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Abstract— Access to reliable renewable power generation
forecasting tools is crucial for optimizing grid operations and
advancing the integration of renewable energy, which in turn leads
to the sustainability of energy systems. This study develops a
forecasting model utilizing Convolutional Neural Networks (CNN)
for precise prediction of hybrid solar and wind power generation
in Luxembourg. Through a comprehensive comparative analysis
exploring various combinations of critical hyperparameters, we
demonstrate the significant capability of the CNN approach to
serve as an effective prediction tool for hybrid renewable energy
production. Our findings underscore the reliable potential of
CNNs to enhance the accuracy of renewable energy forecasts,
thereby enabling a more seamless and efficient integration of
renewable energy sources into Luxembourg's power grid. Our
CNN model demonstrated exceptional performance, with an R-
squared (R?) exceeding 90%, particularly for forecasting horizons
of 5, and 24 hours ahead.

Keywords— Hybrid renewable power; Convolutional Neural
Network; Multi-hour ahead forecasting.

1. INTRODUCTION

During the rapid evolution of society and economy, driven
by increasing energy demands and concerns over fossil fuels'
environmental impact, many nations are transitioning towards
renewable energy sources such as solar and wind power [1].
Luxembourg stands at the forefront of this movement, setting
ambitious goals for 2021-2030 aimed at reducing pollution and
boosting renewable energy usage [2, 3]. With its commitment to
sustainability, Luxembourg is implementing policies and
initiatives to accelerate the adoption of solar and wind energy
technologies, leading the way towards a cleaner, greener future
[3]. Therefore, a reliable forecasting is crucial for seamlessly
integrating renewables into existing energy systems, yet
accurate predictions face challenges from intricate weather
variables [4]. Deep learning, particularly Convolutional Neural
Networks (CNNs), has emerged as a crucial tool in overcoming
these challenges mainly in combination with other techniques
and algorithms [4]. In wind power prediction using an optimized
support vector regression (SVR) model, an improved Jellyfish
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Search (1JS) algorithm optimizes SVR parameters, boosting
predictive accuracy [5]. Hourly stepwise forecasting for solar
irradiance proposes a hybrid model integrating CNN, long short-
term memory networks (LSTM), multi-layer perceptron (MLP),
and variational mode decomposition (VMD) for precise hourly
solar irradiance forecasting, surpassing traditional methods [6].
Short-term wind power forecasting with LSTM and attention
mechanism (AM-LSTM) model dynamically weighs physical
attribute data using an attention mechanism with CNN and
LSTM networks, improving short-term wind forecasting
accuracy [7]. Very short-term forecasting of wind power
generation using a hybrid deep learning model employs
convolutional and gated recurrent unit (GRU) layers for superior
very short-term wind power generation forecasting accuracy [8].
Wind power forecasting with the optimized deep learning
techniques synergizes WPD with CNN and LSTM networks for
offshore wind power forecasting, achieving superior accuracy
[9]. The GWO-Nested CEEMDAN-CNN-BILSTM model for
wind speed forecasting integrates grey wolf optimization
(GWO), complete ensemble empirical node decomposition with
adaptive noise (CEEMDAN), CNN, and Bidirectional LSTM,
achieving superior wind speed forecasting accuracy [10]. Short-
term wind power forecasting based on attention mechanism and
CNN-LSTM networks dynamically weighs input data
importance using an attention mechanism with CNN and LSTM
networks, improving short-term wind power forecasting
accuracy [11]. CNN with LSTM units, enhanced by the Coati
Optimization Algorithm (COA), to improve the accuracy of
hybrid renewable energy forecasting [12]. Building upon the
advancements highlighted in recent literature on renewable
energy forecasting, our study aims to make a unique
contribution by focusing solely on the power of CNN for
renewable energy forecasting. This investigation is driven by the
following hypothesis:

e A well-tuned CNN, free from the complexities of
additional algorithms or techniques, can offer a
solution with low computational demand while still
delivering high-quality forecasting results.



This approach offers several advantages, including
decreased complexity compared to hybrid models, resulting in
simpler implementation and interpretation of outcomes.
Additionally, CNN models typically exhibit faster computation
times, making them suitable for real-time forecasting
applications. Moreover, the architecture of CNN allows for
scalability, enabling the incorporation of additional data sources
or features without significant overhead. By leveraging these
benefits, we aim to demonstrate the efficiency of CNN in
renewable energy forecasting, paving the way for streamlined
and effective integration of sustainable energy sources into
power systems. To achieve this, we focus on three main
novelties:

e Investigating how adjusting CNN hyperparameters
impacts the accuracy of forecasting hybrid renewable
energy production in our studied case, Luxembourg.

e Introducing a streamlined CNN model optimized with
the best hyperparameter settings, aimed at delivering
accurate energy forecasts at 5, and 24-hour intervals.

e Enhancing forecasting models by integrating a variety
of datasets, including historical energy output across
different years, to empower accuracy and demonstrate
consistent reliability.

