
Vol.: (0123456789)
1 3

J Grid Computing (2024) 22:49 
https://doi.org/10.1007/s10723-024-09761-7

RESEARCH

A Hybrid Discrete Grey Wolf Optimization Algorithm 
Imbalance‑ness Aware for Solving Two‑dimensional 
Bin‑packing Problems

Saeed Kosari · Mirsaeid Hosseini Shirvani   · 
Navid Khaledian · Danial Javaheri 

Received: 31 December 2023 / Accepted: 24 March 2024 / Published online: 10 May 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract  In different industries, there are miscellane-
ous applications that require multi-dimensional resources. 
These kinds of applications need all of the resource dimen-
sions at the same time. Since the resources are typically 
scarce/expensive/pollutant, presenting an efficient resource 
allocation is a very favorable approach to reducing overall 
cost. On the other hand, the requirement of the applica-
tions on different dimensions of the resources is variable, 
usually, resource allocations have a high rate of wastage 
owing to the unpleasant resource skew-ness phenomenon. 
For instance, micro-service allocation in the Internet of 
Things (IoT) applications and Virtual Machine Placement 
(VMP) in a cloud context are challenging tasks because 
they diversely require imbalanced all resource dimensions 

such as CPU and Memory bandwidths, so inefficient 
resource allocation raises issues. In a special case, the 
problem under study associated with the two-dimensional 
resource allocation of distributed applications is modeled 
to the two-dimensional bin-packing problems which are 
categorized as the famous NP-Hard. Several approaches 
were proposed in the literature, but the majority of them 
are not aware of skew-ness and dimensional imbalances 
in the list of requested resources which incurs additional 
costs. To solve this combinatorial problem, a novel hybrid 
discrete gray wolf optimization algorithm (HD-GWO) is 
presented. It utilizes strong global search operators along 
with several novel walking-around procedures each of 
which is aware of resource dimensional skew-ness and 
explores discrete search space with efficient permutations. 
To verify HD-GWO, it was tested in miscellaneous con-
ditions considering different correlation coefficients (CC) 
of resource dimensions. Simulation results prove that 
HD-GWO significantly outperforms other state-of-the-art 
in terms of relevant evaluation metrics along with a high 
potential of scalability.

Keywords  Hybrid discrete grey wolf optimization 
algorithm · Two-dimensional bin-packing problem · 
Cloud computing · Resource allocation

1  Introduction

Resource management is a very important phase of the 
business process regarding each industry because it 

S. Kosari 
Institute of Computing Science and Technology, 
Guangzhou University, Guangzhou 510006, China

M. Hosseini Shirvani (*) 
Department of Computer Engineering, Sari Branch, 
Islamic Azad University, Sari, Iran
e-mail: mirsaeid_hosseini@iausari.ac.ir; mirsaeid_
hosseini@yahoo.com

N. Khaledian 
Interdisciplinary Centre for Security, Reliability and Trust 
(SnT), University of Luxembourg, Esch‑sur‑Alzette, 
Luxembourg

D. Javaheri (*) 
Department of Computer Science and Engineering, Korea 
University, Seoul 02841, Republic of Korea
e-mail: javaheri@korea.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-024-09761-7&domain=pdf
http://orcid.org/0000-0001-9396-5765
http://orcid.org/0000-0002-7275-2370


	 J Grid Computing (2024) 22:49

1 3

49  Page 2 of 36

Vol:. (1234567890)

indirectly impacts the system’s performance and over-
all costs. Allocation of limited/expensive/pollutant 
resources to a variety of applications is a very intricate 
and sensitive task in different industries for the sake of 
performance improvement, overall expenditure reduc-
tion, and pollution as well. It is necessary to allocate 
resources efficiently to applications to reach different 
potentially conflicting objectives. For instance, in the 
information technology industry, virtualization technol-
ogy enables each physical server to host multiple virtual 
machines (VMs) each of which runs one application 
relevant to users’ requests [1–3]. Each physical server 
must supply two-dimensional resources that are CPU 
cycles and memory bandwidth at the same time for each 
requested VM associated with each application. Bear 
in mind that because of the different nature of applica-
tions, there is a high rate of skew-ness in resource vector 
requests. Inefficient resource allocations lead to addi-
tional usage of active servers that burdens more power 
costs and implicates environmental impacts [4]. Since 
a large part of the total cost of ownership (TCO) asso-
ciated with distributed system owners such as cloud 
providers is owing to power consumption, utilizing the 
minimum number of active physical servers helps both 
TCO reduction and green computing objectives [5]. On 
the other hand, in distributed systems such as cloud data 
centers different VMs are periodically requested which 
may have a high degree of skew-ness in each resource 
dimension of the requested list of resources. So, ineffi-
cient resource allocation may lead high rate of resource 
wastage and high illogical usage of physical servers. To 
obviate the challenges, several approaches were pro-
posed in the literature to solve the resource allocation 
issues which are abstracted to the two-dimensional bin-
packing problems, but most of them do not pay attention 
to the imbalance-ness in resource requests for each VM. 
Therefore, it burdens more costs because of the high rate 
of resource wastage, underutilized servers, and using 
illogical additional servers [6]. This paper concentrates 
on the allocation of two-dimensional resources to appli-
cations that simultaneously need both resource dimen-
sions. For instance, VM placement and server consoli-
dation techniques are pervasively exploited in cloud data 
centers to lower down system’s power consumption and 
resource dissipation [7, 8]. So, the novelty of the current 
paper is as follows:

•	 It models the two-dimensional resource allocation 
problem to a two-dimensional bin-packing problem.

•	 It proposes a total resource wastage model regarding 
each dimension to utilize it in the main algorithm for 
precluding additional illogical resource usage.

•	 It formulates the aforementioned packing prob-
lem to an integer linear programming (ILP) model 
which is an NP-Hard problem.

•	 To solve this combinatorial optimization problem, 
a hybrid discrete gray wolf optimization algorithm 
that engages some novel walking around proce-
dures is proposed; the proposed walking around 
procedures are aware of dimensional skew-ness in 
which it efficiently permutes search space toward 
main objective functions. Moreover, it takes a tricky 
approach to evading from local optimum trap.

The focus of the current paper is to propose a novel 
algorithm for solving a especial two-dimensional bin-
packing problem in which each bin is a two dimen-
sional resource. All dimensions of a resource are mul-
tiplexed between different applications so the resource 
is allocated up to a determined threshold in each 
dimension. This paper formulates this problem as an 
integer linear programming problem (ILPP) which is 
NP-Hard. Since existing approaches are not commen-
surate with the discrete nature of search space and 
also are not aware of the imbalance-ness of requested 
resources regarding all dimensions, the novel hybrid 
discrete grey wolf optimization algorithm (HD-
GWO) which takes benefit of different advantages 
is proposed. It utilizes several discrete walking-
around heuristics used in the exploitation phase to 
improve exploration results. During the search pro-
cess, it exploits special heuristics which are aware of 
resource imbalance-ness. Consequently, it efficiently 
permutes solutions so it reduces resource wastage and 
also leads to utilizing fewer physical servers or bins. 
It also applies the temperature and cooling concepts 
in the main body of the proposed algorithm similar 
to the simulated annealing (SA) algorithm to examine 
non-efficient solutions either opening new good solu-
tions or running away from the local trap. To verify 
the proposal, it has been tested in different variable 
scenarios. The simulation results prove the superior-
ity of the proposed HD-GWO against other state-of-
the-art in terms of evaluation parameters. The rest of 
the paper is structured as below. Section  2 reviews 
related works and focus on existing gaps. Section  3 
presents problem statement. Section 4 elaborates the 
proposed imbalance-ness-aware algorithm for solving 



J Grid Computing (2024) 22:49	

1 3

Page 3 of 36  49

Vol.: (0123456789)

two-dimensional bin-packing problem. Section  5 
evaluates the current paper in different scenarios. 
Finally, Section  6 concludes the paper and provides 
comments on future direction.

2 � Related Works

Packing problems are very important issues in com-
putation domains because of their wide variety of 
applications. For instance, one-dimensional, two-
dimensional, and multi-dimensional bin-packing 
problems, and strip packing problems are some exam-
ples to cite; each of which has its own application in 
different industries. In this section, several packing 
problems are surveyed with the most concentration of 
the two-dimensional bin-packing problems. Finally, 
the gaps are outlined.

In steel industries, the cutting stock problem is mod-
eled to the one-dimensional packing problem. Each 
item can be split into smaller pieces; then, they can be 
welded for recombination. Tanir et al. have proposed a 
heuristic algorithm to solve this packing problem with 
the aim of minimizing both trim loss and number of 
welds [9]. Munien and Ezugwu prepared a survey 
study on the applications of one-dimensional bin-pack-
ing problems with heuristic-based approaches [10]. 
The most applications are in cutting industries, trans-
portation, warehousing, and supply chain management 
[10]. Another case of packing issue is the circle bin 
packing problem in which the items are circular. The 
circle items must be packed into multiple identical cir-
cle bins with the objective of minimizing the number 
of used circle bins [11]. To solve this problem, an 
adaptive simulated annealing algorithm which utilizes 
greedy search was proposed by Yaun et  al. [11]. For 
the sake of the problem nature, the resource wastage 
rate is high in these kinds of packing problems. In pro-
duction systems, packing and assembling are two 
prominent operations in the production process. Hao 
et al. proposed a hybrid algorithm to solve this configu-
ration-dependent bin-packing problem in an aviation 
manufacturing factory [12]. One of the most two-
dimensional packing issues is strip packing problems 
without guillotine constraints. It is used in cutting 
sheets of iron and steel industries with the aim of mini-
mizing resource wastage [13]. An effective discrete 
gray wolf optimization algorithm with incorporating 
some strategies was suggested to solve this problem. 

One of the most important applications of two-dimen-
sional bin-packing problems is in either VM placement 
or server consolidation of cloud and fog computing 
data centers [14–16]. Both of them aim to pack VMs 
into the minimum number of physical servers subject 
to some constraints. For instance, the sum of the 
requested CPU bandwidth and memory bandwidth of 
all co-hosted VMs must not exceed from available 
CPU and RAM capability of the host physical 
machine. An optimal VM placement-based GWO 
algorithm was proposed by Al-Moalmi et al. to mini-
mize the number of active servers and power consump-
tion as well [17]. This paper proposed a novel binary 
version of the GWO algorithm to solve the VMP prob-
lem. During the course of optimization, it utilizes the 
sigmoid function to generate valid vectors from the 
continuous domain. A multi-objective monarch butter-
fly algorithm was proposed for solving the VMP prob-
lem in a cloud computing environment by the number 
of used servers, power consumption, and maintenance 
cost minimization perspectives which is a version of 
the multi-bin packing problem [18]. A VMP algorithm 
based on multi-objective reinforcement learning was 
propounded to figure out VM deployment on cloud 
data centers with optimization on power consumption 
and resource wastage simultaneously. To improve the 
quality of non-dominated solutions, they applied the 
Chebyshev scalarization function in multi-objective 
reinforcement learning algorithms [19]. A reinforce-
ment learning algorithm as a machine learning 
approach was added to the grey wolf optimizer to 
enhance engineering optimization problems [20]. Nasr 
et al. proposed a novel water pressure change optimiza-
tion (WPCO) to solve the scheduling problem that pays 
for efficient resource allocation in cloud computing 
platforms [21]. They used the balancing degree (BD) 
factor to measure the amount of the system’s load bal-
ancing. By using the BD metric, WPCO conducts its 
operators to schedule tasks and VMs to meet objec-
tives and increase resource utilization. The same work 
has been published by Amer et  al. [22] with multi-
objective viewpoint. Since the multi-objective schedul-
ing problem is NP-Hard, the authors proposed an elite 
learning Harris hawks optimizer (ELHHO) to solve 
multi-objective optimization problem with makespan, 
throughput, resource utilization, cost, etc. at the same 
time. Low time complexity heuristic traveler salesman 
approach for Cloudlet scheduling (TSACS) algorithm 
was proposed to solve Cloudlet scheduling problem in 



	 J Grid Computing (2024) 22:49

1 3

49  Page 4 of 36

Vol:. (1234567890)

cloud platforms with the aim of resource utilization 
and other objectives [23]. The proposed TSACS has 
three phases, namely, the clustering, converting, and 
assignment phases. In the clustering phase, it groups a 
number of Cloudlets in a cluster; then, in the convert-
ing phase, it uses a reduction algorithm to map a 
Cloudlet instance to Traveler Salesman Problem (TSP) 
instance; finally, in the assignment phase, it assigns a 
new instance to VMs in a data center to meet objec-
tives. An evolutionary heuristic algorithm was used to 
solve multi-dimensional vector bin packing problem 
that is encountered in different industrial applications 
such as production planning, steel fabrication, and 
assignment of VMs onto physical hosts at cloud and 
fog data centers [24]. A primal decomposition algo-
rithm was designed for a two-dimensional bin packing 
problem which needs packing a set of rectangular 
items into a minimum set of larger rectangular bins. In 
this classic bin packing, the items must be packed with 
their edges to be parallel to the borders of the bins, 
cannot be rotated and cannot overlap among them [25]. 
An adaptive heuristic algorithm was proposed to solve 
VM deployment for IoT applications that utilize cloud 
data centers [26]. The proposed heuristic considers 
four thresholds of CPU utilization parameters to clas-
sify requested resources for applications to reduce 
power consumption and service level agreement (SLA) 
violation rate. It is done by a customized K-means 
approach [26]. An energy-efficient VM cluster place-
ment (EVCT) algorithm was extended in Software-
defined Data Centers (SDDC) [27]. Specifically, the 
proposed heuristic is utilized in Connected and Auton-
omous Vehicle (CAV) as a large-scale IoT application. 
To this end, EVCT uses graph theory and abstracts the 
problem into the “maximum flows and minimum cut 
theory” issue. By applying the clustering method to 
VMs’ similarity in resource usage, resource allocation 
is performed so that the power consumption costs are 
minimized and the requested Quality of Service (QoS) 
to users is met [27]. Zhou et al. proposed an adaptive 
three-threshold VM placement algorithm in cloud data 
centers [28]. This heuristic considers workload varia-
tion for VMs’ deployment so that it minimizes total 
power consumption while it pays not to violate agreed 
SLA. It categorizes workloads into four-class hosts. 
Three predetermined thresholds specify the workload 
class. Accordingly, the proposed heuristic decides to 
deploy VMs for user workload to meet objectives. 
Cloud manufacturing is a new paradigm with unified 

manufacturing models such as ASP and MGrid; and 
enterprise information technologies under supporting 
cloud computing, IoT, and virtualization to deliver 
manufacturing services. To facilitate service delivery 
to enterprises, an intelligent energy consumption 
model using machine learning methods was presented 
in the literature to deliver green manufacturing ser-
vices. To this end, prediction models are used to fore-
cast near-exact resource usage and make service 
deployments based on that prediction model. The pro-
posed intelligent model utilizes support vector 
machine, random forest, and Grid search algorithms 
[29]. One of the most applicable distributed systems 
that supports CPU-intensive and delay-sensitive IoT 
applications is Mobile Edge Computing (MEC). 
Resource management issues in such variable environ-
ments are very important in meeting users’ required 
QoS and reducing overall costs. To obviate the chal-
lenges, a new edge intelligent energy modeling scheme 
mixing by Elman Neural Network (ENN) and feature 
selection of ML models was propounded to optimize 
the power consumption of edge servers [30]. This 
scheme considers load fluctuations and sorts tasks 
based on CPU-intensive, I/O-intensive, and online 
transaction-intensive; then, the resource allocation is 
done with the lowest estimation error. A modified 
genetic algorithm mixing greedy strategy (MGGS) 
approach was proposed in the literature to solve task 
scheduling problems in cloud computing platforms 
[31]. The proposed MGGS tries to find optimal solu-
tions in the minimum execution time. It returns the 
scheduling solutions with higher system performance 
and user satisfaction. The proposed scheduling 
approach improves performance in terms of total com-
pletion time, average response time, and QoS parame-
ters that the user experiences.

