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The design of satellite missions is currently undergo-
ing a paradigm shift from the historical approach of indi-
vidualised monolithic satellites towards distributed mis-
sion configurations, consisting of multiple small satel-
lites. With a rapidly growing number of such satellites
now deployed in orbit, each collecting large amounts of
data, interest in on-board orbital edge computing is rising.
Federated Learning is a promising distributed comput-
ing approach in this context, allowing multiple satellites
to collaborate efficiently in training on-board machine
learning models. Though recent works on the use of Fed-
erated Learning in orbital edge computing have focused
largely on homogeneous satellite constellations, Feder-
ated Learning could also be employed to allow hetero-
geneous satellites to form ad-hoc collaborations, e.g. in
the case of communications satellites operated by differ-
ent providers. Such an application presents additional
challenges to the Federated Learning paradigm, arising
largely from the heterogeneity of such a system. In this
position paper, we offer a systematic review of these chal-
lenges in the context of the cross-provider use case, giving
a brief overview of the state-of-the-art for each, and pro-
viding an entry point for deeper exploration of each issue.

1 Introduction

With advances in hardware and software capabilities,
distributed satellite mission configurations are pro-
gressively replacing the classical paradigm of using a
single monolithic spacecraft. With nanosatellites able
to generate and store increasingly large amounts of
data through various on-board sensors, downlink ca-
pacity is becoming a major bottleneck in processing
the gathered information. To manage this problem,
there is an ongoing drive towards shifting data pro-
cessing onto satellites[1] – this strategy is referred to
as Orbital Edge Computing (OEC)[2]. The overarch-
ing idea of OEC is to leverage on-board computing ca-
pabilities of each satellite to process locally gathered
data, reducing the size and amount of required trans-
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missions and speeding up evaluation. A promising
variant of OEC proposes deploying Federated Learn-
ing [3] (FL) on satellites, allowing the joint training
of on-board machine learning models across the data
gathered by multiple satellites with a limited commu-
nication budget [4]. Under a FL scheme, each satellite
performs on-board machine learning on the data it
collects, training a local model – see Figure 1. These
models are shared periodically among participants,
allowing them to be aggregated into a more accurate
global model on which to continue training. Aggrega-
tion can take place with the aid of a parameter server
on the ground or in orbit, or in a fully decentralised
manner between satellites. Fundamental advantages
of this approach include a vastly reduced communi-
cation cost compared to the transmission of raw data,
and the inherent privacy advantages of compartmen-
talising data on satellites.
Current literature on the use of Federated Learning
in Orbital Edge Computing is focused primarily on a
single use case: using Federated Learning in a single,
dedicated constellation of satellites. However, another
frequently occurring scenario appears largely unstud-
ied: the potential for satellites from different missions
and providers to form (ad-hoc) cross-provider collab-
orations. In this position paper, we offer an initial ex-
ploration of the conceptual challenges associated with
this use case: we identify the characteristics of the
problem, present a brief survey of the state of the art
for each, connecting existing research from the appli-
cation domain and the theoretical field, and discuss
how existing approaches might fare in this scenario.
We conclude with a gap analysis.

2 Survey results

In this section, we analyse the current state of the art
in research relating to our use case of cross-provider
FL. As this use case has not yet been addressed ex-
plicitly, we divide our analysis into different thematic



Figure 1: In Federated Learning, each satellite performs on-
board machine learning to train a local model (1). Only
these models are transmitted via satellite link to a server
(2), here based on the ground, where multiple local models
are aggregated into a single global model (3). This global
model is transmitted back to the satellites (4) to continue
the learning process. If necessary, satellites can act as relays
for one another (5).

sections. We begin by considering the research clos-
est to application, considering orbital edge computing
(OEC) and Federated learning (FL) schemes tailored
to use on satellites. Following this, we discuss cross-
provider FL, an OEC use case that has, to the best of
our knowledge, not been addressed to date. We ex-
plore related research from the field of FL that could
be applicable for this use case, particularly works ad-
dressing the handling of different types of heterogene-
ity, and discuss their applicability.

