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A B S T R A C T

Unsupervised anomaly detection in time-series has been extensively investigated in the literature. Notwith-
standing the relevance of this topic in numerous application fields, a comprehensive and extensive evaluation
of recent state-of-the-art techniques taking into account real-world constraints is still needed. Some efforts have
been made to compare existing unsupervised time-series anomaly detection methods rigorously. However, only
standard performance metrics, namely precision, recall, and F1-score are usually considered. Essential aspects
for assessing their practical relevance are therefore neglected. This paper proposes an in-depth evaluation
study of recent unsupervised anomaly detection techniques in time-series. Instead of relying solely on standard
performance metrics, additional yet informative metrics and protocols are taken into account. In particular,
(i) more elaborate performance metrics specifically tailored for time-series are used; (ii) the model size and
the model stability are studied; (iii) an analysis of the tested approaches with respect to the anomaly type is
provided; and (iv) a clear and unique protocol is followed for all experiments. Overall, this extensive analysis
aims to assess the maturity of state-of-the-art time-series anomaly detection, give insights regarding their
applicability under real-world setups and provide to the community a more complete evaluation protocol.
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1. Introduction

A multivariate time-series corresponds to a temporally ordered set
of variables. This mathematical representation has been used in count-
less domains such as finance, health, and biomechanics. Designing
methods for automatically analyzing time-series (e.g. forecasting, clas-
sification, anomaly detection) has been widely investigated by re-
searchers (Mahalakshmi, Sridevi, & Rajaram, 2016; Zhao, Lu, Chen,
Liu, & Wu, 2017). A particular focus is given to anomaly detection
in time-series (Blázquez-García, Conde, Mori, & Lozano, 2021; Wu &
Keogh, 2021). In general, an anomaly or outlier can be defined as an
observation or sample that does not follow an expected pattern. The
popularity of anomaly detection in time-series is probably due to its in-
terest in numerous industrial contexts. As an example, one can mention
the detection of faulty sensors (Cook, Mısırlı, & Fan, 2019), fraud-
ulent bank transactions (Devaki, Kathiresan, & Gunasekaran, 2014),
and pathologies in medical data (Keogh, Lin, Fu, & Van Herle, 2006;
Kourou, Exarchos, Exarchos, Karamouzis, & Fotiadis, 2015).

In the literature, some attempts have been made to develop su-
pervised and semi-supervised approaches (Golmohammadi & Zaiane,
2017; Jiang, Kao, & Li, 2021). Although supervised techniques may
achieve higher detection performance on anomalies seen during train-
ing, they usually risk overfitting to those anomalies, resulting in poor
generalization to novel outliers. Semi-supervised approaches offer a
more flexible solution leveraging both labeled and unlabeled data
(Oliver, Odena, Raffel, Cubuk, & Goodfellow, 2018). However, de-
spite being promising (Oliver et al., 2018; Zhou et al., 2022), these
methods still rely on a certain amount of annotated data, which can
be constraining. Hence, the task of time-series anomaly detection is
usually formulated as an unsupervised problem (Su et al., 2019). In
fact, since anomalies occur rarely, annotating data becomes challenging
and costly; This makes unsupervised learning more adequate despite
being exposed to additional challenges such as the lack of explicit
guidance and complex hyper-parameter tuning (Garg & Kalai, 2018).
In this article, we focus on the topic of unsupervised anomaly detection
in time-series.

Earlier methods of anomaly detection in time-series mostly em-
ployed traditional Machine Learning (ML) (Jin, Chen, Li, Poolla, &
Sangiovanni-Vincentelli, 2019; Liu, Ting, & Zhou, 2008) and auto-
regressive (Chen, Wang, Wei, Li, & Gao, 2019; Yaacob, Tan, Chien, &
Tan, 2010) techniques. However, as discussed in Choi et al. (2021),
these approaches are mainly subject to the curse of dimensionality.
In other words, their performance drops in the presence of high-
dimensional time-series.

To address this, motivated by the tremendous advances in Deep
Learning (DL), massive efforts have been recently made to design
2

suitable Deep Neural Network (DNN) architectures (Deng & Hooi,
2021; Su et al., 2019; Xu et al., 2018). These DL-based approaches
have achieved impressive performance in terms of standard performance
metrics (precision, recall, and F1-score). Nevertheless, despite their
promising results, their suitability in a realistic industrial context still
needs further investigation. For that purpose, it is timely to propose
an extensive comparison of recent unsupervised DL techniques that
consider the following aspects:

(𝐢) Model size and model stability: Existing methods overlook the
model size and the model stability, which are important indicators of the
scalability and the performance stability. By a stable model, we mean
a model which has stable performance under different training trials.

(𝐢𝐢) Unified experimental protocol: There is no clear experimental
protocol for evaluating state-of-the-art methods. As a consequence, it
can be noted that the reported experimental values vary considerably
from one paper to another. For instance, as highlighted by Kim et al.
(2022), a peculiar evaluation protocol called Point Adjustment (PA)
introduced by Xu et al. (2018) is often used (Audibert, Michiardi,
Guyard, Marti, & Zuluaga, 2020; Su et al., 2019), while it is ignored
in other cases (Li et al., 2019; Malhotra et al., 2015).

(𝐢𝐢𝐢) Performance metrics for time-series: As discussed by Tat-
bul et al. (2018), the used standard performance metrics (precision,
recall, and F1-score) might not be entirely adequate for evaluating
time-series anomaly detectors. These metrics were initially designed
for time-independent predictions and not for range-based ones. As an
alternative, Tatbul et al. (2018) extended these metrics to time-series.
However, it can be noted that current state-of-the-art methods do not
consider these relatively novel evaluation criteria.

(𝐢𝐯) Experimental analysis with respect to the anomaly type: a
detailed experimental evaluation with respect to the type of anomaly is
missing in the state-of-the-art. Significant efforts have been dedicated
to rigorously defining the different possible types of outliers in time-
series (Choi et al., 2021; Lai et al., 2021). However, no detailed
experimental analysis has been carried out in that direction.

(v) Comparison against ML methods: Similar to the works of Wu
and Keogh (2021) and Audibert et al. (2022), we emphasize the impor-
tance of comparing traditional ML strategies to DL approaches. Recent
studies (Darban et al., 2022; Liu et al., 2022, 2023) tend to focus on
DL-based works, often overlooking ML techniques. Our findings are
consistent with Wu and Keogh (2021) and Audibert et al. (2022), and
indicate that ML methods remain relevant for the task unsupervised
anomaly detection in time-series.

In the literature, some survey studies were proposed for unsuper-
vised time-series anomaly detection (Liu et al., 2023; Zhong et al.,
2023). They primarily focus on presenting recent approaches, their
relevant applications and their challenges and limitations. Some other
works (Paparrizos et al., 2022; Wu & Keogh, 2021) have conducted
experiments to identify the flaws of current benchmark datasets and
scoring functions, proposing new datasets and issuing recommenda-

tions for practitioners. While few other evaluation studies focused on
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Table 1
Comparison of existing evaluation studies of anomaly detection in time-series: we specify which of the following aspects were taken into account: (𝑖) standard performance metrics
which correspond to the precision, recall, and F1-score; (𝑖𝑖) revisited performance metrics extending the precision, recall, and F1-score to time-series introduced by Tatbul, Lee,
Zdonik, Alam, and Gottschlich (2018); (𝑖𝑖𝑖) network size; (𝑖𝑣) consideration of ML approaches in the comparison; (𝑣) evaluation of recent deep learning techniques; (𝑣𝑖) analysis

ith respect to the types of anomalies; and (𝑣𝑖𝑖) use of a unified experimental protocol. Note that by ‘‘partially’’ we mean that the authors briefly discussed the concept without
ecessarily producing any related comparison or results in their study.
Papers Analysis using

standard
performance
metrics

Analysis using
range-based
metrics
(Tatbul et al.,
2018)

Network
size

Eval. of
recent DL
techniques

Comparison
against ML
techniques

Analysis w.r.t
anomaly
types

Unified
experimental
protocol

Model
stability

Choi, Yi, Park, and Yoon (2021) yes no no yes no no no no
Lai et al. (2021) yes no no no yes yes yes no
Wu and Keogh (2021) no no no no no no no no
Kim, Choi, Choi, Lee, and Yoon (2022) yes no no yes no no yes no
Schmidl, Wenig, and Papenbrock (2022) yes partially partially no yes yes partially no
Audibert, Michiardi, Guyard, Marti, and Zuluaga (2022) yes no no yes yes no no yes
Darban, Webb, Pan, Aggarwal, and Salehi (2022) yes no no yes no no partially no
Liu et al. (2022) yes no partially yes no no partially no
Paparrizos et al. (2022) yes partially no no yes yes no yes
Liu, Zhou, Yang, and Wang (2023) no no partially yes no no no no
Zhong et al. (2023) no partially partially yes yes no partially no
Belay, Blakseth, Rasheed, and Salvo Rossi (2023) yes no partially yes yes no no no
This work yes yes yes yes yes yes yes yes
b
d
i
s
o
t
T
i

