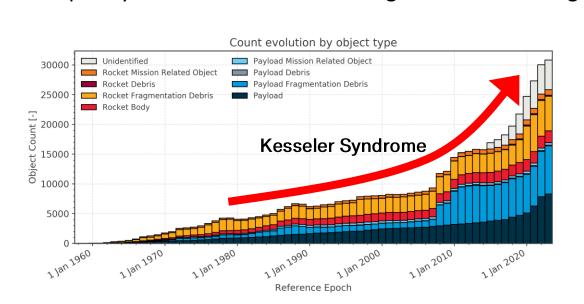


SMALL SATELLITE ACTIVE SPACE DEBRIS REMOVAL APPLICATION FOR UNCOOPERATIVE SPACE DEBRIS

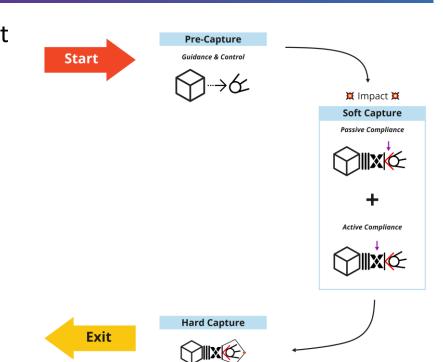
Maxime Hubert Delisle, Xiao Li, Baris Can Yalcin, Miguel Olivares-Mendez, Carol Martinez


uni.Iu sni

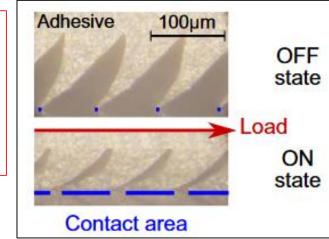
6 Rue Richard Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg maxime.hubertdelisle@uni.lu

☐ FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

CONTEXT


- Exponential growth of space debris in orbit
- Active Debris Removal (ADR) needed for stabilising the exponential growth of space debris
- Developed systems are one-to-one design solutions for large debris (1 system able to capture 1 debris)

DESIGN REQUIREMENTS


- Data Analysis of the trackable objects in Low-Earth Orbit (LEO)
- A one-to-many solution → 1 system can be used to capture different debris
- Integrates two types of capture:
 - **Soft Capture** complies and retains the debris from being pushed away at the impact.
 - Hard Capture secures the link with the debris and ensures the system ready for deorbiting.
- The mechatronic system must be autonomous.
- The system targets **flat surfaces**.

HYBRID-COMPLIANT CONCEPT

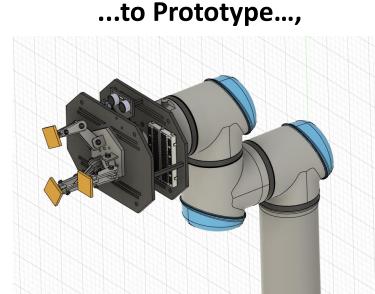
- Hybrid-compliant mechanism → Active + Passive Compliance, dissipating impact energy
- Active Compliance → linear actuators + impedance controller
- Passive Compliance → revolute joints + torsional springs
- Use of bio-inspired dry adhesive from the gecko fingers
- Van der Waals interactions to stick with the debris surface.
- Tests in the ZeroG Lab of SpaceR

The system's stiffness can be **adaptative** to the debris mass, and approach velocity

