comparability across all
cohorts, in alignment with the four-year follow-up available in the
ICEBERG cohort. This timeframe corresponds with clinical practice,
where significant changes in treatment response and complications
often occur within the first few years of therapy. However, focusing

solely on this period may limit the study by not capturing long-term
trends and outcomes beyond four years. To mitigate this limitation,
we conducted a time-to-event analysis, which assesses events and out-
comes over varying time frames. This approach provides a more
comprehensive understanding of the data, despite the uniform follow-up
period used for the classification analysis. Specifically, in the time-to-
event analysis, the duration of follow-up varied among patients
depending on their total time of participation within each cohort study.
The outcome was defined as the duration until the LID event occurred,
or until the last follow-up, if the event was censored.

The inclusion criteria were: (1) a diagnosis of PD according to the
current criteria by the International Movement Disorder Society; (2)
patients with LID, defined as presenting with LID symptoms within four
years of the baseline clinical visit (LID+), and patients without LID,
defined as having recorded assessments showing no LID symptoms
during these four years (LID-). Importantly, patients with LID at baseline
were excluded in the test set evaluations for ML. This uniform approach
for all cohorts helped to ensure that the considered subjects were fully
aligned regarding the criteria for PD diagnosis and LID assessment.
Further information on the cohort characteristics is provided in the
Suppl. Material (section 1).

The number of PD patients who met the two inclusion criteria for the
classification and survival analyses are displayed in Table 1. The
‘Events’ columns indicate the total number and percentage of subjects
who developed LID during the considered timeframe (up to 4 years
follow-up for LID classification and up to the last available follow-up
visit for each patient for the time-to-LID analysis). A comprehensive
overview of the demographic and baseline clinical characteristics for all
subjects covered in the cross-cohort analysis is shown in Table 2.
Additional cohort-specific descriptive statistics for the LuxPARK, PPMI,
and ICEBERG cohorts are provided in Suppl. Tables 2–4. It is important
to recognize that these baseline characteristics reflect characteristics
during the first clinical visit, which generally does not correspond to the
onset of the disease. As a result, patients may have different disease
durations at baseline, and we therefore consider disease duration as a
key variable in our analyses.

2.2. Machine learning analysis for LID classification

Using the clinical data from the three patient cohorts, we first applied
pre-processing and normalization as described in the Suppl. Material
(section 2) and then performed supervised ML methods, focusing on
interpretable, rule-based approaches, to predict the occurrence of LID in
PD within the next 4 years. In total, nine tree-based ML algorithms for
classification were evaluated, including Adaptive Boosting (AdaBoost)
[9], Classification and Regression Trees (CART), Category Boosting
(CatBoost), C4.5 trees [10], Fast Interpretable Greedy-Tree Sums (FIGS)
[11], Fast-Sparse Decision Tree (GOSDT-GUESSES) [12], Gradient
Boosting (GBoost) [13], Hierarchical Shrinkage (HS) [14], and Extreme
Gradient Boosting (XGBoost). These classification algorithms were used
to build models for LID prognosis from the baseline clinical information
of PD patients and to assess themost predictive features as candidate risk

Table 1
Number of patients who met the inclusion criteria and distribution of events in
the LuxPARK, PPMI, and ICEBERG cohorts.

Cohort Inclusion
criteria (1)

Inclusion
criteria (2)

Events (LID
Classification)

Events
(Time-to-
LID)

LuxPARK 706 356 210 (59.0 %) 222 (62.4
%)

PPMI 796 484 173 (35.7 %) 348 (71.9
%)

ICEBERG 162 113 36 (31.9 %) 36 (31.9 %)
Total 1664 953 419 (44.0 %) 606 (63.6

%)

R.T.J. Loo et al.



Parkinsonism and Related Disorders 126 (2024) 107054

3

Table 2
Overview of the demographic and baseline clinical characteristics for all subjects
covered in the cross-cohort analysis during a 4-year follow-up period. Subjects
who developed LID are indicated by a “+” sign (LID+) and subjects who did not
develop LID by a “-” sign (LID-). P-values for the significance of differences
between the LID- and LID + groups for individual features are shown in the last
column.

Baseline feature Statistics All
samples

LID - LID + P-
values

Number of patients N 953 534
(56.0
%)

419
(44.0
%)

Demographic and general information:
Age of onset n 947

(99.4 %)
532
(55.8
%)

415
(43.5
%)

7.72E-
12

Mean
(SD)

58.2
(10.80)

60.4
(10.16)

55.5
(11.00)

Disease duration n 947
(99.4 %)

532
(55.8
%)

415
(43.5
%)

7.66E-
38

Mean
(SD)

4.5
(5.56)

2.8
(4.28)

6.7
(6.24)

Levodopa treatment n 952
(99.9 %)

533
(55.9
%)

419
(44.0
%)

2.57E-
38

No 493
(51.7 %)

374
(39.2
%)

119
(12.5
%)

Yes 459
(48.2 %)

159
(16.7
%)

300
(31.5
%)

Weight (kg) n 947
(99.4 %)

533
(55.9
%)

414
(43.4
%)

5.38E-
03

Mean
(SD)

78.2
(16.29)

79.5
(16.39)

76.5
(16.01)

Height (cm) n 947
(99.4 %)

532
(55.8
%)

415
(43.5
%)

4.29E-
05

Mean
(SD)

170.4
(9.95)

171.6
(9.79)

168.9
(9.95)

BMI (kg/m2) n 946
(99.3 %)

532
(55.8
%)

414
(43.4
%)

0.440

Mean
(SD)

26.8
(4.59)

26.9
(4.51)

26.7
(4.68)

Neuropsychological assessments:
Benton Judgement of
Line Orientation

n 828
(86.9 %)

455
(47.7
%)

373
(39.1
%)

1.66E-
10

Mean
(SD)

11.4
(8.24)

13.0
(7.25)

9.5
(8.95)

Non-motor, motor and disability:
Hoehn & Yahr stage n 949

(99.6 %)
531
(55.7
%)

418
(43.9
%)

5.00E-
04

Stage 0 4 (0.4
%)

3 (0.3
%)

1 (0.1
%)

Stage 1 223
(23.4 %)

176
(18.5
%)

47 (4.9
%)

Stage 2 643
(67.5 %)

327
(34.3
%)

316
(33.2
%)

Stage 3 61 (6.4
%)

21 (2.2
%)

40 (4.2
%)

Stage 4 13 (1.4
%)

2 (0.2
%)

11 (1.2
%)

Stage 5 5 (0.5
%)

