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Abstract
Cloud architecture and its operations interest both general consumers and researchers. Google, as a technology giant, offers

cloud services globally. This paper analyzes the Google cluster usage trace, focusing on three key aspects: task execution

times, rescheduling frequency, and the relationship between task priority and rescheduling. Firstly, we examine how

memory and processor performance impact task execution times across different machines. Next, we investigate how the

number of task constraints influences rescheduling frequency and overall environmental efficiency. Furthermore, we

analyze how task priority affects rescheduling and explore its correlation with task constraints. The results reveal that

doubling the memory size can accelerate tasks by a factor of nine and that 90% of rescheduling is associated with tasks

having less than seven constraints. We aim to enhance data center performance by identifying bottlenecks in the Google

Cluster Dataset and providing recommendations for all cloud service providers. Our key findings indicate that memory

plays a more significant role than the processor, and tasks with higher constraints have a less pronounced impact on

rescheduling than anticipated.
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1 Introduction

The popularity of cloud services has increased in recent

years, offering numerous advantages over personal or

physical services, such as cost efficiency, scalability,

flexibility, accessibility, collaboration, backup, and secu-

rity [1]. However, as the number of users grows, the

architecture of these services becomes more intricate.

Cloud customers are becoming increasingly concerned

about the availability and reliability of the services they

purchase, driven by recent failures experienced by various

software and infrastructure services. Reliability and avail-

ability concerns have emerged as significant challenges for

traditional systems and new cloud services. The complexity

of cloud architectures can amplify failure probabilities and

decrease performance, particularly with the escalation of

resources, including power consumption [2, 3].

In cloud systems, jobs are limited to a certain number of

resources. If a job exceeds its limit, it will be killed or

postponed, which can cause overhead for the system.

Google’s autopilot dynamic configuration helps to over-

come this problem, but it still leaves 23% of the resources

needed [4]. Most studies have concentrated on failure

analysis, characterization, and prediction, with limited

research conducted on bottleneck detection. This paper

aims to develop a bottleneck detection framework to

enhance cluster performance.

Failed jobs create bottlenecks by consuming substantial

amounts of memory, CPU, disk, and power. The occur-

rence of failed jobs is directly linked to rescheduling,

wherein a job is frequently placed in a cluster queue until

completion. Historically, several companies, including
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Twitter, LinkedIn, Amazon’s Elastic service, and Micro-

soft’s Azure HDInsight, should have capitalized on exist-

ing cloud systems to augment their capabilities with

optimal flexibility [5]. Outdated technologies have since

been replaced by a new data processing system called

Cloud Dataflow. Over the past decade, Distributed Data-

flow Systems (DDS) have emerged as a standard technol-

ogy. Users employ constrained dataflow programming

models, such as Cloud Dataflow, to scale program execu-

tion across a cluster of machines with a shared-nothing

architecture. Upon closer examination, it becomes evident

that Cloud Dataflow operates atop the Google Borg system.

Borg, a foundational system, introduces a crucial

abstraction layer between the underlying physical hardware

and its applications [6]. This strategic implementation

empowers Google with efficient resource management

capabilities and the ability to scale its applications to

accommodate varying demands seamlessly. In contrast,

Cloud Dataflow functions as a high-level system designed

to facilitate distributed data processing. While it leverages

Borg and other Google technologies, it maintains its

autonomy as a separate system [7]. During our research,

our primary focus was to delve into the logs generated by

the Borg clustering system. All the Google services are

running on this platform.

Recent resource management and models that can

schedule workloads try to facilitate the sharing of com-

puting resources in data centers. Efficiency and resource

optimization are crucial for Cloud Service Providers; thus,

many researchers have recently focused on this area

[9–12]. Many researchers are trying to develop a state-of-

the-art algorithm and middleware to make the most of these

data center infrastructures. The realm of data centers and

their resource management has garnered increasing atten-

tion recently, spurred by the rising prominence of novel

concepts such as IoT (Internet of Things), edge computing,

fog computing, and dew computing [17]. These emerging

paradigms are gaining popularity for bringing computation

and data processing closer to the source of data generation

and consumption, thereby enhancing efficiency and

reducing latency. It is worth noting that data centers serve

as the cornerstone of cloud computing, providing the

infrastructure and computational power essential for

delivering cloud-based services and applications. In this

context, the efficient operation and resource allocation

within data centers play a pivotal role in ensuring the

reliability and performance of cloud computing services.

Our study delves into the intricate domain of data center

resource management, focusing on the Google Borg sys-

tem—a fundamental component within Google’s infras-

tructure. Borg is a linchpin in Google’s ability to efficiently

oversee and allocate resources, ensuring its applications’

scalability and responsiveness to meet users’ demands

worldwide. Our exploration of the logs generated by the

Borg clustering system offers valuable insights into the

inner workings of this critical resource management sys-

tem. Given the high cost of large-scale computing clusters,

optimizing their usage is imperative. Optimizing needs

deep knowledge of system behavior, and one of the best

ways is to investigate current data centers’ logs, like

Google cluster traces produced by the Borg system and

operators’ experience in such environments [18]. In 2011,

Google introduced a cluster trace dataset [19]. Subse-

quently, in 2019, another cluster dataset trace was released

[20]. We investigated the Google cluster 2011, which

contains the log for 12.5 k virtual machines, to find the

bottlenecks and propose ideas to improve efficiency in big

data centers. We chose this data set because more papers

have investigated it in more detail [21–24]. The first

Google dataset contains a trace of one Google cluster,

while the second version includes workloads of eight dif-

ferent Google clusters. To the best of our knowledge, we

are the first to investigate the impact of different resource

types on data center scalability. We also identify the root

cause of rescheduling, which can waste many resources.

