CLASSIFICATION OF CLOSED CONFORMALLY FLAT LORENTZIAN
MANIFOLDS WITH UNIPOTENT HOLONOMY

RACHEL LEE AND KARIN MELNICK

ABSTRACT. We classify closed, conformally flat Lorentzian manifolds of dimension n > 3 with
unipotent holonomy in PO(2,n). They are all Kleinian and fall into four different geometric
types according to the intersection of the image of the developing map with a holonomy-invariant
isotropic flag. They are homeomorphic to S™~! x S* or a nilmanifold of degree at most three,
up to a finite cover. We classify those admitting an essential conformal flow; these fall into two
geometric types, both homeomorphic to S"~! x S up to finite cover.

1. INTRODUCTION

A conformal structure on a manifold M is an equivalence class of semi-Riemannian metrics,
where two metrics are equivalent if they are related by multiplication with a positive, smooth,
real-valued function. A manifold that is locally conformally equivalent to a flat affine space is
called conformally flat. Such manifolds can alternatively be characterized as those admitting
a (G, X)-structure where X is the suitable conformally flat, G-homogeneous model space. The
locally homogeneous structure on M gives rise to a developing pair (d, p) where J: M— Xisa
local diffeomorphism from the universal cover M of M to X, and p: 71 (M) — G is the holonomy
representation, such that ¢ is p-equivariant. Under group-theoretic assumptions on the holonomy
image, classification results for (G,X)-manifolds can be obtained; for example, W. Goldman
proved:

Theorem 1.1 ([10, Thm A]). Let M be a closed, conformally flat, Riemannian manifold of dimen-
ston n > 3, and assume that the image of the holonomy representation is virtually nilpotent—that
is, there exists a nilpotent subgroup of finite index. Then M is finitely covered by the sphere S™,
a flat torus T, or a Hopf manifold, diffeomorphic to S' x S*~1.

In each case, the developing map is proved to be a diffeomorphism onto an open subset of X, in
which case the structure is called Kleinian, possibly all of X, in which case it is complete (see
Definition 2.3 below). Then M is geometrically isomorphic to the quotient of the developing
image by the holonomy action.

This article concerns closed, conformally flat Lorentzian manifolds. We consider those with unipo-
tent holonomy image. The conformally flat model space in Lorentzian signature is Ein™ !,
Uniquely to this signature, it has infinite fundamental group, and the target of the developing

. _171 .
map in general is the noncompact universal cover X = Ein' . These spaces are introduced
in §2, see also the references [4, 1]. Unipotence implies that the holonomy image stabilizes an
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isotropic flag in the standard representation of G, which corresponds to a chain of invariant
subspaces in Ein" 1!

(1) {po} € A C L(po),

consisting of a distinguished point, contained in a photon, contained in the lightcone of py. The
complement of a light cone in Ein™ ! is conformally equivalent to Minkowsi space Min" !
and is called a Minkowski patch (see §2.2.1 below). Noting that G acts transitively on isotropic
flags, we fix one. Our proof is organized according to the intersection of the developing image
with the components of this flag.

In conformal Riemannian geometry, the model is the round sphere, and the corresponding decom-
position comprises just a point pg € S™. In that case, with unipotent holonomy, if the developing
image contains pg, then M =2 S™; otherwise, it is a flat torus. The Lorentzian case is considerably
more complex. Two cases are Lorentzian analogues of the Riemannian classification. Between
these are two intermediate cases, each giving rise to new examples.

_ 1,1 _ . . .

The subspace A C L(pp) from (1) lifts in Ein'  toa photon A C L(po) contained in a light cone,

both unbounded, for py any point in the preimage of pg. The complement of L(pg) is a countable
~ —n-1,1

union of Minkowski patches. We denote by O(2,n) the connected conformal group of Ein" ;

it is an infinite covering group of 0°(2,7n). Its central element generating my (Ein" M) = Z will

be denoted a (see §2.2.2 for details). We denote by 0 the composition of § with the covering

/vn_:l: . —
TR : Ein — Ein" 1.

Theorem 1.2. Let M be a closed, conformally flat, Lorentzian manifold of dimension n > 3,
——n—1,1
with unipotent holonomy. Then, up to composition of § with a conformal equivalence of Ein" ,

one of the following holds:

(1) po € im &: Then M is a complete (O(n, 2),E\i;1n7171)—manifold. The holonomy image is
generated by an element of the form o'g with i # 0 and g projecting to a unipotent element
of PO°(n,2). Topologically M = S"~! x S, up to a finite covering.

(2) po ¢ im § but im 6NA # (): Then 6 is a diffeomorphism to a bounded open subset compris-
ing the union of two Minkowski charts and the interstitial component of L(ﬁo)\ﬂgﬁl(po)
lying in their common closure. The holonomy image is generated by one element which
descends to act nontrivially on A. Topologically, M == S™~1 x S up to a finite covering.

(3) im SNA = ) but im SNL(py) # O: Thenn = 2k+2 fork € N, and § is a diffeomorphism to

Ein" \A. The holonomy image is a nilpotent extension by Z of a discrete Heisenberg

group of rank 2k + 1. Topologically, M is a nilmanifold, more precisely, a Heisenberg-
nilmanifold bundle over S with unipotent monodromy.

(4) im d N L(pg) = O: Then M is a complete (O(n — 1,1) x R"™, Min™b')-manifold. Topo-
logically, M is a nilmanifold of nilpotence degree at most 3.

In every case, M 1is Kleinian.

Slightly more detailed statements and the proofs for cases (1), (2), (3), and (4) are in sections 3,
4, 5, and 6, respectively.

One consequence of the above theorem is the following topological classification of closed confor-
mally flat Lorentzian manifolds of dimension n > 3 with unipotent holonomy.



CONFORMALLY FLAT LORENTZIAN MANIFOLDS 3

Corollary 1.3. Let M be a closed, conformally flat, Lorenztian manifold with unipotent holo-
nomy, of dimension n > 3. Then M is finitely covered by S~ x S' or M is a nilmanifold of
degree at most 3.

One motivation for our classification is the goal of classifying closed Lorentzian manifolds ad-
mitting an essential conformal flow—that is, a flow that does not preserve any metric in the
conformal class. In the Riemannian case, these can only be S™ by a celebrated theorem of Obata
[14] and Ferrand [13]. By the Lorentzian Lichnerowicz Conjecture, which has been proved for
3-dimensional, real-analytic Lorentzian manifolds [6], all essential examples should be confor-
mally flat. These can, however, be of infinitely-many different topological types (see [5]). The
conformally flat, closed Lorentzian manifolds admitting an essential conformal flow and having
unipotent holonomy correspond to cases (1) and (2) in our classification theorem above. In section
6 we obtain the following topological classification.

Theorem 1.4. Let M be a closed, conformally flat Lorentzian manifold with unipotent holonomy
of dimension n > 3. Then the conformal structure on M is essential if and only if M is finitely
covered by S ! x ST,

1.1. Acknowledgments. This paper generalizes to arbitrary dimension the dissertation result
of the first author, in which she obtained the classification in dimension three. We thank Bill
Goldman for his role in proposing the problem, a Lorentzian analogue to Theorem 1.1. As co-
advisor of the first author’s dissertation, his suggestion of using the techniques of [8] for nilpotent
holonomy lead to Proposition 2.16, which plays a key role in several places below. We thank him
for this and for further valuable feedback.

2. PRELIMINARY DEFINITIONS AND RESULTS

While conformally flat Riemannian manifolds are locally modeled on the round sphere with its
group of Mobius transformations, the Finstein universe (also called the Lorentzian Mdbius space)
is the local model for conformally flat Lorentzian manifolds, and comes with a rank-two simple
group of conformal transformations. We put conformally flat Lorentzian geometry in the context of
(G, X)-structures in the next subsection. Then we present the geometry of the Einstein universe
and its universal cover. Finally, we focus on the action of the maximal connected unipotent
subgroup of conformal transformations of the Einstein universe.

2.1. The (G, X)-structure of a conformally flat Lorentzian manifold. Let n > 3. Let
N c R™2 be the null cone of a nondegenerate quadratic form of index 2. Let X ¢ RP™"! be the
image of A/ under projectivization, a quadric hypersurface. The restriction of the quadratic form
to TN is a degenerate symmetric form which descends to a Lorentzian metric on X, well-defined
up to conformal equivalence; the resulting conformal Lorentzian manifold is Ein” "', The group
O(2,n) of linear isometries of the quadratic form descends to a group of conformal transformations
of Ein" 1! which is easily seen to be transitive. The quotient PO(2,7n) will be G.

Let (M™, g) be a conformally flat Lorentzian manifold. For each p € M, there is an open neigh-
borhood U of p and a conformal diffeomorphism of (U, g|;;) with an open subset of Min" b1,
Minkowski space conformally embeds in Ein™ %!, which is shown in 2.2.1 below. In fact, Ein" 1!
is the conformal completion of Min™ ! in the following sense:
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Theorem 2.1. (see [4] Thm 2.13, [17] Thm 5.2) Let U,V C Min" %! be connected open sub-
sets. Fiz a conformal embedding ¢ : Min" 1! — Ein" b, Let f : U — V be a conformal
diffeomorphism. Then there is a unique F' € G = PO(2,n) such that f is conjugate by ¢ to F\L(U)

This is the Lorentzian version of the Liouville Theorem. A consequence is the following Develop-
ment Theorem.

Theorem 2.2. (compare [10, Thm 1.1]) Let (M",g) be a conformally flat Lorentzian manifold
with universal cover mpy : M — M. Then there exists a pair (8,h) with § : M — Ein" ' ¢
conformal immersion and h : w1 (M) — PO(2,n) a homomorphism such that the diagram

M —% 5 Ein" 1!

| e

M —2 Ein® 1!
commutes for all v € w (M). Moreover, if (§',h') is another such pair, then there erists g €
PO(2,n) such that 6 = god' and h'(y) = gh(y)g~! for all v € 71 (M).

More generally, we can take the existence of such a developing pair for any (G,X) to be the
definition of a (G, X)-structure on M. The following are standard terms.

Definition 2.3. Let (0, h) be a developing pair for a (G,X)-structure on M. Let I' < G be the
image of h. The (G, X)-structure is

(1) complete if M = X /T’
(2) Kleinian if M = Q/T for Q C X an open subset.

In the case that X is not simply connected, the developing map always lifts to the universal cover
X and the holonomy lifts to G the group of lifts of G to X. One often prefers to speak of being
complete or Kleinian with respect to the (G X) structure, but one may use both notions.

The following lemma will be applied to the developing map in order to conclude completeness in
the sequel.

Lemma 2.4 (see [3, Lem 3.4]). Let F : U — X be a local diffeomorphism. Let W C U be an open
subset on which F restricts to a diffeomorphism onto X. Assuming U is connected, then W = U
and F is a diffeomorphism.

We introduce here a few techniques for studying developing pairs for (G, X)-structures, which will
be refined for our particular setting in subsequent sections. The general idea is that holonomy-
invariant objects on X correspond to well-defined objects on M. Assuming M is closed, these
objects will provide leverage to establish completeness. A first example is the following proposi-
tion, of which the short and easy proof is left to the reader.

Proposition 2.5. Let (§,h) be a developing pair for a (G, X)-structure on M, and let T' be the
image of h. Let V C X be closed and T-invariant. Then 7y (6~ 1(V)) € M is closed.