2 (0.2
%)

3 (0.3
%)

Axial symptoms n 951
(99.8 %)

533
(55.9
%)

418
(43.9
%)

3.99E-
30

Mean
(SD)

3.5
(3.90)

2.3
(3.03)

5.0
(4.35)

Table 2 (continued )

Baseline feature Statistics All
samples

LID - LID + P-
values

Selective axial
symptoms

n 951
(99.8 %)

533
(55.9
%)

418
(43.9
%)

1.38E-
20

Mean
(SD)

2.5
(2.72)

1.8
(2.41)

3.3
(2.87)

Motor fluctuation
composite

n 647
(67.9 %)

293
(30.7
%)

354
(37.1
%)

1.14E-
24

Mean
(SD)

1.4
(2.36)

0.4
(1.23)

2.2
(2.74)

Freezing of gait n 951
(99.8 %)

533
(55.9
%)

418
(43.9
%)

2.07E-
22

Mean
(SD)

0.4
(1.11)

0.2
(0.69)

0.8
(1.41)

Resting tremor n 579
(60.8 %)

247
(25.9
%)

332
(34.8
%)

0.016

Mean
(SD)

3.6
(3.37)

3.9
(3.27)

3.4
(3.42)

Tremor n 579
(60.8 %)

247
(25.9
%)

332
(34.8
%)

2.10E-
03

Mean
(SD)

5.5
(4.39)

6.0
(4.20)

5.2
(4.50)

Bradykinesia n 579
(60.8 %)

247
(25.9
%)

332
(34.8
%)

4.03E-
03

Mean
(SD)

14.8
(8.34)

13.5
(7.45)

15.8
(8.83)

Rigidity lower
extremities

n 578
(60.7 %)

247
(25.9
%)

331
(34.7
%)

1.65E-
04

Mean
(SD)

1.7
(1.68)

1.4
(1.67)

1.9
(1.66)

Rigidity upper
extremities

n 578
(60.7 %)

247
(25.9
%)

331
(34.7
%)

0.710

Mean
(SD)

2.5
(1.55)

2.4
(1.44)

2.5
(1.64)

Initial motor symptom
- Rigidity or
bradykinesia

n 949
(99.6 %)

532
(55.8
%)

417
(43.8
%)

0.489

No 225
(23.6 %)

131
(13.7
%)

94 (9.9
%)

Yes 724
(76.0 %)

401
(42.1
%)

323
(33.9
%)

Modified Schwab &
England ADL

n 594
(62.3 %)

386
(40.5
%)

208
(21.8
%)

2.10E-
08

Mean
(SD)

92.0
(7.44)

93.4
(5.93)

89.4
(9.09)

MDS-UPDRS Part I
score

n 939
(98.5 %)

527
(55.3
%)

412
(43.2
%)

7.79E-
19

Mean
(SD)

6.7
(6.52)

5.0
(5.15)

8.9
(7.35)

MDS-UPDRS Part II
score

n 941
(98.7 %)

528
(55.4
%)

413
(43.3
%)

1.10E-
28

Mean
(SD)

8.7
(6.66)

6.6
(5.06)

11.4
(7.43)

MDS-UPDRS Part III
score (ON)

n 572
(60.0 %)

243
(25.5
%)

329
(34.5
%)

0.014

Mean
(SD)

28.5
(14.69)

26.6
(13.27)

29.9
(15.53)

MDS-UPDRS I - Apathy n 944
(99.1 %)

529
(55.5
%)

415
(43.5
%)

5.00E-
04

Normal 714
(74.9 %)

436
(45.8
%)

278
(29.2
%)

(continued on next page)
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and protective factors for LID.

2.3. Time-to-event machine learning analysis

We conducted time-to-event analyses as a complementary method to
identify predictive clinical features associated with the risk of LID
development. This approach is commonly used in biomedical research
to examine the effect of clinical factors on events monitored over time.

Table 2 (continued )

Baseline feature Statistics All
samples

LID - LID + P-
values

Slight 149
(15.6 %)

66 (6.9
%)

83 (8.7
%)

Mild 63 (6.6
%)

22 (2.3
%)

41 (4.3
%)

Moderate 13 (1.4
%)

4 (0.4
%)

9 (0.9
%)

Severe 5 (0.5
%)

1 (0.1
%)

4 (0.4
%)

MDS-UPDRS I -
Depressed mood

n 945
(99.2 %)

529
(55.5
%)

416
(43.7
%)

5.00E-
04

Normal 602
(63.2 %)

364
(38.2
%)

238
(25.0
%)

Slight 247
(25.9 %)

134
(14.1
%)

113
(11.9
%)

Mild 71 (7.5
%)

25 (2.6
%)

46 (4.8
%)

Moderate 18 (1.9
%)

6 (0.6
%)

12 (1.3
%)

Severe 7 (0.7
%)

0 (0.0
%)

7 (0.7
%)

MDS-UPDRS I - Sleep
problems (night)

n 944
(99.1 %)

530
(55.6
%)

414
(43.4
%)

5.00E-
04

Normal 341
(35.8 %)

223
(23.4
%)

118
(12.4
%)

Slight 237
(24.9 %)

143
(15.0
%)

94 (9.9
%)

Mild 178
(18.7 %)

101
(10.6
%)

77 (8.1
%)

Moderate 141
(14.8 %)

53 (5.6
%)

88 (9.2
%)

Severe 47 (4.9
%)

10 (1.0
%)

37 (3.9
%)

MDS-UPDRS I -
Urinary problems

n 944
(99.1 %)

530
(55.6
%)

414
(43.4
%)

6.00E-
03

Normal 415
(43.5 %)

250
(26.2
%)

165
(17.3
%)

Slight 337
(35.4 %)

191
(20.0
%)

146
(15.3
%)

Mild 125
(13.1 %)

65 (6.8
%)

60 (6.3
%)

Moderate 54 (5.7
%)

18 (1.9
%)

36 (3.8
%)

Severe 13 (1.4
%)

6 (0.6
%)

7 (0.7
%)

MDS-UPDRS II -
Freezing

n 944
(99.1 %)

530
(55.6
%)

414
(43.4
%)

5.00E-
04

Normal 759
(79.6 %)

483
(50.7
%)

276
(29.0
%)

Slight 101
(10.6 %)

38 (4.0
%)

63 (6.6
%)

Mild 41 (4.3
%)

4 (0.4
%)

37 (3.9
%)

Moderate 35 (3.7
%)

4 (0.4
%)

31 (3.3
%)

Severe 8 (0.8
%)

