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Abstract— Access to reliable renewable power generation 
forecasting tools is crucial for optimizing grid operations and 
advancing the integration of renewable energy, which in turn leads 
to the sustainability of energy systems. This study develops a 
forecasting model utilizing Convolutional Neural Networks (CNN) 
for precise prediction of hybrid solar and wind power generation 
in Luxembourg. Through a comprehensive comparative analysis 
exploring various combinations of critical hyperparameters, we 
demonstrate the significant capability of the CNN approach to 
serve as an effective prediction tool for hybrid renewable energy 
production. Our findings underscore the reliable potential of 
CNNs to enhance the accuracy of renewable energy forecasts, 
thereby enabling a more seamless and efficient integration of 
renewable energy sources into Luxembourg's power grid. Our 
CNN model demonstrated exceptional performance, with an R-
squared ( ) exceeding 90%, particularly for forecasting horizons 
of 5, and 24 hours ahead.  

Keywords— Hybrid renewable power; Convolutional Neural 
Network; Multi-hour ahead forecasting. 

I. INTRODUCTION  

During the rapid evolution of society and economy, driven 
by increasing energy demands and concerns over fossil fuels' 
environmental impact, many nations are transitioning towards 
renewable energy sources such as solar and wind power [1]. 
Luxembourg stands at the forefront of this movement, setting 
ambitious goals for 2021-2030 aimed at reducing pollution and 
boosting renewable energy usage [2, 3]. With its commitment to 
sustainability, Luxembourg is implementing policies and 
initiatives to accelerate the adoption of solar and wind energy 
technologies, leading the way towards a cleaner, greener future 
[3]. Therefore, a reliable forecasting is crucial for seamlessly 
integrating renewables into existing energy systems, yet 
accurate predictions face challenges from intricate weather 
variables [4]. Deep learning, particularly Convolutional Neural 
Networks (CNNs), has emerged as a crucial tool in overcoming 
these challenges mainly in combination with other techniques 
and algorithms [4]. In wind power prediction using an optimized 
support vector regression (SVR) model, an improved Jellyfish 

Search (IJS) algorithm optimizes SVR parameters, boosting 
predictive accuracy [5]. Hourly stepwise forecasting for solar 
irradiance proposes a hybrid model integrating CNN, long short-
term memory networks (LSTM), multi-layer perceptron (MLP), 
and variational mode decomposition (VMD) for precise hourly 
solar irradiance forecasting, surpassing traditional methods [6]. 
Short-term wind power forecasting with LSTM and attention 
mechanism (AM-LSTM) model dynamically weighs physical 
attribute data using an attention mechanism with CNN and 
LSTM networks, improving short-term wind forecasting 
accuracy [7]. Very short-term forecasting of wind power 
generation using a hybrid deep learning model employs 
convolutional and gated recurrent unit (GRU) layers for superior 
very short-term wind power generation forecasting accuracy [8]. 
Wind power forecasting with the optimized deep learning 
techniques synergizes WPD with CNN and LSTM networks for 
offshore wind power forecasting, achieving superior accuracy 
[9]. The GWO-Nested CEEMDAN-CNN-BiLSTM model for 
wind speed forecasting integrates grey wolf optimization 
(GWO), complete ensemble empirical node decomposition with 
adaptive noise (CEEMDAN), CNN, and Bidirectional LSTM, 
achieving superior wind speed forecasting accuracy [10]. Short-
term wind power forecasting based on attention mechanism and 
CNN-LSTM networks dynamically weighs input data 
importance using an attention mechanism with CNN and LSTM 
networks, improving short-term wind power forecasting 
accuracy [11]. CNN with LSTM units, enhanced by the Coati 
Optimization Algorithm (COA), to improve the accuracy of 
hybrid renewable energy forecasting [12]. Building upon the 
advancements highlighted in recent literature on renewable 
energy forecasting, our study aims to make a unique 
contribution by focusing solely on the power of CNN for 
renewable energy forecasting. This investigation is driven by the 
following hypothesis: 

� A well-tuned CNN, free from the complexities of 
additional algorithms or techniques, can offer a 
solution with low computational demand while still 
delivering high-quality forecasting results. 



