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Abstract—This paper introduces a novel Nussbaum
function-based PID control for robotic manipulators. The
integration of the Nussbaum function into the PID frame-
work provides a solution with a simple structure that
effectively tackles the challenge of unknown control di-
rections. Stability is achieved through a combination of
neural network-based estimation and Lyapunov analysis,
facilitating automatic gain adjustment without the need for
system dynamics. Our approach offers a gain determination
with minimum parameter requirements, significantly reduc-
ing the complexity and enhancing the efficiency of robotic
manipulator control. The paper guarantees that all signals
within the closed-loop system remain bounded. Lastly,
numerical simulations validate the theoretical framework,
confirming the effectiveness of the proposed control strategy
in enhancing robotic manipulator control.

Index Terms—Nussbaum function, Robot Manipulator,
PID Control, Adaptive Control, Unknown Control Direction.

I. Introduction

The rapid expansion of robotic systems across various
industries has driven the development of advanced
control mechanisms to enhance their functionality and
adaptability. Despite the progress facilitated by rigor-
ous mathematical frameworks, the nonlinearities and
uncertainties intrinsic to robotic operations continue
to pose significant challenges. This reality highlights
the need for advanced control strategies like fuzzy
logic [1], Kalman filter [2], iterative learning control
[3], and actor–critic learning [4] to effectively address
these complexities. However, the inherent complexity
of these methods often complicates their application in
real-world scenarios, highlighting the ongoing research
necessary to refine and simplify control solutions for
robotic manipulators.

In the field of control for robotic manipulators, PID
control is recognized for its intuitive design and simplic-
ity, positioning it as a pillar for both theoretical explo-
ration and practical application across numerous real-
world systems [5], [6]. It addresses the widespread issue
of complexity in robotic control strategies. However,
traditional PID controls face limitations, particularly in

weight updating, stability assurance, and the need for
extensive parameter tuning in dynamic environments [7].
Attempts to refine PID control, such as employing opti-
mization techniques for gain tuning, aim to enhance its
adaptability [8], [9], [10]. However, these enhancements
can introduce new complexities, somewhat undermining
the original appeal of PID control’s simplicity.

Understanding the direction of control gain is impor-
tant in robotic system control, as incorrect application
can destabilize the system instead of guiding it to the
desired state. While various methods exist to address
the unknown control direction, such as logic-based
switching [11], extreme seeking [12], and nonlinear PI
control [13], the Nussbaum function approach [14] is the
most studied method [15], [16], [17], [18]. Implementing
Nussbaum-based strategies in robotic control is effective;
however, their integration into the comprehensive con-
trol framework can complicate the overall system. This
scenario highlights the importance of developing more
accessible strategies that utilize the Nussbaum function’s
advantages while avoiding excessive complexity in the
control framework.

Given the complexities and challenges previously
discussed, our research is driven by the need to develop
a control strategy that is simple and low in complexity,
effectively managing the critical aspect of unknown
control gain direction in robotic manipulators. Ac-
knowledging the limitations of traditional PID controls
and the complexities of Nussbaum-based methods, we
introduce a novel approach that combines the simple
structure of PID control with the capability of the
Nussbaum function. This method ensures stability and
enhances performance, offering a control mechanism
that is inexpensive in online computational demands,
and effectively bridging the mentioned gap in robotic
control strategies.

In this work, we present a control strategy for robotic
manipulators, tackling unknown dynamics and control
directions through an adaptive Nussbaum-based control.
Our approach, rooted in the PID control structure,
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simplifies yet enhances the control scheme’s effectiveness.
Different from conventional PID methods, we ensure the
closed-loop system’s stability through direct Lyapunov
analysis. Additionally, our strategy features automatic
gain adjustment and utilizes linking parameters, signifi-
cantly reducing the number of tuning requirements, and
thereby enhancing the system’s efficiency and response
without complicating the control framework. The main
contribution can be summarized as follows:
• We integrate the Nussbaum function into the PID

structure for the control of robotic manipulators.
The controller is simple, yet it guarantees stability
without requiring knowledge of robot dynamics or
control direction.

• By employing linked PID terms and establishing
adaptive laws, the controller automates gain deter-
mination with minimal parameter requirements,
thereby facilitating its application in real-time
scenarios.

The rest of the paper is structured as follows: Section
II explores problem formulation and preliminaries, set-
ting the theoretical groundwork. Section III introduces
the Nussbaum Function-based control design and its sta-
bility analysis. Numerical simulations demonstrating the
control strategy’s effectiveness are presented in Section
IV. The paper concludes with Section V, summarizing
the key findings and implications of this research.