Because ¢ is a local diffeomorphism, vector fields on X have well-defined pull-backs to M. In fact,
the same is true for vector fields on submanifolds V' C X. For Y € X(V), the pull-back to 6=1(V)
will be denoted 0*Y
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Proposition 2.6. Let (§,h) be a developing pair for a (G, X)-structure on M, and let T' be the
image of h. Suppose that a regular submanifold V C X and a complete vector field Y € X(V) are
D-invariant. Let V be a connected component of 6~ Ywv). If V is closed, then 6*Y is complete,
and the image 5(V) C V is invariant by the flow along Y.

Proof Let T be the group of deck transformations of M. By I'-invariance of Y, the pullback §*Y

is T-invariant on 6~ L) = [.V. The latter is a union of connected components, each of which is
closed in M. Therefore the i image WM(V) is closed in M. The vector field §*Y pushes forward to
this image and the push-forward is complete. Therefore §*Y is complete on V. By design, 4l
intertwines the two flows, so ¢ (V) is invariant by the flow along Y. O

2.2. The geometry of the Einstein space and its universal cover. This subsection details

—— _171 oy
some of the analytic and synthetic geometry of Ein” "' and Ein' . Identities for causally
defined sets are established, which will be used in the construction of examples in Section 4
below.

2.2.1. Geometry of Ein" 11, Recall that the construction of Ein" 1! begins with a nondegen-
erate, index-2 quadratic form on R"*2. It is convenient to fix the following one
n—1
n2(T) = 20T 41 + 20120 + 3]
i=2
and to define for x € R"

qn-11(x) = 2z12, + Z 3322

which is of index 1.

Consider the following immersion of Min" 1! — R"+2
(1‘17 cee axn) = (_QHfl,l(x)/27 Llyeeey T, 1)

This is a semi-Riemannian immersion of Min" ! to R™2 = (R"+2,qn,2). The image is in the
null cone N and is transverse to the fibers of the projectivization map. Thus the composition

(1, ) o [—ane11(@) /2y ety 2 1

defines a conformal embedding of Min" 1! in Ein" 1!, called a Minkowski chart. The image of

such an embedding will also be called a Minkowski patch below.

The complement of the above Minkowski patch is the intersection of Ein™ ! with the subvariety
of RP™™! defined by ,41 = 0 in homogeneous coordinates. According to n,2, this latter sub-
variety is the projectivization of eé. The intersection eé NN is the union of the totally istropic
planes containing eg. The projectivization of a totally isotropic plane in R™? is called a photon in
Ein" !, The projectivization of eoL NN comprises all the photons of Ein" 1! passing through
[eo]. Tt is a singular hypersurface called the lightcone of py = [eg], denoted L(pg). This is thus the
complement of our Minkowski patch, which evidently is determined by pg and will accordingly be
denoted Min(pg) C Ein" 11,

Note that O(n, 2) acts transitively on isotropic flags comprising an isotropic line, a totally isotropic
plane, and a degenerate hypersurface, as above, and so PO(n, 2) acts transitively on configurations
po C A C L(pg), where A is a photon through py.
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The photon A can be identified with RP', in a geometric sense. The stabilizer in PO(n, 2) of a
totally isotropic plane is a subgroup isomorphic to PSL(2,R). Thus A inherits a 1-dimensional
real-projective structure from the geometry of Ein™ %!, isomorphic to that of RP?.

Topologically, Ein" %! is homeomorphic to S*~! x S!/(c), where o is the antipodal map on
both factors. The fundamental group of Ein™ ! is isomorphic to Z. Moreover, the metric
corresponding to ggn-1 @ —gs1, where ggr is the constant-curvature metric on S* belongs to the
conformal class of Ein™ 1!, For these facts we refer to [4], [1, Sec 4].

Another way to see the topology of Ein" 1! is via the following useful projection. Let A be a

photon, corresponding to the projectivization of the totally isotropic subspace span{u, v} C R™2.
Let

pa @ Ein" MM\A - A
[x] = [<(L’, U>u - <x,u)v]
where the inner product is the one determined by ¢, 2. It is easily checked that pz([z]) is inde-
pendent of the choice of basis {u, v} or the choice of x representing [z]. It has a well-defined value
in Al as span{u, v} is the inverse image of Ain N and is a maximal isotropic subspace. For any
p € A, the fiber pgl (p) is L(p)\A. For p # g both in A, the intersection L(p)NL(q) is precisely A.

It follows that pz is a submersion, the fibers of which form a foliation by hypersurfaces, exhibiting
Ein" b1\ A as diffeomorphic to R*! x S!,

2.2.2. Geometry of Ein" ! The universal covering Ein" M homeomorphic to S*~! x R such
that o lifts to
7: S"I1xR — S"!xR
(l‘,t) = (—?L‘,t—|—ﬂ')
The generator « of m (Ein"_l’l) is represented by the deck transformation corresponding to &
under this identification. Each photon in this model is the graph of a unit-speed curve in S~

—n-11 . N
Given a photon A C Ein" , with A = mgin(A), the map pz from the previous section lifts to
i n—11 . . n— ~ . —n—L1
Ein  : the fibration of Ein" ! \A lifts to a foliation of Ein" \A by closed hypersurfaces;
then any lift of px corresponds to the quotient map to the leaf space of this foliation, which is

—n—1,1
diffeomorphic to R. We will define a specific lift which will in fact be a map pa : Ein " \A — A
in §2.3.2 below.

Note that the geometric isomorphism A = RP! lifts to a (PSL(2, R), RP!)-structure on A, in
—1 —~
which it is isomorphic to RP , with its transitive SL(2, R)-action.

—n—1,1 ) ) : .
In a useful refinement of the model for Ein" ', we identify S~ x R with R™\ {0} in the usual
way, by
(z,0) — ez
Under this identification, o becomes
z = —e’z.

Furthermore, each photon becomes a logarithmic spiral contained in a 2-dimensional linear sub-
space of R™. The lightcone at a point p is the revolution of any photon through p around the
axis connecting p and «a(p). The complement of L(p) is a disjoint union of Minkowski patches,
comprising the lifts of Min(p), where p = 7gin(p). The connected components are permuted by a.
Figure 1 shows a 2-dimensional cross-section of a light cone and a photon in it. The Minkowski
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Min* (5) Min™ (5)

L(p, a.p)

———— _1»1 .
FIGURE 1. The above figure shows a cross-section of Ein =~ R" \ {0}, with a
lightcone L(p) indicated by solid lines, and a photon in it indicated in orange.

patches are the regions bounded between successive loops. Two distinguished Minkowski patches
adjacent to p are labeled Min™ () and Min™ (p); these have a causal interpretation, which is given
in the next section. A reference for this material is [1, Sec 4.3].

2.2.3. Causal Geometry of Ein" 1’1. A reference for some of the basic material on causality is [16,
Chs 1-2]. Recall that a causal tangent vector is timelike or null, and a causal curve is one with
causal velocity. A time-orientation of a Lorentzian manifold is given by a timelike vector field,
and a simply connected Lorentzian manifold is always time-orientable. A causal tangent vector is
future-pointing, respectively past-pointing, if its inner product with the time-orienting vector field
is negative, respectively positive, and similarly for a causal curve. A piecewise smooth curve is
called timelike, lightlike, or causal, respectively, if the velocity vectors, including the velocity from
above and below at break points, are of the corresponding type; moreover, at the break points
both velocity vectors must have the same time orientation—that is, all velocity vectors along the
curve are future-pointing or all are past-pointing.

Definition 2.7. For M a time-orientable Lorentzian manifold, let x,y € M.

(1) x chronologically precedes y (often denoted x < y) if there is a future-directed timelike
curve from x to y.

(2) x causally precedes y (often denoted x < y) if there is a future-directed causal curve from
x toy.

(8) M is causal if x <y, y <z < z=y.

If x <y but x #y, we write x < y.
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Under the conformal equivalence
——n—1,1

Ein >~ (8" x R, ggn-1 ® —db?)

a time-orientation is given by the vector field dy. The map « preserves time-orientation; thus
Ein" 1! is time-orientable, although it is not orientable (see [1, §4.2]). It is also causal (in fact,
it is globally hyperbolic). For future reference, a natural choice of coordinate # on Ein" 1! gives,
in homogeneous coordinates

(2) 9p = (20 — &nt1) (01 — On) + (20 — 1) (80 — Opy1)

Definition 2.8. Let S C M. The causal future set J*(S) and future set I1(S) are defined as
JNS)={yeM:3wecS z<y} IT(S)={ycM:3zcS, z<y}

The causal past set and the past set are defined analogously.

~

——— 7171 . . . . .
The future and past sets of a point in Ein" have the following identifications in S"! x R =2
—n—1,1

Ein

Lemma 2.9. Let p = (z0,tp) € ]:];1”71’1. Then the causal past and future can be expressed as
J(p) ={(z,t) € S" L x R:tg —t >d(zx,z0)}, JT(p)={(x,t) €S P xR:t—1ty>d(z,20)}
and the past I~ (p) and the future I (p) as

I"(p)={(z,t) € S" ' xR:tg—t >d(z,z0)}, IT(p)={(z,t) eS" I xR:t—ty>d(x,x0)}

where d denotes the standard Riemannian distance on S™~ 1.
The proof is left to the reader.

—n—1,1
Remark 2.10. An immediate consequence of the above lemma is that x € Ein" always
causally precedes a.

The causal future, respectively past, sets are the closure of the future, respectively past, sets.
Note that given a point p, its future set and its past set are not complementary; however,

—n-1,1
Lemma 2.11. For any point p = (zg,t9) € Ein" ,

Ein" '\ I*(p) = J(a.p)
Ein" "\ J*(p) = I (a.p)

Proof. We prove only the first statement; the second is proved mutatis mutandis. From Lemma
2.9,

J(ap) = {(z,t) : (to +7m) —t > d(z,—x0)}
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As d(—zg,2) + d(z,29) = 7 for any z € S"~!, we have, again using Lemma 2.9,

B U\ IT(p) = {(2,8) 1 £ — to < d(x, 20)}
={(z,t) : t —to < 7w —d(z,—x0)}
={(z,t):t—(to+m) < —d(x,—x0)}
={(z,t): (to+7) —t >d(x,—x0)}
= J " (ap),
as desired. (]

For p € ﬁln_l’l, the distinguished Minkowski patch Min™(p) is the Minkowski patch containing
p in its closure and in the future of p, while Min~ (p) is the Minkowski patch containing p in its
closure, the points of which are not causally related to p. We will take as definition the following,
and verify a little later that these project to a Minkowski patch in Ein® ! as previously defined.

—n-1,1
Definition 2.12. Forp € Ein" ,

(1) Min™(p) = I*(p) N I (a?.p),
(2) Min~ (p) = I (o tp) N I~ (a.p).

The following relation follows immediately from Definition 2.12.

—n—1,1

)

Proposition 2.13. For any p € Ein ,
Min™(p) = Min™ (a.p)
For two points p and ¢ such that ¢ = o’.p for some i € Z~, we define the following subsets,
contained in L = L(p) N L(q):
L(p,g)={zr€L:p<az<q}, Lppg={z€l:p<a<qg}

The boundaries of the Minkowski patches are the following subsets of L(p).

