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Abstract Software systems log massive amounts of data, recording important run-
time information. Such logs are used, for example, for log-based anomaly detection,
which aims to automatically detect abnormal behaviors of the system under anal-
ysis by processing the information recorded in its logs. Many log-based anomaly
detection techniques based on deep learning models include a pre-processing step
called log parsing. However, understanding the impact of log parsing on the accu-
racy of anomaly detection techniques has received surprisingly little attention so
far. Investigating what are the key properties log parsing techniques should ideally
have to help anomaly detection is therefore warranted.

In this paper, we report on a comprehensive empirical study on the impact of
log parsing on anomaly detection accuracy, using 13 log parsing techniques, seven
anomaly detection techniques (five based on deep learning and two based on tra-
ditional machine learning) on three publicly available log datasets. Our empirical
results show that, despite what is widely assumed, there is no strong correlation
between log parsing accuracy and anomaly detection accuracy, regardless of the
metric used for measuring log parsing accuracy. Moreover, we experimentally con-
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firm existing theoretical results showing that it is a property that we refer to as
distinguishability in log parsing results—as opposed to their accuracy—that plays
an essential role in achieving accurate anomaly detection.

Keywords Logs · Log parsing · Template identification · Anomaly detection

1 Introduction

Software system execution logs provide valuable information about the runtime be-
havior of the system, which is essential for monitoring and troubleshooting. Among
many log analysis approaches, log-based anomaly detection has been actively stud-
ied to automatically detect abnormal behaviors of the system under analysis by
processing the information recorded in logs [16]. Recently, anomaly detection tech-
niques based on Deep Learning (DL) models, such as Long Short-Term Memory
(LSTM) [9, 31, 52] and Convolutional Neural Networks (CNNs) [29], have shown
promising results.

One common aspect of most anomaly detection techniques is having a pre-
processing step called log parsing (also known as log template identification). This
step is needed because anomaly detection techniques require structured logs to
automatically process them, whereas input logs are often free-formed or semi-
structured, as generated by logging statements (e.g., printf() and logger.info())
in the source code. Many log parsing techniques have also been developed to
automatically convert unstructured input logs into structured logs [53].

The frequent combination of log parsing and anomaly detection clearly implies
the importance of the former for the latter. Nevertheless, assessing in a systematic
way the impact of log parsing on anomaly detection has received surprisingly little
attention so far. Only recently, Shin et al. [44] investigated what ideal log parsing
results are in terms of accurate anomaly detection, but purely from a theoretical
standpoint. Le and Zhang [27] empirically showed that different log parsing tech-
niques, among other potential factors, can significantly affect anomaly detection
accuracy, but the accuracy of log parsing results was not adequately measured,
and the correlation between log parsing accuracy and anomaly detection accu-
racy was not reported. Fu et al. [12] attempted to address the issue by evaluating
log parsing and anomaly detection accuracy. However, they relied on a single log
parsing accuracy metric [24], and the log parsing results used to evaluate anomaly
detection techniques were based on less than 1% of all logs used, which limits the
validity of the findings.

To systematically investigate the impact of log parsing on anomaly detection
while addressing the issues of the aforementioned studies, this paper reports on an
empirical study, in which we performed a comprehensive evaluation using 13 log
parsing techniques, seven anomaly detection techniques—five based on deep learn-
ing and two based on traditional machine learning—on three publicly available log
datasets. We considered all three log parsing accuracy metrics (i.e., grouping ac-
curacy [53], parsing accuracy [6], and template accuracy [24]) proposed in the
literature.

Against all assumptions, our results show that there is no strong correlation
between log parsing accuracy and anomaly detection accuracy, regardless of the
metric used for measuring log parsing accuracy. In other words, accurate log pars-
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ing results do not necessarily increase anomaly detection accuracy. To better un-
derstand the phenomenon at play, we investigated another property of log pars-
ing, distinguishability, a concept proposed by Shin et al. [44] that was theoretically
shown to relate to anomaly detection accuracy. Our empirical results confirm that,
as far as anomaly detection is concerned, distinguishability in log parsing results
is the property that really matters and should be the key target of log parsing.

In summary, the main contributions of this paper are:

– the systematic and comprehensive evaluation of the impact of log parsing on
anomaly detection;

– the investigation of the impact of the distinguishability of log parsing results
on anomaly detection.

The rest of the paper is organized as follows. Section 2 provides basic informa-
tion used throughout the paper, including the definitions of logs, messages, and
templates, as well as an overview of log parsing and anomaly detection. Section 3
motivates our study and introduces the research questions. Section 4 describes
the experimental design, including the log datasets, log parsing techniques, and
anomaly detection techniques used in the experiments. Section 5 presents the ex-
perimental results. Section 6 discusses the practical implications, derived from the
results, for the application of log parsing in the context of anomaly detection.
Section 7 surveys the related work. Section 8 concludes the paper and provides
directions for future work.

2 Background

In this section, we provide an overview of the main concepts that will be used
throughout the paper. We first introduce the definitions of logs, messages, and
log templates (§ 2.1). We then explain the concept of log parsing (also known as
log template identification) and illustrate different log parsing accuracy metrics
proposed in the literature (§ 2.2). We discuss log-based anomaly detection and
the corresponding accuracy metrics in § 2.3. Finally, we summarize the recent
theoretical results on ideal log parsing for accurate anomaly detection, introducing
the concept of distinguishability for log parsing results (§ 2.4).

2.1 Logs, Messages, and Templates

A log is a sequence of log entries∗. A log entry contains various information about
the event being logged, including a timestamp, a logging level (e.g., INFO, DEBUG),
and a log message. A log message can be further decomposed into fixed and vari-
able parts since it is generated by executing a logging statement that can have
both fixed (hard-coded) strings and program variables in the source code. For ex-
ample, the execution of the logging statement “logger.info("Deleting block " +

blkID + " file " + fileName)” when the program variables blkID and fileName

∗Note that a log is different from a log file. In practice, one log file may contain many
logs representing the execution flows of different components/sessions. For example, an HDFS
(Hadoop Distributed File System) log file contains many logs, distinguished by file block IDs,
each representing an independent execution for a specific block.
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evaluate to blk-1781 and /hadoop/dfs, respectively, will generate a log entry
“11:22:33 INFO Deleting block blk-1718 file /hadoop/dfs” where the log mes-
sage “Deleting block blk-1718 file /hadoop/dfs” can be decomposed into the
fixed parts (i.e., “Deleting block” and “file”) and the variable parts (i.e., “blk-1718”
and “/hadoop/dfs”). A (log message) template masks the various elements of each
variable part with a special character “<*>”; this representation is widely used in
log-based analyses (e.g., log parsing [14, 21], anomaly detection [9, 52], and log-
based testing [10, 19]) when it is important to focus on the event types captured
by a log message.

For instance, the template corresponding to the example log message “Deleting
block blk-1178 file /hadoop/dfs” is “Deleting block <*> file <*>”.

2.2 Log Parsing (Log Template Identification)

Although software execution logs contain valuable information about the run-time
behavior of the software system under analysis, they cannot be directly processed
by log-based analysis techniques that require structured input logs (containing
templates) instead of free-formed log messages. Extracting log templates from log
messages is straightforward when the source code with the corresponding logging
statements is available. However, often the source code is unavailable, for example,
due to the usage of 3rd-party, proprietary components. This leads to the problem
of log parsing (log template identification): How can we identify the log templates of

log messages without accessing the source code?

To address this problem, many automated log-parsing approaches, which take
as input log messages and identify their log templates using different heuristics,
have been proposed in the literature (e.g., AEL [21], Drain [14], IPLoM [30],
LenMa [43], LFA [36], LogCluster [48], LogMine [13], Logram [6], LogSig [45],
MoLFI [32], SHISO [34], SLCT [47], and Spell [8]).

Three different accuracy metrics have been proposed to evaluate the accuracy
of log parsing approaches: Grouping Accuracy (GA) [53], Parsing Accuracy (PA) [6],
and Template Accuracy (TA) [24].

Zhu et al. [53] observed that log parsing can be considered as a clustering
process where log messages with the same template are clustered into the same
group. Based on this idea, they proposed the GAmetric to assess if log messages are
correctly grouped. Specifically, GA is defined as the ratio of log messages correctly

parsed by the log parsing approach under evaluation over the total number of log
messages, where a log message is correctly parsed when its log message group is
the same as the ground truth (i.e., a group generated by oracle templates).

Dai et al. [6] later proposed PA, to address the issue that GA only consid-
ers message groups, not the equivalence between the templates identified by the
log parsing approach under evaluation and the oracle templates. Although hav-
ing correctly grouped messages would be enough in some cases (e.g., detecting
anomalies based on the sequence of template IDs without considering the content
of the templates [9]), correctly identified templates (i.e., templates identical to the
corresponding oracle ones) matter when the fixed parts of templates are used (e.g.,
detecting anomalies based on the semantic information in the templates [52]). To
this end, PA replaces the definition of a correctly parsed log message in GA as
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follows: a log message is correctly parsed when its identified template is identical
to the oracle template.