II. Problem Formulation And Priliminaries

A. Problem Formulation
Consider the robotic manipulator system described

in the joint space q(t) ∈ R
n×1 where n represents the

number of joints as [19], [20],

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) +G(t) = τ(t), (1)

where M(q(t)) ∈ R
n×n denotes an inertial matrix;

C(q(t), q̇(t)) ∈Rn×n represents the Coriolis and centrifu-
gal matrix; G(t) ∈ Rn×1 denotes the gravitational force
vector. τ(t) ∈Rn×1 represents the actual torque applied
to the robotic system. Furthermore, in practical systems,
the actual torque is affected by unknown actuator
dynamics and can be expressed as [21],

τ(t) = κu(t), (2)

where the nonlinear matrix κ ∈ R
n×n is an unknown

control direction, and u(t) represents the control input.
The following properties of robot manipulators dynam-
ics (1) are required for control analysis [22],
• P 1: M(q(t)) is symmetric positive definite.
• P 2: 1

2 (C(q(t), q̇(t)))− Ṁ(q(t))) is skew-symmetric.
• P 3: There exist unknown positive constants m−, m+,
c and g such that m− ≤M(q(t)) ≤m+, ∥C(q(t), q̇(t))∥ ≤
c∥q̇(t)∥, and ∥G(q(t))∥ ≤ g <∞.

The goal of this paper is to design a control law for a
robot dynamics (1) such that

• G 1: the closed-loop system is stable and all the
signals remain uniformly bounded.

• G 2: the joint position signal q(t) closely tracks a
specified desired trajectory qd(t), so that the limit
limt→∞ |qdi(t) − qi(t)| = ηi , for i = 1,2, ...n, and ηi
being a small positive constant.

To this end, the following assumptions are needed.
Assumption 1: We consider each link of the manipu-

lator as a slender rod with uniform mass distribution,
ignoring additional components’ mass and inertia.

Assumption 2: The desired trajectory qd(t), along with
its first q̇d(t) and second derivatives q̈d(t), are assumed
to be smooth, known functions of time and are bounded.
Additionally, the robot position vector q is assumed to
be accessible for the purposes of control design.

Remark 1: The dynamics of the system, as described
by equation (1), are fully unknown, which presents a
significant challenge in the control design. This paper
addresses the inherent difficulty of unknown control
direction by employing a Nussbaum-type function. The
Nussbaum approach is particularly adept at handling
systems with unknown control coefficients, adapting to
the control direction without prior knowledge of the
system’s dynamics.

B. Priliminaries

To approximate the system uncertainties including
the manipulator’s unknown dynamics, in its continuous
movement, we utilize linear-in-parameter approximators
with an a priori-defined basis function vector and a yet-
to-be-learned unknown parameter vector [23]. To this
purpose, a generic function approximator is denoted
by F(x,ψ) = ψ⊤φ(x), where ψ ∈ R

np is the unknown
parameter vector of dimension np and φ(x) ∈ R

np is
the user-defined known basis function vector with np
being the NN input dimension, and x ∈Rm is the neural
network input vector with m being the neural network
input dimension. In this work, we have used the radial
basis function (RBF) given by

φ̃(x) = exp
Ä
−0.5(x − c)⊤B−1(x − c)

ä
,

where c ∈Rn is the center and B ∈Rn×n the covariance
matrix of the RBF.

Define the position error, e(t) ∈ Rn, as e(t) = qd(t) −
q(t) and the velocity error, ė(t) ∈ R

n, as ė(t) = q̇d(t) −
q̇(t). To further our analysis, we define the generalized
intermediate variable Ψ (t) as follows:

Ψ (t) = 2γe(t) +γ2
∫ t

0
e(ρ)dρ+

d
dt
e(t), (3)

where γ > 0. This formulation allows us to address the
tracking error by stabilizing Ψ (t) using the following
lemma.

Lemma 1: [24] Given the intermediate variable Ψ (t) as
defined in (3), if Ψ (t)→ 0 as t→∞, then the tracking
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errors e(t) and ė(t), and their integrals are bounded and
converge to zero over time.