2.1 Orbital edge computing and
federated learning

Federated Learning could offer a flexible framework
for satellites to collaborate on on-board information
processing[1][5] while limiting communication cost
and preserving data privacy. Various works modify
the FL paradigm for the use case of LEO constel-
lations, mainly focusing on adapted communication
schedules to handle the intermittent connectivity of
satellites. These approaches can broadly be divided
by their proposed placement of a parameter server.

Initial works focused on the use of a ground-based
server, offering a relatively higher resource capac-
ity of the server; the drawback is a communica-
tion bottleneck caused by the intermittent connec-
tivity of satellites. The FedSpace algorithm [6] at-
tempts to overcome this constraint by performing
semi-asynchronous federated aggregation, exploiting
knowledge about clients’ orbital periods to calculate
an aggregation schedule that yields an optimal trade-
off between satellite idleness and model staleness.The

FedGSM algorithm[7] similarly makes use of known
connectivity intervals to extrapolate model updates.

Conversely, FedISL[8], a synchronous FL scheme
for a dense LEO constellation, hinges on the strategic
placement of a server in medium Earth orbit (MEO);
with convergence speed further enhanced by the use
of intra-plane inter-satellite links. This concept is ex-
tended in [9] with the grouping of satellites sharing
the same orbit to speed up aggregation. Similarly,
the synchronous FedHAP [10] algorithm is based on
the deployment of multiple high-altitude aerial plat-
forms to accelerate aggregation; AsyncFLEO [11] rests
on the same premise, but is capable of asynchronous
aggregation. The DSFL[12] algorithm side-steps the
challenge of server placement by performing fully
decentralised aggregation. Finally, in their work on
semi-supervised FL, Östman et al. [13] compare a de-
centralised aggregation strategy with two scenarios
where a relay satellite and a set of ground stations, re-
spectively, act as the aggregation server. All three vari-
ants are shown to achieve comparable accuracy per-
formances with similar total training time and power
consumption.

Note that the works presented in this section do
not consider heterogeneity challenges in great depth;
several works, e.g. [6][9], claim that any suitable FL
algorithm could be utilised as a drop-in component.
In the following section, we assess the additional char-
acteristics that might be required of an algorithm to
mitigate heterogeneity in the cross-provider use case.

2.2 Heterogeneity challenges of
cross-provider FL

With the proliferation of private and commercial mis-
sions, an ever-increasing number of satellites with dif-
ferent capabilities and overlapping interests are active
in Earth orbit. Enabling an ad-hoc collaboration be-
tween satellites of providers with compatible interests
could serve to enhance the performance of all sides at
a comparatively low communication cost. A natural
example is the application to satellite communication
problems: machine learning has the potential to assist
with various SatComm-related problems[14], and col-
laboration between satellites could help solve these
problems with greater accuracy and reliability. Many
such satellites by different service providers are in op-
eration today, with different hardware, different orbits
and different underlying purposes, but nevertheless
carrying out related functions. Compared to perform-
ing FL on single-mission satellite constellations, this
application scenario presents unique challenges in-
duced by the heterogeneity of satellites.

This could involve many different types of hetero-
geneity, known to present a challenge to FL algo-



rithms[15]. These include data heterogeneity, feature
heterogeneity, device heterogeneity, and preference het-
erogeneity. In this section, we discuss the state-of-
the-art approaches for each of these types, highlight-
ing how each has been addressed for the OEC use
case and, where missing, how existing solutions might
transfer to this use case.

Data heterogeneity. This type of heterogeneity,
where data is imbalanced across participants, is dis-
cussed extensively in the literature[15], as it occurs
naturally in most settings. In our use case, heteroge-
neous distributions of data across satellites are quite
likely, with the extent dependent in part on the pre-
cise setting. For example, satellites gathering Earth ob-
servation images might collect significantly different
samples based on their orbital planes, while for Sat-
Comm data might differ based on the role of the satel-
lite or the associated service provider. The general is-
sue of data heterogeneity is discussed in most FL vari-
ants proposed for the OEC use case, e.g. [12], [7]; how-
ever, their effectiveness is seldom demonstrated be-
yond preliminary benchmarking experiments. There-
fore, it appears worthwhile to also consider the state
of the art in the general field of FL. A taxonomy of vari-
ants of data heterogeneity is presented in [16], along
with a comprehensive survey of current mitigation
approaches. According to [16], these can be broadly
divided into data-level, model-level and server-level
interventions. Data-level approaches involve modi-
fying the underlying training data to balance het-
erogeneity, e.g. by preprocessing [17][18], generating
supplemental data using Generative Adversarial Net-
works [19], or transmitting information about data
between clients [20]. However, these strategies of-
ten place a significant additional computing or com-
munication burden on the clients, rendering them
unattractive use on satellites. Selected model- and
server-level strategies appear more promising, as they
either require little additional computation cost, or
can be carried out on the server-side. Notably, these
include model regularisation [21], knowledge distilla-
tion [22], and personalised federated learning (PFL)
approaches [23] such as client clustering[24][25], pa-
rameter decoupling [26] and model interpolation [27].

