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ABSTRACT

Magnetic nanoparticles are the subject of an immense interdisciplinary re-

search since they offer versatile applications, e.g., in the areas of materials sci-

ence, nanotechnology, and biomedicine. To assess their potential for a particular

technology, it is crucial to understand their internal spin microstructure, which

is often found to be nonuniform. This spin disorder has various origins, such as

the presence of microsructural defects (e.g., surface anisotropy, vacancies, and

antiphase boundaries), or the size and shape of the particles (and the ensuing

dipolar interaction). Currently, from the experimental characterization point of

view, it is an immense challenge to resolve and analyze the spin structure of

nanoparticles since commonly magnetic nanoparticle assemblies consist of a (size

and shape) distribution of randomly-oriented particles.

In this project, we focus on the technique of magnetic small-angle neutron

scattering (SANS), which is a powerful method for the investigation of mesoscale

spin structures within the volume of magnetic media. With the conventional

SANS technique one can study structure on a length scale of about 1−100nm. The

relevant quantity for understanding magnetic SANS is the three-dimensional mag-

netization vector field M =M(r), which can be computed using the continuum

theory of micromagnetics. The Fourier transform M̃ = M̃(q) of the real-space

spin structure then determines the magnetic neutron scattering cross section.

Using numerical micromagnetic computations, we study the effect of pore-type

defects and the signature of the Dzyaloshinkii-Moriya interaction (DMI) in spher-

ical nanoparticles in the randomly-averaged SANS observables, in particular in

the spin-flip SANS cross section, the related chiral function, and the pair distance

distribution function.

The micromagnetic simulations on ensembles of randomly-oriented spherical

(Fe and FeGe) nanoparticles take into account the Zeeman energy in the external

magnetic field, the dipolar (magnetostatic) interaction energy, the energy of the
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magnetocrystalline anisotropy, the isotropic and symmetric exchange energy, as

well as the antisymmetric Dzyaloshinkii-Moriya interaction (DMI) energy. We use

the open-source software package MuMax3, which is a widely-used micromagnetic

simulation tool that enables researchers to investigate the static and dynamic

nanoscale behavior of magnetic materials.

In a first part, we use the numerical micromagnetic approach to model the

impact of micostructural defects on the SANS observables. More specifically,

the defects are magnetic holes, i.e., regions within the nanoparticles where the

saturation magnetization and the exchange constant differ from those of the host

material. By analyzing the magnetic SANS cross section and the pair distance

distribution as a function of the concentration of these pore-type defect, the study

highlights the properties of these irregularities in the magnetic microstructure.

The signature of the defects and the role of the dipolar energy are discussed

and the effect of a particle-size distribution is studied. The results serve as a

guideline to the experimentalist. Additionally, the research includes a comparison

to experimental neutron data on an isotropic Nd-Fe-B permanent magnet, where a

dipolar-energy-induced vortex-like flux-closure magnetization pattern is observed,

and analyzed via the magnetic correlation function approach.

In a second part, the signature of the DMI in the SANS cross section is

investigated. The DMI is a phenomenon that occurs in systems with broken in-

version symmetry and strong spin-orbit coupling. When combined with all the

other magnetic interactions, the DMI supports and stabilizes the formation of

various complex magnetization configurations at the mesoscale level, which in-

clude helices, spin spirals, skyrmions, and hopfions. An important question in

this context addresses the signature of the DMI in the neutron-scattering ob-

servables, particularly in randomly-oriented nanoparticle assemblies. In such

systems, the magnetic scattering signal related to the DMI is diffuse in char-

acter and differs from the single-crystal diffraction peaks observed e.g. in the B20

compounds. Simulations were carried out for a specific parameter range of par-
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ticle size (60nm ≤ D ≤ 200nm) and applied magnetic field (−1T ≤ µ0H0 ≤ 1T).

The findings indicate that the chiral function is only nonzero when the DMI is

taken into account in the simulations. The results are discussed in relation to the

symmetry properties of the magnetization Fourier components and the energies

involved under space inversion.
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Chapter 1

Introduction

Small Angle Neutron Scattering (SANS) is a powerful experimental technique

used to investigate the structure and properties of materials on a mesoscopic

length scale between about a few and a few hundred of nanometers [4,7,15]. This

method uses neutrons to probe the sample and, due to the magnetic moment of

the neutron, is also sensitive to the magnetic structure of materials. In SANS

experiments, neutrons are scattered off the sample at small angles, usually be-

tween 0.1 and 10 degrees. By measuring the intensity of the scattered neutrons,

we can gain insight into the structure and properties of the material, such as the

size and shape of the scattering particles, the spacing between them, and their

interactions.

This project focuses on a specific type of SANS known as “diffuse” magnetic

SANS. In contrast to magnetic small angle diffraction that investigates long -

range periodic structures, such as helical spin systems, spin-density waves, flux-

line lattices in superconductors, or skyrmion crystals, “diffuse” SANS experiments

focus on the scattering of neutrons at small angles near the forward direction,

originating from quasi-nonperiodic long-wavelength magnetization fluctuations.

The wavelength of the incident neutrons is usually much larger than the so-

called Bragg cutoff of the material, so the discrete atomic structure of the sample

is generally not relevant for SANS and a continuum description is appropriate.

Therefore, the quantity of interest in a magnetic SANS experiment, the elastic

magnetic SANS cross section, is primarily determined by the three-dimensional

magnetization vector field of the sample. Figure 1.1 highlights the transition from

real space to reciprocal space for the cases of a smooth texture and a discrete
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Figure 1.1: Schematic representation of the transition from real space to recip-
rocal space, shown for a smooth texture (A1), a discrete lattice with a lattice
spacing of a (A2), and a smooth incommensurate modulation on top of a discrete
lattice (A3). Image taken from [3,4].

lattice structure.

Magnetic materials are highly valued for their diverse properties in many

scientific and technological areas. Magnetic nanoparticles, in particular, pos-

sess a remarkable potential in nanotechnology due to their size-dependent mag-

netic properties that often differ from those of bulk materials. These magnetic

nanoparticles have a wide range of applications, ranging from biomedical, envi-

ronmental, and technological domains. For example, magnetic nanoparticles can

be used for targeted drug delivery systems [16, 17], magnetic resonance imaging

(MRI) contrast agents [18], environmental remediation [19], magnetic data stor-

age [20], catalysis [21], and energy-related applications [22]. To gain insight into

the structural and magnetic configurations of these nanoparticles, SANS is used

to characterize their behavior under the application of external magnetic fields.

By studying magnetic nanoparticles with the SANS technique, one can uncover

their magnetic microstructure, which is essential for creating customized mate-

rials for various applications. This knowledge can then be used to improve our

understanding of their behavior and promote the development of new materials

for practical use.
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1.1 Basic Properties of the Neutron

The neutron has a mass of 1.675×10−27 kg, a spin angular momentum of S = ±1/2h̵,

a magnetic dipole moment of −1.913 µN (where µN is the nuclear magneton), and

an average lifetime of of approximately 886 seconds [23]. These characteristics

render the neutron extremely attractive for research purposes. More specifically:

• The mass of the neutron gives rise to a de Broglie wavelength for research

neutrons that aligns with the interatomic distances found in numerous crys-

talline and liquid materials (Å regime). This characteristic facilitates the

study of the structure of matter. Additionally, given that the energy levels

of cold and thermal neutrons are commensurate with the elementary exci-

tations within solids (meV regime), it becomes possible to investigate the

dynamic properties through the examination of inelastic neutron scattering.

• Due to their zero net electrical charge, neutrons exhibit a very weak interac-

tion with matter, unlike electrons, which are subject to the Coulomb barrier.

Consequently, neutrons have the ability to penetrate materials deeply and

interact with the atomic nuclei. The theoretical analysis of the neutron-

nucleus scattering process can be conducted using first-order perturbation

theory, known in the scattering formalism as the Born approximation.

• The magnetic moment of the neutron interacts with the magnetic moment

of unpaired electrons in atoms, allowing for an examination of magnetic

structure and dynamics through this interaction. It is important to note

that magnetic neutron scattering can be as strong as the nuclear scattering.

• The average lifetime of the neutron is ± 15 minutes, i.e., it lives “long

enough” so that scattering experiments can be carried out.

One might think that neutrons (being neutral particles) will only interact strongly

with the materials’ nuclei. However, the spin of neutrons allows the detection of

the electron’s magnetic moment. The diagram in Fig. 1.2 illustrates how beams of
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Figure 1.2: Illustration of the primary interaction mechanisms of electrons, X-
rays, and neutrons with matter. Image taken from [5].

neutrons (red), X-rays (blue), and electrons (yellow) interact with matter through

distinct mechanisms. Both X-rays and electrons engage with the material’s elec-

trons; the X-rays through the electromagnetic interaction, and the electrons via

electrostatic forces. These interactions are strong, preventing the deep penetra-

tion of the beams into the material. Neutrons on the other hand interact with

the atomic nuclei through an extremely short-ranged strong nuclear force, allow-

ing them to penetrate materials more deeply than X-rays or electrons. If there

are unpaired electrons in the sample, then the incident neutrons are scattered

by them through a spin-based dipole-dipole interaction. Table 1.1 lists the basic

properties of the electron, proton, and neutron:

Table 1.1: Basic properties of the three principal constituents of atoms.
Particle Charge (×10−19C) Mass (×10−27 kg) Spin
Electron −1.602177 0.000911 1/2
Proton +1.602177 1.672622 1/2
Neutron 0 1.674927 1/2
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1.2 Motivation for the PhD Project

This PhD project investigates the application of micromagnetic simulations to

analyze the characteristics of magnetic SANS in the isolated nanosphere sys-

tem. The outcomes of this research are : (i) the identification of the influence of

pore-type defects within the material on the magnetic SANS observables (cross

section and correlation function) [1] and (ii) the demonstration of the effect of

the Dzyaloshinskii-Moriya interaction (DMI) on the magnetic SANS cross section,

particularly on the chiral function, accessible using polarized neutrons [2].

(i) In recent years, magnetic nanoparticles have become increasingly impor-

tant in a range of scientific and technological fields [24–26]. Magnetic SANS

experiments have been used to study the spin textures of nanoparticles [3, 4, 13],

with spin-polarized neutrons being a popular choice because of their sensitivity

to magnetic properties.

Many of the magnetic materials which are studied by the SANS technique are

polycrystalline in nature. This fact implies that the macroscopic properties and

the SANS signal from these magnetic materials are largely determined by crys-

talline lattice imperfections, such as pores, interfaces, dislocations, or vacancies.

Recent studies have shown that the spin textures of magnetic nanoparticles can

be highly complex with a variety of nonuniform, canted, or core-shell-type config-

urations. These studies can be found in various references such as Refs. [27–39]

and others. Nevertheless, the conventional approaches used to analyze magnetic

SANS data make use of structural form factor models derived from nuclear SANS.