Khan et al. [24] recently proposed the TA metric, since both GA and PA are
defined based on the number of correctly parsed log messages and, therefore, can
be misleading, especially when there are many repeated messages (e.g., heart-
beat messages). Specifically, they introduced Precision-TA (PTA) and Recall-TA
(RTA), where PTA is defined as the number of correctly identified templates over
the total number of identified templates and RTA is defined as the number of cor-
rectly identified templates over the total number of oracle templates. Moreover,
FTA (short for “F1-measure TA”) is the harmonic mean of PTA and RTA.

2.3 Anomaly Detection

(Log-based) anomaly detection is a technique that aims to identify anomalous
patterns, recorded in input logs, that do not conform to the expected behaviors
of the system under analysis [16]. It takes as input a sequence of log templates
and determines whether the given sequence represents a normal behavior of the
system or not.

With the recent advances in Deep Learning (DL), many anomaly detection
approaches, which leverage DL models to learn various aspects of log template se-
quences of normal and abnormal behaviors and classify them, have been proposed
in the literature; for example, DeepLog [9], LogAnomaly [31], and LogRobust [52]
are based on Long Short-Term Memory based (LSTM), CNN [29] is based on Con-
volutional Neural Network, and PLELog [51] is based on Gated recurrent units
(GRUs).

To assess the accuracy of anomaly detection approaches, it is common practice
to use standard metrics from the information retrieval domain, such as Precision,
Recall, and F1-Score. These metrics are defined as follows: Precision = TP

TP+FP ,

Recall = TP
TP+FN , and F1-score = 2×Precision×Recall

Precision+Recall where TP (True Positive) is the
number of abnormal logs correctly identified by the model, FP (False Positive) is
the number of normal logs incorrectly identified as anomalies by the model, and FN

(False Negative) is the number of abnormal logs incorrectly identified as normal.

2.4 Ideal Log Parsing Results for Accurate Anomaly Detection

Given the dependency of anomaly detection on log parsing, Shin et al. [44] pre-
sented a theoretical analysis on ideal log parsing results for accurate anomaly
detection. The idea behind the analysis is that log parsing can be regarded as
the abstraction of log messages, where some tokens in the messages are converted
to variable parts. Then, if normal and abnormal logs are over-abstracted by log
parsing so that they are indistinguishable from each other, it is clear that anomaly
detection, which takes as input the parsed logs (i.e., abstracted logs, sequences
of templates), cannot distinguish normal from abnormal logs. Based on this idea,
they formally defined the concept of distinguishability as a property of log parsing
results and showed that it is an essential condition for ideal log parsing results.

Specifically, let M be a set of log messages and L be a set of logs where a
log l ∈ L is a sequence of log messages ⟨m1 ,m2 , . . . ,mn⟩. Also, let Ln ⊆ L be a
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set of normal logs and La ⊆ L be a set of abnormal logs such that Ln ∩ La = ∅
and Ln ∪ La = L. Given M and a set of templates (i.e., log parsing results) T ,
an abstraction function τ : M → T that represents a generic log parsing approach
can be defined. Based on τ , an abstraction of a log l = ⟨m1 ,m2 , . . . ,mn⟩ can be
defined as τ∗(l) = ⟨τ(m1 ), τ(m2 ), . . . , τ(mn)⟩. Similarly, an abstraction of a set of
logs L can be defined as τ∗∗(L) = {τ∗(l) | l ∈ L}. Notice that τ∗∗(L) represents a
log parsing result for a set of logs L.

The notion of distinguishability can be defined as follows: τ distinguishes Ln

and La if and only if τ∗∗(Ln) ∩ τ∗∗(La) = ∅. In other words, a log parsing ap-
proach distinguishes between normal and abnormal logs if and only if they are
still distinguishable after log parsing. When τ distinguishes Ln and La, τ

∗∗(L) for
L = Ln ∪ La is called d-maintaining, meaning that the distinguishability between
Ln and La is maintained in the log parsing result.

3 Motivation

As discussed in Section 2, log parsing converts unstructured logs into structured
ones, which can then be processed by log-based analysis techniques like anomaly
detection. It is quite natural to speculate that log parsing results can affect anomaly
detection results. Intuitively, the research literature has assumed that inaccurate
log parsing results leads to inaccurate anomaly detection results. However, this hy-
pothesis has not been fully investigated in the literature, except for one empirical
study [27] and one analytical investigation [44].

Le and Zhang [27] recently presented an empirical work investigating several
aspects that can impact Deep Learning (DL)-based anomaly detection approaches,
such as training data selection, data grouping, class distribution, data noise, and
early detection ability. One of their experiments considering data noise assessed
the impact of noise deriving from log parsing results. Specifically, they used four
log parsing techniques (Drain [14], Spell [8], AEL [21], and IPLoM [30]) to generate
log parsing results for two log datasets (BGL [38] and Spirit [38]). Then, for each
log dataset, they used the different log parsing results as input of five anomaly de-
tection approaches (DeepLog [9], LogAnomaly [31], PLELog [51], LogRobust [52],
and CNN [29]), and measured the accuracy of the latter. Their experimental re-
sults showed that log parsing approaches highly influence the accuracy of anomaly
detection; for example, the F1-Score of DeepLog on Spirit logs [38] decreases from
0.755 to 0.609 when Drain is used instead of IPLoM for log parsing.

Although this is the first clear evidence showing the impact of log parsing
results on anomaly detection accuracy, the scope of the underlying study is lim-
ited. For example, it simply uses different log parsing results (produced by differ-
ent tools) without quantitatively assessing the accuracy of the log parsing tools;
therefore, the relationship between log parsing accuracy and anomaly detection
accuracy remains unclear. To this end, we define our first research question as
follows: RQ1 - To which extent does the accuracy of log parsing affect the

accuracy of anomaly detection?

As summarized in Section 2.4, Shin et al. [44] recently proposed a theoretical
framework determining the ideal log parsing results for anomaly detection by in-
troducing the concept of “distinguishability” for log parsing results. It is argued
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that, rather than accuracy as previously assumed, what really matters is the ex-
tent to which log parsing results are distinguishable. However, to the best of our
knowledge, there is no empirical work assessing quantitatively distinguishability
in log parsing results and its impact on anomaly detection accuracy. Therefore,
we define our second research question as follows: RQ2 - How does the accuracy

of anomaly detection vary with distinguishability of log parsing results?

Answering the above questions will have a significant impact on both research
and industry in the field of log-based anomaly detection. For example, if the answer
to the first question is that, regardless of the log parsing accuracy metrics, there
is no relationship between log parsing accuracy and anomaly detection accuracy,
then it means that there is no need to use the existing accuracy metrics to evaluate
log parsing results for anomaly detection. This would completely change the way
log parsing tools are evaluated. Similarly, if the answer to the second question is
that the distinguishability of log parsing results indeed affects anomaly detection,
as expected from the recent theoretical analysis [44], then this must be the focus of
log parsing evaluations. As a result, our answers will provide essential insights on
better assessing the quality of log parsing techniques for more accurate anomaly
detection.

4 Experimental Design

All experiments presented in this paper were carried out using the HPC facilities
of the University of Luxembourg (see https://hpc.uni.lu). Specifically, we used
Dual Intel Xeon Skylake CPU (8 cores) and 64GB RAM for running individual
log parsing and anomaly detection techniques.

4.1 Datasets

To answer the research questions introduced in Section 3, we used publicly avail-
able datasets based on the LogHub benchmark [15], which contains a large col-
lection of log messages from various types of systems including operating systems
(Linux, Windows, and Mac), distributed systems (BGL, Hadoop, HDFS, Thunder-
bird, and OpenStack), standalone programs (Proxifier and Zookeeper), and mobile
systems (Android). The benchmark has been widely used in various studies focused
on log parsing [6, 24, 53] and anomaly detection [12, 27].

Among the benchmark datasets, we selected HDFS, Hadoop, and OpenStack
datasets because of the following reasons: (1) they have labels for normal and
abnormal logs to be used for assessing the accuracy of anomaly detection tech-
niques and (2) the source code of the exact program version used to generate the
logs is publicly available; this allows us to extract correct oracle templates (i.e.,
ground truth templates) for each log message. The oracle templates are especially
important in our study as we need to carefully assess both log parsing accuracy
and anomaly detection accuracy. Although the benchmark provides some oracle
templates for all log datasets, they are manually generated (without accessing the
source code) and cover only 2K log messages randomly sampled for each dataset.
As discussed by Khan et al. [24], those manually generated oracle templates are
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Table 1: Datasets in LogHub benchmark [15]

Datasets Anomaly Label Source Code

Android ✗ ✗
Apache ✗ ✗
BGL ✓ ✗
HDFS ✓ ✓
HPC ✗ ✗
Hadoop ✓ ✓
HealthApp ✗ ✗
Linux ✗ ✗
Mac ✗ ✗
OpenSSH ✗ ✗
OpenStack ✓ ✓
Proxifier ✗ ✗
Spark ✗ ✗
Spirit ✓ ✗
Thunderbird ✓ ✗
Windows ✗ ✗
Zookeeper ✗ ✗

error-prone; therefore, we used the logging statements in the source code to ex-
tract correct oracle templates. Table 1 shows all the log datasets in the LogHub
benchmark and whether they meet each of the above-mentioned criteria; the rows
highlighted in gray meet both criteria.

