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Abstract— In recent years, there has been a growing demand
for improved autonomy for in-orbit operations such as ren-
dezvous, docking, and proximity manoeuvres, leading to in-
creased interest in employing Deep Learning-based Spacecraft
Pose Estimation techniques. However, due to limited access to
real target datasets, algorithms are often trained using synthetic
data and applied in the real domain, resulting in a performance
drop due to the domain gap. State-of-the-art approaches employ
Domain Adaptation techniques to mitigate this issue. In the
search for viable solutions, event sensing has been explored
in the past and shown to reduce the domain gap between
simulations and real-world scenarios. Event sensors have made
significant advancements in hardware and software in recent
years. Moreover, the characteristics of the event sensor offer
several advantages in space applications compared to RGB
sensors. To facilitate further training and evaluation of DL-
based models, we introduce a new dataset, SPADES, comprising
real event data acquired in a controlled laboratory environment
and simulated event data using the same camera intrinsics. Fur-
thermore, we introduce an image-based event representation
that performs better than existing representations. In addition,
we propose an effective data filtering method to improve the
quality of training data, thus enhancing model performance. A
multifaceted baseline evaluation was conducted using different
event representations, event filtering strategies, and algorithmic
frameworks, and the results are summarized. The dataset will
be made available at http://cvi2.uni.lu/spades.

I. INTRODUCTION

State-of-the-art spacecraft pose estimation methods lever-
age Deep Learning algorithms (DL), especially Convolu-
tional Deep Neural Networks (CNN), to infer the pose of a
known non-cooperative spacecraft from a single RGB image
[1], [2]. DL-based approaches require abundant labelled
data for training, and acquiring such orbital imagery data
is expensive and challenging, considering that each target
is unique. Hence, current satellite pose estimation models
are trained using synthetic images generated using rendering
software. However, this leads to the domain gap or Sim2Real
problem [1], i.e., models trained on data collected in one
domain (synthetic) show a performance drop when tested on
other domains (real) due to overfitting of features specific
to the training domain. To close the domain gap, Domain
Adaptation (DA) methods [3] are adopted to improve the per-
formance of the model in the target domain, using techniques
such as adversarial learning and reconstruction approaches.

On the other hand, research has been done to explore
the use of different data modalities, and event sensing
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Fig. 1: Samples from the SPADES dataset. (a) RGB image generated
using Unreal Engine, (b) Event data generated using the ICNS simulator,

(c) Real image acquired in the lab, (d) Real event data acquired in the lab.

was proposed [4] as a solution to close the domain gap
in spacecraft pose estimation. Indeed, event cameras have
gained attention in space applications [5], [6] due to their
potential benefits, including high temporal resolution (up
to 1µ s), a wide high dynamic range (HDR) (typically
up to 140 dB), low latency, and low power consumption
[7]. Event sensors capture sparse data, and each pixel is
independently activated by changes in light intensity, leading
to asynchronous responses. Higher HDR values result in
smaller solar exclusion angles, making them well-suited
for orbital sensing. The HDR and asynchronous response
characteristics of the event sensors help to perceive the target
in a way that reduces the sensitivity to drastic illuminations,
thus narrowing the domain difference [4].

The SEENIC dataset [8], introduced in [4], stands out
as the first and only event-sensing dataset available for
spacecraft pose estimation tasks. However, the dataset lacks
diversity in the distribution of pose labels for synthetic data
and does not include ground-truth relative pose labels for
real data, hindering the efficient validation of algorithms. To
better understand the event data under more realistic orbital
scenarios while facilitating training and evaluation of the DL
models, we introduce a new event dataset, called SPADES
- SPAcecraft Pose Estimation Dataset using Event Sensing,
as our primary contribution. The proposed SPADES dataset
uses the Proba-2 satellite of the PROBA-2 mission [9] as the
target. This dataset includes simulated and real event data
obtained from a realistic satellite model at the SnT Zero-
G testbed facility [10], [11]. Our secondary contribution
focusses on pre-processing techniques for event data. We in-
troduce an image-based event representation with three chan-
nels, leveraging 2D CNNs while offering better performance
than existing representations. Furthermore, we propose a
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mask-based technique for filtering event frames that contain
sufficient object details for training while assisting the DL
model to learn better and enhance its performance. Finally,
to assess baseline performance, we implement existing DL
algorithms from the two main spacecraft pose estimation
approaches and present the results.