Some heuristic algorithms were published in lit-
erature to solve classic bin-packing problems with the 
lowest time complexity which are first fit decreasing 
(FFD), best fit decreasing (BFD), and worst fit decreas-
ing (WFD) strategies. The time complexity is bounded 
to O(nlogn) that refers to only sorting cost [32]. Fatima 
et al. proposed virtual machine placement via bin pack-
ing in cloud datacenters by utilizing an enhanced levy-
based particle swarm optimization algorithm with the 
incorporation of best fit strategy [33]. A virtual machine 
placement algorithm that combines the NSGAII algo-
rithm and bin-packing heuristic was proposed by Wie 
et  al. in applying multi-dimensional resources which 



J Grid Computing (2024) 22:49	

1 3

Page 5 of 36  49

Vol.: (0123456789)

makes a balance between resource dimensions [34]. 
Table 1 is dedicated to reviewing literature with a com-
parative viewpoint.

Table  1 condenses key points of literature com-
parisons. It points out that less works concentrate on 
resource imbalance-ness which leads to additional 
resource usage incurring more costs. Moreover, the 
majority of the proposed algorithms are not scalable in 
larger search spaces which consequently reaches sub-
optimal solutions. To fill the gap, the current proposal 
is aware of the resource skew-ness and suggests a dis-
crete meta-heuristic incorporating some novel walk-
ing around procedures that balances exploration and 
exploitation in the course of the optimization process. 
The simulation results witness a significant improve-
ment in packing items with the least dissipation amount 
in comparison with other existing state-of-the-art.

3 � Problem Statement

The current paper focuses on a special kind of two-
dimensional bin-packing problem that multiplexes 
resource dimensions among applications. The dedi-
cated multiplexed resources cannot exceed from avail-
able resources in each dimension. One of its most 
common applications is in VM placement and server 
consolidation of cloud and fog data centers. The prom-
inent being used resources are CPU, memory, and hard 
disk bandwidths. Since all physical servers uniformly 
access the storage attached networks (SANs), the rea-
son why the vector (CPU, Memory) has been taken 
into consideration for a two-dimensional bin-packing 
problem. To formally state the problem, this section 
includes three sub-sections. Firstly, the resource wast-
age model is provided which is then utilized in pro-
posed procedures to cautiously lower the number of 
used bins (resources). Secondly, the problem is for-
mally stated. Thirdly, an illustrative example is brought 
to show how the proposal is effective. For the sake of 
ease of following, Table 2 provides a list of used sym-
bols and notations for problem formulation.

3.1 � Problem Formulation

We are given a set of two-dimensional n objects, 
Objects = {O1,O2,… ,On }; each object Ok has two spe-
cific attributes width ( wk ) and height ( hk ) in which the 
rotation of objects in any dimension is not permitted. 

So, the sets W = {wk|k = 1,… , n and 0 < wk ≤ TW } 
and H = {hk|k = 1,… , n and 0 < hk ≤ TH } are dedi-
cated for all widths and heights respectively. Note that 
TW and TH are used for a threshold or ceiling of the 
first and second dimensions of associated resources 
respectively. For the sake of simplicity, all thresh‑
old values are normalized to 1. Moreover, there exists 
m number of bins; so, the set of homogeneous bins 
is Bins = {b1, b2,… , im } where m ≤ n; each bin bk is 
characterized ( wk,hk ) without rotate permission. It is a 
especial bi-packing problem in which resources in each 
dimension are multiplexed among applications. For 
instance, in the IT domain, the set of objects is a set of 
applications that request its own VM including CPU 
and Memory bandwidth requests as two prominent 
dimensions. In this regard, the bins are a set of physi-
cal servers that can host multiple VMs so that the sum 
of resources associated with all co-hosted VMs does 
not exceed from available physical resources in each 
dimension. Then, the smart scheduler in the broker of 
clouds can utilize this proposal to reduce resource wast-
age. The goal is to pack all objects in the minimum 
number of used bins to reduce overall expenditures 
because each additional resource incurs more costs for 
service providers. To formulate the problem, a variety 
of binary decision variables are used. The binary vari-
able zj is used to indicate whether j-th two-dimensional 
resource or a bin bj is engaged or not. In this regard, 
another binary variable xkj is used to indicate whether 
the k-th object ( Ok ) is packed to a bin bj or not. Note 
that, each object must be packed only in one bin; the 
reason why a constraint is incorporated in Eq. (4). So, 
the main objective function is to minimize the sum of 
used bins which Eq. (1) shows subject to preserve limi-
tations of Eq. (2) through Eq. (6).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min F(z) =
m∑
j=1

zj (1)

Subject to ∶
m∑
j=1

n∑
k=1

wk × xkj ≤ TW × zj (2)

m∑
j=1

n∑
k=1

hk × xkj ≤ TH × zj (3)

m∑
j=1

n∑
k=1

x𝑘𝑗 = 1 (4)

zj, xkj ∈ {0, 1} (5)

0 < wk, hk ≤ 1, k = 1,… , n; (6)



	 J Grid Computing (2024) 22:49

1 3

49  Page 6 of 36

Vol:. (1234567890)

Ta
bl

e 
1  

A
 c

om
pa

ra
tiv

e 
lit

er
at

ur
e 

re
vi

ew

A
ut

ho
r(

s)
/ R

ef
Pr

ob
le

m
A

pp
lic

at
io

n
C

la
ss

A
lg

or
ith

m
M

er
it

Li
m

ita
tio

n

Ta
ni

r e
t a

l. 
[9

]
O

ne
-d

im
en

si
on

al
C

ut
tin

g 
sto

ck
 in

 st
ee

l 
in

du
str

y
H

eu
ris

tic
D

yn
am

ic
 p

ro
gr

am
m

in
g

It 
qu

ic
kl

y 
pr

ov
id

es
 a

 
so

lu
tio

n
A

lth
ou

gh
 it

 h
as

 lo
w

 ti
m

e 
co

m
pl

ex
ity

, i
n 

m
os

t l
ar

ge
 

ca
se

s i
t r

et
ur

ns
 su

b-
op

tim
al

 so
lu

tio
ns

Ya
un

 e
t a

l. 
[1

1]
C

irc
le

 p
ac

ki
ng

C
yl

in
de

r p
ac

ki
ng

 a
nd

 
lo

gi
sti

c 
in

du
str

y
H

yb
rid

 m
et

a-
H

eu
ris

tic
Si

m
ul

at
ed

 a
nn

ea
lin

g 
an

d 
gr

ee
dy

 se
ar

ch
Its

 o
pe

ra
to

rs
 a

re
 c

on
-

du
ct

ed
 in

 su
ch

 a
 w

ay
 a

s 
to

 av
oi

d 
th

e 
lo

ca
l t

ra
ps

It 
is

 n
ot

 sc
al

ab
le

, t
he

 re
a-

so
n 

w
hy

 it
 re

tu
rn

s p
oo

r 
re

su
lts

 in
 la

rg
e 

se
ar

ch
 

sp
ac

e
H

ao
 e

t a
l. 

[1
2]

O
ne

-d
im

en
si

on
al

A
vi

at
io

n 
m

an
uf

ac
tu

rin
g 

fa
ct

or
y

H
yb

rid
 H

eu
ris

tic
B

i-l
ev

el
 d

yn
am

ic
 p

ro
-

gr
am

m
in

g
B

ef
or

e 
it 

pl
um

m
et

s i
nt

o 
th

e 
m

ai
n 

al
go

rit
hm

 it
 

ca
lc

ul
at

es
 th

e 
lo

w
er

 a
nd

 
up

pe
r b

ou
nd

s o
f t

he
 

so
lu

tio
n

It 
ca

nn
ot

 a
m

en
d 

th
e 

w
or

st 
so

lu
tio

n 
du

rin
g 

th
e 

op
tim

iz
at

io
n 

pr
oc

es
s;

 
fo

r t
hi

s, 
it 

le
ad

s t
o 

su
b-

op
tim

al
 in

 la
rg

e-
sc

al
e 

pr
ob

le
m

s
W

an
g 

et
 a

l. 
[1

3]
Tw

o-
di

m
en

si
on

al
Iro

n 
an

d 
ste

el
 p

ro
du

ct
io

n 
sy

ste
m

s
M

et
a-

H
eu

ris
tic

Si
ng

le
 d

is
cr

et
e 

G
W

O
It 

im
pr

ov
es

 th
e 

B
FD

 
str

at
eg

y 
by

 u
til

iz
in

g 
th

e 
G

W
O

 a
lg

or
ith

m

Si
nc

e 
it 

en
ga

ge
s l

im
ite

d 
ex

pl
or

at
io

n 
op

er
at

or
s, 

it 
ca

nn
ot

 e
ffi

ci
en

tly
 

pe
rm

ut
e 

di
sc

re
te

 se
ar

ch
 

sp
ac

e
A

l-M
oa

lm
i e

t a
l. 

[1
7]

Tw
o-

di
m

en
si

on
al

V
M

 p
la

ce
m

en
t i

n 
cl

ou
d 

fo
r I

T 
in

du
str

y
M

et
a-

H
eu

ris
tic

G
W

O
It 

ut
ili

ze
s t

he
 si

gm
oi

d 
fu

nc
tio

n 
to

 d
is

cr
et

iz
e 

co
nt

in
uo

us
 v

al
ue

 to
 

va
lid

 a
rr

ay
s

Si
nc

e 
it 

ex
pl

oi
ts

 li
m

ite
d 

se
ar

ch
in

g 
op

er
at

or
s, 

a 
bi

g 
po

rti
on

 o
f s

ea
rc

h 
sp

ac
e 

re
m

ai
ns

 u
ne

xp
lo

re
d 

w
hi

ch
 su

ffe
rs

 fr
om

 e
ar

ly
 

co
nv

er
ge

nc
e

G
he

ta
s [

18
]

M
ul

ti-
di

m
en

si
on

al
 

ve
ct

or
 p

ac
ki

ng
Se

rv
er

 c
on

so
lid

at
io

n 
in

 
cl

ou
d 

fo
r I

T 
in

du
str

y
H

yb
rid

 M
et

a-
H

eu
ris

tic
M

on
ar

ch
 b

ut
te

rfl
y 

op
ti-

m
iz

at
io

n
It 

w
or

ks
 si

m
ila

rly
 to

 th
e 

cu
ck

oo
 se

ar
ch

 a
lg

o-
rit

hm
 w

hi
ch

 u
til

iz
es

 
th

e 
le

vy
 fl

ig
ht

 c
on

ce
pt

 
to

 e
xp

lo
re

 se
ar

ch
 sp

ac
e 

un
ifo

rm
ly

Th
e 

pr
op

os
al

 is
 n

ot
 aw

ar
e 

of
 sk

ew
-n

es
s i

n 
re

qu
es

te
d 

re
so

ur
ce

s t
he

 re
as

on
 w

hy
 

it 
do

es
 n

ot
 re

tu
rn

 e
ffi

ci
en

t 
so

lu
tio

ns
 w

he
n 

th
e 

ra
te

 
of

 sk
ew

-n
es

s i
n 

re
qu

es
te

d 
re

so
ur

ce
s v

er
y 

is
 h

ig
h

Q
in

 e
t a

l. 
[1

9]
tw

o-
di

m
en

si
on

al
V

M
 p

la
ce

m
en

t i
n 

cl
ou

d 
fo

r I
T 

in
du

str
y

H
eu

ris
tic

Re
in

fo
rc

em
en

t l
ea

rn
in

g
It 

ut
ili

ze
s t

he
 C

he
by

sh
ev

 
fu

nc
tio

n 
to

 w
ei

gh
t 

se
le

ct
io

n 
fo

r e
ac

h 
ob

je
ct

iv
e 

fu
nc

tio
n 

to
 

pr
ep

ar
e 

th
e 

sc
al

ar
iz

a-
tio

n 
fu

nc
tio

n

It 
al

so
 is

 n
ot

 aw
ar

e 
of

 
re

so
ur

ce
 im

ba
la

nc
e-

ne
ss

 
w

hi
ch

 le
ad

in
g 

ut
ili

zi
ng

 
m

or
e 

re
so

ur
ce

s



J Grid Computing (2024) 22:49	

1 3

Page 7 of 36  49

Vol.: (0123456789)

Ta
bl

e 
1  

(c
on

tin
ue

d)

A
ut

ho
r(

s)
/ R

ef
Pr

ob
le

m
A

pp
lic

at
io

n
C

la
ss

A
lg

or
ith

m
M

er
it

Li
m

ita
tio

n

Fa
tim

a 
et

 a
l. 

[3
3]

Tw
o-

di
m

en
si

on
al

Se
rv

er
 c

on
so

lid
at

io
n 

in
 

cl
ou

d 
fo

r I
T 

in
du

str
y

M
et

a-
H

eu
ris

tic
Le

vy
-b

as
ed

 P
SO

It 
ut

ili
ze

s t
he

 le
vy

 fl
ig

ht
 

co
nc

ep
t t

o 
ex

pl
or

e 
se

ar
ch

 sp
ac

e 
un

ifo
rm

ly

Th
e 

qu
al

ity
 o

f d
is

cr
et

e 
le

vy
 

fli
gh

t i
s n

ot
 si

m
ila

r t
o 

co
nt

in
uo

us
 le

vy
 fl

ig
ht

. 
To

 o
bv

ia
te

 th
e 

pr
ob

le
m

, 
de

vi
si

ng
 m

or
e 

effi
ci

en
t 

op
er

at
or

s a
re

 n
ec

es
sa

ry
W

ie
 e

t a
l. 