1 (0.1
%)

7 (0.7
%)

MDS-UPDRS II -
Hygiene

n 943
(99.0 %)

530
(55.6
%)

413
(43.3
%)

5.00E-
04

Normal 583
(61.2 %)

366
(38.4
%)

217
(22.8
%)

Table 2 (continued )

Baseline feature Statistics All
samples

LID - LID + P-
values

Slight 312
(32.7 %)

151
(15.8
%)

161
(16.9
%)

Mild 41 (4.3
%)

13 (1.4
%)

28 (2.9
%)

Moderate 5 (0.5
%)

0 (0.0
%)

5 (0.5
%)

Severe 2 (0.2
%)

0 (0.0
%)

2 (0.2
%)

MDS-UPDRS II - Saliva
and drooling

n 944
(99.1 %)

530
(55.6
%)

414
(43.4
%)

5.00E-
04

Normal 527
(55.3 %)

329
(34.5
%)

198
(20.8
%)

Slight 126
(13.2 %)

69 (7.2
%)

57 (6.0
%)

Mild 190
(19.9 %)

86 (9.0
%)

104
(10.9
%)

Moderate 85 (8.9
%)

41 (4.3
%)

44 (4.6
%)

Severe 16 (1.7
%)

5 (0.5
%)

11 (1.2
%)

MDS-UPDRS II -
Tremor

n 944
(99.1 %)

530
(55.6
%)

414
(43.4
%)

5.00E-
04

Normal 211
(22.1 %)

101
(10.6
%)

110
(11.5
%)

Slight 536
(56.2 %)

335
(35.2
%)

201
(21.1
%)

Mild 161
(16.9 %)

83 (8.7
%)

78 (8.2
%)

Moderate 28 (2.9
%)

7 (0.7
%)

21 (2.2
%)

Severe 8 (0.8
%)

4 (0.4
%)

4 (0.4
%)

Autonomic function:
SCOPA-AUT
Gastrointestinal (GI)

n 939
(98.5 %)

528
(55.4
%)

411
(43.1
%)

1.15E-
18

Mean
(SD)

3.3
(2.79)

2.6
(2.43)

4.2
(2.96)

SCOPA-AUT
Thermoregulatory

n 939
(98.5 %)

529
(55.5
%)

410
(43.0
%)

6.67E-
14

Mean
(SD)

2.0
(2.09)

1.5
(1.63)

2.6
(2.42)

SCOPA-AUT Urinary n 947
(99.4 %)

532
(55.8
%)

415
(43.5
%)

1.51E-
04

Mean
(SD)

4.7
(3.30)

4.3
(3.09)

5.2
(3.50)

Gene mutation:
GBA mutation n 842

(88.4 %)
458
(48.1
%)

384
(40.3
%)

0.110

No 741
(77.8 %)

411
(43.1
%)

330
(34.6
%)

Yes 101
(10.6 %)

47 (4.9
%)

54 (5.7
%)

R.T.J. Loo et al.
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The data is subject to censoring, meaning that some patients may not
have experienced the event of interest (LID development) by the end of
the study period, resulting in incomplete observations [15]. To address
this, we applied the following methods for time-to-event analysis:
component-wise Gradient Boosting (CW-GBoost) [16], Survival Trees
[17], Extra Survival Trees [18], Survival Gradient Boosting (Survival
GBoost) [16], Survival Linear Support Vector Machine (LSVM) [15],
Naive LSVM (NLSVM), penalized Cox regression [15], and Random
Survival Forests (Survival RF) [17].

2.4. Model evaluation

To quantitatively assess different ML approaches and how clinical
predictors relate to the risk and timing of LID symptoms following the
initial clinical visit, we used a cross-validation (CV) workflow (see
Suppl. Material section 3 and Suppl. Fig. 1), involving the learning al-
gorithms detailed in sections 2.2 and 2.3. For the integrative analyses of
multiple cohorts, we focused on those clinical features as candidate
predictors shared between the LuxPARK, PPMI, and ICEBERG datasets.

Two distinct prediction models were developed, here referred to as
comprehensive and refined models. The comprehensive model included
all baseline clinical features shared across the cohorts and was trained
without prior feature selection. By contrast, the refined model consisted
of a subset of clinical features obtained by excluding baseline dyskinesia
and levodopa medication. The motivation for building this refined
model was to better identify and assess clinical factors strongly associ-
ated with dyskinesia development that are independent of levodopa use
and of interest as potential risk factors or protective factors for LID
development. Both models were assessed in identical training and
testing workflows. To interpret the LID predictionmodels, we performed
a SHAP (SHapley Additive exPlanations) value analysis [19]. This
model-agnostic procedure allows post hoc interpretation, regardless of
the underlying model [19]. It quantifies the predictive value of indi-
vidual features and their influence on outcome predictions.

We evaluated the predictive ability of ML models for LID classifica-
tion and time-to-LID risk modeling using the Area Under the Curve
(AUC) [20] and the Concordance index (C-index) [21] as performance
measures for both CV analyses (averaging the results across the CV cy-
cles) and independent testing. Furthermore, to statistically assess and
compare the performance scores of the optimized comprehensive and
refined models, DeLong’s test [20], along with its adaptation by Kang
et al. [21], known as the one-shot nonparametric approach, was applied
to the hold-out test set. The performance scores between optimized
unnormalized and normalized models for all normalization methods
were also compared. The obtained p-values from the comparisons within
the same cohorts were adjusted using the Benjamini-Hochberg method
to address multiple hypothesis testing. To quantify the stability of the
model predictions, the standard deviations (SD) of the performance
metrics across the CV cycles were computed. Next, we performed deci-
sion curve analyses (DCA) to evaluate the clinical utility of the predic-
tive models for LID classification and time-to-LID analysis, assessing the
net benefit in clinical decision-making [22]. In addition, calibration
analyses were performed to measure the slope and mean squared error
(MSE) of the models, quantifying calibration performance by comparing
predicted probabilities with actual outcomes for the LID classification
model and comparing the predicted survival probabilities with the
observed survival probabilities for the time-to-LID model. Overall, the
combination of these analyses allowed us to evaluate the prediction
models’ generalization performance, robustness, and utility for clinical
decision-making.