Unfortunately, these models fail to accurately consider the spin inhomogeneity

that is present within magnetic nanoparticles. The recent advancements in the

theory of magnetic SANS demonstrate that in order to accurately analyze ex-

perimental magnetic SANS data, it is necessary to consider the spatial variation

at the nanometer scale of both the orientation and magnitude of the magnetiza-

tion vector field. Consequently, macrospin-based models that assume a uniform

magnetization are insufficient for this task [40–49]. Furthermore, the complexity
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of the spin textures of magnetic nanoparticles and the limitations of the stan-

dard methods for analyzing magnetic SANS data highlight the need for further

research in this field. By developing more accurate models for analyzing mag-

netic SANS data, researchers can gain a better understanding of the behavior of

magnetic nanoparticles and their potential applications in various fields.

(ii) The Dzyaloshinkii-Moriya interaction (DMI) is a result of the relativistic

spin-orbit coupling and occurs in condensed-matter systems that have a crystal

field environment without inversion symmetry [50,51]. In many studies, the DMI

plays a crucial role in stabilizing different types of skyrmion textures. Its origin

can be attributed to the crystal structures of the materials being investigated,

with a lack of spatial inversion symmetry, or to the breaking of structural inversion

symmetry at defect sites, such as interfaces in ultrathin film architectures. The

presence of the DMI is responsible for many of the observed topological spin

structures [52, 53]. This PhD project used numerical micromagnetic simulations

to investigate the effects of the DMI on the randomly-averaged SANS observables

of spherical FeGe nanoparticles. Specifically, we focus on the spin-flip SANS cross

section and the related chiral function, which can be obtained from polarized

SANS measurements using uniaxial polarization analysis [54].

The organization of the thesis is as follows: Section 2 establishes the theoret-

ical foundation of neutron scattering, introducing essential scattering principles

and their connection to micromagnetic simulation techniques. Section 3 delves

deeper into micromagnetic theory, elucidating the various energy contributions

that govern the magnetic microstructure of nanoparticles. Section 4 discusses

the impact of microstructural defects on the magnetic SANS cross section and

correlation function of nanoparticles, with a focus on how pore-type defects mod-

ify the scattering patterns of nanoparticles. Section 5 explores the effects of the

Dzyaloshinskii-Moriya interaction (DMI) on the magnetization configurations and

the ensuing spin-flip SANS cross section and chiral function of nanoparticles. Sec-

tion 6 summarizes the main findings of this PhD thesis.
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The results of this thesis have been published in Refs. [1, 2, 13].





Chapter 2

Theoretical Scattering Concepts

This chapter provides an overview of the basic scattering principles, the magnetic

SANS method, and its relation to the micromagnetic simulation method. Readers

who desire a more detailed exposition are recommended to consult recent reviews

on magnetic small angle neutron scattering [55, 56] or a recently published book

dedicated to the subject [4]. For further information on the general theory of

neutron scattering, we refer the reader to the book by Squires [7].

2.1 Scattering Principle

The general geometry of a neutron scattering experiment is depicted in Fig. 2.1.

The incoming neutron beam is characterized by the wave vector k0. On inter-

acting with the sample, the neutron is scattered and acquires a new wave vector

denoted by k1. The difference between these two wave vectors defines the mo-

mentum transfer or the scattering vector q, which is expressed as [7]:

q = k0 − k1. (2.1)

The energy of a neutron can change during the scattering event, which is repre-

sented by the following expression:

∆E = E0 −E1 =
h̵2

2mn

(k20 − k21), (2.2)

where E0 (E1) is the incident (scattered) neutron energy and mn is the mass

of the neutron. This project will focus on elastic neutron scattering, where the
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Figure 2.1: Illustration of the general neutron scattering geometry. Figure
adapted from [4].

magnitudes of k0 and k1 are equal, and the energy before and after the interaction

in the sample is the same (i.e., k0 = k1 = 2π/λ and ∆E = 0). Then the scattering

vector q can be written as:

q = ∣q∣ = 2k0sin(
ψ

2
) = 4π

λ
sin(ψ/2) ≅ k0ψ, (2.3)

where ψ is the scattering angle and λ the average neutron wavelengths. The prob-

ability of a neutron being scattered in a particular direction k1 with a final energy

E1 can be expressed by the scattering function, which is the Fourier transform

of the scattering potential in space and time. Experiments can be conducted to

measure the number of neutrons scattered in a given direction as a function of

their energy E1. The counter (detector) and the target (sample) are assumed

to be far apart, so that the (small) solid angle dΩ that the counter makes with

the target is well-defined. To describe the scattering process, polar coordinates

are used with the direction of the scattered neutrons being ψ and θ. The partial

differential scattering cross section is then expressed as [7]:

d2σ

dΩdE1

= n1

ΦdΩdE1

, (2.4)
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where n1 is the number of neutrons scattered per second into the solid angle

dΩ = sinψdθdψ with a final energy lying between E1 and E1 + dE. Φ is the flux

of incident neutrons. In SANS experiments one measures an energy-integrated

cross section, i.e., d2σ/dΩdE1 is summed over all final energies. This quantity is

known as the differential scattering cross section:

dσ

dΩ
= ∫

∞

0

n1

dΩdE1

dE1. (2.5)

Then, to get the total scattering cross section σ one needs to integrate dσ/dΩ

over all directions (assuming azimuthal symmetry):

σ = 2π∫
π

0

dσ

dΩ
sinψdψ. (2.6)

We would like to emphasize that in the field of small angle scattering, it is common

practice to present the macroscopic differential SANS cross section dΣ/dΩ per

unit volume (in cm−1):

dΣ

dΩ
= N
V

dσ

dΩ
, (2.7)

where N is the number of nuclei in the sample and V is the volume of the sample.

The differential scattering cross section can be calculated by summing up all

the scattering processes in which the neutron’s momentum changes from its initial

momentum k0 to its final momentum k1 [7]:

dΣ

dΩ
= 1

V

1

Φ

1

dΩ
∑

k1 in dΩ

Wk0→k1 . (2.8)

Wk0→k1 denotes the number of transitions per second from the state k0 to the

k1; for elastic scattering only the direction of the neutron’s wave vector changes.

The transition rate can be determined by Fermi’s golden rule [57]:

∑
k1 in dΩ

Wk0→k1 =
2π

h̵
ρk1 ∣⟨k1∣Vint∣k0⟩∣2 , (2.9)
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where Vint is interaction potential between the neutron and the scatter, and ρk1

is density of final momentum states in dΩ.

The calculation of the cross section can become complicated because Vint can

be influenced by the surrounding environment. We assume that Vint does not trap

the neutrons in a bound state. The neutrons both in an initial and final state

can be thought of as free particles, while the core of the interacting potential

does not move. In such cases, the Born approximation is used as a simplification

technique. This involves assuming that both the incident and scattered neutrons

are in a plane-wave state. The matrix element can then be reduced to a Fourier

transform of the interaction potential, where the transition rate is proportional

to the squared magnitude of this Fourier transform.

⟨k1∣Vint∣k0⟩ = ∫ d3r e−ik1⋅rVint(r)eik0⋅r (2.10)

= ∫ d3r e−iq⋅rVint(r) = Ṽint(q), (2.11)

where q = k0 − k1 and Ṽint(q) is the Fourier transform of Vint(r).

A further discussion of the magnetic interaction potential will be presented

later. Details regarding the nuclear interaction potential can be found elsewhere,

such as in Refs. [7, 58].

2.2 SANS Scattering Geometry

In Fig. 2.2 a standard SANS setup is sketched. The incident neutron beam with

wave vector k0 is directed along ex. The external magnetic field H0 is applied

along ez and perpendicular to k0. The scattering angle is denoted by ψ and k1

is the wave vector of the scattered neutrons. This geometry is denoted as the

perpendicular scattering geometry, and used in the micromagnetic simulations.

Note that the field H0 can also be applied parallel to k0 [4, 7, 59].

The scattering angle in a SANS experiment lies typically within ψ ≲ 0.1−10○.
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Figure 2.2: Sketch of the scattering geometry assumed in the micromagnetic
SANS simulations. The applied magnetic field H0 ∥ ez is perpendicular to the
wave vector k0 ∥ ex of the incident neutron beam (k0 ⊥ H0). Figure adapted
from [4].

In this case, the components of the momentum transfer vector q are given by:

q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

qx

qy

qz

⎞
⎟⎟⎟⎟⎟⎟
⎠

= q

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

− sin(ψ
2
)

cos(ψ
2
) sin(θ)

cos(ψ
2
) cos(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= k0

⎛
⎜⎜⎜⎜⎜⎜
⎝

cos(ψ) − 1

sin(ψ) sin(θ)

sin(ψ) cos(θ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (2.12)

The magnitude q of q is given by 2k0 sin(ψ/2). Moreover, one sees that qx is of

second order in the small angle ψ and therefore much smaller than qy and qz.

Consequently, the three-dimensional scattering vector can be approximated by

a two-dimensional one, i.e., q ≅ {0, qy, qz} = q{0, sin θ, cos θ}. This demonstrates

that SANS predominantly probes correlations in the plane perpendicular to the

incident beam. The angle θ = ∠(q,H0) is used to describe the angular anisotropy

of the recorded scattering pattern on the two-dimensional position sensitive de-

tector.
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2.3 Origin of Magnetic SANS

Neutrons can interact with matter in two ways: via the short-ranged nuclear

interaction and via the anisotropic dipole-dipole interaction of the neutron spin

with the spin of an unpaired electron. Both of these interactions, nuclear and

magnetic scattering, are always present and must be taken into account when

analyzing the data of an experiment. However, the micromagnetic simulations in

this project focus exclusively on the magnetic scattering cross section.

The origin of magnetic SANS is due to nanometer-scale variations in both the

orientation and magnitude of the magnetization vector M(r). A derivation of the

magnetic SANS cross section will be given in Section 2.4, where we show that the

magnetic interaction potential Ṽint(q) [Eq. (2.11)] is proportional to M̃(q). In

Fig. 2.3 we illustrate the magnetization distribution for several cases. The sim-

plest case is a homogeneous and uniformly magnetized ferromagnet [Fig. 2.3(a)].