These days, data centers, which need large capital

investments, are utilized for many different things,

including video processing, machine learning, search

engines, and third-party cloud services. Most of the tech-

nologies we use are hosted by these data centers. Modern

cluster management systems have evolved to manage these

data centers effectively. Several businesses have made job-

scheduling traces of their cluster management systems

public so that outside academics can investigate how they

accomplish this.

Borg is a prominent example among cluster manage-

ment systems, having been meticulously developed and

extensively employed by Google. Google’s commitment to

advancing external research in large-scale compute clusters

was evident in 2011 when it released a 1-month trace from

its Borg cluster management system. This initiative facil-

itated exploration by hundreds of researchers into

scheduling intricacies [25]. A lingering question pertains to

the evolution of workloads and its impact on scheduling

decisions. To address this, Google has published a new

‘‘2019’’ trace, offering detailed Borg job scheduling

information from eight distinct compute clusters through-

out May 2019. This updated dataset extends the scope of

research opportunities initiated in 2011 and provides a

contemporary perspective on the dynamic interplay

between evolving workloads and cluster management

decisions within Google’s infrastructure. Table 1 demon-

strates the detailed comparison of these to traces.

The contemporary challenge lies in enhancing the

overall efficiency of data centers by strategically reducing

the time, energy consumption, and resource allocation
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required to execute a comparable volume of tasks. While

most studies have traditionally focused on failure analysis,

characterization, and prediction, this paper endeavors to

pioneer a novel approach by introducing a bottleneck

detection framework. The primary objective is to augment

cluster performance, facilitating optimal distribution of

resources such as RAM and CPU within the Borg system.

This research aims to enhance system efficiency and

resource utilization by emphasizing proactive bottleneck

identification.

The research structure contains four different sections.

Section 2 presents the scheme of Google cluster traces,

provides basic statistics and behavior of failed jobs, and

includes a comprehensive literature review on cluster

research. Section 3 demonstrates our data analysis within

four different phases. In the first phase, we investigated the

effects of resources on task execution time and tried to find

out that CPU has more impact on task execution time or

memory. Rescheduling is an essential parameter in study-

ing cluster efficiency; hence, in the next phase, we inves-

tigated the relationship between how the number of task

constraints are related to rescheduling. In the third phase,

we analyzed how task rescheduling is connected to tasks’

priority. In the last step, we delve into task categories to

determine how they relate to the number of tasks’ con-

straints. Section 4 contains the study’s conclusion and

outlines future work.

2 Research questions (RQs)

In this study, our primary objective is to identify and

address key considerations in optimizing data center per-

formance and reducing energy consumption. The research

questions outlined below guide our investigation into the

factors influencing the efficiency of Borg systems.

RQ1 Which resource has a more significant impact on the

Borg system—CPU or RAM?

The first data analysis aims to discern the relative impact

of CPU and RAM on the performance of the Borg system.

RQ2 Do tasks with higher or fewer constraints predomi-

nantly influence rescheduling activities?

The second data analysis endeavors to uncover the

primary factors affecting rescheduling, specifically exam-

ining whether tasks with higher or fewer constraints play a

more significant role.

RQ3 Does the rescheduling of tasks correlate with their

priority? Which type of task—higher or lower priority—

exerts a more substantial impact?

The third data analysis addresses the interplay between

task rescheduling and priority, investigating whether higher

or lower-priority tasks have a greater influence.

RQ4 Is there a discernible relationship or correlation

between task constraints and their respective categories?

The fourth data analysis explores potential connections

or correlations between task constraints and their assigned

categories. By answering these research questions, we aim

to contribute insights that can inform strategies for

optimizing data center performance, striking a balance

between increased efficiency and reduced energy

consumption.

3 Literature review

Fernández-Cerero et al. [8] attempted to extract workflows

from raw log files in the Google cluster. The presence of

numerous logs in the dataset resulted in a convoluted

workflow resembling spaghetti, making it incomprehensi-

ble for humans. Process mining tools such as ProM and

Disco were employed to investigate each process inde-

pendently, creating more structured workflows. Addition-

ally, the XES generator was utilized to modify the dataset

format, enabling its use as input for the tools above. The

researchers concluded that process mining tools faced

challenges processing such extensive log data. To over-

come this, it was necessary to split the data or use a subset

of the top 5000 records from each log file as samples, as

demonstrated in their study. The resulting workflows offer

a more precise understanding for humans, allowing inter-

pretation of information concealed in the logs, such as

identifying users who submitted more jobs, determining the

number of jobs assigned to each machine, and assessing the

number of machines running a specific task.

Umer et al. [19] studied the transition of physical and

virtual machines between different states. By understand-

ing these data from logs, a data center operator can better

decide to extend its infrastructure or push it into sleep

mode to preserve energy. Their study discovered a 13%

probability of another machine failure occurring on the

same network switch within one minute of a previous

failure. They suggested a Markov model for machine state

prediction, enabling accurate forecasting of machine states

over an extended period by leveraging estimated

Table 1 Comparision of Google Borg traces

Date May 2011 May 2019

Days 30 31

Machines 12,600 96,400

Priority 0–11 0–450

Format CSV BigQuery
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probabilities. Their proposed model revealed the active

machines’ trend and found a 1.76% bias when matching it

with the data set.