2.5. Comparison of selected features across different cohorts

To compare the feature selection results across the single-cohort
analyses, we calculated statistics to identify features consistently cho-
sen as LID predictors across different cohorts and methods. Before

feature selection, categorical variables were one-hot encoded into bi-
nary features. If multiple features derived from the same original cate-
gorical variable were selected within a CV fold, they were treated as a
single feature to prevent duplication. First, the percentage of times each
candidate feature was selected in each of the 5 CV folds for each cohort
was computed. Next, the average percentage was calculated for each
cohort, providing a consolidated measure of the predictive utility of
each feature. These average percentages were compared across the three
cohorts for the optimized comprehensive and refined models for LID
classification and time-to-LID analysis, aiming to identify consistent LID
predictors across different methodologies and cohorts. This provides
insight into their generalizability and potential applicability as bio-
markers for cross-cohort LID prediction. This feature selection process
was performed separately for the classification and time-to-event
analyses.

2.6. Statistical analyses

We applied univariate hypothesis tests to explore potential statistical
associations between clinical measurements at baseline and the occur-
rence of LID within the 4-year visit. When the normality assumption was
not met, the Mann-Whitney U test was applied to compare continuous
variables between independent groups, and the two-sample t-test was
used for normally distributed variables. Categorical variables were
analyzed using Fisher’s exact test. To assess the differences between
continuous variables across the three cohorts, ANOVA was used when
the normality assumption was met; otherwise, the Kruskal-Wallis test
was applied. Spearman’s rank correlation coefficient, a nonparametric
correlation measure, was used to assess monotonic relationships be-
tween variables. Findings were considered statistically significant if the
associated p-value was below 0.05.

3. Results

3.1. Individual cohort analyses

When evaluating the predictive performance of ML models for LID
prognostic classification, we observed significant differences between
the results for individual cohorts. In the 5-fold CV on the training data,
using the modeling approaches described in sections 2.2 and 2.3, the
average AUC values for the optimized comprehensive model ranged
from 0.595 (SD 0.144) in ICEBERG to 0.735 (SD 0.091) in the LuxPARK
study, and similarly, for the hold-out data, from 0.533 in ICEBERG to
0.678 in LuxPARK (see Table 3). Comparable trends across the cohorts
were also observed for the time-to-LID analysis, with an average cross-
validated C-index ranging from 0.576 (SD 0.115) in ICEBERG to 0.714
(SD 0.027) in LuxPARK, and a hold-out C-index ranging from 0.451 for
ICEBERG to 0.557 for LuxPARK (see Table 4). The performance scores
for the PPMI study fell between those of the ICEBERG and LuxPARK
studies. In contrast to the CV results, a lower hold-out AUCwas observed
for the optimized comprehensive prognostic model in the ICEBERG
study. However, for most other combinations of modeling approaches
and cohorts, the CV and hold-out test set results were similar, indicating
the overall robustness and consistency of the performance estimates.

LuxPARK consistently achieved the highest predictive performance
in the classification and time-to-LID analyses, with PPMI and ICEBERG
following in second and third place, respectively. The refined model
achieved significantly higher predictive performance in the LID classi-
fication for PPMI and time-to-LID analysis for LuxPARK compared to the
comprehensive model (see Table 5). Finally, when assessing the stability
of the comprehensive and refined models for LID prognosis and time-to-
LID analyses, it was comparable for LuxPARK and PPMI (see Suppl.
Tables 7 and 8), but lower for ICEBERG, indicating more consistent and
stable performance for the cohorts with a larger sample size. Predictors
with a high selection frequency across the CV cycles for the different
optimized models are presented in Table 6.
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3.2. Cross-cohort analyses

In the integrated ML analysis of all three cohorts, the optimized
comprehensive model achieved an average cross-validated AUC of 0.682
(SD 0.080) for LID prognostic classification and a C-index of 0.718 (SD
0.052) for time-to-LID analysis (see bottom of Tables 3 and 4). Despite
the additional challenges of integrating information from diverse co-
horts with potential study-specific biases, the cross-cohort model ach-
ieved comparable performance statistics to the single-cohort analyses,
while the integrated model has the added value of being applicable
across diverse cohorts with a higher expected generalization capability
across distinct populations. Similarly, the refined cross-cohort model
achieved performance statistics for the average cross-validated AUC of
0.688 (SD 0.043) and the hold-out test set AUC of 0.639 (see Suppl.
Table 5), with no significant difference in hold-out predictive perfor-
mance compared to the comprehensive LID classification model (see
Table 5). However, a significant difference in predictive performance for
the hold-out test set was observed between the comprehensive and
refined time-to-LID models (see Table 5). The refined time-to-LID
models had a significantly (p = 0.019) higher hold-out C-index of

0.685 (average cross-validated C-index of 0.715; SD 0.054), compared to
the comprehensive model with a hold-out C-index of 0.627 (average
cross-validated C-index of 0.718; SD 0.052) (see Table 4 and Suppl.
Table 6).

Interestingly, among the multi-cohort analyses, the cross-cohort
models, which were trained on subsets of the data for all three co-
horts, provided superior predictive performances compared to the leave-
one-cohort-out analyses, trained on two cohorts (see Tables 3–4 and
Suppl. Tables 5–6). Furthermore, considering the stability of prediction
results, the cross-cohort model also provided superior results compared
to the single-cohort models, highlighting the benefits of training pre-
dictive models for LID prognosis on data from multiple diverse cohorts
(see Suppl. Tables 7 and 8).

3.3. Comparative evaluation of cross-study integration methods

The cross-cohort comprehensive and refined LID prognostic models
showed no significant difference in hold-out test set predictive perfor-
mance between normalized and unnormalized versions (see Table 5 and
Suppl. Table 9). However, the comprehensive classification and refined

Table 3
Overview of predictive performance statistics for comprehensive LID prognostic classification, including cross-validated and hold-out AUC values for single and multi-
cohort analyses and the corresponding number of features used in each model. The models with the highest average AUC scores in the cross-validation of the cohort
analyses are highlighted in bold. For the column “Number of features”, the number in brackets represents the count of candidate features selected during cross-
validation, whereas the number in front of the brackets indicates the number of selected features with predictive influence, as determined through permutation
importance analysis.

