
TransCAD: A Hierarchical Transformer for CAD
Sequence Inference from Point Clouds

Elona Dupont1, Kseniya Cherenkova1,2, Dimitrios Mallis1, Gleb Gusev2, Anis
Kacem1, and Djamila Aouada1

1 SnT, University of Luxembourg, Luxembourg
2 Artec 3D, Luxembourg

Abstract. 3D reverse engineering, in which a CAD model is inferred
given a 3D scan of a physical object, is a research direction that offers
many promising practical applications. This paper proposes TransCAD,
an end-to-end transformer-based architecture that predicts the CAD se-
quence from a point cloud. TransCAD leverages the structure of CAD
sequences by using a hierarchical learning strategy. A loop refiner is
also introduced to regress sketch primitive parameters. Rigorous experi-
mentation on the DeepCAD [43] and Fusion360 [41] datasets show that
TransCAD achieves state-of-the-art results. The result analysis is sup-
ported with a proposed metric for CAD sequence, the mean Average
Precision of CAD Sequence, that addresses the limitations of existing
metrics.

Keywords: Computer-Aided Design · CAD Reverse Engineering · Feature-
based modelling

1 Introduction

Practically every object encountered in daily life originates from a Computer-
Aided Design (CAD), highlighting the fundamental role of CAD in industrial
manufacturing processes. Currently, the dominant paradigm for CAD design
is feature-based modelling [48]. It allows the creation and manipulation of 3D
models through a series of features, individual elements or operations (holes,
slots, fillets, etc.), that modify the geometry of a CAD model. The process is
typically initiated with the design of planar sketches, i.e. collection of loops
composed of 2D curves, followed by a CAD operation (extrusion, revolution, etc.)
that expands sketches into a 3D solid model. The final model is represented by
the sequence of these CAD sketches and operations. Feature-based modelling has
been widely adopted, as it enables intuitive design alterations and seamless CAD
software integration, making it essential for an iterative development of complex
designs. The recent availability of large CAD model datasets, such as ABC [18]
and Fusion360 [41], has sparked significant interest in developing learning-based
approaches for feature-based modelling. Recent efforts have been focused on deep
generative modelling [33,43,45,47], where large transformer-based networks are
trained to create new CAD models or to automatically complete partial designs

ar
X

iv
:2

40
7.

12
70

2v
1

 [
cs

.C
V

]
 1

7
Ju

l 2
02

4

2 E. Dupont et al.

via autoregressive inference. While this research direction offers a lot of potential
practical applications for CAD software integration, far less attention has been
put to reverse engineering. Feature-based reverse engineering emerges as a real-
world application addressing the need to automatically replicate physical objects
as CAD models. Recovery of CAD design is facilitated by the acquisition of a
point cloud or triangular mesh of a physical object scanned using commercial
3D sensors.

Some existing reverse engineering approaches investigate the recovery of al-
ternative CAD model representations like Constructive Solid Geometry [15]
(CSG) or Boundary-Representation (B-Rep) [8, 14, 19]. Other methods tackle
feature-based reverse engineering and predict implicit representations of sketches
and CAD operations from point clouds [23, 36]. Nevertheless, such approaches
do not allow for seamless integration into CAD software and often require post-
processing (e.g . parametric curve fitting). To address these limitations, models
capable of learning explicit CAD sequence of parametric sketches and operations
from point clouds are needed. This can be enabled within a generative learning
framework as in [43]. In that work, an auto-encoder reconstructing CAD para-
metric sequences is proposed and the latent representation is used for generating
novel CAD sequences. An extension for reverse engineering was proposed by re-
placing the CAD sequence encoder with a point cloud encoder trained to map
point clouds to the latent representations. The main limitation of the above is
the predefined latent space that cannot adapt to the variations present in real-
world point clouds. This disconnection can cause the model to generalize poorly
to unseen inputs, especially those with noise or irregularities that are present in
3D scans and that are not well-represented in the training data.

To that end, we propose TransCAD , a novel end-to-end trainable and single-
stage hierarchical network for feature-based explicit CAD sequence reverse en-
gineering from point clouds. Our network is hierarchical in the sense that it
employs a two-tiered decoding process. Initially, a primary CAD sequence em-
bedding is decoded, encapsulating high-level features of the design, that are then
processed by secondary decoders, one dedicated to loop parameters and another
to CAD operations. Each decoder specializes in a certain input, enabling a nu-
anced and precise recovery of CAD parameters. The decomposition of learned
representations matches the decomposition inherent in the actual feature-based
design process of conceptualizing a 3D model through distinct loop and operation
steps. Moreover, TransCAD does not predict sketch primitive types explicitly as
in [43]; instead, we employ a unified primitive representation where types are
determined solely by coordinates. Our formulation narrows the learning space
by eliminating syntactically incorrect predictions and facilitates a seamless tran-
sition between different primitive types. Additionally, it allows for a cascaded
parameter refining that further enhances model performance.

Another focus of this work is the evaluation of parametric CAD sequence. We
identify several limitations of the existing evaluation framework used by [27,43]
and suggest a suitable metric for CAD sequence similarity based on mean average
precision, computed in the unquantized parametric space.

TransCAD: A Hierarchical Transformer for CAD Sequence 3

Contributions: In summary our contributions are the following:

1. We propose TransCAD, a novel hierarchical architecture for feature-based
reverse engineering. Our model is single-stage and end-to-end trainable.
TransCAD allows for a compact CAD sequence representation that does
not include categorical types and enables cascaded coordinate refinement.

2. We identify several limitations of the existing evaluation framework for
feature-based reverse engineering and propose a new evaluation metric frame-
work to ensure fair comparison among diverse network architectures.

3. Our model surpasses the performance of recent generative-based approaches
while also bridging the gap to real-world applications by exhibiting robust-
ness to perturbed point clouds.

Paper Organization: The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 formulates the problem of feature-based CAD
reverse-engineering. The proposed TransCAD is described in Section 4. Discus-
sion on the current evaluation framework and suggested extension is introduced
in Section 5. An experimental validation of the proposed network is provided in
Section 6. Finally, conclusions are given in Section 7.

2 Related Works

Generative Models for CAD: The advent of large-scale 3D shape datasets
[4, 18, 24, 41], combined with the significant progress for generative models in
vision [5, 10, 12, 16], has sparked interest in the generation of 3D shapes. Ex-
isting methods have been proposed for various 3D representations, including
point clouds [1,2,49], 3D meshes [29,38], voxel grids [21,42], and signed distance
functions [6, 44]. This work focuses on CAD model generation, which compared
to the above is parametric and directly editable in CAD software. A line of
work explores the generation of the Boundary-Representation (B-Rep), a collec-
tion of parametric surfaces connected via a structured topological graph. Solid-
Gen [13] considers B-Rep synthesis based on transformers and two-level pointer
networks. BrepGen [46] represents a B-Rep via a fixed tree of latent geometry
representations that can be generated by a diffusion model. Feature-based CAD
generation has also been recently explored. Most relevant to our work is Deep-
CAD [43], a non-autoregressive generative model capable of synthesizing novel
CAD sequences based on a transformer auto-encoder architecture. In [45, 47]
the authors also follow autoregressive strategies. HNC [45] uses a hierarchical
model based on high-level concepts and a code tree for CAD model generation
and auto-completion. Similarly, in SkexGen [47] a transformer architecture is
used to generate CAD models in the sketch-extrude format by encoding the
topology and geometry using different codebooks. All the aforementioned works
are oriented around 3D shape generation and either do not address the reverse-
engineering task or address it via adaptation of generative modelling leading to
suboptimal performance.

4 E. Dupont et al.

CAD Reverse Engineering: Reverse engineering is a well-studied problem
with a substantial research effort directed towards predicting geometric features
of CAD models, by analyzing the corresponding point clouds. Parametric fit-
ting techniques infer the parametarization of edges [7, 25, 34, 39, 51, 52] and sur-
faces [11, 22]. Various attributes of the B-Rep and CAD operations are recov-
ered from 3D scans in [28]. CADOps-Net [8] recovers 2D sketches from faces
segmented into their CAD operation steps. Reasoning about a CAD model via
properties discovered by parametric fitting offers insights solely into its end-state,
without considering the sequential CAD design process intrinsic to feature-based
modeling.