ZeroG Lab

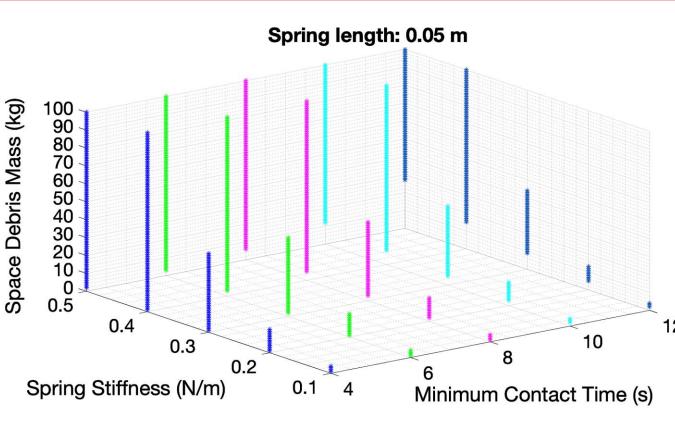
RESEARCH

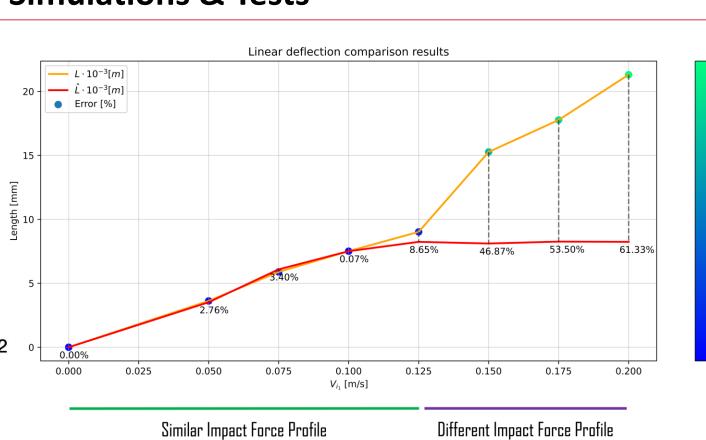
What range of debris to target?

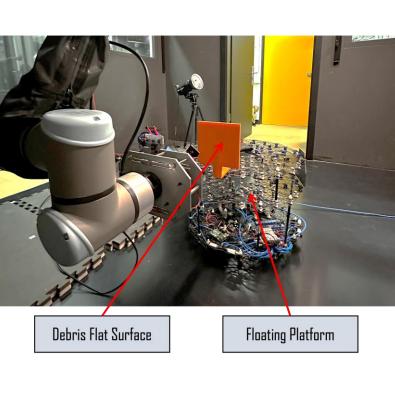

2000 🛨	Apogee under 2000km							
1750 -	***		Cosmos objects mostly	•				
1500 -	\$.		•					
1250 -	3	-,	•	96			•	
9) 1000 - 60 - 750 -	8			=			•	
500 -	3			4				
250 -							•	
0 -	Cyl	Sphere	Box	Cone	Cyl + 2 Pan	Box + 2 Pan	Box + 1 Pan	
	Cyl	Spriere	DUX	shapes	Cyi + Z raii	DUX + 2 Pall	DOX T I Pall	

Shape	Amount	% of LEO small debris total
Sphere	1044	25.08
Вох	949	22.80
Box + 2 Pan	669	16.07
Cyl	457	10.98
Cone	274	6.58
Box + 2 Ant	113	2.72

Table 1. Main Debris Shapes Found In LEO (mass ≤ 100 kg)


Passive Compliance Unit


From Concept...



...Ready to be tested in the lab!

Impact Behaviour Simulations & Tests Spring length: 0.05 m

FUTURE WORKS

- →Implement and test Passive Compliance + Active Compliance in the ZeroG Lab
- → Concept, Prototype and Tests of the Hard Capture
- → Disseminate the results in journals and conferences

REFERENCES

- Hubert Delisle, M.; Christidi-Loumpasefski, O.-O.; Yalçın, B.C.; Li, X.; Olivares-Mendez, M.; Martinez, C. Hybrid-Compliant System for Soft Capture of Uncooperative Space Debris. *Appl. Sci.* 2023, 13, 7968. https://doi.org/10.3390/app13137968
- Yalçın, B.C.; Martinez, C.; Hubert Delisle, M.; Rodriguez, G.; Zheng, J.; Olivares-Mendez, M. ET-Class: An Energy Transfer-Based Classification of Space Debris Removal Methods and Missions. Front. Space Technol. **2022**, 3, 23.

ACKNOWLEDGEMENTS

SnT-SpaceR has conducted this study under Luxembourg National Research Fund (FNR)—CASED funding for "design of a Capturing, Absorbing, SEcuring system for active space Debris removal—CASED" project FNR16678722.