—n—1,1
Corollary 2.14. For any p € Ein" ,

OMin* (p) = L[p,a®p] ~ dMin~(p) = L[a~'.p, a.p]

Proof. For p = (¢, 00) € S" ! x R, Definition 2.12 and Lemma 2.9 give
Min™ (p) = {(¢,0) € S""" x R: d(6, do) < 0 — o < 27 — d(¢, é0)}
Using that 0 < d(¢, ¢p) < 7 for all ¢, the boundary set
{0 — 60 = d(¢,d0)} = L[p, c..p]
while

{(8o + 27) — 0 = d(¢o, $)} = Lla.p, a>.p]

This proves the equality for 9Min™ (p); the second follows from this one and Corollary 2.13. O
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For a fixed p = (¢0,00) and given any ¢ = (¢, ), there is k € Z such that

d(d): ¢0) < 0 — 90 —2km <27 — d(¢7 ¢0) or — d(¢> QSO) < 0 — 00 —2km < d(d)v ¢0)

Strict inequality in the first case corresponds to ¢ € Min™(a?*.p), while strict inequality in
the second case corresponds to ¢ € Min™ (a?*.p) = Min™(a?*~1.p). Equality corresponds to

e _17 . . e .
p € Lla®*.p, a?**2 p] or p € L[a?*~1.p,a®**1 p|, respectively. Thus Ein" is the disjoint union

over i € Z of the Minkowski patches Min™ (a’.p) with L(p). The first union and L(p) are each
a-invariant. Tt follows that the projection g, (Min™(p)) is the complement of L(p) in Ein" 5!,
which is the Minkowski patch Min(p). The projection of Min™ (p) also equals Min(p).

2.3. Unipotent dynamics on Ein" !,

2.3.1. The maximal unipotent subgroup. The maximal unipotent subgroup of G = O(n,2) is the
unipotent radical of the minimal parabolic subgroup. (These groups are of course unique only
up to conjugacy in G) The latter subgroup is the stabilizer of an isotropic flag of R™?2; the
unipotent is the subgroup of the stabilizer of an isotropic flag which moreover acts trivially on
each subquotient of the flag. For the quadratic form ¢, 2 and the isotropic flag

F = Reg C span{eg, e1} C eg € R™?

the maximal unipotent subgroup is upper-triangular. It will be denoted U. This group is simply
connected, and is contained in G°. As —Id, 5 is not in U, it projects isomorphically to its image
in G = PO(n, 2), which we will also denote by U.

Recall that G(n, 2) denotes the conformal group of L?i;ln_l’l, for which we may also write G.
(Note that m1(0%(n,2)) = Zy x Z for n > 3, so G© is a two-fold quotient of the universal cover
of 0%(n,2).) Denote by ¢ : O(n,2) — PO(n,2) the quotient. As 7 (Ein" b') = Z this is a
Z-covering on the identity components. We will denote by U the full lift ¢ '(U) and by U° the
identity component; the latter group is also isomorphic to U, as U is simply connected.

The isotropic flag F stabilized by U corresponds to the chain of subspaces

po = [eo] C A C L(po) C Ein" 1!

where A is the photon obtained from the projectivization of span{ep,e;}. The U-action on

. ~ —n—1,1
A = RP! is the projective parabolic flow fixing pg. The U%-action on A C Ein" corresponds

—_—

—1
under the geometric isomorphism A =2 RP to the lift of this one-parameter subgroup to SL(2, R).

Because it stabilizes the complementary light cone, U acts conformally on the Minkowski patch
Min(po). By the Liouville Theorem 2.1, this action is faithful. The conformal group of Min™ 11
is the similarity group CO(n — 1,1) x R". For g € U, we denote by L, the image under the
homomorphism &/ — CO(n — 1,1). The image L(U/) is a unipotent subgroup of SO(n — 1,1),
stabilizing the isotropic flag Re; C ell c R" b6 for the quadratic form gn—1,1- We denote
by ug the R™-component of g € U, so that g acts on Min"11(py) = Min" ! by the affine
transformation v — Ly(v) + ug. Note that u : i/ — R™ is a 1-cocycle for the representation of U
on R" via L.
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2.3.2. The 7-flow. The maximal unipotent subgroup U has one-dimensional center that corre-
sponds to a translation by the isotropic vector e; on Min" 5!, We will refer to the R-action of
Z(U) on Ein"" ! as the 7-flow. In homogeneous coordinates on Ein" b1 it is

(3) Tt 1] = [0+ STy 1 L — STpg1 1 T2 Tp

~ —_— _1,1 . . .
The lift to U4° acting on Ein" will be denoted by 7 as well. We will denote the corresponding
———— 7171 . . — . .
vector fields on Ein" !! and Ein" by Y;. In homogeneous coordinates on Ein" 'l it is

Y; = 2,00 — ©p+101. Using the time orientation Jy from (2), the inner product (Y-,dy) < 0,
_ _ —n—1,

vanishing exactly on A. Thus Y; is future-pointing on Ein" 5!\ A and Ein" \A.

Each point of Ein™ ! \A tends under 7° to a point of the fixed set A as s — 4-00. The limit point

is given by the projection px from §2.2.1. As a consequence, we have the following description,
for ¢ € A:

Min(q) = {p € Ein" M \A: lim 7'p = pa(p) # q}.
t—+oo
. . oron—Ll . . o n—L1
Similarly, the fixed set in Ein of {7°} is A and points of Ein \A tend under 7° to

—n—1,1 .
a point of A as s — *oo. Each Minkowski patch in Ein" \ A can be written as a set of
points converging to a particular segment of A under the 7-flow. For any p,q € A, denote
Alp,q] = Llp,q) N A, and similarly for A(p, q).

Proposition 2.15. For any p € A,

Min®(p) = {z € Ein" \A: lim "2 € A(p,a.p)}.

t—F oo

Proof. From Corollary 2.14, we know that

A NMin™(p) = Alp, & .pl.

For x € Min™ (p), let = mgiu(x) and p = 7gi(p). Let
_ . t = 1 t — X _
C_[—tILIgOT .x—tilznooT Z e A\ {p}
and let ¢ be the mgi,-preimage of ¢ in A(p, ap). Since = ¢ L(p) = L(a’.p) for all i, we have
——n—1,1 .
Min™(p) C {z € Ein" \A: , lim 7.2 € A(p, a.p) U A(a.p,a®.p)}.
——00

Thus tliin '.2 € {q,a.q}. Note that the path t — 7t.x for t € (—o0,00) is future-pointing, as
—00

t

Y, is future-pointing. If the two limits lim 7°.x were equal, the result would be a closed causal

t—+o00

———— _171 . . .
loop, violating causality of Ein" (see §2.2.3). Moreover, the forward limit must be in the
future of the backward limit, from which we conclude

t t

lim 7 2 =q € a(A(p,a.p))

t——o0

.z =q € A(p,a.p) lim 7
t—o00

On the other hand, every point of A\ {p} is the forward and backward limit of a point of Min(p)
under {7t}. As o commutes with 7!, every ¢ € A(p, a.p) is limy_,_ o, 7%.x for some z € Min™ (a'.p)
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for some i; also every ¢ € A(a.p,a?.p) is lim; oo 7'.2 for some 2 € Min™(a/.p) for some j. By
the inclusions proved in the previous paragraph, necessarily ¢ = 5 = 0, and

—n—1,1 _
Min"(p) = {z¢ Ein" \A: tl}l_noo 'z € Ap,a.p)}
—n—1,1 .
= {ze€ Ein" \A: lim .2 € A(a.p,a®.p)}
t—o00

The desired identity for Min™~ (p) now follows from Corollary 2.13. O
—n—1,1 —n—1,1
We now define pa : Ein \A — A. Let z € Ein with Z = gy ().

L . al.p z € L(atpa’p)\A
pale) =l mr = { Tom(0(#) N Ala’.p.a’*Lp) z € Min™(a'p)

This map is a submersion onto A lifting px.

2.3.3. An iterative technique for establishing completeness. The following is a general technique
for showing that the developing map is a diffeomorphism onto eligible subsets of the model space
X. The basic version appears for affine manifolds with unipotent holonomy in the proof of
completeness of [8, Thm 6.8] and our proof idea is derived from theirs.

Proposition 2.16. Let (0, h) be a developing pair for a (G, X)-structure on a closed manifold M,
with holonomy image I' < G. Let V C X be a connected, I'-invariant reqular submanifold, with a
T-invariant foliation F. Let V be a connected component of 5=1(V). Assume V is a closed set.

(1) Suppose there are complete vector fields Y1,...,Yq € X(V), such that, for all i,
o Y; is locally projectable modulo F
e .Y, =Y, mod TFVyel
If the image 5(V) is F-saturated, then 5(‘7) C V is invariant by the flow along every Y;.
(2) Let W C V be a connected, reqular submanifold saturated by F and by the flows along
{Yi}, such that
e at all y € W, the projections mod F of {Y;} form a frame of the local leaf space
o [Y;,Y;] =0 mod TF on W Vi, j
Denote by F the pulled-back folzatwn of V, and let W be a connected component of
§~Y(W). If 6 maps each leaf of F in W diffeomorphically to its image, then Sy is a
covering map onto W.

A vector field Y is locally projectable modulo a foliation F if every point has a foliated neighbor-
hood U with local leaf space L such that for the projection py, : U — L, the push-foward (pr).Y
is well-defined.

Proof. Begin with the assumptions of (1). The first step is to build vector fields {X;} on M
corresponding to {Y;}. Denote by I the group of deck transformations of M. The saturation I.V
is a union of closed connected components, so its projection to M is closed, as is the component
(V). For any Z € my(V), there is a neighborhood U and a diffeomorphism from U to a
neighborhood U € V. Let {U;} be a finite cover of m);(V') by such neighborhoods, and define
vector fields X{, .. ,X{g by pulling back Y1,...,Yy from U C V to Uj, for each j. Let {1} be a
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partition of unity subordinate to {U;} and define X; = Zj (e X’ZJ Let X; be the lift of X; to
V C M for each i; it is complete.

By the assumption of I'-invariance of F, the pulled-back foliation F descends to WM(V). For
any 4, by the I'-invariance of Y; mod F, on the overlap of U'j with some Uy, the vector fields
X ZJ = X¥ modulo the foliation. For the lifted vector fields {X;}, by construction, for any € V
with neighborhood UcvVv mapping diffeomorphically under § to U C V, the push-forward
(0]p)+X; =Y; mod TF for all i. In particular, the {X;} are projectable modulo F.

We proceed to prove (1). Let y = d(z) for z € V, and let Y = Y; for some i € {1,...,d}.
Consider for arbitrary t9 > 0 a path a(t) = ¢ .y, 0 <t < 5. Let X = X; and let a(t) = .z
for 0 <t < ty, which is defined because X is complete. Let §(t) = 0 o &(t).

Now let 7 = {t : B(t) = a(t)} where equivalence means belonging to the same leaf of . By
construction 0 € 7. Suppose that t; — t with t; € 7. By continuity of «, 8, and F, the leaves

Foy = Fapy  and Fyyy = Faqy
SO
Fottr) = Fpwn) YR = Fay = Fpq)
Then 7 is closed.

For ¢t € 7, let L be a sufficiently small transversal so that the F-holonomy Hpg) o) is defined
on L. Denote by pr the projection from a small neighborhood U of 5(t) to L. Then (pr).Y
is well-defined, by projectability. Shrinking L if necessary, (pr)«0.X is also defined. These
projected vector fields are equal, because 6,X = Y modulo F wherever both are defined. The
projection pr, o B, where defined, is the integral curve through pr(5(t)) of this vector field. Now
let L' = Hpg).a)(L), a transversal to F through a(t). Here (pr/)«Y is defined, and prs o a,
where defined, is its integral curve through pr/(a(t)). Because Hg) o(+) pushes forward (pr).Y
to (pr)«Y, it follows that prs o & = Hg() oty © pr © 8. Then on a small interval of time around
t where these projections are both defined, « = . Thus 7 is open. We conclude 7 = [0, tg], so

A ~ A

a(tg) = B(tg) € 6(V). By the hypothesis that 6(V') is F-saturated, a(tog) € §(V), as desired.
Now let W and W be as in (2). Given y € W, let U € W be a foliated neighborhood with
projection L to the local leaf space. The hypotheses imply that after possibly shrinking U, there
is € > 0 such that the map

By (RY — L c=(c1,...,ca) = prlpy, oo y)

is a diffeomorphism. Let L’ be the image of B = B.(R%). For a point ¢’ of the leaf space, denote
by F, C W the corresponding leaf. Let U’ = Uy E, where E,y = UN F,. Given ¢ € R,
denote by ¢S the composition gpf):;; 00 pP.