A step closer to CAD reverse engineering, a line of work explores the recon-
struction of a point cloud into Constructive Solid Geometry (CSG) [9, 15, 50],
a modelling technique that uses boolean operations to combine primitives into
3D models. Point2Cyl [36], on the other hand, predicts extrusion cylinders given
a point cloud, but requires user input to combine cylinders. SECAD-Net [23]
and ExtrudeNet [33] use a self-supervised learning strategy to recover CAD se-
quences in the form of implicit representations given voxels and point clouds, re-
spectively. In contrast to feature-based modelling, 3D representations produced
by these methods (CSG, extrusion cylinders, etc.) have limited compatibility
with modern CAD software workflows. The authors in [20] learn sketch-extrude
sequences conditioned on a voxel input, however, the model relies on strong data
priors and is limited to predefined extrusion combinations.

Closer to our work is DeepCAD [43] and subsequent MultiCAD [27]. Even
though DeepCAD [43] proposes a non-autoregressive generative framework for
feature-based CAD, authors explore further conditioning on input point clouds.
Taking a similar direction, MultiCAD [27] proposes a two-stage multimodal con-
trastive learning strategy of both point clouds and CAD sequences. The two
aforementioned methods opt for separate stage learning for point clouds and
CAD sequences. Concurrent to our work, the autoregressive strategy in [17]
and the multimodal diffusion based approach in [26] attempt to solve the point
cloud to CAD sequence problem. To our knowledge TransCAD is the first non-
autoregressive single-stage architecture for feature-based reverse engineering.

3 Problem Statement

A CAD model C ∈ C is constructed in a sequence of construction steps. Each step
can be seen as a 2D parametric sketch s ∈ S (e.g . set of lines, arcs, etc.) followed
by a CAD operation o ∈ O (e.g . extrusion, revolution, etc.) [43, 47]. Here, C is
the set of all possible CAD models, S and O represent the sets of possible CAD
sketches and operations, respectively. CAD models constructed exclusively from
the extrusion operation type are considered in this work. Extrusion e ∈ E , where
E denotes the set of possible extrusions, is the most common operation and en-
ables the description of a wide range of CAD models [43,45,47]. TransCAD aims
at learning how to predict the sequence of CAD construction steps from an input
point cloud. Formally, given a point cloud P = [p1, . . . ,pn] ∈ Rn×3, where

TransCAD: A Hierarchical Transformer for CAD Sequence 5

Loop

Start

Mid

End

Start Mid End

Start
MidEnd

Sketch

Loop Loop ExtrusionExtrusion Loop

Sketch-Extrusion Sketch-Extrusion Sketch-Extrusion

CAD model

Sketch Sketch

Line

Arc

Circle

Primitive
Representation

CAD sequence

CAD Sequence Representation

Extrusion

Fig. 1: The sequential process of CAD modeling. A CAD sequence C can be decom-
posed into a hierarchical structure. The highest conceptual level is a sequence of sketch
s and extrusion e. A sketch can be made of one or more loops ρ. Each loop can be
further decomposed into loop primitives, circle, arc and line. Each loop primitive can
be described by a fixed number of parameters as shown on the right panel.

pi = [xi, yi, zi] denotes the 3D coordinates of the point i and n the number of
points, the objective of TransCAD is to learn the mapping

Φ : Rn×3 → C ,

Φ(P) = {sl, el}Ll=1 ,
(1)

where L denotes the length of the CAD sequence. In what follows, the proposed
formulations of sketches and extrusions are described.

CAD Sketch and Extrusion Formulation: The proposed formulations for
sketch and extrusion steps are inspired by [43, 47]. A sketch s is composed of
one or more loops (see left panel of Fig. 1). Each loop {ρj}

Lρ

j=1, where Lρ, de-
noting the number of loops, consists of one primitive (i.e. circle) or a combi-
nation of primitives (i.e. lines and arcs). In contrast to [43] which specifies the
type of primitives in their representation, the proposed primitive representa-
tion is type-agnostic (see right panel of Fig. 1). In particular, each primitive
δ is represented by three 2D coordinates of start, mid, and end points, i.e.
δ = [(xstart, ystart), (xmid, ymid), (xend, yend)] ∈ R6. This representation has
the advantage that the type of primitive can be deduced from the configurations
of the points, hence reducing the search space and facilitating the transition
between different types during training. In practice, the mid point of a line is
replaced by a dummy value.

As in [43], we ensure that the loops are always closed by using the end
point of a primitive as the start point of the next one. Further, a similar to [43]
quantization is considered to reduce the parameters search space. As a result,
a loop of np primitives ρj ∈ R6×np is considered as a quantized representa-
tion ρ⋆j ∈ J0..dqK6×np , where dq denotes the quantization interval. As for extru-
sion, similarly to [43], a quantized representation e⋆j ∈ J0..dqK11 is consid-
ered to represent the sketch plane/scale and extrusion type/distances. Note that
e⋆ ∈ J0..dqK11×Le and ρ⋆ ∈ J0 ..dqK6×np×Lρ will be used in the following to

6 E. Dupont et al.

Extrusion decoder

Point cloud encoder Loop-Extrusion decoder

Input

Loop decoder Loop Refiner

MLP

Loop-Extrusion
type prediction

L E L L E

Output

...

...

Fig. 2: TransCAD model architecture. TransCAD is a hierarchical network composed
of the following components: a point cloud encoder, a loop-extrusion decoder that
predicts a high-level sequence which is then decoded by a loop decoder and an extrusion
decoder. The predicted quantized loop parameters are then corrected by a loop refiner.

denote sequences of quantized extrusions and loops, respectively. Here, Lρ and
Le denote the length of loop and extrusion sequences, respectively.

4 Hierarchical CAD Sequence Learning from Point
Clouds

TransCAD non-autoregessively learns to predict a CAD sequence from an in-
put point cloud in the format described in Section 3. First, the point cloud is
encoded into point features using a standard point cloud encoder. In order to
facilitate the learning of CAD sequences, a hierarchical CAD sequence decoding
is proposed. In particular, a high-level sequence of embedding corresponding to
the loop and extrusion steps is learned. Those embedding are then fed to ei-
ther a loop or extrusion decoder based on predicted type to learn the loop and
extrusion parameters. Finally, the predicted loop parameters are further refined
using the actual unquantized loop parameters (ground truth). The overall model
architecture is depicted in Fig. 2 and the different components are described be-
low.

4.1 Point Cloud Encoder

The point cloud encoder Φp consists of 4 layers of PointNet++ [32] and operates
on an input point cloud P. It outputs per-point features encoding local neighbor-
hood information, Fp = [f1p . . . fnp] ∈ Rn×dp , that encode local neighborhood
information, dp denotes the dimension of the features. Note that point normals
of P are estimated using [35] and are provided as input to Φp along with its 3D
coordinates.

4.2 Loop-Extrusion Decoder

The main objective of the loop-extrusion decoder Φρ,e is to learn a high-level
sequence of embedding Fρ,e = [f1ρ,e, . . . , f

Lρ,e
ρ,e] ∈ Rdz×Lρ,e corresponding

to loops and extrusions from the point cloud features Fp. Here, dz and Lρ,e

denote the embedding dimension and the length of the sequence, respectively.