During our preliminary evaluation, we found an issue with HDFS. The original
HDFS logs were too large (11.2M log messages) to be processed by the slowest
anomaly detection technique (i.e., LogAnomaly [31]) when setting a two-day time-
out. Due to the large number of experiments we needed to conduct (i.e., all com-
binations of log parsing and anomaly detection techniques with additional repeats
for distinguishable and indistinguishable log parsing results, see § 4.4 and § 4.5),
we decided to reduce the log dataset size. As we found that the slowest log parsing
technique (i.e., LogAnomaly) could process up to n = 300K messages within 2
hours, we randomly and iteratively removed logs (i.e., sequences of log messages)
from the HDFS dataset to reduce it until the total number of remaining messages
was less than 300K. Notice that each HDFS log is a sequence of log messages
having the same block ID, representing either a normal or abnormal sequence of
events. To preserve individual (normal or abnormal) sequences, we randomly se-
lected and removed them by sequence, not by message. Although the resulting
reduced dataset is much smaller than the original dataset, it is still representative
of the original dataset in terms of the distribution of normal and abnormal log
messages. Specifically, the original HDFS dataset consists of 11 175 629 log mes-
sages, with 97.43% normal and 2.57% abnormal log messages, and the reduced
HDFS dataset mirrors this distribution, with 97.60% normal and 2.40% abnormal
log messages.

Table 2 reports on the size of our datasets, in terms of the number of oracle
templates (O), the number of all logs (Lall ), the number of normal logs (Ln), the
number of abnormal logs (La), the number of all messages (Mall ), the number of
messages in normal logs (Mn), and the number of messages in abnormal logs (Ma).
Note that the number of log messages is the same as the number of log entries
(see Section 2.1 for details).
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Table 2: Size information of the log datasets used in our experiments. Number
of oracle templates (O); Number of all logs (Lall ); Number of normal logs (Ln);
Number of abnormal logs (La); Number of all messages (Mall ); Number of mes-
sages in normal logs (Mn); Number of messages in abnormal logs (Ma).

Dataset O Lall Ln La Mall Mn Ma

HDFS (reduced) 26 15295 15026 269 299971 292776 7195
Hadoop 175 54 11 43 109968 14392 95576
OpenStack 21 2068 2064 4 79925 79817 108

4.2 Log Parsing Techniques

We aimed to use as many log parsing techniques as possible, among those avail-
able in the literature. Since Khan et al. [24] recently provided a comprehensive
evaluation of 14 log parsing techniques (i.e., AEL [21], Drain [14], IPLoM [30],
LenMa [43], LFA [36], LKE [11], LogCluster [48], LogMine [13], Logram [6], LogSig [45],
MoLFI [32], SHISO [34], SLCT [47], and Spell [8]), we decided to reuse their repli-
cation package, including all the aforementioned techniques.

However, we had to exclude LKE since our preliminary evaluation results
showed that it could not complete its run for all of our log datasets within the
2-day timeout. Notice that we have already reduced our log datasets (in particu-
lar, HDFS), as discussed in Section 4.1, based on the slowest anomaly detection
technique (i.e., LogAnomaly). Although we could additionally reduce the datasets
based on the slowest log parsing technique (i.e., LKE), we found that it would
result in small logs that are not representative of the size and complexity of real-
world logs.

As a result, we considered 13 log parsing techniques in our experiments. For
all the log parsing techniques, we used their default parameters.

4.3 Anomaly Detection Techniques

Similar to the case of log parsing techniques, we considered the work of Le and
Zhang [27], a recent empirical study that evaluated five DL-based anomaly detec-
tion techniques (i.e., DeepLog [9], LogAnomaly [31], LogRobust [52], PLELog [51],
and CNN [29]), and decided to use their replication package, including all the afore-
mentioned techniques. For all anomaly detection techniques, we used their default
parameters. These techniques are representative of the state of the art of DL-based
anomaly detection techniques.

In addition to deep learning models, we included two representative tradi-
tional machine learning models, namely Support Vector Machine (SVM) [17] and
Random Forest (RF) [3]† since they are known for their effectiveness in anomaly
detection tasks on the HDFS dataset [20, 50].

We want to note that the seven anomaly detection techniques used in this paper
all require log parsing as a preliminary step. Although a few recent studies [26, 35, 37]
have proposed anomaly detection techniques that do not require log parsing, we

†We used the implementations from the scikit-learn library [40].
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did not consider them in our work. This is mainly because our focus is on assessing
the impact of log parsing on anomaly detection techniques. We leave the evaluation
of techniques that do not require log parsing for future work.

4.4 Methodology for RQ1

Recall that RQ1 investigates to what extent the accuracy of log parsing affects
the accuracy of anomaly detection. To answer RQ1, for each dataset, we first
executed the log parsing techniques to generate log parsing results and computed
their accuracy in terms of GA, PA, and FTA (see § 2.2). We then executed the
anomaly detection techniques on each of the log parsing results and computed
their accuracy in terms of precision (PR), recall (RE), and F1 score. By doing
so, we obtained a tuple of accuracy values ⟨GA,PA,FTA,PR,RE ,F1 ⟩ for each
combination of datasets, log parsing results, and anomaly detection techniques.

For log parsing, we executed each of the log parsing techniques with a 2-day
timeout. Since MoLFI is non-deterministic, we executed it three times. In total,
we obtained 16 log parsing results (three from the three different executions of
MoLFI and 13 from the remaining log parsing techniques) for each dataset. For
each log parsing result, we computed ⟨GA,PA,FTA⟩ using the oracle templates
(and the messages matching them) for the corresponding datasets.

For anomaly detection, we divided the individual log parsing results into two
disjoint sets, i.e., a training set and a test set, using a split ratio of 80:20. Con-
sidering the data leakage problem mentioned by Le and Zhang [27], we used the
first 80% of the logs (in chronological order) for training and the remaining 20%
for testing. We trained the anomaly detection techniques on each of the train-
ing sets with a 2-day timeout, and used the corresponding test sets to compute
⟨PR,RE ,F1 ⟩. To account for the randomness of anomaly detection techniques, we
repeated the train-and-test process five times and used the average F1 score.

As a result, we obtained 224 tuples ⟨GA,PA,FTA,PR,RE ,F1 ⟩ from the com-
binations of two datasets, 16 log parsing results, and seven anomaly detection
techniques.

4.5 Methodology for RQ2

Recall that RQ2 investigates the relationship between the distinguishability of
log parsing results and anomaly detection accuracy. To answer RQ2, we need
distinguishable and indistinguishable log parsing results to compare in terms of
anomaly detection accuracy. Although the log parsing results generated for RQ1
are available, they are mostly (but not all) distinguishable, leading to unbalanced
data for RQ2. To systematically assess the impact of the distinguishability of log
parsing results on anomaly detection accuracy using balanced data, we generate
pairs of distinguishable and indistinguishable log parsing results.

Specifically, let d(R) be the distinguishability — expressed as a Boolean value,
either true (T ) or false (F ) — of a log parsing result R. For each log parsing result
R (i.e., the result of executing a log parsing technique for a dataset) generated in
the context of RQ1 (i.e., 16 log parsing results for each of the two datasets), we
first created a pair of log parsing results ⟨R,R′⟩ by artificially generating R′ from
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R such that d(R′) = ¬d(R) using Algorithms 1 and 2, detailed further below. By
definition, if R is distinguishable then R′ will be indistinguishable and vice versa.
For the sake of simplicity, we denote the distinguishable result (be it R or R′) as
Rdst and the indistinguishable one (respectively, either R′ or R) as Rind . We then
executed, for all pairs ⟨Rdst , Rind ⟩, all the considered anomaly detection techniques
twice: the first time using Rdst as input and the second time using Rind as input;
for each run of each anomaly detection technique we computed its accuracy in
terms of precision, recall, and F1 score. By doing so, we obtained the anomaly
detection accuracy scores for pairs of distinguishable (Rdst ) and indistinguishable
(Rind ) versions of log parsing results, and then compared them.