Despite the array of sophisticated methods detailed in recent
literature for renewable energy forecasting-ranging from hybrid
deep learning models to advanced data preprocessing techniques
and optimization algorithms-the current study seeks to evaluate
the standalone performance of a CNN in forecasting hybrid
renewable power generation. Indeed, our study uses a simplified
deep learning framework to predict major contributions to
hybrid renewable energy forecasting. In addition to contributing
to the advancement of scientific discourse, this study offers a
reliable tool for practical energy strategies and applications. The
paper is organized methodically: Section II provides an
overview of methodology, Section III presents the findings, and
Section IV concludes.

II.  METHOD

A. General overview

Our methodology aims to develop a CNN model for
forecasting hybrid wind and solar power generation data by
training and evaluating the CNN model using different
combination of major hyperparameters. We analyze the results
to determine the optimal model’s hyperparameters configuration
and explore the effect of individual hyperparameters.

B. Introduction of applied data

Here, we investigate into the dataset that underpins our
methodology. This data originates from the ENTSO-E
Transparency Platform, an extensive European resource
providing real-time and transparent data on electricity
transmission and market operations throughout the continent
[13]. To evaluate the predictive performance of our method, we
examine solar and onshore wind power generation data from
Luxembourg spanning the years 2015 to 2021. Over these years,
there's a noticeable trend of growth across all metrics. Starting
in 2015, the mean power generation was recorded at 18.45 MW,
with the maximum power output reaching 97 MW, and a

standard deviation of 16.15 MW. This trend of increasing power
generation continued steadily, with the mean output rising to
23.13 MW in 2016, and then more significantly to 65.90 MW
by 2021. The maximum hybrid power output also showed a
remarkable increase from 97 MW in 2015 to 243 MW in 2021,
alongside a steady rise in the standard deviation from 16.15 MW
to 43.73 MW over the same period. This data demonstrates a
clear upward trajectory in Luxembourg's hybrid renewable
power generation capabilities, highlighting improvements in
efficiency and capacity. Our dataset comprises 8,760 samples
annually. We plan to develop the model using data from two
years (2015-2016). Specifically, 2015 data will be split for
training (80%) and validation (20%). The entire 2016 dataset,
unseen by the model during training, will be used for testing.
The model's testing performance will serve as the benchmark for
selecting the optimal model from the simulation pool.

C. Convolutional Neural Network

The applied CNN architecture (see Fig 1) is designed for
sequential input data, focusing on hybrid renewable power
generation sequences. It starts with a Sequence Input layer and
follows with multiple 1-D convolutional blocks (from 1 to N in
Fig 1), each containing a convolution layer, batch
normalization, and rectified linear unit (ReLU) activation to
extract features and introduce non-linearity [12]. The
convolutional layers use filters to capture spatial and temporal
patterns, enhancing the model's ability to learn complex data
relationships [14]. Batch normalization stabilizes training by
normalizing layer activations, while ReLU activation promotes
sparsity and efficient learning by setting negative inputs to zero
[14]. Following the convolutional stages, the network includes
fully connected layers for feature integration, with dropout
regularization to prevent overfitting [15]. The architecture
culminates with fully connected layers, the nodes of which
correspond to the anticipated scale of forecasted wvalues,
followed by a regression output layer designed for predicting
continuous variables. It employs a mean-squared error loss
function to quantify the accuracy of predictions. This
streamlined design enables the model to learn hierarchical time
series representations for accurate forecasting in hybrid power
generation contexts.

D. Applied method

The developed MATLAB code presents an approach to
forecasting hybrid power generation using CNNs. The code
aims to train a CNN model that can accurately predict future
hybrid power generation based on historical data. We applied a
method to prevent overfitting called early stopping which is
implemented using a custom callback function in our training
process. This function monitors the validation loss during
training and halts the training process if the validation loss fails
to improve for a specified number of epochs. To prevent
overfitting other applied techniques are also employed. Firstly,
dropout layers are integrated into the network architecture,
randomly deactivating neurons during training to enhance the
network's resilience and reduce its reliance on specific features.
Additionally, batch normalization layers are utilized to
normalize layer activations, stabilizing the training process and
acting as a form of regularization. We simulate a total of 2496
cases, incorporating various combinations of hyperparameters
for two distinct forecasting horizons (5, and 24 hours ahead).
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Fig 1: Applied CNN architecture in this study. The model features filter sizes
of 3,5, 7, and 9, with counts from 16 to 96, 1-6 convolutional blocks, dropout
rates of 30%-70%.