TransCAD: A Hierarchical Transformer for CAD Sequence 7

The decoder Φρ,e is composed of multi-head transformer-based blocks [37]. In
the first block, learned constant embedding Fc ∈ Rdz×Lρ,e undergo a self-
attention operation [37] and the resulting representation cross-attends to the
point cloud features Fp to produce loop extrusion embedding for the first block
F1

ρ,e ∈ Rdz×Lρ,e as follows,

F1
ρ,e = CA(SA(Fc),Fp) , (2)

where SA(.) and CA(., .) denote the self and cross attention operators [37], re-
spectively. The same self and cross attention operations are conducted in the
subsequent blocks by feeding the output of each block as input to the next one,

Fb
ρ,e = CA(SA(Fb−1),Fp) , (3)

yielding the final sequence of embedding Fρ,e after the last block. In order to
ensure that each element f iρ,e in the sequence embedding Fρ,e corresponds to the
right type (i.e. loop, extrusion, or end of sequence), a 3 layer MLP followed by
softmax that operates on each f iρ,e and predicts its type is introduced. A cross-
entropy loss, Lρ,e, is computed between the predicted and ground truth types
to supervise the learning of Fρ,e. Note that the loop-extrusion decoder is solely
used to obtain a high-level sequence of loop and extrusion embedding. These
embedding can then be decoded through either a loop decoder or an extrusion
decoder to obtain their parameters. At training time, the ground truth type
labels are used to identify which decoder should be used for each embedding,
while at inference time the predicted types are used. The identification of loop
and extrusion types results into separate loop embedding Fρ ∈ Rdz×Lρ and
extrusion embedding Fe ∈ Rdz×Le by splitting Fρ,e according to loop and
extrusion types.

4.3 Loop and Extrusion Parametrization

After obtaining the representation and the type of loop and extrusion steps, the
parameters of both loops and extrusions are decoded from these representations
using separate decoders.

Extrusion Decoder: As mentioned in Section 3, the extrusion sequence is
described by a sequence of 11 quantized parameters e⋆ ∈ J0 ..dqK11×Le . In
order to obtain these parameters from the extrusion sequence embedding Fe, an
extrusion decoder Φe consisting of 3 MLP layers followed by softmax is used. The
predicted probabilities of the extrusion sequence parameters ẽ⋆ ∈ [0,1]11×dq×Le

are compared to the ground truth one-hot-encoded parameters in e⋆ using a
cross-entropy loss, Le.

Loop Decoder: Similarly to the extrusion decoder, the loop decoder Φρ pre-
dicts the quantized parameters of the loop sequence ρ⋆ ∈ J0..dqK6×np×Lρ as
explained in Section 3. Nevertheless, 4 layers of multi-head transformer blocks
are employed instead of simple MLP layers. This is due to the sequential na-
ture of loop decoding in contrast to extrusions. Note that a similar strategy

8 E. Dupont et al.

as loop-extrusion decoder is opted for the transformer block of loop decoder.
The first block performs self-attention on learned constant embedding of loops
Fρ

c ∈ Rdz×npLρ and the result cross-attends to loop embedding Fρ as in Eq.(2).
The same self and cross attention operations in Eq.(3) are conducted in subse-
quent blocks to yield a final representation at the last block Fb

ρ ∈ Rdz×npLρ . A
linear layer followed by softmax is used to obtain predicted probabilities for the
loop sequence parameters ρ̃⋆ ∈ [0,1]6×dq×npLρ which are compared to ground
truth one-hot-encoded loop parameters of ρ⋆ using a cross-entropy loss, Lρ.

Loop Refiner: As in many transformer-based architectures [3, 37, 43, 47], the
quantization of loop parameters helps to reduce the search space and facilitates
the learning. However, it has been observed in our case that it can lead to accu-
mulation of quantization approximation errors. To overcome this issue, unquan-
tized ground truth loop parameters are leveraged. In particular, a loop refiner
Φr composed of a 4 layer MLP is introduced. This refiner takes as input a con-
catenation of loop embedding Fρ and their corresponding predicted parameter
probabilities ρ̃⋆. It attempts to predict the offset Ôff ∈ R6×npLρ between the
predicted quantized loop parameters ρ̂⋆ ∈ J0 ..dqK6×npLρ and the unquantized
ground truth loop parameters ρ⋆ ∈ R6×npLρ . An MSE loss, Lr, is computed
between the predicted offset Ôff and the one given by Off = ρ⋆−ρ, to supervise
the refiner and the rest of the network. Once the offset is predicted, it is added
to the predicted quantized loop parameters yielding unquantized predicted loop
parameters as follows ρ̂ = ρ̂⋆ + Ôff .

Total Loss: TransCAD is an end-to-end network with a training objective
guided by the sum of the individual losses, Ltotal = Lρ,e + Lρ + Le + Lr.

5 Proposed Evaluation

In this section, we first outline the limitations of existing evaluation methods in
CAD sequence. Then, our new proposed evaluation metric framework for assess-
ing the performance of CAD sequence inference from point clouds is described.

DeepCAD [43] Evaluation for Feature-based Reverse Engineering: An
evaluation framework for CAD sequence was originally introduced in [43] and
later used in [27]. This framework includes both accuracy for assessing the fidelity
of the predicted sequence and Chamfer Distance (CD) to measure the quality of
the recovered 3D geometry. Accuracy is assessed using two metrics, specifically
Command Type Accuracy (ACCcmd) and Parameter Accuracy (ACCparam) de-
fined by

ACCcmd =
1

Nc

Nc∑
i=1

I[ti = t̂i] , (4)

ACCparam =
1

K

Nc∑
i=1

|p̂i|∑
j=1

I
[
|pi,j − p̂i,j | < η

]
I[ti = t̂i] , (5)

TransCAD: A Hierarchical Transformer for CAD Sequence 9

where ti and t̂i are the ground truth and predicted command types (for com-
mands representing primitives and extrusions), pi,j and p̂i,j are ground truth
and predicted command parameters, Nc denotes the total number of CAD com-
mands and I[.] is the indicator function. K =

∑Nc

i=1 I[ti = t̂i]|pi| is the total
number of parameters of the correctly recovered commands and η is a tolerance
threshold. The 3D geometry is evaluated with Chamfer Distance (CD) computed
by sampling 2000 points on the ground truth and predicted shapes.

Limitations: We identify the following limitations of the aforementioned evalu-
ation. (1) The proposed ACCcmd overlooks the possibility of over-prediction in
the CAD sequence. As indicated in Eq.(4), the computation of this metric sums
across the set of ground truth CAD commands Nc. A predicted sequence could
erroneously include extra loop-extrusion operations and still achieve a full score,
as exemplified on the left panel of Fig. 3. (2) The evaluation of ACCparam is
conducted solely on the subset of K accurately identified commands, thus in-
troducing a trade-off between ACCparam and ACCcmd. This interdependence
complicates the interpretation of results. (3) Assessment of parameter quality
via ACCparam solely in terms of accuracy is failing to distinguish between the
magnitudes of errors. A parameter inaccurately placed in an adjacent quan-
tization bucket incurs the same penalty as one with a larger deviation, despite
potentially minor implications on the CAD model’s final geometry. These limita-
tions cannot be entirely mitigated by complementing CAD command accuracies
with the chamfer distance (CD) metric. While CD is a valuable assessment of
shape similarity, it does not address the core objective of reverse engineering:
to accurately recover the designer’s original CAD sequence. Two CAD models
might be close in terms of CD yet possess vastly different CAD construction
steps (see right panel of Fig. 3).