Here, the magnitude Ms = ∣M∣ and the direction of M ∥H0 ∥ ez are the same at

each point r within the material. The magnetization distribution is given by M

= {0,0,Ms}. Consequently, there is no magnetic SANS signal for this case, and

the magnetic SANS cross section reduces to a delta function at the origin of the

reciprocal space,

dΣM

dΩ
∝ ∣δ(q)2∣. (2.13)

In the case of a fully saturated but inhomogenous magnetic microstructure, e.g.,

a two-phase particle matrix system [Fig. 2.3(b)], the SANS signal has its origin in

the spatial variation of the saturation magnetization. The magnetization distri-

bution can be expressed as M = {0,0,Mz =Ms(r)} and the magnetic SANS cross

section is described by the Fourier transform of the saturation magnetization

profile,

dΣM

dΩ
∝ ∣M̃s(q)2∣. (2.14)

Figure 2.3(c) depicts the most general case of an inhomogenous and nonuni-

formly magnetized magnetic material. In this case, the magnetization varies in
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Figure 2.3: Simplified sketches of the magnetization distribution in the presence of
an external magnetic fieldH0 applied in the ez direction of a Cartesian coordinate
system. The effects of the sample surface are not taken into account. (a) A
homogeneous and saturated ferromagnet; (b) an inhomogeneous and saturated
ferromagnet; (c) an inhomogeneous ferromagnet with a nonuniform magnetization
distribution. Image adapted from [4].

magnitude and direction. The magnetic SANS cross section is determined by

all components of the magnetization M = {Mx(r),My(r),Mz(r)} and will be

described in more detail in the next section.

To further illustrate the most relevant case (c), we show in Fig. 2.4 the spatial

distribution of the magnetization vector field M(r) around a nonmagnetic defect

(magnetic hole) in a ferromagnetic Nickel (Ni) phase. The applied magnetic field

H0 is parallel to the z direction. In Fig. 2.4(a), the applied magnetic field is

close to the remanent state, with a magnitude of 0.05T. In contrast, Fig. 2.4(b)

corresponds to the saturated state, with an applied magnetic field of 2T. The top

panel represents the projection of the three-dimensional M(r) into the y-z plane,

while the bottom panel represents the perpendicular magnetization component

My (in arbitrary units). The material parameters used can be found in [60].

The presence of localized perturbations caused by defects is visible at a field of

0.05T. The purpose of Fig. 2.4 is to illustrate how the nanoscale magnetization

inhomogeneity associated with specific defects relates to a contrast for magnetic

SANS, as will be further discussed in Chapter 4.

2.4 Magnetic SANS Cross Section

The central focus of the micromagnetic SANS simulations is to model the interac-

tion potential Vint and perform the Fourier transformation according to Eq. (2.11).

The magnetic interaction potential Vint(r) is the interaction potential of the neu-
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(a) (b)

Figure 2.4: Result of a micromagnetic simulation illustrating the spin misalign-
ment correlations around a spherical defect (nonmagnetic hole) in a uniform Ni
matrix for two different applied field strengths. Panel (a) corresponds to an ap-
plied field of 0.05T, while panel (b) corresponds to an applied field of 2T. The
top panel in each figure represents the magnetization vector in the y-z plane,
while the bottom panel represents the perpendicular magnetization component
My. Image adapted from [6].

tron’s magnetic dipole moment µn with the magnetic induction field B(r). The

expression for Vint(r) is given by [7]:

Vint(r) = −µn ⋅B(r), (2.15)

where µn = −γnµNσP , with γn = 1.913, µN is the nuclear magneton, and σP

represents the Pauli spin operator for the neutron [61]. Therefore, Vint is not just

a scalar quantity but rather a 2× 2 matrix whose components are determined by

the spin of the neutron.

Magnetic neutron scattering results from the interaction between the magnetic

moment of the neutron and the magnetic field that is generated by the electron’s

spin (BS) and orbital (BL) motion. The total magnetic field B(r) at the position

r due to the spin and the orbital motion of the electron with a magnetic moment
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of µe = −2µBS and the linear momentum p is given by [7]:

B(r) = BS +BL =
µ0

4π
(∇ × µe × r

r3
− 2µB

h̵

p × r
r3
) , (2.16)

where µB denotes the Bohr magneton. The Fourier transform of the magnetic

induction is obtained as follows [7]:

B̃(q) = µ0Q̃(q) = µ0
q̂ × q̂ × M̃(q)

q2
, (2.17)

where q̂ is the unit scattering vector and the interaction Hamiltonian reads:

Ṽint(q) = −µnµ0σ ⋅ Q̃(q). (2.18)

For given initial and final spin states of the neutron, whether it is ∣ ↑⟩ = ∣+⟩ or

∣ ↓⟩ = ∣−⟩, one can compute the matrix elements as follows:

∣⟨±∣Ṽint(q)∣±⟩∣2 ∝ Q̃∗zQ̃z

∣⟨±∣Ṽint(q)∣∓⟩∣2 ∝ (Q̃∗xQ̃x + Q̃∗yQ̃y) ± i (Q̃∗xQ̃y − Q̃∗yQ̃x) , (2.19)

where we have used the relations:

σz ∣±⟩ = ±∣±⟩,

σ±∣∓⟩ = ∣±⟩,

σ± =
1

2
(σx ± iσy) . (2.20)

σz is the eigenstate of ∣±⟩ and σ± is the raising or lowering operator. The matrix

elements Eq. (2.19) are essential to distinguish the unpolarized SANS from the

polarized SANS cross section, as discussed below.
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Figure 2.5: Illustration of the geometrical relationship embodied in the Halpern-
Johnson vector Q̃(q) [Eq. (2.24)]. Image adapted from [4].

2.4.1 Unpolarized SANS Cross Section

For the unpolarized SANS cross section, one can sum up all the matrix elements

in Eq. (2.19) and obtain:

dΣM

dΩ
(q) = 1

V
b2H ∣∫

V
Q(r) exp(−iq ⋅ r)d3r∣

2

= 8π3

V
b2H ∣Q̃(q)∣

2
(2.21)

= 8π3

V
b2H ∣q̂ × (q̂ × M̃(q))∣

2
, (2.22)

where V is the scattering volume, bH = 2.91 × 108A−1m−1 is the magnetic scat-

tering length in the small angle regime, and M̃(q) is the Fourier transforma-

tion of M(r). The Fourier transform of the magnetization vector field M(r) =

{Mx(r),My(r),Mz(r)} is represented by

M̃(q) = {M̃x(q), M̃y(q), M̃z(q)}

= 1

(2π)3/2 ∫
d3r M(r) exp(−iq ⋅ r). (2.23)

The Halpern-Johnson vector

Q̃ = q̂ × (q̂ × M̃(q)) = q̂ (q̂ ⋅ M̃(q)) − M̃(q) (2.24)

is also known as the magnetic scattering vector and plays a crucial role in un-

derstanding magnetic neutron scattering. It embodies the dipolar nature of the
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magnetic scattering and highlights that only the magnetization vector compo-

nents that are perpendicular to q are significant in the scattering process, as

illustrated in Fig. 2.5.

In the perpendicular scattering geometry (k0 ⊥H0), we have q = q(0, sin θ, cos θ),

and the Halpern-Johnson vector can be written as:

Q̃⊥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−M̃x

−M̃y cos2 θ + M̃z sin θ cos θ

M̃y sin θ cos θ − M̃z sin
2 θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.25)

Readers who are interested in the case of k0 ∥ H0 are referred to [4].

Using the Q̃⊥ defined by Eq. (2.25), the unpolarized magnetic SANS cross

section (in the perpendicular scattering geometry) is given by:

dΣM

dΩ
= 8π3

V
b2H (∣M̃x∣2 + ∣M̃y ∣2 cos2 θ + ∣M̃z ∣2 sin2 θ (2.26)

−(M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos θ) ,

where the asterisk “∗” marks the complex-conjugated quantity. For the case

of a completely saturated microstructure M(r) = {0,0,Mz(r)}, the SANS cross

section reduces to:

dΣsat
M

dΩ
= 8π3

V
b2H ∣M̃z(q)∣

2
sin2 θ. (2.27)

For a uniformly magnetized spherical particle (with a volume of Vp = 4π
3 R

3),

the only task is to find the Fourier transform M̃z(q) of the z component of

the magnetization. Using Eq. (2.23), we can compute this Fourier transform
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analytically as follows:

M̃z(q) = Ms∫
2π

0
dϕ∫

π

0
dθ sin θ∫

∞

0
r2drΘ(R − r) exp(iqr cos θ)

= 2πMs∫
R

0
r2dr∫

1

−1
d cos θ exp(iqr cos θ)

= 2πMs∫
R

0
r2dr [e

iqr − e−iqr
iqr

]

= 4πMs∫
R

0
r2dr

sin(qr)
qr

= 4πR3Ms
sin(qR) − qR cos(qR)

(qR)3
= 3MsVp

j1(qR)
qR

, (2.28)

where Θ(x) is the Heaviside step function whose value is unity for x > 0 and zero

for x < 0, and j1 is the spherical Bessel function of the first kind. Using Eq. (2.28),

the SANS cross section for a saturated sphere gives:

dΣsat
M

dΩ
= 8π3

V
b2HM

2
s 9V

2
p (

j1(qR)
qR

)
2

sin2 θ. (2.29)

Generally, one needs to carry out micromagnetic simulations to obtain M(r) and

then perform the numerical Fourier transformation to get the magnetic SANS

cross section [62]. The details of the micromagnetic simulations will be explained

in Section 2.7 and in the Appendix C.

2.4.2 Polarized SANS Cross Section

In the case of polarized neutrons, the spin-flip SANS cross section can be deter-

mined using the matrix elements described in Eq. (2.19) as [4]:

dΣ+−sf
dΩ

= 8π3

V
b2H (∣M̃x∣2 + ∣M̃y ∣2 cos4 θ + ∣M̃z ∣2 sin2 θ cos2 θ (2.30)

−(M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos3 θ − iχ) ,
dΣ−+sf
dΩ

= 8π3

V
b2H (∣M̃x∣2 + ∣M̃y ∣2 cos4 θ + ∣M̃z ∣2 sin2 θ cos2 θ (2.31)

−(M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos3 θ + iχ) .
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The superscripts “+” and “−” refer to the orientation of the neutron spin (parallel

or antiparallel) in relation to the direction of the guide field H0. The function

χ = χ(q) is the so-called chiral function, which is obtained from (one-half times)

the difference between the two spin-flip SANS cross sections.

iKχ(q) = 1

2
(
dΣ+−sf
dΩ
−
dΣ−+sf
dΩ
) (2.32)

= iK [(M̃xM̃
∗
y − M̃∗

xM̃y) cos2 θ − (M̃xM̃
∗
z − M̃∗

xM̃z) sin θ cos θ] ,

where K = 8π3

V b2H. Note that the chiral function vanishes at complete magnetic

saturation (MH0→∞
x =MH0→∞

y = 0) and for purely real-valued or purely imaginary

magnetization Fourier components [2].

2.5 Pair Distance Distribution and Correlation Function

To further analyze the SANS signal, both theoretically and experimentally, one

can extract the so-called pair distance distribution function p(r) and the corre-

lation function c(r). These quantities are used to determine the characteristic

domain sizes and provide further useful information on the spin structure that

give rise to the magnetic SANS intensity.