For the generation of R′ from R, it is important to minimize the difference
between R and R′ (in terms of both training and testing datasets) while achieving
d(R′) = ¬d(R). This is to ensure that if there is a difference in anomaly detection
scores between R and R′, it is mostly due to distinguishability and not to other
differences between R and R′ (e.g., the number of templates or the size of log
parsing results). Furthermore, the testing datasets for R and R′ should remain the
same. To do this, we need to distinguish the two cases when d(R) = T and when
d(R) = F , as described below.

4.5.1 Generation of Indistinguishable from Distinguishable Log Parsing Results

When d(R) = T (i.e., R = Rdst ), it means that templates for different log messages
in R are different enough to distinguish between normal and abnormal logs in R, as
explained in Section 2.4. For example, let us consider two logs l1 = ⟨m1 ,m2 ⟩ and
l2 = ⟨m3 ,m4 ⟩ where the templates of the four messages are identified as τ(m1) =
t1, τ(m2) = t2, τ(m3) = t3, and τ(m4) = t2, respectively, using a log parsing
technique τ . Figure 1 shows the logs, messages, and templates. In this case, the log
parsing result of τ for {l1, l2} is distinguishable, as highlighted in blue in the figure,
since τ∗(l1) = ⟨τ(m1), τ(m2)⟩ = ⟨t1, t2⟩ and τ∗(l2) = ⟨τ(m3 ), τ(m4 )⟩ = ⟨t3, t2⟩ are
different (due to τ(m1) ̸= τ(m3), i.e., t1 ̸= t3). However, if the templates of m1

and m3 were the same, then the log parsing result would be indistinguishable. In
other words, as highlighted in red in the figure, we can make the distinguishable
log parsing result of τ indistinguishable by merging the templates of m1 and m3

(e.g., by introducing a dummy log parsing technique τ ′ that behaves the same
as τ except for τ ′(m1) = τ ′(m3) = t13). Notice that τ ′ changes only (a few)
templates, not the corresponding log messages, meaning that the original datasets
remain the same. Using this idea, to generate R′ = Rind from R = Rdst , we
generated the templates of Rind by iteratively merging the templates of Rdst until
d(Rind ) = F . Furthermore, to minimize the difference between Rdst and Rind in
terms of the number of templates (i.e., to minimize the number of templates being
merged), we start with merging the templates with the highest number of matching
messages in the log. This is based on the intuition that the more messages affected
by merging templates, the more likely normal and abnormal logs are to become
indistinguishable. Recall that we only change the templates, not their log messages.

Although merging templates to generate indistinguishable log parsing results
might look artificial, it is indeed realistic to some extent. In practice, a log pars-
ing result would be indistinguishable only when a log parsing technique fails to
identify proper templates that can sufficiently “distinguish” normal and abnormal
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log sequences. Therefore, merging templates in the distinguishable log parsing re-
sults mimics the behavior of such imperfect log parsing techniques, leading to
indistinguishable log parsing results.

One might also object that artificially merging templates corresponding to dif-
ferent messages could introduce incorrect templates in Rind , leading to an unfair
comparison between Rdst and Rind . However, it is common for the log parsing tech-
niques to identify many templates that are already incorrect [24]. Furthermore, the
focus of RQ2 is not the correctness of templates but rather the distinguishability
of log parsing results. Our goal is to generate a pair of Rdst and Rind that are
as similar as possible except for the distinguishability property. Indeed, the test-
ing datasets for Rdst and Rind are the same in terms of log messages and their
order. The only difference lies in how individual log messages are mapped to the
templates, affecting the distinguishability of log parsing results. Consequently, the
only difference between Rdst and Rind is in their distinguishability, ensuring that
no bias is introduced when evaluating the model’s performance.

Algorithm 1 summarizes the above-mentioned idea into the pseudocode for
generating Rind from Rdst . After initializing Rind (line 1) as a copy of Rdst , the
algorithm extracts the set of templates T of Rdst (line 2) and sorts the templates in
T in ascending order by the number of matching messages (line 3). The algorithm
then iteratively merges the last n templates (starting from n = 2 as initialized at
line 4) in the sorted templates list Ts (i.e., merging the top-n templates that have
the highest number of matching templates) until Rind becomes indistinguishable
(lines 5–8). Notice that the while loop does not continue endlessly since Rind must
be indistinguishable when n becomes |Ts| (i.e., all templates are merged into one)
by definition. The algorithm ends by returning Rind .

Algorithm 1: Generating an indistinguishable log parsing result from a
distinguishable one

Input : Distinguishable Log Parsing Result Rdst

Output: Indistinguishable Log Parsing Result Rind

1 Log Parsing Result (Set of Parsed Logs) Rind ← copy(Rdst )
2 Set of Templates T ← getTemplates(Rdst )
3 Sorted List of Templates Ts ← sortByNumMessages(T )
4 Integer n← 2
5 while d(Rind ) = True do
6 Set of Templates Tm ← getLastTemplates(Ts, n)
7 Rind ← mergeTemplates(Tm, Rdst )
8 n← n+ 1

9 return Rind

4.5.2 Generation of Distinguishable from Indistinguishable Log Parsing Results

When d(R) = F (i.e., R = Rind ), although one could do the dual of merging
templates (i.e., dividing templates), it would require to determine which templates
to divide and how many templates to generate from a given template. Instead,
we adopted another heuristic: we removed the normal (or abnormal) logs that are
indistinguishable from abnormal (or normal) logs. This is based on our observation
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Log Template Parsed Log (original) Parsed Log (after mer-
-ging t1 and t3 into t13)

l1 = ⟨m1,m2⟩ τ(m1) = t1 , τ(m2) = t2 τ∗(l1) = ⟨t1, t2⟩ τ ′∗(l1) = ⟨t13, t2⟩

l2 = ⟨m3,m4⟩ τ(m3) = t3 , τ(m4) = t2 τ∗(l2) = ⟨t3, t2⟩ τ ′∗(l2) = ⟨t13, t2⟩

Fig. 1: An example of making a distinguishable log parsing result indistinguishable
by merging templates

that, when d(R) = F , only a small number of normal and abnormal logs are
indistinguishable. To minimize the impact of removing logs, we removed normal
logs when the total number of normal logs is larger than that of abnormal logs
(as it is the case for the HDFS dataset); otherwise, we removed abnormal logs (in
the case of the Hadoop dataset). Specifically, only MoLFI, SLCT, LogCluster, and
LFA generated indistinguishable log parsing results for HDFS in the first place,
and we only removed 5, 5, 9, and 2 logs, respectively, out of 15026 normal logs.

Algorithm 2 shows how to generate Rdst from Rind based on the above idea.
It first extracts the set of indistinguishable logs Lind from Rind (line 1). It then
removes either normal or abnormal logs in Lind from Rind to generate Rdst de-
pending on the total number of normal and abnormal logs (lines 2–5). Since Rdst

is the result of removing indistinguishable (normal or abnormal) logs from Rind ,
Rdst is distinguishable. The algorithm ends by returning Rdst .

Algorithm 2: Generating a distinguishable log parsing result from an
indistinguishable one

Input : Indistinguishable Log Parsing Result Rind

Output: Distinguishable Log Parsing Result Rdst

1 Set of Indistinguishable Logs Lind ← getIndistLogs(Rind )
2 if numNormalLogs(Rind ) ≥ numAbnormalLogs(Rind ) then
3 Set of Parsed Logs Rdst ← Rind \ getNormalLogs(Lind )

4 else
5 Set of Parsed Logs Rdst ← Rind \ getAbnormalLogs(Lind )

6 return Rdst

4.5.3 Treatment for Anomaly Detection Techniques using Semantic Information of

Templates

Some of the anomaly detection techniques (i.e., LogRobust [52], PLELog [51],
LogAnomaly [31]) use the semantic information of templates, instead of simply
using template IDs, by converting them into semantic vectors [23]. For these tech-
niques, two templates are considered “identical” if their semantic vectors are sim-
ilar enough. Therefore, the notion of “identical” templates for determining the
distinguishability of log parsing results must be revised in terms of the semantic
vectors used by these anomaly detection techniques; otherwise, simply determining
the distinguishability based on their template IDs would be meaningless for these
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techniques. To do this, for each log parsing result R, we applied a clustering algo-
rithm to the semantic vectors of all templates and considered the templates in the
same cluster to be identical. Specifically, we used DBSCAN [2] for clustering since
it does not require the number of clusters as an input parameter. For instance,
in the above example τ with m1 and m3, if the semantic vectors of τ(m1) and
τ(m3) belong to the same cluster, then the templates of m1 and m3 are considered
the same. Note that the semantic vectors are carefully designed to capture subtle
semantic nuances and are able to identify semantically similar log templates while
distinguishing different ones [52]. Therefore, clustering these semantic vectors can
effectively identify “identical” templates for the semantic-based anomaly detection
techniques. We then followed the same heuristics described above to generate R′

from R based on the clustered templates.