Given ¢ € RY, let % denote the composition goggd o---0py on V. Given z € 671 (y) N W, reduce
€ if necessary so that the map

c=(c1,...,cq) = p; o k()

is a diffeomorphism from B to the local leaf space L of a foliated neighborhood of . We will assume
that L is the full image of this map. Then L maps bijectively via d = py0do pgl onto L. Indeed,
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suppose u = p; o p%.x and v’ = p; o (pgé.x map under d to the same point in L'. By equivariance
of ¢ with respect to the flows and the foliations, that would mean pr(¢$.y) = pL(Lpg.y). Then
pL(cpgfcl.y) = pr(y) because the Y;s commute modulo F. Since ¢ — ¢ € B (R?), necessarily
¢ = ¢. Thus injectivity is proved. Surjectivity follows from equivariance of §, as well.

For u € L, define E, = (5|Fu)_l(EJ(u))’ where F), is the F-leaf of u in V. By assumption, these
map diffeomorphically to their images under § for all u € L. Thus U, = Uue i E,cW maps
bijectively, and hence diffeomorphically, to U’ C W under 6.

Finally, suppose that for 2,2’ € 6~ 1(y), there is u € U, N U,. Then FPL(“) = Ff’i/(“)’ where L/
is the local leaf space of Uy By construction, there exist unique ¢, ¢ € B such that ¢§.z and
gogé.x’ each belong to this leaf. Then go)_(‘:/ o ¢%.x is in the same leaf as 2/. Then gp;["/ 0 ¢Sy is in
the same leaf as 6(2') = y. As ¢ — ¢ € By (RY), the first point is in U, and the two points have
the same projection under py. By the assumption on e, it follows that ¢ = ¢/. But then x and 2’
are in the same leaf, which implies they are equal because leaves map diffeomorphically under §.
Therefore the open sets U, are disjoint for distinct z € 6~ (y) N W.

We conclude that § is a covering from W onto its image in W. The image is open. If there were
y € d(6(W)), then by the framing assumption of (2) it would be connected by a finite sequence of
flows along {Y;} and segments in leaves of F to a point of §(W). But then by the flow-invariance
of W and the assumption on & along the foliations, y would also be in the image 5(W) We

conclude 9§ is a covering map of W onto W, as desired. U

3. THE DEVELOPING IMAGE CONTAINS pg.

Recall the U-invariant flag
po C A C L(pg) C Ein" 1!

= ~ ——n—-1,1
Our first case is when the image of ¢ contains py. We prove in this case that the (G, Ein" )-

structure on M is complete—that is, § is a diffeomorphism.

Theorem 3.1. If the image of § contains py, then up to a finite covering, M is the quotient of
Ein" by a free, properly discontinuous Z-action that leaves A invariant. More precisely, M

- n—11 ; . ~
is finitely covered by Ein \{ga) where i >0 and g € U°.

—n—1,1 .
The first step of the proof deals with the developing map vis-a-vis A C Ein" ; recall A is
connected. The following proposition serves for this case as well as the second case in the next
section. Thus there is no special assumption on § at this stage.

Proposition 3.2. Any connected component A of 6=1(A) is mapped by & diffeomorphically onto
its image. In particular,

(1) if po € 6(A), then § maps A diffeomorphically onto A.
(2) if po & 6(A), then § maps A diffeomorphically onto a connected component of A\ {p;},

where {p;} = ﬂ'gﬁl(po).
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Proof. The restriction of U to A is the parabolic flow with unique fixed point py—see §2.3.1.
Denote the corresponding vector field on A, and its lift to A, by Y,. The lift to A vanishes
precisely at the points {p;} and has no periodic points in each connected component of A\{p;}.

By Proposition 2.6, §*Y, restricted to " 1(A) is a complete vector field on §*(A), and on A in
particular; moreover, the image §(A) is invariant by the flow along Y,,. The flow-invariant subsets
of A are subsets of {p;} and unions of components of A\{p;}.

In case (2) of this proposition, §(A) is one component of A\{p;}, which we will call A;. Such
a component is parametrized by the flow along Y, of any point in it. As J intertwines the two
corresponding flows, it follows in this case that é maps A diffeomorphically onto A;, as desired.

In case (1), observe that the saturation of A by the deck transformations of M — M is a union
of connected components of the closed set 6 1(A), and therefore is also closed. Then §(A) C M
is a closed photon, which inherits from the (G, Ein"~!!)-structure on M a (PSL(2,R), RP')-
structure. Of course, the latter structure also has unipotent holonomy. From the classification
of one-dimensional (PSL(2,R), RP!)-manifolds—see [12] or [9, §5.5]—/t£e/ structure on §(A) is
complete. The developing map of this structure is a diffeomorphism to RP!, which is embedded

e _111 . . . . .
into Ein as A—see §2.2.2. This developing map is the restriction of § to A, so we conclude

that 0 maps A diffeomorphically onto A. O

Completeness will extend from A to all of M with the help of the 7-flow. By Proposition 2.6,
5*Y; = X; is a complete vector field on M and the image of § is T-saturated. Denote by {7°} the

corresponding flow on M. The following lemma is proved using only the equivariance and local
diffeomorphism properties of §. The interval I in the statement need not map diffeomorphically
onto its image.

Lemma 3.3. Let I C 6 1(A) be open and connected. Then the set

WH(I) ={zeM\sHA): lim .z € I}
— 00
1S open in M. The same holds for the analogously defined set W~ (I).

Proof. Let x € WT(I) with 2o = limy_,o 71.2, and let y = §(z). The developing map intertwines
the 7- and 7-flows. Because lim;_,o, 7!.z exists, it is mapped under & to lim; .o 7t.y by conti-
nuity. By assumption, y ¢ A, so this latter limit can be expressed as pa(y). Choose connected

Tr ——— _171 . .
neighborhoods zo, € A C M and pa(y) € B C Ein" such that 0 maps A diffeomorphically to
B; shrink them if necessary to ensure that AN A C I.

Choose connected neighborhoods z € U C M and yeV C ﬁlnil’l\A such that § maps U
diffeomorphically to V', and let

U' = (pao dly) (BN A)

which is again an open neighborhood of z. Let V' = §(U").

Consider 2/ € U’, and let 3/ = 6(2'). As {r'} converges uniformly on compact sets to pa, there
are T > 0 and a connected open W C W C V' containing y and ¢’ with 7/(W) C B for all t > T.
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We can choose T large enough that 77 (x) € A. Connectedness of {rt.y : t > T} C B implies that
o e Aforallt >T. Now (§,) Y (W

#((0]y) ™

Since limy_, o, 7¢(y’) exists and belongs to BNA, it now follows via equivariance that lim;_,, 7(z)
exists and belongs to ANA C I. As 2’ was an arbitrary point of U’, we conclude that U’ ¢ W (I),
which completes the proof for W (I). The proof for W~ (I) is completely analogous. O

is connected and open, so for any t > T,

W) = (8l (W) c A

~~

Adding the assumption that I maps diffeomorphically onto its image brings us to the key step
for proving completeness.

Proposition 3.4. Let J C A be open and connected and I be a connected component of 6~ 1(.J).
If 6 maps I to J diffeomorphically, then the sets

+ o T —1 T ~t
W=(I)={zxe M\6 (A).til:llf:ﬂooT.l‘EI}
each map diffeomorphically onto the sets

OF(J)={zeEm" "\ A: lim 7tz e ).

Proof. The proof here is for W+ (I) and Q1 (J); the other case is proved mutatis mutandis.

Let x1,20 € WH(I) with y; = 0(x;), i = 1,2. As limy oo 71.; = 2; exists, it maps under J to
lim; o0 7.5, for i = 1,2. Suppose that y; = o = y. Then by equivariance

6(21) = 8(22) = lim 7'(y)

By our assumption, this implies z; = 2o = z. Now let A be a neighborhood of z mapping diffeomor-
phically under § to its image, which we will denote B. Let T' > 0 be such that 77 (z1), 77 (x2) € A.
By equivariance, 77 (y) € B. But then 77 (z1) = #7(x2) which implies z1 = x9. Therefore § is
injective in restriction to W (I).

Next let y € QF(J), with limy o 7ty = 2. Let w € I be the -preimage of z. Let A be a
neighborhood of w mapping diffeomorphically to B, a neighborhood of z. Let T" > 0 such that
rty € Bforallt>T. Let x = (8| ,) " *(77.y). Then limy_,o 7'(x) = w and §(7~T.z) = y.

Now ¢ restricted to the open set W (I) is a bijective local diffeomorphism onto Q7 (.J), hence a
diffeomorphism onto Q(.J). O

We are ready to assemble the proof of Theorem 3.1. Assume that pq is in the image of §. Let A be a

connected component of 6~1(A). By Proposition 3.2 (2), § maps A diffeomorphically onto A. Let
—n—1,1

Q=Em" \A and W = WT(A). Proposition 3.4 above says that W maps diffeomorphically

under § to €. Since dim M > 3, the codimension of §71(A) is at least two, so M\6~1(A) is

path connected. Lemma 2.4 applies to U = M\é‘l(A) and X = (, to give that W = WT(A)
maps diffeomorphically to Ein® 11\ A and equals U. Any other component A’ of §~(A) would
give W+ (A) disjoint from WT(A) yet equal to U—a contradiction. Therefore A = §~(A), so
M = W UA. Finally, ¢ is a bijective local diffeomorphism, so § maps M diffeomorphically onto

—n—1

71 .
Ein . Completeness is proved.
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To analyze the holonomy, recall that mp7(A) = A is a complete (PSL(2, R), RP!)-manifold. The

restricton to A of the covering group action on M is conjugated by J to the action of (a’) on
A, for some i > 0. On the other hand, this restriction to A is faithful, so m (M) = Z. Since
we assume that the holonomy projected to PO(n,2) belongs to U, it follows that I' = (a’g) with

i>0andg€1/70.

4. THE DEVELOPING IMAGE DOES NOT CONTAIN pg BUT DOES MEET A

We continue to the second case of our classification. This case does not have an analogue in the
conformal Riemannian setting.

4.1. The developing image. Write {p;} = wgit(po), and let Ag be a connected component of
A\{p;} meeting the image of §. Let Ag be a connected component of §71(Ag). By Proposition
3.2 (2), Ag maps diffeomorphically under § onto Ag. The latter set is of the form

Ag={z €A : p;<z<ap}
for some 4, which we will assume to be 0.

Let I'y < Conf M be the stabilizer of Ag in the group of deck transformations of M — M. As Ay
is homeomorphic to R, so is Ag. Proposition 2.5 gives that (671 (A)) is closed; then 7y (Ag),
a connected component of this set, is also closed. Thus 'y = Z.

Let So C L(po)\{p:i} be the connected component containing Ag. Note that So = L(po, a.po).
Let Yo be a connected component of §1(Sg). The following proposition establishes completeness
of § between ¥y and Sp. It is not assumed that 6(Xg) meets A; part (2) of the proposition will
be used for case 3, in §5 below.