Definition 1 (Nussbaum Function): A Nussbaum func-
tion N (ζ) is characterized by its capability to handle
unknown control directions within a control system. For
a continuously differentiable function N (ζ) : [0,∞)→
(−∞,∞), it is defined via its positive and negative
truncated forms, N+(ζ) = max{0,N (ζ)} and N−(ζ) =
max{0,−N (ζ)}, respectively. The function satisfies the
condition that

N (ζ) =N+(ζ)−N−(ζ), (4)

with the properties that for any ζ,

lim
v→∞

sup
1
v

ï∫ v

0
N+(ζ)dζ −

∫ v

0
N−(ζ)dζ

ò
=∞, (5)

lim
v→∞

sup
1
v

ï∫ v

0
N−(ζ)dζ −

∫ v

0
N+(ζ)dζ

ò
=∞. (6)

A function that satisfies these conditions is utilized for
managing the uncertainty in control direction, offering
a robust approach to control system design.

Lemma 2: [16], [17] Let V (t) and ζ(t) be smooth
functions defined over the interval [0, tf ) with V (t) > 0
for all t ∈ [0, tf ). Given N (ζ(t)) as a Nussbaum-type
function, if for any t ∈ [0, tf ), the following condition is
met:

V (t) < c0 + exp(−c1t)
∫ t

0
(κN (ζ(τ)) + 1) ζ̇(τ)exp(c1τ)dτ,

(7)
where c0 > 0 and c1 > 0 are positive constants, and κ is
a control parameter within closed intervals L = [l−, l+]
excluding zero (0 < L), then V (t), ζ(t), and the integral∫ t

0 κN (ζ(τ))ζ̇(τ)exp(c1τ)dτ are guaranteed to be bounded
on [0, tf ).

III. Nussbaum Function-based Control Design and

Stability Analysis

We propose a Nussbaum function based PID-like
control input for robot manipulator control, delineated
as:

u(t) =(kπ +κπ(t))KN (ζ)e(t) + (kι +κι(t))KN (ζ)
∫ t

0
e(ρ)dρ

+ (k∆ +κ∆(t))KN (ζ)
d
dt
e(t),

(8)
with KN (ζ) = −N (ζ) is the related Nussbaum function
gain. In (8) we employed constant gains kπ, kι, and k∆
alongside their time-varying analogs κπ(t), κι(t), and
κ∆(t). This strategy enhances traditional PID controls
by integrating adaptive gains that adjust in real-time
to the system’s state. To further simplify parameter
tuning, we establish the relationships k∆ = kπ

2γ = kι
γ2 and

κ∆(t) = κπ(t)
2γ = κι(t)

γ2 , ensuring the quadratic expression

S2 + 2γS + γ2 is Hurwitz polynomial, where S is the

Laplace operator. Using the above relationship, the
control design primarily depends on selecting k∆ and
defining κ∆(t). The PID-like control input is then refined
to:

u(t) =(k∆ +κ∆(t))KN (ζ)

Ç
2γe(t) +γ2

∫ t

0
e(ρ)dρ+

d
dt
e(t)

å
=− (k∆ +κ∆(t))N (ζ)Ψ .

(9)
This approach significantly reduces the complexity of
the gain selection process, focusing on only two key
parameters. The time-varying gain κ∆(t) is adaptively
updated by

κ∆(t) = −αψ̂(t)Tφ(x), (10)

and the adaptive law for ψ̂(t) is given by

˙̂ψ(t) = −Γ (α∥Ψ (t)∥2φ(x) + σψ̂(t)). (11)

with α, and σ are positive control constants, Γ = Γ T > 0,
and φ(x) is the basis function vector.

In this work, we choose N (ζ) = ζ2 cos(ζ) with the
property of N (0) = 0 as our Nussbaum function. The
updating law for ζ is given by

ζ̇(t) = Ψ (t)T (k∆ +κ∆(t))Ψ (t). (12)

The above control framework, enhanced by adaptive
laws based on the low complexity Nussbaum function
PID control, provides us with an effective approach
to robotic manipulator control, as formalized in the
forthcoming theorem.

Theorem 1: Consider the robot manipulator system
described by (1) with the Properties 1-3, satisfying to
Assumptions 1 and 2. If the Nussbaum function-based
PID-like control law (9), with the adaptive updating laws
(11), and (12), and and Lemmas 1, and 2 is implemented,
then, with the design parameters are properly chosen,
the closed-loop system remains stable, and all signals
within the system are uniformly bounded. Furthermore,
the joint position signal q(t) closely tracks the desired
trajectory qd(t), with the tracking error converging to a
small neighborhood around zero.

Proof: Consider the Lyapunov candidate as

V (t) =
1
2
Ψ (t)TM(q(t))Ψ (t) +

1
2
ψ̃(t)T Γ −1ψ̃(t), (13)

where ψ̃(t) = ψ̂(t) −ψ∗ with ψ∗(t) is the ideal constant
weight vector of neural network approximation.
The time derivative of the Lyapunov function V (t) can
be bounded as

V̇ (t) = Ψ (t)TM(t)Ψ̇ (t) +
1
2
Ψ (t)T Ṁ(t)Ψ (t) + ψ̃(t)T Γ −1 ˙̂ψ(t).