For a single uniformly magnetized spherical particle with its saturation direc-

tion parallel to ez, i.e., Mx =My = 0, Eq. (2.29) can be written as:

dΣM

dΩ
= Vp(∆ρ)2mag 9(

j1(qR)
qR

)
2

sin2 θ. (2.33)

The volume of the sphere is given by Vp = 4π
3 R

3, where R is the radius. The term

(∆ρ)2mag = b2H (∆M)
2
represents the square of the difference in the saturation

magnetizations between the particle and vacuum, also known as the magnetic

scattering length density contrast. The well-known analytical result for the ho-

mogeneous sphere case, Eq. (2.33), follows the Guinier law IG ∝ exp[−1
5(qR)2]

at small q [63] and the Porod law IP ∝ q−4 at large q [64] [see Fig. 2.6].

The pair distance distribution function p(r) can be computed from the azimuthally-
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Figure 2.6: Unpolarized magnetic SANS cross section dΣM/dΩ at saturation
[Eq. (2.33)] compared with the Guinier law IG ∝ exp[−1

5(qR)2] and the Porod
law IP ∝ q−4 at, respectively, small and large q (log-log scale).

averaged magnetic SANS cross section according to:

p(r) = r2
∞

∫
0

dΣM

dΩ
(q)j0(qr)q2dq, (2.34)

where
dΣM

dΩ
(q) = 1

2π

2π

∫
0

dΣM

dΩ
(q, θ)dθ (2.35)

and j0(qr) = sin(qr)/(qr). The pair distance distribution function p(r) corre-

sponds to the distribution of real-space distances between volume elements inside

the particle weighted by the excess scattering-length density distribution; see

the reviews by Glatter [65] and by Svergun and Koch [66] for detailed discus-

sions of the properties of p(r). Apart from constant prefactors, the p(r) of the

azimuthally-averaged single-particle cross section [Eq. (2.33)], corresponding to a

uniform sphere magnetization, equals (for r ≤ 2R):

p(r) = r2 (1 − 3r

4R
+ r3

16R3
) , (2.36)

while p(r) = 0 for r > 2R. We also display the correlation function c(r), which is

related to p(r) via

c(r) = p(r)/r2. (2.37)
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Figure 2.7: (a) Hysteresis curves according to the Stoner-Wohlfart model. Plot-
ted is the normalized magnetization m = cosϕ as a function of the normalized
applied field h = µ0H0Ms/(2Ku) for diferent values of the angle θ between H0

and the uniaxial anisotropy axis. (b) Dashed lines are the hysteresis loops taken
from micromagnetic simulations using the materials parameters of Cobalt with
different easy axis directions. The solid blue line is the resulting averaged mag-
netization.

As we will demonstrate in Secs. 4 and 5, when the particles’ spin structure is

inhomogeneous, the dΣM/dΩ and the corresponding p(r) and c(r) differ signifi-

cantly from the homogeneous case [Eqs. (2.33) and (2.36)]. Due to the r2 factor,

features in p(r) at medium and large distances are more pronounced than in c(r).

2.6 The Stoner-Wohlfarth Model

For single-domain particles, the Stoner-Wohlfarth model can be used to calculate

the magnetization curve [67]. In its original version, the model assumes that the

magnetic anisotropy is of uniaxial symmetry, meaning that the particle possesses

a single preferred direction of magnetization (due to magnetocrystalline or shape

anisotropy). When an external magnetic field is applied, the magnetic moments

within the particle start to rotate towards the direction of the field. At a cer-

tain critical field strength, known as the Stoner-Wohlfarth limit, the magnetic

moments become completely aligned with the external field direction. This limit

is determined by the balance between the magnetic anisotropy energy and the



46

energy required to rotate the magnetic moments:

E =Ku sin
2(ϕ − θ) − µ0MsH0 cosϕ, (2.38)

where the first term is the magnetic anisotropy energy with ϕ and θ being, re-

spectively, the angles between the magnetization and H0 and between H0 and

the uniaxial easy axis. The second term is the Zeeman energy. We have written

E as an energy per unit volume. To obtain the lowest energy, we normalized

Eq. (2.38) and imposed that the derivative of E with respect to ϕ is zero:

∂η

∂ϕ
= 1

2
sin (2(ϕ − θ)) + h sinϕ = 0, (2.39)

where η = E/2Ku. There is an additional requirement for stability that we have

to impose, namely ∂2η/∂ϕ2 > 0. We have solved these equations numerically and

the results are displayed in Fig. 2.7(a).

The Stoner-Wohlfarth model is the simplest model to reproduce hysteresis

effects. Well-known analytical and numerical results for the characteristic pa-

rameters coercivity and remanence exist for uniaxial and cubic particles [14].

The Stoner-Wohlfarth model is therefore very well suited to benchmark the mi-

cromagnetic SANS simulations of this project. We conducted a simulation of an

isolated spherical Co nanoparticle with a diameter of 20 nm to prove the accuracy

of our workflow. In this way, we replicated the Stoner-Wohlfarth results by Usov

and Peschany [14]. The easy axis direction was varied in increments of 6○ from 0○

to 90○. As per comparison to Ref. [14] for systems with uniaxial anisotropy (see

Table 2.1), it is found that the reduced remanence mr = Mr/Ms = 0.5, which is

in excellent agreement with the outcome of our simulations. The case of a cubic

particle anisotropy was also very well reproduced.
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Table 2.1: Characteristic magnetic parameters of the Stoner-Wohlfarth model for
particles with uniaxial and cubic anisotropy. Table taken from [14].

Property Symbol and meaning Uniaxial Cubic anisotropy

anisotropy K1 < 0 K1 > 0

Reduced saturation remanence mr(∞) =Mr(∞)/Ms 0.5a 0.831b 0.866b

Maximal particle coercive force hmax
c =Hmax

c Ms/2∣K1∣ 1a 1c 2/3c

Assembly coercive force hc =HcMs/2∣K1∣ 0.479 0.320 − 0.335 0.180 − 0.200
Reduced initial susceptibility χ = (dm/dh)h−>0) 0.667 2/3 1

2.7 Details on the Micromagnetic Simulation Method

In this PhD project, the well-known open-source micromagnetic simulation soft-

ware MuMax3 was used [68, 69]. MuMax3 uses a finite-difference discretization

of space; it is written in Go language and uses Nvidia’s GPU driver. All re-

lated information is available on http://mumax.github.io. The developers of the

program are based in the DyNaMat group at Ghent University, Belgium.

The first dynamical model for the precessional motion of the magnetization

was proposed by Landau and Lifshitz in 1935 [70]. MuMax3 uses the dynamic

Landau-Lifshitz-Gilbert equation in the following form [68,69]:

dm

dt
= τLL = γLL

1

1 + α2
[m ×Heff + α(m × (m ×Heff))]. (2.40)

The gyromagnetic torque τLL term in Eq. (2.40), illustrated in Fig. 2.8, encour-

ages the magnetization to precess uniformly around the effective field Heff . The

second term in Eq. (2.40) is a damping torque which facilitates the loss of energy

and the attainment of equilibrium by diminishing the precession of the magne-

tization around the effective field, where γLL is the gyromagnetic ratio and α is

the Gilbert damping constant. In equilibrium, the magnetization has released its

kinetic energy by damping losses and is parallel to the effective field, which con-

tains the contributions due to the isotropic exchange interaction, DMI, magnetic

anisotropy, and external and magnetodipolar fields.

The simulation space (= particle volume) is divided into a regular orthogonal

grid with Nx ×Ny ×Nz points in a Cartesian coordinate system. The majority of
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Figure 2.8: Illustration of the Landau-Lifshitz-Gilbert equation (2.40) for a single
magnetic moment, with the gyromagnetic torque in purple and the damping term
in red.

simulations in this thesis were carried out using a spherical particle shape, with

sphere diameters ranging between about 10 − 200 nm. The sphere volume was

discretized into cubical cells “i” with a size (volume) of Vi = 2× 2× 2 nm3 (finite-

difference method). This cell size is motivated by the values for the micromagnetic

exchange lengths lM, lK, and ldmi (see Section 3.6) and by the aim to resolve spatial

variations in the magnetization that are smaller than these characteristic length

scales (see the discussion in Refs. [69, 71]). In each cell “i” with volume Vi, the

magnetic moment vector is given by µi = µi(r) = MsVimi(r), where mi(r) is

a unit vector along the local direction of the magnetization. Open boundary

conditions were used, since we are interested in the scattering behavior of an

ensemble of noninteracting single particles having random easy-axis orientations.

In simulations on particles having a cubic crystal anisotropy, we have implemented

the random anisotropy axes c1,2,3 as follows: c1 is a random unit vector that is

generated using two random angles. A second random unit vector, say a, is

generated by another set of random angles, such that c2 = (c1 × a)/∣c1 × a∣ and

c3 = c1 × c2.

All simulations were carried out by first saturating the nanoparticle with a

strong external field H0, and then the field was decreased in steps of typically

5mT following the major hysteresis loop. For each step of H0 and for each

particular easy-axis orientation, we have obtained the equilibrium spin struc-

ture mx,y,z(x, y, z) by employing both the “Relax” and “Minimize” functions of



49

MuMax3. The former solves the Landau-Lifshitz-Gilbert equation without the

precessional term and the latter uses the conjugate-gradient method to find the

configuration of minimum energy. The simulations are performed at a tempera-

ture that corresponds to zero Kelvin.

The duration of the simulations and the memory usage were extensive due to

the need to consider, for a given particle diameter and for each field value along

the hysteresis curve, several hundreds of random orientations of the anisotropy

axes relative to the global direction of the applied magnetic fieldH0. The majority

of simulations presented in this thesis were carried out using the HPC facilities

of the University of Luxembourg (https://hpc.uni.lu).

https://hpc.uni.lu




Chapter 3

Micromagnetic Theory

Micromagnetic theory is a phenomenological continuum approach that has been

created to calculate the magnetization vector field M(r) of any ferromagnetic

body based on the value and direction of the applied magnetic field, the geome-

try of the ferromagnet, and the magnetic material parameters; see Refs. [60,67,72]

for textbook expositions of this topic. This chapter will discuss the basic con-

cepts of micromagnetism that are relevant to this PhD project. In a magnetic

system, there are several different energy contributions that determine its mag-

netic properties. These energy contributions arise from different physical in-

teractions between the magnetic moments, such as the isotropic exchange Eex,

magnetic anisotropy Eani, Zeeman Ez, dipolar Ed, and Dzyalonshinskii-Moriya

Edmi interactions. The overall magnetic energy of a ferromagnetic material can

be represented as follows:

Etot = Eex +Eani +Ez +Ed +Edmi. (3.1)

The equilibrium magnetization distribution M(r) is obtained from variational

calculus, which yields the following so-called balance of torques equation (known

as Brown’s equations) that represents a necessary criterion for a stable magneti-

zation distribution [60,67,72]:

M(r) ×Heff(r) = 0. (3.2)

This equation implies that the torque on the magnetization M(r) due to the

effective magnetic field Heff(r) is zero everywhere inside the material. The field
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Heff is obtained as the functional derivative of the ferromagnetic total energy-

density functional ω (with Etot = ∫V ω[m(r),∇m(r)]dV ) with respect to the

magnetization:

Heff(r) = −
1

µ0

δω

δM
(3.3)

= H0 +Hex(r) +Hani(r) +Hd(r) +Hdmi(r),

where Heff is (here) composed of a uniform applied magnetic field H0, the mag-

netostatic field Hd, the magnetic anisotropy field Hani, the exchange field Hex,

and the Dzyaloshinskii Moriya field Hdmi; µ0 = 4π × 10−7 Tm/A denotes the

permeability of free space.