This approach offers several advantages, including 
decreased complexity compared to hybrid models, resulting in 
simpler implementation and interpretation of outcomes. 
Additionally, CNN models typically exhibit faster computation 
times, making them suitable for real-time forecasting 
applications. Moreover, the architecture of CNN allows for 
scalability, enabling the incorporation of additional data sources 
or features without significant overhead. By leveraging these 
benefits, we aim to demonstrate the efficiency of CNN in 
renewable energy forecasting, paving the way for streamlined 
and effective integration of sustainable energy sources into 
power systems. To achieve this, we focus on three main 
novelties: 

� Investigating how adjusting CNN hyperparameters 
impacts the accuracy of forecasting hybrid renewable 
energy production in our studied case, Luxembourg. 

� Introducing a streamlined CNN model optimized with 
the best hyperparameter settings, aimed at delivering 
accurate energy forecasts at 5, and 24-hour intervals. 

� Enhancing forecasting models by integrating a variety 
of datasets, including historical energy output across 
different years, to empower accuracy and demonstrate 
consistent reliability.  

Despite the array of sophisticated methods detailed in recent 
literature for renewable energy forecasting-ranging from hybrid 
deep learning models to advanced data preprocessing techniques 
and optimization algorithms-the current study seeks to evaluate 
the standalone performance of a CNN in forecasting hybrid 
renewable power generation. Indeed, our study uses a simplified 
deep learning framework to predict major contributions to 
hybrid renewable energy forecasting. In addition to contributing 
to the advancement of scientific discourse, this study offers a 
reliable tool for practical energy strategies and applications. The 
paper is organized methodically: Section II provides an 
overview of methodology, Section III presents the findings, and 
Section IV concludes. 

II. METHOD 

A. General overview 
Our methodology aims to develop a CNN model for 

forecasting hybrid wind and solar power generation data by 
training and evaluating the CNN model using different 
combination of major hyperparameters. We analyze the results 
to determine the optimal model’s hyperparameters configuration 
and explore the effect of individual hyperparameters.  

B. Introduction of applied data 
Here, we investigate into the dataset that underpins our 

methodology. This data originates from the ENTSO-E 
Transparency Platform, an extensive European resource 
providing real-time and transparent data on electricity 
transmission and market operations throughout the continent 
[13]. To evaluate the predictive performance of our method, we 
examine solar and onshore wind power generation data from 
Luxembourg spanning the years 2015 to 2021. Over these years, 
there's a noticeable trend of growth across all metrics. Starting 
in 2015, the mean power generation was recorded at 18.45 MW, 
with the maximum power output reaching 97 MW, and a 

standard deviation of 16.15 MW. This trend of increasing power 
generation continued steadily, with the mean output rising to 
23.13 MW in 2016, and then more significantly to 65.90 MW 
by 2021. The maximum hybrid power output also showed a 
remarkable increase from 97 MW in 2015 to 243 MW in 2021, 
alongside a steady rise in the standard deviation from 16.15 MW 
to 43.73 MW over the same period. This data demonstrates a 
clear upward trajectory in Luxembourg's hybrid renewable 
power generation capabilities, highlighting improvements in 
efficiency and capacity. Our dataset comprises 8,760 samples 
annually. We plan to develop the model using data from two 
years (2015-2016). Specifically, 2015 data will be split for 
training (80%) and validation (20%). The entire 2016 dataset, 
unseen by the model during training, will be used for testing. 
The model's testing performance will serve as the benchmark for 
selecting the optimal model from the simulation pool. 