(14)
Considering dynamics (1) and the definition
of the generalized error Ψ (t), one can obtain
M(t)Ψ̇ (t) = C(t)q̇(t) + G(t) − τ(t) + M(t)ē(·), where
ē(·) = q̈d(t)+2γė(t)+γ2e(t). Then, utilizing the application
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of Young’s inequality, and considering Property 2,
we obtain Ψ (t)TC(t)q̇(t) ≤ α∥Ψ (t)∥2c2∥q̇(t)∥4 + 1

4α ,
Ψ (t)TG(t) ≤ α∥Ψ (t)∥2g2 + 1

4α , Ψ (t)TM(t)ē(·) ≤
α∥Ψ (t)∥2m+2∥ē(·)∥2 + 1

4α , and 1
2Ψ (t)T Ṁ(t)Ψ (t) =

Ψ (t)TC(t)Ψ (t) ≤ α∥Ψ (t)∥2c2∥q̇(t)∥2∥Ψ (t)∥2 + 1
4α , where

α > 0 is a design parameter. Accordingly, taking into
account equation (14) and applying the aforementioned
inequalities, one has,

V̇ (t) ≤ α∥Ψ (t)∥2Λ(t)−Ψ (t)T κu(t) +
1
α

+ Γ −1ψ̃(t)T ˙̂ψ(t),
(15)

where
Λ(t) = −

(
c2∥q̇(t)∥4 + g2 +m+2∥ē(t)∥2 + c2∥q̇(t)∥2∥Ψ (t)∥2

)
.

Subsequently, considering neural networks approxima-
tion Λ(t) = ψ∗φ(x) + ε(x), with ε (x) being the unknown
approximation error which is upper bounded in the
sense that ∥ε (x)∥ ≤ εm, and utilizing (11), (12), and
(9) into (15), and considering −ψ̃(t)T ψ̂(t) ≤ −ψ̃(t)T ψ̃(t) +
|ψ∗∥2 [4], yields

V̇ (t) ≤ ζ̇(t)− ∥Ψ (t)∥2(k∆ +κ∆(t))−α∥Ψ (t)∥2(ψ∗
⊤
φ(x) + ε)

+Ψ (t)T κN (ζ(t))(k∆ +κ∆(t))Ψ (t) +
1
α

−α∥Ψ (t)∥2ψ̃(t)Tφ(x)− 1
2
σψ̃(t)T ψ̃(t) +

1
2
σ∥ψ∗∥2.

Considering ∥Ψ (t)∥2κ∆(t) = −∥Ψ (t)∥2αψ̂(t)Tφ(x), the
above equation can be rewritten as

V̇ (t) ≤ ζ̇(t) +κN (ζ(t))ζ̇(t)− ∥Ψ (t)∥2(k∆ +αε)

− 1
2
σ ∥ψ̃(t)∥2 +

1
α

+
1
2
σψ̄2,

with ψ̄ being the upper bound of the optimal weight
∥ψ∗∥.
Finally, the above equation can be formed as

V̇ (t) < ζ̇(t) +κN (ζ(t))ζ̇(t)− c1V (t) + c2, (16)

where, c1 = min
(

2(αεm+k∆)
m+ , σ

λmax(Γ −1)

)
and c2 = 1

α + 1
2σψ̄

2

and both are positive. Multiplying (16) by exp(c1t) > 0,
yields

d
dt

(V (t)exp(c1t)) ≤κN (ζ(t))ζ̇(t)exp(c1t)

+ ζ̇(t)exp(c1t) + c2 exp(c1t),
(17)

and integrating both sides of (17) over [0, t], leads to

V (t) ≤exp(−c1t)
∫ t

0
(κN (ζ(t)) + 1)ζ̇(t)exp(c1τ)dτ

+
Å
V (0)− c2

c1

ã
exp(−c1t) +

c2

c1
.