The continuum theory of micromagnetism is based on the transition from a

discrete atomic to a coarse-grained picture. According to this theory, the mag-

netization vector field in a material can be considered as a continuous function

of position r inside the material. This function is obtained by taking the local

thermodynamic average over N discrete atomic magnetic moments µa within a

volume V .

M =M(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mx(x, y, z)

My(x, y, z)

Mz(x, y, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= V −1
N

∑
i=1

µa,i (3.4)

In the following, we will briefly discuss the main energy contributions.

3.1 Exchange Energy

The exchange interaction is caused by the Coulomb repulsion between electrons

with the same spin. From the Heisenberg Hamiltonian

Eex = −J ∑
<i,j>

Si ⋅ Sj (3.5)
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Figure 3.1: Illustration of two misaligned spins mi and mj. θ denotes the angle
between the spins. Figure adapted from [7].

the exchange energy Eex is determined by the exchange constant J and the align-

ment of the magnetic spins Si and Sj at neighboring lattice sites i and j. The

dot product Si ⋅ Sj is used to measure alignment. For ferromagnets with J > 0,

the parallel alignment of magnetic moments is preferred, while the antiparallel

configuration is preferred when J is negative.

Let us consider a classical scenario in which Si can be depicted as a spin vector

located on the lattice site i, rather than being a quantum mechanical operator.

The Hamiltonian Eq. (3.5) can then be written as:

Eex = −JS2 ∑
⟨i,j⟩

cos θij. (3.6)

By assuming that the adjacent spins evolve smoothly in space (which is not

significant for an antiferromagnetic arrangement), we can approximate cos θij ≈

(1 − 1
2θ

2
ij). The first term will give rise to a constant energy value that will be

neglected in the following. The second term relates the exchange energy to the

square of the neighboring spin angle, which in the small angle approximation can

be written as:

θij ≈ (mi −mj) , (3.7)

where m is a unit vector (see Fig. 3.1). Further, one can approximate

(mi −mj) ≈ (∆rji ⋅ ∇)m, (3.8)

where ∆rij = ri−rj is the position of the neighboring sites. Assuming an equidis-

tant spacing of spins and a cubic lattice symmetry, the exchange energy in the
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continuum approximation can be written as [67]:

Eex = A∫
V

[(∇mx)2 + (∇my)2 + (∇mz)2] dV (3.9)

where the integration is over the volume V of the ferromagnet, and A > 0 is the

exchange stiffness constant. The gradient operator ∇ = (∂x, ∂y, ∂z) is composed

of the Cartesian unit vector axes ex,ey,ez, and the mx,y,z(x, y, z) are the com-

ponents of the unit vector m = M/Ms in the direction of the magnetization.

Equation (3.9) implies that any nonuniformity (gradient) in the magnetization

distribution is associated with an energy cost. It is also noteworthy that the

exchange interaction is isotropic in space, meaning that the exchange energy of a

given volume ∆V is the same for any orientation of the magnetic vector, provided

that its strength remains the same. The exchange field is obtained as:

Hex(r) = l2M∇2M, (3.10)

where the exchange length lM =
√
2A/(µ0M2

s ) ranges between ∼3−10nm [60] and

will be further discussed in Section 3.6.

3.2 Dzyaloshinskii-Moriya Energy

In recent years, the Dzyaloshinskii-Moriya interaction has become the focus of a

widespread research effort in condensed matter physics. Dzyaloshinskii first pro-

posed that, based on symmetry considerations, the exchange interaction between

spins could contain an antisymmetric contribution [50]. Moriya then explained

this antisymmetric spin coupling in his theory of anisotropic superexchange in-

volving the spin-orbit interaction [51]. This anisotropic antisymmetric exchange,

known as DMI, is essential for understanding the spin structure of many “weakly

ferromagnetic” antiferromagnets, and in particular for the recently discovered

skyrmions. DMI is a magnetic energy contribution that is present in magnetic

materials that lack inversion symmetry and give rise to antisymmetric magnetic
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interactions, such as at the boundaries between magnetic and nonmagnetic ma-

terials or in chiral magnetic materials [73–86]. For cubic crystal symmetry, this

energy can be represented by:

Edmi = D∫
V

m ⋅ (∇ ×m)dV (3.11)

where m is the magnetization vector and ∇×m denotes the curl of m. The DMI

constant D describes the strength of the DMI and is typically expressed in units

of energy per unit area J/m2. The corresponding DMI field is obtained as:

Hdmi(r) = −ldmi∇×M (3.12)

where ldmi = 2D/(µ0M2
s ) (∼1−2nm) denotes the exchange length of the DMI (see

Section 3.6).

3.3 Magnetocrystalline Anisotropy Energy

The magnetocrystalline anisotropy arises from the interplay between the spin-

orbit coupling, which links the spin to the crystal lattice, and the crystal-field

interaction. As a consequence, the magnetic energy of a magnetic material is

dependent on the orientation of the magnetization vector relative to the crystal

lattice. Magnetocrystalline anisotropy explains how the magnetic properties of a

material are impacted by the crystal structure and the direction of the magneti-

zation vector in comparison to the crystal axes.

Figure 3.2 illustrates how the magnetocrystalline anisotropy energy manifests

in the magnetization curves of iron (bcc), nickel (fcc), and cobalt (hcp). Iron and

nickel have a cubic anisotropy symmetry, while cobalt has a uniaxial anisotropy

with an easy axis that (at room temperature) is parallel to the c axis of the

hcp lattice. When a magnetic field is applied to iron in the [100] direction, the

magnetization quickly reaches saturation. However, if the field is applied along

(110) or (111) directions, the magnetization only reaches saturation at relatively
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Figure 3.2: Room temperature magnetization curves of single crystals of iron,
nickel, and cobalt. The results for iron reveal that the [100] direction is an easy
axis of magnetization, while the [111] direction is a hard direction. The applied
field is denoted as Ba and the magnetization is represented by M . Figure taken
from [8].

high fields. Nickel behaves in the opposite way, while cobalt is easily magnetized

along the c direction and possesses a magnetically hard basal plane.

In the book by Kronmüller and Fähnle [60], one can find expressions for

the anisotropy energy of orthorhombic, tetragonal, cubic, and hexagonal crystal

structures. This study will focus on uniaxial anisotropy, where the magnetic

moments tend to align along one axis or within one plane, and cubic anisotropy,

where the magnetic moments tend to align along one of the multiple equivalent

cubic crystal axes.

One of the most common types of anisotropy is uniaxial anisotropy, which

maybe characterized by a single easy direction or an easy plane (depending on

the sign of the anisotropy constants, see below). For simplicity, we assume that

the easy direction is given by a vector u. The anisotropy energy can be seen as

a functional of its energy density fan(m) as:

Ean(m) = ∫
V

fan(m)dV. (3.13)

The anisotropy energy is a time-reversal invariant quantity. However, the magne-

tization m breaks the time-reversal symmetry. Therefore, the phenomenological

mathematical form of the uniaxial anisotropy energy density fu(m) contains (in
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lowest order) terms that are quadratic in m (plus higher orders):

fu = −K1(m ⋅ u)2 −K2(m ⋅ u)4 −K3(m ⋅ u)6 − . . . (3.14)

K1, K2, K3, . . . denote the temperature-dependent magnetocrystalline anisotropy

constants having the dimensions of energy per unit volume [J/m3]. Let us assume

that the easy direction coincides with the Cartesian z axis, then (m ⋅u)2 = cos2 θ =

1−sin2 θ. Using this, most of researchers prefer to write Eq. (3.14) in the following

form:

fu(m) =K0 +K1 sin
2 θ +K2 sin

4 θ +K3 sin
6 θ +⋯, (3.15)

where the anisotropy constants have been renormalized. We will limit our analysis

to the case in which the Eq. (3.15) is cut off after the sin2 θ term, i.e.:

fu(m) =K0 +K1 sin
2 θ. (3.16)

The anisotropic behavior is contingent on the sign of the constant K1. When K1

is positive, the anisotropy energy has two minima at θ = 0 and θ = π, meaning

that the magnetization is directed either positively or negatively along the z axis

with no preference. This is known as an easy axis anisotropy and shown in the

left panel in Fig. 3.3. On the other hand, when K1 is negative, the energy is

minimized for θ = π/2, meaning that any direction in the x-y plane is an easy

direction. This is referred to as an easy plane anisotropy (see right panel in

Fig. 3.3).

In a cubic crystal structure, the energy surface for magnetocrystalline anisotropy

can (to lowest order) be described by a fourth-order polynomial in the spherical

coordinates of the unit magnetization vector m. The polynomial for the energy

density can be expressed as:

fc(m) =K0 +K1(m2
xm

2
y +m2

xm
2
z +m2

ym
2
z) +K2(m4

x +m4
y +m4

z) +⋯, (3.17)
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Figure 3.3: Uniaxial anisotropy energy density. The left figure is for an easy axis
along the z direction (K1 > 0), while the right figure is for an easy x-y plane
(K1 < 0). Figure taken from [9].

Figure 3.4: Similar to Fig. 3.3 but for a cubic anisotropy symmetry. Left panel
shows the anisotropy energy for K1 > 0, while the right image is for K1 < 0.
Figure taken from [9].

where mx = m ⋅ c1, my = m ⋅ c2, and mz = m ⋅ c3 represent the components of

the magnetization vector along the three crystal axes c1,c2,c3 with c3 = c1 × c2,

and K1 and K2 are the cubic anisotropy constants. Higher-order terms will be

neglected in the following (K2 = 0). When K1 is positive, there are six equivalent

energy minima in the directions of x, y, and z, both positive and negative shown in

the left panel in Fig. 3.4. However, whenK1 is negative, a more complex situation

arises. In this case, there are eight equivalent minima along the directions of the

vertices of the cube (e.g., the direction [1,1,1]), and the coordinate axes directions

become hard axes (see the right panel in Fig. 3.4).
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3.4 Zeeman Energy

The Zeeman energy (named after the Dutch physicist Pieter Zeeman) is the en-

ergy that results from the interaction between an external magnetic field and a

magnetic moment. When a magnetic atom, molecule, or solid is exposed to an

external magnetic field, the Zeeman effect is observed. This energy is not inherent

to the material, but rather promotes the reorientation of the magnetization in

the direction of the magnetic field. The Zeeman energy is given by the following

expression:

Ez = −µ0Ms∫
V

m ⋅H0 dV (3.18)

where µ0 = 4π×10−7 Tm/A is the permeability of free space. In the micromagnetic

simulations of the present project, H0 is assumed to be a constant vector in space.