4.5.4 Additional Analysis: Degree of Distinguishability

So far, we have described how to compare distinguishable and indistinguishable log
parsing results to answer RQ2, treating distinguishability as a binary property (i.e.,
either distinguishable or indistinguishable) following the original definition [44]. Al-
though we have effectively minimized the difference between distinguishable and
indistinguishable log parsing results to make a fair comparison, we have applied an
artificial process for generating indistinguishable log parsing results from distin-
guishable ones (or vice versa). To address this limitation, we present an additional
analysis on the degree of distinguishability of the log parsing results generated for
RQ1.

However, defining a metric to measure the degree of distinguishability is not
straightforward, mainly because the original definition of distinguishability is too
strict; for example, the log parsing result of two log sequences representing the
same behavior can be considered distinguishable simply when they are different in
length. Therefore, we present a metric to measure the degree of distinguishability
based on the number of common templates between normal and abnormal log se-
quences. This is based on the observation that a higher number of shared templates
between normal and abnormal log sequences indicates weaker distinguishability.

Specifically, recall that we can consider a log parsing result τ∗∗(L) of a set
of log sequences L for a log parsing technique τ . Let c(τ∗∗(L)) be the number of
unique templates in τ∗∗(L). We define the distinguishability score distScore(τ, L)
of L for τ as the ratio of the number of common templates generated by τ between
normal and abnormal log sequences to the number of unique templates in all

log sequences in L, i.e., distScore(τ, L) = 1 − c(τ∗∗(Ln)∩τ∗∗(La))
c(τ∗∗(L)) , where Ln and

La are the sets of normal and abnormal log sequences in L, respectively. Since
c(τ∗∗(L)) = c(τ∗∗(Ln)) ∪ c(τ∗∗(La)), the distinguishability score is effectively the
Jaccard distance between Ln and La in terms of their templates. For example, the
number of unique templates identified by Drain for the HDFS dataset is 31. Among
them, 13 templates appear in both normal and abnormal log sequences. Therefore,
the distinguishability score of Drain for the HDFS dataset is 1− 13

31 = 0.57.

We want to note that, ideally speaking, this additional analysis should allow
us to measure the impact of distinguishability on anomaly detection accuracy
in a more fine-grained manner without generating artificial log parsing results.
However, our metric is a heuristic and may not fully capture the various aspects
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Table 3: Spearman correlation coefficients between log parsing accuracy (GA, PA,
and FTA) and anomaly detection accuracy (F1 score)

HDFS (reduced) Hadoop

AD technique GA PA FTA GA PA FTA

DeepLog −0.166 0.259 0.198 - - -
LogAnomaly 0.431 0.455 0.527 - - -
LogRobust 0.216 −0.134 −0.162 - - -
CNN 0.276 0.262 0.195 - - -
PLELog 0.171 0.656 0.628 −0.180 −0.003 −0.069
SVM 0.633 0.371 0.650 −0.011 0.053 −0.346
RF 0.118 0.205 −0.063 −0.303 −0.136 −0.569

of distinguishability. Therefore, we will use this new analysis as a complementary
study to the main analysis (treating distinguishability as a binary property), to
provide a more comprehensive understanding of the impact of distinguishability
on anomaly detection accuracy.

5 Results

5.1 RQ1: Relationship between Log Parsing Accuracy and Anomaly Detection
Accuracy

All 13 log parsing techniques and 7 anomaly detection techniques completed their
executions on the HDFS and Hadoop datasets. However, none of the anomaly
detection techniques detected abnormal logs in the OpenStack dataset (i.e., the
F1 score is zero). This could be due to the very small number of abnormal logs in
the dataset (only 4 out of 2068, as reported in Table 2). Therefore, we disregard
the results for OpenStack.

For all tuples ⟨GA,PA,FTA,PR,RE ,F1 ⟩ we collected for HDFS and Hadoop,
Fig. 2 and Fig. 3 show the relationship between ⟨GA,PA,FTA⟩ (x-axis) and F1
(y-axis) for HDFS and Hadoop, respectively, in the form of a scatter plot. To ad-
ditionally distinguish the main results for different anomaly detection techniques,
we used different shapes and colors: = DeepLog, = LogAnomaly, = LogRo-
bust, = CNN, = PLELog, = SVM, and = RF. For example, the top left
subfigure in Fig. 2 shows 13 data points where 13 log parsing techniques are used
in combination with DeepLog. All the raw data are available in the replication
package on Figshare [25].

Table 3 additionally shows the values of the Spearman’s rank correlation coef-
ficient σ⟨X ,Y ⟩ between X = ⟨GA,PA,FTA⟩ and Y = F1 for each pair of anomaly
detection technique and dataset. The value of σ⟨X ,Y ⟩, ranging between −1 and
+1, is an indication of the strength of the monotonic (not necessarily linear) re-
lationship between X and Y ; when σ⟨X ,Y ⟩ ≥ +0.7 (or σ⟨X ,Y ⟩ ≤ −0.7), there
is a strong positive (or negative) correlation between X and Y [1]. Note that, on
the Hadoop dataset, σ⟨X ,Y ⟩ could not be computed for DeepLog, LogAnomaly,
LogRobust, and CNN since the F1 score does not vary at all with ⟨GA,PA,FTA⟩,
indicating no relationship.
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Fig. 2: Relationship between TI accuracy and AD accuracy (HDFS)
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Fig. 3: Relationship between TI accuracy and AD accuracy (Hadoop)
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Overall, Fig. 2, Fig. 3, and Table 3 clearly show that there is no strong correla-
tion between ⟨GA,PA,FTA⟩ and F1 in all the cases where ⟨GA,PA,FTA,PR,RE ,F1 ⟩
tuples were successfully collected. For example, in Fig. 2, LogAnomaly ( ) achieved
an F1 score ranging between 0.2 and 0.5 regardless of the GA score. This means
that increasing log parsing accuracy does not necessarily increase (or decrease)
anomaly detection accuracy. This is counter-intuitive since anomaly detection uses
log parsing results, and having “better” log parsing results is expected to increase
anomaly detection accuracy. However, this happens because even inaccurate log
parsing results can lead to accurate anomaly detection results, for reasons ex-
plained below.

To better understand the reason for the above results, let us consider the
following two extreme cases separately:

(C1) The log parsing accuracy values for input logs are the same, but the resulting
anomaly detection accuracy values are different (i.e., the data points located
on the same vertical lines in Fig. 2 and Fig. 3).

(C2) The log parsing accuracy values for input logs are different, but the resulting
anomaly detection accuracy values are the same (i.e., the data points located
on the same horizontal lines in Fig. 2 and Fig. 3).

To identify the root cause of C1, we manually investigated several pairs of data
points in Fig. 2 and Fig. 3, such as two different HDFS log parsing results hav-
ing almost the same log parsing accuracy value (GA scores of 0.37 and 0.40) but
resulting in significantly different anomaly detection accuracy values (F1 scores
of 0.73 and 0.10) for the same anomaly detection technique (DeepLog). It turned
out that, although the log parsing accuracy values are similar, the sets of correctly
parsed log messages are different. This happened because the log parsing accuracy
metrics (GA, PA, and FTA) summarize the log parsing results based on an implicit
assumption that all log messages (and templates) are equally important. However,
this assumption does not hold when it comes to anomaly detection, which must
discriminate different log message templates to learn abnormal sequences of tem-
plates. Therefore, this mismatch of assumptions between log parsing and anomaly
detection leads to case C1.

As for case C2, similar to the above case, we manually investigated several
pairs of data points in Fig. 2 and Fig. 3, such as two different Hadoop log parsing
results having significantly different log parsing accuracy values (GA scores of 0.12
and 0.77) but resulting in the same anomaly detection value (F1 score of 0.98) for
the same anomaly detection technique (DeepLog). We found that anomaly detec-
tion techniques can distinguish between normal and abnormal patterns even when
input log message templates are incorrect. To best explain this using a simplified
example, let us consider a normal log ln = ⟨mn

1 ,m
n
2 , . . . ⟩ and an abnormal log

la = ⟨ma
1 ,m

a
2 , . . . ⟩, where mx

i indicates the i-th log message in lx for x ∈ {n, a}.
Using oracle templates, we can group the log messages having the same template
and represent ln and la as groups; specifically, let gorc(lx) be a sequence of message
group indices (i.e., the i-th element of gorc(lx) is the message group index of mx

i ).
In this context, let us take two logs from the Hadoop dataset as a concrete exam-
ple where gorc(ln) = ⟨1, 2, 3, 4, . . . ⟩ and gorc(la) = ⟨5, 5, 5, 6, . . . ⟩. When templates
generated by LogMine are used to group messages instead of oracle templates,
the sequences of message group indices change to gLM (ln) = ⟨1, 2, 3, 3, . . . ⟩ and
gLM (la) = ⟨7, 8, 9, 10, . . . ⟩. These are clearly different from gorc(ln) and gorc(la),
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respectively; in particular, mn
3 and mn

4 are incorrectly grouped together in gLM (ln)
while ma

1, m
a
2, and ma

3 are incorrectly separated in gLM (la). The incorrect group-
ings of LogMine clearly reduce the GA score (as well as PA and TA scores since in-
correct groupings imply incorrect templates). However, even the incorrect gLM (ln)
and gLM (la) are still different enough from each other for anomaly detection tech-
niques to distinguish between normal and abnormal patterns. This example not
only shows why case C2 happened, but also demonstrates the importance of distin-
guishability in log parsing results for anomaly detection; we will further investigate
this aspect in RQ2.