[3
4]

M
ul

ti-
di

m
en

si
on

al
Se

rv
er

 c
on

so
lid

at
io

n 
in

 
cl

ou
d 

fo
r I

T 
in

du
str

y
H

yb
rid

 M
et

a-
H

eu
ris

tic
N

SG
A

II
 a

nd
 b

in
-p

ac
ki

ng
 

he
ur

ist
ic

It 
pr

ov
id

es
 b

al
an

ce
d 

in
de

x 
to

 p
re

cl
ud

e 
un

ba
la

nc
ed

 re
so

ur
ce

s

It 
su

ffe
rs

 fr
om

 e
ar

ly
 

co
nv

er
ge

nc
e 

be
ca

us
e 

it 
do

es
 n

ot
 c

on
ce

nt
ra

te
 o

n 
ex

pl
or

at
io

n 
an

d 
ex

pl
oi

ta
-

tio
n 

tu
ni

ng
 in

 th
e 

co
ur

se
 

of
 o

pt
im

iz
at

io
n

Zh
ou

 e
t a

l. 
[2

6]
M

ul
ti-

di
m

en
si

on
al

Io
T 

ap
pl

ic
at

io
n

H
eu

ris
tic

K
-m

ea
ns

 &
 A

FE
D

-E
F

It 
co

ns
id

er
s d

iff
er

en
t 

th
re

sh
ol

ds
 a

nd
 lo

ad
 

flu
ct

ua
tio

ns
; t

he
n,

 th
e 

V
M

 d
ep

lo
ym

en
t l

ea
ds

 
to

 b
et

te
r p

er
fo

rm
an

ce

It 
ca

n 
be

 im
pr

ov
ed

 b
y 

re
-d

ep
lo

ym
en

t s
om

e 
V

M
s i

n 
ca

se
 o

f r
es

ou
rc

e 
im

ba
la

nc
e-

ne
ss

Zh
ou

 e
t a

l. 
[2

7]
M

ul
ti-

di
m

en
si

on
al

C
on

ne
ct

ed
 &

 A
ut

on
o-

m
ou

s V
eh

ic
le

s (
CA

V
)

H
eu

ris
tic

C
lu

ste
rin

g 
&

 G
ra

ph
 

Th
eo

ry
It 

ut
ili

ze
s V

M
s’

 a
ffi

ni
ty

 
an

d 
m

ak
es

 e
ffi

ci
en

t 
cl

us
te

r o
f V

M
s f

or
 

ap
pl

ic
at

io
ns

 w
hi

ch
 n

ee
d 

sa
m

e 
re

so
ur

ce
s

It 
se

em
s i

t i
s w

el
l-s

ui
te

d 
fo

r a
pp

lic
at

io
ns

 w
hi

ch
 

ha
ve

 se
as

on
al

 re
so

ur
ce

 
us

ag
e 

pa
tte

rn

Zh
ou

 e
t a

l. 
[3

1]
Tw

o-
di

m
en

si
on

al
Ta

sk
 S

ch
ed

ul
in

g 
in

 C
lo

ud
 

C
om

pu
tin

g
H

yb
rid

 M
et

a-
he

ur
ist

ic
M

od
ifi

ed
 G

A
 m

ix
-

in
g 

G
re

ed
y 

St
ra

te
gy

 
(M

G
G

S)

It 
ad

ds
 g

re
ed

y 
str

at
eg

y 
to

 
G

A
 a

lg
or

ith
m

 to
 re

ac
h 

op
tim

al
 so

lu
tio

ns
 in

 
sh

or
t t

im
e

Si
nc

e 
it 

is
 c

us
to

m
iz

ed
 fo

r 
ta

sk
 sc

he
du

lin
g 

pr
ob

-
le

m
s, 

it 
ne

ed
s f

ur
th

er
 

op
er

at
or

s f
or

 o
th

er
 k

in
ds

 
of

 a
pp

lic
at

io
ns

 th
at

 
re

qu
ire

 m
ul

ti-
di

m
en

-
si

on
al

 re
so

ur
ce

s



	 J Grid Computing (2024) 22:49

1 3

49  Page 8 of 36

Vol:. (1234567890)

In the cloud industry, the goal is to minimize 
the number of active servers at the same time the 
resources are available for applications that request 
VM resources. In such a way, the operational cost 
including power consumption cost is controlled 
and residual physical machines are set to hibernate 
mode to save energy. Note that the first and the sec-
ond dimensions are CPU (known as weight) and 
Memory (known as height) bandwidths in terms of 
Million Instructions per Second (MILPS) and Giga 
Byte (GB) respectively which must be multiplexed 
among VMs. Equation (1) is an optimization model 
which is an Integer Linear Programming (ILP) 
model; it is computationally NP-Hard. The solu-
tion must be returned provided some constraints 
to be considered. The constraints are used to show 
the resource limitation for serving the services. 
Since each bin can serve to applications up to its 
available resources, the sum of co-hosted items in 

a bin must not exceed from bin’s capacity in each 
dimension. So, Eq.  (2) indicates that the sum of 
the width of all co-hosted items is limited to the 
threshold dedicated for width threshold ( TW ). In 
the same manner, Eq.  (3) is used to indicate that 
the sum of the height of all co-hosted items is lim-
ited to the threshold dedicated for height threshold 
( HW ). For instance, the sum of used memory asso-
ciated with all co-hosted VMs on a server must not 
exceed more than that server’s memory capacity. 
Equation (4) determines that each item should only 
be assigned to one bin which means that one VM 
must be deployed on one server. Binary decision 
variables Zj and xkj are applied to show active used 
bin bj and assigning the item Ok to bin bj respec-
tively. Equation  (5) indicates that both variables 
are binary integers. In addition, Eq. (6) implies that 
input vectors, namely, wk and hk are real normal-
ized values because CPU and memory capacities 

Table 2   The nomenclature for used symbols and notations

Symbols Description

n Number of objects (VMs)
m Number of bins (servers)
wk Width of k − th object ( CPUk ) processing requirement of ( VMk)
xkj The binary decision variable indicating k − th object is assigned to j − th bin
C
1

The coefficient indicating the importance of the first dimension of the required resource
Dis(bk) The resource dissipation of bin bk(physical machine: PMk)

S
bk
W

Sum of the used first dimension (W like CPU) of the resource bk (physical machine PMk ) 
by different objects (different VMs)

T
0

Initial temperature
ε Balancing parameter (small value)
TW Normalized threshold for the first dimension of a resource
MaxIteration Maximum iterations
Freeze Freeze temperature
Oi i − th object ( VMi)
bj j − th bin ( PMj)
hk Height of k − th object ( Memk ) memory requirement of ( VMk)
Zj The binary decision variable indicating j − th bin is in use
C
2

The coefficient indicating the importance of the second dimension of the required resource
Pk Power consumption of bin bk (physical machine: PMk)

S
bk
H

Sum of the used second dimension (H like RAM) of the resource bk (physical machine 
PMk ) by different objects (different VMs)

∆T Temperature gradual decrement
ToD Total dissipation of all bins
TH Normalized threshold for the second dimension of a resource
MaxProcess Maximum processes in each temperature
PopSize Wolves population size



J Grid Computing (2024) 22:49	

1 3

Page 9 of 36  49

Vol.: (0123456789)

and their units differ. For the sake of simplicity, 
their values are normalized to 1.

3.2 � Resource Dissipation Model

Since the proposed algorithm is aware of resource 
imbalance-ness, in this section the novel resource 
wastage model is presented which takes both 
resource dimensions into account along with their 
importance in the whole system. To this end, the 
weight coefficients C1 and C2 are incorporated for 
the first and the second dimension’s importance 
respectively where 0 < C1,C2 ≤ 1 and C1+C2 = 1 . 
A bin bj with maximum capacity TW and TH respec-
tively in the first and second dimensions that 
co-host some objects may suffer from resource 
wastage. Note that in many distributed comput-
ing systems, there are CPU-intensive applications 
whereas the counterparts are memory-intensive 
applications. For the first case, the designer can 
consider a bigger weight for the coefficient asso-
ciated with the CPU dimension of the used server 
(bins) as a two-dimensional resource. For now, 
both importance is the same; so, the coefficients C1 
and C2 are considered 0.5. The resource dissipation 
model of bin bk , Dis(bk) , is presented by Eq.  (7) 
regarding all available dimensions. The term � is a 
small value as a balancing parameter. In this paper, 
it is taken 0.0001.

In Eq. (7), the terms Sbk
W

 and Sbk
H

 are used to show 
the sum of occupied resources of the first and second 
dimensions of bin bk by co-hosted objects respec-
tively. The values of  Sbk

W
 and Sbk

H
 are calculated by 

Eqs. (8) and (9) respectively.

The intention of suggesting the dissipation model 
is to apply it in the proposed algorithm to lower down 
resource wastage. To do so, the efficient algorithm is 
presented to permute search space efficiently following 

(7)Dis(bk) =

||||C1.
(
TW−S

bk
W

)
− C2.(TH−S

bk
H
)
|||| + �

C1 × S
bk
W
+ C2 × S

bk
H

(8)S
bk
W
=
∑n

i=1
wi × xik

(9)S
bk
H
=
∑n

i=1
hi × xik

the proposed dissipation model. The next subsection 
proves the effectiveness of the proposal illustratively.

3.3 � An Illustrative Example

Take a data center containing ample homoge-
neous HP ProLiant servers each of which has 
1800 MIPS and 12 GB as CPU and main mem-
ory capacity; each server can multiplex its avail-
able resources between VMs requested for appli-
cations owing to virtualization technology. Set 
of resource requests for applications (objects) is 
A p p s   =   { App

1
(CPU = 900 MIPS,RAM = 4GB),

App
2
(CPU = 600 MIPS,RAM = 1.2GB),App

3
 

(CPU = 600 MIPS,RAM = 6GB),App
4

(CPU = 180 MIPS,RAM = 4GB),… ,Appn }. For 
now, there are four applications that request some 
two-dimensional resources. For the sake of normali-
zation, the 1800 MIPS and 12 GB are normalized to 1 
in each dimension. So, the set of normalized items are 
Objects = {O

1

(
App

1

)
,O

2

(
App

2

)
,O

3

(
App

3

)
,O

4
(App

4
)… , in }; 

also, set of width as for the first dimension is  
W = {w1 = 0.5,w2 = 0.3,w3 = 0.3,w4 = 0.1,…} 
and set of height as for the second dimension 
i s H = {h1 = 0.3, h2 = 0.1, h3 = 0.5, h4 = 0.3,…}   . 
An inefficient resource allocation scheme that is not 
aware of imbalance-ness in the resource request list 
assigns resources to applications with a high wastage 
rate as Fig. 1 depicts.

According to Eq. (7), the resource dissipation for 
the first and second bins are 33% and 33% respec-
tively which totally is near to 66% of a full server 
(bin). In this case, the fifth application which needs 
600 MIPS and 3GB as CPU and memory bandwidth 
inevitably launches the third additional physical 
server (third bin) to host a new application (object) 
that incurs more additional cost because the new 
request cannot be met by the first server nor the 
second one owing to skewed resource assignment. 
On the other hand, the proposed imbalance-ness 
aware scheme permutes search space to lower down 
resource dissipation to open new room for adopt-
ing the fifth application without applying additional 
bins. Figure 2 shows the discrete permutation before 
co-hosting the fifth application.

This permutation lowers all resource dissipation 
from 66% (of Fig.  1) to 0% which can host new-
comer applications (objects) in the second servers 



	 J Grid Computing (2024) 22:49

1 3

49  Page 10 of 36

Vol:. (1234567890)

(bins) without launching additional servers. The 
normalized resource request for App5 is a vector 
( w5 = 0.3, h5 = 0.4 ) that can be co-hosted with App2 
and App4 on the second server. Figure 3 illustrates 
all co-hosted applications on two physical servers.

The dissipation model is utilized in the proposed 
scheme which cautiously permutes discrete search 
space to pack objects as much as possible and low-
ers the resource wastage; so, it potentially reduces 
used bins in the larger number of requests.

4 � Proposed Imbalance‑ness‑aware Algorithm 
for Solving Two‑dimensional Bin‑packing 
Problems

One of the most successful meta-heuristic algorithms 
that solves scientific problems is the grey wolf optimi-
zation algorithm (GWO) [35]. Each wolf is in a herd of 
wolves that is an agent or representative of a candidate 
solution. The democratic behavior is governed by the 
social wolves’ population. The trajectory, assimilation 

toward an optimal solution, of a wolf is conducted by 
the position of three experienced wolves in the popu-
lation. The three individuals are the first best wolf 
known as alpha ( W� ), the second best wolf known 
as ( Wβ ), and the third best wolf that is ( Wδ ). The rest 
wolves are named omega wolves ( Wπ ) that are follow-
ers. They coordinate their path based on the position 
of three conductor wolves. Since the original GWO 
was designed for continuous optimization problems, 
the position changes of each wolf by reproduction 
operators do not necessarily yield efficient solutions 
in discrete optimization problems. The reason why 
this proposed discrete version presents several ben-
eficial discrete operators to permute discrete search 
space uniformly and efficiently. The profound study 
of meta-heuristic approaches reveals that there is not 
a comprehensive algorithm to solve all kinds of NP-
Hard problems. For instance, the Hill climbing and 
SA algorithms have local search trends; so, they sel-
dom examine the far distant areas. They are recently 
being used as auxiliary algorithms in the hybrid algo-
rithms to locally improve the global search results [36, 

Fig. 1   Inefficient resource allocation scheme

Fig. 2   Resource allocation imbalance-ness aware scheme

Fig. 3   Proposed imbalance-ness aware resource allocation scheme



J Grid Computing (2024) 22:49	

1 3

Page 11 of 36  49

Vol.: (0123456789)

37]. The genetic algorithm (GA) has limited opera-
tors for exploration also it is endangered to get stuck 
in the local optimal trap also it utilizes mutation. For 
another example, the particle swarm optimization 
(PSO) algorithm suffer from early convergence; also, 
the trajectory of the swarm is conducted by one expe-
rienced leader who has limited experience. The art is 
to devise a customized hybrid algorithm that heirs all 
existing plus points and avoids drawbacks. To this end, 
this proposed algorithm even examines worse solu-
tions for a short time similar to the simulated anneal-
ing (SA) algorithm to run away from getting stuck in 
a local trap [38]. To strengthen the exploration, differ-
ent exploring operators are presented. To keep random 
behavior, each of which is randomly called to permute 
search space uniformly. To make a balance in explo-
ration and exploitation, a customized Hill-climbing 
algorithm is randomly incorporated to potentially 
improve gained results. Since the suggested algorithm 
works similarly to SA, the Hill-climbing tends to either 
uphill or downhill movement. The customized Hill-
climbing algorithm calls one of the five possible new 
walking-around hill positions whether uphill or down-
hill. To reach a global solution, the bad trajectory may 
potentially lead to a good solution. This bad trajectory 
is examined even for a short time similar to the SA 
algorithm. This trick is implemented by the tempera-
ture concept in the annealing process. As the permu-
tation operators may disperse objects in possibly more 
bins, finding a denser solution is possible. So, before 
the exploitation is ended the integration of solutions is 
done. For each solution, the algorithm finds the sparse 
source bin and the target bin (being used bin) that has 
ample capacity in both dimensions to adopt all of the 
objects of the source bin; then, the number of used bins 
is decreased by releasing the source bin. The simula-
tion results prove all claims. To illustrate the big pic-
ture of the proposed hybrid approach, the Fig. 4 as a 
block diagram elaborates the details of the current sug-
gested algorithm schematically.