2

g

experimentally comparing recent anomaly detection algorithms (Audib-
ert et al., 2022; Belay et al., 2023; Choi et al., 2021; Darban et al.,
2022; Kim et al., 2022; Lai et al., 2021; Liu et al., 2022; Paparrizos
et al., 2022; Schmidl et al., 2022). Our work belongs to this latest
category. For instance, Choi et al. (2021) present a brief comparison
of recent DL algorithms in terms of precision, recall, and F1-score but
neglect the model size and model stability. We can also mention the
work of Lai et al. (2021), where a new taxonomy for time-series outliers
is proposed. Then, based on that, a methodology to generate synthetic
datasets is suggested. They finally compare nine different algorithms
according to outlier types but they do not include the latest DL al-
gorithms. Nevertheless, similar to Choi et al. (2021), they only focus
on classical evaluation criteria, omitting range-based evaluation, model
stability and sizes. Furthermore, Kim et al. (2022) present a rigorous
evaluation of recent DL techniques by questioning the Point Adjustment
protocol. Nevertheless, the model size and model stability, as well as
the performance metrics for time-series are not considered. Schmidl
et al. (2022) propose a large-scale evaluation study of existing anomaly
detection methods, thereby assessing the overall progress made in this
field. Nevertheless, they do not investigate the conceptual differences
and limitations of different types of approaches. In addition, recent
state-of-the-art deep learning methods published in top-tier venues such
as Audibert et al. (2020), Deng and Hooi (2021) are not considered.
Last but not least, while they attempt to readapt the AUC using the
recently introduced range-based metrics (Tatbul et al., 2018), they
do not report the range-based precision, recall, and F1-score that are
essential for an in-depth comparative study of existing methods, which
is the core objective of the present paper. The work presented by Liu
et al. (2022) compares DL techniques with and without the Point
Adjustment protocol under different federated learning settings using
classical metrics only. Similarly, Darban et al. (2022) provide a compre-
hensive review of DL-based anomaly detection for time-series, detailing
fundamental principles, applications, and guidelines for practitioners.
They compare several DL-based approaches using classical metrics but
do not consider practical aspects like model size and stability. The
study of Paparrizos et al. (2022) proposes a benchmark for evaluating
univariate anomaly detection methods, mostly targeting classical ML
approaches including only few DL methods and without adopting a
unified protocol. Furthermore, Audibert et al. (2022) report a per-
benchmark analysis between conventional, ML-based, and DL-based
approaches, accounting for model stability but lacking range-based
evaluation, per-anomaly type analysis, and a clear unified protocol.
Lastly, Belay et al. (2023) focus on evaluating multivariate techniques
without reporting any range-based performance, or per-anomaly type
analysis.
3
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Hence, in this survey, we provide a comprehensive evaluation study
of recent state-of-the-art algorithms by taking into account all the
mentioned aspects (𝐢) to (𝐯). As summarized in Table 1, an analysis
using standard performance metrics, as well as the novel performance
metrics proposed by Tatbul et al. (2018) is performed. In addition, the
number of parameters of DL-based approaches is reported as it directly
impacts the memory consumption and the model scalability. Moreover,
experiments according to the nature of anomalies are carried out using
the taxonomy that was recently introduced by Lai et al. (2021). Lastly,
a unified experimental protocol is used to compare existing methods. In
short, this work aims to provide a comprehensive evaluation of numer-
ous paradigm-representative time-series anomaly detection techniques,
including recent deep learning methods, for a better assessment of their
practical relevance. For that purpose, additional aspects are considered
in complement to the traditional performance metrics, such as employ-
ing a unified experimental protocol, using range-based performance
metrics, analyzing the performance based on the type of anomalies, and
studying the model size and stability. The aim of this study is to help
the community understand the advantages and limitations of state-of-
the-art techniques from a broader applicative perspective and lay the
foundations for better experimental evaluation practices.

The remainder of this paper is organized as follows. Section 2
presents preliminaries necessary for the understating of this paper. Sec-
tion 3 reviews state-of-the-art time-series anomaly detection methods.
Section 4 describes the used datasets and details the evaluation protocol
considered in the experiments. Section 5 presents and analyzes the
results. Finally, Section 6 concludes this work.

2. Preliminaries

A time-series is a temporally ordered set of 𝑛 variables which can
e denoted by 𝑋 = {𝑋𝑡}1≤𝑡≤𝑁 where 𝑋𝑡 ∈ R𝑛 refers to the 𝑛-
imensional vector of variables at an instant 𝑡. Note that the time-series
s univariate if 𝑛 = 1, and is multivariate otherwise (𝑛 > 1). This
ection reviews the necessary background for a better understanding
f this survey. Specifically, we start by recalling the different types of
ime-series anomalies according to the taxonomy of Lai et al. (2021).
hen, we present the usual paradigms employed for anomaly detection

n time-series.

.1. Types of anomalies

As discussed by Choi et al. (2021), anomalies in time-series can
enerally be classified into three main categories, namely, point, con-
extual, and collective anomalies. However, unlike point anomalies, the



Expert Systems With Applications 256 (2024) 124922N. Mejri et al.
Fig. 1. Examples of the 5 different types of anomalies proposed by Lai et al. (2021).
definitions of contextual and collective ones are more ambiguous in
the state-of-the-art, as stated by Lai et al. (2021). Indeed, they are
heavily impacted by the application context. For instance, Yu, Zhu,
Li, and Wan (2014) define contextual anomalies as small temporal
segments formed by neighboring points, while Golmohammadi and Za-
iane (2015) consider them as seasonal points (occurring periodically).
Lai et al. have recently refined the definition of outlier types (Lai
et al., 2021). They distinguish between point-wise outliers and pattern-
wise outliers. The former is formed by global and contextual outliers while
the latter is composed of shapelet, seasonal, and trend outliers. In the
following, the taxonomy proposed by Lai et al. (2021), which is central
to our analysis, is recalled.

2.1.1. Point-wise anomalies
Point-wise outliers are local anomalies occurring on individual time

stamps. Let 𝑋 = {𝑋𝑡}1≤𝑡≤𝑁 be a multivariate time-series and �̂�𝑡 the
expected value of 𝑋𝑡 at an instant 𝑡 according to a regression model.
Given a well-chosen threshold 𝛿 > 0, an anomaly at an instant 𝑡 can be
formally defined by,

‖𝑋𝑡 − �̂�𝑡‖ > 𝛿, (1)

where ‖.‖ defines an 𝐿𝑝 norm.

Global outliers. They can be seen as point-wise anomalies which
importantly deviate from the rest of the points in a time-series. They
usually correspond to spikes in the time-series, as shown in Fig. 1(a).
In this case, the threshold 𝛿 can be formulated as,

𝛿 = 𝜆𝜎(𝑋), (2)

where 𝜎(.) refers to the standard deviation operator and 𝜆 ∈ R+∗.

Contextual outliers. They refer to individual points which differ sig-
nificantly from their neighbors. The latter are often small glitches in
the time-series as illustrated in Fig. 1(b). The threshold can be defined
as,

𝛿 = 𝜆𝜎(𝑋𝑡−𝑘∶𝑡+𝑘), (3)

where 𝑋𝑡−𝑘∶𝑡+𝑘 = {𝑋𝑡−𝑘, 𝑋𝑡−𝑘+1,… , 𝑋𝑡+𝑘} is the signal corresponding
to the temporal window centered on 𝑡. The function 𝜎(.) refers to the
standard deviation operator and 𝜆 ∈ R+∗.

2.1.2. Pattern-wise anomalies
Pattern-wise anomalies refer to anomalous sub-sequences which

typically showcase discords or irregularities. These anomalies are de-
fined by Lai et al. (2021) by modeling a time-series 𝑋 with spectral
structural analysis (Granger & Watson, 1984) as follows,

𝑋 = 𝜌(2𝜋𝜔𝑇 ) + 𝜏(𝑇 ), (4)

such that 𝜌(2𝜋𝜔𝑇 ) =
∑

𝑘[𝐴 sin(2𝜋𝜔𝑘𝑇 ) + 𝐵 cos(2𝜋𝜔𝑘𝑇 )] corresponds to
the base shapelet function which can be interpreted as the character-
istic shape of 𝑋. The seasonality, which describes a pattern occurring
at specific regular intervals in a time-series, is modeled with 𝑤 =
{𝑤1, 𝑤2,… , 𝑤𝑘}. Finally, a trend function denoted by 𝜏 defines the
global direction of 𝑋. In particular, a sub-sequence 𝑋𝑖∶𝑗 of a time-series
𝑋 with 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 can be formulated using a shapelet function such
that,

𝑋 = 𝜌(2𝜋𝜔𝑇 ) + 𝜏(𝑇 ), (5)
4

𝑖∶𝑗 𝑖,𝑗 𝑖,𝑗
with 𝜌, 𝜔, 𝜏, and 𝑇𝑖,𝑗 respectively being the shape, the seasonality,
the trend, and the time-stamps of the sub-sequence. The analysis of
the shapelet, the seasonality as well as the trend functions allow
distinguishing the three following outliers:

Shapelet outliers. They represent the anomalous sub-sequences en-
closing shapelets that are different from the expected ones, as shown
in Fig. 1(c). The following condition can be used to define shapelet
outliers as follows,

𝑑𝜌(𝜌(.), �̂�(.)) > 𝛿, (6)

with 𝑑𝜌 being a dissimilarity measure computed between two sets
of shapelets. �̂�(.) corresponds to the expected shapelets in a given
sub-sequence and 𝛿 is the threshold.

Seasonal outliers. They can be defined as sub-sequences with unex-
pected seasonalities with respect to the full sequence, as illustrated in
Fig. 1(d).

𝑑𝜔(𝜔, �̂�) > 𝛿, (7)

with 𝑑𝜔 being a dissimilarity measure between two seasonality, �̂� being
the expected seasonality in the sub-sequence, and 𝛿 being the threshold.

Trend outliers. They refer to sub-sequences with an importantly al-
tered trend. Consequently, a shift in the mean data can be observed, as
shown in Fig. 1(e). Mathematically, trend outliers can be defined by,

𝑑𝜏 (𝜏, 𝜏) > 𝛿 (8)

where 𝑑𝜏 is a dissimilarity measure computed between two trends, 𝜏 is
the expected trend of the sub-sequence, and 𝛿 is the threshold.

2.2. Paradigms for anomaly detection in times-series

Existing anomaly detection methods in time-series mainly employ
five different paradigms, namely, clustering-based, density estimation-
based, distance-based, reconstruction-based and forecasting-based met-
hods (see Fig. 2).

2.2.1. Clustering-based methods
Let 𝑛 be the feature space of multivariate time-series of dimension

𝑛. Let  𝑛 be the estimated sub-space of normal time-series of dimen-
sion 𝑛 such that  𝑛 ⊂ 𝑛. Let 𝑓 be a feature extractor function which
maps an input time-series 𝑋 ∈ R𝑛×𝑁 to 𝑛. An anomaly is detected if,

𝑓 (𝑋) ∉  𝑛. (9)

Note that the classification of 𝑋 as an anomaly or not can also be
determined with the use of a distance that is compared to a threshold.
This is the case, for example, of Support Vector Data Description
(SVDD) (Tax & Duin, 2004), which measures the distance from the
centroids.

2.2.2. Density estimation-based methods
Density estimation-based methods mainly aim to estimate the prob-

ability density function of normal time-series denoted as 𝐩𝜃 . Given a
time-series 𝑋, the likelihood function  of 𝜃 and a threshold 𝜏, an
anomaly is detected if,

(𝜃|𝑋) > 𝜏. (10)



Expert Systems With Applications 256 (2024) 124922N. Mejri et al.
Fig. 2. Overview of the different paradigms for anomaly detection in time-series: in contrast to clustering and probabilistic approaches, distance-based, reconstruction-based and
forecasting-based approaches take into account the temporal aspect.
Fig. 3. An example of time-series from the UCR dataset, where the discord was
calculated using DAMP (Lu, Wu, Mueen, Zuluaga, & Keogh, 2022).