Before we conclude RQ1, one might be curious to know why DeepLog, LogAnomaly,
LogRobust, and CNN result in the same anomaly detection accuracy value on the
Hadoop dataset (as shown in Figure 3 [GA-Hadoop] and Table 3). This happens
because (1) the test set of Hadoop contains only 11 logs (1 normal and 10 abnor-
mal logs, although the number of log messages is in the same order of magnitude
as HDFS; see Table 2 for more details) and (2) the four anomaly detection tech-
niques classified all the 11 logs in the test set as abnormal. We speculate that
PLELog shows different results from the other anomaly detection techniques be-
cause PLELog uses a very different deep learning model (i.e., an attention-based
GRU [5]). Notice that, in all cases, the results still corroborate that log parsing
accuracy and anomaly detection accuracy do not have any strong relationship.

We want to note that the log parsing accuracy results shown in Fig. 2 and
Fig. 3 are inconsistent with the ones reported in previous studies [6, 53] since the
latter only considered 2K log messages, randomly sampled from the original logs,
to assess log parsing accuracy.

The answer to RQ1 is that there is no strong correlation between log parsing
accuracy and anomaly detection accuracy; increasing log parsing accuracy
does not necessarily increase anomaly detection accuracy, regardless of the
metric (GA, PA, or TA) used for measuring log parsing accuracy.

5.2 RQ2: Log Parsing Distinguishability and Anomaly Detection Accuracy

5.2.1 Distinguishability as a Binary Property

Tables 4 and 5 show the anomaly detection accuracy values (F1 scores) when dif-
ferent log parsing techniques (rows) and anomaly detection techniques (columns)
are used together on the HDFS (reduced) dataset; under each of the anomaly
detection technique columns, sub-columns Rdst and Rind indicate the F1 scores
for distinguishable and indistinguishable log parsing results, respectively, and ∆

indicates the difference between Rdst and Rind . For example, if we choose AEL
for log parsing and DeepLog for anomaly detection, the F1 score decreases from
0.747 to 0.561 when Rind is used instead of Rdst . The same structure applies to
Tables 6 and 7, which show the results on the Hadoop dataset. In Table 6, except
for PLELog, SVM, and RF, the values for all anomaly detection techniques are
identical due to the reasons explained in the last paragraph of Section 5.1. We
do not provide results for the OpenStack dataset due to the reasons mentioned in
Section 5.1.
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Table 4: Impact of the distinguishability log parsing results on anomaly detec-
tion accuracy for the HDFS (reduced) dataset (DL-based anomaly detection tech-
niques)

DeepLog (F1) LogAnomaly (F1) LogRobust (F1) CNN (F1) PLELog (F1)

Log Parser Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆

AEL 0.747 0.561 0.186 0.509 0.320 0.189 0.663 0.456 0.207 0.772 0.662 0.110 0.760 0.033 0.727
Drain 0.714 0.523 0.191 0.499 0.400 0.099 0.703 0.454 0.250 0.757 0.682 0.075 0.796 0.286 0.510
IPLoM 0.760 0.590 0.170 0.481 0.268 0.213 0.556 0.380 0.176 0.810 0.588 0.222 0.849 0.041 0.808
LFA 0.803 0.693 0.110 0.606 0.378 0.228 0.355 0.299 0.056 0.755 0.548 0.207 0.100 0.000 0.100
LenMa 0.808 0.625 0.184 0.484 0.285 0.199 0.659 0.436 0.223 0.814 0.607 0.207 0.681 0.271 0.411
LogCluster 0.263 0.097 0.166 0.380 0.243 0.138 0.542 0.300 0.241 0.498 0.306 0.192 0.426 0.317 0.108
LogMine 0.732 0.552 0.180 0.453 0.363 0.090 0.554 0.329 0.225 0.792 0.612 0.179 0.817 0.439 0.378
Logram 0.202 0.025 0.177 0.290 0.143 0.148 0.696 0.460 0.236 0.699 0.523 0.176 0.787 0.034 0.753
MoLFI 0.794 0.630 0.164 0.427 0.282 0.144 0.565 0.319 0.246 0.781 0.621 0.160 0.172 0.109 0.063
SHISO 0.778 0.629 0.149 0.544 0.238 0.306 0.679 0.446 0.233 0.796 0.589 0.207 0.839 0.341 0.498
SLCT 0.743 0.570 0.173 0.268 0.160 0.108 0.394 0.244 0.150 0.743 0.607 0.136 0.725 0.534 0.191
Spell 0.765 0.598 0.167 0.289 0.176 0.113 0.401 0.241 0.160 0.805 0.616 0.189 0.665 0.304 0.361

Average 0.676 0.508 0.168 0.436 0.271 0.164 0.564 0.364 0.200 0.752 0.580 0.172 0.635 0.226 0.409

Table 5: Impact of the distinguishability of log parsing results on anomaly de-
tection accuracy for the HDFS (reduced) dataset (ML-based anomaly detection
techniques)

SVM (F1) RF (F1)

Log Parser Rdst Rind ∆ Rdst Rind ∆

AEL 0.968 0.928 0.040 0.947 0.679 0.269
Drain 0.968 0.928 0.040 0.954 0.679 0.276
IPLoM 0.968 0.928 0.040 0.961 0.679 0.282
LFA 0.968 0.928 0.040 0.947 0.679 0.269
LenMa 0.968 0.928 0.040 0.947 0.679 0.269
LogCluster 0.000 0.000 0.000 0.222 0.000 0.222
LogMine 0.947 0.928 0.019 0.947 0.782 0.165
Logram 0.868 0.708 0.160 0.968 0.602 0.366
MoLFI 0.968 0.928 0.040 0.959 0.679 0.280
SHISO 0.961 0.928 0.033 0.940 0.679 0.262
SLCT 0.968 0.928 0.040 0.940 0.679 0.262
Spell 0.968 0.928 0.040 0.947 0.679 0.269

Average 0.876 0.832 0.044 0.890 0.624 0.266

Table 6: Impact of the distinguishability of log parsing results on anomaly detection
accuracy for the Hadoop dataset (DL-based anomaly detection techniques)

DeepLog (F1) LogAnomaly (F1) LogRobust (F1) CNN (F1) PLELog (F1)

Log Parser Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆

AEL 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.785 0.507 0.278
Drain 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.000 0.900
IPLoM 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.848 0.000 0.848
LFA 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.888 0.799 0.090
LenMa 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.505 0.395
LogCluster 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.952 0.180 0.772
LogMine 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.848 0.530 0.318
Logram 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.842 0.799 0.043
MoLFI 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.739 0.161
SHISO 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.000 0.900
SLCT 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.842 0.000 0.842
Spell 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.703 0.188 0.515

Average 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.859 0.354 0.505
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Table 7: Impact of the distinguishability of log parsing results on anomaly detection
accuracy for the Hadoop dataset (ML-based anomaly detection techniques)

SVM (F1) RF (F1)

Log Parser Rdst Rind ∆ Rdst Rind ∆

AEL 0.960 0.912 0.048 0.952 0.718 0.234
Drain 0.952 0.912 0.040 0.910 0.862 0.047
IPLoM 0.949 0.912 0.037 0.891 0.862 0.029
LFA 0.940 0.912 0.027 0.901 0.862 0.038
LenMa 0.952 0.912 0.040 0.952 0.718 0.234
LogCluster 0.952 0.912 0.040 0.952 0.718 0.234
LogMine 0.960 0.912 0.048 0.952 0.718 0.234
Logram 0.952 0.852 0.100 0.798 0.643 0.155
MoLFI 0.949 0.912 0.037 0.952 0.718 0.234
SHISO 0.924 0.912 0.011 0.936 0.862 0.074
SLCT 0.937 0.912 0.024 0.936 0.862 0.074
Spell 0.960 0.912 0.048 0.952 0.718 0.234

Average 0.949 0.907 0.042 0.924 0.772 0.152

In all cases, ∆ is non-negative, ranging from 0 (LogCluster-SVM on the HDFS
dataset) to 0.9 (Drain/SHISO-PLELog on the Hadoop dataset). This means that
the anomaly detection accuracy decreases up to 90 percentage points (pp) when
Rind is used instead of Rdst . To see if the differences between Rdst and Rind are sig-
nificant, we applied the non-parametric Wilcoxon signed rank test [49] for paired
samples to the F1 scores of Rdst and Rind , for each of the seven anomaly detection
techniques and the two datasets. The results show that, for all the anomaly detec-
tion techniques and datasets, the differences between Rdst and Rind are significant
(p-value < 0.005) in terms of anomaly detection accuracy.