(18)

Since 0 < exp(−c1t) ≤ 1, the inequality (18) can be
rewritten as,

V (t) ≤ exp(−c1t)
∫ t

0
(κN (ζ(t)) + 1)ζ̇(t)exp(c1τ)dτ + c0,

(19)

where, c0 = c2
c1

+V (0) is a positive constant. Utilizing
Lemma 2 we can conclude from (19) that V (t), ζ(t), and∫ t

0
(κN (ζ(t)) + 1) ζ̇(t)τdτ are bounded on [0, tf ). Consid-

ering the Lyapunov function (13), it holds that Ψ (t)
and ψ̃(t) are bounded. Thus, since ψ∗(t) is bounded,
then, ψ̂(t) is bounded. In addition, using Lemma 1, the
boundedness of Ψ (t) ensures that e(t), ė(t), and

∫ t
0 e(·)dτ

are all bounded. Then, considering Assumption 2, the
boundedness of e(t), and ė(t), ensures q(t), and q̇(t) are
bounded. Furthermore, considering (10), (11), (12), and
(9), and taking into account the boundedness of the basis
function vector φ(x) (see [4] for the reference), and the
boundedness of Ψ (t), ψ̂(t), then κ∆(t), ψ(t), ζ(t), and
control u(t) are bounded. Finally, as u(t) is bounded,
the boundedness of τ(t) is ensured, and accordingly, all
closed-loop signals are bounded.
To prove that the error e(t) converges to a small
neighborhood of zero, considering the boundedness of
V (0) and

∫ t
0

(κN (ζ(t)) + 1) ζ̇(t)τdτ , along with Properties
1 and 3, it is concluded from (13) and (19) that

lim
t→∞

1
2
∥Ψ (t)∥2 ≤ c2

c1
,

follows by ∥Ψ (t)∥ ≤
√

2c2
c1

:= Ψm. Then, considering (3),
as detailed in [25], it is concluded that the error e(t)
converges to close to zero. □

IV. Numerical Simulation

In this section, numerical simulations are performed
to verify the effectiveness of the proposed Nussbaum-
based PID control, as established in Theorem 1. We use
a two-link robot manipulator situated in the vertical
plane for our simulation study. Physical parameters of
the robot were selected as follows: the masses of the
links m1 = 5 kg, m2 = 2 kg, the lengths of the links
l1 = 1 m, l2 = 0.75 m, and the inertias of the links
I1 = 1.66 m2, I2 = 0.37 m2. The reference trajectories
are chosen as qd = [cos(t); −cos(t)], with the initial
conditions for each joint given by q(0) = [π/2;−π/2],
and q̇(0) = [0;0]. Control parameters are chosen to be
α = 100, k∆ = 0.1, γ = 0.5, σ = 0.1, and Γ = 100I ,
with I represents the identity matrix. Also, a radial
basis function neural network with twenty nodes in
each hidden layer is selected so that centers are evenly
distributed in the span of the input space [−12.5,12.5],
and widths 1. The input vector of the neural network is
chosen as x =

[
eT , ėT ,qT ,Ψ T

]
. The initial points of neural

network weights were chosen as ψ̂ (0) = 0. Simulation
results are shown in Figures 1-6. In these figures, indices
1 and 2 denote the first and second links of the robot
manipulator, respectively.

The tracking performances of the links are depicted
in Figures 1- 5. Figures 1, and 2 illustrate that the
actual position and velocity signals closely follow their
desired trajectories, where the respective errors are
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depicted in Figures 3, and 4. Figure 5 illustrates the
boundedness of the PID generalized error. Finally, the
input control is depicted in Figure 6. The above figures
show the tracking performance using our developed
control. It also shows that the input control vectors
are bounded, demonstrating the proposed method’s
capability to accomplish the control tasks effectively.

0 5 10 15

-1

0

1

2

0 5 10 15

-2

-1

0

1

Figure 1. Desired and actual trajectories of joint positions

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

-1

-0.5

0

0.5

1

Figure 2. Desired and actual trajectories of joint velocities

V. Conclusion

We presented a novel control strategy for robotic
manipulators, leveraging a Nussbaum function-based
PID approach to address unknown control directions
and dynamics. This strategy simplifies the control design
by minimizing the number of tuning parameters and
utilizing direct Lyapunov analysis for stability assurance.
Our contributions include a simple yet effective PID
control framework, automatic gain adjustment through

0 5 10 15

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3. Error trajectories of joint positions

0 5 10 15

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4. Error trajectories of joint velocities

0 5 10 15

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5. Trajectories of the filtered error Ψ (t)
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0 5 10 15

-60

-40

-20

0

20

40

60

Figure 6. Trajectories of control input

neural network-based estimation, and a reduction in pa-
rameter tuning complexity, enhancing adaptability and
robustness in uncertain environments. The analytical
and numerical validations highlight the effectiveness
of our approach in enhancing robotic manipulator
control. These findings lay a robust groundwork for
future investigations in this field, setting the stage for
experimental verification and the exploration of further
control innovations.
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