Similar to each swarm-based optimization algo-
rithm, it starts with a bunch of initial population of 
wolves each of which is an agent (a wolf) or candidate 
solution. The swarm of wolves has a PopSize number 
of individuals (wolves). Firstly, the two fitness values 
are calculated for each wolf. The first value counts the 
number of packed bins. The second value indicates the 
amount of accumulated wastage of used bins which is 
a clue for the next rounds in the proposed algorithm. 

Since the solution with the lowest first fitness value is 
the best, the second value is used for the comparison of 
two solutions that give the same first value. In the case 
of the same first fitness values of two solutions, the 
solution with the lowest accumulated wastage value is 
the better solution because it potentially uses fewer bins 
in the future. The whole algorithm is iterated until the 
termination criteria are met. The main loop follows the 
three phases. Firstly, it passes exploration by updating 
wolves in regard to three best wolves’ positions. Then, 
the exploitation phase is started. In this phase, each 
solution examines Hill-climbing approaches whether 
upward or downward. If it passes the better way and 
meets a better solution (uphill), it definitely accepts it; 
otherwise, it probability accepts a bad solution (down-
hill). In the early stage, the chance of accepting the bad 
solution is high whereas in the late stage of algorithm, 
the chance is near zero. In other words, it works simi-
larly to another evolutionary algorithm at the end of 
algorithm processing when it becomes familiar with 
the search space. This concept is done by the tem-
perature definition. Note that, in each temperature, the 
algorithm searches several times to find a stable posi-
tion; the stable point is a thermodynamic concept when 
the metal is near to freeze [39]. In the third phase, the 
complementary integration procedure is performed to 
possibly return a denser solution.

4.1 � Basic Concepts (Encoding, Wolf, Fitness, and 
Termination)

One important process in meta-heuristics is how to 
encode the solution agents. If n requested applica-
tions (known as objects) to be placed in m number of 
two-dimensional available bins is received, the objec-
tive is to pack objects into the minimum number of 
bins so the overall cost is minimized. To encode each 
solution, the integer numbers in [1..m] are selected as 
genes where m is the number of available bins. The 
number of genes makes a solution with the length 
of n which is the number of objects [14, 40]. For 
example, 10 two-dimensional objects (applications) 
must be packed in 5 available two-dimensional bins 
(resources). Then, the length of the agent is 10 and 
gene values are selected from [1..5]. Figure 5 draws 
a valid encoding of a candidate solution. It means the 
objects O2 , O4 , O7 , and O8 are placed on bin b1 etc. In 
other words, each wolf W[i] from a swarm of wolves 
is encoded to a vector (4,1,2,1,4,4,1,1,3,3).



	 J Grid Computing (2024) 22:49

1 3

49  Page 12 of 36

Vol:. (1234567890)

In this paper, for each solution, two values are calcu-
lated as fitness values. The first value counts the num-
ber of used bins whereas the second one is relevant to 
the total dissipation (ToD). The second value is used 
when a comparison of two solutions gives the same 
number of used bins. For the encoded wolf depicted 
in Fig. 5, the first fitness value is 4 bins whereas the 

second value calculated by Eq. (10) that is the accumu-
lated dissipation of resources of used bins.

If the k-th bin is used, the binary decision variable 
xk is set to 1. The term Dis(bk) calculated by Eq. (7) is 

(10)ToD =
∑m

k=1
Dis(bk) × xk

Fig. 4   Block diagram 
of the proposed hybrid 
algorithm

Fig. 5   A candidate 
encoded wolf

Object 1 2 3 4 5 6 7 8 9 10

Bin 4 1 2 1 4 4 1 1 3 3



J Grid Computing (2024) 22:49	

1 3

Page 13 of 36  49

Vol.: (0123456789)

applied to measure the overall resource dissipation of 
k-th bin. The algorithm is stopped once the MaxItera‑
tion round is reached. The maximum iteration rounds 
are experimentally set.

4.2 � Description of the Proposed HD‑GWO 
Algorithm

This subsection pays to the description of the proposed 
HD-GWO algorithm for solving the famous NP-Hard 
two-dimensional bin-packing problem. As Algorithm 1 
depicts, the proposed algorithm starts with the genera-
tion of the number of valid wolves each of which is an 
agent or a candidate solution. Then, two fitness values 
are calculated for each solution. The first value counts 
the used bins for packing objects whereas the second 
value calculates the amount of total resource dissipa-
tion in regard to two dimensions of available resources. 
Once the comparison of two solutions is needed, the 
solution that is better in the first fitness value is the 
dominant solution otherwise the better solution is 
selected based on the second fitness value. Since the 
proposed algorithm is imbalance-ness-aware, the sec-
ond fitness value is used as a clue to preclude additional 
resource usage in future rounds. A meta-heuristic algo-
rithm that works based on a wolf optimization algo-
rithm needs to determine three conductors in which the 
follower wolves adjust their trajectory in accordance 
with the conductors’ position and their experiences. 
However, the leader wolves are changed in the course 
of the algorithm’s iterations. In the primary stage, the 
three leaders known as alpha, beta, and delta wolves 
are specified based on the current fitness values; then, 
the best so far solution is determined in the BestSolu‑
tion variable which has undergone changes within the 
course of the algorithm. The main loop of the algorithm 
is between lines 6 to 61. It is iterated until no improve-
ment is achieved. In each iteration of the main loop, it 
covers three phases. The first phase is for exploration 
that is an assimilation of encircling the prey in canoni-
cal of GWO [35]. In the second phase, it applies exploi-
tation to potentially improve the gained solutions of the 
exploration phase similar to attack. In the third phase 
as a complementary phase, the integration procedure is 
called to possibly dense the disperse solution. One of 
the most intricate points which makes the novelty of the 
proposed hybrid algorithm brilliant is to utilize efficient 
local search. The novel diverse exploitation procedures, 

walking around procedures, are designed each of which 
is randomly called to traverse search space uniformly 
after a global search; then, Algorithm  3 is called in 
the third stage to integrate the current solution so the 
exploitation is ended. In other words, once the walking-
around procedure is called; then, Algorithm 3 is called 
to deliver a possibly denser solution which reduces 
problem’s cost. To this end, Algorithm 3 utilizes a cir-
cular queue as a data structure for finding sparse bins 
to integrate so possibly reducing the number of used 
bins. As the majority of meta-heuristic algorithms 
are endangered to get stuck in the local optimum, the 
walking-around procedures are called in such a way 
similar to the simulated annealing (SA) algorithm to 
get rid of the local optimum trap [39]. In other words, 
it definitely accepts good solutions resulting the new 
changes by incorporating calling one of the exploita-
tion procedures. As the problem has a minimization 
trend, it is called downhill inclination. On the other 
hand, it accepts a worse solution with the probability; 
this probability is high at the early stage and is near zero 
at the end stage of the algorithm running. Therefore, it 
is called uphill inclination because a worse solution is 
selected. To avoid aggressive worse solution accept-
ance, the exponential function e

−ΔF

T   is utilized. The term 
ΔF is the difference between two solutions belonging to 
two consecutive generations and the term T is used for 
the temperature concept similar to SA. The algorithm 
starts with the high temperature near to melt point when 
the molecule can freely move everywhere it wants. 
Then, it gradually cools down to reach the freezing tem-
perature where the solution finds its stable point [39]. 
In each temperature, the max process (MaxProcess 
variable in Algorithm 1) is done to help for finding the 
stable point for each degree. To compare solutions for 
the acceptance stage, the discrepancy between the first 
fitness values is considered. If the new solution is better 
in terms of used bins, it definitely is accepted because 
of strongly downhill walking around. If the first fitness 
values of two comparative solutions are the same, the 
second fitness value is in line. In this case, the solution 
with less dissipation value is a better solution. It is a 
gentle downhill walking around. Otherwise, the solu-
tion with more used bins (worse solution) is selected 
with probability which may have a high acceptance rate 
in the first stage of running the algorithm but is near 
zero in the end of the algorithm. The best so far solution 
is returned as the final solution after the termination cri-
teria are met. 



	 J Grid Computing (2024) 22:49

1 3

49  Page 14 of 36

Vol:. (1234567890)

As mentioned earlier, Algorithm  2 is designed 
for exploration in Algorithm  1. In line 9 of Algo-
rithm 1, Algorithm 2 is invoked for each wolf in the 
main iteration. Algorithm 2 is used for updating the 
position of each solution by the concept of encircling 
the prey; this part is used for the exploration of the 
search space. Since the problem is discrete in nature, 
the proposed algorithm is a discrete version of a cus-
tomized GWO algorithm. Each wolf changes its tra-
jectory by looking at the positions of the three leader 

wolves. To do so, in the encoded solution each gene 
of a changing solution is derived from the genes of 
leaders; it is done by determining the probability PBi 
made by the fitness of leaders. The fitness is better, 
and the chance of that leader’s gene is higher to be 
selected. After this changes, the probable impaired 
solution is corrected by the Check&Correct(.) proce-
dure in line 10. This procedure works similar to Algo-
rithm  3 which utilizes a circular queue and offloads 
overloaded bins to the available used bins that have 

Algorithm 1   HD-GWO procedure;



J Grid Computing (2024) 22:49	

1 3

Page 15 of 36  49

Vol.: (0123456789)

ample resources, otherwise, it opens a new bin to 
pack residual object(s). Therefore, its time complex-
ity is O(m2 ). 

In line 9 of Algorithm  1, for each candidate solu-
tion, Algorithm 2 a metaphor for encircling of GWO is 
called to change the position of the current solution. To 

Algorithm 1   (continued)



	 J Grid Computing (2024) 22:49

1 3

49  Page 16 of 36

Vol:. (1234567890)

change the position of the current solution (input wolf), 
Algorithm  2 uses three leader wolves as conductors. 
The new probabilities for each conductor wolf are cal-
culated by incorporating their fitness values in line 2 of 
Algorithm 2. Then, the position of each encoded wolf, 
for next movement, is determined by each part of the 
conductor’s body with a probability. After the changes 
are done by calling Algorithm 2, potentially impaired 
solutions are amended by calling the Check&Correct(.) 
procedure. Therefore, the best solution so far is updated 
in line 13 of Algorithm 1. Then, the exploitation phase 
is started. For each solution (each wolf) a high tem-
perature ( T0 ) is set; then, the temperature is gradually 
decreased by the amount of ∆T to reach the freezing 
point. In each temperature, the algorithm randomly 
calls one of the walking-around procedures in the lim-
ited times to potentially improve the current solution. 
After all operations of Algorithm  1 are performed, 
Algorithm  3 is invoked to return a possible denser 
solution. Once the last round iteration is terminated, 
the best so far solution is returned as the optimal solu-
tion. In fact, Algorithm  3 uses a circular queue as a 

data structure. For each used bin, it searches in a cir-
cular manner to find a bin that has ample capacity for 
that used bin. If so, the items from the source bin are 
completely offloaded to the destination bin. Then, the 
source bin is released. In this way, the possible denser 
solution is gained with fewer used bins. Note that, the 
Check&Correct(.) procedure is a heuristic approach that 
works akin to Algorithm 3. Once either exploration or 
exploitation operators are performed, the solutions may 
have impairment because the genes are substituted. The 
possible impairments occur when a bin adopts more 
than its capacity. The Check&Correct(.) procedure first 
checks the solution. If it finds a bin that is overweight, 
it selects an overhead item; then, it searches in the used 
bins in a circular manner to find a bin that has ample 
capacity to adopt that overhead. If so, it is offloaded. 
This approach is iterated until the solution is corrected.

Algorithm 3 inputs the current solution and returns a 
possible denser solution. The time complexity of Algo-
rithm 2 is n + m2 which belongs to O(m2 ). With a closer 
look, the time complexity of Algorithm  3 is O(m2 ) 
because of the two nested loops each of which iterates at 

Algorithm 2.   Encircling the prey procedure;



J Grid Computing (2024) 22:49	

1 3

Page 17 of 36  49

Vol.: (0123456789)

most m times. The parameter m is the number of maxi-
mum bins as the number of all resources in the system. 
Algorithm  3 is a heuristic that is called to reduce the 
number of active being used bins as possible. For the 
sake of disperse-ness of the objects over bins during the 
optimization process by calling different changing pro-
cedures, there may exist a contingent fortune to offload 
all of the co-hosted objects of the source bin to the des-
tination active bin which has ample capacity to adopt all 
of the source objects. Then, it releases the source bin and 
the number of being used bins is decreased. During the 
walking around process, calling one of the exploitation 
procedures may lead the direction to either an upward or 
downward trajectory. Here, the uphill/downhill walking 
around procedures are introduced.

4.3 � Novel Uphill/Downhill Walking Around 
Procedures

In this part, five types of uphill/downhill procedures 
are introduced. The procedures’ names are UDHC1 , 
UDHC2, UDHC3 , UDHC4 , and UDHC5 . The result of 
worse/better determines whether it is uphill climbing 

or downhill climbing; the reason why the name 
uphill/downhill climbing (UDHC) was selected. 
All of the uphill/downhill procedures search gently 
around a current solution. In UDHC1 , each pair of 
genes is exchanged by starting from the even posi-
tion with its next gene. Algorithm 4 elaborates on the 
details of changing genes.

Figure  6 shows how this procedure works. If the 
length of a candidate solution is n, the time complex-
ity of UDHC1 is O(n).

In UDHC2 , each pair of genes is exchanged by 
starting from the odd position with its next gene.

Algorithm  5 elaborates the functionality of the 
UDHC2 procedure.

Figure  7 shows how this procedure works. If the 
length of a candidate solution is n, the time complex-
ity of UDHC2 is O(n).