3.5 Magnetodipolar Energy

The magnetodiplar energy arises from the interaction between the magnetic mo-

ments in the sample. Essentially, each magnetic moment interacts with the mag-

netic field that is produced by all the other moments. This is a long-range and

anisotropic force that can be either attractive or repulsive, depending on the

arrangement of the magnetic moments. The magnetodiplar interaction can be

described by Maxwell’s equations [87]. One of them states that there exist no

magnetic monopoles, i.e.,

∇ ⋅B = 0, (3.19)

where B is the magnetic induction field, which can be written as:

B = µ0(H0 +Hd +M). (3.20)

The contributions of exchange, DMI, and anisotropy fields are contained in the

magnetization M. As the external magnetic field H0 is here assumed to be
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constant in space, we can write:

∇ ⋅Hd = −∇ ⋅M. (3.21)

Equation (3.21) states that the sources of the magnetostatic field Hd are nonzero

divergences of the magnetization, so-called magnetic volume charge −∇ ⋅M = ρv.

As we will see in the following, the role of the dipolar energy is to cancel the

presence of these volume charges as well as the build up of surface charges on the

boundary of the magnet.

Since we are dealing with magnetostatics in the absence of macroscopic cur-

rents, the following Maxwell relation applies [87]:

∇×Hd = 0, (3.22)

which allows us to relate Hd to the (negative) gradient of a scalar potential (just

like in electrostatics),

Hd = −∇φ. (3.23)

Substituting Eq. (3.23) into Eq. (3.21) we obtain:

∇2φin = ∇ ⋅M, (3.24)

∇2φout = 0.

Equation (3.24) is a Poisson equation, which has a formal solution whose unique-

ness depends on the boundary condition. We note that the perpendicular com-

ponent of B and the parallel component of Hd should be continuous across the

boundary between two regions in space. As a result, the potential is continuous

across the boundary and its derivative is determined by the magnetization as

follows:

φin = φout and
∂φin

∂n
− ∂φout

∂n
= n ⋅M on S, (3.25)



61

where n is a unit vector that is normal to the surface S and the directional

derivative of φ (in the direction of n) is denoted by ∂φ/∂n = ∇φ ⋅ n. The formal

solution of the Poisson Eq. (3.24) including the boundary condition is given by:

φ(r) = 1

4π

⎛
⎝
−∫

V

d3r′
∇r′ ⋅M(r′)
∣r − r′∣

+ ∫
S

d2r′
n ⋅M(r′)
∣r − r′∣

⎞
⎠
, (3.26)

where r is the field point and r′ denotes the source point. The resulting dipolar

field then becomes (Hd = −∇φ)

Hd(r) =
1

4π

⎛
⎝
−∫

V

d3r′
∇r′ ⋅M(r′)(r − r′)

∣r − r′∣3
+ ∫

S

d2r′
n ⋅M(r′)(r − r′)
∣r − r′∣3

⎞
⎠
, (3.27)

and the dipolar energy is given by the following expression [67]:

Ed = −
1

2
µ0∫

V

M ⋅Hd dV = +
1

2
µ0 ∫

all space

∣Hd∣2 dV, (3.28)

where the first integral is over the volume V of the ferromagnetic body, and

the second integral is over all space. From Eq. (3.28), we note that the dipolar

interaction energy is always positive and proportional to the square of the magne-

tization. The integral in Eq. (3.28) requires a six-fold integration, starting from

Eq. (3.27) and subsequently Eq. (3.28). For a uniformly magnetized sphere, the

magnetodipolar energy is given by Ed = 1
6µ0VsM2

s , where Vs denotes the volume

of the sphere [67].
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3.6 Length Scales in Micromagnetism

A dimensional analysis of the quantities involved in the above considered magnetic

energies leads to the following micromagnetic correlation or exchange lengths [60]:

lH =
√

2A

µ0MsHi

(3.29)

lM =
√

2A

µ0M2
s

(3.30)

lK =
√

A

K1

(3.31)

ldmi =
2D
µ0M2

s

(3.32)

Dc = 72

√
AK1

µ0M2
s

, (3.33)

whereA is the exchange-stiffness constant, D the DMI constant,Ms the saturation

magnetization, K1 an anisotropy constant, and Hi denotes the internal magnetic

field. These length scales (used in the micromagnetic calculations) cover a range

from a few nanometers up to a few hundred of nanometers, depending on the

material parameters and the applied magnetic field [60]. This range of sizes

overlaps with the resolution regime of the SANS technique, making it easy and

straightforward to use micromagnetic theory to calculate the magnetic SANS

cross section. Figure 3.5 displays these length scales for the materials parameters

of Fe.

• lH is the micromagnetic exchange length of the field. At a given magnetic

field, this exchange length is a measure for the range of the exchange in-

teraction between adjacent magnetic moments in a material. It may be

used to characterize the spatial variation of the magnetization around mi-

crostructural defects [60].

• lM is the magnetostatic exchange length, which characterizes the competi-

tion between the exchange and the magnetostatic interactions.

• lK is the domain wall parameter, which characterizes the competition be-
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tween the exchange interaction and the magnetic anisotropy.

• ldmi is the exchange length of the DMI. The DMI energy between neighbor-

ing spins decays exponentially with distance, and ldmi is a measure for the

characteristic length over which this takes place.

• Dc is the critical single domain size, which can be seen as a measure for the

smallest length scale at which the transition from a single domain state to

a two domain state takes place in a spherical magnetic nanoparticle.

Figure 3.5: Micromagnetic exchange lengths lH, lM, lK, and ldmi (log-log scale).
These length scales fall into the resolution range of the SANS technique. Materials
parameters for Fe at room temperature were used. Figure taken from [4].





Chapter 4

Magnetic SANS from Spherical Nanoparticles

with Pore-Type Defects

In a recent investigation, Vivas et al. [10] conducted numerical micromagnetic cal-

culations to examine the magnetic small angle neutron scattering (SANS) cross

section of defect-free Fe nanoparticles. Through these micromagnetic computa-

tions, the researchers explored the transition from a single-domain to a multido-

main behavior in defect-free Fe nanoparticles (see Fig. 4.1), and the corresponding

signatures in the SANS cross section. The magnetic SANS signal and corre-

lation function exhibit notable distinctions compared to those of the superspin

model. These findings provide valuable insights for experimentalists in identifying

nonuniform dipole-field-induced vortex-type spin structures within nanoparticles

[Fig. 4.1(c)].

This PhD project expands on the numerical micromagnetic approach of Ref. [10]

to model the impact (on the SANS observables) of microstructural defects related

to pores and a distribution function for particle sizes. [1]. The presence of defects

in nanoparticles, such as vacancies, antiphase boundaries, or surface anisotropy

has long been recognized to cause spin disorder, thereby influencing the overall

magnetic properties (see, e.g., Refs. [38, 88–91] and references therein). Conse-

quently, it is highly desirable to identify their characteristic features in the mag-

netic SANS cross section and correlation function. The results of this chapter are

already published in Refs. [1, 13].
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Figure 4.1: Transition from a single-domain to a multidomain behavior in defect-
free Fe nanoparticles. Shown are numerically-computed spin structures of Fe
nanospheres for three different diameters. (a) D = 10nm, (b) D = 20nm, and
(c)D = 40nm. (d) The corresponding normalized hysteresis loops (random parti-
cle orientations). Figure taken from [10].

4.1 Summary of Recent Results

In [10] as well as in this project [1], all four standard contributions to the overall

magnetic Gibbs free energy are considered. These include the Zeeman energy

Ez due to an external magnetic field H0, the energy due to the magnetodipolar

interaction Ed, the energy arising from the (cubic) magnetocrystalline anisotropy

Eani, and the isotropic exchange energy Eex. The continuum expressions for these

energies are as follows (repeated here for the sake of a self-contained presentation):

Ez = −µ0Ms∫ m ⋅H0 dV, (4.1)

Ed = −
1

2
µ0Ms∫ m ⋅Hd dV, (4.2)

Eani = Kc1∫ [(c1 ⋅m)2(c2 ⋅m)2 + (c1 ⋅m)2(c3 ⋅m)2 (4.3)

+(c2 ⋅m)2(c3 ⋅m)2),

Eex = A∫ [(∇mx)2 + (∇my)2 + (∇mz)2] dV, (4.4)

where the integrals are taken over the volume of the sphere. m(r) =M(r)/Ms is

the unit magnetization vector, H0 is constant in space and parallel to the unit vec-

tor ez of a global Cartesian coordinate system, the magnetodipolar self-interaction

field Hd(r) is given by Eq. (3.27), the first-order cubic anisotropy constant is de-

noted by Kc1, the vectors c1,2,3 are the local anisotropy axes of the particle, the
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exchange-stiffness constant is denoted by A, and ∇ = {∂/∂x, ∂/∂y, ∂/∂z} denotes

the gradient operator. In these simulations, material parameters for iron (Fe)

were used: Ms = 1700kA/m, A = 1.0 × 10−11 J/m, and Kc1 = 47kJ/m3. The

simulations are conducted at a temperature that corresponds to zero Kelvin.

The ensuing so-called Browns equations can be conveniently written in the

form of a torque equation, m(r) × heff(r) = 0. For the energies Eqs. (4.1)−(4.4),

the reduced effective field reads:

heff = h0 + hd + hani + hex, (4.5)

where h0 = H0/Ms is the normalized applied magnetic field, hd = Hd/Ms is the

magnetodipolar field,

hani = −
2Kc1

µ0M2
s

{c1(c1 ⋅m) [(c2 ⋅m)2 + (c3 ⋅m)2]

+c2(c2 ⋅m) [(c1 ⋅m)2 + (c3 ⋅m)2]

+c3(c3 ⋅m) [(c1 ⋅m)2 + (c2 ⋅m)2] }

represents the cubic anisotropy field, hex = l2M∇2m = l2M{∇2mx,∇2my,∇2mz} is

the exchange field. Since the focus our research is on the randomly-averaged

SANS observables, a stochastic approach was employed to distribute the orienta-

tions of the anisotropy directions relative to the global direction of H0. Initially,

two random angles are generated to define the unit vector c1. Subsequently, an-

other set of two random angles is generated to represent, for instance, the vector

a. Then c2 = (c1 × a)/∣c1 × a∣, so that c3 = c1 × c2. Figure 4.2 features the

distribution of 100 randomly selected vectors c1 on the surface of the unit sphere.