C. Convolutional Neural Network 
The applied CNN architecture (see Fig  1)  is designed for 

sequential input data, focusing on hybrid renewable power 
generation sequences. It starts with a Sequence Input layer and 
follows with multiple 1-D convolutional blocks (from 1 to N in 
Fig  1), each containing a convolution layer, batch 
normalization, and rectified linear unit (ReLU) activation to 
extract features and introduce non-linearity [12]. The 
convolutional layers use filters to capture spatial and temporal 
patterns, enhancing the model's ability to learn complex data 
relationships [14]. Batch normalization stabilizes training by 
normalizing layer activations, while ReLU activation promotes 
sparsity and efficient learning by setting negative inputs to zero 
[14]. Following the convolutional stages, the network includes 
fully connected layers for feature integration, with dropout 
regularization to prevent overfitting [15]. The architecture 
culminates with fully connected layers, the nodes of which 
correspond to the anticipated scale of forecasted values, 
followed by a regression output layer designed for predicting 
continuous variables. It employs a mean-squared error loss 
function to quantify the accuracy of predictions. This 
streamlined design enables the model to learn hierarchical time 
series representations for accurate forecasting in hybrid power 
generation contexts.  

D. Applied method 
The developed MATLAB code presents an approach to 

forecasting hybrid power generation using CNNs. The code 
aims to train a CNN model that can accurately predict future 
hybrid power generation based on historical data. We applied a 
method to prevent overfitting called early stopping which is 
implemented using a custom callback function in our training 
process. This function monitors the validation loss during 
training and halts the training process if the validation loss fails 
to improve for a specified number of epochs. To prevent 
overfitting other applied techniques are also employed. Firstly, 
dropout layers are integrated into the network architecture, 
randomly deactivating neurons during training to enhance the 
network's resilience and reduce its reliance on specific features. 
Additionally, batch normalization layers are utilized to 
normalize layer activations, stabilizing the training process and 
acting as a form of regularization. We simulate a total of 2496 
cases, incorporating various combinations of hyperparameters 
for two distinct forecasting horizons (5, and 24 hours ahead).  



 

Fig  1: Applied CNN architecture in this study. The model features filter sizes 
of 3, 5, 7, and 9, with counts from 16 to 96, 1-6 convolutional blocks, dropout 

rates of 30%-70%. 

Selecting 5-hour and 24-hour forecasting horizons for model 
performance evaluation strategically addresses both immediate 
and daily energy management needs [16]. The 5-hour horizon is 
essential for intra-day operations, including energy trading and 
adjusting to demand-supply changes, enabling efficient resource 
dispatching. Conversely, the 24-hour forecast is vital for daily 
planning, such as maintenance, energy procurement, and reserve 
management, ensuring grid stability and economic operations 
[17]. Together, these horizons offer a comprehensive assessment 
of the model's utility in supporting renewable energy integration 
for both short-term adjustments and strategic decision-making.  
The selection of hyperparameters is based on prior studies that 
have demonstrated their effectiveness in enhancing model 
performance [6, 7, 12, 15, 18-20]. The hyperparameters in this 
study are crucial for configuring the CNN model used in 
forecasting. “Window size” defines the temporal extent of the 
input data, set at intervals of 1h, 8h, 24h, and 48h in this study, 
to accommodate various periods of analysis. “Filter size” refers 
to the dimensions of the kernels employed in the convolutional 
layers for feature extraction, with sizes of 3, 5, 7, and 9 explored. 
“Filter number” indicates the quantity of distinct filters in each 
convolutional layer, enabling the detection of a diverse set of 
features, with values set at 16, 32, 48, 64, and 96 in our study. 
“Dropout” is implemented as a regularization strategy, 
randomly omitting a proportion of the input units during training 
to mitigate overfitting, with rates of 0.1, 0.3, 0.5, and 0.7. Lastly, 
the “CNN layer number” describes the overall depth of the CNN 
architecture, critical for the model’s ability to capture complex 
patterns, with the depth varying from 1 to 6 layers. The 
MATLAB code developed for this study is available upon 
request. 

III. RESULTS 

Our results originate from the domain of time series 
forecasting, which specifically evaluates the performance of 
various configurations of a CNN model across different 
forecasting horizons, which varies among 5, and 24 hours ahead 
predictions. The dataset records the impact of different 
hyperparameters such as window size, filter size, number of 
filters, dropout rate, and the number of CNN layer on the model's 
forecasting accuracy. 