Considering the definition of distinguishability for log parsing results, it is in-
tuitive that indistinguishable log parsing results should lead to lower anomaly
detection accuracy. However, it is surprising that this decrease in accuracy is, in
some cases, rather limited, e.g., only 0.011 for SHISO on the Hadoop dataset when
SVM is used for log parsing. This happens because an indistinguishable log pars-
ing result may only have a few logs that are indistinguishable in terms of normal
and abnormal behavior. Recall that we did not explicitly control the number of
indistinguishable logs since we aimed to minimize the difference between distin-
guishable and indistinguishable versions of each log parsing result as described
in Section 4.5. Nevertheless, the results shown in Tables 4 and 6 are sufficient to
confirm the strong impact of distinguishability in log parsing results on anomaly
detection accuracy.

The answer to RQ2 is that the impact of the distinguishability of log pars-
ing results on anomaly detection accuracy is significant for all anomaly
detection techniques.

5.2.2 Degree of Distinguishability
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Fig. 4: Relationship between distScore and AD Accuracy (HDFS)

As explained in Section 4.5.4, let us consider the degree of distinguishability of the
log parsing results generated for RQ1 (without considering the artificially gener-
ated pairs of Rdst and Rind.) We focus on the HDFS dataset for this analysis since
we know from the RQ1 results that (1) none of the anomaly detection techniques
detected abnormal logs in the OpenStack dataset, and (2) most of the anomaly
detection techniques have achieved the same accuracy on the Hadoop dataset.
Nevertheless, to avoid drawing conclusions based on a single dataset, we also in-
clude another dataset, BGL, in this analysis. Although it was excluded from the
previous analyses due to the unavailability of source code (which is essential to
measure log parsing accuracy), it can be used to investigate the relationship be-
tween the degree of distinguishability and anomaly detection accuracy. To use the
BGL dataset, we first reduced it following the same methodology we used for the
other datasets (see Section 4.1). Since the dataset has only one extremely long
normal log, we created log sequences using a sliding window with a window size
of 10, following existing studies [27, 51]. We then labelled each log sequence as
normal or abnormal as follows: If a log sequence contains at least one abnormal
log message, it is considered abnormal; otherwise, it is considered normal. In total,
we used 275 306 normal and 16 413 abnormal log sequences from the BGL dataset.

HDFS dataset. Fig. 4 shows the relationship between the degree of distinguisha-
bility (i.e., the distScore, shown in the x-axis) and the anomaly detection accuracy
(i.e., the F1-score, shown in the y-axis) for the HDFS dataset. Each sub-figure
corresponds to a different anomaly detection technique, and each data point rep-
resents a log parsing technique. The Spearman correlation coefficient between
the distScore and the F1-score is also shown in each sub-figure. For DeepLog,
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Fig. 5: Relationship between distScore and AD Accuracy (BGL)

LogAnomaly, LogRobust, and CNN, the F1-score mostly increases with the dis-
tinguishability score, except for an outlier around distScore = 0.99. This means
that the anomaly detection accuracy mostly improves when the log parsing results
are more distinguishable, except for the outlier. This outlier is due to LogCluster,
which generates an exceptionally high number of templates, 39 998, while the num-
ber of oracle templates is only 26 as noted in Table 2. Although such a large number
of templates leads to a high degree of distinguishability between normal and ab-
normal log sequences due to the high specificity of the templates, it also leads to an
excessive number of “features” to consider for the learning-based anomaly detec-
tion techniques, making the learning from training data more difficult, resulting
in decreased anomaly detection accuracy. For the ML-based anomaly detection
techniques, i.e., SVM and RF, the F1-score remains similar regardless of the dis-
tinguishability score, except for the same outlier discussed above. We suspect that
this is mainly because the traditional ML-based techniques are more sensitive to
the number of features they use for learning (i.e., the number of templates, which
typically range from 26 to 201) than to the degree of distinguishability. However,
LogCluster notably identifies a significantly higher number of templates, total-
ing 39 998. For PLELog, the F1-score does not show a clear correlation with the
distinguishability score. This could be mainly due to the unique architecture of
PLELog, which uses Gated Recurrent Units (GRUs) to model the log sequences,
as discussed in Section 5.1.

BGL dataset. Fig. 5 shows the results for the BGL dataset. The structure of the
figure is the same as that of Fig. 4. Overall, the F1-score mostly increases with
the distinguishability score, except for LogAnomaly and SVM. However, their
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Spearman correlations are very weak (only −0.06 and −0.13, respectively). In
other cases, the Spearman correlations are positive, ranging from 0.16 (RF) to 0.70
(LogRobust). This implies that the findings from the HDFS dataset are generally
consistent with those from the BGL dataset.

To sum up, although the degree of distinguishability of log parsing results is
not always positively related to anomaly detection accuracy, most of the deep
learning-based techniques show moderate and positive correlations between the
distinguishability degree and the anomaly detection accuracy. Considering the
heuristic nature of the proposed distinguishability score, defining a more sophis-
ticated and precise metric that can better capture the relationship between the
distinguishability of log parsing results and the anomaly detection accuracy is an
interesting direction for future work.

The additional analysis for RQ2 shows that the degree of distinguishabil-
ity of log parsing results is positively and moderately correlated with the
accuracy of most deep learning-based anomaly detection techniques, but
not for traditional machine learning-based techniques. This implies that
distinguishability should be considered for deep learning-based log parsing
for anomaly detection, and calls for defining more sophisticated metrics for
measuring the degree of distinguishability.

5.3 Threats to Validity

The used oracle templates determine log parsing accuracy values. For example, as
noted by Khan et al. [24], manually extracting oracle templates by investigating log
messages without accessing the corresponding source code could result in biased,
incorrect oracle templates. This could be a significant threat to the validity of
our results. To mitigate this, we perused the source code (of the exact version
that generated the logs) for each software system and used the templates directly
extracted from the source code. Although this made us exclude a few log datasets
whose source code was unavailable, it was beneficial to ensure the validity of our
results.

Individual log parsing and anomaly detection techniques have distinct hyper-
parameters, which might significantly affect the log parsing and anomaly detection
results. To mitigate this, we used the same hyper-parameter values proposed by
the authors, when available; otherwise, we ran preliminary experiments and used
the values that resulted in the same results reported in the corresponding papers.

Using a specific set of log datasets is a potential threat to external validity.
Though the datasets we considered include the logs of various systems, we had to
select HDFS, Hadoop, and OpenStack due to the reasons discussed in Section 4.1.
Therefore, even though the datasets have been widely used in existing literature [4,
27] on log-based anomaly detection, they may not capture diverse characteristics
of log data. Further experiments with different datasets are required to improve
the generalizability of our results.

In RQ2, we artificially generated pairs of distinguishable and indistinguishable
log parsing results to systematically assess the impact of the distinguishability of
log parsing results on anomaly detection accuracy using balanced data. To mitigate
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any bias introduced during the process, we carefully designed Algorithms 1 and 2 to
minimize the difference between each pair of log parsing results, except for their
distinguishability property. Note that, although the pair generation process (by
merging templates) might look unrealistic, it reflects what frequently happens in
real-world scenarios; for example, it is not uncommon for log parsing techniques to
misidentify templates so that messages with different oracle templates are mapped
to the same (misidentified) template.

6 Findings and Implications

One of the most surprising results from our evaluation is that, using all existing
log parsing accuracy metrics in the literature, we did not find any significant corre-
lation with anomaly detection accuracy. In other words, more accurate log parsing
results are not necessarily better for anomaly detection accuracy. This implies that
log parsing accuracy is not a good indicator of the quality of log parsing results
for anomaly detection purposes. As explained with an example in Section 5.1, this
happens because inaccurate log parsing results can still be useful for anomaly de-
tection as long as normal and abnormal logs are distinguishable. At the extreme,
a log parsing result R50 with 50% accuracy could be better for anomaly detection
than a log parsing result R100 with 100% accuracy if R50 distinguishes normal and
abnormal logs while R100 does not. This could happen when, for example, the log
quality is poor (e.g., because of inconsistencies between the developers’ intentions
and concerns on logging and the actual logging statements in the source code [41])
to the point that even using oracle templates cannot fully distinguish all normal
log sequences from abnormal ones.

This surprising finding leads to an important practical implication: When used
for anomaly detection purposes, we can no longer choose a log parsing technique
based on accuracy. Instead, as shown in Section 5.2, the distinguishability of log
parsing results should be the main selection criterion. For example, since normal
and abnormal logs are often used for training anomaly detection models, candidate
log parsing results should be compared in terms of their capability to distinguish
normal and abnormal logs. If there are multiple techniques that can equally dis-
tinguish between normal and abnormal logs, then the one with the lowest number
of identified templates would be preferred since reducing the number of templates
would increase the performance of anomaly detection by reducing dimensionality
(i.e., the number of features considered in machine learning models) [44].