Algorithm 6 is dedicated to preparing the UDHC3 
procedure. In UDHC3 , a random substring W[S..E] 
is selected. Then, a point (C) within this substring is 
determined to halve the substring into two sections, 
namely, W [S..C] and W[C + 1..E]. Afterward, the 
subsections are changed similarly to a single-point 
crossover in the genetic algorithm; in other words, 

Algorithm 3.   Integration procedure;



	 J Grid Computing (2024) 22:49

1 3

49  Page 18 of 36

Vol:. (1234567890)

the section W[C + 1..E] is placed from W[S], then W 
[S..C] is placed in the head. 

Figure  8 shows how this procedure works. If the 
length of a candidate solution is n, the time complex-
ity of UDHC3 is O(n).

Algorithm 7 presents another walking-around pro-
cedure that potentially changes the results.

In UDHC4 , a random substring W[S..E] is 
selected. Then, this substring is completely revered. 
Figure  9 shows how this procedure works. If the 
length of a candidate solution is n, the time com-
plexity of UDHC4 is O(n).

Algorithm  8 presents the last walking-around 
procedure UDHC5. In the UDHC5 , two random 
genes are selected. Then, they are substituted 
similarly to the mutation procedure in the genetic 
algorithm.

Figure 10 shows how this procedure works. If the 
length of a candidate solution is n, the time com-
plexity of UDHC5 is O(1).

4.4 � Time Complexity of the Proposed HD‑GWO

Since the exact execution time of an algorithm deeply 
depends on several factors such as underlying hard-
ware and used compiler which may be apart from the 
logic of the designed algorithm, the time complexity 

of the proposed algorithm is presented which is the 
best reflection of the sense. In the suggested algo-
rithms two parameters n and m are the number of 
objects (also the length of the encoded wolf) and bins 
respectively. The time complexity of Algorithm 2 is 
mainly relevant between lines 3 through 12 which 
is O(n), but it is possible that the impaired encoded 
solution needs to be amended; the Check&Correct(.) 
procedure is called that consumes m2 ; so, the time 
complexity of Algorithm  2 is O(n + m2 ). The time 
complexity of Algorithm 3 is also O(n + m2 ) because 
of using two nested loops each of which in length 
of m. All of the walking-around procedures UDHC1 
through UDHC5 known as Algorithm  4 through 

Algorithm 4.   UDHC
1
  procedure;

bins 4 2 3 2 1 3 4 3 1 1

b)  Changed solution

Object 1 2 3 4 5 6 7 8 9 10

Bins 4 3 2 1 2 4 3 1 3 1

a)  Input solution

Object 1 2 3 4 5 6 7 8 9 10

Exchange Exchange Exchange Exchange

Fig. 6   Application of UDHC
1
 as the first type of walking 

around



J Grid Computing (2024) 22:49	

1 3

Page 19 of 36  49

Vol.: (0123456789)

Algorithm  8 consume O(n ) in the worst case. Now 
that the time complexity associated with all of the 
sub-algorithms has been measured, the time com-
plexity of Algorithm  1 can be simply computed. 
This main algorithm performs its instructions 
between lines 6 and 61 with MaxIteration times. 

In each iteration, all of the wolves are undergone 
changes. The number of wolves is PopSize. For 
each wolf, the exploration, exploitation, and inte-
gration process are performed. For exploration, the 
Algorithm 2 is called. For exploitation, the semi-SA 
behavior is done. In this process, the high-temper-
ature T0 is used which is gradually decreased to the 
Freeze point by declining ∆T amount. At each tem-
perature, a number of limited changes (MaxProcess 
times) are performed so the solution reaches its sta-
ble thermodynamic point [40]. During the gradu-
ally decreasing temperature, one of the neighbor-
ing procedures or walking-around is called O(n) 
complexity. So, the exploitation phase consumes 
MaxProcess ×(T0−Freeze)

ΔT
× n times for each individ-

ual. The time of all instructions in the Algorithm 1 
is t = MaxIteration × PopSize × [

(
n + m2

)
+MaxProcess

×
(T

0
−Freeze)

ΔT
× n +

(
n + m2

)
] . Therefore, the time 

complexity of Algorithm 1 is gained by (11).

(11)O (MaxIteration × PopSize × [MaxProcess ×
(T0 − Freeze)

ΔT
× n + m2]

5 � Performance Evaluation

To evaluate the effectiveness of the proposed algorithm 
for solving the two-dimensional bin-packing problems, 

extensive experiments are done in different conditions 
to reach trustable results. Take there are ample homo-
geneous two-dimensional resources (bins or physical 
servers) in the systems to run requested applications 

Algorithm 5.   UDHC
2
 procedure;

Object 1 2 3 4 5 6 7 8 9 10

bins 4 3 2 1 2 4 3 1 3 1

a)  Input solution

Object 1 2 3 4 5 6 7 8 9 10

bins 3 4 1 2 4 2 1 3 1 3

b)  Changed solution

Exchange Exchange Exchange Exchange Exchange

Fig. 7   Application of UDHC
2
 as the second type of walking 

around



	 J Grid Computing (2024) 22:49

1 3

49  Page 20 of 36

Vol:. (1234567890)

(objects or virtual machines); note that, each applica-
tion needs all of the resource dimensions at the same 
time. For instance, co-hosted applications on a single 
physical machine require CPU and memory bandwidth 
at the same time. Therefore, the VMP for applica-
tions is bounded to the resource capacity of PM in all 
dimensions. Since the units of resources are different, 
for the sake of simplicity, the vector of normalized 
resource request is taken into account in each dimen-
sion that is in (0..1] interval. The normalized requests 
are 20, 40, 70, 100, and 200 two-dimensional objects 
(VMs) to be placed on two-dimensional available 
resources that are abstracted to bins (PMs). The objec-
tive is to use a minimum number of available bins to 
reduce the overall costs. Meanwhile, the resource 
wastage must be declined to preclude possible addi-
tional and residual resource usage for the next rounds. 
The last input, 200 requests, is considered for analyz-
ing the proposed algorithm’s scalability. To assess the 
effectiveness of the proposed HD-GWO, a wide range 

of inputs are generated with different pairwise correla-
tion coefficient values in all dimensions to make sense 
of real-world data. Therefore, three correlation coeffi-
cient values {+ 0.05 (independent dimensions), + 0.75 
(strongly dependent dimensions), and -0.75(strongly 
anti-dependent dimensions)} are incorporated. In total, 
15 experiments in different circumstances are con-
ducted which are five groups of data each of which with 
three kinds of correlation coefficients between each 
dimension. Since the cloud and fog environments are 
dynamic in nature, the circumstances are always chang-
ing. Therefore, in different time intervals, our proposed 
VMP scheme can be called to reduce overall costs. The 
time interval and upper threshold for each physical 
server can be adjusted by experts and system admins. 
For now, we run one snapshot of a time interval. Mean-
while, the SLA terms must be always met otherwise the 
penalty should be paid to customers. To this end, the 
( SLAk ) as the SLA of each physical machine ( PMk ) is 
met provided Eq. (12) is satisfied.

Algorithm 6.   UDHC
3
 procedure;



J Grid Computing (2024) 22:49	

1 3

Page 21 of 36  49

Vol.: (0123456789)

In Eq.  (12), the terms Thr and SPMk

CPU
 are the CPU 

threshold of a server and the sum of accumulated CPU 
bandwidths that are being used by the co-hosted VMs 
known as CPU utilization. The SLA violation occurs 
if the SLA value exceeds 0.5 based on a presented for-
mula. In this case, re-deployment VMP is performed. 
For now, the paper concentrates on primary VM 
deployment by considering Eq. (12) not to violate the 
agreed SLA to supply requested resources for applica-
tions proactively. Another important thing to mention 

(12)

SLAj =
1

1 + eThr−S
PMk
CPU

< 0.5, for each PMj, j = 1,… ,m is associated with threshold ( Thr ) determination. In 
this case, several ML approaches such as the clustering 
methods presented in [28] can be used which access 
data history. For instance, the upper threshold can be 
updated such as in [41]. In fact, the new threshold is 
updated based on the previous threshold, requested 
SLA, and experienced (delivered) SLA by Eq. (13).

For now, this paper considers a static upper thresh-
old although it can be updated based on Eq. (13) in an 
environment with high fluctuation rates.

(13)Thr(new) ∝
Requested SLA

Delivered SLA
∗ Thr(old)

Object 1 2 S=3 C=4 5 6 7 E=8 9 10

bins 4 3 2 1 2 4 3 1 3 1

a)  Input solution

Object 1 2 3 4 5 6 7 8 9 10

Bins 4 3 2 4 3 1 2 1 3 1

b)  Changed solution

Crossover-inside

Fig. 8   Application of UDHC
3
 as the third type of walking 

around

Algorithm 7.   UDHC
4
  procedure;

Object 1 2 S=3 4 5 6 7 E=8 9 10

Bins 4 3 2 1 2 4 3 1 3 1

a) Input solution

Object 1 2 3 4 5 6 7 8 9 10

Bins 4 3 1 3 4 2 1 2 3 1

b) Changed solution

Reverse-inside

Fig. 9   Application of UDHC
4
 as the third type of walking 

around



	 J Grid Computing (2024) 22:49

1 3

49  Page 22 of 36

Vol:. (1234567890)

5.1 � Comparative Algorithms and Parameter Settings

Upon investigating the literature review, the most 
effective state-of-the-art and newly published from 
reputed publications have been selected for com-
petition against the proposed HD-GWO, in solving 
two-dimensional bin-packing problems in extensive 
scenarios. To this end, some famous and effective 
algorithms in each artificial intelligence category are 
opted, namely, the first fit decreasing order (FFD) 
[32] which is a strong heuristic algorithm, simulated 
annealing-based bin-packing algorithm [11] that is a 
non-evolutionary algorithm, genetic-based bin-pack-
ing [34] that is a strong population-based meta-heu-
ristic algorithm, and GWO-based [17] that is a strong 
swarm-based meta-heuristic algorithm. The selected 
algorithms are customized based on the stated prob-
lem under-study and this paper’s conditions. All of 
the algorithms are run in the same condition on the 

same platform and on the same datasets to have fair 
comparison and trustable results to rely on. Note 
that, different heuristic and meta-heuristic algorithms 
have been tried on the same problems, but the most 
effective ones were selected for final demonstration. 
Bear in mind that the FFD algorithm is applied to the 
one-dimensional bin-packing problems, the smarter 
FFD in comparison with the original FFD has been 
incorporated. For this reason, the sorting of objects 
is in decreasing order based on the effect of both 
equal dimensions similar to the heuristic proposed in 
[32]. In other words, the decreasing arrangement of 
objects is done based on the reverse dissipation value 
of objects which was demonstrated in Eq. (7). In the 
same dissipation value, the bigger object is selected. 
So, the comparative algorithms are named smart 
FFD (S-FFD) customized of Ref. [32] published on 
2022, simulated annealing-based two-dimensional 
bin-packing (SA2DBP) customized of Ref. [11] 
published on 2022, genetic-based two-dimensional 
bin-packing (GA2DBP) customized of Ref. [34] pub-
lished on 2020, grey wolf optimization-based two-
dimensional bin-packing (GWO2DBP) customized 
of Ref. [17] published on 2020, and one of the most 
applicable swam-based optimizers is a particle swarm 
optimization (PSO) algorithm that is customized to 
PSO2DBP derived from newly published for cloud 
resource management in Ref. [42]. Note that the pro-
posed algorithm is named hybrid discrete grey wolf 
2D bin packing solver (HD-GWO2DBP) in these 
comparisons. Recall that customized GA2DBP uses 
single-point crossover for exploration and mutation 

Algorithm 8.   UDHC
5
 procedure;

Object 1 2 3 4 5 6 7 8 9 10

Bins 4 3 2 1 2 4 3 1 3 1

a) Input solution

Object 1 2 3 4 5 6 7 8 9 10

Bins 4 3 1 1 2 4 3 2 3 1

b) Changed solution

Mutation

Fig. 10   Application of UDHC
5
 as the fifth type of walking 

around



J Grid Computing (2024) 22:49	

1 3

Page 23 of 36  49

Vol.: (0123456789)

for running away from local trap. In addition, all of 
the comparative algorithms use the same encod-
ing that was mentioned in subsection  4.1. Since the 
state-problem is discrete optimization and majority of 
comparatives such as PSO and GWO are continuous 
optimizer, either the S-shape or V-shape operators 
are incorporated provided return better solutions in 
terms of objective function. The S-shape and V-shape 
operators were presented by Mirjalili et al. to discre-
tize solutions [43]. Table  3 provides the parameter 
settings of comparative algorithms. The parameters 
determine how to tune the comparative approaches 
commensurate with the under-study experiments.

All of the scenarios were run in fair conditions on 
a windows 8 platform with a dual core Intel Corei3 
380 M and 2.53 GHZ processor clock rate, equipped 
with four logical processors and 8 GB as main mem-
ory in its hardware; by applying the MATLAB 2018 
programming language environment.

5.2 � Datasets and evaluation metrics

As mentioned earlier, the random normalized values 
in (0..1] interval are generated for both dimensions of 
requested objects. The number of objects is 20, 40, 

70, 100, and 200 respectively. Three different data-
sets are generated for each scenario in such a way that 
the correlation coefficient values between resource 
dimensions are + 0.05, + 0.75, and -0.75 respectively 
for independent, strongly dependent, and strongly 
anti-dependent dimensions. In total, 15 extensive 
experiments are run. For each experiment, twenty 
independent executions are run; then, the average 
results are reported in terms of determined evalu-
ation metrics. One of the most important objective 
metrics is to count a number of used bins to which 
Eq.  (1) is dedicated. Note that, the two-dimensional 
bin-packing problem is an abstract problem in math-
ematics and has a variety of applications in differ-
ent industries. To have tangible results, an important 
application of the two-dimensional bin-packing prob-
lem is considered for the information technology (IT) 
domain. For instance, the number of used servers in 
a typical data center has drastic impacts on the over-
all cost. In addition, power consumption puts side 
effects on both overall cost and climate changes [3, 
4]. So, apart from the number of used bins (physical 
servers), the amount of power consumption is calcu-
lated by Eq. (14). Recall that, the most part which is 
incorporated in the total power consumption of each 

Table 3   Parameter settings of comparative algorithms

α,  Grid Inflation parameter;  β,  Leader selection pressure parameter;  δ,  Extra repository member selection pressure,  Archive 
size, Repository size; nGrid, Number of Grids per each Dimension; maxvel, Maxmium velocity in percentage (search space percent-
age); u_mut, Uniform mutation percentage; ω, Inertia weight; C1, Individual confidence factor; C2, Swarm confidence factor

Customized  
Comparative 
Algorithms /Ref

Specific parameters Number of  
Objective

Population Size Max Iterations

GA2DBP [34] Crossover Per-
centage:

80% 2 100 ~ 200 depend-
ing on scenario

40 ~ 50 depending 
on scenario

Mutation Percent-
age:

10%

GWO2DBP [17] Archive size:
nGrid:

100
10

α:
β:
δ:

0.1
4
2

Proposed HDG-
WO2DBP

Archive size:
nGrid:

100
10

α:
β:
δ:

0.1
4
2

T
0
∶1000

∆T: 20
Freeze: 10
MaxK : 20

�
1
∶ (0..1]

�
2
∶ (0..1]

SA2DBP [11] T
0
∶1000

∆T: 20
Freeze: 10
MaxK20

�
1
∶ (0..1]

�
1
∶ (0..1]

PSO2DBP [42] ω: 0.4
C1: 2
C2: 2



	 J Grid Computing (2024) 22:49

1 3

49  Page 24 of 36

Vol:. (1234567890)

server strongly depends on the CPU utilization. The 
CPU utilization of a server (a bin) is calculated by the 
sum of resource usage (dimensions) of objects (vir-
tual machines).