Figure 4.3 illustrates how the defects (black squares) are implemented in the

simulations. To begin with, the volume of the sphere is subdivided into cubical

cells with dimensions of 2 × 2 × 2 nm3 using the finite difference method. The

size of these cells is determined by the values of the micromagnetic exchange

lengths lM and lK (see Fig. 3.5) and by the goal to resolve spatial changes in the
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x

y

z

Figure 4.2: Illustration of a random distribution of N = 100 magnetic easy axes.
The blue dots represent the spread of the cubic anisotropy axes c1. Each blue
dot has a red dot (vector c2) as a corresponding partner.

Figure 4.3: The micromagnetic simulation volume V , which has the shape of a
sphere, is partitioned into cubical cells that have a typical size of 2 × 2 × 2nm3.
“Defect” cells (represented by the black squares) have been randomly selected
and are characterized by a magnetization value of Ms = 0. Figure taken from [1].

magnetization that are smaller than these characteristic length scales. The defects

(with a volume fraction of xd) are randomly assigned to this structure, and are

defined as cells with a saturation magnetization of Ms = 0. These defects might

represent nonmagnetic pore-type defects. Assuming the size of a single atom to

be 0.1nm, a hole of this size consists of approximately 8000 atoms, resulting in a

significant perturbation in the magnetic nanoparticle structure.

All simulations followed the same procedure. The nanoparticle is initially

exposed to a strong external field H0, and then the field is gradually decreased

in increments of typically 5mT, following the main hysteresis loop. Micromag-
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netic simulations are conducted for each given volume concentration of defects

(xd ∼ 0−20%) at each value of H0, using approximately N ∼ 100 random ori-

entations of the magnetic easy axis. The defect distribution is randomly cho-

sen for each random particle orientation. Simulations on single-domain particles

with a size of 10 nm [e.g., Fig. 4.1)(a)] yield the expected values for the re-

duced remanence (∼ 0.831) and coercivity of cubic particles, as predicted by the

Stoner-Wohlfarth model [14]. From the materials parameters of Fe, the critical

single-domain diameter is estimated as Dc ∼ 72
√
AKc1/(µ0M2

s ) = 13.6 nm [60].

Therefore, one expects inhomogeneous magnetization states for particles sizes

D ≳Dc.

The translational invariance of the grid obtained by the finite-difference method

allows us to use the direct Fourier transformation technique to calculate the Carte-

sian Fourier components M̃x,y,z(qx, qy, qz) of Mx,y,z(x, y, z). To compute and an-

alyze the Fourier components of our nanoscopic magnetic configurations, we em-

ployed the discrete Fourier transformation (see Appendix C). We have computed

the magnetic SANS cross section dΣM/dΩ for the random particle arrangement

according to:

dΣM

dΩ
= 1

N

N

∑
i=1

dΣM,i

dΩ
, (4.6)

where N specifies the number of random particle orientations (typically a few

hundred). The quantity dΣM,i/dΩ denotes (for a given defect concentration xd

and field value H0) the magnetic SANS cross section of a single spherical particle

of size D and with a specific random easy-axis orientation “i”. Equation 4.6

implies the absence of any interference effects between the particles.
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(d)(a) (c)(b)

1

-1

0

Figure 4.4: Effect of defect concentration on the spin structure. Snapshots of
spin structures are shown for 40 nm diameter Fe spheres with different defect
concentrations xd (µ0H0 = 0.02 T). (a) No defects (xd = 0%), (b) xd = 5%,
(c) xd = 15%, and (d) xd = 0% with Ed = 0. Figure taken from [1].

4.2 Effect of Pore-Type Defects on Spin Structure and

Magnetization

The effect of the defect concentration xd on the spin configurations of Fe spheres

with a diameter of 40nm are shown in Fig. 4.4. The external magnetic field

(µ0H0 = 0.02 T) is applied along the z axis. Note that in the actual magnetic

SANS simulations the random anisotropy direction across ∼ 100 angles relative

to H0 are selected. Initially, all the structures in Fig. 4.4 were fully magne-

tized. However, for the purpose of comparison, the easy axis was kept the same

in Fig. 4.4(a)−(d). The spin configuration for xd = 0% [Fig. 4.4(a)] exhibits a

vortex-type structure, which is consistent with the findings in [10]. However, when

the defect concentration xd is increased, the structure becomes progressively dis-

ordered [Fig. 4.4(b) and (c)]. In the case of the particle size D = 40nm considered

here, which is larger than the critical single-domain size of Fe (Dc ≅ 13.6nm), the

vortex structure observed in Fig. 4.4(a) is primarily due to the dipolar interac-

tion. By omitting the dipolar self-energy (Ed = 0), a uniform spin configuration

is obtained [see Fig. 4.4(d)]. For xd = 0% and small applied fields, the vortex

structure is observed for particle sizes D ≳ 20nm. Overall, it can be observed that

the addition of defects significantly alters the vortex-type spin structure towards

more disordered configurations, particularly for D = 40nm.

Figure 4.5 presents the reduced hysteresis curves mz(H0) = Mz(H0)/M∗
s for

different values of xd ∼ 0−20%. It is important to note that the magnetization is
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Figure 4.5: (a) Effect of defect concentration xd (see inset) on the randomly-
averaged magnetization curves of Fe spheres with a diameter of 40 nm. (b) and
(c): Zoomed-in view of mz(H0) around H0 = 0 (b) and µ0H0 = 0.6T (c). The
inset in (a) compares the magnetization curves of defect-free Fe spheres for zero
and nonzero dipolar energy Ed. Figure taken from [1].

normalized by the defect concentration, whereM∗
s is given byM∗

s = (1−xd)Ms. As

expected, an increase in xd leads to a decrease in the magnetization, especially

in the remanent state and close to the saturation regime [compare Fig. 4.5(b)

and (c)]. To provide more quantitative information, the reduced remanent mag-

netization mr decreases from approximately 0.11 at xd = 0% to around 0.04 at

xd = 20%, while the coercive field decreases from 35mT at xd = 0% to 18mT at

xd = 20%. Additionally, the saturation field increases from approximately 0.48T

for xd = 0% to around 0.53T for xd = 20%. The inset in Fig. 4.5(a) illustrates the

effect of the dipolar interaction (for xd = 0%). When Ed = 0, the mz(H0) loop has

a rectangular shape, fully consistent with the predictions of the Stoner-Wohlfarth

model (see Section 2.6). In this case, the reduced remanence is approximately
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Figure 4.6: Effect of the symmetry of the magnetic anisotropy (cubic or uniaxial)
on the randomly-averaged magnetization curve mz(H0) and pair distance dis-
tribution function p(r) of Fe spheres with a size of 40nm (defect concentration
xd = 0%, see inset). (b) and (c): Zoomed-in view of mz(H0) around H0 = 0 (b)
and µ0H0 = 0.6T (c). The anisotropy constants Ku and Kc1 have the same mag-
nitude. The inset in (a) shows the normalized pair distance distribution function
p(r) corresponding to each type of magnetic anisotropy.

0.83 and the coercivity is 0.33×2Kc1/Ms ≅ 18mT [14]. However, when the dipolar

interaction is present, two regions with significant hysteresis are observed. One

region occurs at high field, around 0.5T [Fig. 4.5(c)], indicating the departure

from the single-domain state. The other region is observed around the remanent

state [Fig. 4.5(b)], where the vortex spin structure emerges. In the analysis of

the SANS observables [dΣM/dΩ, p(r), c(r)] in Section 4.3, the emphasis will be

on these two field regions.

Figure 4.6 illustrates the effect of the symmetry of the magnetic anisotropy

(cubic or uniaxial) on the randomly-averaged magnetization curve mz(H0) and

the pair distance distribution function p(r) (as a representative of the SANS

observables). Simulations were carried out for a positive and negative uniaxial
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Figure 4.7: (a) Two-dimensional Fourier components ∣M̃x∣2, ∣M̃y ∣2, ∣M̃z ∣2, CT =
−(M̃yM̃∗

z + M̃∗
y M̃z), and the magnetic SANS cross section dΣM/dΩ (in units of

cm−1) of 40-nm-sized Fe spheres at µ0H0 = 0T. Upper row is for a defect con-
centration of xd = 0%, lower row is for xd = 15%. (b) Same as in (a), but for
µ0H0 = 0.5T. Logarithmic color scale is used for all quantities except for the
CT values, which are plotted on a linear color scale. Figure adapted from [1,11].

anisotropy constant Ku having the same magnitude as the cubic anisotropy Kc1

(xd = 0%); Ku > 0 corresponds to an easy-plane and Ku < 0 to an easy-axis

anisotropy. The figure depicts that there is no discernible distinction between

Kc1 > 0 and Ku > 0 in both the vicinity of the remanent state [Fig. 4.6(b)]

and within the range of 0.5T [Fig. 4.6(c)]. Negative Ku results in a somewhat

differentmz(H0) behavior in the low-field region. The inset in Fig. 4.6(a) displays

the pair distance distribution function p(r) for each type of magnetic anisotropy,

illustrating that the differences are negligible.
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4.3 Effect of Defects on the Magnetic SANS Observables

In this section, we discuss the effect of the porous defects on the magnetic SANS

cross section dΣM/dΩ and on the pair distance distrubution function p(r) [and

the correlation function c(r) = p(r)/r2]. Figure 4.7 displays the two-dimensional

magnetic SANS cross section dΣM/dΩ along with the Fourier components ∣M̃x∣2,

∣M̃y ∣2, ∣M̃z ∣2, CT = −(M̃yM̃∗
z + M̃∗

y M̃z) at remanence and at µ0H0 = 0.5T and

for two different values of the defect concentration xd; Fig. 4.7(a) corresponds to

xd = 0% (upper row) and xd = 15% (lower row) at µ0H0 = 0T, while Fig. 4.7(b)

is the same as (a), but for µ0H0 = 0.5T. Note that the Fourier components are

multiplied by the constant 8π3V −1b2H in order to have the same unit as dΣM/dΩ

[compare Eq. (2.26)].

In the remanent state for both cases xd = 0% and xd = 15%, we see that the

dΣM/dΩ are vertically elongated [Fig. 4.7(a)]. Moreover, the Fourier components

∣M̃x∣2, ∣M̃y ∣2, ∣M̃z ∣2 exhibit only a small variation with the defect concentration,

particularly in terms of their angular anisotropy. The cross term CT = −(M̃yM̃∗
z +

M̃∗
y M̃z) becomes larger when defects are present. The Fourier components ∣M̃x∣2,

∣M̃y ∣2, and ∣M̃z ∣2 contribute with similar orders of magnitude to the scattering in

the remanent state. On the other hand, near saturation at 0.5T [Fig. 4.7(b)],

dΣM/dΩ is dominated by the ∣M̃z ∣2 Fourier component and shows the expected

sin2 θ angular anisotropy, which is the hallmark of a uniform spin configuration

[compare Eq. (2.26)]. The contribution of the transverse Fourier components

∣M̃x∣2 and ∣M̃y ∣2 to dΣM/dΩ is much weaker than the longitudinal contribution

∣M̃z ∣2. At 0.5T, ∣M̃x∣2 changes from isotropic to a cos2 θ-type anisotropy in the

presence of defects. Meanwhile, ∣M̃y ∣2 displays a more pronounced clover-leaf-type

pattern in the defective case.