2.2.3. Distance-based methods
Distance-based methods rely on the definition of an adequate dis-

tance between two temporal sequences. This distance should measure
the dissimilarity between them. Let 𝑋 and 𝑅 be, respectively, a given
time-series and a reference normal time-series. Let us denote by 𝐷 a
distance for time-series. Given a predefined threshold 𝛿, an anomaly is
detected in 𝑋 if,

𝐷(𝑋,𝑅) > 𝛿. (11)

2.2.4. Reconstruction-based methods
Reconstruction-based approaches aim at learning a model for the ac-

curate and full reconstruction of a normal time-series. The assumption
is that the learned model will fail when reconstructing abnormal se-
quences. Let 𝑋 and �̂� be respectively the original and the reconstructed
time-series. Given a predefined threshold 𝛿, an anomaly is detected in
𝑋 if,

‖𝑋 − �̂�‖ > 𝛿. (12)

2.2.5. Forecasting-based methods
Forecasting-based approaches are based on the prediction of fu-

ture states given previous observations. Similar to reconstruction-based
methods, they assume that the prediction will be less accurate in the
presence of an anomaly. Let 𝑋 = {𝑋0, 𝑋1,… , 𝑋𝑁} be a time-series
where 𝑋𝑖 refers to an observation of 𝑋 at an instant 𝑖. Given a threshold
𝛿, an anomaly is detected at an instant 𝑖 if,

‖�̂�𝑖 −𝑋𝑖‖ > 𝛿, (13)

where �̂�𝑡𝑖 corresponds to the predicted state given the observation
𝑋0∶𝑖−1 = {𝑋0, 𝑋1,… , 𝑋𝑖−1}.

3. State-of-the-art on time-series anomaly detection

Over the last two decades, the research community has widely
explored the field of anomaly detection (Han, Hu, Huang, Jiang, &
5

Zhao, 2022), including anomaly detection in time-series. The latter
can be addressed from five different perspectives. As reported in
Section 2, we distinguish between clustering-based, density-estimation-
based, distance-based, reconstruction-based, and forecasting-based
techniques. Earlier techniques have investigated these five different
paradigms by exploiting traditional machine learning (Jin et al., 2019;
Liu et al., 2008) and statistical tools (Yaacob et al., 2010). Nevertheless,
as mentioned in Choi et al. (2021), these approaches have shown a
drop in performance when dealing with high-dimensional time series.
Given the recent advances in DL, DNNs have been considered as an
alternative (Audibert et al., 2020; Li et al., 2019; Malhotra et al., 2015;
Su et al., 2019), mainly taking inspiration from traditional methods. In
the following, we review these five categories of approaches, starting
with conventional techniques (see Fig. 3), then moving to current DL
methods.

3.1. Clustering-based methods

Clustering-based methods are discriminative approaches aiming
to estimate explicitly or implicitly decision boundaries for detecting
anomalies (Liu et al., 2008; Schölkopf, Williamson, Smola, Shawe-
Taylor, & Platt, 1999; Tax & Duin, 2004) as depicted in Eq. (9).
One-Class Support Vector Machine (OC-SVM) (Schölkopf et al., 1999) is
probably one of the most popular algorithms for anomaly detection. Its
goal is to estimate the support of a high-dimensional distribution. This
one-class classification method has been mainly used for detecting time-
independent anomalies (Li, Huang, Tian, & Xu, 2003; Wang, Wong,
& Miner, 2004) but has also been employed for isolating outliers in
time-series (Ma & Perkins, 2003). Inspired by Support Vector Machines
(SVM), Support Vector Data Description (SVDD) (Tax & Duin, 2004) is
another well-known method that is often used in the context of anomaly
detection (Huang et al., 2017). Similar to SVM, kernels that map data
representations to a higher dimensional space can be used. However,
instead of relying on the estimation of a hyperplane, SVDD computes
spherically shaped boundaries.

Shallow clustering-based approaches necessitate the hand-crafting
of discriminative features and often require the selection of an ap-
propriate kernel. Recently, with the advances in DL, there have been
attempts to extend these classical approaches. Most of these methods,
such as Deep SVDD (Ruff et al., 2018) variants, extend traditional
methods by learning a kernel that maps data to a discriminative high-
dimensional feature space. This is usually carried out by optimizing
a Neural Network. These approaches have shown promising results
when dealing with non-sequential data. Unfortunately, the temporal
modeling of time-series is often disregarded, mainly relying on a simple
sliding window. As a solution, Shen, Li, and Kwok (2020) suggest
fusing multi-scale temporal features and employing a Recurrent Neural
Networks (RNN) to model temporal dependencies.

3.2. Density-estimation methods

As described in Section 2.2.2, these probabilistic approaches de-
tect anomalies by estimating the normal data density function. For
example, Breunig, Kriegel, Ng, and Sander (2000) proposed a method
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referred to as Local Outlier Factor (LOF) to detect anomalies by com-
puting the local density. Tang, Chen, Fu, and Cheung (2002) calculate
the local connectivity for determining anomalies instead. In Yairi et al.
(2017) and Lindstrom, Jung, and Larocque (2020), a Gaussian Mixture
Model (GMM) and Kernel Density Estimation (KDE) are respectively
used for estimating the density of normal representations. Over the last
years, efforts have been made to introduce DNN-based probabilistic
methods. For instance, Zong et al. (2018) proposed to train an auto-
encoder for extracting relevant representations before fitting a GMM.
Nevertheless, as for clustering-based methods, probabilistic approaches
usually do not model the temporal aspect restricting their effectiveness
in the context of time-series anomaly detection.

3.3. Distance-based methods

Distance-based methods usually define explicitly a distance be-
tween a time-series and a reference to detect anomalies (Baptista,
Demisse, Aouada, & Ottersten, 2018; Baptista et al., 2019; Benkabou,
Benabdeslem, & Canitia, 2018; Diab et al., 2019), as described in
Section 2.2.3. Among the most used distance-based algorithm, one can
refer to Dynamic Time Warping (Berndt & Clifford, 1994), which aims
at finding the optimal match between two ordered sequences. Earlier
distance-based methods are mostly characterized by a relatively high
complexity induced by the optimal matching and the need for defining
a reference time-series (Baptista et al., 2018). To address those issues,
some methods such as Hundman, Constantinou, Laporte, Colwell, and
Soderstrom (2018) reduce the computational cost by only using a small
initial snippet instead of a full reference. Alternatively, the DAMP
algorithm introduced by Lu et al. (2022) can efficiently handle datasets
with trillions of data points, by implementing strategies like iterative
doubling for backward nearest neighbor search, forward processing for
pruning non-discord subsequences, and relying on parallel vectors to
reduce the computation cost.

3.4. Reconstruction-based methods

Reconstruction-based methods aim at reconstructing the entire time-
series, as presented in Section 2.2.4. Shallow reconstruction-based
time-series anomaly detection methods (Hyndman, Wang, & Laptev,
2015; Jin, Qiu, Sun, Peng, & Zhou, 2017; Wang, Miranda-Moreno, &
Sun, 2021) have mainly adopted Principal Component Analysis (Kirby
& Sirovich, 1990) (PCA) or its variants such as kernel PCA (kPCA)
(Schölkopf, Smola, & Müller, 1998). These approaches estimate an
orthogonal projection, then compute a reconstruction error between the
original and reconstructed time-series. Lately, Auto-Encoders (AE) (Oja,
1982) have been introduced as the deep learning-based counterpart
of PCA. Unsurprisingly, the latter has been adopted in the context of
anomaly detection in time-series (Reddy, Sarkar, Venugopalan, & Gier-
ing, 2016). For example, Lin et al. (2020) introduce a Long-Short Term
Memory Variation Auto-Encoder (LSTM-VAE) architecture. While the
Variation Auto-Encoder architecture (VAE) is used for learning robust
representations, a Long Short-Term Memory (LSTM) network allows
modeling temporal dependencies. Generative Adversarial Networks
(GAN) have also been proposed as a reconstruction-based method.
In Audibert et al. (2020), Audibert et al. attempted to take the best
of both worlds. In particular, they introduced adversarially trained
autoencoders for detecting anomalies in time-series.

3.5. Forecasting-based methods

As discussed in Section 2.2.5, traditional forecasting-based anomaly
detection methods are primarily based on auto-regression-based models
such as AutoRegressive Integrated Moving Average (ARIMA) (Moayedi
& Masnadi-Shirazi, 2008). With the recent advances in deep learn-
ing, LSTM has been used to replace auto-regression models (Malhotra
et al., 2015). This architecture allows modeling short-term as well
as long-term temporal dependencies. Deng and Hooi (2021) have re-
cently proposed a graph-based deep learning model with an attention
6

mechanism for capturing multivariate correlations.
3.6. Hybrid methods

As discussed by Zhao et al. (2020), reconstruction and forecasting-
based approaches have shown to be, so far, the best candidates for
anomaly detection in time-series. While reconstruction-based methods
allow modeling inconsistencies within the global distribution of time
series, forecasting-based approaches are more appropriate for capturing
local anomalies. For that reason, Zhao et al. (2020) have introduced a
hybrid method leveraging these two complementary paradigms. Specif-
ically, they design a two-stream attention-based graph network that
simultaneously optimizes forecasting and reconstruction losses.

4. Datasets and evaluation protocol

In this section, the datasets, the evaluation criteria, the pre-proces-
sing and post-processing algorithms as well as the considered methods
for the experiments are presented.

4.1. Datasets

A total of five datasets have been considered for evaluating recent
methods for anomaly detection in time-series. Table 2 details the
different characteristics of each dataset. The considered benchmarks
are:

Secure Water Treatment (SWaT). It is a dataset collected from a
testbed water treatment for 11 days. During the last 4 days, 36 attacks
of different duration and natures have been introduced. The data
collected over the 7 first days have been used for training in all our
experiments. During this period, the water treatment was carried out
under normal conditions. In contrast, the data gathered during the last
4 days were exposed to multiple attacks. The latter have been used for
testing1.

Mars Science Laboratory (MSL). It is formed by 27 telemetry signals
collected from the Curiosity Rover spacecraft on Mars. Each signal con-
sists of a multivariate time-series of dimension 55. The first dimension
encloses telemetry data, while the remaining 54 correspond to a one-
hot encoded command. The publicly available dataset has been released
by NASA (O’Neill, Entekhabi, Njoku, & Kellogg, 2010). The training and
testing data are separated, and anomalies are annotated. Nevertheless,
it can be noted that the experimental protocol varies from one reference
to another. In particular, some studies such as Tinawi (2019) ignore the
one-hot encoded vector considering only telemetry data. In addition,
other approaches such as Deng and Hooi (2021) combine the telemetric
data from 27 signals assuming that it forms a unique dataset. Never-
theless, in most cases, authors do not provide sufficient information
about their experimental protocol, making a direct comparison not
straightforward. In this paper, we follow the experimental protocol
of Hundman et al. (2018). Each signal is considered to be a separate
and independent multivariate sub-dataset. This means that the training
and testing phases are performed each time on one single sub-dataset.
Finally, the average performance is reported.

Soil Moisture Active Passive dataset (SMAP). This dataset contains
telemetry data and one-hot encoded vectors similar to the MSL dataset.
It has also been released by NASA (O’Neill et al., 2010). However, in
this case, the dataset is formed by 53 signals received from the Soil
Moisture Active Passive satellite. The annotated training and testing
data are provided. Nevertheless, as for the MSL dataset, similar incon-
sistencies regarding the experimental protocol can be remarked. For
that reason, we propose using the protocol of Hundman et al. (2018),
where each signal is considered to be a separate and independent

1 Details of the SWaT dataset can be found here.

https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/


Expert Systems With Applications 256 (2024) 124922N. Mejri et al.

t

R

Table 2
Summary of the 5 datasets used in the experiments. The percentage of anomalies in the testing set is reported.