In [20], authors investigated the failures in Google cluster

logs that usually happen because of the data center’s large

scope. The failures should be avoided because they will

reduce performance and waste our resources. They proposed

a failure prediction platform to detect a job failure before it

happens. Using machine learning technics, they could suc-

cessfully submit a method that predicts failed jobs even

before Borg’s operating system scheduling. They first

developed a job status prediction model with 98% accuracy,

but they could increase the accuracy to 99% for job failure

prediction by selecting specific manual parameters.

Wang et al. [21] employed an enhanced mixture of

Gaussian (GMM) algorithms to predict missing tasks. The

Google cluster dataset includes a field for missing informa-

tion with various values. They identified scheduling class,

priority, and resource requests as three attributes signifi-

cantly impacting missing information fields in the task log

file. Both tasks and jobs share a common attribute:

scheduling, providing a general indication of the task’s

sensitivity to latency; the priority attribute indicates a task’s

priority level. Additionally, each task specifies its own

‘CPU’ and ‘Memory’ requirements, detailing the resource

limitations within the data center infrastructure.

They proposed an algorithm capable of predicting the

value of a missing type with an accuracy of 99.73%. Sub-

sequently, they recommended transferring that task to a real-

time monitoring section to mitigate potential side effects on

other tasks. While they demonstrated commendable perfor-

mance in predicting missing information types for tasks,

their analysis focused solely on individual tasks and did not

delve into their potential impacts on other tasks.

Njuguna Ngang’a et al. [22] created an improved cloud

failure prediction model using Adaboost ensemble

Machine Learning algorithms capable of predicting hard-

ware and software failures. The model was developed

using Google Cluster 2019, Azure Clouds, and Alibaba

Clouds datasets. Their model utilizes an ensemble classi-

fication approach incorporating random forest, decision

tree classifiers, and regression. The result shows a slightly

higher accuracy rate than previous studies in this field. The

decision Tree Classifier produced the most favorable

average model performance results by 91.7% compared to

previous work done by Soualhia et al. [23], which reached

85.6% accuracy. They also noticed that Adaptive Boosting

improved the overall model accuracy across all classifiers

and datasets, except for Logistic Regression in the Azure

dataset, which did not enhance the overall model perfor-

mance. Regarding convergence time, the decision tree

classifier had the shortest average time, followed by

logistic regression and the random forest classifier.

In [24], Chen et al. believe that most of the previous works

in this field focused on how they can allocate resources fairly

while neglecting the efficiency of data centers. However,

unequal usage of data center infrastructure lowers resource

utilization but significantly impacts cloud application ser-

vice quality. They defined data center resource utilization as

a problem of balancing efficiency and balance, considering

cluster systems’ dynamic, discrete, and heterogeneous nat-

ure. Simulations conducted on the Google cluster dataset

indicate that their proposed algorithm can enhance data

center infrastructure usage while ensuring all users have the

right to access resources.

Gupta et al. [26] analyzed the long-range dependence

nature of cloud resource workloads using autocorrelation

and rescaled range analysis methods. They investigated the

presence of long-range dependence in cloud workloads and

provided experimental evidence for its origins. They also

used the Google cluster trace for analysis as a standard real

dataset and used metrics such as arrival, service distributions

of jobs, and resource usage. They showed that these metrics

demonstrate heavy-tailed behavior, and a mathematical

formulation proves that aggregate workload exhibits long-

range dependence. Finally, they suggested that their analysis

provides crucial information that can facilitate designing

optimal resource management policies for cloud workloads.

Loo et al. [15] proposed a scalable infrastructure to analyze

the operation logs of cloud environments. They analyzed the

dataset for workload characterization, considering the deci-

sion tree classifier had the shortest average time, followed by

logistic regression and then the random forest classifier, their

proposed infrastructure.

In their study [27], Subramanian et al. introduced a

novel algorithm named CDB-LSTM, which is designed to

predict resource usage in data centers. The authors sought

to identify informative samples by leveraging the hyper-

graph concept and applying specific filters while disre-

garding outlier data. The proposed model provides a more

accurate estimation of future resource usage and minimizes

virtual machine relocations. Additionally, it selects an

appropriate destination server using a correlation coeffi-

cient measure. The authors validated their model using the

Google cluster dataset within a simulation environment.

The results demonstrated the model’s effectiveness in

reducing the number of virtual machine migrations, thereby

enhancing performance while conserving energy.

4 Data analyzing

The ‘‘Google Cluster Trace Usage 2011’’ is a dataset

containing a comprehensive record of the resource request

and usage data of Google’s data centers over one month in

May 2011. The dataset includes information on the usage

Cluster Computing

123



of CPUs, memory, and disk I/O for tens of thousands of

machines and network usage data for millions of flows. At

the same time, it does not have information about end

users, their data, or even their access patterns to systems

and services. The dataset is available on Google storage

and is 41 GB in size. Researchers can download it using

the gsutil command line tool provided by Google. It covers

many workloads, including batch jobs and web-serving

jobs. This dataset is intended to help researchers better

understand the characteristics of large-scale distributed

systems and to facilitate the development of more efficient

and reliable computing infrastructures.