The article is organised as follows: Section II presents
related datasets, algorithms, and event representations. Sec-
tion III presents the proposed SPADES dataset and describes
the synthetic data generation pipeline and real data acqui-
sition. Section IV introduces the new event representation
and filtering approach along with the evaluation results and
finally Section V presents the conclusion.

II. RELATED WORKS

A. Datasets for Spacecraft Pose Estimation

The first generation image datasets, SPEED [12] and
URSO [13], were oriented toward synthetic data and used
simulators to generate realistic renderings of targets in orbit.
Recent image datasets, such as SPEED+ [1], SPARK 2022
[14], and SHIRT [15], have included real data from labo-
ratory setups in addition to simulated data. This inclusion
serves to validate the DL algorithms’ performance in realistic
scenarios that simulate space environments.

An event-sensing dataset, SEENIC [8], was introduced
in [4] to assess the domain gap in the estimation of the
pose of the spacecraft using event data. Despite being the
first and only event dataset for spacecraft pose estimation,
several limitations are associated with this dataset, sum-
marised below. First, the target model is the Hubble Space
Telescope (HST), whose actual dimensions are 13 m in
length and 4 m in width. A scaled version of the HST
(approximately 1:40 to 50) was used for real data collection,
and the precise dimensions of the physical and simulation
models were not disclosed. Second, the HST mockup was
3D printed for simplicity, lacking precision and surface
texture, which affected the overall quality of the dataset.
Third, the real event data lack relative pose labels for the
target in the camera reference frame, and the authors rely on
measurements between successive poses for their metrics.
Finally, the synthetic dataset was generated from a single
trajectory, resulting in an imbalance in the pose distribution
and also lacking variation in lighting scenarios.

B. Algorithms

The two prominent approaches in DL-based spacecraft
pose estimation are the Direct or End-to-End approach and
the Hybrid Modular approach [2], [16]. The direct approach
[13], [17] is based on the direct regression of a pose label
from an input image. The hybrid pipeline [18] involves a
sequence of steps, which includes using an object detection
network to detect the target in the image, followed by a
keypoint regression network to regress the location of the
2D keypoints, and finally using the Perspective-n-Point (PnP)
solver to estimate the pose from 2D-3D correspondences. A
brief discussion of existing DL-based satellite pose estima-
tion approaches and datasets is presented in [2].

The baseline evaluation on the SEENIC dataset in [4]
employed a Hybrid pipeline (without DA techniques) trained
with synthetic data and tested with real data. During the
performance evaluation on real data, the authors resort to
measuring errors between successive poses as a performance
metric due to hardware constraints that prevented them from
directly obtaining the true relative pose of the object within
the camera reference frame. However, it should be noted that
such metrics are susceptible to errors that accumulate over
time due to drift. Although errors between successive poses
may initially appear minor, they can eventually lead to a
significant deviation from the actual ground truth.

To mitigate such issues and assess performance using
standard pose metrics, the proposed SPADES dataset is
supplemented with ground-truth pose labels containing target
poses in the camera reference frame for both data modalities.

C. Event Data Processing

An event stream is the sequence of events triggered by the
change in light intensity as recorded by individual sensor
pixels. Each event readout in the form of a tuple e =
(x, y, p, t), where x and y denote the pixel coordinates, p
indicates an increase or decrease in intensity (polarity), and t
represents the global timestamp of the event in microseconds
(µ s) as recorded on the camera timeline. Thus, a sequence
of events over a time window of τ can be represented as
Eτ = {ei | t < i < (t+ τ)}. These accumulated events can
be processed and represented in various formats, including
images [4], [19], [20], voxels [21], graphs [22], 3D point sets
[23], and motion compensated event images [24].