Single-cohort analyses:

Algorithm LuxPARK PPMI ICEBERG

Mean (SD) Hold-out
AUC

Number of
features

Mean (SD) Hold-out
AUC

Number of
features

Mean (SD) Hold-out
AUC

Number of
features

AdaBoost 0.647
(0.079)

0.532 4 (6) 0.623
(0.059)

0.582 2 (6) 0.481
(0.122)

0.512 1 (2)

CART 0.610
(0.059)

0.561 2 (3) 0.607
(0.043)

0.555 9 (10) 0.509
(0.069)

0.512 1 (2)

CatBoost 0.664
(0.068)

0.577 5 (6) 0.626
(0.060)

0.656 14 (24) 0.546
(0.078)

0.652 8 (16)

C4.5 0.607
(0.069)

0.559 2 (7) 0.629
(0.071)

0.570 5 (11) 0.540
(0.097)

0.390 1 (6)

FIGS 0.584
(0.121)

0.539 7 (11) 0.602
(0.070)

0.557 3 (9) 0.482
(0.092)

0.512 1 (2)

GOSDT-
GUESSES

0.612
(0.132)

0.562 10 (10) 0.592
(0.057)

0.521 21 (36) 0.521
(0.197)

0.448 8 (10)

GBoost 0.650
(0.089)

0.641 16 (24) 0.628
(0.032)

0.621 17 (24) 0.533
(0.073)

0.607 6 (7)

HS 0.620
(0.061)

0.530 5 (9) 0.597
(0.077)

0.557 3 (9) 0.482
(0.092)

0.512 1 (2)

XGBoost 0.735
(0.091)

0.678 37 (59) 0.602
(0.052)

0.621 9 (9) 0.595
(0.144)

0.533 13 (14)

Multi-cohort analyses:
Algorithm CROSS-COHORT LEAVE-ICEBERG-OUT LEAVE-PPMI-OUT

Mean (SD) Hold-out
AUC

Number of
features

Mean (SD) Hold-out
AUC

Number of
features

Mean (SD) Hold-out
AUC

Number of
features

AdaBoost 0.682
(0.080)

0.646 8 (14) 0.691
(0.052)

0.664 4 (7) 0.667
(0.039)

0.528 4 (5)

CART 0.662
(0.059)

0.647 4 (7) 0.671
(0.016)

0.535 2 (4) 0.648
(0.057)

0.518 15 (21)

CatBoost 0.675
(0.062)

0.702 9 (17) 0.697
(0.045)

0.600 18 (27) 0.675
(0.099)

0.626 8 (18)

C4.5 0.631
(0.111)

0.664 5 (9) 0.669
(0.026)

0.535 2 (4) 0.628
(0.034)

0.627 1 (3)

FIGS 0.659
(0.059)

0.673 3 (5) 0.694
(0.040)

0.606 9 (20) 0.659
(0.051)

0.594 9 (20)

GOSDT-
GUESSES

0.622
(0.064)

0.613 42 (59) 0.644
(0.018)

0.547 38 (53) 0.623
(0.070)

0.542 27 (43)

GBoost 0.656
(0.054)

0.672 5 (5) 0.699
(0.016)

0.513 15 (26) 0.670
(0.042)

0.619 14 (21)

HS 0.660
(0.033)

0.664 2 (3) 0.692
(0.039)

0.606 9 (20) 0.659
(0.051)

0.594 9 (20)

XGBoost 0.654
(0.032)

0.632 52 (66) 0.690
(0.036)

0.631 35 (64) 0.690
(0.040)

0.582 58 (74)
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Table 4
Overview of predictive performance statistics for the comprehensive time-to-LID models, including cross-validated and hold-out C-indices for single and multi-cohort
analysis, and the corresponding number of features used in each model. The models with the highest average C-indices in the cross-validation analyses of each cohort
are highlighted in bold. In the column “Number of features” the number in brackets represents the count of candidate features selected during cross-validation, whereas
the number in front of the brackets indicates the number of selected features with predictive influence, as determined through permutation importance analysis.

Single-cohort analyses:

Algorithm LuxPARK PPMI ICEBERG

Mean (SD) Hold-out C-
index

Number of
features

Mean (SD) Hold-out C-
index

Number of
features

Mean (SD) Hold-out C-
index

Number of
features

CW-GBoost 0.667
(0.055)

0.651 13 (17) 0.696
(0.033)

0.640 14 (21) 0.576
(0.115)

0.451 4 (11)

Extra Survival 0.699
(0.101)

0.610 11 (11) 0.694
(0.054)

0.651 70 (97) 0.548
(0.088)

0.542 9 (9)

Survival
GBoost

0.648
(0.069)

0.647 119 (120) 0.669
(0.074)

0.643 17 (22) 0.570
(0.132)

0.585 49 (58)

LSVM 0.628
(0.043)

0.614 15 (15) 0.670
(0.040)

0.652 35 (35) 0.531
(0.116)

0.557 103 (104)

NLSVM 0.642
(0.017)

0.618 20 (20) 0.673
(0.045)

0.650 29 (29) 0.561
(0.142)

0.452 10 (10)

Penalized Cox 0.685
(0.046)

0.532 1 (5) 0.697
(0.041)

0.663 28 (51) 0.551
(0.092)

0.517 4 (4)

Survival RF 0.714
(0.027)

0.577 11 (11) 0.672
(0.061)

0.650 46 (72) 0.543
(0.114)

0.549 10 (33)

Survival Trees 0.613
(0.052)

0.582 4 (7) 0.644
(0.098)

0.622 8 (12) 0.564
(0.087)

0.498 1 (3)

Multi-cohort analyses:
Algorithm CROSS-COHORT LEAVE-ICEBERG-OUT LEAVE-PPMI-OUT

Mean (SD) Hold-out C-
index

Number of
features

Mean (SD) Hold-out C-
index

Number of
features

Mean (SD) Hold-out C-
index

Number of
features

CW-GBoost 0.712
(0.045)

0.673 14 (25) 0.696
(0.049)

0.639 13 (23) 0.702
(0.022)

0.613 10 (16)

Extra Survival 0.704
(0.045)

0.667 160 (161) 0.698
(0.050)

0.605 160 (161) 0.696
(0.049)

0.651 12 (12)

Survival
GBoost

0.704
(0.061)

0.661 24 (49) 0.686
(0.046)

0.684 11 (21) 0.719
(0.029)

0.655 13 (22)

LSVM 0.718
(0.052)

0.627 36 (36) 0.681
(0.048)

0.547 52 (52) 0.701
(0.025)

0.639 147 (147)

NLSVM 0.701
(0.068)

0.652 52 (52) 0.681
(0.052)

0.681 56 (56) 0.705
(0.016)

0.669 36 (36)

Penalized Cox 0.692
(0.055)

0.666 28 (28) 0.701
(0.056)

0.531 57 (96) 0.691
(0.077)

0.551 1 (32)

Survival RF 0.705
(0.055)

0.682 134 (139) 0.701
(0.048)

0.612 104 (136) 0.689
(0.036)

0.663 116 (122)

Survival Trees 0.649
(0.078)

0.646 8 (13) 0.661
(0.042)

0.491 13 (16) 0.654
(0.048)

0.512 11 (17)

Table 5
Overview of the statistical significance of the differences between the hold-out predictive performance metrics for the optimized comprehensive and refined models
across cohorts and the optimized cross-study normalized and unnormalizedmodels. The normalization method used is indicated in the column “Normalization”. The p-
values for the significance of the difference were calculated using DeLong’s test for LID classification (at the top) and the one-shot nonparametric test for time-to-LID
analysis (bottom). The comprehensive model outperforms the refined model in terms of predictive performance, with a statistically significant difference in the hold-
out AUC/C-index.