Four different analyses of the tables included in the

‘‘Google cluster trace usage 2011’’ were investigated in

this study, as illustrated in Fig. 1. The first analysis reveals

the effects of resources on task execution time and shows

how we can increase the cluster performance with the least

expenses. The second analysis tries to figure out the role of

task constraints on rescheduling; by reducing the number

of rescheduling, we can reduce resource waste and increase

cluster performance. Which one makes the bottleneck:

tasks with higher priority or lower ones? The third phase

tries to find the best answer to this question. Finally,

different categories of tasks and their relation with task

constraints are investigated in the last phase. However, in

some phases, the data need preprocessing to eliminate

outliers. The Pareto rule also demonstrates the relationship

between factors impacting scheduling and rescheduling.

Some revealed that relations between task type and

rescheduling highly contrast expectations.

4.1 First data analysis

This analysis presents average task execution times on

various machines based on memory and processor perfor-

mance. The goal is to determine how memory and pro-

cessor affect task execution time. First, using the columns

of event type and time stamp in the table of machine

events, the service duration of the machines in the whole

29 days of data has been calculated. Therefore, first, we

have considered all the machines whose event type column

shows zero, which means they were added to the envi-

ronment as the machines in the environment, and we have

placed them in a new table called machines-service-time.

Then, using the time of the two events of adding (0) and

removing (1) the machine from the environment, the

desired service time is calculated as the service period of a

machine with a certain amount of memory and processor.

Due to update events, machines’ memory and processor

sizes may change multiple times during the test period.

Consequently, after each update event, we treated each

machine as new with different specifications and service

duration. The time between addition and update events

reflects the service duration of such machines. Our new

table, ‘‘machines-task-time,’’ has eight combinations of

machines for different amounts of memory and processors.

We count the total service time of each type of machine

and the overall number of tasks performed by a distinct

virtual machine. The average time to run each task by a

specific machine can be calculated by (total machine ser-

vice time)/(all unique tasks performed by a machine type).

Table 2 shows the final results.

Here, we analyzed the first four groups from the table to

provide evidence supporting the statement that main

memory has a more significant impact on a machine’s task

capacity and performance compared to the processor. Upon

examining the data for the first four groups, which all share

the same CPU capacity of 0.5, we can discern substantial

variations in their average times per task.

In Group 1, where the memory capacity is 0.03085, the

average time per task is remarkably high at 1,417,500. This

suggests that machines with limited memory capacity

experience significant performance bottlenecks, even when

the CPU capacity remains constant. Moving to Group 2,

with a slightly higher memory capacity of 0.06185, we see

a noticeable reduction in the average time per task, which

Fig. 1 The research framework
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stands at 154,797. This performance improvement suggests

that a modest increase in memory capacity can lead to

substantial gains in task efficiency, reinforcing the impor-

tance of memory. Group 3, with a memory capacity of

0.1241, exhibits further improvement in task performance,

with an average time per task of 10,872.9589. The data

underscores that as memory capacity increases, task exe-

cution becomes increasingly efficient, even with the same

CPU capacity.

Lastly, in Group 4, where the memory capacity jumps to

0.2493, we observe a significant drop in the average time

per task, down to 5,276.779295. This compelling evidence

reinforces the argument that memory capacity plays a

pivotal role in influencing task execution time, as the gains

achieved by upgrading memory capacity are pretty sub-

stantial, even when the CPU capacity remains constant. In

summary, the analysis of the first four groups in the

table strongly supports the notion that main memory has a

more profound impact on a machine’s task capacity and

performance than the processor, as evident in the sub-

stantial variations in task execution times corresponding to

different memory capacities while maintaining the same

CPU capacity.

Table 2 shows that increasing machine memory reduces

task execution time. Main memory impacts a machine’s

task capacity and performance more than the processor.

Upgrading the main memory capacity has a greater impact

on overall machine performance and efficiency. Table 2

shows that doubling the memory size results in at least nine

times reduction in average task time, as seen by comparing

the first two rows; even comparing rows 2 and 3 indicates a

much higher (14.2 times) reduction in average task time by

doubling the memory. Comparing rows 4 and 5 reveals a

hidden truth about CPU in the dataset: Doubling the CPU

capacity while slightly decreasing memory can’t reduce the

average task execution time but also increase it by 30%.

Expanding the CPU while we don’t have enough memory

can negatively impact the performance. Expanding the

CPU can speed up just CPU-bound tasks but has little

impact on the overall cluster’s performance.

In the cluster dataset, we observed that Google upgraded

the server memory to its maximum capacity exclusively for

servers with the highest CPU capacity, totaling 2218 virtual

machines. However, by reallocating 25 percent of the

memory from these 2218 machines—each with full CPU

and memory capacity—and applying the additional mem-

ory to machines with a CPU capacity of 0.5 and memory of

0.2493 (comprising 10,188 machines in this dataset), we

can significantly enhance the overall performance of Borg.

We have investigated new clusters, focusing on

exploring the latest Google Cluster Dataset from

2019 (Fig. 2). This dataset commands a substantial size of

approximately 2.4 terabytes, marking a significant increase

in volume compared to its predecessor, which measured a

mere 44 gigabytes. Managing data of such magnitude

presents notable challenges regarding time and resource

utilization.