SWaT MSL SMAP UCR TODS

Number of datasets 1 27 55 250 5
Variables 52 55 25 1 10
Percentage of anomalies 12.14 10.48 12.82 0.38 5
Training data points 495000 58317 138004 5302449 10000
Testing data points 449919 73729 435826 12919799 10000
Type of data Real Real Real Real Synthetic
Type of anomalies Artificially forced Natural Natural Natural/Synthetic Synthetic
Table 3
Paradigm type and nature of evaluated methods.

Method Type of paradigm Nature

OC-SVM (Schölkopf et al., 1999) Clustering Shallow
iForest (Liu et al., 2008) Clustering Shallow
ARIMA (Moayedi & Masnadi-Shirazi, 2008) Forecasting Shallow
DAMP (Lu et al., 2022) Distance-based Shallow
DA-GMM (Zong et al., 2018) Density-estimation Deep
THOC (Shen et al., 2020) Clustering Deep
USAD (Audibert et al., 2020) Reconstruction Deep
GDN (Deng & Hooi, 2021) Forecasting Deep
MTAD-GAT (Zhao et al., 2020) Hybrid (Forecasting

& Reconstruction)
Deep

multivariate sub-dataset. This leads to train and test on 53 different
sub-datasets and reporting the obtained average performance.

UCR time series anomaly archive (UCR). It has been recently pro-
posed by Wu and Keogh (2021). In this work, the authors claim that
most of the existing anomaly detection datasets are trivial. By trivial,
they mean that an anomaly can be detected with a single line of
MATLAB code. They also criticize the lack of realism and annotation
precision in current datasets. As an alternative, they introduce the
UCR dataset, which gathers 250 realistic sub-datasets. This dataset is
collected from various fields, including medicine, sports, and robotics.
The training and test sets are well-defined.2

Automated Time-series Outlier Detection System (TODS). It is a col-
lection of 5 synthetically generated multivariate datasets. The dataset
was generated using the source code from Lai et al. (2021), therefore
producing different types of anomalies following the taxonomy of Lai
et al. (2021). The dimension of the generated time-series is 10. Training
datasets contain only normal values, while testing datasets incorporate
5 different types of anomalies. The annotation of the outlier types is
provided, therefore allowing a per-type analysis.

4.2. Evaluation criteria

In this section, we present the used evaluation criteria. Precision,
recall and F1-scores. The most common metrics used to evaluate
the performance of time-series anomaly detection algorithms are the
precision computed as follows,

Precision =
True positives

True positives + False positives , (14)

he recall is calculated as below,

ecall = True positives
True Positives + False Negatives (15)

and the F1-score corresponding to,

F1-score = 2 ⋅ Precision ⋅ Recall
Precision + Recall . (16)

It is worth noting that some methods such as the work of Wu and
Keogh, 2022, generally opt for other evaluation metrics. For instance,

2 More information about the UCR dataset can be found here.
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in Wu and Keogh (2021) the authors argue that time-series datasets
should only have a single anomalous sequence per series. Under such
a setting they propose using accuracy to assess whether an anomaly
has been correctly identified. Such a binary score is often simple to
interpret and to use and can be used for introducing more flexibility.
On the other hand, standard methods provide a more comprehensive
and explainable assessment of performance across multiple instances,
namely true positives, false positives, and false negatives. They can
handle more than a single anomaly subsequence in a given time-series,
and are therefore adapted to data with different anomaly ratios such as
most of the considered benchmarks (SWaT, MSL, SMAP).

Revisited precision, recall and F1-scores for time-series. In addi-
tion to conventional performance metrics, more recent and elaborate
performance metrics tailored to time-series introduced by Tatbul et al.
(2018) are considered. These metrics extend classical precision, re-
call, and F1-score, from point-based to range-based anomaly detection.
Fig. 4 highlights the distinction between point-based and range-based
anomalies. Contrary to the case of point-based approaches, a prediction
in a time-series can be both a true positive (TP) and a false negative
(FN) due to partial overlap with the ground-truth as shown in Fig. 4b.
Therefore, as discussed by Tatbul et al. (2018), a more informative
time-series evaluation process should (1) quantify the size of the partial
overlap; (2) identify the overlap position, and; (3) take into account its
cardinality, i.e., with how many anomalous ground-truth sub-sequences
it overlaps. More specifically, given a set of real anomaly sequences
𝑅 = {𝑅1,… , 𝑅𝑁𝑟} and a set of predicted anomaly sequences 𝑃 =
{𝑃1,… , 𝑃𝑁𝑝

} the recall is expressed with respect to the number of real
anomalies 𝑁𝑟 in a dataset (Tatbul et al., 2018). It seeks to reward a
detector when it predicts a TP and penalizes it when the prediction is
an FN as follows,

Recall𝑇 (𝑅, 𝑃 ) =
1
𝑁𝑟

𝑁𝑟
∑

𝑖=1
Recall𝑇 (𝑅𝑖, 𝑃 ), (17)

and,

Recall𝑇 (𝑅𝑖, 𝑃 ) = 𝛼 ⋅ 1
∑𝑁𝑝

𝑗=1 |𝑅𝑖∩𝑃𝑗 |≥1
+ 1 − 𝛼

∑𝑁𝑝
𝑗=1 |𝑅𝑖 ∩ 𝑃𝑗 |

⋅ 𝑐 (𝑅𝑖, 𝑃 ), (18)

where 0 ≤ 𝛼 ≤ 1 is a scaling factor that rewards the detector when it
detects the existence of the anomaly 𝑅𝑖 and 1 is an indicator function.
Finally, 𝑐 (𝑅𝑖, 𝑃 ) which quantifies the overlap size is computed based
on the cumulative overlap size 𝜔 as follows,

𝑐 (𝑅𝑖, 𝑃 ) =
𝑁𝑝
∑

𝑗=1
𝜔(𝑅𝑖, 𝑅𝑖 ∩ 𝑃𝑗 , 𝛿), (19)

where 𝛿 returns a score depending on the overlap location between 𝑅𝑖
and a prediction 𝑃𝑗 (flat bias, front bias, middle bias, and back bias).
Further details could be found in the original manuscript of Tatbul et al.
(2018). The precision is similarly defined. It seeks to assess the quality
of the predictions by rewarding a detector in the presence of a TP and
penalizing it when facing an FP. It is computed as follows,

Precision𝑇 = 1
𝑁𝑝
∑

Precision𝑇 (𝑅, 𝑃𝑖), (20)

𝑁𝑝 𝑖=1

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Fig. 4. The evaluation process of (a) point-based anomalies versus (b) range-based anomalies. Range-based anomalies are characterized by partial overlap(s) with the ground-truth.
A more accurate evaluation for time-series should quantify the overlap in terms of size, position, and cardinality.
and,

Precision𝑇 (𝑅, 𝑃𝑖) =
1

∑𝑁𝑟
𝑗=1 |𝑅𝑗 ∩ 𝑃𝑖|

⋅ (𝑅, 𝑃𝑖), (21)

where 𝑐 (𝑅, 𝑃𝑖) quantifies the cumulative overlap between the con-
sidered prediction 𝑃𝑖 and all the ground-truths in 𝑅 as explained
in Eq. (19). It is expressed as,

𝑐 (𝑅, 𝑃𝑖) =
𝑁𝑟
∑

𝑗=1
𝜔(𝑃𝑖, 𝑃𝑖 ∩ 𝑅𝑗 , 𝛿). (22)

Finally, the F1-score is redefined as follows,

F1-score𝑇 =
2 ⋅ Precision𝑇 ⋅ Recall𝑇
Precision𝑇 + Recall𝑇

(23)

Model stability. We define model stability as the ability of a ma-
chine/deep learning algorithm to reproduce similar results when re-
trained under the same conditions. While OC-SVM ensures stability
because of its deterministic nature, most of the considered methods
rely on a random parameter initialization which may impact the final
performance of the model. Ideally, the model should achieve the same
results regardless of this initialization. To assess the stability, each
experiment is carried out five times. Then, the mean and standard
deviation of those five runs are reported. A lower standard deviation
reflects higher stability. To the best of our knowledge, we are among
the first to analyze this aspect experimentally in the context of anomaly
detection in time-series.

Generalization to different types of anomalies. We propose report-
ing the performance according to the anomaly type encountered. This
analysis can help identify the most suitable algorithm for a given
application. To that aim, the TODS benchmark, which encloses the
annotation of 5 different types of outliers depicted in Section 4.1 is
used. Although the definition of different anomaly types has been
reported in several references, very few works have carried out an
experimental study with respect to the anomaly type. A rare example
we can mention is the work of Lai et al. (2021). Nevertheless, it can
be noted that in this paper, recent DL-based state-of-the-art approaches
such as GDN (Deng & Hooi, 2021), USAD (Audibert et al., 2020), and
MTAD-GAT (Zhao et al., 2020) are not evaluated. For each anomaly
type, the percentage of well-detected anomalies is reported.

Model size. In a real-world context, deploying algorithms on specific
hardware with a limited memory capacity can be challenging. There-
fore, being aware of the model size, which directly impacts the memory
consumption, is a crucial component often neglected. For that purpose,
we report the number of parameters and the size in MegaBytes (MB) of
the trained deep learning models considered for this evaluation.

4.3. Post-processing and pre-processing

Data Normalization. Normalizing the data is a common practice in
machine learning, particularly in anomaly detection. Hence, for the
8

Fig. 5. Application of the Point Adjustment (PA) on a given time-series: the Ground-
Truth (GT), the original prediction (Pred) and the prediction after Point Adjustment
(PA) are reported. In this example, the performance of the algorithm without and with
point adjustment is respectively: Precision = 0.75, Recall = 0.2, F1-Score = 0.32, and
Precision = 0.92, Recall = 0.79, F1-Score = 0.85. Best viewed in colors.

sake of fairness, a data normalization pre-processing was applied in all
our experiments. More specifically, the data are normalized using the
maximum and minimum values in the training data as in Zhao et al.
(2020).

Point Adjustment. Point adjustment initially introduced by Xu et al.
(2018) is a protocol that adjusts the predictions before computing
performance metrics. It acts as follows: if at least one point is classified
as an anomaly in an outlier segment, all the predictions in that segment
are set to anomalous. The idea behind this protocol is that an algorithm
triggering an alert for any point in a contiguous anomaly segment might
be sufficient for a timely reaction. Fig. 5 illustrates the point adjustment
protocol by showing the ground-truth, the original predictions, and
the predictions after point adjustment of a given time-series. After
applying the point adjustment protocol, the F1-Score goes from 0.32
to 0.85. This significant gap has therefore raised some concerns in
the literature regarding the use of point adjustment. For example, Kim
et al. (2022) claim that by using this protocol, a randomly generated
anomaly score might outperform several recently proposed time-series
anomaly detection algorithms. In this paper, we report the performance
of existing methods with and without point adjustment.