The binary variable Zj indicates whether j-
th bin (here is the physical server) is in use or not. 
The power consumption of a server depends on the 
first dimension (W: width) or CPU utilization (sig-
nificantly) and the second dimension (H: height) or 
RAM utilization (negligible). The parameters Uj

W
 

and Uj

H
 are the first and the second dimension utiliza-

tion of a j-th bin that can be computed by the sum of 
dimension values of all placed objects in each dimen-
sion. The parameters Pj,Full is the power consumption 
of a full-loaded physical server and � is about 70% [3, 
4]. The total power consumption of all applied two-
dimensional resources (two-dimensional bins) is cal-
culated via Eq. (15).

In this experiment, the physical servers are HP 
ProLiant servers each of which has 1800 MIPS and 
12 GB as CPU and main memory capacity in which 
every full-loaded server consumes about 300 Watt/
hour as power consumption. Table 4 demonstrates all 
of the experiment specifications.

5.3 � Comparison and data analysis

In this subsection, the performance comparison and 
data analysis between state-of-the-art are done. The 
scenarios are conducted in five groups each of which 
needs the same number of objects (VMs) to be packed 
in the minimum number of bins (PMs) and they are 
tested in three different conditions. The conditions 
are relevant to pairwise values in input dimensions. 
These conditions are specified by the CC parameter. 
Except for S-FDD which is a heuristic approach, 
other meta-heuristic-based algorithms are run several 
times. Then, the average values of evaluation metrics 
are reported in figures. In the three first experiments, 
the number of requested objects is 20. Figure 11 dem-
onstrates the effectiveness of each solution in regard 
to solving the stated problem. As Fig. 11 shows the 
S-FFD works the worst, but in some cases it competes 

(14)
Pj = [(� × Pj,Full + (1 − �) × Pj,Full × U

j

W
) + �0 × U

j

H
] × Zj

(15)Total Power(Sol)=
∑m

j=1
Pj × zj

with SA2DBP. The GA2DBP and PSO2DBP compete 
with GWO2DBP and the proposed HD-GWO2DBP 
algorithm. Since the search space is very small, all of 
the comparative algorithms approximately reach the 
same results.

For the sake of the illustration of iterative compari-
sons, Fig. 12 is dedicated to showing how compara-
tive algorithms reach to stable point. Since S-FDD is 
a heuristic and works with a predefined criterion, the 
reason why it has steady behavior in every iteration 
which Fig.  12 depicts the proposed HDGWO2DBP 
returns the best results. Note that Fig. 12 returns the 
number of used bins (PMs); then, the power con-
sumption is calculated by Eq.  (15) incorporated in 
Fig.  11 One important thing to mention about the 
step-style of drawing of Figs. 12, 14, 16, 18, and 20 
in the continuity of drawing after each iteration is 
that the stated problem is not continuous optimization 
instead it is a discrete optimization issue, the reason 
why the drawing is shown in step-like shape. In other 
words, the shape is not a curve, but is step-like shape.

For the next three scenarios where the number 
of object requests is 40, the contrast between com-
parative algorithms is drawn in Fig.  13. When the 
search space grows, the discrepancy amongst the 
performance of the comparative algorithms has high 
fluctuation. Again, the S-FFD has the worst result 
because it is a greedy algorithm the reason why it 
cannot compensate for its previous inefficient deci-
sion in the course of optimization. In contrast, other 
meta-heuristic-based algorithms have enough time to 
compensate for previous decisions toward objectives. 
In some cases, S-FFD competes against SA2DBP and 
GA2DBP marginally competes with the GWO2DBP 
algorithm. Moreover, the PSO2DBP works akin to 
GWO2DBP. In the scenario where the CC is + 0.75, 
the GA only beats the GWO algorithm. In most cases, 
the proposed HD-GWO2DBP algorithm leads the 
better results. This result revolves around the fact 
that it conducts solutions in such a way as to balance 
resource dimensions during placing objects. It indi-
rectly causes less resource wastage and less number 
of used bins; and, consequently, it leads the lower 
power consumption.

Figure 14 illustrates to showing how comparative 
algorithms reach to stable point. For instance, the 
SA2DBP and PSO2DBP suffer from early conver-
gence, namely, the former in CCR = -0.75 and the lat-
ter in CCR =  + 0.05 experiments respectively. Since 



J Grid Computing (2024) 22:49	

1 3

Page 25 of 36  49

Vol.: (0123456789)

S-FDD is a heuristic and works with a predefined cri-
terion, the reason why it has steady behavior in every 
iteration which Fig.  14 depicts the proposed HDG-
WO2DBP returns the best results. Note that Fig.  14 
returns the number of used bins (PMs); then, the 
power consumption is calculated by Eq. (15) incorpo-
rated in Fig. 13.

For the three scenarios where the number of object 
requests is 70, when the search space grows to more 
extent, the discrepancy between the solutions and 
proposed HD-GWO2DBP shows more extent. Fig-
ure 15 is dedicated to comparing the performance of 
comparative algorithms once the number of requested 
objects is 70. In contrast, after HD-GWO2DBP, the 
GWO2DBP, GA2DBP, PSO2DP, SA2DBP, and 
S-FFD are placed in the next ranking from the best to 

the worst. Note that, some of them compete margin-
ally with each other.

Figure  16 illustrates to showing how compara-
tive algorithms reach to stable point. In contrast to 
other state-of-the-art, the proposed algorithm returns 
the minimum used bins and also the minimum total 
power consumption owing to using PMs in data cent-
ers that Fig. 15 elaborates in the bar chart drawn on 
the right side.

For the next three scenarios where the number of 
object requests is 100 when the search space grows 
with more extent, the discrepancy between the solu-
tions of proposed HD-GWO2DBP shows more extent 
even more than in Fig. 17. Figure 19 is dedicated to 
comparing the performance of comparative algo-
rithms once the number of requested objects are 200. 

Table 4   All experiments 
scenarios

Number of 
Experiment

Number of 
requested objects

Data range 
x: first dimension
y: second dimension

Correlation Coefficient (CC) 
between dimensions

1 20 x ϵ (0..1]
y ϵ (0..1]

- 0. 75 (Anti-dependent)

2 20 x ϵ (0..1]
y ϵ (0..1]

 + 0. 05 (independent)

3 20 x ϵ (0..1]
y ϵ (0..1]

 + 0. 75 (strongly dependent)

4 40 x ϵ (0..1]
y ϵ (0..1]

- 0. 75 (Anti-dependent)

5 40 x ϵ (0..1]
y ϵ (0..1]

 + 0. 05 (independent)

6 40 x ϵ (0..1]
y ϵ (0..1]

 + 0. 75 (strongly dependent)

7 70 x ϵ (0..1]
y ϵ (0..1]

- 0. 75 (Anti-dependent)

8 70 x ϵ (0..1]
y ϵ (0..1]

 + 0. 05 (independent)

9 70 x ϵ (0..1]
y ϵ (0..1]

 + 0. 75 (strongly dependent)

10 100 x ϵ (0..1]
y ϵ (0..1]

- 0. 75 (Anti-dependent)

11 100 x ϵ (0..1]
y ϵ (0..1]

 + 0. 05 (independent)

12 100 x ϵ (0..1]
y ϵ (0..1]

 + 0. 75 (strongly dependent)

13 200 x ϵ (0..1]
y ϵ (0..1]

- 0. 75 (Anti-dependent)

14 200 x ϵ (0..1]
y ϵ (0..1]

 + 0. 05 (independent)

15 200 x ϵ (0..1]
y ϵ (0..1]

 + 0. 75 (strongly dependent)



	 J Grid Computing (2024) 22:49

1 3

49  Page 26 of 36

Vol:. (1234567890)

-0.75 +0.05 +0.75
0

1

2

3

4

5

6

7

Correlation Coefficient

Number of Used Bins777

666 666 666 666 666 666 666

555 555 555 555 555 555 555 555 555 555

-0.75 +0.05 +0.75
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Correlation Coefficient

Total Power Consumption (kWh)

1.891.891.89 1.891.891.89

1.691.691.69 1.691.691.69 1.681.681.68 1.681.681.68
1.631.631.63 1.631.631.63

1.431.431.43 1.431.431.431.431.431.43 1.431.431.43
1.41.41.4 1.41.41.4 1.41.41.4 1.41.41.4 1.41.41.4 1.41.41.4

S-FFD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HD-GWO2DBP

Fig. 11   Comparative evaluation plots of state-of-the-art in requesting 20 objects in different CC values

0 10 20 30 40
2

4

6

8

10

12

14

16

18

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

First scenario(VMs=20, PMs=20, CC= - 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40
2

4

6

8

10

12

14

16

18

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Second scenario(VMs=20, PMs=20, CC= + 0.05)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40
2

4

6

8

10

12

14

16

18

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Third scenario(VMs=20, PMs=20, CC= + 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

Fig. 12   Convergence of Comparative algorithms to calculate objective function in different CC



J Grid Computing (2024) 22:49	

1 3

Page 27 of 36  49

Vol.: (0123456789)

-0.75 +0.05 +0.75
0

5

10

15

Correlation Coefficient

Number of Used Bins
151515

131313

121212 121212

131313

101010

141414 141414

131313 131313 131313

121212

131313 131313

111111

121212 121212

101010

-0.75 +0.05 +0.75
0

0.5

1

1.5

2

2.5

3

3.5

4

Correlation Coefficient

Total Power Consumption (kWh)
3.993.993.99

3.593.593.59

3.393.393.39 3.393.393.39
3.33.33.3

3.053.053.05

3.833.833.83 3.833.833.83

3.633.633.63 3.633.633.63

2.652.652.65

2.42.42.4

3.513.513.51 3.513.513.51

3.113.113.11

3.313.313.31 3.353.353.35

2.92.92.9

S-FFD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HD-GWO2DBP

Fig. 13   Comparative evaluation plots of state-of-the-art in requesting 40 objects in different CC values

0 10 20 30 40

5

10

15

20

25

30

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Fourth scenario(VMs=20, PMs=20, CC= - 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40

5

10

15

20

25

30

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Fifth scenario(VMs=20, PMs=20, CC= + 0.05)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40

5

10

15

20

25

30

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Sixth scenario(VMs=20, PMs=20, CC= + 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

Fig. 14   Convergence of Comparative algorithms to calculate objective function in different CC



	 J Grid Computing (2024) 22:49

1 3

49  Page 28 of 36

Vol:. (1234567890)

-0.75 +0.05 +0.75
0

5

10

15

20

25

30

Correlation Coefficient

Number of Used Bins

282828

232323
222222 222222

232323

191919

252525

232323
222222 222222 222222

191919

222222
212121 212121 212121

222222

181818

-0.75 +0.05 +0.75
0

1

2

3

4

5

6

7

8

Correlation Coefficient

Total Power Consumption (kWh)

7.327.327.32

6.326.326.32
6.126.126.12 6.126.126.12 6.126.126.12

5.525.525.52

6.596.596.59

6.176.176.17
5.975.975.97 5.975.975.975.975.975.97

5.325.325.32

6.166.166.16
5.965.965.96 5.965.965.96 5.965.965.96 5.965.965.96

5.365.365.36

S-FFD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HD-GWO2DBP

Fig. 15   Comparative evaluation plots of state-of-the-art in requesting 70 objects in different CC values

0 10 20 30 40 50
15

20

25

30

35

40

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Seventh scenario(VMs=70, PMs=70, CC= - 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40 50
15

20

25

30

35

40

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Eighth scenario(VMs=70, PMs=70, CC= + 0.05)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40 50
15

20

25

30

35

40

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Ninth scenario(VMs=70, PMs=70, CC= + 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

Fig. 16   Convergence of Comparative algorithms to calculate objective function in different CC



J Grid Computing (2024) 22:49	

1 3

Page 29 of 36  49

Vol.: (0123456789)

-0.75 +0.05 +0.75
0

5

10

15

20

25

30

35

40

45

Correlation Coefficient

Number of Used Bins

424242

363636
353535 353535

363636

313131

333333

303030
292929 292929

303030

252525

313131
323232

303030 303030
313131

262626

-0.75 +0.05 +0.75
0

2

4

6

8

10

12

Correlation Coefficient

Total Power Consumption (kWh)

11.311.311.3

10.110.110.1

9.329.329.32

9.939.939.93 9.859.859.85

9.119.119.11
8.98.98.9

8.38.38.3
8.18.18.1 8.18.18.1 8.058.058.05

7.357.357.35

8.688.688.68
8.888.888.88

8.488.488.48 8.488.488.48 8.558.558.55

7.657.657.65

S-FFD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HD-GWO2DBP

Fig. 17   Comparative evaluation plots of state-of-the-art in requesting 100 objects in different CC values

0 10 20 30 40 50

25

30

35

40

45

50

55

60

65

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Tenth scenario(VMs=100, PMs=100, CC= - 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40 50

25

30

35

40

45

50

55

60

65

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Eleventh scenario(VMs=100, PMs=100, CC= + 0.05)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40 50

25

30

35

40

45

50

55

60

65

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Televth scenario(VMs=100, PMs=100, CC= + 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

Fig. 18   Convergence of Comparative algorithms to calculate objective function in different CC



	 J Grid Computing (2024) 22:49

1 3

49  Page 30 of 36

Vol:. (1234567890)

-0.75 +0.05 +0.75
0

10

20

30

40

50

60

70

80

Correlation Coefficient

Number of Used Bins
808080

636363 626262 626262 636363

575757

707070

626262 616161 616161
636363

555555

595959 585858 575757 575757
595959

515151

-0.75 +0.05 +0.75
0

5

10

15

20

25

Correlation Coefficient

Total Power Consumption (kWh)

212121

17.617.617.617.417.417.4 17.417.417.4 17.417.417.4

16.216.216.2

18.818.818.8

17.217.217.2 171717 171717 17.217.217.2

15.815.815.8

16.816.816.8 16.716.716.7
16.316.316.3 16.316.316.3 16.616.616.6

15.115.115.1

S-FFD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HD-GWO2DBP

Fig. 19   Scalability evaluation plots of state-of-the-art in requesting 200 objects in different CC values

0 10 20 30 40 50

50

55

60

65

70

75

80

85

90

95

100

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Threteen scenario(VMs=200, PMs=200, CC= - 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40 50

50

55

60

65

70

75

80

85

90

95

100

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Fourteenth scenario(VMs=200, PMs=200, CC= + 0.05)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

0 10 20 30 40 50

50

55

60

65

70

75

80

85

90

95

100

number of iterations

nu
m
be

ro
fu

se
d
bi
ns

Fifteenth scenario(VMs=200, PMs=200, CC= + 0.75)

SFDD
SA2DBP
GA2DBP
GWO2DBP
PSO2DBP
HDGWO2DBP

Fig. 20   Convergence of Comparative algorithms to calculate objective function in different CC



J Grid Computing (2024) 22:49	

1 3

Page 31 of 36  49

Vol.: (0123456789)

Ta
bl

e 
5  

A
ll 

ex
pe

rim
en

ts
 sc

en
ar

io
s

N
um

be
r o

f 
Ex

pe
rim

en
t

N
um

be
r o

f 
re

qu
es

te
d 

ob
je

ct
s

C
or

re
la

tio
n 

C
oe

ffi
-

ci
en

t (
C

C
) 

be
tw

ee
n 

di
m

en
si

on
s

C
os

t S
co

re
 (A

lg
or

ith
m

s)

S-
FF

D
SA

2D
B

P
G

A
2D

B
P

G
W

O
2D

B
P

PS
O

O
2D

P
H

D
G

W
O

2D
BP

1
20

- 0
. 7

5 
(A

nt
i-

de
pe

nd
en

t)
0.