Selecting 5-hour and 24-hour forecasting horizons for model
performance evaluation strategically addresses both immediate
and daily energy management needs [16]. The 5-hour horizon is
essential for intra-day operations, including energy trading and
adjusting to demand-supply changes, enabling efficient resource
dispatching. Conversely, the 24-hour forecast is vital for daily
planning, such as maintenance, energy procurement, and reserve
management, ensuring grid stability and economic operations
[17]. Together, these horizons offer a comprehensive assessment
of the model's utility in supporting renewable energy integration
for both short-term adjustments and strategic decision-making.
The selection of hyperparameters is based on prior studies that
have demonstrated their effectiveness in enhancing model
performance [6, 7, 12, 15, 18-20]. The hyperparameters in this
study are crucial for configuring the CNN model used in
forecasting. “Window size” defines the temporal extent of the
input data, set at intervals of 1h, 8h, 24h, and 48h in this study,
to accommodate various periods of analysis. “Filter size” refers
to the dimensions of the kernels employed in the convolutional
layers for feature extraction, with sizes of 3, 5, 7, and 9 explored.
“Filter number” indicates the quantity of distinct filters in each
convolutional layer, enabling the detection of a diverse set of
features, with values set at 16, 32, 48, 64, and 96 in our study.
“Dropout” is implemented as a regularization strategy,
randomly omitting a proportion of the input units during training
to mitigate overfitting, with rates 0f 0.1, 0.3, 0.5, and 0.7. Lastly,
the “CNN layer number” describes the overall depth of the CNN
architecture, critical for the model’s ability to capture complex
patterns, with the depth varying from 1 to 6 layers. The
MATLAB code developed for this study is available upon
request.

III. RESULTS

Our results originate from the domain of time series
forecasting, which specifically evaluates the performance of
various configurations of a CNN model across different
forecasting horizons, which varies among 5, and 24 hours ahead
predictions. The dataset records the impact of different
hyperparameters such as window size, filter size, number of
filters, dropout rate, and the number of CNN layer on the model's
forecasting accuracy.

The objective of our analysis is to dissect how these
configurations influence the model's effectiveness, gauged

through metrics like Mean Squared Error (MSE), R-squared
(R?). By understanding these dynamics, we aim to uncover
insights that could guide the optimization of time series
forecasting models for improved accuracy and reliability. The
MSE offers insight into the average magnitude of the model's
errors, providing a clear measure of predictive accuracy, while
R? offers an indication of the model's explanatory power.

The dataset created from simulated cases, structured as a
table (with 2496 rows), facilitates a thorough analysis of how
different model configurations affect time series forecasting
accuracy. Each column in this dataset represents a critical aspect
of the model's behavior, documenting the configuration,
hyperparameters, and performance metrics for each simulation.
These performance metrics (MSE and R?) quantitatively assess
the model's accuracy and effectiveness in identifying the
underlying patterns of the forecasted time series data.

From looking deeply into the dataset, we aim to extract
actionable insights, such as identifying the optimal range of
model parameters for balancing model complexity with
forecasting precision, thereby laying a foundation for more
informed and targeted model tuning and validation efforts. In
general, the MSE demonstrates a considerable range, with a
minimal value of 0.361 MW, suggesting instances of near-
perfect forecasting accuracy, and extending to a maximum of
440.55 MW, where predictions substantially deviate from actual
observations. The R? values, indicating the proportion of
variance in the dependent variable predictable from the model,
vary dramatically from low values, almost devoid of explanatory
power in some cases, to an exemplary high of 0.999, denoting
nearly flawless predictability. These indicators collectively
furnish a nuanced picture of model efficacy, ranging from highly
precise forecasts to scenarios marked by notable prediction
inaccuracies, highlighting the pivotal role of model
configuration in optimizing forecasting performance. This
variation underscores the critical importance of model
configuration, as different settings can dramatically influence
the model's ability to capture and predict the underlying patterns
in the data.

Examining the scatter plots for the forecasting horizons of
5, and 24 hours reveals nuanced insights into the impact of
various individual hyperparameters on the MSE (See Fig 2). For
forecasting horizon = 5, the MSE remains relatively unaffected
by different window sizes, hinting that short-term forecasts may
not be sensitive to the amount of input data. Smaller filter sizes
tend to result in lower MSE, suggesting they might be optimal
for capturing the necessary features at this forecast range. The
number of filters shows that there may be an optimal quantity
that minimizes MSE, beyond which the performance does not
improve significantly. Dropout rates do not present a clear trend,
indicating that an optimal value likely exists that must be fine-
tuned to balance model complexity and prevent overfitting. As
for CNN layers, an initial decrease in MSE is observed with an
increase in layers, after which the benefit plateaus, suggesting
that a moderate depth is most beneficial for short-term
forecasting.