4.4. Evaluated methods

We consider in total nine anomaly detection methods. Table 3
summarizes the characteristics of each evaluated method.

Four shallow standard methods are evaluated, namely, OC-SVM
(Schölkopf et al., 1999), iForest (Liu et al., 2008), ARIMA (Moayedi
& Masnadi-Shirazi, 2008) and DAMP (Lu et al., 2022). In addition,
five recent DL-based methods have been considered: DA-GMM (Zong
et al., 2018), THOC (Shen et al., 2020) USAD (Audibert et al., 2020),
GDN (Deng & Hooi, 2021) and MTAD-GAT (Zhao et al., 2020). The
latter has been selected according to the following criteria: (1) Rel-
evance of the topic: all the chosen anomaly detection algorithms are
unsupervised and have been specifically designed for detecting anoma-
lies in time-series. (2) Publication date: all the DL-based algorithms
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Table 4
Results in terms of traditional performance metrics of evaluated state-of-the-art methods (precision P, recall R, F1-score) on the 5
considered datasets without Point Adjustment (PA). The experiments have been performed 5 times for each algorithm and dataset.
The mean and standard deviation are reported. The bold and underlined results correspond to the first and second-best F1-Score
respectively.

SWaT MSL SMAP UCR TODS Avg. method F1
P 0.28 ± 0.02 0.15 ± 0.01 0.18 ± 0.01 0.01 ± 0.00 0.05 ± 0.00
R 0.74 ± 0.01 0.57 ± 0.05 0.49 ± 0.01 0.48 ± 0.00 0.54 ± 0.02USAD
F1 0.41 ± 0.02 0.21 ± 0.02 0.21 ± 0.01 0.02 ± 0.00 0.10 ± 0.00 0.19 ± 0.13
P 0.34 ± 0.03 0.31 ± 0.01 0.25 ± 0.00 0.12 ± 0.00 0.07 ± 0.01
R 0.72 ± 0.04 0.64 ± 0.02 0.55 ± 0.04 0.42 ± 0.00 0.59 ± 0.16GDN
F1 0.46 ± 0.03 0.35 ± 0.01 0.33 ± 0.01 0.12 ± 0.00 0.11 ± 0.00 0.27 ± 0.14
P 0.62 ± 0.16 0.22 ± 0.01 0.16 ± 0.01 0.01 ± 0.01 0.05 ± 0.01
R 0.46 ± 0.13 0.46 ± 0.02 0.27 ± 0.01 0.00 ± 0.01 0.19 ± 0.03THOC
F1 0.52 ± 0.14 0.25 ± 0.01 0.12 ± 0.01 0.00 ± 0.00 0.08 ± 0.14 0.19 ± 0.18
P 0.85 ± 0.04 0.57 ± 0.04 0.58 ± 0.03 0.10 ± 0.00 0.16 ± 0.08
R 0.90 ± 0.03 0.79 ± 0.03 0.87 ± 0.03 0.28 ± 0.01 0.01 ± 0.02MTAD-GAT
F1 0.87 ± 0.01 0.60 ± 0.03 0.65 ± 0.03 0.13 ± 0.01 0.02 ± 0.03 0.45 ± 0.32
P 0.43 ± 0.00 0.12 ± 0.01 0.11 ± 0.01 0.01 ± 0.00 0.12 ± 0.00
R 0.71 ± 0.00 0.19 ± 0.00 0.17 ± 0.01 0.20 ± 0.00 0.49 ± 0.00DAGMM
F1 0.54 ± 0.00 0.12 ± 0.00 0.10 ± 0.01 0.01 ± 0.00 0.19 ± 0.00 0.19 ± 0.18
P 0.24 ± 0.00 0.15 ± 0.00 0.12 ± 0.00 0.01 ± 0.00 0.05 ± 0.00
R 0.85 ± 0.00 0.66 ± 0.00 0.66 ± 0.00 0.73 ± 0.00 0.85 ± 0.00OCSVM
F1 0.37 ± 0.00 0.24 ± 0.00 0.20 ± 0.00 0.02 ± 0.00 0.09 ± 0.00 0.18 ± 0.12
P 0.23 ± 0.10 0.18 ± 0.04 0.10 ± 0.01 0.05 ± 0.01 0.05 ± 0.01
R 0.83 ± 0.10 0.16 ± 0.05 0.04 ± 0.01 0.12 ± 0.01 0.04 ± 0.01iForest
F1 0.36 ± 0.10 0.17 ± 0.03 0.08 ± 0.00 0.07 ± 0.00 0.04 ± 0.01 0.14 ± 0.12
P 0.13 ± 0.00 0.28 ± 0.00 0.17 ± 0.00 0.01 ± 0.00 0.05 ± 0.00
R 0.99 ± 0.00 0.83 ± 0.00 0.82 ± 0.00 0.85 ± 0.00 0.69 ± 0.00ARIMA
F1 0.23 ± 0.00 0.28 ± 0.00 0.19 ± 0.00 0.02 ± 0.00 0.09 ± 0.00 0.16 ± 0.09
P – – – 0.33 ± 0.00 – –
R – – – 0.34 ± 0.00 – –DAMP
F1 – – – 0.28 ± 0.00 – –
Table 5
Results in terms of traditional performance metrics of evaluated state-of-the-art methods (precision (P), recall (R), F1-score (F1))
on the 5 considered datasets with Point Adjustment (PA). The experiments have been performed 5 times for each algorithm and
dataset. The mean and standard deviation are reported. The bold and underlined results correspond to the first and second-best
F1-Score respectively.

SWaT MSL SMAP UCR TODS Avg. method F1
P 0.32 ± 0.02 0.22 ± 0.02 0.26 ± 0.01 0.02 ± 0.00 0.07 ± 0.00
R 0.89 ± 0.03 0.99 ± 0.03 0.95 ± 0.01 0.95 ± 0.00 0.71 ± 0.02USAD
F1 0.47 ± 0.02 0.33 ± 0.01 0.34 ± 0.02 0.04 ± 0.00 0.13 ± 0.00 0.26 ± 0.16
P 0.40 ± 0.05 0.39 ± 0.02 0.36 ± 0.01 0.31 ± 0.01 0.10 ± 0.02
R 0.72 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.75 ± 0.12GDN
F1 0.57 ± 0.05 0.50 ± 0.02 0.46 ± 0.01 0.39 ± 0.01 0.16 ± 0.02 0.42 ± 0.14
P 0.77 ± 0.08 0.31 ± 0.01 0.26 ± 0.01 0.06 ± 0.02 0.09 ± 0.01
R 0.86 ± 0.02 0.87 ± 0.02 0.84 ± 0.02 0.06 ± 0.02 0.35 ± 0.06THOC
F1 0.81 ± 0.05 0.41 ± 0.02 0.34 ± 0.01 0.06 ± 0.02 0.14 ± 0.02 0.35 ± 0.26
P 0.86 ± 0.04 0.60 ± 0.04 0.59 ± 0.03 0.17 ± 0.00 0.16 ± 0.08
R 0.96 ± 0.03 0.86 ± 0.03 0.91 ± 0.03 0.57 ± 0.02 0.01 ± 0.02MTAD-GAT
F1 0.90± 0.01 0.64 ± 0.04 0.67 ± 0.03 0.25 ± 0.01 0.02 ± 0.03 0.50 ± 0.32
P 0.49 ± 0.00 0.20 ± 0.00 0.16 ± 0.00 0.03 ± 0.00 0.15 ± 0.00
R 0.90 ± 0.00 0.44 ± 0.00 0.41 ± 0.00 0.78 ± 0.00 0.63 ± 0.00DAGMM
F1 0.64 ± 0.00 0.25 ± 0.00 0.19 ± 0.00 0.06 ± 0.00 0.24 ±0.00 0.28 ± 0.19
P 0.26 ± 0.00 0.25 ± 0.00 0.15 ± 0.00 0.02 ± 0.00 0.05 ± 0.00
R 0.95 ± 0.00 0.95 ± 0.00 0.85 ± 0.00 0.85 ± 0.00 0.85 ± 0.00OCSVM
F1 0.41 ± 0.00 0.40 ± 0.00 0.26 ± 0.00 0.04 ± 0.00 0.09 ± 0.00 0.24 ± 0.15
P 0.26 ± 0.12 0.47 ± 0.04 0.10 ± 0.01 0.16 ± 0.01 0.17 ± 0.06
R 0.97 ± 0.00 0.66 ± 0.06 0.04 ± 0.01 0.45 ± 0.01 0.17 ± 0.02iForest
F1 0.40 ± 0.13 0.55 ± 0.04 0.36 ± 0.01 0.24 ± 0.01 0.17 ± 0.02 0.34 ± 0.13
P 0.13 ± 0.00 0.31 ± 0.00 0.18 ± 0.00 0.01 ± 0.00 0.06 ± 0.00
R 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.87 ± 0.00ARIMA
F1 0.23 ± 0.00 0.39 ± 0.00 0.24 ± 0.00 0.02 ± 0.00 0.11 ± 0.00 0.20 ± 0.13
P – – – 0.35± 0.41 –
R – – – 0.51± 0.50 –DAMP
F1 – – – 0.40 ± 0.43 – –
are recent. In particular, they have been introduced between 2018 and
early 2022. (3) Impact: the chosen algorithms have been published in
top-tier conferences and are highly cited papers from the field. (4) Code
availability: the official codes of the selected algorithms are publicly
available. (5) Diversity: methods from different paradigms have been
considered. The only paradigm that was ignored is the distance-based
since we were not able to find a deep learning approach falling in this
9

category.
5. Results

5.1. Performance using standard metrics

Best performing approach. Table 4 reports the performance of the
evaluated methods using standard metrics (precision, recall, and F1-
score) on the five considered datasets. The performance is first averaged
over the data of every dataset, which in turn is averaged over 5 runs.
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Fig. 6. Mean F1-Score on the five datasets. The non-hatched and hatched bars correspond to the mean F1-Score with and without Point Adjustment (PA), respectively. The vertical
black line represents the standard deviation over five runs.
For a more intuitive visualization of the results, Fig. 6 shows the
F1-score with and without Point Adjustment (PA). In general, MTAD-
GAT (Zhao et al., 2020) is the best-performing approach, surpassing
other methods on three datasets, namely, SWaT, MSL, SMAP. This
can be explained by the fact that this approach is hybrid as it is
based on forecasting and reconstruction losses. Indeed, this allows the
simultaneous detection of local and global anomalies. Nevertheless, it
can be remarked that the results obtained on TODS contradict this
statement. Indeed, MTAD-GAT registers inferior performance on this
benchmark as compared to other methods, including DL and con-
ventional methods. Two hypotheses might justify this drop: (𝑖) the
TODS dataset encloses complex anomalies that are moderately local
and are hardly captured by a simple forecasting and/or reconstruction
approach, favoring probabilistic modeling as in DAGMM (Zong et al.,
2018). However, the higher performance obtained for GDN (Deng &
Hooi, 2021) and USAD (Audibert et al., 2020) partly disprove this as-
sumption; and (𝑖𝑖) the synthetic data in TODS are not realistic, making
them hardly predictable. Another observation that can be made is that
GDN (Deng & Hooi, 2021) presents the second-best performance on
two datasets, namely MSL, SMAP. This confirms the relevance of using
graph representations for modeling time-series. Surprisingly, graph-
based approaches (GDN and MTAD-GAT) remain relatively effective
on a univariate dataset (UCR), although modeling the connectivity
between variables is unnecessary.