Proposition 4.1. Assume that po ¢ im 6. Let S be a connected component of L(po)\mg(Po)
and Ag = SN A. Let ¥ be a connected component of 6-1(S). Then § maps ¥ diffeomorphically
to its image, which equals

(1) Sif 6(X) N Ao # 0.
(2) S\Ao if 6(X)NAg =10

Proof. The submanifold ¥ is a connected component of §~1(L(fy)), so it is closed in M. On the
other hand, S is a regular submanifold. The holonomy subgroup 'y = h(fo) leaves S invariant,
as does all of °. The T-orbit of S is a union of connected components of L(fo)\{f;}. Thus
> can also be considered a connected component of the inverse image of the I'-invariant regular
submanifold T'.S.

Let F be the foliation of S by photons. It is invariant by T'y (and extends to a I'-invariant
foliation of I'.S). We have seen just above that if §(X) meets A then any connected component
of 67 1(Ap) in ¥ maps diffeomorphically to Ag under 6. On any photon in S\Ag, the 7-flow acts
simply transitively—this can be seen from the formula (3) for the 7-flow, taking x,+; = 0 and
rn, # 0. By Proposition 2.6, 6*Y,; = X, is a complete vector field on M. Tt follows that for
any photon 7 of S\Ag, each component of §1(y) N ¥ is mapped diffeomorphically by & to 7.
We conclude that § maps leaves of Finy diffeomorphically to leaves of F in S, where F is the
pulled-back foliation by photons on .
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Next we define vector fields Ya,...,Y, 1 on S. They will be lifted from S = L(po)\{po} C
Ein" !, Denote by F the foliation by photons on S. Consider the map given in homogeneous
coordinates by

2
(4) L:RxR"2 5§ (t,(yg,...,yn_l))»ﬁ[t:—HZH:yg:--':yn_1:1:0]
It is an injective immersion onto S\A. Let Y; = 1.(dy;) for i = 2,...,n — 1. As Oy, is projectable
under R x R"2 — R"2 and ¢ maps the fibers R x {y} diffeomorphically to the photons of S\ A,
it follows that Y; is projectable modulo F for all 4. The U-action on Ein" 1! preserves the image
of ¢+ and the foliation F. The conjugated U-action on R x R"~? descends to the R 2-action by
translations on (R x R""2)/R = R" 2, and thus centralizes dy; modulo the R-factor, for all i.
The U-action on S\A thus centralizes each Y; modulo T.F.

Let L = L([eo]) N L([en+1]), a conformally embedded copy of S™~2, corresponding in homogeneous
coordinates on Ein" ! to the locus where 7y = 0 = 2,,41. In the affine chart on P(eg Nep, ;) =
RP"! where x,, = 1, a routine calculation using (4) gives Y; = dx; — ;0. In the affine chart
where 1 = 1, the expression is

n—1

Y, = Z 2;x;0x; + £,07; + Tp2;0Ty

j=2
which tends to 0 as # — 0. The origin of this affine chart corresponds to [e1] € A. The conclusion
is that Y; extends by 0 to A. Now lift the resulting vector fields on S to S; we will continue to
denote these by Y;, for i =2,...,n — 1.

The vector fields Y; are each projectable and UO-invariant modulo JF , thus they are I'p-invariant
(and T'-invariant when equivariantly extended to I'.S) modulo F. We are now in a position to
apply Proposition 2.16. The image §(X) is invariant by the flow along Y; for all ¢, which means
that it meets every leaf of S\Ap. In case (1) or (2), 6 maps X onto the claimed set. In case (2),
the vector fields {Y;} form a framing of the local leaf space at every point of S\A, so part (2) of
Proposition 2.16 applies to give that ¥ — S\Ag = R"! is a covering map, which means it is a
diffeomorphism.

In case (1), we take W = S\ A in Proposition 2.16 (2). It gives that any connected component of
Y\01(Ag) maps by a covering map onto S\Ag = R"~!, therefore by a diffeomorphism. By the
following lemma, there is only one such component. Then 4 is a bijective local diffeomorphism
on AUX\6 1 (Ag) = 3, so it maps ¥ diffeomorphically to S, as desired. O

Lemma 4.2. For S and ¥ as in Proposition 4.1 case (1), ¥\6 1(Aq) is connected.

Proof. Let A be a connected component of ~*(Ag)NY. Consider W*(A) as in Lemma 3.3. Since
A maps diffeomorphically under § to Ag, Proposition 3.4 gives that W*(A) maps diffeomorphically
to QF(Ag), respectively. By Proposition 2.15, these are Min™ (), respectively. By Corollary

—n—1,1 ~ .
2.14, the boundaries of these sets in Ein \{p;} are a~1.S U S and S U .S, respectively.

For x € S NOW™(A), let U be a neighborhood mapping diffeomorphically to its image under 6,
which will be denoted U. Now

Unow*(A) =Uné 00T (M) =Und Ha t.SUS)
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By shrinking U to ensure that U N (L(5o)\{p;}) is connected, we may arrange that
Unow*r(A) =UnséH(S)=0UNx

Thus ¥ N OWT(A) is open in X. Since it is also closed and X is connected, it follows that

¥ C OWT(A). The analogous argument implies ¥ C OW ™ (A).

Now suppose 2 € X\~ (Aq). Then U meets W*(A) and U meets only the Minkowski patches
Min® (j); by Proposition 3.4, U\X € W+(A)UW ~(A). Now § is a local diffeomorphism between
the open sets

WH(A)U(S\6~(Ag)) UW ™ (A) — Min™ (o) U (S\Ag) UMin™ ()

Any component ¥’ of X\6~(Ag) maps diffeomorphically to S\Ag, as seen in the proof of Propo-
sition 4.1. Then the open subset W+ (A) U XY U W~ (A) maps diffeomorphically onto the target
above. Therefore ¥\6~1(Ag) = X’ by Proposition 2.4. O

With Proposition 4.1 and the arguments of the preceding proof, we have also established:
Proposition 4.3. Let S and X be as in case (1) of Proposition 4.1. Then

oW = WHA)UX UW(A) is open and is mapped diffeomorphically by § onto =
Min™ (]30) USUMin™" (Po).
e 5 1(Ag)NY = A is connected.

The following complete description of § will conclude this subsection.

Proposition 4.4. The set W in the conclusion of Proposition 4.3 equals ]T/f, and I'g =T'. The
developing map is a diffeomorphism of M onto 2, and the holonomy image is a subgroup of U°
isomorphic to 7.

—n-1,1 __
Proof. Assume to the contrary that there is € OW. Then §(z) € 9Q N (Einn \ {pi}). From
—n—1,1

Corollary 2.14 the boundaries of Min™ (py) N Ein
light cone components L(a.pg, a’t.pg) for i = —1,0,1. One of these, L(po, a.po), equals S and

\ {p;} are contained in the three punctured

is in the interior of ). Therefore

o0 = L(a~ .po, po) U L(a.po, o®.pp) = a~L.SUa.S

By construction, I'y is contained in the stabilizer of Ag; the latter intersects U in U°. Thus Iy is
also contained in the stabilizer of o’.S and of.A for all i. Without loss of generality, we assume
§(r) € a.S. Let ¥ C §71(a.S) be a nonempty connected component. Proposition 4.1 implies
that 3’ maps diffeomorphically onto «.S or a.S\a.Ay under §. By the usual argument with
Proposition 2.5, the stabilizer in w1 (M) of ¥ acts cocompactly. On the other hand, this stabilizer
maps isomorphically to I'g = Z. It is then impossible that §(X') = a.5\a.Ag =2 R"~!. Therefore
necessarily ¥’ maps diffeomorphically under § onto «.S.

Now X'UW = (A)UX develops diffeomorphically to a.SUMin™ (§p)US. The latter set is the closure

of Min™ (p) in Ein" " \{pi} by Corollary 2.14. We will show that I'y = Z does not act properly

on this set. Let go be the origin of the Minkowski patch Min™ (fg), and let K = L(go) NMin™ (o).

n—1,1

Since any two lightcones in Min intersect, the images v.K intersect K for any v € I'g. The
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Yy

——— 7171 ~
FIGURE 2. The lightcone L(qp) in Min™ () has compact closure in Ein" \{pi}-

closure K C Min™ (fy) does not meet {p;}—it is easily seen from the Minkowski chart in §2.2.1
— — —_n—L1 . . . ~
that py ¢ mEin(K)—so K is a compact subset of Ein" \ {p;} contained in a.SUMin™ () U S.

Thus 6 1(K) N (X' UW~(A)UY) is compact, and intersects its image under any v € Ty = Z.

Because I'g acts properly by deck transformations on M, this is a contradiction. See Figure 2.
The conclusions of the proposition now follow. [l

4.2. Determination of holonomy, conclusion of classification. It is established that I
I' 2 Z; moreover, I is generated by an element of u° acting freely, properly discontinuously, and
cocompactly on Ay, S, and . We first establish necessary conditions on this generator, which
we will call ~.

Proposition 4.5. Let v be the generator of the holonomy image under the assumptions of this
section, and let 7 = q(v) € G. Let L(¥) + uy be the affine decomposition as in Section 2.3.1.
Then uy is nontrivial modulo et. Moreover, if L(¥) = Id, then us is timelike.

Proof. The restriction of U to A = P(span{eq, e1}) corresponds in the affine representation to the
projection of uy modulo ef, and this must be nontrivial.

Next suppose that 7 € ker L, and let v = u5. Let ¢ : R X R" 2 — S’ be the chart on S’ =
7Ein(S)\A given in (4). In this chart, the action of ¥ is by
(ty) = (¢ + (o, (Zl19l12/2, 920 9ms 1)), )

where the scalar product on R* 1! is the one with quadratic form Gn—1,1- The lines

{S(_HyHQ/z?yQ’ <oy Yn, 1) ;s €R, (TS Rn_Q}
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ay.qo ¥.qo

a.qo q0

FIGURE 3. The fundamental domain for the action of () as in Lemma 4.6.

describe the full null cone N~ 11 of R?~1! except for the line Re;. We have already established
that v is not orthogonal to e;. Then ¥ will pointwise fix some photon of S unless v is not
orthogonal to any line in A~ 51, Since 4 must act freely on S, we conclude that v is timelike. [

Lemma 4.6. Let qo € Min™ (pg), and suppose there is v € G that satisfies

(1) g0 < 7-q0, ‘
(2) lim ~'.qo = a.pp and lim ~'.qo = a ™ .po.
1—00 1—— 00

Then () acts on Q with precompact fundamental domain given by

D = J"(q0) NI~ (ay.q0).