Image-based Representations: The image-based represen-
tations convert sparse events into dense frames to take advan-
tage of existing CNN architectures. The event-to-frame (E2F)
[4] representation works by accumulating events over a given
time window or an event batch, followed by normalisation
and exported as an intensity image. The Locally Normalised
Event Surfaces (LNES) representation [19] effectively retains
temporal and polarity information during the conversion.
Within the LNES representation, each event frame consists of
two channels, I ∈ ℜW×H×2, distinguished by the polarity of
the event. Using individual channels for positive and negative
events preserves the polarities and limits event overriding
[19]. The Time Surfaces (TS) [20] representation aims to
preserve temporal information from the event stream while
discarding polarity details. Unlike LNES, TS is generated
by applying an exponential decay to the time within the
time window using the last set of events recorded in the
neighbourhood of the current event ei(x, y).

III. DATASET

A. Synthetic Data Generation

Trajectory Selection: Generating an event stream involves
creating a motion sequence (of images) and can be achieved
by moving either the camera or the target while keeping
the target within the camera’s field of view (FoV). Our data
generation pipeline employs a fixed camera and a moving
target. The trajectory generation comprises two steps.



Fig. 2: Overview of the synthetic data generation pipeline.

The first step is to initialise the starting and ending poses
of the sequence, denoted as [qstart|tstart] and [qend|tend],
where qx represents the orientation as quaternions and
tx represents the positions as a translation vector. The
quaternions were sampled from a uniform distribution. In
the translation vector, tz ranges between 3.5 and 12 m,
determined based on factors such as focal length, sensor size,
resolution, and target size; tx and ty are constrained by the
camera’s FoV.

The second step involves interpolation between the
start and the end pose over the n steps: S =
([q0|t0], [q1|t1], ..., [qn|tn]). The interpolation methods em-
ployed are either Helix or Spline interpolation. After gen-
erating each sequence, each pose within the sequence is
verified with 2D keypoint projection results, ensuring that all
edge keypoints remain within the image. Table I summarises
the size of the dataset, the number of trajectories, the
interpolation methods and the characteristics of the range.
Fig. 2 illustrates the complete data generation pipeline.

RGB data: After generating the ground truth sequence, we
render RGB images using a Unreal Engine1 (UE) simulator.
To render these synthetic images, we used the CAD model
of the Proba-2 satellite downloaded from the ESA Science
Satellite Fleet2. Communication with the UE environment
is facilitated through the UnrealCV library [25]. The UE
environment incorporates 16k Earth texture maps from the
Blue Marble collection3, employs physically-based shading,
and includes Rayleigh scattering to simulate atmospheres.
Prior to rendering, camera poses are randomly sampled and
fixed for each sequence, resulting in diverse backgrounds
and lighting scenarios. The target is placed relative to the
camera pose using the corresponding ground truth pose, and
the images are subsequently rendered.

Event data: The event data stream is generated using the
ICNS event simulator [26], which uses Blender4 to simulate
the behaviour of neuromorphic sensors. This simulator offers
a more realistic simulation of the sensor output by accurately
modelling the sensors’ pixel-level behaviour, taking into
account factors such as latency, noise, and other relevant
characteristics. Samples of generated synthetic event data are
depicted in Fig. 4. Aligning the pixel-level behaviour with
EVK4 cameras is not considered for this version of synthetic
data.
1 www.unrealengine.com 2 http://scifleet.esa.int 3 visibleearth.nasa.gov
4 www.blender.org

B. Real Data Collection

Testbed: The Zero-G Laboratory facility [10], [11] at the
SnT, University of Luxembourg, was used for real data acqui-
sition. The laboratory setup covers a space with dimensions
of 5×3×2.3 m (WxLxH) and is equipped with two UR10
robotic arms mounted on the linear rails installed on the
ceiling and side wall. Furthermore, the facility is equipped
with an OptiTrack motion capture system (OTS) comprising
eight cameras that enable the tracking of a predefined rigid
body fitted with either active or passive markers.

Event Camera: The camera utilised in data acquisition
is Prophesee Metavision EVK4-HD[27] equipped with the
SONY IMX636ES(HD) event vision sensor, representing the
latest technology available at the time. This camera has a
resolution of 1280 × 720 pixels on a 1/2.5” sensor, each
pixel measuring 4.86µm. Furthermore, it is equipped with
a 6mm fixed focal length lens, providing a horizontal FoV
of 54.6°. The maximum read-out throughput is 3 Gevents/s,
and the typical power consumption is 0.5 to 1.5W max.