Proposed Evaluation Framework: To overcome the identified challenges, we
introduce the mean Average Precision of CAD Sequence (APCS), a novel eval-
uation metric tailored for feature-based reverse engineering. APCS adopts the
concept of Average Precision (AP) commonly used in other tasks, to quantify
the similarity between predicted and ground truth CAD sequences. We intro-
duce the CAD Sequence Similarity Score (CSSS) that can be computed between
predicted and ground truth CAD sequences as follows

CSSS(Ĉ,C) = 1
2Nδ

∑Nρ

j=1

∑Nρ
j

i=1

[
S(δ̂j,i, δj,i) · I[typ(δ̂j,i) = typ(δj,i)]

]
+ 1

2Ne

∑Ne

j=1 S(êj , ej) , (6)

where typ(.) is a function that determines the type of each primitive δ (arc,
line, etc.), and S(p̂,p) = e−k||p̂−p|| is a scoring function with S(p̂,p) ∈ [0, 1]
with 1 assigned when predicted parameterization is identical to the ground
truth. We define Nρ

j = max (|ρj |, |ρ̂j |) where |.| denotes set cardinality, Nρ =

max (Lρ, L̂ρ) where Lρ is the number of predicted primitives and L̂ρ is the num-
ber of ground truth primitives for loop ρj and Nδ =

∑Nρ

j=1 max (|ρj |, |ρ̂j |). Fi-
nally, Ne = max (Le, L̂e) where Le is the number of predicted extrusions and

10 E. Dupont et al.

L̂e is the number of ground truth extrusions. The proposed CSSS metric evalu-
ates both the operation type and parameter prediction. It assigns a score of 0 to
loops with incorrectly predicted types, which gradually increases to 1 as parame-
ter prediction improves. Assessment is conducted on the unquantized parameter
space and calculates the score based on the maximum count of either predicted
or ground truth primitives. This approach ensures that both over and under pre-
dicted sequences are penalized equally. We aggregate CSSS scores across various
thresholds to derive the mean Average Precision of CAD Sequences (APCS).
Furthermore, the median CD is used to measure shape similarity as in [43] with

Fig. 3: Two examples outlining the limitations of existing evaluation metrics. Left
panel: the ground truth sequence (one sketch-extrusion) is a correct subset of the
predicted sequence (three sketch-extrusions). The DeepCAD [43] metrics result in an
accuracy of 1 for both commands and parameters. On the other hand, our proposed
metric takes into account the over predicted sequence elements and the APCS is 0.031.
The right panel showcases the limitations of the CD as a similarity measure. While
the ground truth and predicted shapes are both composed of three extruded circle
sketches, they are different in shape. However, the CD between the two shapes falls
within the uncertainty range of ±0.3. Note that the uncertainty in the CD measurement
is estimated by taking the average CD between all the test samples and themselves.

the difference that it is evaluated on 4096 points instead of 2000 in order to
decrease the uncertainty in the CD measurement. All the reported CD mea-
surements in this work are multiplied by 103. Moreover, the ratio of predictions
that cannot be reconstructed using [30] is reported as the invalidity ratio, IR.

6 Experiments

In this section, the experimental setup is first presented. Then, qualitative and
quantitative results are analyzed. Afterwards, the components of TransCAD are
ablated. Finally, the limitations of our model are outlined.

6.1 Experimental Setup

Dataset: For training and evaluation, the DeepCAD dataset [43] is used. The
sketch extrusion sequences of the CAD models are processed in quantized (8 bits)

TransCAD: A Hierarchical Transformer for CAD Sequence 11

and unquantized space. The size of the train, validation and test sets are 140 294,
7 773, and 7 036 CAD models, respectively. Moreover, cross-dataset evaluation
is conducted on the Fusion360 dataset [41] that contains 6 794 samples.

Training Details: The network is trained for 100 epochs with a batch size
of 72 and an Adam optimizer is employed with a learning rate of 0.001 and a
linear warm-up period of 2 000 steps as in [43]. The training is conducted on an
NVIDIA RTX A6000 GPU. The input point clouds are extracted using [30] and
are made of n = 4096 points. The dimension of the point features dp is set to 16
and of loop-extrusion features dz to 256.

Baselines: In order to evaluate the performance of TransCAD, two state-of-
the-art methods, MultiCAD [27] and DeepCAD [43], and a retrieval baseline
are used. As the code for MultiCAD [27] is not available, we report the results
from the original paper. DeepCAD [43] is retrained with the same parameters
and procedure as outlined in the original paper. One of the known limitations of
the DeepCAD dataset is that it contains duplicate models [47]. While the works
in [47] proposed a method to remove duplicate models that contain exactly the
same CAD sequence, we find that this method does not remove all the duplicates
as some models can have the same geometry but are constructed through a
slightly different sequence of sketch extrusion operations (see supplementary
material for more details). In order to address this issue, we propose a retrieval
baseline. The retrieval baseline uses the point cloud encoder from a trained
DeepCAD [43] to identify the closest latent vector from the train set for each
test sample. As a result, the solution is always a train set CAD sequence.

6.2 Experimental Results

Qualitative Results: Fig. 4 shows some qualitative results for the retrieval
baseline, DeepCAD [43] and TransCAD (Ours) on both the DeepCAD [43] and
Fusion360 [41] datasets. As mentioned in Section 6.1, the DeepCAD dataset
contains many duplicates, not just in terms of CAD sequence but also in terms of
geometrical shape. As a result, the retrieval baseline is able to identify accurately
duplicates (most right column of the DeepCAD dataset panel) and in other cases
the baseline manages to retrieve shapes with similar geometry as the ground
truth CAD model. On the other hand, it can be noticed that DeepCAD [43] can
even fail at retrieving duplicates. TransCAD is able to predict models that are
similar in shape and also in terms of loop-extrusion sequence, even though it
sometimes fails to predict the parameters accurately (second and fifth columns
of DeepCAD dataset and fourth column of Fusion360 dataset).

Quantitative Results: The trends observed from the qualitative results are
further supported by the quantitative results presented in Table 1. The APCS,
on both DeepCAD [43] and Fusion360 [41] datasets, show that TransCAD is the
most capable model at predicting correct CAD sequences. However, it can be
noted that the retrieval baseline obtains the lowest CD by a small margin on the
DeepCAD dataset and by a more significant margin on the Fusion360. One of

12 E. Dupont et al.

Baseline

GT

DeepCAD

Ours

DeepCAD dataset Fusion360 dataset

Input

Fig. 4: Qualitative results on the DeepCAD [43] dataset (left) and the cross-dataset
Fusion360 [41] experiment (right).

Model APCS↑ CD ↓ IR↓

D
ee

pC
A

D Retrieval 0.629 2.8 0
MultiCAD [27] - 8.1 0.115
DeepCAD [43] 0.604 19.2 0.038

Ours 0.732 4.5 0.011

Model APCS↑ CD ↓ IR↓
Fu

si
on

36
0 Retrieval 0.304 60.0 0

MultiCAD [27] - 42.2 0.165
DeepCAD [43] 0.360 104.2 0.017

Ours 0.365 33.3 0.024
Table 1: Quantitative results on the DeepCAD [43] dataset and cross-dataset exper-
iment on Fusion360 [41]. The APCS results show that TransCAD (Ours) is able to
recover CAD sequence most accurately.

the reasons is that this baseline always outputs a CAD model that is of roughly
similar shape as the input even if the retrieved CAD sequence can vary from the
ground truth. To further analyse the results, the variations of the APCS and
CD w.r.t. model complexity on the DeepCAD dataset are displayed in Fig. 5.
We define the model complexity as the lowest possible CD of a test point cloud
sample with respect to the train samples. In other words, the model complexity
quantifies the amount by which a test sample is out of distribution from the train
set in terms of shape. While TransCAD consistently outperforms on average all
other baselines in terms of APCS for all model complexities, DeepCAD [43] can
only perform better than the retrieval baseline for the more complex models. This
shows that DeepCAD [43] often fails at retrieving the CAD sequence for simple
models. In terms of CD, it can be observed that TransCAD and the retrieval
baseline have similar performance. TransCAD can predict a CAD sequence that
is closer to the ground truth one but the predicted overall shape can vary from
the ground truth for more difficult samples.

Ablation Study: In this section, the different components of the proposed net-
work architecture are ablated. Table 2 shows the results for Ours w/o hier.,
in which the learning is done without both the loop-extrusion decoder and the
refining network, Ours w/o refining where the refining component is ablated
and Ours. It can be noted that each component leads to an improvement in

TransCAD: A Hierarchical Transformer for CAD Sequence 13

Fig. 5: Left: Plot of the variation of the mean APCS w.r.t. model complexity. Right:
Plot of the variation of the median CD w.r.t. model complexity. For both graphs the
number of models in each bin, represented by the horizontal bounded lines, correspond
to approximately the same number of test samples from the DeepCAD dataset [43].