—n—1,1
See Figure 3 for a diagram of this fundamental domain in Ein

Proof. We first prove that the union U ~%.D covers the entirety of . From Lemma 2.11,

i€Z
U~ (T (g0) N I (a7.90)) = | 7" -(I" (a7.q0) \ I (e.q0))
1€Z 1€Z
= JT (@™ .q0) \ T (7' .q0))
i€Z

As both « and ~ preserve time orientation,
avt.go < oy tlgy, VielZ

which gives
I (aviqo) C I (ay"lq), VieZ.
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It thus follows that
Ua (@t ao) \ T~ (ev'.q0)) = | J T (7".q0) \ [) T~ (27 -q0)
i€Z i€Z JEZ

From (2),

. ) 2 ~
lim av*.q0 = a”.pg.
1—00

Since o.pg succeeds each avy’.qq,
U 7 (v’ .00) € T (0” o)
i€Z
For any set S, the future and past satisfy I=[S] = I=[S] [16, Prop 2.11]. Taking S = {a'.qo }icz,
we obtain the reverse containment and conclude
U I~ (av'.qo) = I~ (a®.po).
1€Z
From Lemma 2.11,
(T (v.90) = J T (+.0)-
JEZ JEZ
For any = > ~'.qo, by (1), v"t.q0 < = and J*(y%.q0) C I (7" 1.q0). It follows that
U7 (90) = J I+ .00)
JEZ JEZ
From (2), lim ~'.qp = a~'.p. For all 4, v'.qop € Min™ () C I (a~.5g), so 7'.qo > a~'.ps for
1—— 00
all 7. By the argument with [16, Prop 2.11] as above, we obtain
U It (v .q0) = Tt (07" o)
JEZ
We can finally conclude that
D=1 (o®po) NI (a" o)
1€Z
which by definition equals Min~ (5o) U Min™ (5o) = Q.
It remains to show D N~*.D = () for all i € Z. Let i be given, which we may assume is positive.
From (1), it follows that
JT(v'.q0) € JT(v.q0)-
By Lemma 2.11, we can also express
D=J%(g)\J (v.q0) and 4".D=J*(v".q)\ Tt (v .q0).
The desired disjointness now follows. O
Proposition 4.7. Let v € Uu° satisfy either necessary condition of Proposition 4.5. Then v

satisfies the sufficient conditions of Lemma 4.6 and () acts freely, properly discontinuously, and
cocompactly on €.
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Proof. First suppose that ¥ = q(v) is a translation by a timelike vector v. Considering y~! if
necessary, we may assume v is future-pointing. Then evidently, for g the origin of Min™ (), we
have qg < 7v.qo.

Under the Minkowski embedding ¢ in Ein” 1!, the limit lim;_,4 oo t(iv) is po. Thus lim; 400 7*.q0 €
{p;}. By Corollary 2.14, both limits belong to {a~'.pg, o, @.po}. On the other hand, the for-
ward limit is in the future of ¢g, so could only equal a.pg. The backward limit is in the past of
qo- Lemma 2.11 gives that the complement of Min™ (pg) is J*(po) U J~ (po)—that is, points of
Min ™~ (fg) are not causally related to pp. Then lim; , o 7'.q0 = a~!.jg. The sufficient condition
(2) is thus verified for the case that ¥ € ker L.

We now consider 5 = L + v, satisfying Ly € U and (v,e1) = v, # 0. For z € Min" ™!, the
linear part Ly = U € U acts by

Uz =2z —zw+ ((z,w) — xn|]w|]2/2) el for some w € ei Ne;-
Replacing v by 4! if necessary, we can arrange that v, > 0. In the Minkowski patch of Ein" 5!,
‘ -1 i—1
(5) 0= Tlw=>Y " (v—_jvaw+ (jv,w) — j2vonllw|]*/2) e1) i€N
j=0 j=0

To evaluate the causal asymptotics of this sequence, recall dp given by (2). Under the inverse of
the Minkowski chart (see §2.2.1), it pushes forward to

(("1405), = (=gn-11(2)/2 = 1) (01 — Bn) + (w0 — 1) (€101 + - - - + T 0n)

which has negative inner product with 8, — 9; everywhere in Min" %!, We may use this latter

vector field for time orientation on Min" 1! (see [15, Lem 5.29]). Since it is a constant vector

field, a vector x will be in the future light cone of the origin exactly when (x, e, —e1) < 0.

Now

i — 1)(2i — Dvy|w]?
12

Replacing v by ¥* for some sufficiently large k& > 0, we obtain gy < 7.qo, and condition (1) of

Lemma 4.6 is verified in this case.

(7'.0,en —e1) = — + 0(i*) = —o00 as i — o0

The dominant term in (5) is the coefficient of e;. Under the Minkowski embedding, the limit
points of {§°.go0 : 4 > 0} are in P(span{ep,e1}) = A (here ¢o = Trin(q) = ¢(0)). On the
other hand, ¥4 acts nontrivially on A with unique attracting fixed point py = [eg]. Therefore
lim; .00 7*.Go = po. For i < 0, the formula (5) becomes

—i —i

7.0 = —U_j.v:Z(—v—jvnw—i— (j(v,w) + j2vpl|w]|[*/2) e1) i <0

Jj=1 Jj=1
Here again the e;-component is dominant, and the same argument as for i > 0 gives lim;_, s 3*.qo =
po. Then we conclude as in the translation case that lim;_,+o0 Y%.q0 = ozi.ﬁo. Sufficient condition
(2) of Lemma 4.6 is verified. O

This case is now finished; the main results are summarized below. The examples with v a timelike
translation were previously discovered by C. Frances in his dissertation [4, Sec 7.6.3].
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Theorem 4.8. If the image of § does not contain py but does meet A\, then, up to composition with
a conformal transformation, & is a diffeomorphism onto Q = Min™ (jg) U L(pg, ov.pg) UMin™ (5g).
The holonomy image T' = (v) for v € u° satisfying the necessary and sufficient conditions in
Proposition 4.5. The manifold M is diffeomorphic to S"~' x St.

5. THE DEVELOPING IMAGE DOES NOT MEET THE PHOTON A BUT DOES MEET THE
LIGHTCONE L(pp).

In this case, the unipotence of the holonomy image leads, with the help of Proposition 2.16, to ¢

—~ —n—1,1 ) . .

being a diffeomorphism of M onto Ein" \ A. Using, among other things, the algebraic hull of
the holonomy, we prove that there are no examples in odd dimensions. In even dimensions, we
find a family of Heisenberg fiber bundles over the circle.

5.1. Development and holonomy for light cone components. Let pg € Wgﬁl(po). The space
L(po) \ A consists of infinitely many connected components {S;}. By case (2) of Proposition 4.1,

§ maps each connected component of §71(S;) C M diffeomorphically to S; for each 1.

We now choose components S C L(5p)\A and ¥ C §71(S). Denote by I's; the stabilizer of ¥ in
the group of deck transformations. Because {ls; is a diffeomorphism to its image, the holonomy
restricts to an isomorphism of I's; with its image, which will be denoted I's;. The latter lies in the
stabilizer of S, hence, under our assumptions, in U°. The restriction of 2° to S is faithful, thus
so is the restriction of f‘g to 2.

Lemma 5.1. The action of I's. on ¥ is cocompact. The cohomological dimension cd I's equals
n—1.

Proof. The hypersurface ¥ is a connected component of the J-inverse image of the closed, I'-
invariant set L(pg). Then 7/ (X) = X/I'y is closed by our standard arguments with Proposition
2.5. The second statement follows from ¥ 2 S = L(pg)\A = R L. O

Now we will focus on I's = ¢(I's). Note that 7gi, o § is a diffeomorphism from ¥ to g, (S) =
L(po)\A. This means that g o h is an isomorphism from I'y; to I's.

For g € U, recall the affine decomposition g = L, + u,4 of §2.3.1, and that the projection L(U) <
SO(1,n — 1) is abelian.

Lemma 5.2. The linear projection L(I's) spans the abelian Lie group L(U). The image is discrete
only if ker L N T'sy is nontrivial.

Proof. The leaf space for the foliation of L(pg)\{po} by photons is identified with the round sphere
S"=2_ on which the U-action factors through the projection L and is conformal. The quotient
of L(pp)\A by the photon foliation is thus identified with the punctured round sphere. Under
stereographic projection, this leaf space is conformal to Euc™ 2. The action of LU) =R 2 is
by translations. (This is the same action as appears in the proof of Proposition 4.1.)

By Lemma 5.1, Iy, is cocompact on X. Since ¥ is (g o h)-equivariantly diffeomorphic via S to
L(po)\4, it follows that I's acts cocompactly on L(po)\A, and thus on the leaf space of the
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invariant foliation by photons. A group of translations of Euc™ 2

spans R"2. Thus L(T'x) spans L(U).

is cocompact if and only if it

If ker L N Ty, is trivial, then I's maps isomorphically to its image in L) = R" 2. Thus I'y is a
free abelian group in this case. On the other hand, by Lemma 5.1, and because I's, 2 I's;, it has
cohomological dimension n — 1. Thus Z"~! = 'y = L(Ty) < R" 2. It follows that L(Ty) is not
discrete in this case. O

Lemma 5.3. The intersection ker LNTy, is generated by a single, possibly trivial, null translation
in the center of U. If it is nontrivial, then L(I's) is discrete.

Proof. Denote T = kerL N 's. It is a free abelian group; let its rank be k. The quotient
L(I's) < L(U) is also a free abelian group, of rank at least n — 2 by Lemma 5.2. On the other
hand, ¢d T's; = ¢d I's; = n — 1. We conclude that k < 1.

Of course 7 is normal in I's;. If 7 is nontrivial, it is isomorphic to Z. The conjugation action of I's;
on T is moreover unipotent; therefore, it is trivial, and 7T is central in I's. Because L(I's) spans
L(U), T must be contained in the common fixed space of L({/) in R", which is a one-dimensional
isotropic subspace. It acts on Ein" 1! by {7°}.

Finally, if 7 # 1, then the rank of the free abelian group L(I's) = I's/7T is at most n — 2 by
Lemma 5.1. Again, because this image spans L(U), its rank is n — 2 and it is discrete in this
case. D

Corollary 5.4. Ifn =3 orker LN Ty =1, then I's 2 T'y; is abelian.

Proof. If ker LNT'y; = 1, then Iy, & L(f‘g), which is abelian. If n = 3 and ker L NIy, is nontrivial,
then by Lemma 5.3, T's; is a central extension of L(I's) 2 Z by Z, which is necessarily abelian. [

—n—1,1
5.2. Development and holonomy for Minkowski patches. Let H be the foliation of Ein"

\A
by the fibers of pa (see 2.3.2). Because the developing image is contained in E};lnil’l\A and

‘H is invariant by I', it pulls back to a foliation H of M by degenerate hypersurfaces, invariant
by the group of deck transformations, which we will denote I'. Each leaf of H is a connected
component of the d-preimage of a leaf in H. One of these leaves is 3, which is already known
to map diffeomorphically under § to S. We now prove the same property for every leaf of the
foliation.

Proposition 5.5. For the foliation ofM pulled back by § from H, each leaf in M maps diffeo-
morphically to a leaf of H.

Proof. We begin by defining vector fields Ya,...,Y,_; on Ein® 5! \A. In the Minkowksi chart
Min(pg) = Min([eg]), they are coordinate vector fields of

q\y
L:(yl,yg,...,yn)H[—(2):y1:y2:-~-:yn:1]

The two Minkowski charts Min([eg]) and Min([e;]) cover Ein™ ! \ A—their complement is the
projectivization of eg- N e; = span{eg, e1}. The second Minkowski chart is

q(z
(:El,...,xn)r—>[ﬂs1:—(2):x2:-~-:xn_1:1:xn]



26 RACHEL LEE AND KARIN MELNICK

The change of coordinates is

.7312—@ xi:&,izl...,n—l J}nzi
2yn Yn Yn
For i =2,...,n — 2, the push forward by the change of coordinates is
0 0 0
oy 0w "o

These vector fields thus extend to smooth vector fields Ya, ..., Y,_2 on Ein® ! \A.