Proba-2 Mockup: The satellite mockup used in the exper-
iments weighs approximately 7 kg, with a scaling ratio of
1:2.5. The dimensions of the physical model, along the X,
Y and Z axes, are 0.64 × 0.24 × 0.416m, respectively. The
mock-up was manufactured through a third-party vendor, and
the materials were carefully selected to minimise deviations
from the textures found in the CAD data.

Fig. 3: Schematic of the Zero-G lab setup for real data collection.

Light Setup: The intensity of sunlight in orbit corresponds
to the solar irradiance of 1366 W/m2 or illuminance of ∼
163,000 lux. To emulate orbital lighting, the Aputure LS-
600D-PRO LED lamp was used as a light source for data



collection. The lamp can produce 224,200 lux at a distance
of 1 m when mounted with a Fresnel F10 lens with a spot
angle of 15°. In our setup, the lamp is fixed at a distance of
1.5 m as a trade-off between safety and accuracy, producing
120,000 lux for the colour temperature of 5800K.

Fig. 4: Synthetic data samples from RGB and Event sensor. (a) images
with good lighting and background, (b) images with good lighting and no

background, and (c) images with harsh lighting.

Fig. 5: Real data samples from FLIR RGB camera and Prophesee Event
Camera. (a) Close-range with L1, L2 lighting, (b) Far-range with L1, L2

lighting, and (c) Far-range with L3, L4 lighting.

Event camera calibration: To calibrate the event camera,
we used greyscale image reconstruction [28], which utilises
a neural network-based image reconstruction technique to
move from events to grayscale image. The camera is moved
around the fixed calibration board to collect the calibration
sequence. The event stream is extracted in batches with
a fixed time window during processing. Greyscale image
reconstruction for each batch of events was achieved using
the E2VID model [29], and the corresponding pose labels
were extracted from the OTS. The reconstructed images
were subsequently processed to compute the camera in-
trinsics using the MATLAB Camera Calibration toolbox.
For extrinsic calibration, the hand-eye calibration approach

[30] was used to find the transformation between the actual
camera reference frame and the rigid body camera frame
defined in OTS. This fixed transformation maps the raw pose
label of the rigid body to the actual camera pose in the
OTS coordinate system. Similarly, the satellite mockup has
a pre-defined marker setup to collect pose labels in the OTS
coordinate system. Data between the actual camera reference
frame and satellite poses were synchronised on the basis
of timestamps, and the transformation was applied to yield
ground truth data representing the relative pose information
of the object in the camera reference frame.

Data Collection: During real data acquisition, various
combinations of lighting conditions (L1, L2, L3, L4) and
camera positions (C1, C2, C3) were employed, as illustrated
in Fig. 3. Based on camera movement, trajectories are
classified into two groups: static and dynamic. In static
trajectories, the camera (representing the chaser satellite)
maintains a constant distance from the target, observing the
target’s motion, thereby emulating the observation phase. In
dynamic trajectories, the camera approaches the target with
linear or spiral motion, while the target exhibits stationary
or rotational movement along its Y-axis. Further details on
the real data set can be found in Table I.

Synthetic Real

Sensor resolution 1280x720 1280x720
Dataset size 179,400 (no. of poses) 16,930
No. Trajectories 300 32
No. poses/traj 598 529 (avg.)
Interpolation 80% Spline + 20% Helix -
Range 3.5 - 12 m 3.5 - 9 m
Range dist. Close, Mid, Far, Limit Close, Mid, Far
Lighting Easy, Hard L1, L2, L3, L4
Rendering Unreal Engine (RGB) -
Event Camera ICNS Emulator Prop. EVK4HD
Background Earth -
Filtering Bbox/Mask Min. Event count

TABLE I: SUMMARY OF PROPOSED SPADES DATASET

IV. EXPERIMENTS

This section presents the proposed preprocessing tech-
niques, including the 3-channel event representation and
mask-based event frame filtering method, and a baseline
comparison of the current spacecraft pose estimation algo-
rithms on the SPADES dataset.