48
0.

43
0.

42
0.

40
0.

41
0.

38

2
20

 +
 0.

 0
5 

(in
de

pe
nd

-
en

t)

0.
43

0.
39

0.
38

0.
37

0.
38

0.
34

3
20

 +
 0.

 7
5 

(s
tro

ng
ly

 
de

pe
nd

en
t)

0.
40

0.
37

0.
36

0.
36

0.
36

0.
32

4
40

- 0
. 7

5 
(A

nt
i-

de
pe

nd
en

t)
0.

49
0.

47
0.

45
0.

44
0.

44
0.

41

5
40

 +
 0.

 0
5 

(in
de

pe
nd

-
en

t)

0.
47

0.
44

0.
43

0.
43

0.
45

0.
40

6
40

 +
 0.

 7
5 

(s
tro

ng
ly

 
de

pe
nd

en
t)

0.
50

0.
47

0.
44

0.
44

0.
46

0.
39

7
70

- 0
. 7

5 
(A

nt
i-

de
pe

nd
en

t)
0.

54
0.

50
0.

49
0.

48
0.

48
0.

43

8
70

 +
 0.

 0
5 

(in
de

pe
nd

-
en

t)

0.
56

0.
53

0.
51

0.
50

0.
51

0.
45

9
70

 +
 0.

 7
5 

(s
tro

ng
ly

 
de

pe
nd

en
t)

0.
51

0.
46

0.
45

0.
44

0.
44

0.
41

10
10

0
- 0

. 7
5 

(A
nt

i-
de

pe
nd

en
t)

0.
57

0.
50

0.
48

0.
47

0.
48

0.
43

11
10

0
 +

 0.
 0

5 
(in

de
pe

nd
-

en
t)

0.
55

0.
51

0.
49

0.
48

0.
48

0.
45

12
10

0
 +

 0.
 7

5 
(s

tro
ng

ly
 

de
pe

nd
en

t)

0.
54

0.
51

0.
49

0.
49

0.
49

0.
43

13
20

0
- 0

. 7
5 

(A
nt

i-
de

pe
nd

en
t)

0.
66

0.
61

0.
59

0.
57

0.
58

0.
48



	 J Grid Computing (2024) 22:49

1 3

49  Page 32 of 36

Vol:. (1234567890)

This extent proves the high potential of the scalabil-
ity of the proposed HD-GWO2DBP algorithm. With 
a closer look, in all of the objective functions, the 
proposed algorithm beat others significantly. Note 
that Figs.  18 and 20 are considered for showing the 
convergence of comparative algorithms in solving the 
stated problems respectively for scenarios of 100 bins 
and 200 bins.

The scalability of the proposed HD-GWO2DBP, 
the next three scenarios are conducted where the 
number of requested objects is 200. Figure 19 dem-
onstrates the comparison between comparative algo-
rithms in the same condition for solving a real large-
scale problem where the number of requests is rather 
high in regard to typical requests.

The last scenario reflects the scalability behav-
ior of comparative algorithms. As Figs.  19 and 
20 show, the proposed HD-GWO2DBP algorithm 
has a high potential for scalability because it has a 
meaningful distance in terms of the number of used 
bins and total power consumption against other 
state-of-the-art in all evaluation parameters in all 
CC values. It revolves around the fact that all oper-
ations of the proposed algorithm were conducted 
in the smartest trajectory. It cautiously co-hosts 
objects in the same bin so that resource wastage is 
minimized; this technique leads to potentially using 
fewer bins. Also, the handful of discrete operators 
were devised to permute discrete search space very 
slowly and patiently. This part is the assimilation 
of simulated annealing science to reach a stable 
thermodynamic state gradually and slowly through 
cooling process. In the main part of the algorithm, 
the temperature concept was simulated to examine 
the local search for avoiding from the local trap. 
The final result proves the effectiveness of intricate 
points integrated into the proposed HD-GWO2DBP 
algorithm.

Since the sole number of used bins cannot be 
an exact determinant for performance evaluation, 
applying auxiliary metrics is necessary. To this 
end, the power consumption and new score met-
rics are defined and used. For instance, two solu-
tions yield the same B number of used bins but with 
different resource dissipation. Although the addi-
tional amount of power consumption indirectly and 
approximately shows the amount of high resource 
wastage rate, the new fitness value shows what 
approach exactly dominates others in regard to all Ta

bl
e 

5  
(c

on
tin

ue
d)

N
um

be
r o

f 
Ex

pe
rim

en
t

N
um

be
r o

f 
re

qu
es

te
d 

ob
je

ct
s

C
or

re
la

tio
n 

C
oe

ffi
-

ci
en

t (
C

C
) 

be
tw

ee
n 

di
m

en
si

on
s

C
os

t S
co

re
 (A

lg
or

ith
m

s)

S-
FF

D
SA

2D
B

P
G

A
2D

B
P

G
W

O
2D

B
P

PS
O

O
2D

P
H

D
G

W
O

2D
BP

14
20

0
 +

 0.
 0

5 
(in

de
pe

nd
-

en
t)

0.
60

0.
59

0.
56

0.
54

0.
55

0.
46

15
20

0
 +

 0.
 7

5 
(s

tro
ng

ly
 

de
pe

nd
en

t)

0.
56

0.
54

0.
53

0.
50

0.
52

0.
45



J Grid Computing (2024) 22:49	

1 3

Page 33 of 36  49

Vol.: (0123456789)

of the objectives. Therefore, the new Cost score is 
defined via Eq. (16). The term cost is coined because 

the lower value proves the dominance against other 
comparative solutions.

(16)Cost score (sol) = w1 ×

∑m

k=1
Dis(bk) × xk∑m

k=1
xk

+ w2 ×

∑m

k=1
Pk × xk∑m

k=1
Pj,Full × xk

The coefficients w1 and w2 determine the importance 
value of each part where w1+w2=1. The first part indi-
cates the normalized amount of resource wastage amor-
tized on the number of used bins and the second term 
determines the amount of average power consumption 
against the full-loaded server power usage. The lowest 
score means the highest dominance. These coefficients 
can be adjusted by the systems admin who is familiar 
with the details. For the sake of considering the same 
importance, the coefficients w1 and w2 are set to 0.5. 
After the introduction of the new parameter cost score, 
it was examined in all experiments. Table  5 is dedi-
cated to showing the amount of measured cost score. 
As Table 5 demonstrates the proposed algorithm out-
performs against others in all experiments. The small-
est value inserted boldly in Table 5 is a determinant for 
selecting the best solution which considers all of the 
objective functions in its solution. It provides informa-
tion about the effectiveness of a minimum number of 
used bins and minimum total power consumption with 

a good balance between the used resources because the 
new score function distributes effective metrics in the 
comprehensive weighted formula. Note that the weight 
of each is considered the same to indicate the same 
importance.

5.4 � Execution Time Comparison

The time complexity of comparative algorithms 
have been placed in subsection  4.4 which directly 
depends on their instructions as a function of input 
parameters. To calculate the real execution time of 
comparative algorithms, all of them were run in the 
same platform on the same datasets to reach concrete 
and fair results. All of the scenarios were run in fair 
conditions on a windows 8 platform with a dual core 
Intel Corei3 380  M and 2.53 GHZ processor clock 
rate, equipped with four logical processors and 8 GB 
as main memory in its hardware; by applying the 

Fig. 21   Comparison 
of execution time of all 
comparative algorithms in 
regarding to input size

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50

Scenario Number

E
xe

cu
tio

n
T
im

e(
S
ec

on
ds

)

Execution Time Comparison

GA2DBP
SA2DBP
GWO2DBP
HD-GWO2DBP
PSO2DBP



	 J Grid Computing (2024) 22:49

1 3

49  Page 34 of 36

Vol:. (1234567890)

MATLAB 2018 programming language environment. 
The average execution time of each comparative 
algorithm in regard to the input size is schematically 
depicted in Fig. 21.

Note that, HD-GWO2DBP works faster than cus-
tomized GA2DBP and SA2DBP algorithms. Although 
the canonical SA is very fast in the customized 
SA2DBP, the inner loop was added to SA2DBP algo-
rithm for each temperature for additional searches to 
reach stable points; it precludes stopping premature 
convergence. The customized SA2DBP is incorpo-
rated because the canonical SA led the poor results. 
On the other hand, the GA2DBP works very slowly; 
it revolves around the fact that it suffers from costly 
operators; meanwhile, it fails to keep individual expe-
riences gained from previous rounds despite swarm-
based intelligence algorithms. In comparison between 
GWO2DBP and HD-GWO2DBP, the HD-GWO2DBP 
works slower because it calls for more walking-around 
procedures to lead a good balance between exploration 
and exploitation phases. In other words, it runs away 
from early convergence in which it contingently returns 
better solutions in more cases. Nevertheless, in terms 
of real execution time running on the same platform, 
the PSO2DBP algorithm is the fastest in comparison 
with all, but in the quality of the produced solutions 
it stands in the third ranking place after the proposed 
HD-GWO2DBP and GWO2BP algorithms. It is worth 
mentioning that the PSO2DBP algorithm suffers from 
an early convergence phenomenon in which it returns 
fast solutions but with rather low quality.

6 � Conclusion and Future Works

Several real-world industrial applications require 
multi-dimensional resources. To run such appli-
cations, they need all the dimensions at the same 
time which always are scarce/expensive/pollutant 
resources. Inefficient resource usage incurs additional 
costs for cash flow even pollution in some industries. 
For the sake of the importance of the issue, it made 
sense of high motivation to find an efficient solution 
that led to the preparation of the current paper. This 
paper models the two-dimension resource alloca-
tion issue as a two-dimensional bin-packing problem 
to an integer linear programming which is a famous 
NP-Hard issue. To this end, a hybrid discrete version 
of the grey wolf optimization (HD-GWO) algorithm 

was presented which is imbalance-ness-aware in 
resource requests in packing objects in the bins. It 
also takes benefit of all available artificial intelligence 
approaches integrated into the proposed HD-GWO 
algorithm. Extensive scenarios have been conducted 
and the most successful state-of-the-art were selected 
from the literature for competitions. The simulation 
results prove the dominance of the proposed algo-
rithm against other comparative algorithms in terms 
of eminent evaluation metrics. It revolves around the 
fact that it cautiously utilized discrete operators and 
sub-procedures so it reduces resource wastage during 
the optimization process in regard to the main objec-
tive. In addition, the proposed algorithm shows the 
high potential of scalability behavior once the size 
of the input is extremely huge. For future work, we 
envisage proposing a multi-dimensional bin-packing 
algorithm in online industrial applications with a lim-
ited time window and call re-deployment procedure if 
necessary.

Author Contributions  Programming & Testing: Saeed 
Kosari

Blueprint, Writing, Algorithm design, Test & Analysis, and 
Supervisor of project: Mirsaeid Hosseini Shirvani

Conceptualization, Classification, and Advisor: Navid 
Khaledian

Conceptualization, Resources, Validation, Formal Analysis, 
Revising the Comments, Review & Writing, and Proofreading: 
Danial Javaheri

Funding  Not Applicable.

Data Availability  No datasets were generated or analysed 
during the current study

Declarations 

Competing Interests  The authors declare no competing 
interests.