At the 24-hour horizon, a greater spread in MSE values
suggests that a larger window size doesn't necessarily correlate
with improved long-term forecasts, and smaller filter sizes might



again be more effective. The pattern for the number of filters
does not show a consistent decrease in MSE, pointing to an
optimal count before complexity leads to diminishing returns.
The dropout rate's impact on MSE implies that there might be
an optimal rate that mitigates overfitting while still allowing
sufficient learning. The MSE for varying numbers of CNN
layers is relatively high overall, which could imply that long-
term forecasts may benefit less from deeper architectures or that
limitations in the data prevent the model from effectively
leveraging increased depth.

In our analysis, we tailored the hyperparameters for each
forecasting horizon to pinpoint the most efficient combination
for predictive accuracy. We evaluate the model's performance
during the testing phase by comparing outcomes across all
simulated scenarios. Our objective is to identify the
configuration that yields the lowest MSE while maintaining the
simplest model structure. This involves selecting the model with
the fewest convolutional layers, smallest window size, minimal
filter size and count, and lowest dropout rate, thereby ensuring
optimal performance with minimal complexity.

For a short-term, 5-hour horizon, the best results came from
a simple yet effective configuration: a window size of 1, filter
size of 7, 48 filters, dropout of 0.1, and 2 CNN layers, achieving
an the lowest MSE. This reinforces the idea that less can be
more, with a minimalistic model yielding high accuracy for
short-term forecasts. For the long-term, 24-hour forecasts, we
observed a different dynamic: the lowest MSE was achieved
with a window size of 24, filter size of 1, 96 filters, a dropout
rate of 0.3, and 6 CNN layers. Despite the larger window and
increased dropout hinting at a rising MSE trend, this
combination suggests that capturing more extended patterns is
key, but a moderate approach to complexity is essential.

The optimized models were deployed to forecast data for the
years 2019 to 2021, demonstrating consistent performance
across this period (see Fig 3). Initially, it achieved a MSE of
4443 MW and maintained a high R? value above 0.990 for
forecasts made 5 hours ahead. Although the MSE incrementally
rose to 17.839 MW by 2021, the model's ability to accurately
reflect key data features underlines its robustness in adapting to
annual variations. The steady increase in MSE might suggest
changing data dynamics or a growing complexity in the
underlying patterns. Nonetheless, the consistently high R?
values across years highlight the model's robustness and its
capability to capture essential trends with a relatively simple
setup. The 24-hour forecast model with its optimized
configuration demonstrates an initial strong performance with
an MSE of 53.670 MW in 2019 and an R? of 0.914, suggesting
effective capture of long-range patterns with a broad window
size and substantial filter depth. Over time, the MSE increases,
peaking at 211.902MW in 2021 with an R? of 0.915, which may
reflect the model's struggle against increasingly complex or
volatile data. Yet, the model maintains relatively almost
constant and high R? values throughout the example years,
affirming its capability to account for a significant portion of the
variance within the data.
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Fig 2: Comparative analysis of CNN’s hyperparameters on forecasting
accuracy across 5, and 24 hours ahead

IV. CONCLUSION

In this study, we explored the potential of CNNs and their
hyperparameters in shaping forecasting outcomes for hybrid
renewable power generation in Luxembourg. Our analysis
unearthed the significant influence of hyperparameters on
forecasting accuracy, revealing those variations in factors like
window size, filter size, number of filters, dropout rate, and
CNN layers distinctly impacted model performance. Notably,
smaller filter sizes and moderate numbers of filters were found
to yield lower MSE, indicating enhanced accuracy, particularly
for short-term forecasts. Achieving a delicate balance between
model complexity and regularization techniques, such as
dropout rates, emerged as crucial for optimizing accuracy across
different forecasting horizons. Tailoring model configurations to
specific forecast horizons, we identified optimal hyperparameter
combinations for the applied dataset. For short-term forecasts (5
hours ahead), a simplified model with a window size of 1, small
filter size, moderate number of filters, low dropout rate, and 2
CNN layers showcased impressive accuracy. As the forecast
horizon lengthened, slightly more complex configurations were
required, underscoring the need to balance capturing longer
patterns with avoiding overfitting. Therefore, we found for
longer-term forecasts (24 hours ahead), the best configuration
comprised a larger window size of 24, a filter size of 1, 96 filters,
a dropout rate of 0.3, and 6 CNN layers. Our study underscores
the pivotal role of the CNN layer and filter size in enhancing the
performance of CNNs. Additionally, we demonstrate that a
finely tuned CNN offers a cost-effective solution for forecasting



hybrid renewable power generation in Luxembourg. Looking
ahead, our research points towards promising avenues for
further exploration, such as refining hyperparameters through
optimization techniques, investigating ensemble methods for
data preprocessing, and advancing techniques for dynamic
model adaptation.
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Fig 3: Performance of the optimized models for each forecasting horizon 5
hours, and 24 hours. The model has been tested for years 2019-2021 as
example.
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