A. Event Representation

The proposed event representation, namely 3-Channel
(3C), is a pseudo-frame with three channels to leverage the
algorithms designed for RGB images. Improving upon the
TS representation [20], the 3C representation uses expo-
nential decay to track temporal information while it splits
the actual time window W into three sub-windows of size
W/3. Events collected within each sub-window are processed
independently and organised into channels in chronological
order. This approach ensures the segregation of maximal
temporal information into separate channels, preserving the
inherent asynchronous nature of events by dividing the
time window into subwindows. This representation differs



Fig. 6: Event representations (a) E2F, (b) LNES, (c) TS, (d) 3C

from the three-channel approach presented in [31], which
uses polarity information and event count. For comparison,
different event representations are presented in Fig. 6.

The image-based representations E2F, LNES, TS, and 3C
are evaluated on an object detection task. A Faster-RCNN
model with Mobilenet-V3-Large [32] backbone was used
and initialised using pre-trained weights in the ImageNet
dataset [33]. The model was trained with a batch size
of 8 for 100 epochs, with early stopping patience set to
20. The time window size for real data is set to 0.1 s.
The test dataset comprises 34,790 samples of synthetic test
data (after an 80/20 split), while the entire real dataset of
16,930 samples was utilised. This configuration is consistent
throughout all experiments detailed in this article. The results
are evaluated using the standard metrics, Average Precision
(AP) and Average Recall (AR) at varying Intersection-over-
Union (IoU) thresholds 0.5, 0.75 and for object bounding
box sizes [34]: small (S) [Abbox ≤ 150× 150], medium
(M) [150 × 150 < Abbox ≤ 300 × 300] and large (L)
[300×300 < Abbox], where Abbox denotes the area of the
bounding box in sq. pixels. Table II demonstrates that the 3C
representation produces the best results for object detection
in both synthetic and real data. It should be noted that the
3C surpasses the original TS representation by preventing
the loss of information through the use of subwindows.

Rep. AP0.5 AP0.75 APS APM APL AR ARS APM ARL

Synthetic

E2F 0.98 0.74 0.60 0.51 0.61 0.66 0.67 0.61 0.63
LNES 0.98 0.73 0.59 0.51 0.63 0.66 0.66 0.62 0.66
TS 0.98 0.74 0.59 0.52 0.65 0.65 0.65 0.63 0.64
3C 0.99 0.95 0.84 0.82 0.79 0.89 0.89 0.90 0.83

Real

E2F 0.69 0.49 0.45 0.46 0.33 0.55 0.54 0.56 0.55
LNES 0.63 0.49 0.43 0.44 0.22 0.54 0.59 0.54 0.34
TS 0.63 0.48 0.42 0.44 0.27 0.53 0.57 0.55 0.38
3C 0.71 0.50 0.40 0.48 0.38 0.58 0.55 0.59 0.57

TABLE II: EVALUATION OF DIFFERENT EVENT REPRESENTATIONS ON
SYNTHETIC (TEST) AND REAL DATASETS.

B. Event Frame Filtering

The initial examination of the event frames from the syn-
thetic dataset indicated that not all frames contain the same
amount of information. Since the synthetic events are derived
from the RGB images, the optical flow along edges (and
sometimes surfaces) can prevent the generation of events.
The frames affected in this way have very little information
about the object itself, as shown in Fig. 7-b. Our preliminary
assessments revealed the necessity of filtering good-quality
event data to enhance the model’s learning process and
improve performance. To address this, we introduce a new
method called mask-based filtering, which involves screening
event frames with sufficient information using the target’s

segmented mask and computing the distribution of the events
with this area. First, we define a discrete uniform distribution,

puniform : Mpixel → R
(x, y) 7→ 1

N

(1)

where N is the number of pixels of the mask and Mpixel
is the set of pixels (x, y) within the mask. Next, a discrete
distribution for event data pevent, as follows,

pevent : Mpixel → R

(x, y) 7→

{
0.99
N if (x, y) ∈ E

0.01
N if (x, y) /∈ E

(2)

where E is the event stream. Subsequently, the KL-
divergence is calculated between the two pevent and puniform to
filter out inadequate pose labels using a threshold set across
the dataset. For comparison purposes, a simple filtering
technique known as bbox-based filtering is introduced, which
relies on the area of the bounded box of the object. This
approach involves calculating the proportion of event occur-
rences within a specific bounding box relative to the box’s
area. A predetermined threshold value is then established to
eliminate pose labels from the training data.