Comprehensive model Refined model

Cohort Comprehensive vs Refined Normalized vs Unnormalized Normalization Normalized vs Unnormalized Normalization

LID classification:
LuxPARK 0.925 – – – –
PPMI 0.036 – – – –
ICEBERG 0.776 – – – –
CROSS-COHORT 0.092 0.912 Mean-centering 0.683 Quantile
LEAVE-ICEBERG-OUT 0.399 0.549 M-ComBat 0.981 Mean-centering
LEAVE-PPMI-OUT 0.954 0.965 Ratio-A 0.719 Ratio-A
Time-to-LID:
LuxPARK 0.020 – – – –
PPMI 0.908 – – – –
ICEBERG 0.367 – – – –
CROSS-COHORT 0.019 0.096 Standardize 0.527 Mean-centering
LEAVE-ICEBERG-OUT 1.000 0.298 Quantile 0.867 Quantile
LEAVE-PPMI-OUT 0.235 0.019 Ratio-A 0.955 Mean-centering
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time-to-LID model achieved superior hold-out performance when using
the mean-centering normalization approach as compared to no
normalization. These results indicate that significant predictive perfor-
mance can be achieved in a cross-cohort setting even without applying a
cross-study normalization but adding dedicated batch adjustments has
the potential to further improve the performance.

3.4. Assessment of clinical utility and calibration for the cross-cohort
analysis

We assessed the clinical utility and calibration of the developed
predictive models for the comprehensive cross-cohort analysis. A deci-
sion curve analysis (DCA) was used to evaluate the net benefit of the
models in clinical decision-making, while a calibration analysis assessed
the models’ accuracy in predicting actual outcomes. Among all consid-
ered modeling approaches, CatBoost demonstrated the highest overall
net benefit in the DCA for LID classification (see Suppl. Fig. 3), whereas
Extra Survival Trees performed favorably in the time-to-LID analysis
(see Suppl. Fig. 4). In contrast, AdaBoost and the NLSVM model showed
the lowest net benefits for classification and time-to-LID analysis,
respectively. The calibration analysis provided further insights into the
models’ ability to accurately predict LID outcomes. In line with the
positive results in the DCA, CatBoost exhibited high calibration perfor-
mance, with slopes close to 1, indicating a high level of agreement be-
tween predicted probabilities and actual outcomes (see Suppl. Table 10).
Furthermore, this model also achieved lower mean squared error (MSE)
values than other methods. For time-to-LID analysis, the NLSVM model
is well-calibrated but has lower clinical utility than other models.
Moreover, comprehensive models trained with CW-GBoost and Extra
Survival Trees, as well as refinedmodels trained with LSVM and Survival
RF achieved high net benefits and reliable calibration. However, sig-
nificant variation between the performance of different methods was
observed, and GBoost, AdaBoost, Survival Trees, and Survival GBoost
performed lowest in terms of calibration (see Suppl. Table 10).

3.5. Associations between clinical features and dyskinesia status

When comparing baseline clinical features between patients with
LID+ and LID-within four years across three cohorts, as expected, LID +

patients had a longer disease duration and younger age at PD onset,
consistent with the negative correlation between age at PD onset and

disease duration (cross-cohort Spearman correlation coefficient: − 0.28,
p= 5.5E-19). The cohorts cover a broad distribution for both the disease
duration and age at onset, with significantly lower ages at onset (p =

7.3E-06) and significantly longer disease durations (p = 3.9E-87) in
LuxPARK compared to the other two cohorts. LID + patients also dis-
played higher disease severity scores, including the total scores for MDS-
UPDRS Part I, II, and III (ON), and the Modified Schwab & England ADL
scale. LID + patients also scored significantly lower on Benton’s Judg-
ment of Line Orientation (JLO) test (p = 1.7E-10) and had higher motor
fluctuation severity (p = 1.1E-24) and more pronounced rigidity in the
lower extremities (p = 1.7E-04, see Table 2). SHAP value analysis of the
ML models highlighted the variables contributing most significantly to
the model’s predictions (see Fig. 1 and Suppl. Figs. 5–7), including age of
onset, tremor-related characteristics, axial symptoms, gastrointestinal
dysfunction, GBA mutations, body weight, and various impairment as-
sessments from the MDS-UPDRS and Autonomic Dysfunction Scales for
Outcomes in PD (SCOPA-AUT). An overview of the top 10 most infor-
mative predictors for the cross-cohort analysis according to the average
feature ranking scores is shown in Suppl. Table 11, including brief
feature descriptions and references to relevant studies from the litera-
ture (see also the Discussion in section 4.2 for interpretations of the
relevant predictive features).

4. Discussion

Predicting the onset of LID in PD patients involves several challenges
due to both inter-individual heterogeneity and the many factors that
influence disease progression in an individual. Recent advancements in
modeling PD progression have already highlighted the importance of
accounting for both intra-individual and inter-individual variability. For
example, Severson et al. (2021) developed a statistical progression
model of PD that used a contrastive latent variable model followed by a
personalized input-output hidden Markov model [23]. This approach
was designed to define disease states and assess their clinical signifi-
cance across multiple key motor and cognitive outcomes. In contrast,
our study differs not only by its specific focus on LID prediction and
cross-study validation, but also by using different approaches to disease
state modeling and feature selection. We did not rely on a particular
modeling approach but compared different multivariable machine
learning models for both classification and time-to-event analysis, using
nested cross-validation to robustly determine feature importance and

Table 6
Overview of statistics on the average percentage of times clinical features were selected in 5-fold cross-validation analyses. The table compares the statistics for the
comprehensive and refined models for LID classification and time-to-LID analyses in LuxPARK, PPMI, and ICEBERG cohorts. The different columns contain the
following information: Average in CV (%): The average percentage of times each feature was selected in the 5-fold CV in single-cohort analyses in LuxPARK, PPMI, and
ICEBERG for both LID and time-to-LID analyses. Average (%): The mean of the ‘Average in CV (%)’ for LID and time-to-LID analyses across the cohorts. The list of
features was arranged in descending order according to the overall average selection percentages for both comprehensive and refined models in LID and time-to-LID
analyses, and the top 15 features with the highest average percentages are shown.