DL vs conventional methods. As reported in Table 4 and Fig. 6,
DL methods, specifically MTAD-GAT and GDN, generally outperform
conventional methods. For example, the superiority of DL approaches
is extremely noticeable when comparing GDN and ARIMA, which are
both forecasting techniques. This increase in performance can be ex-
plained by the fact that ARIMA struggles to model the dependencies
between variables. However, the gap in performance between DL and
traditional methods is less visible in some cases, supporting the assump-
tion of Wu and Keogh (2021) and contradicting (Choi et al., 2021),
which argues that DL methods are more effective in the presence of
high-dimensional time-series. For instance, DAMP (Lu et al., 2022)
beats all DL methods by a large margin showing an average F1-score
10
of 0.28 against only 0.13 for the best-performing DL-technique. OC-
SVM shows comparable performance with several DL-based anomaly
methods such as THOC and USAD on high-dimensional datasets. More
precisely, OC-SVM achieves an F1-score of 0.24 and 0.2 on MSL and
MSAP against 0.21 and 0.21 for USAD and 0.25 and 0.2 for THOC,
respectively. Another observation that can be made is that conven-
tional approaches, except iForest, seem to be suitable for applications
where recall is more important than precision. An example of such
an application could be the detection of debris among other objects
in space (Musallam et al., 2021). On the contrary, DL approaches are
overall more precise.

Impact of point adjustment. From the results of Table 5, and Fig. 6, it
can be noted that the Point Adjustment (PA) process significantly boosts
the performance. In particular, the highest performance gain can be
observed for iForest on the MSL dataset, where the F1-score increases
from 17% to 55%. This can be explained by the fact that PA adjusts
the predictions before computing the metrics. The adjustment is made
in a way that rewards a detector when detecting at least one instance
of an anomalous segment. The intuition behind that is that finding
one anomaly in a segment is sufficient for a timely reaction. Such
an intuition closely impacts the recall since it increases the number
of False Positives (FP). However, as discussed in Kim et al. (2022),
using PA can induce a misleading ranking of the performance. This
is confirmed in Table 4 where the results obtained for USAD, THOC
and DAGMM are comparable and contradict the performance metrics
reported in Table 5. In addition, before applying PA, all DL approaches
seem to be in general, more effective than conventional approaches.
However, after PA, this is no longer the case. For example, iForest
achieves comparable performance with THOC. Overall, PA seems to
bias the analysis as it treats range-based data as punctual, neglecting
the overlap size and the location of anomalies. Consequently, this blurs
the applicability of detectors in real-life setups.

Benchmark complexity. All tested methods fail to detect effectively
anomalies in UCR, although it is a univariate dataset. This might be
due to its low ratio of anomalies. As discussed in Section 4.1, UCR is
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Fig. 7. The mean performance per method on all datasets using the range-based metrics of Tatbul et al. (2018), with different location biases.
among the first benchmark to mimic a more realistic configuration,
highlighting the difficulty of detecting rare anomalies. The rate of
anomalies might have a significant role in defining the complexity
of a given dataset. For natural anomalies, two observations could be
made. First, the average performance on MSL and SMAP is comparable
despite having a significantly different number of variables. Second,
natural but induced/forced anomalies seem easy to detect, given that
all methods perform well on the SWaT dataset. Unfortunately, such
a scenario is unrealistic in most real-world settings as the anomalies
are generally infrequent. This point was also raised by Wu and Keogh
(2021) highlighting that several benchmark datasets have unrealistic
anomaly densities.

5.2. Performance using revisited metrics for time-series

Conventional metrics vs revisited metrics. Table 7 shows the results
of evaluation using the revisited F1-score for time-series calculated
using Recall𝑇 and Precision𝑇 proposed by Tatbul et al. (2018).

It can be remarked that there exists a significant gap in performance
between the results based on conventional and revisited metrics. One
main reason is that the revisited metrics consider the overlap size
between the predicted sequences and the ground-truth. In contrast,
the traditional metrics do not take into account the sequential aspect
nor quantify the overlap between the predictions and the ground-truth.
Moreover, it can be noted that the results of the revisited metrics are
not in full accordance with the conventional ones except for DAMP
on UCR. On the one hand, GDN and USAD achieve more competitive
results as compared to other approaches. On the other hand, the
assumption about the superiority of the hybrid method no longer holds.
Overall, both classical and DL forecasting-based techniques give the
highest performance. This perspective suggests that the majority of
anomalies in benchmarked datasets are local. Finally, DAGMM seems to
be among the least effective methods, suggesting its inability to model
the distribution of anomalies. This can be explained by the fact that
anomalies do not necessarily follow a multimodal Gaussian distribu-
tion. Some observations can be made regarding the difficulty of each
dataset. First, MSL seems slightly less challenging than SWaT. Second,
in line with the results based on conventional metrics, the obtained
performance suggests that natural anomalies are more straightforward
to detect than synthetic ones. Two reasons could potentially explain
that: (1) the datasets with natural anomalies have a high percentage of
anomalies, and (2) synthetic datasets do not reliably reflect reality and
do not include a sufficient number of anomalies.

Location bias. Herein, we analyze the results for different location bi-
ases. Table 7, Table 8, Table 9, and Table 10 show the results using flat,
front, middle and back bias, respectively. As mentioned in Section 4.2,
taking into account the size, the cardinality and the location of the
overlap between a predicted sequence and its corresponding ground
11
truth is crucial. Therefore, the location bias weights every predicted
time-stamp given its location in the sequence.

Fig. 7 depicts the overall performance for each method under dif-
ferent bias settings. Two observations can be made: (𝑖) Although the
idea of location bias seems theoretically interesting and flexible for
different domain-specific applications, it does not practically bring
more information in our experiments, as the average F1-score does not
change importantly. However, the most notable results are registered
for the middle and back biases as compared to the flat and front
biases. This can be attributed to the uneven distribution of anoma-
lies in datasets like SMAP and MSL. As noted by Wu and Keogh
(2021), most anomalies in these datasets occur towards the end of
the sequences. This may explain the improved performance of all the
evaluated methods on MSL and SMAP, particularly for middle and
back location biases. This also suggests that most detectors are less
mature for applications necessitating an early anomaly detection such
as real-time intrusion detection (Zhang, Cushing, de Laat, & Grosso,
2021), cyberattack attempts via network activity (Siddiqui et al., 2019)
or cancer detection (Kourou et al., 2015). (𝑖𝑖) Additionally, all range-
based metrics results are less impressive than the ones obtained using
standard metrics. This drop in performance may suggest that most ap-
proaches perform poorly in identifying the overlap size and cardinality
between a predicted sequence and its corresponding ground truth. In
other words, a predicted sequence does not perfectly align with its
corresponding ground truth sequence, as the boundaries of anomaly
sequences are not well predicted.

DL vs conventional methods. Although the top-three best-performing
methods are DL models (according to the conventional metrics), it can
be seen that classical approaches such as DAMP can outperform DL-
methods by a large margin, with advantage of a stable model. Similarly,
OC-SVM can achieve comparable performance with its counterpart
clustering DL approach, namely THOC. This suggests that conventional
methods are not obsolete and that, depending on the application, they
can be considered for anomaly detection (Wu & Keogh, 2021).

Univariate vs multivariate. The results of Table 4 and Table 7 seem
to be in accordance. Indeed, all methods except DAMP (Lu et al., 2022)
seem to have poor performance on UCR, which is univariate, while on
other multivariate datasets such as MSL, the performance is relatively
higher.

5.3. Model stability

Besides reporting the precision, recall, and F1-score, it is interest-
ing to observe the behavior of detectors when trained with different
initializations. Table 4 and Fig. 6 report the performance average and
standard deviation for every approach after five runs. Undoubtedly the
most stable methods are the deterministic ones which are ARIMA, OC-
SVM, and DAMP. Among DL approaches, DAGMM seems to be the
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Table 6
Number of parameters and model size in Mega Bytes (MB) of the trained models on the different datasets.

Model SWaT MSL SMAP UCR TODS

Parameters Model
size (Mb)

Parameters Model
size (Mb)

Parameters Model
size (Mb)

Parameters Model
size (Mb)

Parameters Model
size (Mb)

USAD 1.256.871 4,79 1.414.755 5,40 441.225 1,68 12.321 0,05 136.710 0,54
GDN 4.225 0,02 4.481 0,02 2.561 0,01 1.025 0,01 1.601 0,01
THOC 104.768 0,41 105.792 0,42 98.112 0,39 91.968 0,36 94.272 0,37
MTAD-GAT 373.637 1,62 384.145 1,66 314.695 1,39 274.687 1,05 288.070 1,05
DAGMM 266.930 1,50 270.542 1,50 243.452 1,40 221.780 1,30 288.070 1,40
Fig. 8. Relation between the number of the parameters of the model and the number
of features in the considered dataset.

most stable. This could be explained by the fact that it is a density-
based approach that relies on estimating the density of normal data.
In contrast, THOC and iForest achieve less stable results, especially on
SWaT.

5.4. Model size and memory consumption

Table 6 depicts the number of parameters and the model size in
Mega Bytes (MB) of the tested DL architectures. GDN seems to have
the lowest number of parameters when tested on all the datasets. In
fact, the number of parameters in USAD is around 300 times higher
than GDN. This is explained by the fact that the architecture of USAD
is complex and is composed of two adversarially trained auto-encoders.
In Fig. 8, it can also be seen that contrary to other models, which vary
almost linearly, the number of parameters increases at a considerably
higher rate. Additionally, despite the significant difference in parameter
number, GDN still achieves better results than USAD. This highlights
the relevance of using graph representations not only for modeling
time-series but also for building less complex model architectures.

5.5. Generalization to different types of anomalies

Fig. 9 shows the percentage of detected anomalies per type for
all the tested methods. In general, it can be noted that for the ma-
jority of tested techniques, collective trend anomalies are probably
the most challenging to detect. ARIMA and GDN, which are predic-
tive approaches, show the best generalization capacity to different
types of anomalies. OC-SVM easily detects global point and collective
shapelet anomalies but still presents decent results for other anomaly
types. The results obtained for USAD suggest that it is more robust
to collective outliers (e.g., collective shapelet and seasonality), which
can be explained by the fact that it is a reconstruction approach
12
that can essentially capture global inconsistencies. DAGMM effectively
detects collective seasonal anomalies but shows less impressive results
for collective shape outliers. Again, this might return to the proba-
bilistic nature of DAGMM, which is coupled with a sliding window.
Finally, MTAD-GAT fails in detecting collective anomalies, despite
being hybrid.