Model APCS↑ CD ↓ IR↓
Ours w/o hier. 0.687 7.0 0.016

Ours w/o refining 0.708 4.8 0.018
Ours 0.732 4.5 0.011

Table 2: Ablation results demonstrating the relevance of the hierarchical learning
strategy and the loop refiner.

all the metrics. It is worth noting that the F1 score on the loop-extrusion type
prediction introduced for the hierarchical learning of TransCAD is 0.79. This
implies that on most cases both loop and extrusion decoders receive embedding
of the correct type. Moreover, while the refining network is only applied on the
loop parameters, we observe that the component of the APCS for the extrusion
parameters are also higher when the network is trained with the refining com-
ponent. This suggests that the refining network is able to provide a useful signal
for guiding the learning process. More details are in the supplementary material.

Input point cloud perturbation: Reverse engineering is a real-world practical
problem. The results in the previous section are obtained from sampling points
from the B-Rep representations of the CAD models. While modern 3D sensors
can reconstruct the mesh of models with high resolution, they still suffer from
some artifacts such as noise and small missing parts. In order to evaluate the per-
formance of our network in such realistic conditions, we run experiments in two
scenarios, one in which noise is added and one in which small holes are created
on the point cloud. In order to simulate realistic noise, Perlin noise [31] is added
to the mesh from which the point coordinates and normals are extracted. More
details about the noise and hole generations can be found in the supplementary
materials. Table 3 shows that TransCAD is more robust to such perturbations
than other methods. As the noise also adds a disturbance to the direction of the
input point normals, it leads to a larger drop in performance.

14 E. Dupont et al.

Model APCS↑ CD ↓ IR↓

N
oi

se Retrieval 0.561 5.9 0
DeepCAD [43] 0.550 31.1 0.047

Ours 0.604 18.1 0.010

Model APCS↑ CD ↓ IR↓

H
ol

es Retrieval 0.607 4.1 0
DeepCAD [43] 0.574 26.7 0.039

Ours 0.732 4.4 0.012

Table 3: Results on the DeepCAD [43] dataset when the input point cloud is pertur-
bated either with Perlin noise (left) or by creating holes (right).

Failure Cases and Limitations: In this section, we describe the reasons that
lead TransCAD to predict invalid CAD models as measured by IR. Among
the predictions of TransCAD on DeepCAD test set, only one contains a loop
parametrization that results in an invalid CAD sequence. This shows that the
proposed representation of the loop sequence leads to syntactically correct loops
on practically all cases. However, in some cases the representation of the CAD
sequence can be syntactically valid, yet it is not possible to reconstruct a B-
Rep from it. For 75 test samples, the loop-extrusion decoder fails to predict an
extrusion token, this implies that the predicted model is therefore an infinitely
thin sketch and not a 3D model as expected. The rest of the invalid models are
mostly due to a loop being made of a single line within a model, which cannot
be extruded into a valid 3D shape within our context. Finally, Fig. 6 shows ex-
amples for which the predicted sequences do not lead to a shape that is close to
the ground truth one. In these examples, the input CAD models contain a large
number of small features that TransCAD is unable to capture.

GT OursInput GT OursInput GT OursInput

Fig. 6: Examples for which TransCAD fails at recovering a shape close to the ground
truth one.

7 Conclusion

In conclusion, we propose TransCAD an end-to-end transformer-based neural
network that learns to recover the CAD sequence from a given point cloud. Two
of the main features of TransCAD are a hierarchical structure that enables the
learning of a high-level loop-extrusion sequence and a loop refiner that aims
at correcting errors in loop parameter predictions. We also propose a primitive
representation in which each primitive is described by the same number of pa-
rameters. We identify the limitations of current metrics in the emerging domain
of 3D reverse engineering and propose a new metric, the APCS that leads to a
fair comparison of parametric CAD sequences. Thorough experiments show that
TransCAD achieves state-of-the-art results in different realistic scenarios.

TransCAD: A Hierarchical Transformer for CAD Sequence 15

Acknowledgement: The present project is supported by the National Research
Fund, Luxembourg under the BRIDGES2021/IS/16849599/FREE-3D and
IF/17052459/CASCADES projects, and by Artec 3D.

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: ICML. pp. 40–49. PMLR (2018)

2. Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S., Snavely, N., Hariharan,
B.: Learning gradient fields for shape generation. In: ECCV (2020)

3. Carlier, A., Danelljan, M., Alahi, A., Timofte, R.: Deepsvg: A hierarchical gener-
ative network for vector graphics animation. NeurIPS 33, 16351–16361 (2020)

4. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

5. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: Maskgit: Masked gener-
ative image transformer. In: CVPR. pp. 11315–11325 (2022)

6. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
CVPR. pp. 5939–5948 (2019)

7. Cherenkova, K., Dupont, E., Kacem, A., Arzhannikov, I., Gusev, G., Aouada, D.:
Sepicnet: Sharp edges recovery by parametric inference of curves in 3d shapes. In:
CVPRW. pp. 2726–2734 (2023)

8. Dupont, E., Cherenkova, K., Kacem, A., Ali, S.A., Aryhannikov, I., Gusev, G.,
Aouada, D.: Cadops-net: Jointly learning cad operation types and steps from
boundary-representations. 3DV (2022)

9. Friedrich, M., Fayolle, P.A., Gabor, T., Linnhoff-Popien, C.: Optimizing evolution-
ary csg tree extraction. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference. pp. 1183–1191 (2019)

10. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial networks. NeurIPS (2014)

11. Guo, H., Liu, S., Pan, H., Liu, Y., Tong, X., Guo, B.: Complexgen: Cad recon-
struction by b-rep chain complex generation. ACM TOG 41(4), 1–18 (2022)

12. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS
(2020)

13. Jayaraman, P.K., Lambourne, J.G., Desai, N., Willis, K.D., Sanghi, A., Morris,
N.J.: Solidgen: An autoregressive model for direct b-rep synthesis. Transaction in
Machine Learning Research (2023)

14. Jayaraman, P.K., Sanghi, A., Lambourne, J.G., Willis, K.D., Davies, T., Shayani,
H., Morris, N.: Uv-net: Learning from boundary representations. In: CVPR. pp.
11703–11712 (2021)

15. Kania, K., Zieba, M., Kajdanowicz, T.: Ucsg-net-unsupervised discovering of con-
structive solid geometry tree. NeurIPS (2020)

16. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: CVPR (2020)

17. Khan, M.S., Dupont, E., Ali, S.A., Cherenkova, K., Kacem, A., Aouada, D.: Cad-
signet: Cad language inference from point clouds using layer-wise sketch instance
guided attention. In: CVPR. pp. 4713–4722 (2024)

18. Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa,
M., Zorin, D., Panozzo, D.: Abc: A big cad model dataset for geometric deep
learning. In: CVPR. pp. 9601–9611 (2019)

16 E. Dupont et al.

19. Lambourne, J.G., Willis, K.D., Jayaraman, P.K., Sanghi, A., Meltzer, P., Shayani,
H.: Brepnet: A topological message passing system for solid models. In: CVPR.
pp. 12773–12782 (2021)

20. Lambourne, J.G., Willis, K., Jayaraman, P.K., Zhang, L., Sanghi, A., Malekshan,
K.R.: Reconstructing editable prismatic cad from rounded voxel models. In: SIG-
GRAPH Asia. pp. 1–9 (2022)

21. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: Generative
recursive autoencoders for shape structures. ACM TOG (2017)

22. Li, L., Sung, M., Dubrovina, A., Yi, L., Guibas, L.J.: Supervised fitting of geometric
primitives to 3d point clouds. In: CVPR. pp. 2652–2660 (2019)

23. Li, P., Guo, J., Zhang, X., Yan, D.M.: Secad-net: Self-supervised cad reconstruction
by learning sketch-extrude operations. In: CVPR. pp. 16816–16826 (2023)

24. Lim, J.J., Pirsiavash, H., Torralba, A.: Parsing ikea objects: Fine pose estimation.
In: CVPR. pp. 2992–2999 (2013)

25. Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D.: Pc2wf: 3d wireframe recon-
struction from raw point clouds. ICLR (2021)