Description Comprehensive model Refined model

LID Classification Time-to-LID Overall LID Classification Time-to-LID Overall

Average in CV (%) Average in CV (%) Average (%) Average in CV (%) Average in CV (%) Average (%)

Disease duration 86.7 46.7 66.7 80.0 80.0 80.0
Age of onset 73.3 53.3 63.3 80.0 80.0 80.0
MDS-UPDRS I - Urinary problems 53.3 46.7 50.0 46.7 93.3 70.0
MDS-UPDRS I - Sleep problems (night) 66.7 53.3 60.0 46.7 73.3 60.0
BMI (kg/m2) 66.7 33.3 50.0 60.0 66.7 63.3
MDS-UPDRS Part II score 60.0 46.7 53.3 60.0 60.0 60.0
Benton Judgment of Line Orientation score 46.7 46.7 46.7 53.3 66.7 60.0
MDS-UPDRS Part I score 53.3 46.7 50.0 40.0 73.3 56.7
SCOPA-AUT Gastrointestinal (GI) score 66.7 40.0 53.3 26.7 73.3 50.0
Axial symptoms score 33.3 46.7 40.0 46.7 80.0 63.3
Weight (kg) 46.7 40.0 43.3 33.3 80.0 56.7
Height (cm) 46.7 33.3 40.0 46.7 66.7 56.7
MDS-UPDRS II - Saliva and drooling 40.0 53.3 46.7 33.3 66.7 50.0
SCOPA-AUT Urinary score 60.0 26.7 43.3 33.3 73.3 53.3
SCOPA-AUT Thermoregulatory score 60.0 26.7 43.3 33.3 73.3 53.3
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optimize the models’ generalizability. Both approaches have their
merits, and the choice of methodology should be guided by the specific
research objectives and the nature of the available data. For studies
aiming specifically to capture the complex, overlapping trajectories of
PD progression, Severson et al.’s method offers a dedicated and so-
phisticated framework. Conversely, for applications focused on predic-
tive accuracy and generalizability across diverse cohorts, our approach
provides a robust and broadly applicable methodology.

Our method also differs from previous studies dedicated specifically
to LID prognosis, which have focused on investigating single cohorts,
restricting the applicability of resulting prediction models to a specific
patient population. To address this limitation, we compared multivari-
able ML models for both single-cohort and cross-cohort settings,
covering both LID classification within a four-years timeframe and time-
to-LID analysis. The cross-cohort model achieved competitive prediction
results and improved model robustness, ensuring broad applicability. To
guide the reader in finding the most appropriate prediction approaches
for new datasets, our study statistically compared several methods for
model building, feature selection, and cross-study normalization using a
rigorous two-level CV approach.

4.1. Comparative evaluation of predictive models

When comparing the results across different cohorts, significant
differences in predictive performance were observed. Superior cross-
validated and hold-out test set performance for both LID classification
and time-to-LID analysis was consistently observed for LuxPARK, likely
due to its large sample size and more diverse patient population. By
contrast, the sample size was smaller for ICEBERG, and PPMI and
ICEBERG both covered shorter average disease durations.

In order to identify new predictive features associated with LID
development, we also conducted feature selection analyses for the
refined models, excluding baseline dyskinesia and levodopa medication
use. While the hold-out AUCs of the refined models varied from those of
the comprehensive models, they achieved significant predictive per-
formance, suggesting that the refined modeling method may capture
additional, more subtle relationships for data interpretation.

Finally, when comparing cross-cohort integrative analyses with
single-cohort analyses, the cross-cohort models provided competitive
predictive performance for LID prognosis and time-to-LID analysis,

increasing the stability of the prediction results across the CV cycles.
While the inclusion criteria and population characteristics must be
carefully considered when training cross-cohort models, these integra-
tive models provide more robust prediction results and are applicable
across a broader range of patient populations.

4.2. Interpretation of models and predictors

The cross-cohort analyses revealed several clinical variables as
informative predictors for LID prognosis, relevant not only for the
practical purpose of forecasting a patient’s future LID status but also for
data interpretation in the context of the current knowledge on LID
development in PD. Apart from the two most obvious predictors of
future LID status, motor fluctuations and disease duration, several other
clinical features contributed significantly to the model predictions.
Previous studies have already identified levodopa equivalent daily dose
(LEDD) as a significant predictor of levodopa-induced dyskinesia (LID)
[2,24]. As a limitation, incomplete and inconsistent LEDD data for two
of the cohorts prevented the inclusion of levodopa dosage in the pre-
dictive model. To address this, we performed a statistical analysis to
examine the relationship between LEDD and LID specifically within the
LuxPARK cohort. This analysis revealed a statistically significant dif-
ference between LID and LEDD with a p-value of 5.25E-06, confirming
previous findings. In addition, a significant difference in time to LID was
observed between PD patients with an LEDD of 400 mg or more and
those with an LEDD of less than 400 mg (log-rank p = 3.14E-03).

Elevated MDS-UPDRS Part II and III scores were significant in fore-
casting LID, matching the observation that severity of motor symptoms
correlates with LID risk. Furthermore, motor fluctuations, especially
those emerging from prolonged levodopa therapy [4], were also high-
lighted as a relevant predictor by the SHAP value analysis. However, the
correlations may reflect indirect relationships, and the complex associ-
ations between PD symptomatology and levodopa management chal-
lenges need to be considered.

Furthermore, axial impairments, including freezing of gait and
heightened rigidity in the lower and upper extremities, were associated
with LID development. However, this association may be explained by
an indirect correlation, since both LID development and axial impair-
ments are associated with disease duration (Spearman p = 5.1E-65 for
axial impairments, and Mann-Whitney U test p = 7.7E-38 for LID).

Fig. 1. SHAP value plot of the top predictors for the optimized comprehensive model for cross-cohort LID prognostic classification, displaying the magnitude and
direction (positive or negative) of each feature’s influence on the LID prognostic status as output.
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Additionally, bradykinesia, i.e., slowness of movement, emerged as a
significant LID predictor. In contrast, resting tremors displayed a nega-
tive association with LID risk, suggesting a reduced dyskinesia risk for
tremor-dominant PD patients. This finding aligns with previous studies
consistently reporting that PD patients with a tremor-dominant pheno-
type rather than an akinetic-rigid phenotype have a lower risk of LID
[2]. Specifically, individuals with resting tremor as their initial motor
symptom have a significantly reduced risk of developing LID [3]
compared with other initial motor symptoms [24]. Overall, these results
indicate potential nuanced interrelationships between specific motor
symptoms and LID.