References

	 1.	 Hormozi, E., Hu, S., Ding, Z., Tian, Y., Wang, Y., Yu, 
Z., Zhang, W.: Energy-efficient virtual machine place-
ment in data centres via an accelerated Genetic Algorithm 
with improved fitness computation. Energy 252, 123884 
(2022). https://​doi.​org/​10.​1016/j.​energy.​2022.​123884

	 2.	 Thabet, M., Hnich, B., Berrima, M.: A sampling-based 
online Co-Location-Resistant Virtual Machine placement 
strategy. J. Syst. Softw. 187, 111215 (2022). https://​doi.​
org/​10.​1016/j.​jss.​2022.​111215

https://doi.org/10.1016/j.energy.2022.123884
https://doi.org/10.1016/j.jss.2022.111215
https://doi.org/10.1016/j.jss.2022.111215


J Grid Computing (2024) 22:49	

1 3

Page 35 of 36  49

Vol.: (0123456789)

	 3.	 Tavana, M., Shahdi-Pashaki, S., Teymourian, E., Santos-
Arteaga, F.J., Komaki, M.: A discrete cuckoo optimization 
algorithm for consolidation in cloud computing. Comput. 
Ind. Eng. (2017). https://​doi.​org/​10.​1016/j.​cie.​2017.​12.​
001

	 4.	 Reddy, M.A., Ravindranath, K.: Virtual machine place-
ment using JAYA optimization algorithm. Appl. Artif. 
Intell. 34(1), 31–46 (2020). https://​doi.​org/​10.​1080/​08839​
514.​2019.​16897​14

	 5.	 Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, 
R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, 
A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley 
view of cloud computing. University of California, Berke-
ley (2009)

	 6.	 Wei, C., Hu, Z.H., Wang, Y.G.: Exact algorithms for 
energy-efficient virtual machine placement in data centers. 
Future Gener. Comput. Syst. 106, 77–91 (2020). https://​
doi.​org/​10.​1016/j.​future.​2019.​12.​043

	 7.	 Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-
objective ant colony system algorithm for virtual machine 
placement in cloud computing. J. Comput. Syst. Sci. 
79(8), 1230–1242 (2013). https://​doi.​org/​10.​1016/j.​jcss.​
2013.​02.​004

	 8.	 Dashti, S.E., Rahmani, A.M.: Dynamic VMs placement 
for energy efficiency by PSO in cloud computing. J. Exp. 
Theor. Artif. Intell. 28(12), 97–112 (2016). https://​doi.​org/​
10.​1080/​09528​13X.​2015.​10205​19

	 9.	 Tanir, D., Ugurlu, O., Guler, A., Nuriyev, U.: One-dimen-
sional cutting stock problem with divisible items. J. Appl. 
Eng. Math. 9(3), 473–484 (2019). https://​doi.​org/​10.​
48550/​arXiv.​1606.​01419

	10.	 Munien, C., Ezugwu, A.E.: Metaheuristic algorithms for 
one dimensional bin-packing problems: a survey of recent 
advances and applications. J. Intell. Syst 30, 636–663 
(2021). https://​doi.​org/​10.​1515/​jisys-​2020-​0117

	11.	 Yuan, Y., Tole, K., Ni, F., et  al.: Adaptive simulated 
annealing with greedy search for the circle bin packing 
problem. Comput. Oper. Res. 144, 105826 (2022). https://​
doi.​org/​10.​1016/j.​cor.​2022.​105826

	12.	 Hao, X., Zheng, L., Li, N., Zhang, C.: Integrated bin pack-
ing and lot-sizing problem considering the configuration-
dependent bin packing process. Eur. J. Oper. Res. 303(2), 
581–592 (2022). https://​doi.​org/​10.​1016/j.​ejor.​2022.​03.​
012

	13.	 Wang, P., Rao, Y., Luo, Q.: An effective discrete grey wolf 
optimization algorithm for solving the packing problem. 
IEEE Access 8, 115559–115571 (2020). https://​doi.​org/​
10.​1109/​ACCESS.​2020.​30043​80

	14.	 Ramzanpoor, Y., Shirvani, M.H., Golsorkhtabaramiri, M.: 
Multi-objective fault-tolerant optimization algorithm for 
deployment of IoT applications on fog computing infra-
structure. Complex Intell. Syst. 8, 361–392 (2022). https://​
doi.​org/​10.​1007/​s40747-​021-​00368-z

	15.	 Taneja, M., Davy, A.: Resource-aware placement of IoT 
application modules in fog-cloud computing paradigm. In: 
Proc. of the IFIP/IEEE Symposium on Integrated Network 
and Service Management, IM ’15, pp. 1222–1228.  IEEE 
(2017) https://​doi.​org/​10.​23919/​INM.​2017.​79874​64

	16.	 Brogi, A., Forti, A.: QoS-aware deployment of IoT appli-
cations through the fog. IEEE Internet Things J. 4, 1185–
1192 (2017). https://​doi.​org/​10.​1109/​JIOT.​2017.​27014​08

	17.	 Al-Moalmi, A., Luo, J., Salah, A., Li, K.: Optimal vir-
tual machine placement based on grey wolf optimization. 
Electronics 8(3), 283 (2019). https://​doi.​org/​10.​3390/​elect​
ronic​s8030​283

	18.	 Ghetas, M.: A multi-objective Monarch Butterfly Algo-
rithm for virtual machine placement in cloud comput-
ing. Neural Comput. & Applic. 33, 11011–11025 (2021). 
https://​doi.​org/​10.​1007/​s00521-​020-​05559-2

	19.	 Qin, Y., Wang, H., Yi, S., et  al.: Virtual machine place-
ment based on multi-objective reinforcement learning. 
Appl Intell 50, 2370–2383 (2020). https://​doi.​org/​10.​
1007/​s10489-​020-​01633-3

	20.	 Yu, X., Xu, W., Wu, X., et al.: Reinforced exploitation and 
exploration grey wolf optimizer for numerical and real-
world optimization problems. Appl. Intell. 52, 8412–8427 
(2022). https://​doi.​org/​10.​1007/​s10489-​021-​02795-4

	21.	 Nasr, A.A., Chronopoulos, A.T., El-Bahnasawy, N.A., 
Attiya, G., El-Sayed, A.: A novel water pressure change 
optimization technique for solving scheduling problem in 
cloud computing. Clust. Comput. 22, 601–617 (2019)

	22.	 Amer, D.A., Attiya, G., Zeidan, I., Nasr, A.A.: Elite learn-
ing Harris hawks optimizer for multi-objective task sched-
uling in cloud computing. J. Supercomput. 1–26 (2022)

	23.	 Nasr, A.A., El-Bahnasawy, N.A., Attiya, G., El-Sayed, A.: 
Using the TSP solution strategy for cloudlet scheduling 
in cloud computing. J. Netw. Syst. Manage. 27, 366–387 
(2019)

	24.	 Sait, S.M., Shahid, K.S.: Optimal multi-dimensional 
vector bin packing using simulated evolution. J. Super-
comput. 73, 5516–5538 (2017). https://​doi.​org/​10.​1007/​
s11227-​017-​2100-0

	25.	 Côté, J.F., Haouari, M., Iori, M.: A primal decomposition 
algorithm for the two-dimensional bin packing problem. 
Optim. Control (2019). https://​doi.​org/​10.​48550/​arXiv.​
1909.​06835

	26.	 Zhou, Z., Shojafar, M., Alazab, M., Abawajy, J., Li, F.: 
AFED-EF: an energy-efficient VM allocation algorithm 
for IoT applications in a cloud data center. IEEE Trans. 
Green Commun. Netw. 5(2), 658–669 (2021). https://​doi.​
org/​10.​1109/​TGCN.​2021.​30673​09

	27.	 Zhou, Z., Shojafar, M., Li, R., Tafazolli, R.: EVCT: an 
efficient VM deployment algorithm for a software-defined 
data center in a connected and autonomous vehicle envi-
ronment. IEEE Trans. Green Commun. Netw. 6(3), 1532–
1542 (2022). https://​doi.​org/​10.​1109/​TGCN.​2022.​31614​
23

	28.	 Zhou, Z., Abawajy, J., Chowdhury, M., Hu, Z., Li, K., 
Cheng, H., Alelaiwi, A.A., Li, F.: Minimizing SLA viola-
tion and power consumption in cloud data centers using 
adaptive energy-aware algorithms. Future Gener. Comput. 
Syst. 86, 836–850 (2018). https://​doi.​org/​10.​1016/j.​future.​
2017.​07.​048

	29.	 Zhou, Z., Shojafar, M., Alazab, M., Li, F.: IECL: an intel-
ligent energy consumption model for cloud manufactur-
ing. IEEE Trans. Industr. Inf. 18(12), 8967–8976 (2022). 
https://​doi.​org/​10.​1109/​TII.​2022.​31650​85

	30.	 Zhou, Z., Shojafar, M., Abawajy, J., Yin, H., Lu, H.: 
ECMS: an edge intelligent energy efficient model in 
mobile edge computing. IEEE Trans. Green Commun. 
Netw. 6(1), 238–247 (2022). https://​doi.​org/​10.​1109/​
TGCN.​2021.​31219​61

https://doi.org/10.1016/j.cie.2017.12.001
https://doi.org/10.1016/j.cie.2017.12.001
https://doi.org/10.1080/08839514.2019.1689714
https://doi.org/10.1080/08839514.2019.1689714
https://doi.org/10.1016/j.future.2019.12.043
https://doi.org/10.1016/j.future.2019.12.043
https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1080/0952813X.2015.1020519
https://doi.org/10.1080/0952813X.2015.1020519
https://doi.org/10.48550/arXiv.1606.01419
https://doi.org/10.48550/arXiv.1606.01419
https://doi.org/10.1515/jisys-2020-0117
https://doi.org/10.1016/j.cor.2022.105826
https://doi.org/10.1016/j.cor.2022.105826
https://doi.org/10.1016/j.ejor.2022.03.012
https://doi.org/10.1016/j.ejor.2022.03.012
https://doi.org/10.1109/ACCESS.2020.3004380
https://doi.org/10.1109/ACCESS.2020.3004380
https://doi.org/10.1007/s40747-021-00368-z
https://doi.org/10.1007/s40747-021-00368-z
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.3390/electronics8030283
https://doi.org/10.3390/electronics8030283
https://doi.org/10.1007/s00521-020-05559-2
https://doi.org/10.1007/s10489-020-01633-3
https://doi.org/10.1007/s10489-020-01633-3
https://doi.org/10.1007/s10489-021-02795-4
https://doi.org/10.1007/s11227-017-2100-0
https://doi.org/10.1007/s11227-017-2100-0
https://doi.org/10.48550/arXiv.1909.06835
https://doi.org/10.48550/arXiv.1909.06835
https://doi.org/10.1109/TGCN.2021.3067309
https://doi.org/10.1109/TGCN.2021.3067309
https://doi.org/10.1109/TGCN.2022.3161423
https://doi.org/10.1109/TGCN.2022.3161423
https://doi.org/10.1016/j.future.2017.07.048
https://doi.org/10.1016/j.future.2017.07.048
https://doi.org/10.1109/TII.2022.3165085
https://doi.org/10.1109/TGCN.2021.3121961
https://doi.org/10.1109/TGCN.2021.3121961


	 J Grid Computing (2024) 22:49

1 3

49  Page 36 of 36

Vol:. (1234567890)

	31.	 Zhou, Z., Li, F., Zhu, H., et  al.: An improved genetic 
algorithm using greedy strategy toward task schedul-
ing optimization in cloud environments. Neural Comput. 
Applic. 32, 1531–1541 (2020). https://​doi.​org/​10.​1007/​
s00521-​019-​04119-7

	32.	 Nehra, P., Kesswani, N.: Efficient resource allocation and 
management by using load balanced multi-dimensional 
bin packing heuristic in cloud data centers. J. Supercom-
put. (2022). https://​doi.​org/​10.​1007/​s11227-​022-​04707-w

	33.	 Fatima, A., Javaid, N., Sultana, T., Hussain, W., Bilal, 
M., Shabbir, S., Asim, Y., Akbar, M., Ilahi, M.: Virtual 
machine placement via bin packing in cloud data centers. 
Electronics 7, 389 (2018). https://​doi.​org/​10.​3390/​elect​
ronic​s7120​389

	34.	 Wei, W., Wang, K., Wang, K., Gu, H., Shen, H.: Multi-
resource balance optimization for virtual machine place-
ment in cloud data centers. Comput. Electr. Eng. 88, 
106866 (2020). https://​doi.​org/​10.​1016/j.​compe​leceng.​
2020.​106866

	35.	 Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf opti-
mizer. Adv. Eng. Softw. 69, 46–61 (2014). https://​doi.​org/​
10.​1016/j.​adven​gsoft.​2013.​12.​007

	36.	 Hosseini Shirvani, M.: A hybrid meta-heuristic algorithm 
for scientific workflow scheduling in heterogeneous dis-
tributed computing systems. Eng. Appl. Artif. Intell. 90, 
1–20 (2020)

	37.	 Dordaie, N., JafariNavimipour, N.: A hybrid particle swarm 
optimization and hill climbing algorithm for task schedul-
ing in the cloud environments. ICT Press 4(4), 199–202 
(2018). https://​doi.​org/​10.​1016/j.​icte.​2017.​08.​001

	38.	 Moschakis, I.A., Karatza, H.D.: Multi-criteria scheduling 
of bag-of-tasks applications on heterogeneous interlinked 
clouds with simulated annealing. J. Syst. Softw. (2014). 
https://​doi.​org/​10.​1016/j.​jss.​2014.​11.​014

	39.	 Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization 
by simulated annealing. Science 220, 671–680 (1983)

	40.	 Tanha, M., Hosseini Shirvani, M.S., Rahmani, A.M.: A 
hybrid meta-heuristic task scheduling algorithm based 
on genetic and thermodynamic simulated annealing algo-
rithms in cloud computing environments. Neural Comput. 
Appl. 33, 16951–16984 (2021). https://​doi.​org/​10.​1007/​
s00521-​021-​06289-9

	41.	 Blaglazov, A., Buyya, R.: Optimal online deterministic 
algorithms and adaptive heuristics for energy and perfor-
mance efficient dynamic consolidation of virtual machines 
in cloud data centers. Concurr. Comput. Pract. Exp. 24(13), 
1397–1420 (2011). https://​doi.​org/​10.​1002/​cpe.​1867

	42.	 Zhou, H.: A novel approach to cloud resource manage-
ment: hybrid machine learning and task scheduling. J 
Grid Comput. 21, 68 (2023). https://​doi.​org/​10.​1007/​
s10723-​023-​09702-w

	43.	 Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic 
optimization technique for solving single-objective, dis-
crete, and multi-objective problems. Neural Comput. 
Appl. 27, 1053–1073 (2016). https://​doi.​org/​10.​1007/​
s00521-​015-​1920-1

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) 
holds exclusive rights to this article under a publishing 
agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement 
and applicable law.

https://doi.org/10.1007/s00521-019-04119-7
https://doi.org/10.1007/s00521-019-04119-7
https://doi.org/10.1007/s11227-022-04707-w
https://doi.org/10.3390/electronics7120389
https://doi.org/10.3390/electronics7120389
https://doi.org/10.1016/j.compeleceng.2020.106866
https://doi.org/10.1016/j.compeleceng.2020.106866
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.icte.2017.08.001
https://doi.org/10.1016/j.jss.2014.11.014
https://doi.org/10.1007/s00521-021-06289-9
https://doi.org/10.1007/s00521-021-06289-9
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1007/s10723-023-09702-w
https://doi.org/10.1007/s10723-023-09702-w
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/s00521-015-1920-1

	A Hybrid Discrete Grey Wolf Optimization Algorithm Imbalance-ness Aware for Solving Two-dimensional Bin-packing Problems
	Abstract 
	1 Introduction
	2 Related Works
	3 Problem Statement
	3.1 Problem Formulation
	3.2 Resource Dissipation Model
	3.3 An Illustrative Example

	4 Proposed Imbalance-ness-aware Algorithm for Solving Two-dimensional Bin-packing Problems
	4.1 Basic Concepts (Encoding, Wolf, Fitness, and Termination)
	4.2 Description of the Proposed HD-GWO Algorithm
	4.3 Novel UphillDownhill Walking Around Procedures
	4.4 Time Complexity of the Proposed HD-GWO

	5 Performance Evaluation
	5.1 Comparative Algorithms and Parameter Settings
	5.2 Datasets and evaluation metrics
	5.3 Comparison and data analysis
	5.4 Execution Time Comparison

	6 Conclusion and Future Works
	References