To address these challenges, we harnessed the power of

BigQuery, a service provided by Google Cloud. This

allowed us to execute intricate queries on the Google

Cluster Dataset without necessitating the download of the

entire cluster trace. Utilizing the query illustrated in Fig. 3,

we could extract comprehensive insights regarding the total

number of machines and their corresponding execution

times, all through the capabilities of Google BigQuery.

BigQuery uses a distributed architecture and algorithm,

where the data is distributed across multiple servers,

enabling parallel processing for faster query performance.

We also utilized BigQuery ML, which allows users to build

and execute machine learning models directly within

BigQuery. Without the power of the cloud and its parallel

algorithm, exploring big data like Table 2 is almost

impossible. In contrast to conventional relational data-

bases, BigQuery employs diverse parallel schemas to

enhance the speed of query execution [28]. BigQuery is a

serverless data warehouse supporting scalable analysis over

large datasets (even over petabytes), which helped us cal-

culate the average time and number of constraints in a

reasonable time. Figure 2 demonstrates the pseudo code we

Table 2 Tasks average time per

machine type
Group number CPU capacity Memory capacity Total machines Average time/per task

1 0.5 0.03085 6 1,417,500

2 0.5 0.06185 3 154,797

3 0.5 0.1241 97 10,872.9589

4 0.5 0.2493 10,188 5276.779295

5 0.25 0.2498 510 3975.903614

6 0.5 0.749 2983 2502.837684

7 1 1 2218 2178.148921

8 0.5 0.4995 21,731 1856.602755
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proposed to reveal the average time per task for each group

of virtual machines.

In our analysis of task constraint usage within the

Google Cluster Trace 2011 dataset, as shown in Fig. 4 we

employed another BigQuery to categorize individual con-

straint values into eight distinct ranges, from 0 to 180 or

greater. Examining the distribution of tasks across these

ranges revealed a predominant preference for lower con-

straints (0–59). However, we observed notably low fre-

quencies in the higher constraint ranges, underscoring the

significance of tasks with lower constraints. This catego-

rization approach not only offers valuable insights into the

characteristics of the workload but also sheds light on

potential bottlenecks, particularly concerning tasks with

constraints below 20.

It is worth noting that while this invaluable Google

Trace Dataset is accessible free of charge, employing

BigQuery for analysis does consume computational

resources. Researchers should be mindful of potential

associated costs when opting for this approach. All queries

used in this paper are accessible by demand for further

studies. The conclusive findings derived from our analysis

of the Cluster 2019 dataset, as presented in Table 3, shed

light on the notable influence of memory capacity on task

execution time. This observation underscores the signifi-

cance of memory resources in the context of computational

tasks. A particularly striking insight emerges when we

compare the last two rows of the table. In this comparison,

we discern that, with the CPU already operating at its peak

performance level, doubling the memory size leads to a

noteworthy consequence—a task execution time increase

of at least two-fold. This revelation underscores the pivotal

role that memory capacity plays in shaping the efficiency

and performance of computational tasks within the dataset.

The comparison between group B (machines with

maximum CPU and half memory) and group A (machines

with maximum CPU and maximum memory) reveals

intriguing insights. Specifically, we observe that the num-

ber of machines falling into group B (as denoted by row

12) exceeds three times the count of machines in group A

(row 13), indicating a significant disparity in distribution.

Despite this numerical advantage, the performance of

group B machines is markedly inferior, registering at less

than fifty percent (48%) of the performance of group A

machines.

This stark contrast prompts a compelling proposition: by

consolidating every two machines from group B into

machines with maximum memory and CPU, we could

Fig. 2 Pseudo code for

proposed BigQuery algorithm
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effectively create 3642 machines optimized for perfor-

mance. This consolidation would not only enhance overall

system performance but also potentially lead to a reduction

in power consumption.

The anticipated impact of this consolidation is profound.

With an average time per task projected to be nearly 7271,

the consolidated machines would boast significantly

improved efficiency. Furthermore, this enhanced perfor-

mance capacity, coupled with the surplus of 3,642 CPUs

that are now idle, positions the system to handle the

workload effectively with optimized resource utilization.

Consequently, the consolidation presents a compelling

Fig. 3 BigQuery command to

calculate the number of

machines with maximum CPU

and Memory capacity in Google

cluster 2019 trace

Fig. 4 Categorization of task

constraints using BigQuery
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strategy for maximizing system efficiency and minimizing

resource waste.

Comparing rows 9 and 12 in Table 3 reveals an

intriguing observation: despite solely increasing CPU

capacity (as evident in the transition from 0.958 to full

capacity) while maintaining memory at 0.5, the average

time per task unexpectedly increases instead of decreasing.

However, when we examine instances where memory is

augmented, such as the comparisons between rows 9 and

10, 7 and 8, 11 and 12, and also row 13, a consistent pattern

emerges: augmenting memory while keeping CPU capacity

fixed consistently leads to a decrease in the average time

per task. This finding underscores the potential for

enhanced virtual machine (VM) performance within a

cloud environment through memory upgrades.

Furthermore, it’s noteworthy to consider the feasibility

of capacity upgrades. Due to hardware limitations, adding

CPU capacity is inherently more constrained than memory

updates. Typically, servers can accommodate up to 4

CPUs, whereas they can support up to 24 memory slots,

enabling configurations of up to 3 TB. This practical

constraint suggests that expanding memory capacity is a

more viable and scalable option for improving performance

within cloud environments in real-world scenarios.