26. Ma, W., Chen, S., Lou, Y., Li, X., Zhou, X.: Draw step by step: Reconstructing
cad construction sequences from point clouds via multimodal diffusion. In: CVPR.
pp. 27154–27163 (2024)

27. Ma, W., Xu, M., Li, X., Zhou, X.: Multicad: Contrastive representation learn-
ing for multi-modal 3d computer-aided design models. In: CIKM. Association for
Computing Machinery, New York, NY, USA (2023)

28. Mallis, D., Aziz, A.S., Dupont, E., Cherenkova, K., Karadeniz, A.S., Khan, M.S.,
Kacem, A., Gusev, G., Aouada, D.: Sharp challenge 2023: Solving cad history and
parameters recovery from point clouds and 3d scans. overview, datasets, metrics,
and baselines. In: CVPRW (2023)

29. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: An autoregressive gen-
erative model of 3d meshes. In: ICML. pp. 7220–7229. PMLR (2020)

30. Paviot, T.: Pythonocc (2017), https : / / dev . opencascade . org / project /
pythonocc, accessed: March 7, 2024

31. Perlin, K.: An image synthesizer. In: SIGGRAPH. p. 287–296. SIGGRAPH ’85,
Association for Computing Machinery, New York, NY, USA (1985)

32. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. NeurIPS 30 (2017)

33. Ren, D., Zheng, J., Cai, J., Li, J., Zhang, J.: Extrudenet: Unsupervised inverse
sketch-and-extrude for shape parsing. In: ECCV. pp. 482–498. Springer (2022)

34. Sharma, G., Liu, D., Maji, S., Kalogerakis, E., Chaudhuri, S., Měch, R.: Parsenet:
A parametric surface fitting network for 3d point clouds. In: ECCV. pp. 261–276.
Springer (2020)

35. Team, O.D.: Open3d documentation: open3d.geometry.estimate_normals (2022),
https : / / www . open3d . org / docs / 0 . 7 . 0 / python _ api / open3d . geometry .
estimate_normals.html, accessed: March 6, 2024

36. Uy, M.A., Chang, Y.Y., Sung, M., Goel, P., Lambourne, J.G., Birdal, T., Guibas,
L.J.: Point2cyl: Reverse engineering 3d objects from point clouds to extrusion
cylinders. In: CVPR. pp. 11850–11860 (2022)

37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

38. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generating
3d mesh models from single rgb images. In: ECCV. pp. 52–67 (2018)

https://dev.opencascade.org/project/pythonocc
https://dev.opencascade.org/project/pythonocc
https://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
https://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html

TransCAD: A Hierarchical Transformer for CAD Sequence 17

39. Wang, X., Xu, Y., Xu, K., Tagliasacchi, A., Zhou, B., Mahdavi-Amiri, A., Zhang,
H.: Pie-net: Parametric inference of point cloud edges. NeurIPS 33, 20167–20178
(2020)

40. Wijmans, E.: Pointnet++ pytorch (2018), https://github.com/erikwijmans/
Pointnet2_PyTorch, accessed: March 7, 2024

41. Willis, K.D., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J.G., Solar-Lezama,
A., Matusik, W.: Fusion 360 gallery: A dataset and environment for programmatic
cad construction from human design sequences. ACM TOG 40(4), 1–24 (2021)

42. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. NeurIPS 29
(2016)

43. Wu, R., Xiao, C., Zheng, C.: Deepcad: A deep generative network for computer-
aided design models. In: CVPR. pp. 6772–6782 (2021)

44. Wu, R., Zhuang, Y., Xu, K., Zhang, H., Chen, B.: Pq-net: A generative part seq2seq
network for 3d shapes. In: CVPR (2020)

45. Xu, X., Jayaraman, P.K., Lambourne, J.G., Willis, K.D., Furukawa, Y.: Hierarchi-
cal neural coding for controllable cad model generation. ICML (2023)

46. Xu, X., Lambourne, J.G., Jayaraman, P.K., Wang, Z., Willis, K.D., Furukawa,
Y.: Brepgen: A b-rep generative diffusion model with structured latent geometry.
ACM SIGGRAPH (2024)

47. Xu, X., Willis, K.D., Lambourne, J.G., Cheng, C.Y., Jayaraman, P.K., Furukawa,
Y.: Skexgen: Autoregressive generation of cad construction sequences with disen-
tangled codebooks. In: ICML. pp. 24698–24724. PMLR (2022)

48. Xu, X., Peng, W., Cheng, C.Y., Willis, K.D., Ritchie, D.: Inferring cad modeling
sequences using zone graphs. In: CVPR. pp. 6062–6070 (2021)

49. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: CVPR. pp. 4541–
4550 (2019)

50. Yu, F., Chen, Q., Tanveer, M., Mahdavi Amiri, A., Zhang, H.: D2csg: Unsupervised
learning of compact csg trees with dual complements and dropouts. Advances in
Neural Information Processing Systems 36 (2024)

51. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Ec-net: an edge-aware point
set consolidation network. In: ECCV. pp. 386–402 (2018)

52. Zhu, X., Du, D., Chen, W., Zhao, Z., Nie, Y., Han, X.: Nerve: Neural volumetric
edges for parametric curve extraction from point cloud. In: CVPR. pp. 13601–13610
(2023)

https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch

18 E. Dupont et al.

Supplementary Materials
TransCAD: A Hierarchical Transformer for CAD

Sequence Inference from Point Clouds

A Formulation

Fig. 1 shows an example of the construction process of a CAD model as well
as the corresponding loop-extrusion sequences. The loop-extrusion sequence is
made of three types of tokens (loop, extrusion and end of sequence). The CAD
sequence combines the high level loop-extrusion sequence tokens and their corre-
sponding parameters. Note for the loop parameters, the coordinates of the start
point of a primitive is always the same as the coordinates of the end point of
the previous primitive as in [43].

Loop 1 Loop 2Extrusion 1 Extrusion 2
CAD Model

Start Mid End
(0.50, 0.50)
(0.62, 0.28)
(0.87, 0.28)
(1.00, 0.50)
(0.87, 0.71)
(0.62, 0.71)

(0.56, 0.39)
(0.75, 0.28)
(0.93, 0.39)
(0.93, 0.60)
(0.75, 0.71)
(0.56, 0.60)

(0.62, 0.28)
(0.87, 0.28)
(1.00, 0.50)
(0.87, 0.71)
(0.62, 0.71)
(0.50, 0.50)

Loop 1

Start Mid End
(0.50, 0.50) (1.00, 0.5) (0.50, 0.50)

Loop 2

origin: (0, 0, 0)
orientation: (0.0, 0.0, 0.0)
sketch size: 1.97
operation:0
type:0
extent_one:0.67
extent_two:0.0

origin: (0, 0, 0.67)
orientation: (0.0, 0.0, 0.0)
sketch size: 1.60
operation:1
type:0
extent_one:0.33
extent_two:0.0

Extrusion 1 Extrusion 2

CAD Sequence

CAD Construction

Loop-Extrusion Sequence

Loop Extrusion Loop Extrusion End of
Sequence

Fig. 1: Example of a CAD model and its CAD sequence in the formulation proposed.
The top panels depicts the CAD construction process. The middle panel shows the
corresponding high-level loop-extrusion sequence that is predicted as part of the hier-
archical learning. The low-level parameters of each loop primitive and extrusion are
displayed in the bottom panel.