Assessment of non-motor symptoms of PD as possible LID predictors
revealed gastrointestinal, urinary, and thermoregulatory symptoms
associated with both PD severity and an increased LID risk. These
symptoms may indirectly correlate with LID risk via PD severity [25];
however, these non-motor symptoms, in particular the gastrointestinal
symptoms, have also been described to affect levodopa pharmacoki-
netics and treatment efficacy [26]. Furthermore, cognitive impairments,
particularly visuospatial functions, and neuropsychiatric symptoms,
such as depression and apathy, were significant LID predictors and also
significantly associated with LID (Mann-Whitney U test p = 1.7E-10 for
Benton JLO). While this may be explained by the significant correlation
between visuospatial function (Benton JLO) and disease duration
(Spearman p = 3.8E-10), further investigation is warranted regarding
links between LID and cognition [27]. Previous research has pointed out
that the deterioration seen in attention and executive function domains
in PD, which is predictive of LID, might be due to disruptions in a shared
cortical network that plays a role in both the emergence of LID and
cognitive processes [28]. Additionally, research by Chung et al.
demonstrated that specific baseline cognitive profiles, including visual
memory/visuospatial functions, are associated with the progression of
motor disability in PD, suggesting that these cognitive impairments can
predict some aspects of motor prognosis, including LID development
[29].

Genetic factors, including GBA mutations, influence PD symptoms
and have previously been associated with an earlier LID development
[30]. However, the association with future LID was not statistically
significant in our meta-analysis (p= 0.11). Further molecular studies are
needed to assess potential mechanistic interrelationships between mu-
tations and PD complications.

Among the demographic variables, our analyses highlighted a sig-
nificant negative correlation between older age at PD onset and LID risk
(cross-cohort Spearman correlation: − 0.22, p = 4.4E-12), consistent
with previous studies [3]. While this correlation may be confounded by
associations between age at PD onset and the follow-up duration in the
cohort studies, the possibility that early-onset PD patients may require
different management strategies to reduce LID risk may warrant further
study. Understanding the distinct clinical manifestations of early- and
late-onset PD patients may be necessary for effective prognosis and
treatment of LID [31]. Our results also suggest body weight as a relevant
covariate in LID prediction models, consistent with previous studies
indicating that lower body weight in PD is a risk factor for dyskinesia
[1]. Thus, apart from optimizing pharmaceutical therapies,
non-pharmaceutical interventions to optimize nutrition and physical
exercise may provide further means to mitigate LID risk.

Overall, our findings show that integrating clinical data from mul-
tiple cohorts can provide valuable information for LID prognosis across
distinct patient populations. The analyses identified both established
and novel predictors of LID, underlining the utility of interpretable ML
approaches. Furthermore, the increased model robustness observed in
the cross-study analyses highlights the effectiveness of combining data
from multiple studies. Our evaluation of clinical usefulness and cali-
bration for LID prognosis shows that different prediction models have
different utility for clinical decision-making. Among these models,
CatBoost and Extra Survival Trees demonstrate the most favorable re-
sults in terms of net benefit and calibration. These findings further

support the applicability of some of the best-performing models in real-
world clinical settings. Nevertheless, it is essential to further validate the
models using independent data from more diverse cohorts to ensure
their applicability in clinical settings across different geographic re-
gions, populations, and clinical practices. Validation on larger datasets
will also help to better address common limitations in the machine
learning and cross-validation analysis on datasets with limited sample
sizes, helping to reduce the variance in performance estimates. Finally,
while our feature selection analyses have sought to increase model
interpretability in how the models make predictions, for future clinical
translation, further aspects beyond transparency need to be taken into
account to ensure reliability and maintain trust. These include ethical
and legal issues, particularly concerning the collection, processing,
storage, and reuse of potentially sensitive patient data, while ensuring
patient privacy and informed consent. The application of artificial in-
telligence algorithms on biomedical data in particular raises a variety of
ethical questions, e.g., concerning potential biases, security and privacy
issues, which have previously already been discussed in detail [32,33].
Addressing both the technical and validation challenges, and these
ethical and legal considerations will be essential to not only improve
clinical outcomes but also uphold the highest standards of data integrity
and patient care.

For future research directions, researchers may want to explore the
integration of multiple data types. For example, recent studies suggest
that combining radiomic features with clinical data holds promise for
improving LID prediction [34]. Such strategies to leverage the comple-
mentary information from different data types may lead to both more
robust and more accurate prognostic models, and could help to pave the
way for more individualized treatment strategies in PD.

5. Summary and conclusions

This study introduces three new aspects to researching LID in PD.
Firstly, it develops cross-study prediction models for LID, offering tools
for prognostic classification and accurate time-to-LID prediction from
clinical data, aimed at early intervention and personalized PD man-
agement. Secondly, unlike traditional single-variable methods, these
models use multivariable signatures incorporating complementary
clinical descriptors for improved prediction robustness and accuracy.
Thirdly, the study employs feature selection and SHAP value analysis for
better model interpretability and more informed decision-making.

The cross-study ML models demonstrate significant predictive ca-
pabilities and robustness, outperforming single-cohort models in pre-
diction stability.

Themodel evaluation analyses also highlighted the benefits of nested
cross-validation and hyperparameter optimization, along with feature
selection and cross-study normalization techniques for some of the
considered cross-cohort analyses.

For the model interpretation, the statistical analyses and SHAP value
analyses identified key clinical factors linked to LID risk, including well-
known predictors such as levodopa use, PD progression markers, as well
as new candidate predictors for further study.

Overall, the findings highlight the potential of ML for cross-study LID
prognosis, facilitating precision medicine in PD by integrating infor-
mation from distinct cohorts to enable personalized predictions. This
approach has the potential to enhance the understanding of LID risk
factors and support future clinical decision-making, enabling the design
of new preemptive measures through tailored drug dosing protocols
along with non-pharmacological interventions such as physical activity.

Code availability

The data processing, normalization and statistical analyses were
performed using R (v4.2.1). Python-3.8.6-GCCcore-10.2.0 was used for
efficient machine learning predictions. The open source code is acces-
sible in the GitLab repository under the MIT license: https://gitlab.lcsb.
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Hospital, Paris); Louise Laure Mariani, MD, PhD (Pitié-Salpêtrière Hos-
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