4.2 Second data analysis

This section investigates how the number of task con-

straints affects the rescheduling frequency and overall

environment efficiency. Analyzing Google’s tables and

files poses a challenge due to their high volume of records

and files. Processing all files in a table would be time-

consuming and require substantial processing and main

memory capacity. Therefore, we only examined approxi-

mately 20,000 tasks from the first day of a 29-day exper-

iment. We identified tasks in the environment by filtering

the task with event type zero (ADD) and created a separate

table called ‘‘aggregated-tasks-constraints’’.

We matched the Job and Task ID columns from the Task

table with the corresponding columns in the table of Task

Constraints to determine all constraints for each task. In the

first step, we obtained a table with 19,641 rows and two

columns: the number of constraints and rescheduling for

each task. Tasks with a value of one in the rescheduling

column were registered only once and not rescheduled, so

they were removed from the table. After using the Boxplot

Adjusted method to eliminate outlier data from the

restriction column, we obtained a table with 8,271 rows.

The final result was derived after excluding tasks with only

one scheduling (without rescheduling). Table 4 illustrates

the distribution of tasks within the range of restrictions.

Figure 5 gives a better idea of task frequency within

constraint ranges. The figure shows that 92.36 percent of

tasks in the first three rows have less than 30 constraints.

Hence, there are outlier data. Outliers are data points that

deviate substantially from the rest of the observations,

suggesting they may have been generated differently. They

can be categorized into two groups: those resulting from

data errors and those resulting from inherent data diversity

[29]. The Boxplot method (Tukey) is suitable for identi-

fying and eliminating outliers since it does not rely on

assumptions about data characteristics [30]. The data in

Table 3 is highly skewed, and using the Boxplot method

would classify a significant portion (around 30%) as out-

liers and remove them. Thus, the Adjusted Boxplot method

is preferred.

In this method, a powerful technique called MedCouple

is usually used to measure skewness [28].

MedCoupleðx1; . . .; xnÞ ¼ med
ðx1 � medkÞ � ðmedk � xiÞ

xj � xi

ð1Þ

Table 3 Machine task-time—

Google cluster 2019
Group number CPU capacity Memory capacity Total machines Average time/per task

1 0.386 0.166 2844 33,547

2 0.386 0.333 4948 31,029

3 0.479 0.25 4 17,515

4 0.591 0.166 1293 24,137

5 0.591 0.333 16,360 22,522

6 0.708 0.25 3 349

7 0.708 0.333 6973 21,799

8 0.708 0.666 2592 16,225

9 0.958 0.5 583 13,861

10 0.958 1 365 13,596

11 1 0.25 193 16,581

12 1 0.5 7285 14,852

13 1 1 2317 7271
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Subscriptmedk represents the median of xn while the

value of i and j need to fulfill: xi �medk � xj and, xi 6¼ xj.

Given the large dataset size (8271) and the high time

complexity of the calculation for the Boxplot method

(O(n2)), an alternative approach called the octile skewness

method is used instead [31]. The octile skewness can be

calculated by the formula (2) using quartile skewness

described in [16]. Data skewness is a measure of the

asymmetry of a distribution. A distribution is asymmetrical

when its left and right sides are not mirrored. Skewness can

be positive, negative, or zero. Octile skewness indicates

whether the distribution is skewed to the left or right, while

quartile skewness indicates whether the distribution is

skewed upwards or downward.

octileskewness

¼ Quartile0:875 � Quartile0:50ð Þ � Quartile0:5 � Quartile0:125ð Þ
Quartile0:875 � Quartile0:125

¼ 18 � 8ð Þ � ð8 � 0Þ
18 � 0

¼ 0:1111

ð2Þ

With replacing octile skewness in the following equa-

tion with 0.1111, which we calculated above, the upper and

lower bounds will be revealed to are 37 and - 11,

respectively:

L;U½ � ¼ Quartile1 � 1:5 � e �3:5octileskewnessð Þ � IQR; Quartile3

h

þ1:5 � e 4octileskewnessð Þ � IQR
i
if octileskewness� 0

¼ Quartile1 � 1:5 � eðð�4 � octileskewnessÞÞ � IQR; Quartile3½
þ1:5 � eðð3:5octileskewnessÞÞ � IQR� if octileskewness\0

ð3Þ

After removing outlier data located outside [- 11,37],

the distribution of tasks within different constraints would

be like Fig. 6, in which data is less skewed.

This figure illustrates that over 90 percent of tasks have

less than 14 constraints. Using the Pareto rule, we can

better understand these numbers.

In the context of Google Cluster and resource allocation,

tasks with fewer constraints are prioritized more than their

counterparts. These constraints, which encompass various

user-defined properties influencing task placement,

including machine specifications and task relationships,

introduce a competitive dynamic within the scheduler. The

scheduler’s decisions are guided by ensuring that resources

on the machine are optimally utilized while

Fig. 5 Distribution of task constraints

Fig. 6 Distribution of task constraints after removing outliers

Table 4 Tasks frequency within

constraint ranges
Constraint range Task frequency Cumulative frequency of tasks (%)

0–9 5674 68.60

10–19 1578 87.68

20–29 387 92.36

30–59 272 95.65

60–89 31 96.02

90–119 9 96.13

120–149 3 96.17

150–179 3 96.20

180–209 5 96.26

210–239 3 96.30

240–269 1 96.31

270–299 3 96.35

Higher 302 100
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accommodating less-constrained tasks, which may need to

be relocated, completed, or terminated to meet this objec-

tive [13].