The objective of our analysis is to dissect how these 
configurations influence the model's effectiveness, gauged 

through metrics like Mean Squared Error (MSE), R-squared 
( ). By understanding these dynamics, we aim to uncover 
insights that could guide the optimization of time series 
forecasting models for improved accuracy and reliability. The 
MSE offers insight into the average magnitude of the model's 
errors, providing a clear measure of predictive accuracy, while 

 offers an indication of the model's explanatory power.  

 The dataset created from simulated cases, structured as a 
table (with 2496 rows), facilitates a thorough analysis of how 
different model configurations affect time series forecasting 
accuracy. Each column in this dataset represents a critical aspect 
of the model's behavior, documenting the configuration, 
hyperparameters, and performance metrics for each simulation. 
These performance metrics (MSE and ) quantitatively assess 
the model's accuracy and effectiveness in identifying the 
underlying patterns of the forecasted time series data. 

From looking deeply into the dataset, we aim to extract 
actionable insights, such as identifying the optimal range of 
model parameters for balancing model complexity with 
forecasting precision, thereby laying a foundation for more 
informed and targeted model tuning and validation efforts. In 
general, the MSE demonstrates a considerable range, with a 
minimal value of 0.361 MW, suggesting instances of near-
perfect forecasting accuracy, and extending to a maximum of 
440.55 MW, where predictions substantially deviate from actual 
observations. The  values, indicating the proportion of 
variance in the dependent variable predictable from the model, 
vary dramatically from low values, almost devoid of explanatory 
power in some cases, to an exemplary high of 0.999, denoting 
nearly flawless predictability. These indicators collectively 
furnish a nuanced picture of model efficacy, ranging from highly 
precise forecasts to scenarios marked by notable prediction 
inaccuracies, highlighting the pivotal role of model 
configuration in optimizing forecasting performance. This 
variation underscores the critical importance of model 
configuration, as different settings can dramatically influence 
the model's ability to capture and predict the underlying patterns 
in the data. 

 Examining the scatter plots for the forecasting horizons of 
5, and 24 hours reveals nuanced insights into the impact of 
various individual hyperparameters on the MSE (See Fig  2). For 
forecasting horizon = 5, the MSE remains relatively unaffected 
by different window sizes, hinting that short-term forecasts may 
not be sensitive to the amount of input data. Smaller filter sizes 
tend to result in lower MSE, suggesting they might be optimal 
for capturing the necessary features at this forecast range. The 
number of filters shows that there may be an optimal quantity 
that minimizes MSE, beyond which the performance does not 
improve significantly. Dropout rates do not present a clear trend, 
indicating that an optimal value likely exists that must be fine-
tuned to balance model complexity and prevent overfitting. As 
for CNN layers, an initial decrease in MSE is observed with an 
increase in layers, after which the benefit plateaus, suggesting 
that a moderate depth is most beneficial for short-term 
forecasting. 

At the 24-hour horizon, a greater spread in MSE values 
suggests that a larger window size doesn't necessarily correlate 
with improved long-term forecasts, and smaller filter sizes might 



again be more effective. The pattern for the number of filters 
does not show a consistent decrease in MSE, pointing to an 
optimal count before complexity leads to diminishing returns. 
The dropout rate's impact on MSE implies that there might be 
an optimal rate that mitigates overfitting while still allowing 
sufficient learning. The MSE for varying numbers of CNN 
layers is relatively high overall, which could imply that long-
term forecasts may benefit less from deeper architectures or that 
limitations in the data prevent the model from effectively 
leveraging increased depth.  

In our analysis, we tailored the hyperparameters for each 
forecasting horizon to pinpoint the most efficient combination 
for predictive accuracy. We evaluate the model's performance 
during the testing phase by comparing outcomes across all 
simulated scenarios. Our objective is to identify the 
configuration that yields the lowest MSE while maintaining the 
simplest model structure. This involves selecting the model with 
the fewest convolutional layers, smallest window size, minimal 
filter size and count, and lowest dropout rate, thereby ensuring 
optimal performance with minimal complexity. 