Note that Min([e1])\Min([eo]) = L(po)\A corresponds to x, = 0, and that here, the Y;s are
all tangent to the foliation F of the lightcone by photons. Then evidently in restriction to
S = L(po)\A, the U-action leaves Y; invariant modulo F for all i. Also, as they do not depend on
71, the Y;s are all projectable modulo F on S. In the coordinates on Min([eg]) = Min(pp), the
foliation F by photons is the linear foliation tangent to e1, and L(I{) is trivial on ei/Re;, which
a%i modulo F for all i. As the Y; are all constant in these coordinates, they are
projectable modulo F inside Min(pg), too. Lastly, note that the Y;s commute on Ein" ! \A.

means it fixes Y; =

Now lift {Ya,...,Y,_1} to Eﬁln_l’l\A, keeping the same notation for them. They are I'-invariant
modulo the foliation F by photons and projectable modulo F. The 7-flow is simply transitive on
each photon of ﬁln_l’l\A. As always, since I' commutes with {7°}, it pulls back to a complete
flow {7°} on M by Proposition 2.6. Thus for the subfoliation FCH by photons, each leaf maps

—n—1,1

diffeomorphically under 4 to its image in Ein \A.

As previously noted, every leaf of A mapping into L(pg) maps diffeomorphically to a connected
component of L(pg)\A. Therefore, we will consider H,, C Min™ (p;) for some j for the remainder
of the proof.

Part (1) of Proposition 2.16 gives that the image of ¢ is invariant by the flow along any Y €
span{Ya,...,Y,_1}. For y € Min™ (p;), the orbit of y under these flows, saturated by F, is the
full leaf H,. For y € Min™ (p;), the {Y>,...,Y, 1} form a framing modulo F in restriction to
Hy. Then Proposition 2.16 part (2), for W = H,, gives that the leaf 71, mapping onto H, maps
by a covering. As H, = R""1, this is a diffeomorphism. O

Proposition 5.6. Suppose that the image of § intersects Min™ (p;) for some p; € Wﬁ&l(po). Then
an open subset Q; C M maps diffeomorphically under § to Min™ (p;).

Proof. By Proposition 5.5, the image of § is H-saturated; moreover, J maps H-leaves diffeomor-

———— _171 . . .
phically to H-leaves. To define a transverse vector field on Ein" \A, we reprise the Minkowski
charts Min([eg]) and Min([e1]) on Ein" 1! as in the proof of that proposition.

Under the change of coordinates,

) q(z) 8 = 0 4,0
— < +ﬂf]_$n) 7 Z‘Z;ﬂjlﬂjn

Tyn 2 8@ ~n al'n '

Then the coordinate vector field 8/dy,, on Min(pg) extends by 0 to L(pg)\A, the set corresponding
to z, = 0 in Min([e;]). We obtain a well-defined vector field ¥;, on Ein" M \A. As Y, is
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constant in the chart Min(pg) and 0 elsewhere, it is projectable modulo H. As L(U) acts trivially
on R" 1! /ei | and Y,, vanishes on the complement of Min(py), it is U-invariant modulo .

Now lift Y, to ﬁln_l’l\A, where it will still be denoted Y,,. It is I'-invariant and projectable
modulo H. Take W = Min™ (p;). It is saturated by H and by the flow along Y,; moreover,
Y,, is nonzero modulo H everywhere in W. Then for ; any connected component of 6—1(W),
Proposition 2.16 says that €; maps diffeomorphically onto Min™ (p;). O

A neighborhood of ¥ intersects at least one such €; C M. The holonomy subgroup I'y; lies in
U° and preserves each Minkowski patch in L?i;ln_m. Thus I's; leaves invariant the open sets
corresponding to Minkowski patches neighboring ¥ in M. Let one such be Q. It is mapped
diffeomorphically under § to Min(pg). The ['s-action on € is thus conjugate to the I's-action on
Min(pg). We now consider the latter action in detail, and recall that I's, = I'. We will write the
group I's; and not distinguish from T's; for this discussion.

The leaf space of H in Min(pg) is diffeomorphic via px to A\{po} = R. Fix for the remainder
of this section an identification Min(pg) with Min" ! with the quadratic form Gn—1,1 of §2.2.1.
Denote by D the homomorphism sending an element of I/ to its action on this leaf space. The leaf
space can also be identified with Re,,, on which D(g) is translation by (e, ug), the translational
component of g transverse to H.

Proposition 5.7. If n >4 , then I's C ker D. On the leaf space of";':[ n M, the action of I's is
trivial.

For g,h € U, the commutator [g, h] = ghg 'h~! is easily seen to be

(6) 9, ] = (Lg — Id)up, — (L, — Id)uy

The identification of L(U) with R"™2? can be made explicitly as follows: in our coordinates on
Min" 1! elements L, € L(U) act by

(7) Ly(v) = v—(v,e1)lyg mod Rey

for a unique ¢, € e /Re; =2 R"~2. Denote V = e7 /Re;.

Proof. The aim is to prove that for all g € I'y;, the translational component u, € 61 Since the
linear part L(g) preserves each leaf of 7 in Min(py), it will then follow that g preserves each leaf.
The corresponding statement about 'y, will follow from Proposition 5.6.

Let g,h € T's;, and let ¢4, ¢}, € V correspond to L(g) and L(h) as above. The commutator given
by (6) belongs to ker L NT'y;. The latter subgroup acts on Min""! by a group of translations in
the direction of e; by Lemma 5.3. Thus

(Lg —Id)up, — (Lp, — Id)ug = (up, e1)ly — (ug, e1)lp, =0 mod Re;

for all g, h € I's.. If for one g € I'y;, the component (ug, e1) # 0, then ¢, # 0 by Lemma 5.3, and ¢},
must be linearly dependent with £, for all h € I's,. If n > 4, then the latter conclusion contradicts
Lemma 5.2. ]

The action of I's; on Min" ! is affine and properly discontinous. Viewing U as a subgroup of

the affine group of Min" 1!, there is a connected algebraic hull H < U which acts properly on
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Min" 1! and contains I's; as a cocompact lattice (see [7, Thm 1.4]). In fact, H acts freely on
Min" 1! as well [7, Lem 1.9]. By the proposition above, H is contained in ker D if n > 4, so it
acts freely and properly on each hyperplane in the foliation H in this case.

Lemma 5.8. For H the algebraic hull of I's in Af(Min" 1Y), there are nontrivial translations
in H, that is, ker LN H # 1.

Proof. Suppose that ker L N Ty, = 1. By Lemma 5.1 and because L(U/) = R" 2, the group
I's, = Z"~ 1. Thus the algebraic hull H = R"!, and it intersects the kernel of L nontrivially.

If ker LN Ty # 1, then evidently H also has nontrivial intersection. O

We establish some basic structural features of H. Since L(I'y) spans L(U/) by Lemma 5.2, the linear

projection of the algebraic hull L(H) equals L(U). For h ¢ ker L, the translational component uy,
is given by a 1-cocycle L(H) — R" 1! = ker L; by Proposition 5.7, this cocycle has values in ef-.
Because L(H) acts trivially on V = ef /Re1, composing Ly, — wup, with projection to V' yields a

homomorphism. Recall the identification of L(U) with V via ¢, from (7). Define
fcEndV 0 : Ly, — ap = [up] mod Rey

Proposition 5.9. Assume that I's < ker D and let H be the algebraic hull, with associated
6 € EndV as above. If 6 has a real eigenvalue, then H does not act properly on Min™ b!;
more precisely, if r is a real eigenvalue, then H acts with noncompact stabilizers on the affine

hyperplane defined by (x,e1) =r.

Proof. Let £ € V be an eigenvector of § with eigenvalue r. Because H projects onto L(U), there is
an element h € H with £, = ¢. By definition, 6(¢,) = ¢}, = [up] mod Re;. Given x € Min" b1,
equation (7) says

h(z) = Lp(z) +up =z — (x,e1)lp + up, mod Reg
Thus h, and the 1-parameter subgroup of H containing h, act trivially modulo Re; on the affine
hyperplane defined by (z,e1) = r . The translations Re; belong to H, as well, by Lemma 5.8.
Therefore any vector in this hyperplane has a noncompact stabilizer, proving nonproperness. [l

5.3. The global picture. As above, H is the algebraic hull of I's; in U.

Proposition 5.10. Suppose that n = 3. Then I's. does not act properly on M.

From this proposition we conclude there are no 3-dimensional examples for which im d meets
L(po) but not A.

Proof. Let S be a connected component of L(pg)\A in the image of §, as above. Let Min™ (p;) have
S in its closure, so that by Proposition 5.6, there is 2; mapping diffeomorphically to Min™ (p;).

Let £ = Res € Min?*!. Note that, under the Minkowski chart Min*! — Min(pg) the closure
? in Ein*! is a photon not meeting A. Now consider the lift £ C Min™(5;); the closure ¢ in

N271 . . . . -_— ~ . . . .
Ein \A is compact, contained in Min™ (p;) U S. It is therefore the diffeomorphic image of a
compact photon C' in M.
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Fix a generater £ of e; /Re; and write ly = sgl with s, € R for each g € H. We can write
ug = agl + bges mod Re;. Then, whenever s, # 0, we can take t = a,4/s4 to obtain

g(tes) = Lgy(tes) + uy = teg — tsgl 4+ agl + bges = (t + by)ez mod Req

Because H projects onto L(U), there is an unbounded set of h € H with s, # 0. On the other
hand, by Lemmas 5.8 and 5.3, the translations by Re; are in H. Therefore, there is an unbounded
subset of h € H for which h.f N ¢ # (). As I's, is a lattice in H, there are infinitely many v € I's;
and a compact subset D C H such that v.K N K # () for K = D./ C Min™ (§;) U S. Then there
are a compact subset K C M and infinitely many 4 € I's; such that fAy.IA( NK + 0. O

—~ ——n-1,1
Proposition 5.11. The developing map 9 is a diffeomorphism of M with Ein" \A.

This lemma will be used in the proof.

Lemma 5.12. The developing map 6 induces a local homeomorphism between the leaf space
—n—1,1

(Ein \A)/H = A and the corresponding leaf space in M. In fact, the induced map on leaf
spaces is a diffeomorphism to its image, which is an open interval in A.

Proof. Let p € M and let W be a neighborhood of p mapping diffeomorphically under § to its
——n—1,1
image in Ein . Shrink W as necessary so that (W) admits a transversal submanifold 7' to
_ —n—1,1
‘H through 6(p) mapping diffeomorphically to its image T in the leaf space of Ein" \A.

Let 7 be the corresponding transversal to the foliation in W, so that ¢ restricted to 7 is a
diffeomorphism to 7. Let T be the image of 7 in the leaf space of M. The map sending leaves
of 7 to leaves of T is well-defined because ¢ intertwines the two foliations. The inverse map is
the composition T — T — 7 — 7 of two differomorphisms with a quotient map; it is evidently
continuous.

It remains to verify that the map 7 — T is continuous. An open subset U C T is diffeomorphic
to a relatively open subset U C T. There is moreover an H-saturated open subset U such that
UNT =U. Now

(8lw) "' (U) = (8ly) (U NT) =61 (U)NT
The projection of the set on the left-hand side is the inverse image of U in 7. The expression on
the right-hand side exhibits it as an open subset of 7.

Now that we have shown that the map on leaf spaces is a local homeomorphism, it follows that
the leaf space in M is a one-dimensional manifold, and the map between leaf spaces is a local
diffeomorphism. The image in the leaf space of }T]i;ln_l’l\A is open and connected, thus an open
interval. The leaf space in M is therefore diffeomorphic to R and maps diffeomorphically to its

image. ([l
We now prove Proposition 5.11.