4.2.1 Pareto Rule (20/80 concept)

Applying the 80/20 rule, we find that 20% of inputs, cau-

ses, or efforts often yield 80% of outputs, results, or

rewards. This principle, as seen in Fig. 7, highlights that

80% of work achievements stem from just 20% of time

spent defying common expectations [14].

The 20/80 concept refers to the likelihood of imbalance

and balance in cause-and-effect data analysis, with imbal-

ances occurring between forms such as 65/35, 75/25, 20.80,

95.5, and even 85/10. The sum of two numbers may not

equal 100 sometimes. Figure 8 shows that 87% of envi-

ronment restrictions are associated with tasks having over 7

and under 38 constraints, while only 13% are linked to

tasks with 0–7 constraints.

But in Fig. 9, you can see that 90% of all rescheduling is

related to the range of tasks with limits between 0 and 7

numbers.

Table 5 displays the number of restrictions and

reschedules per range and their cumulative total.

Surprisingly, tasks with more restrictions could be more

effective in rescheduling than expected. We discovered

that tasks with fewer constraints can cause more

rescheduling, and Google, in the future, can focus more on

these tasks to investigate them, reduce the rescheduling,

and increase the performance of its Clusters. Tasks with a

higher number of restrictions contribute less to reschedul-

ing because their priority is also higher.

4.3 Third data analysis

In the third step, we analyze how task priority affects

rescheduling. The relationship between rescheduling and

task priority will be revealed. We match the job ID and task

index in the task events table, then count reschedules for

each task to create a table with 19,641 rows. The priority

will be in the first column, and the number of schedules in

the next. Tasks with a value of one in the rescheduling

column are removed from the table, as they have only been

registered once and have yet to be rescheduled. Then, using

the ‘‘Adjusted Boxplot’’, rows with values higher than 25

will be removed as outliers, giving a table with 8272 rows.

Table 6 has 12 rows for priorities 0 to 11, showing the

number of rescheduling for them. The number of

reschedules is divided by the task frequency to determine

Fig. 7 Pareto rule

Fig. 8 Task restrictions fre-

quency in two ranges

Fig. 9 Task reschedule fre-

quency in two ranges

Table 5 Rescheduling in task constraint ranges

Task restrictions ranges Constraint’s count Rescheduling count

8..37 47,551 7954

0..7 6927 72,140

Total 54,478 80,094

Table 6 Reschedules versus priority

Priority Rescheduling per task

0 15.37662

1 5.153199

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 1.87736

10 3.852792

11 2.276276
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the average per task for priorities 0–11. No tasks were

recorded for priorities 2 to 8 during the analysis period.

The new Table has 8271 rows that are right-skewed. The

distribution of data in this table is demonstrated in Fig. 10.

We removed outlier data from the table using the

‘‘Adjusted Boxplot’’ method by setting upper and lower

limits of 25 and zero. Data outside this range are consid-

ered outliers and deleted. This result is demonstrated in

Fig. 11.

After outlier removal and calculating task rescheduling

averages based on priority, Table 7 is obtained. It can be

concluded that lower priority tasks that use resources and

resources are withdrawn from them for the use of higher

priority tasks are among the main factors of rescheduling in

our study environment. The authors suggest that setting a

minimum time access to the resources by tasks (especially

those with the lowest priority) can significantly improve

the cluster performance by reducing the number of

rescheduling. The number of rescheduling for tasks with

the lowest priority (0) is three times more than reschedul-

ing tasks with priority (1). It means tasks with priority (0)

can be easily postponed to run later because of their low

importance, but this rescheduling itself can bring a sig-

nificant overhead to the whole cloud. Considering a mini-

mum resource access time for each task in the scheduling

and rescheduling algorithm can increase cloud perfor-

mance. This time can be adjusted during specific time

intervals regarding rescheduling per task ratio within dif-

ferent priorities.

This principle holds within the Google Cluster Trace

context, reflecting the intricacies of resource allocation and

job scheduling. In this environment, jobs categorized in

lower priority tiers must reside in the queue, patiently

biding their time until higher-priority jobs release the

compute resources essential for their execution. This

orchestration ensures that resource utilization aligns with

the priority hierarchy, optimizing the allocation of

computational assets by the specific demands of each job

and the overall system efficiency [15].

4.4 Fourth data analysis

This analysis investigated the relationship between the

number of task constraints and their categories. First, we

introduced the job and task life cycles and their corre-

sponding event types.

Figure 12 demonstrates the state transition of a job or

task in its entire life cycle. Each arrow indicates the tran-

sition between different states. There are two types of

events; they either do the scheduling or change the task’s

state. Each job and task in the dataset has a number that

reveals its event type. This number reveals what happened

to a task after an event. In case of death, the event type will

contain metadata about its reason. Event types can vary

between 0 and 8. Submitted (0) means a task or job is ready

for scheduling in the Borg system. Then, tasks will be

scheduled (1) to run on a specific machine, but sometimes,

they may get de-scheduled because of a higher priority

task, which will go to the Evict (2) state. A task can be

failed (3) or finished (4) successfully. Sometimes, a task

will kill (5) by either user cancellation or because its

dependent task has failed before. If a task is terminated, but

we don’t have its log in our database, we call it Lost (6). A

task or job requirements or constraint may change while

unsubmitted (Update-pending (7)) or even when it is

scheduled: Update-running (8).