For a short-term, 5-hour horizon, the best results came from 
a simple yet effective configuration: a window size of 1, filter 
size of 7, 48 filters, dropout of 0.1, and 2 CNN layers, achieving 
an the lowest MSE. This reinforces the idea that less can be 
more, with a minimalistic model yielding high accuracy for 
short-term forecasts. For the long-term, 24-hour forecasts, we 
observed a different dynamic: the lowest MSE was achieved 
with a window size of 24, filter size of 1, 96 filters, a dropout 
rate of 0.3, and 6 CNN layers. Despite the larger window and 
increased dropout hinting at a rising MSE trend, this 
combination suggests that capturing more extended patterns is 
key, but a moderate approach to complexity is essential.  

The optimized models were deployed to forecast data for the 
years 2019 to 2021, demonstrating consistent performance 
across this period (see Fig  3). Initially, it achieved a MSE of 
4.443 MW and maintained a high  value above 0.990 for 
forecasts made 5 hours ahead. Although the MSE incrementally 
rose to 17.839 MW by 2021, the model's ability to accurately 
reflect key data features underlines its robustness in adapting to 
annual variations. The steady increase in MSE might suggest 
changing data dynamics or a growing complexity in the 
underlying patterns. Nonetheless, the consistently high  
values across years highlight the model's robustness and its 
capability to capture essential trends with a relatively simple 
setup. The 24-hour forecast model with its optimized 
configuration demonstrates an initial strong performance with 
an MSE of 53.670 MW in 2019 and an  of 0.914, suggesting 
effective capture of long-range patterns with a broad window 
size and substantial filter depth. Over time, the MSE increases, 
peaking at 211.902MW in 2021 with an  of 0.915, which may 
reflect the model's struggle against increasingly complex or 
volatile data. Yet, the model maintains relatively almost 
constant and high values throughout the example years, 
affirming its capability to account for a significant portion of the 
variance within the data.  

 

 

Fig  2: Comparative analysis of CNN’s hyperparameters on forecasting 
accuracy across 5, and 24 hours ahead 

IV. CONCLUSION 

In this study, we explored the potential of CNNs and their 
hyperparameters in shaping forecasting outcomes for hybrid 
renewable power generation in Luxembourg. Our analysis 
unearthed the significant influence of hyperparameters on 
forecasting accuracy, revealing those variations in factors like 
window size, filter size, number of filters, dropout rate, and 
CNN layers distinctly impacted model performance. Notably, 
smaller filter sizes and moderate numbers of filters were found 
to yield lower MSE, indicating enhanced accuracy, particularly 
for short-term forecasts. Achieving a delicate balance between 
model complexity and regularization techniques, such as 
dropout rates, emerged as crucial for optimizing accuracy across 
different forecasting horizons. Tailoring model configurations to 
specific forecast horizons, we identified optimal hyperparameter 
combinations for the applied dataset. For short-term forecasts (5 
hours ahead), a simplified model with a window size of 1, small 
filter size, moderate number of filters, low dropout rate, and 2 
CNN layers showcased impressive accuracy. As the forecast 
horizon lengthened, slightly more complex configurations were 
required, underscoring the need to balance capturing longer 
patterns with avoiding overfitting. Therefore, we found for 
longer-term forecasts (24 hours ahead), the best configuration 
comprised a larger window size of 24, a filter size of 1, 96 filters, 
a dropout rate of 0.3, and 6 CNN layers. Our study underscores 
the pivotal role of the CNN layer and filter size in enhancing the 
performance of CNNs. Additionally, we demonstrate that a 
finely tuned CNN offers a cost-effective solution for forecasting 



hybrid renewable power generation in Luxembourg. Looking 
ahead, our research points towards promising avenues for 
further exploration, such as refining hyperparameters through 
optimization techniques, investigating ensemble methods for 
data preprocessing, and advancing techniques for dynamic 
model adaptation. 

 

 

 

Fig  3: Performance of the optimized models for each forecasting horizon 5 
hours, and 24 hours. The model has been tested for years 2019-2021 as 

example. 
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