Fig. 7: Mask-filtering samples. (a) and (b) samples removed from training
data, (c) samples included in training data.

First, we evaluate the event representations and filtering
approaches in object detection tasks. The best-performing
representation and filtering technique will be adopted for the
baseline evaluation of pose estimation. It is important to note
that object detection tasks are also a key component of the
hybrid pose estimation approach.

Filt. AP0.5 AP0.75 APS APM APL AR ARS APM ARL

Synthetic

w/o Filt. 0.99 0.95 0.84 0.82 0.79 0.89 0.89 0.90 0.83
Bbox 0.89 0.58 0.69 0.52 0.67 0.75 0.77 0.68 0.78
Mask 0.98 0.84 0.74 0.59 0.66 0.79 0.80 0.70 0.81

Real

w/o Filt. 0.69 0.48 0.38 0.49 0.38 0.54 0.52 0.59 0.57
Bbox 0.71 0.50 0.40 0.48 0.38 0.58 0.55 0.59 0.57
Mask 0.72 0.53 0.43 0.51 0.41 0.59 0.59 0.61 0.57

TABLE III: EVALUATION OF FILTERING TECHNIQUES ON SYNTHETIC
(TEST) AND REAL DATASETS.

Additional filtered datasets were generated for each tech-
nique to determine the most effective filtering method.
The original synthetic dataset (without filtering) contained
143,760 pose labels; after mask-based filtering, there were
94,147 labels (65%), and box-based filtering yielded 113,876
labels (79%) for the training set. Three distinct CNN models
were trained using synthetic data and evaluated on synthetic
and real test data. The test data was filtered solely based
on an event count threshold (more than 10,000 events) to
identify valid event frames. All filtering experiments utilised



the 3C representation for both training and evaluation, and
the results are summarized in Table III. The result shows that
the model tends to overfit on w/o filtering data, as seen in the
synthetic test results. After discarding the overfitting results,
it is evident that the mask-based filtering performs better in
both synthetic and real data, even though it was trained with
fewer data.

C. Pose Estimation Baseline

The baseline evaluation investigates two main algorithmic
approaches, as discussed in Section II-B. In the Direct
method, the input image is processed through two branches
of the network. In the first branch, the image is fed into an
object detector, and the resulting Region of Interest (RoI)
is then forwarded to a CNN feature extraction backbone.
This backbone is followed by a fully connected layer that
estimates the rotation parameters using the Fisher Matrix
representation [35]. In the second branch, the image is
processed through a CNN backbone and a subsequent fully
connected layer to predict translation. The CNN feature
extraction backbone is Mobilenet-V3-Large, initialised with
pre-trained weights from the ImageNet dataset. For the
Hybrid approach, the network architecture resembles the one
proposed in [36], employing Faster-RCNN with a ResNet-
50 backbone for object detection, HigherHRNet for keypoint
regression and BPnP [37] for PnP optimization during infer-
ence. The baseline results are summarised in Table IV using
standard pose error metrics similar to those of [3], except
for the translation error, which was modified to a relative
translation error. The metrics include the relative translation
error ET [%], rotation error ER [◦], and pose error EP as
defined below.

ET = ∥t̃−t∥2/∥t∥2; ER = 2 acos|⟨q̃, q⟩|; EP = ER+ET.

The metric Data[%] represents the percentage of data for
which the algorithm could accurately determine a pose above
a threshold. Two confidence thresholds were used: 0.9 for
object detection and 0.5 for keypoint regression. Despite the
Hybrid method showing better performance, it produced
results on a smaller portion of the data than the Direct
method. This was mainly because the confidence score
of keypoint predictions often did not meet the threshold,
resulting in insufficient numbers for PnP optimisation.