Proof. The image of the developing map d is an open, contiguous union of Minkowski charts
Min(p;) and their interstitial light cone components S;. By Lemma 5.12, ¢ factors through a
map on leaf spaces which is a diffeomorphism to an open interval I € A = R. The fibers of the



30 RACHEL LEE AND KARIN MELNICK

composition M — I are the leaves of 7:[ which is thus a simple foliation of M. By Proposition
5.5, it follows that M is diffeomorphic to R™ and maps dlffeomorphlcally under § to its image.
Therefore I' maps isomorphically under A to its 1mage L <U.

It remains to show the image of § is all of Ein b \A. Suppose that I is a finite interval in R.
Then it contains S; for finitely many ¢. A finite index subgroup of I' stabilizes each light cone
component; let one of them be S. For ¥ = §~1(S), the group I's; is isomorphic to Stab(S) and has
finite index in I'. Then ¢d T’ = cd I's =n —1 by Lemma 5.1. This contradicts r acting properly
discontinuously and cocompactly on M = R". Therefore I is infinite.

Denote by D:U — lsgi(Q,R) the homomorphism given by restriction to A, which also cor-
responds to the action on the leaf space of H. As D(I') acts cocompactly on I, it contains

elements with nontrivial translation number. The invariance of I by such an element implies that
I=R. O

By Proposition 5.10 we may assume n > 4, and then Proposition 5.7 says that I's, = kerﬁ where
D is as defined in the proof above. The image D(I') projects under PSL(2 R) — PSL(2,R)
to the unipotent subgroup fixing py, which we will denote V. As with U, this group has a lift
to PSL(2,R), so D(I') < V = V% x Z. But D(I') = I'/T's, cannot intersect VO < Stab(py):
the inverse image in I' of this intersection would stabilize S and would thus be contained in
I's, a contradiction. Therefore f)(f‘) >~ I['/T'y, is generated by a single element acting properly
discontinuously and cocompactly on the leaf space of A.

Proposition 5.13. The holonomy image I' is generated by I's, and another element of the form
a'gp, whereip € Z and gp € U° normalizes T's;. The projection Gp of gp to U belongs to ker D.

Proof. It remains only to verify the last claim. Equation (6) gives for h € I's,
gohdp' = [gp, hlh = Ly, + Lp(up) — (Ly, — Id)up

The result is in I's; with image under L equal L;,. The translational part is
Lp(up) — (Lp —Id)up = up + (up,e1)fp mod Rey

which must equal i, because ker L N T's; < Rej. Therefore (up,e1) = 0 and gp € ker D.
]

We summarize the results obtained thus far, under the standing assumptions of this section: The

developmg map is a dlffeomorphlsm to Ein" ’I\A The dimension of M is n > 4. The group
I" has a normal subgroup I's; which maps isomorphically under g o i to its image I's;, which has
algebraic hull contained in ker D. Any element of I'\I'y; is of the form a'g with § = mgin(g) € ker D
and i # 0. The algebraic hull H of 'y, contains the center of & and is encoded by a linear
endomorphism 6 € End V' with no real eigenvalues; in particular n — 2 = 2k for some k € N.

5.4. Heisenberg examples and conclusion. The first result of this section underlies the con-
struction of actions whenever the conditions summarized at the end of the previous section are
fulfilled. Then we give the classification for this case.
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Proposition 5.14. Let n = 2(k+1). Let z1,71,. .., 2k, 2k € C\R and let § € GL(2k,R) be any
element with these eigenvalues. Define H < Aff Min" 1! to be the connected group generated by

ZU)U{Lp +up, :up, =0(0y) €e RV 2= et Net, Ly € LU)}

Then H acts simply transitively on L(po)\A and on H, = {x € Min" V! : (x e1) = 1} for each
r e R.

Proof. Fix r € R and let = + re,, € H, where 2 € ef. An element h € H acts by
h(z +re,) = re, + x + up — rfp, mod Rey

The result is congruent to x 4 re,, only if up = rf,. By the construction of H, the latter condition
implies up, = ¢, = 0 and h € Z(U). Thus the stabilizer in H of = + re, is trivial. Moreover, for
each r € R, the set of u, — ¢, = (0 — r)l spans V. The action is simply transitive on H,.

Recall the parametrization of L(pp)\A by R x R"72 of (4). Assuming uj, € e, the action of
Ly, + up, maps (t,z) to

(t + (Un, z) + (un, en), x — lp)
The stablizer of (¢, ) has ¢, = 0 = @y, which means h € Z(U). The stabilizer also has (up,e,) =0,

which means h is trivial. It is also evident from the above formula that H acts transitively on
R x R" 22 L(po)\A. O

From such an H-action, we can easily construct geometries on compact M?**2 gsatisfying the
assumptions of this section.

Theorem 5.15. If the image of § does not meet A but does meet L(pg), then n is even, and

0 1s a diffeomorphism onto Ein" \A. For a nilpotent group H as in Proposition 5.1/ and a
lattice T < H < U°, the holonomy is a nilpotent extension T' = (a'g) x I, for some i > 0 and
—n—1,1

g € ker(D o q) < U°. In this case, M = (Ein \A)/T is a nilmanifold of degree at most 3,
which fibers over S* with degree-2 nilmanifold fibers.

Proof. Let I's; be as defined in §5.1, and let H be its algebraic hull in /. By Proposition 5.10 n. # 3.
By Proposition 5.7 and Lemmas 5.3 and 5.8 , H < ker D and Z(U) < H, so H is determined
by an endomorphism 6 of R"~2 as in §5.2. By Proposition 5.9, # has no real eigenvalues, which
forces n — 2, hence n, to be even. We conclude that H must be as in Proposition 5.14. It is of

nilpotence degree 2.

—n-1,1
Proposition 5.11 establishes that ¢ is a diffeomorphism onto Ein" \A.

The conclusions of Proposition 5.14 allow us to identify the fibration pa : Ein" b1\ A — A with
a principal H-bundle. The image of H under the isomorphism ¢ — U° will also be denoted H.

—n—1.1 —
Then Ein' \A = M is a principal H-bundle over A = R.

By construction, I's; is a cocompact lattice in H. Let IV be the image of I'y, in UO. As observed
after Proposition 5.11, I'/T” is generated by an element of the form a’g with i # 0 and g in the
normalizer in U° of T’ ; we may assume i > 0. Since u splits as a product Z x ZJO, there is a
splitting ' = (a’g) x I'. The remaining conclusions follow. O
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6. CONCLUSION OF CLASSIFICATION, INCLUDING ESSENTIAL EXAMPLES

The last case in our classfication reduces to a class of manifolds that have been well studied.

Theorem 6.1. If the image of § does not meet L(py), then M is a complete (O(n — 1,1) x
R L Min" Y'Y -manifold. It is N/T for N < O(n —1,1) x R* 11 g nilpotent group of degree
at most 3 acting simply transitively on Min" 1!, and T a cocompact lattice in N.

Proof. The hypothesis implies that § maps into Min(pg). The U-action on here is by affine
isometries. As q(I') < U, the pair (0, q o h) defines an (O(n — 1,1) x R* 11 Min"~1!)-structure
on M. Y. Carriere proved that any such structure on a closed manifold is complete—that is, 0 is
a diffeomorphism of M onto Min" "' [2).

Now h is an isomorphism to I', and M = Min" ! /T. The algebraic hull of T' is a unipotent

n=L1 These were classified

subgroup of O(n — 1,1) x R"~b! acting simply transitively on Min
by F. Griinewald and G. Margulis in [11, Thm 1.8]. They are all nilpotent groups of degree at

most 3. O

6.1. Proof of Theorem 1.4. Recall that the flow {7°} is in the center of &. That means it
always descends to a conformal flow on M, which we will denote {7°}, in our setting of unipotent
holonomy.

Proposition 6.2. For M as in cases (1) or (2) of Theorem 1.2, the conformal flow {7°} is
essential. For M as in cases (3) or (4), it is inessential.

Proof. In cases (1) or (2), let I C A be a nontrivial, open interval contained in the image of 4.
The inverse image px*(I) C ]/E}Hln_l’l\A is open. For any volume v on 6(M), the volume v(I) =0
while v(p ' (I) N & (]TJ/ )) # 0. In fact, for any compact set K C px*(I) with nonempty interior,
v(K) # 0. Now 7!(K) tends uniformly to a subset of I ast ¢ — oo, which implies that 7 does not
preserve any volume on §(M). In particular, it does not preserve a I'-invariant volume lifted from
M. Therefore {7°} does not preserve any volume on M, so it must be essential.

In case (3), H is not abelian. The lattice I" = I's, having H as algebraic hull is therefore not
abelian, so its commutator subgroup intersects Z(U) = {7°} nontrivially. The {7°}-flow on M
factors through the quotient by this intersection, which is S'. It is therefore not essential.

Finally, {7*} < U acts on Min"" 1! by a lightlike translation, which is isometric. In case (4),
I' <U, and U is isometric on Min" "1 so the flow {7°} is isometric on M. O

In light of Theorem 1.2 and Proposition 6.2, it remains only to prove that M as in cases (3) or
(4) does not admit an essential conformal flow.

In case (4), any conformal flow on M lifts on M = Min" "' to Conf Min" 1! = CO(n—1,1) x
R" L1 Any non-isometric flow in this group is a homothety. But a homothety cannot descend
to a closed manifold. Thus there is no essential conformal flow in this case.

In case (3), any conformal flow of § (M ) that descends to M belongs to the identity component of
the normalizer of I' and to the stabilizer of A. Because I' is discrete, such a flow belongs in fact to
CY(I'), the identity component of the centralizer of I'. Now I' = (a‘g) x T, so C°(T') < C(T") =
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CY(H), as H is the Zariski closure of I'. We descend to Ein" 1! and analyze the centralizer of
H intersect the stabilizer of A in G. Let n = 2k + 2.

The stabilizer of A in G corresponds to the stabilizer P of span{eg, e}, and has Levi decomposition
P~ (GL(2,R) x O(n)) x Heisy,_3

The kernel of D intersect U is precisely Heiso,, 3. It contains H, and their centers coincide; we
will denote this central subgroup by Z. The usual generators of Heisg,—3 are {x;,y;, 7 : [z;,y;] =
7, j = 1,...,n — 2}. These can be chosen with y; € ker L for all j, so that we can view {z;}
as a basis for L(U) and {y;} as a basis for V = e{ /Re;. The isomorphism L(U) = V of (7)
corresponds in this basis to z; — y; for all j.

Since C°(H) must act trivially on Z, its projection to GL(2,R) has image in SL(2,R). Now
we consider the centralizer in SL(2,R) of H/Z < Heisy, 3/Z = R*"2) = R*. The latter
representation is @?ilEj, where each E; = span{z;,y;} is a copy of the standard representation.
Recall that H/Z is the graph of an isomorphism 6 : span{x;} — span{y;} with no real eigenvalues,
as in Proposition 5.14. If {g'} < SL(2,R) is a noncompact l-parameter subgroup centralizing
H, it leaves invariant the graph of 6, which we will denote W. Since W N span{y;} = 0, each
W N Ej is of dimension at most 1. Let vt denote the eigenvectors of {g'} on R?, possibly equal;

denote by Uj.E the corresponding vectors in Ej; for each j. Invariance implies that W equals the

sum of its intersections with Rvjﬁ Any nontrivial intersection is generated by x; + ay; for some
a € R, which would correspond to a real eigenvalue a of €, a contradiction. We conclude that
the centralizer of H in SL(2,R) is compact.

Now we consider the intersection of C°(H) with the unipotent radical Heisop_3 = ker D NU. Tt
follows from H projecting onto L(U) (Lemma 5.2) that this centralizer equals Z, which is {7°}.
By Proposition 6.2, there is no essential conformal flow in this case, and the proof is complete.
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