It is difficult to single out an optimal approach for
the general version of our use case, where the data
distribution pattern is unknown. The most promis-
ing approach would likely be an adaptive solution
that modifies the aggregation approach during run-
time based on observed metrics, e.g. clustering partic-
ipants by similarity [24][25] or assigning importance
weights for aggregation [27]. For mission architec-
tures involving a powerful ground-based parameter
server, more complex knowledge distillation-based
approaches may also be an option.

Finally, we note that if the nature of the data dis-
tribution is known, such as in EO imaging missions,
this could be exploited to the advantage of the algo-
rithm, e.g. by grouping participants known to collect
similar data, or conversely by exchanging small sets of
selected samples to balance highly different datasets.

Device heterogeneity. Aside from the communica-
tion challenges induced by orbital trajectories, satel-
lites in the cross-provider setting would alsohave
hardware differences, leading to different levels of
noise and training datasets of varying quality, and im-
pacting computational speeds and capabilities. This
is a common problem in the general field of FL [16];
standard approaches include adaptively assigning dif-
ferent weight contributions [28] or model architec-
tures [29] to participants; possibly also reducing the
consideration of lower-quality participants in select-
ing clients for aggregation [30][31]. It appears likely
that such strategies would transfer well to the present
use case, without a need for major modifications.

Feature heterogeneity. This setting corresponds to
the collaboration of satellites with different types of
sensors, collecting different types of data and poten-
tially requiring different model architectures for on-
board processing. Effectively integrating different fea-
tures and models into a coherent federated model
training process presents a difficult problem; to the
best of our knowledge, it has not yet been tackled in
research on OEC. Indeed, the general problem of per-
forming FL in such a setting, known as Vertical Feder-
ated Learning (VFL) [32], remains largely unsolved be-
yond highly constrained artificial scenarios or costly
compensation approaches [33]. This present lack of so-
lutions renders the application of FL to the real-world
satellite use case infeasible. The only approach that
appears viable at present would involve feature distil-
lation on a ground-station parameter server – a com-
putationally expensive solution that does not yield
workable models for the federated participants, and
so would benefit only the server-side [33]. Beyond this
niche variant, the currently most feasible approach
would likely be to separate participants by features,
eliminating this type of heterogeneity.

Preference heterogeneity. This is a novel type of
heterogeneity that, as of now, has seen little recogni-
tion in the field of federated learning; yet it appears
highly relevant to the present use case. Preference het-
erogeneity arises when participants are solving prob-
lems with multiple objectives, e.g. minimising com-
munication cost while also minimising connection la-
tency in a satellite communication network. In such
multi-objective problems, different optimal solutions
are generally possible, representing different trade-
offs between the individual objectives. In practice,
some trade-offs may be more desirable than others,



e.g. conserving energy by limiting communication for
severely resource-constrained satellites, or minimis-
ing connection latency to boost service to certain ge-
ographical areas. This can be controlled by assigning
importance weights to each objective when solving
the learning problem. We call participants with differ-
ent importance weights preference-heterogeneous.

At present, little research has been devoted to per-
forming Federated Learning under preference het-
erogeneity; the closest related works consider fed-
erated multi-task learning [34], where participants
have fully separate objectives, and federated multi-
objective learning [35][36] without allowance for dif-
ferent preferences.