Note that the notion of distinguishability for log parsing results is irrelevant if
these results are not used for anomaly detection. However, if anomaly detection
needs log parsing (which is frequently the case in practice), then considering dis-
tinguishability can help engineers select the most suitable log parsing technique
for anomaly detection.

One may rightfully think that it is intuitive that the distinguishability of log
parsing results is essential for learning-based anomaly detection techniques, which
distinguish between normal and abnormal log sequences by using the log pars-
ing results (i.e., templates) as learning features. However, despite the prevalent
use of log parsing in anomaly detection, the importance of distinguishability has
been surprisingly ignored in the log analysis community. This paper aims to high-
light the significance of distinguishability in log parsing for anomaly detection.
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Table 8: Comparison with related empirical studies

Category Le and Zhang [27] Fu et al. [12] Our work

Objective Investigate different
factors that might
affect anomaly de-
tection accuracy

Investigate the
impact of log pars-
ing techniques on
anomaly detection
accuracy

Evaluate the im-
pact of log parsing
accuracy and the
distinguishability
of log parsing re-
sults on anomaly
detection accuracy

Log parsing accu-
racy metrics

N/A PA PA, GA, and TA

Oracle templates N/A Manually generated
for 2K sample log
messages

Extracted from
the corresponding
source code

Logs used for mea-
suring log parsing
accuracy

N/A Only a small frac-
tion of logs actually
used for anomaly
detection

All logs used for
anomaly detection

Log parsing tech-
niques

Drain, Spell, IPLoM
and AEL

Drain, Spell,
IPLoM, LFA, Lo-
gram, and LenMa

Drain, Spell,
IPLoM, AEL, LFA,
Logram, LenMa,
LogSig, LogCluster,
LogMine, SHISO,
MoLFI, and SLCT

Anomaly detection
techniques

DeepLog, LogRo-
bust, LogAnomaly,
PLELog, and CNN

DeepLog, LogRo-
bust, Principal
Component Anal-
ysis (PCA), Log-
Clustering, Logistic
Regression (LR),
and Decision Tree
(DT)

DeepLog, LogRo-
bust, LogAnomaly,
PLELog, CNN,
SVM, and RF

Distinguishability [44] Not considered Not considered Considered

Furthermore, this is the first work to empirically demonstrate the importance of
distinguishability after the theoretical framework proposed by Shin et al. [44].

Though our objective here is not to identify the “best” log parsing and anomaly
detection techniques, through our experiments, we found that there is no single
best technique that significantly outperforms the others in all cases. In the future,
to develop better log parsing techniques targeting anomaly detection, it would
beneficial to focus on distinguishability, which has not been the case so far.

7 Related Work

Although individual techniques for log parsing and anomaly detection have been
studied for a long time, systematic studies covering several techniques have only
recently begun to emerge. For example, the most comprehensive evaluation studies
on many log parsing techniques [6, 24, 53] were conducted over the last four years.
Similarly, the relationship between log parsing and anomaly detection has received
little attention until very recently. Below, we summarize the recent studies related
to this topic.
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Shin et al. [44] presented the first theoretical study considering the relation-
ship between log parsing and anomaly detection. As described in Section 2.4,
they established the concept of ideal log parsing results for anomaly detection.
We adopted their theoretical foundation, especially the notion of distinguishabil-

ity in log parsing results, and empirically showed that distinguishability is indeed
essential for anomaly detection. To the best of our knowledge, our work is the
first empirical study showing the importance of log parsing distinguishability for
anomaly detection.

As explained in Section 3, Le and Zhang [27] presented an empirical study
on factors that could affect anomaly detection accuracy. Although a part of their
study investigated the impact of log parsing on anomaly detection accuracy, they
investigated four log parsing techniques but did not assess the impact of log parsing
accuracy. As a result, they only showed that using different log parsing techniques
leads to different anomaly detection accuracy scores. In our study, on the other
hand, we explicitly measured log parsing accuracy, collected 160 pairs of log parsing
accuracy and anomaly detection accuracy values using different combinations of
log parsing and anomaly detection techniques, and showed that there is no strong
correlation between log parsing accuracy and anomaly detection accuracy.

During the writing of this paper, Fu et al. [12] also presented an empirical
study on the impact of log parsing on anomaly detection performance. Although
their motivation and research questions are close to ours, there are several key
differences. First, for measuring log parsing accuracy, they used the manually
generated, error-prone oracle templates [24] provided with the 2K log messages
randomly sampled by Zhu et al. [53]. In other words, only a very small fraction
of the logs used for anomaly detection was used to measure log parsing accuracy
in their study. In our study, however, the same logs used for anomaly detection
are used to measure log parsing accuracy, and the oracle templates are directly
extracted from the corresponding source code. Second, they considered only one
log parsing accuracy metric (GA), whereas we considered all three log parsing
metrics (GA, PA, and TA) since different metrics assess complementary aspects of
log parsing [24]. Third, log parsing distinguishability, which is an essential factor
that substantially affects anomaly detection accuracy (as shown in our RQ2), is
only considered in our study. Finally, they only considered two deep learning-
based anomaly detection techniques (DeepLog and LogRobust), and focused also
on more traditional machine learning approaches (such as Principal Component
Analysis, clustering, logistic regression, and decision trees). Such differences allow
us to report new findings and provide concrete recommendations, as summarized
in Section 6.

Wu et al. [50] recently presented an empirical study on the effectiveness of
log representation for machine learning-based anomaly detection. They consid-
ered different log representation techniques, such as FastText [22], Word2Vec [33],
TF-IDF [42] and BERT [7], used to convert textual log data into numerical feature
vectors for machine learning algorithms, such as Support Vector Machine, Logistic
Regression, Random Forest, CNN, and LSTM. As a part of their study, they inves-
tigated the impact of log parsing on anomaly detection when used with different
log representation techniques (in particular, FastText and Word2Vec). The empir-
ical results showed that, in general, using log parsing (i.e., Drain [14]) improves the
quality of log representations (over raw, unparsed data) and thereby the perfor-
mance of anomaly detection; they also reported that some models (e.g., CNN and
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LSTM) are less sensitive to whether the log data is parsed or not, possibly due to
the strong feature extraction and representation ability, and can offset the impact
of noise generated by log parsing. In addition to these results, they also investi-
gated the impact of additionally refining log parsing results using regular expres-
sions and the impact of using different log parsing techniques. The results showed
that refining log parsing results do not significantly increase anomaly detection
performance but using different log parsing techniques yields slight variations in
anomaly detection performance. However, for these additional investigations, they
used only one anomaly detection technique (i.e., Logistic Regression) and two log
parsing techniques (i.e., Drain [14] and LogPPT [28]). Furthermore, they did not
study the relationship between log parsing accuracy and anomaly detection accu-
racy. On the contrary, we use 13 log parsing techniques and 5 DL-based anomaly
detection techniques to comprehensively investigate the relationship between log
parsing accuracy and anomaly detection accuracy.

Table 8 summarizes the key differences between the closely-related previous
empirical studies (i.e., Le and Zhang [27], Fu et al. [12]) and our work.

8 Conclusion and Future Work

In this paper, we reported on a comprehensive empirical study investigating the
impact of log parsing on anomaly detection accuracy, using 13 log parsing tech-
niques, five DL-based and two ML-based anomaly detection techniques on three
publicly available log datasets. When analyzing log parsing results for anomaly
detection, we were surprised not to find any significant relationship between log
parsing accuracy and anomaly detection accuracy, regardless of metric used for the
former (including GA, PA, and FTA). This implies that, as opposed to common
research practice to date, we can no longer select a log parsing technique purely
based on its accuracy when used for anomaly detection. Instead, we experimen-
tally confirmed existing theoretical results showing that the distinguishability of
log parsing results plays an essential role in achieving accurate anomaly detection.
It is therefore highly recommended to consider distinguishability when utilizing
log parsing results as input for anomaly detection.

As part of future work, we plan to extend our study with more publicly avail-
able datasets and log parsing techniques [28, 46], which were published during the
writing of this paper, to increase the generalizability of our results. We also aim
to include state-of-the-art few-shot anomaly detection techniques [18, 39], which
require only a limited amount of training data and could be more effective in prac-
tice. We also plan to provide a more granular analysis of distinguishability for log
parsing results by defining a new metric that assesses the degree of distinguisha-
bility. Finally, we plan to assess the performance of anomaly detection techniques
that do not require log parsing [26, 35, 37].

Data Availability

The replication package of our empirical evaluation (including the Python im-
plementations for log parsing techniques, anomaly detection techniques, helper
scripts, and datasets) is available on Figshare [25].
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