B Duplicates in the DeepCAD Dataset

As mentioned in Section 6.1 of the main paper, one of the main limitations of the
DeepCAD dataset [43] is that it contains many duplicates across the train and

TransCAD: A Hierarchical Transformer for CAD Sequence 19

test sets. While the works in [47] proposed a strategy to identify duplicates that
have exactly the same CAD sequence (i.e. sequence duplicates), we observe that
the dataset also contains models that have almost identical geometry but differ-
ent CAD sequences (i.e. geometrical duplicates). Moreover some CAD models
in the DeepCAD train set are almost identical to some models in the Fusion360
dataset [41], with often just the amount of extrusion varying slightly. Fig. 2 shows
examples of the different types of duplicates from the DeepCAD [43] and Fu-
sion360 [41] datasets. We define a geometrical duplicate as a test set CAD model
for which it exists a CAD model in the train set with a chamfer distance less
than the uncertainty in the chamfer distance measurement (±3×10−4 when 4096
points are sampled). From this definition and using the train set of the Deep-
CAD dataset [43], we observe that about 14% of the DeepCAD test set is made
of geometrical duplicates and about 12% in the Fusion360 test set. We observe
that current datasets that contain both CAD models and their corresponding
CAD sequences are limited by either by the number of samples (Fusion360 [41])
or by the lack of diversity they present (DeepCAD [43]).

C Implementation details

In this section, more details on the network architecture are provided.

Transformer decoders: The loop-extrusion decoder Φρ,e and the loop decoder
Φρ are both transformer decoder with the same network architecture. They are
both made of 4 layers, each made of 8 heads with a feed-forward dimension of
512. A dropout rate of 0.1 is used.

PointNet++: As mentioned in the main paper, the point encoder Φp is Point-
Net++ [32]. The implementation provided in [40] was used. The input dimension
dp = 6 corresponds to the point and normal coordinates. The parameters for the
4 layers are as follows: number of points (512, 256, 128, 16) with radius (0.1, 0.2,
0.4, 0.8) and number of samples (64, 64, 64, 32).

D APCS Metric

In this section, more details on the computation of the proposed metric APCS
(see Section 5 of the main paper) are provided.

The mean Average Precision of CAD Sequence, APCS, is a score between 0
and 1 that evaluates how close two CAD sequences are by taking into account the
types and parameters of loop primitives and the extrusion parameters. The types
of primitives considered in this work are line, arc and circle. The parameters of
the loop primitives correspond to 6 point coordinates in a normalized 2D space.
An extrusion is described using 11 parameters as in [43] which can be grouped
into 4 main categories: 1) Ext.: the type of extrusion and the amount of extrusion;
2) Origin: the origin of the 2D sketch in 3D space; 3) Orientation: the sketch
plane orientation; and 4) Size: the size of the sketch in 3D space. Note the latter

20 E. Dupont et al.

DeepCAD Train DeepCAD Test

Fusion360

DeepCAD Train DeepCAD Test

DeepCAD Train

G
eo

m
et

ric
al

 D
up

lic
at

es

G
eo

m
et

ric
al

 D
up

lic
at

es

Se
qu

en
ce

 D
up

lic
at

es

Fig. 2: Examples of duplicate CAD models from the DeepCAD [43] and Fusion360 [41]
datasets. On the top left panel, CAD models from the DeepCAD train set with geomet-
rical duplicates in the test set are shown. Similarly, the right panel presents geometrical
duplicates present in the Fusion360 [41] dataset. CAD models with identical CAD se-
quences, i.e. sequence duplicates, are displayed in the bottom left panel.

3 categories describe the projection and scaling of the normalized 2D sketch in
3D.

E Results

In this section, further quantitative and qualitative results are presented.

E.1 Quantitative Results

The APCS scores reported in the main paper are computed per model and then
averaged over all the models of the test set. It is also possible to compute the
average of each individual component of the APCS scores over the whole test
set. Such results are discussed in the following paragraphs for the DeepCAD
dataset [43], Fusion360 dataset [41] and the ablation study.

TransCAD: A Hierarchical Transformer for CAD Sequence 21

Model APCS↑
Line Arc Circle Ext. Origin Orientation Size

Retrieval 0.584 0.280 0.655 0.716 0.666 0.819 0.691
DeepCAD [43] 0.654 0.246 0.587 0.872 0.825 0.928 0.848

Ours 0.665 0.709 0.683 0.818 0.768 0.879 0.778

Table 1: Results of the different APCS components on the DeepCAD dataset [43].

Model ACCcmd↑ ACCparam↑
DeepCAD [43] 0.821 0.693

Ours 0.838 0.741

Table 2: Results using the metrics described in DeepCAD on the DeepCAD
dataset [43].

Model APCS↑
Line Arc Circle Ext. Origin Orientation Size

Retrieval 0.214 0.045 0.546 0.453 0.294 0.509 0.451
DeepCAD [43] 0.368 0.144 0.639 0.844 0.774 0.866 0.859

Ours 0.515 0.383 0.622 0.749 0.693 0.836 0.782

Table 3: Results of the different APCS components on the Fusion dataset [41].

DeepCAD Dataset: Table 1 shows the APCS scores on the DeepCAD dataset [43]
for each of the components averaged over the test set. It can be observed that
TransCAD (Ours) obtains a significantly better score for the arc primitive and
also to some extent for the circle primitive compared to the retrieval baseline
and DeepCAD [43]. However, the scores corresponding to the placement of the
2D sketch in 3D (Origin, Orientation and Size) for TransCAD are slightly lower
than for DeepCAD [43].

The APCS score provides a more complete evaluation of the predicted CAD
sequences than the command accuracy (ACCcmd) and parameter accuracy (ACCparam)
used in the works [43]. Nevertheless, we provide the results for TransCAD and
DeepCAD [43] against those metrics in Table 2 for the DeepCAD dataset.

Fusion360 Dataset: The trends previously described on the DeepCAD dataset [43]
can also be observed on the cross-dataset evaluation using the Fusion360 dataset [41]
(see Table 3). Furthermore, the APCS score corresponding to the line primitive is
significantly higher for TransCAD than for the other two baseline models. Fig. 3
shows the variation of the APCS and CD w.r.t. to model complexity for the Fu-
sion360 dataset [41]. It can be observed that while the performance on the APCS
metric for DeepCAD [43] and TransCAD are relatively close, TransCAD achieves
lowest CD for all model complexities compared to DeepCAD [43] and the re-
trieval baseline.

22 E. Dupont et al.

Fig. 3: Left: Plot of the variation of the mean APCS w.r.t. model complexity. Right:
Plot of the variation of the median CD w.r.t. model complexity. For both graphs the
number of models in each bin, represented by the horizontal bounded lines, correspond
to approximately the same number of test samples from the Fusion360 dataset [41].

Model APCS↑
Line Arc Circle Ext. Origin Orientation Size

Ours w/o hier. 0.569 0.473 0.529 0.749 0.640 0.843 0.670
Ours w/o refining 0.655 0.625 0.673 0.755 0.679 0.838 0.703

Ours 0.665 0.709 0.683 0.818 0.768 0.879 0.778

Table 4: Results of the different APCS components on the DeepCAD dataset [43] for
the ablation study. Ours w/o hier. corresponds the proposed model without hierarchical
learning, and Loop Refiner and Ours w/o refining to the proposed model without the
Loop Refiner.

Complex shape performance: Figure 4 show the APCS w.r.t. the sequence
length for TransCAD and DeepCAD [43]. Similarly, Figure 5 presents the varia-
tion of CD w.r.t. the sequence length. The size of the data points is proportional
to the number of models it represents. The performance decreases for both mod-
els as the length of the CAD sequence increases. However, TransCAD consis-
tently outperforms DeepCAD.

Ablation Study: Table 4 shows the APCS component scores corresponding
to the ablation study presented in Section 6.2 of the main paper. The most
striking result is that the Loop Refiner leads to improved performance in all the
extrusion components, even though the Loop Refiner only acts directly on the
loop parameters. The Loop Refiner is a component of the end to end pipeline of
TransCAD. As a result, the backprogation of the Loop Refiner loss Lρ acts on
all the parameters of the network and can therefore impact the predictions at
all levels.

The Loop-Extrusion module classifies the features Fρ,e as loop, extrusion or
end of sequence type. These predictions are used to route the features Fρ,e to
either the loop decoder Φρ or extrusion decoder Φe to obtain their parameters.