Model
Data ET ER EP Data ET ER EP
[%] [%] [◦] [-] [%] [%] [◦] [-]

Synthetic Real

Direct 97.32 4.29 30.43 0.57 73.32 5.13 81.13 1.47
Hybrid 23.98 3.23 6.69 0.15 17.27 3.34 78.98 1.41

TABLE IV: PERFORMANCE OF BASELINE MODELS ON SYNTHETIC
(TEST) AND REAL DATASETS

Further examination of the results on the synthetic dataset
is provided in Table V, highlights that lighting and back-
ground conditions significantly impact the algorithm’s per-
formance. The results are constrained to existing methods
that do not incorporate domain adaptation techniques. It

indicates a notable disparity between the synthetic and real
domains in the event data, resulting in a drop in performance.

Model
Data ET ER EP Data ET ER EP
[%] [%] [◦] [-] [%] [%] [◦] [-]

No-BG + Easy-LI BG + Easy-LI

Direct 99.89 2.21 19.99 0.37 98.78 2.93 29.14 0.54
Hybrid 25.87 2.12 2.47 0.06 24.57 2.98 3.76 0.09

No-BG + Hard-LI BG + Hard-LI

Direct 97.48 4.88 32.45 0.62 91.74 5.03 40.14 0.75
Hybrid 22.78 4.02 7.53 0.17 20.64 4.89 13.07 0.28

TABLE V: IMPACT OF BACKGROUND (BG) AND LIGHTING (LI)
CONDITIONS ON SYNTHETIC (TEST) DATASET

Fig. 8: Real dataset samples with estimated keypoints and poses.
(a,b,c) Best performing, (d,e,f) Worst performing.

V. CONCLUSION AND FUTURE WORK

In summary, this study introduced the SPADES dataset, a
comprehensive resource containing both synthetic and real
event data. Its purpose is to support the training and vali-
dation of deep learning (DL) algorithms for spacecraft pose
estimation based on events. The proposed 3-Channel event
representation showed better performance in object detection
tasks compared to existing representations. Furthermore, the
use of a mask-based data filtering technique improved the
quality of training data, resulting in improved algorithm
performance. However, the experimental findings of the
baseline models highlighted the persistent gap between the
synthetic and real event data. The characteristics of materials
and textures significantly influenced the generation of events
in synthetic versus real data. Event cameras demonstrated
their potential, especially in low-light conditions, where
conventional RGB cameras struggled to provide valuable
information, which was evident during real data collection.
Future efforts will focus on improving the synthetic dataset to
bridge this performance gap effectively. Moreover, utilising
the asynchronous nature of event data shows promise for
advancing pose estimation and tracking methods.
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[3] T. H. Park, M. Märtens, M. Jawaid, Z. Wang, B. Chen, T.-J. Chin,
D. Izzo, and S. D’Amico, “Satellite pose estimation competition 2021:
Results and analyses,” Acta Astronautica, vol. 204, pp. 640–665, 2023.

[4] M. Jawaid, E. Elms, Y. Latif, and T.-J. Chin, “Towards Bridging the
Space Domain Gap for Satellite Pose Estimation using Event Sensing,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). London, United Kingdom: IEEE, May 2023, pp. 11 866–
11 873.

[5] G. Cohen, S. Afshar, B. Morreale, T. Bessell, A. Wabnitz, M. Rutten,
and A. van Schaik, “Event-based sensing for space situational aware-
ness,” The Journal of the Astronautical Sciences, vol. 66, pp. 125–141,
2019.

[6] S. Afshar, A. P. Nicholson, A. van Schaik, and G. Cohen, “Event-
based object detection and tracking for space situational awareness,”
IEEE Sensors Journal, vol. 20, no. 24, pp. 15 117–15 132, 2020.

[7] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, and D. Scara-
muzza, “Event-Based Vision: A Survey,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 154–180,
Jan. 2022.

[8] E. Elms, M. Jawaid, Y. Latif, and T.-J. Chin, “SEENIC: dataset for
Spacecraft posE Estimation with NeuromorphIC vision,” Oct. 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.7214231

[9] K. Gantois, F. Teston, O. Montenbruck, P. Vuilleumier, and P. van
Braembusche, “Proba-2 mission and new technologies overview,” in
Small Satellite Systems and Services - The 4S Symposium, December
2006. [Online]. Available: https://elib.dlr.de/46830/

[10] M. Olivares-Mendez, M. R. Makhdoomi, B. C. Yalçın, Z. Bokal,
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