2.3 Other considerations

2.3.1 Fairness

In addition to the technical considerations of the pre-
vious section, this cross-provider use case also dif-
fers from the single-provider variant in the assump-
tions made about participants’ intentions. Satellites
designed to collaborate with each other as part of a
single mission can generally be assumed to act al-
truistically in federation, i.e. towards the benefit of
the larger system. In the cross-provider setting, how-
ever, no such assumption should be made, as has been
noted e.g. in [9]. Instead, we assume that participants
may act ‘selfishly’, valuing their own success over that
of the federated system. This could occur e.g. if satel-
lites contribute low-quality updates, leading to an
overall degradation of the global model and benefit-
ing from the collaboration at the cost of others. Simi-
larly, a participant could limit the frequency of its con-
tributions to conserve communication budget or main-
tain privacy, to the detriment of others in the federa-
tion, while still receiving global model updates. A suc-
cessful cross-provider collaboration scheme should
guard against such exploitation. These fairness con-
siderations have yet to be addressed in works target-
ing the OEC use case; a full survey on the state of the
art of general FL approaches is provided in [37]. The
same work gives a detailed account of the different
definitions of fairness and underlying assumptions;
the choice of an appropriate mitigation approach for
the present depends on these characteristics.

2.3.2 Guarding against malicious participants

This is a more extreme case of the challenges dis-
cussed in the previous section – here participants
intentionally attempt to sabotage the performance
of the federated system through their participation,
e.g. through submitting intentionally false model up-

dates (known as model poisoning attacks). A thor-
ough overview of possible attack vectors and ap-
proaches for guarding against such attacks is given in
[15] and more recently [38], suggesting e.g. the assign-
ment of confidence scores [39], filtering outliers [40],
or normalising model updates before aggregation [41].
A number of these solutions appear to transfer well
to the cross-provider OEC use case, given a trustwor-
thy server, with the selection of approach dependent
on the particular parameters of the system and the
results of a risk analysis.

2.3.3 The role of standardisation

Along with the algorithmic approaches towards pre-
venting misuse of the collaboration, standardisation
likely has an important role to play in the deploy-
ment of FL to the present use case involving multiple
providers. This could e.g. include a requirement for
certification of machine learning pipelines in accor-
dance with certain quality standards to obtain access
to such federated exchange schemes, to decrease the
likelihood of interference by malicious or poorly en-
gineered participants. A review of standards relating
to the trustworthiness of machine learning for space
applications suggests that such standards largely have
yet to be defined [42]; a recently published handbook
provides a first glimpse of such considerations [43].

Finally, we note another crucial challenge of this
particular use case: the need for a unified communica-
tion protocol between participants, capable of negoti-
ating the parameters of the FL scheme between partic-
ipants and able to transmit machine learning models
unambiguously, without interpretation errors caused
e.g. by differences in hardware or software. For ad-hoc
collaboration, standardised communication formats
are of critical importance, both to negotiate the param-
eters of the FL protocol during the initialisation phase,
and to transmit model updates without error. There
appears to be no existing solution, as most works in
the literature tend to assume a group of satellites col-
laborating as part of a single unified mission.

3 Discussion

In our analysis of the state of the art, we have seen
that current works investigating the use of Federated
Learning in satellite on-board edge computing have
largely focused on a single scenario: a large constel-
lation of homogeneous satellites deployed as part of
a single mission. We have introduced a different use
case, relevant to the present or near future, where het-
erogeneous satellites of multiple different providers
could collaborate under a FL scheme to enhance on-



board learning. We have elucidated the unique con-
ceptual challenges of this use case, with a focus on
the different types of heterogeneity and conflicts of in-
terest that might arise. We have provided a broad per-
spective of the state of the art for each, discussing both
the existing work close to the use case, and the gen-
eral state of the art in the theoretical literature. Our
brief survey shows that several aspects remain to be
addressed to adequately solve this real-world use case.
In particular, there is a need to further investigate (1)
how state-of-the-art solutions can be combined in set-
tings where multiple types of heterogeneity occur si-
multaneously; (2) which heterogeneity-mitigating al-
gorithms could be selected to fit with the use case, and
with existing OEC schemes; (3) how to perform Feder-
ated Learning under preference heterogeneity. Finally,
we suggest that any engineering approach should be
supported by additional measures reducing the com-
plexity of the system by providing appropriate con-
straints, e.g. through the use of standardisation.
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