Fig. 10 Number of rescheduling

Fig. 11 Number of rescheduling after removing outliers

Table 7 Constraint and event type relations

Event type Frequency Sum of constraints Constraint per event

EVICT 60,717 775,050 12.76

FAIL 7993 16,485 2.06

FINISH 263,497 5136 0.01

KILL 168,753 20,379,811 120.76
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In this section, we move the entries from the task event

table whose type column shows the digits 2, 3, 4, or 5,

representing EVICT, FAIL, FINISH, or KILL, respec-

tively, into a new table. We only look at the roughly

500,000 tasks from the first ten days of the experiment to

compensate for the massive amount of data in the task

event table. We next count the number of execution con-

straints for each line of this table (per task) and record it in

a column of this table using the table of task restrictions. In

addition, the event type is counted. Lastly, we can deter-

mine the average limit for each task by dividing these two

columns. Table 7 demonstrates the final result.

The result reveals 120.76 constraints per KILLed task,

which is exceptionally high compared to other task types.

Tasks with higher constraints are prone to be killed once

before they finish. Killing a task or entire job causes sig-

nificant overhead to the cluster. To bypass this overhead,

cloud service providers can break the tasks with too many

constraints into subtasks with fewer constraints, reducing

rescheduling and increasing the cluster performance. If we

decrease the number of killed tasks, breaking them into

subtasks, tasks with evicted event type will also decrease

because they are positively correlated.

We utilized the Google cluster jobs dataset, comprising

3,535,029 rows and six columns (Time, ParentID, TaskID,

JobType, NrmlTaskCores, NrmlTaskMem), to develop a

predictive model using XGBoost regression. We aimed to

predict the normalized task memory based on other col-

umns. Employing the parameters (objec-

tive = ‘reg:squaredlogerror’, n_estimators = 1000,

learning_rate = 0.05, max_depth = 7), our analysis

revealed that the Job type emerged as the most significant

feature, contributing to 65% importance in predicting

memory requirements. Following closely, NrmlTaskCores

accounted for 15% importance, albeit considerably less

influential than the Job title. This underscores the strong

correlation between job type and memory allocation for

each task, as shown in Fig. 13a.

In our second prediction model, we aimed to forecast

normalized task cores using the information from the other

five columns. Interestingly, our analysis revealed a signifi-

cant correlation between normalized task cores and the

ParentID column, followed by memory allocation, with job

type ranking third. These findings suggest that prioritizing

job types over CPU capacity could yield substantial benefits

when considering memory augmentation within the Google

cluster. This underscores the importance of implementing an

optimized scheduler capable of allocating virtual machines

with varying memory capacities to the corresponding job

types, thereby potentially enhancing the overall performance

of the cluster task, as shown in Fig. 13b.

5 Conclusion

In this study, we investigated the Google Trace dataset,

which is priceless because, undoubtedly, many researchers

are working on it, and the result can shape the next gen-

eration of cloud and data centers. We investigated the

Google Trace from four perspectives to determine how to

increase the cluster performance. In the first data analysis,

we discovered that memory has a higher impact than CPU

on performing tasks. We found that Google just upgraded

the servers with the full CPU to have full memory, while

the bottleneck is mostly memory, not CPU. Reducing 25%

memory from 2218 machines with full CPU and memory

capacity and applying the extra memory to 10,188

machines with 0.5 CPU capacity and 0.2493 memory can

significantly improve the performance of Borg. In the

second analysis, contrary to our expectation, we found that

tasks with higher restrictions have less impact on

rescheduling them; however, in the third section, we dis-

covered that tasks with lower priority are the main reason

Fig. 12 State transition for jobs

and tasks
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for rescheduling, and they increase the cloud overhead. We

suggest using minimum time to use resources for each task,

which can let tasks with lower priority have the opportunity

to run entirely. Finally, we showed that tasks that are

KILLed by the cloud management system have the highest

number of constraints compared to those that are FIN-

ISHed, EVICTed, or FAILed. We suggest breaking the task

into subtasks, decreasing the number of killed tasks, and

increasing performance.

While the Google cluster dataset 2019 has been

explored, it holds untapped insights. To unlock these, we

propose leveraging AI and GPU power to predict task

constraints, a major challenge in cloud environments.

Accurately forecasting constraint numbers can lead to

significant time and energy savings, as demonstrated by

studies suggesting the effectiveness of combining machine

learning algorithms like XGBoost with hyperparameter

tuning techniques like swarm-based artificial bee colony

optimization. Our work aims to push the boundaries of this

dataset’s potential, revealing valuable knowledge with real-

world impact [32]. In addition, we suggest optimizing Borg

system performance by exploring the possibility of disre-

garding virtual machines with exceptionally low resources,

be it CPU or RAM. By addressing the potential bottleneck

effect caused by such under-provisioned VMs, our future

research aims to provide nuanced recommendations for

resource allocation strategies within Borg. Furthermore, we

recommend including datasets from other major cloud

service providers like AWS, Microsoft Azure, and Alibaba

in future research endeavors. Comparative analyses across

these platforms could yield valuable insights for the

broader research community.
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