5.6. Discussion

In the following, we summarize the main findings of the present
evaluation study:

(𝑖) It is generally difficult to vote for a best-performing approach
or paradigm and the performance of an approach highly depends on
the considered use case and the nature of the encountered anomalies.
For instance, although the hybrid approach MTAD-GAT seems to out-
perform most other methods, they also exhibit limitations, such as their
unsuitability for detecting collective shapelet and trend anomalies. This
highlights the need for researchers to explicitly discuss the specific
settings or applications under which their algorithms are effective,
ensuring that practitioners understand the circumstances in which these
methods should be considered (Wu & Keogh, 2021).

(𝑖𝑖) The considered forecasting approaches tend to have the most
consistent range-based performance with respect to standard metrics.

(𝑖𝑖𝑖) Traditional approaches are not necessarily obsolete; in some
cases, they can achieve performances that are comparable to DL meth-
ods. This supports the claim of Wu and Keogh (2021) to question the
assumption that deep learning is the definitive solution for time-series
anomaly detection. Since they are usually recall-oriented, they usually
detect most types of anomalies but at the cost of a higher false positive
rate.

(𝑖𝑣) The Point Adjustment (PA) protocol is unreliable as it over-
estimates the detector performance, and in the case of traditional
approaches that are already recall-oriented, this triggers an even higher
false positive rate.

(𝑣) Multivariate time-series are challenging due to the high dimen-
sionality of data. On the other hand, univariate time-series can be
challenging when the anomaly ratio is very low.

(𝑣𝑖) Most models achieve low performance using range-based met-
rics, highlighting the difficulty of detecting the anomaly boundaries.

(𝑣𝑖𝑖) Model stability and memory consumption can vary importantly
from one method to another. Hence, depending on the end-goal appli-
cation, these metrics can be essential for selecting the most suitable
model in accordance with the hardware specifications.

6. Conclusion

This paper proposes an extensive evaluation study of recent time-
series anomaly detection methods. To the best of our knowledge, we are
the first to analyze these algorithms based on a more elaborate exper-
imentation protocol. In contrast to previous evaluation studies, which
only consider the standard performance metrics, we take into account
revisited performance criteria specifically designed for time series in
our analysis. In addition, the model stability, the model size as well as
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Table 7
The flat-bias performance of the tested methods on the 5 benchmarks using the metrics proposed by Tatbul et al. (2018). The average and the standard deviation of five runs are reported.

USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

SWaT
P𝑇 0.0583 ± 0.0210 0.0703 ± 0.0173 0.2905 ± 0.1113 0.0331 ± 0.0082 0.1032 ± 0.0022 0.0312 ± 0.0000 0.0038 ± 0.0014 0.0395 ± 0.0000 –
R𝑇 0.3284 ± 0.0396 0.2505 ± 0.0290 0.0204 ± 0.0108 0.3946 ± 0.0385 0.1889 ± 0.0022 0.8566 ± 0.0000 0.9021 ± 0.0014 0.8085 ± 0.0000 –
F1 0.0976 ± 0.0296 0.1081 ± 0.0188 0.0381 ± 0.0196 0.0607 ± 0.0133 0.1334 ± 0.0026 0.0602 ± 0.0000 0.0077 ± 0.0029 0.0753 ± 0.0000 –

MSL
P𝑇 0.1210 ± 0.0079 0.2494 ± 0.0174 0.1592 ± 0.0143 0.0768 ± 0.0045 0.1109 ± 0.0025 0.0528 ± 0.0000 0.0389 ± 0.0123 0.0843 ± 0.0000 –
R𝑇 0.2014 ± 0.0263 0.2293 ± 0.0217 0.2234 ± 0.0213 0.1846 ± 0.0045 0.0379 ± 0.0025 0.8316 ± 0.0000 0.5846 ± 0.0123 0.4106 ± 0.0000 –
F1 0.0666 ± 0.0030 0.1535 ± 0.0133 0.0770 ± 0.0044 0.0319 ± 0.0023 0.0161 ± 0.0004 0.0856 ± 0.0000 0.0625 ± 0.0138 0.0937 ± 0.0000 –

SMAP
P𝑇 0.1204 ± 0.0095 0.1500 ± 0.0032 0.0814 ± 0.0047 0.1401 ± 0.0000 0.0709 ± 0.0094 0.0656 ± 0.0000 0.0178 ± 0.0064 0.1401 ± 0.0000 –
R𝑇 0.2501 ± 0.0070 0.2023 ± 0.0160 0.0807 ± 0.0081 0.5272 ± 0.0000 0.0379 ± 0.0094 0.8365 ± 0.0000 0.3728 ± 0.0064 0.5272 ± 0.0000 –
F1 0.0634 ± 0.0032 0.0793 ± 0.0033 0.0259 ± 0.0018 0.1179 ± 0.0000 0.0091 ± 0.0009 0.1040 ± 0.0000 0.0285 ± 0.0064 0.1179 ± 0.0000 –

UCR
P𝑇 0.0106 ± 0.0002 0.0749 ± 0.0032 0.0106 ± 0.0040 0.0113 ± 0.0017 0.0709 ± 0.0094 0.0083 ± 0.0000 0.0255 ± 0.0034 0.0074 ± 0.0000 0.3249 ± 0.0000
R𝑇 0.2320 ± 0.0023 0.2501 ± 0.0118 0.0011 ± 0.0040 0.0189 ± 0.0017 0.0379 ± 0.0094 0.8356 ± 0.0000 0.4089 ± 0.0034 0.2907 ± 0.0000 0.3420 ± 0.0000
F1 0.0168 ± 0.0003 0.0473 ± 0.0013 0.0016 ± 0.0005 0.0054 ± 0.0005 0.0091 ± 0.0009 0.0134 ± 0.0000 0.0352 ± 0.0031 0.0119 ± 0.0000 0.2847 ± 0.0000

TODS
P𝑇 0.0420 ± 0.0039 0.0537 ± 0.0130 0.0617 ± 0.0047 0.0806 ± 0.0970 0.0709 ± 0.0094 0.0197 ± 0.0000 0.0975 ± 0.0862 0.0685 ± 0.0000 –
R𝑇 0.4796 ± 0.0015 0.5546 ± 0.1713 0.1766 ± 0.0047 0.0019 ± 0.0970 0.0379 ± 0.0094 0.8054 ± 0.0000 0.0645 ± 0.0862 0.6395 ± 0.0000 –
F1 0.0767 ± 0.0065 0.0843 ± 0.0147 0.0887 ± 0.0073 0.0027 ± 0.0035 0.0091 ± 0.0009 0.0382 ± 0.0000 0.0435 ± 0.0041 0.1233 ± 0.0000 –

Avg. F1 0.0642 ± 0.0266 0.0945 ± 0.0353 0.0463 ± 0.0323 0.0437 ± 0.0426 0.0354 ± 0.0491 0.0603 ± 0.0324 0.0355 ± 0.0180 0.0844 ± 0.0402 –
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Table 8
The front-bias performance of the tested methods on the 5 benchmarks using the metrics proposed by Tatbul et al. (2018). The average and the standard deviation of five runs are reported.

USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

SWaT
P𝑇 0.0590 ± 0.0213 0.0705 ± 0.0173 0.2905 ± 0.1114 0.0312 ± 0.0076 0.1046 ± 0.0023 0.0331 ± 0.0000 0.0039 ± 0.0014 0.0404 ± 0.0000 –
R𝑇 0.3201 ± 0.0348 0.2504 ± 0.0296 0.0221 ± 0.0113 0.4632 ± 0.0480 0.1816 ± 0.0023 0.8571 ± 0.0000 0.9028 ± 0.0014 0.8119 ± 0.0000 -
F1 0.0981 ± 0.0296 0.1084 ± 0.0189 0.0409 ± 0.0204 0.0580 ± 0.0129 0.1327 ± 0.0026 0.0638 ± 0.0000 0.0079 ± 0.0029 0.0771 ± 0.0000 –

MSL
P𝑇 0.1210 ± 0.0081 0.2494 ± 0.0176 0.1631 ± 0.0150 0.0758 ± 0.0046 0.1110 ± 0.0025 0.0527 ± 0.0000 0.0407 ± 0.0132 0.0690 ± 0.0000 –
R𝑇 0.2114 ± 0.0262 0.2293 ± 0.0217 0.1996 ± 0.0192 0.1871 ± 0.0046 0.0291 ± 0.0025 0.8125 ± 0.0000 0.5542 ± 0.0132 0.4230 ± 0.0000 –
F1 0.0671 ± 0.0023 0.1535 ± 0.0133 0.0806 ± 0.0047 0.0308 ± 0.0029 0.0156 ± 0.0005 0.0813 ± 0.0000 0.0627 ± 0.0140 0.0727 ± 0.0000 –

SMAP
P𝑇 0.1202 ± 0.0095 0.1509 ± 0.0031 0.0817 ± 0.0048 0.1102 ± 0.0000 0.0708 ± 0.0094 0.0363 ± 0.0000 0.0192 ± 0.0071 0.1102 ± 0.0000 –
R𝑇 0.2634 ± 0.0079 0.1913 ± 0.0164 0.0690 ± 0.0123 0.5410 ± 0.0000 0.0388 ± 0.0094 0.8238 ± 0.0000 0.3529 ± 0.0071 0.5410 ± 0.0000 –
F1 0.0642 ± 0.0025 0.0761 ± 0.0030 0.0227 ± 0.0013 0.0843 ± 0.0000 0.0090 ± 0.0011 0.0648 ± 0.0000 0.0296 ± 0.0061 0.0843 ± 0.0000 –

UCR
P𝑇 0.0106 ± 0.0002 0.0753 ± 0.0030 0.0106 ± 0.0040 0.0113 ± 0.0017 0.0708 ± 0.0094 0.0079 ± 0.0000 0.0270 ± 0.0035 0.0076 ± 0.0000 0.3312 ± 0.0000
R𝑇 0.2295 ± 0.0029 0.2510 ± 0.0109 0.0011 ± 0.0040 0.0190 ± 0.0017 0.0388 ± 0.0094 0.8286 ± 0.0000 0.3895 ± 0.0035 0.2911 ± 0.0000 0.3330 ± 0.0000
F1 0.0167 ± 0.0002 0.0496 ± 0.0010 0.0015 ± 0.0005 0.0051 ± 0.0003 0.0090 ± 0.0011 0.0145 ± 0.0000 0.0362 ± 0.0032 0.0121 ± 0.0000 0.2588 ± 0.0000

TODS
P𝑇 0.0418 ± 0.0042 0.0532 ± 0.0122 0.0620 ± 0.0042 0.0801 ± 0.097 0.0708 ± 0.0094 0.0247 ± 0.0000 0.0979 ± 0.0865 0.0679 ± 0.0000 –
R𝑇 0.4795 ± 0.0115 0.5549 ± 0.1724 0.1775 ± 0.0042 0.0019 ± 0.0970 0.0388 ± 0.0094 0.8028 ± 0.0000 0.0656 ± 0.0865 0.6396 ± 0.0000 –
F1 0.0767 ± 0.0065 0.0837 ± 0.0136 0.0886 ± 0.0075 0.0023 ± 0.0035 0.0090 ± 0.0011 0.0472 ± 0.0000 0.0437 ± 0.0035 0.1222 ± 0.0000 –

Avg. F1 0.0646 ± 0.0267 0.0943 ± 0.0351 0.0469 ± 0.0333 0.0361 ± 0.0314 0.0351 ± 0.0489 0.0543 ± 0.0226 0.0360 ± 0.0179 0.0737 ± 0.0354 –
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Table 9
The middle-bias performance of the tested methods on the 5 benchmarks using the metrics proposed by Tatbul et al. (2018). The average and the standard deviation of five runs are reported.

USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

SWaT
P𝑇 0.0592 ± 0.0214 0.0705 ± 0.0173 0.2905 ± 0.1113 0.0344 ± 0.0085 0.1040 ± 0.0022 0.0337 ± 0.0000 0.0040 ± 0.0015 0.0382 ± 0.0000 –
R𝑇 0.3382 ± 0.0432 0.2523 ± 0.0301 0.0217 ± 0.0131 0.4391 ± 0.0431 0.2018 ± 0.0022 0.8571 ± 0.0000 0.9028 ± 0.0015 0.8057 ± 0.0000 –
F1 0.0993 ± 0.0303 0.1084 ± 0.0188 0.0401 ± 0.0236 0.0634 ± 0.0140 0.1372 ± 0.0025 0.0648 ± 0.0000 0.0080 ± 0.0030 0.0731 ± 0.0000 –

MSL
P𝑇 0.1208 ± 0.0081 0.2518 ± 0.0180 0.1590 ± 0.0141 0.0760 ± 0.0046 0.1109 ± 0.0025 0.0567 ± 0.0000 0.0410 ± 0.0133 0.0831 ± 0.0000 –
R𝑇 0.2221 ± 0.0330 0.2547 ± 0.0222 0.2379 ± 0.0248 0.1846 ± 0.0046 0.0405 ± 0.0025 0.8491 ± 0.0000 0.6078 ± 0.0133 0.4078 ± 0.0000 –
F1 0.0666 ± 0.0037 0.1652 ± 0.0176 0.0741 ± 0.0043 0.0301 ± 0.0023 0.0152 ± 0.0004 0.0927 ± 0.0000 0.0655 ± 0.0149 0.0891 ± 0.0000 –

SMAP
P𝑇 0.1204 ± 0.0096 0.1506 ± 0.0032 0.0800 ± 0.0050 0.1363 ± 0.0000 0.0708 ± 0.0094 0.0582 ± 0.0000 0.0189 ± 0.0070 0.1363 ± 0.0000 –
R𝑇 0.2608 ± 0.0096 0.2254 ± 0.0179 0.0813 ± 0.0047 0.5403 ± 0.0000 0.0416 ± 0.0094 0.8484 ± 0.0000 0.3890 ± 0.0070 0.5403 ± 0.0000 –
F1 0.0656 ± 0.0039 0.0847 ± 0.0025 0.0238 ± 0.0018 0.1146 ± 0.0000 0.0089 ± 0.0010 0.0962 ± 0.0000 0.0301 ± 0.0069 0.1146 ± 0.0000 –

UCR
P𝑇 0.0104 ± 0.0002 0.0759 ± 0.0029 0.0106 ± 0.0040 0.0114 ± 0.0017 0.0708 ± 0.0094 0.0090 ± 0.0000 0.0269 ± 0.0035 0.0075 ± 0.0000 0.3325 ± 0.0000
R𝑇 0.2375 ± 0.0024 0.2524 ± 0.0123 0.0015 ± 0.0040 0.0201 ± 0.0017 0.0416 ± 0.0094 0.8421 ± 0.0000 0.4258 ± 0.0035 0.2920 ± 0.0000 0.3607 ± 0.0000
F1 0.0165 ± 0.0003 0.0439 ± 0.0019 0.0019 ± 0.0008 0.0054 ± 0.0006 0.0089 ± 0.0010 0.0151 ± 0.0000 0.0371 ± 0.0032 0.0121 ± 0.0000 0.2940 ± 0.0000

TODS
P𝑇 0.0426 ± 0.0040 0.0541 ± 0.0131 0.0622 ± 0.0046 0.0802 ± 0.0970 0.0708 ± 0.0094 0.0204 ± 0.0000 0.0972 ± 0.0862 0.0682 ± 0.0000 –
R𝑇 0.4791 ± 0.0116 0.5557 ± 0.1702 0.1772 ± 0.0046 0.0018 ± 0.0970 0.0416 ± 0.0094 0.8065 ± 0.0000 0.0645 ± 0.0862 0.6405 ± 0.0000 –
F1 0.0777 ± 0.0066 0.0847 ± 0.0144 0.0894 ± 0.0073 0.0023 ± 0.0035 0.0089 ± 0.0010 0.0397 ± 0.0000 0.0434 ± 0.0039 0.1227 ± 0.0000 –

Avg. F1 0.0651 ± 0.0272 0.0976 ± 0.0397 0.0459 ± 0.0321 0.0432 ± 0.0419 0.0358 ± 0.0507 0.0617 ± 0.0310 0.0368 ± 0.0187 0.0823 ± 0.0393 –
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Table 10
The back-bias performance of the tested methods on the 5 benchmarks using the metrics proposed by Tatbul et al. (2018). The average and the standard deviation of five runs are reported.

USAD GDN THOC MTAD-GAT DAGMM OC-SVM iForest ARIMA DAMP

SWaT
P𝑇 0.0576 ± 0.0208 0.0701 ± 0.0174 0.2905 ± 0.1113 0.0351 ± 0.0087 0.1018 ± 0.0022 0.0292 ± 0.0000 0.0037 ± 0.0014 0.0385 ± 0.0000 –
R𝑇 0.3367 ± 0.0449 0.2505 ± 0.0286 0.0188 ± 0.0103 0.3261 ± 0.0291 0.1961 ± 0.0022 0.8561 ± 0.0000 0.9014 ± 0.0014 0.8050 ± 0.0000 –
F1 0.0969 ± 0.0296 0.1078 ± 0.0187 0.0352 ± 0.0189 0.0628 ± 0.0135 0.1340 ± 0.0026 0.0565 ± 0.0000 0.0075 ± 0.0029 0.0734 ± 0.0000 –

MSL
P𝑇 0.1231 ± 0.0073 0.2494 ± 0.0172 0.1553 ± 0.0137 0.0778 ± 0.0044 0.1107 ± 0.0025 0.0528 ± 0.0000 0.0372 ± 0.0114 0.0996 ± 0.0000 –
R𝑇 0.1914 ± 0.0264 0.2405 ± 0.0201 0.2471 ± 0.0245 0.1820 ± 0.0044 0.0467 ± 0.0025 0.8507 ± 0.0000 0.6151 ± 0.0114 0.3982 ± 0.0000 –
F1 0.0648 ± 0.0037 0.1558 ± 0.0130 0.0706 ± 0.0037 0.0325 ± 0.0016 0.0164 ± 0.0164 0.0887 ± 0.0000 0.0613 ± 0.0137 0.1076 ± 0.0000 –

SMAP
P𝑇 0.1206 ± 0.0025 0.1491 ± 0.0033 0.0811 ± 0.0047 0.1699 ± 0.0000 0.0711 ± 0.0094 0.0949 ± 0.0000 0.0164 ± 0.0057 0.1699 ± 0.0000 –
R𝑇 0.2367 ± 0.0070 0.2133 ± 0.0157 0.0923 ± 0.0042 0.5133 ± 0.0000 0.0369 ± 0.0094 0.8491 ± 0.0000 0.3927 ± 0.0057 0.5133 ± 0.0000 –
F1 0.0612 ± 0.0025 0.0807 ± 0.0033 0.0275 ± 0.0022 0.1375 ± 0.0000 0.0092 ± 0.0008 0.1330 ± 0.0000 0.0270 ± 0.0065 0.1375 ± 0.0000 –

UCR
P𝑇 0.0106 ± 0.0002 0.0744 ± 0.0035 0.0106 ± 0.0040 0.0114 ± 0.0017 0.0711 ± 0.0094 0.0087 ± 0.0000 0.0239 ± 0.0032 0.0073 ± 0.0000 0.3186 ± 0.0000
R𝑇 0.2345 ± 0.0020 0.2492 ± 0.0126 0.0011 ± 0.0040 0.0188 ± 0.0017 0.0369 ± 0.0094 0.8426 ± 0.0000 0.4283 ± 0.0032 0.2903 ± 0.0000 0.3509 ± 0.0000
F1 0.0167 ± 0.0003 0.0411 ± 0.0018 0.0017 ± 0.0006 0.0054 ± 0.0006 0.0092 ± 0.0008 0.0121 ± 0.0000 0.0337 ± 0.0031 0.0116 ± 0.0000 0.2668 ± 0.0000

TODS
P𝑇 0.0421 ± 0.0039 0.0542 ± 0.0140 0.0614 ± 0.0063 0.0812 ± 0.0970 0.0711 ± 0.0094 0.0147 ± 0.0000 0.0970 ± 0.0859 0.0692 ± 0.0000 –
R𝑇 0.4796 ± 0.0116 0.5543 ± 0.1702 0.1757 ± 0.0063 0.0018 ± 0.0970 0.0369 ± 0.0094 0.8080 ± 0.0000 0.0634 ± 0.0859 0.6393 ± 0.0000 –
F1 0.0769 ± 0.0065 0.0848 ± 0.0158 0.0882 ± 0.0084 0.0029 ± 0.0037 0.0092 ± 0.0008 0.0289 ± 0.0000 0.0432 ± 0.0046 0.1243 ± 0.0000 –

Avg. F1 0.0633 ± 0.0264 0.0940 ± 0.0376 0.0446 ± 0.0310 0.0482 ± 0.0496 0.0356 ± 0.0493 0.0638 ± 0.0433 0.0345 ± 0.0178 0.0909 ± 0.0451 –
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Fig. 9. The ratio of true anomalies detected for each tested method when varying the anomaly types. All methods succeeded in partially detecting each anomaly type, except
MTAD-GAT which was unable to detect any collective trend anomaly.
the robustness to different types of anomalies are also investigated. All
these additional elements give a more complete picture of the current
state-of-the-art. Moreover, the proposed protocol is timely and could be
beneficial for future investigations, providing more insights regarding
their applicability in a real-world context.
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