TransCAD: A Hierarchical Transformer for CAD Sequence 23

Fig. 4: APCS results as a function of the ground truth CAD sequence length expressed
in the DeepCAD format on the DeepCAD dataset [43]. The size of the points is pro-
portional to the number of CAD models with the corresponding CAD sequence length.

To demonstrate the impact of the Loop-Extrusion type classification, we con-
duct the following experiment: the ground truth Loop-Extrusion type labels are
used instead of the predicted ones at testing time on the DeepCAD dataset [43].
In this scenario, the APCS metric evaluating the CAD sequence increases from
0.732 to 0.790. The IR also improves and decreases to nearly 0% (only 2 in-
valid models). Notably, there is no significant change in the CD. As a result,
TransCAD is robust to moderate classification errors in the Loop-Extrusion pre-
diction w.r.t. the final reconstruction. However, these errors might impact the
performance of the predicted CAD sequence w.r.t. the ground truth. This sug-
gests that the Loop-Extrusion classification errors might result in alternative yet
plausible design paths.

E.2 Qualitative Results

In this section, further qualitative results are presented by first comparing Tran-
sCAD to the retrieval baseline and then to DeepCAD [43].

Retrieval Baseline Comparison: Qualitative results comparing TransCAD to
the the retrieval baseline can be found in Fig. 6. It can be observed that Tran-
sCAD can perform well on duplicate models and more importantly that it per-
forms better than the retrieval baseline on non-duplicate models. TransCAD
can identify most of the components of an unseen CAD model but sometimes

24 E. Dupont et al.

Fig. 5: CD results as a function of the ground truth CAD sequence length expressed
in the DeepCAD format on the DeepCAD dataset [43]. The size of the points is pro-
portional to the number of CAD models with the corresponding CAD sequence length.

fails to place those parts in the right location as suggested by the APCS scores
presented in the previous section.

DeepCAD Comparison: Qualitative results showing the comparison between
TransCAD and DeepCAD [43] can be found in Fig. 7. The results on simple and
difficult models show that TransCAD is able to outperform DeepCAD [43] on
most occasions.

F Comparison with ComplexGen

The output of TransCAD is a CAD sequence that allows full integration and ed-
itability in CAD software at both the final shape and intermediate design process
levels. On the other hand, the output of ComplexGen [11] is drastically differ-
ent since it is only the final shape as a set of corners, curves, and patches with
topology constraints. ComplexGen cannot predict the intermediate design steps,
as shown in Fig. 1 in the paper. To the best of our knowledge, DeepCAD [43]
and MultiCAD [27] are the only works that predict CAD sequences from point
clouds, with only DeepCAD providing source codes for extensive comparisons.
Nevertheless, we ran a pretrained ComplexGen model on the DeepCAD test
set and recorded a CD of 2.3 (compared to 4.5 for TransCAD). Note that as
ComplexGen does not predict the CAD sequence, the APCS metric cannot be
computed. On the other hand, ComplexGen metrics are tailored to their output

TransCAD: A Hierarchical Transformer for CAD Sequence 25

D
u

p
lic

at
es

N
o

n
-D

u
p

lic
at

es

Input
Ground

Truth
Retrieval
Baseline Ours

Fig. 6: Qualitative results showing the performance of TransCAD against the retrieval
baseline on both duplicate CAD models (top panel) and non-duplicate models (bottom
panel).

and designed to evaluate the predicted patches of the final shape and topological
validity. To conclude, other reverse engineering baselines (e.g . ComplexGen [11])
might achieve a better final reconstruction than TransCAD, but could not be
used seamlessly for reverse engineering (i.e. intermediate design level editabil-
ity).

G Point Cloud Perturbation

In this section, further details on the implementation of the perturbations ap-
plied to the input point cloud P described in Section 6.2 of the main paper are
presented.

26 E. Dupont et al.

G.1 Perlin Noise Implementation

To simulate the noise created when an object is scanned using a 3D sensor, a
Perlin noise [31] is added to the point cloud. The perlin noise is created using the
following strategy. Starting from the mesh representation of the original CAD
models, the faces are divided to ensure that the mesh contains a dense number
of vertices. Then, a 3D Perlin noise is computed for each vertex using 64 octaves
with a minimum and maximum magnitude of −0.001 and 0.001, respectively.
Finally, the normals are recomputed from the mesh and points are sampled. A
visual example of a perturbed mesh can be found in Fig. 8.

G.2 Holes Implementation

Holes in the input point clouds are created using the following strategy. Firstly,
for each point cloud the number holes is selected from a uniform distribution
ranging from 1 to 10 included. Then, the ratio of points to be removed for each
hole is chosen by sampling a normal distribution with mean 0.03 and standard
deviation 0.015. Finally, for each hole a point is chosen at random and the
corresponding number of nearest neighbors points are removed. The nearest
neighbors are identified using a geodesic distance computed on the mesh surface.
We ensure that the remaining number of points is at least n = 4096, which
corresponds to the number of points used as input. Fig. 9 shows some examples
of point clouds on which holes have been created.

G.3 Qualitative Results

Qualitative results for both the hole and noise input perturbations can be found
in Fig. 10. Those results complement the quantitative results found in Section 6.2
of the main paper.

G.4 Further Quantitative Results

In this section, further quantitative results for different amounts of point cloud
perturbation are presented. The maximum magnitude of the Perlin noise on the
input point cloud is increased compared to the one reported in the main paper
(now referred to as Original Noise). The results presented in Table 5 show that
both TransCAD and DeepCAD are sensitive to the amount of noise. We also
perform 2-epoch finetuning of both models on Original Noise training data and
report the results (Finetune, last row of Table 5). Notably, TransCAD almost
recovers its performance with finetuning.

Furthermore, we conduct an experiment to evaluate the effect of the input
cloud sparsity on the performance. Using TransCAD and DeepCAD [43] trained
with input point clouds of size 4096 points, predictions for the test set with
decreasing input point cloud sizes are generated. The results demonstrate that
TransCAD is more robust than DeepCAD [43] w.r.t. input sparsity (see Table 6).

TransCAD: A Hierarchical Transformer for CAD Sequence 27

Noise TransCAD DeepCAD [43]
increase APCS ↑ CD ↓ APCS ↑ CD ↓

Original Noise 0.604 18.1 0.550 31.1
+25% 0.570 21.1 0.541 31.6
+50% 0.532 28.8 0.528 35.6

Finetune 0.724 5.1 0.572 27.7
Table 5: Results on the APCS and CD metrics for different amount of noise added
to the input point cloud on the DeepCAD dataset [43].

Input size TransCAD DeepCAD[40]
(# Points) APCS ↑ CD ↓ APCS ↑ CD ↓

4096 0.732 4.5 0.604 19.2
2048 0.729 4.9 0.577 24.8
512 0.705 8.1 0.526 38.5
256 0.673 12.7 0.443 70.3

Table 6: Results on the APCS and CD metrics for different size of input clouds on
the DeepCAD dataset [43].

28 E. Dupont et al.

D
if

fi
cu

lt
S

im
p

le

Input
Ground

Truth OursDeepCAD

Invalid

Invalid

Fig. 7: Qualitative results showing the performance of TransCAD against the Deep-
CAD [43] on both simpler CAD models (top panel) and more complex models (bottom
panel).

TransCAD: A Hierarchical Transformer for CAD Sequence 29

Original Mesh Mesh with Perlin Noise

Fig. 8: Example of a CAD model with its mesh representation (left) and perturbed
representation with Perlin noise (right). Zooming on the figure might be required to
best view the effect of the Perlin noise applied.

Fig. 9: Examples of input point clouds in which holes have been created. The points
highlighted in red represent the points that have been removed.

30 E. Dupont et al.

N
oi
se

H
ol
es

Input Ground
Truth

Retrieval DeepCAD Ours

Invalid

Fig. 10: Qualitative results on DeepCAD dataset [43] using perturbed input point
clouds. The top panel shows results for which holes are created on the input point
cloud and the bottom panel shows results for which Perlin noise was applied.

	TransCAD: A Hierarchical Transformer for CAD Sequence Inference from Point Clouds