The CT s change their sign at the borders between the quadrants on the de-

tector, e.g., in Fig. 4.7(a) we see that CT > 0 for 0○ < θ < 90○, CT < 0 for

90○ < θ < 180○, and so on. We note that the CT needs to be multiplied with
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Figure 4.8: Influence of the dipolar interaction on the SANS observables for
D = 40nm, xd = 2%, and µ0H0 = 0T. (a) dΣM/dΩ with Ed (logarithmic color
scale), (b) dΣM/dΩ without Ed (logarithmic color scale), (c) azimuthally-averaged
dΣM/dΩ (log-log scale), and (d) pair distance distribution function p(r). The
analytical results for uniformly magnetized spheres are represented by the thin
black lines in (c) and (d). Figure taken from [1].

sin θ cos θ in order to obtain the corresponding contribution to the magnetic SANS

cross section [compare Eq. (2.26)]. We also emphasize that the CT sin θ cos θ con-

tribution to dΣM/dΩ can be negative, in contrast to the other three contributions,

which are strictly positive. Using the inequality ∣M̃y cos θ−M̃z sin θ∣2 ≥ 0, it is eas-

ily seen that the contribution CT sin θ cos θ is, however, always smaller than the

sum of the other terms (as it must be). The results in Fig. 4.7 underline that, gen-

erally, the Fourier components in the magnetic SANS cross section are anisotropic

functions of the angle θ.

The angular anisotropy of the magnetization Fourier components is caused by

the dipolar interaction [92], which is a long-range, nonlocal, and anisotropic mag-

netic energy term. Figure 4.8 compares, at remanence, results for dΣM/dΩ with

and without the dipolar energy Ed. It is seen that dΣM/dΩ is highly anisotropic

(elongated along the vertical direction) when Ed is included in the computations
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Figure 4.9: (a) Azimuthally-averaged magnetic SANS cross section dΣM/dΩ (log-
log scale), (b) p(r), and (c) c(r) for applied magnetic fields of 0T and 0.5T. The
dashed lines represent the case with xd = 0%, the dotted lines represent the case
with xd = 15%, and the thin black lines correspond to the analytically-known
(defect-free) uniform cases for both p(r) and c(r). Figure taken from [1].

[Fig. 4.8(a)], while it becomes weakly anisotropic (slightly elongated along the

vertical direction) when Ed = 0 [Fig. 4.8(b)]. For Ed = 0, the spin structure re-

mains essentially uniform throughout the magnetization process [compare inset

in Fig. 4.5(a) and related text] and one observes the analytical sphere form fac-

tor results (thin black lines) for the azimuthally-averaged dΣM/dΩ [Fig. 4.8(c)]

and the pair-distance distribution function p(r) [Fig. 4.8(d)]. The results in

Fig. 4.8 emphasize the importance of considering complex dipolar-field-induced

nonuniform spin textures for the understanding of magnetic SANS patterns. We

emphasize, however, that the dipolar energy might be of minor relevance for

smaller-sized (nearly uniformly magnetized) nanomagnets and in the presence of

the Dzyaloshinskii-Moriya interaction, which may give rise to flux-closure-type

magnetization patterns [93, 94].

The results for the 2π azimuthally-averaged dΣM/dΩ and for the correlation

functions p(r) and c(r) are shown in Fig. 4.9 and support the findings from the

analysis of the two-dimensional SANS cross sections. Specifically, they indicate a

weak dependence on the defect concentration xd. The presence of a vortex-type

real-space spin structure can be observed in Fig. 4.4(a), which is characterized

by an oscillatory behavior in p(r) [as seen in Figs. 4.8(d) and 4.9(b)]. This

oscillatory behavior appears to be relatively stable even when spin perturbations
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are induced by hole-type defects. Additionally, it is worth noting that there

is no Guinier behavior (dΣM/dΩ ∝ exp[−1
5(qR)2]) observed at low momentum

transfers q and for small fields, as shown in Fig. 4.9(a). Only when the field

strength increases, resulting in a more uniform spin structure, does the system

exhibit a Guinier-type behavior. This can also be observed in Fig. 4.10(a), which

shows the field dependence of dΣM/dΩ for xd = 15%. The presence of internal spin

disorder causes a shift of the characteristic form-factor oscillations towards larger

q values (smaller structures) and smears out these features. This effect resembles

the influence of a particle-size distribution and/or instrumental resolution, as can

be seen by comparison to Fig. 4.8(c) and Fig. 4.9(a).

As the field increases, the values of p(r) and c(r) in Fig. 4.10 tend to ap-

proach the analytical expressions for uniformly magnetized spheres, which are

given by Eq. (2.37). However, it is important to consider that the microstructure

of the nanoparticles with a high density of defects resembles a porous struc-

ture. This can be seen in Fig. 4.3, where the defect cells have a volume of

2×2×2nm3. Magnetic voids of this nature represent a significant perturbation in

the microstructure, leading to a sudden jump in the saturation magnetization and

to the generation of stray-field torques that result in spin disorder. Consequently,

when the nanoparticles (with defects) approach a state of uniform magnetization

at high fields, it is expected that their c(r) values at small and intermediate r

will exhibit slight deviations from the completely uniform scenario [compare to

Fig. 4.9(c) and Fig.4.10(c)]. The resolution of the feature at small r is more

pronounced in c(r) as compared to p(r) (due to the r2 factor). This can be see

in Fig. 4.9(b), where at 0.5T the overall shape of p(r) remains unchanged (for

xd = 0% and xd = 15%) and only the maximum is decreased with increasing xd.

The investigation of the correlation function c(r) as r approaches zero is a

topic of interest as it sheds light on the characteristics of the scattering con-

trast [95]. When a sample consists of distinct regions with constant (uniform)

scattering length density separated by sharp interfaces, the correlation function
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Figure 4.10: Field dependence of (a) the azimuthally-averaged dΣM/dΩ (log-log
scale), (b) p(r), and (c) c(r). Simulations were made for a defect concentration
of xd = 15%. Figure taken from [1].

exhibits a nonzero slope at the origin (compare, e.g., Eqs. (2.36) and (2.37) for

uniformly magnetized spherical nanoparticles). This behavior is commonly re-

ferred to as the Porod law, which predicts that the SANS cross section has an

asymptotic dependency of q−4, as derived e.g. in Ref. [64]. By contrast, structures

that have a nonuniform scattering length density profile, such as the smoothly-

varying magnetization profiles M(r) of micromagnetics, are distinguished by a

c(r) that shows a zero slope at r = 0 and correspondingly steeper power-law ex-

ponents of the magnetic SANS cross section [4, 42]. In the present simulations,

we are dealing with a system with a potentially nonuniform magnetization on

one side of the interface (inside the particle) and a zero magnetization on the

other side of the interface. The behavior of c(r) at small distances also depends

on the spin distribution in the vicinity of the surface and, therefore, on the sur-

face anisotropy and the related boundary conditions for the magnetization. This

question deserves a separate consideration and is beyond the scope of the present

PhD project.

4.4 Effect of a Particle-Size Distribution Function

In SANS experiments on nanoparticles one always has to deal with a distribution

of particle sizes and shapes. The size of a particle has an important effect on its

spin structure; for instance, smaller particles generally tend to be uniformly mag-
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netized, whereas larger particles may exhibit inhomogeneous spin structures [37].

It is therefore also of interest to study the influence of a distribution of parti-

cle sizes on the magnetic SANS observables dΣM/dΩ, p(r), and c(r) (see also

Appendix D).

In Ref. [1], we have used a lognormal distribution function for this purpose,

which is defined as [96]:

f(D) = 1√
2πD logσ

e
−1
2
( logD − logD0

logσ
)
2

, (4.7)

where D0 is the median and σ the variance of the distribution (∫
∞
0 f(D)dD =

1). For the above function, the mean particle size D [first moment of f(D)] is

related to the parameters of the distribution as D =D0e
(logσ)2

2 . For a given defect

concentration xd and field H0, randomly averaged magnetic SANS sections were

computed for particle diameters D ranging between 10 nm and 100 nm in binning

intervals of ∆D = 2nm. The magnetic SANS cross section averaged over the

distribution, ⟨dΣM/dΩ⟩f , is computed as:

⟨dΣM

dΩ
⟩
f

= ∑
k

wk

dΣM,k

dΩ
, (4.8)

where

wk =
Dk+∆D/2

∫
Dk−∆D/2

f(D)dD. (4.9)

denotes the weight of the size class Dk, which can be computed for given values

of D0 and σ. dΣM,k/dΩ represents the orientationally-averaged magnetic SANS

cross section corresponding to the size class Dk. Particle diameters outside of

the above interval, i.e., smaller than Dmin = 10nm and larger than Dmax = 10nm,

were not considered in this analysis, i.e., wk = 0 for D < 10nm and D > 100nm.

Figure 4.11 depicts the evolution of the azimuthally-averaged magnetic SANS

cross section dΣM/dΩ and of both correlation functions p(r) and c(r) with the
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width σ of the lognormal distribution at zero field and at 1.0 T (for D0 = 40nm

and xd = 0%). Note that the p(r) and c(r) are (for each D0 and σ) normalized

to unity after the cross section has been computed according to Eq. (4.8). The

dΣM/dΩ [Fig. 4.11(a)] exhibit the “usual” behavior known, e.g., from the study of

instrumental broadening, namely a smearing of the form-factor oscillations with

increasing σ. The remaining oscillations of dΣM/dΩ for small σ are more pro-

nounced in the high-field regime [Fig. 4.11(d)] than at remanence [Fig. 4.11(a)].

It is generally seen in Fig. 4.11(b) and Fig. 4.11(e) that the p(r) are more affected

by the variation of σ than the c(r) [Fig. 4.11(c) and Fig. 4.11(f)], which is related

to the r2 factor [p(r) = r2c(r)]. For all values of σ does the oscillatory p(r) be-

havior remain at zero field, and one observes a shift of the maximum in dΣM/dΩ

to lower momentum transfers with increasing σ. This is further illustrated in the

inset of Fig. 4.11(a), which shows the inverse of the q value of the maximum in

dΣM/dΩ, q−1max, versus σ. The shift to smaller q, corresponding to intraparticle

real-space correlations on a scale of about 8−14 nm, can be understood by noting

that the magnetic SANS cross section scales with the squared particle volume

[compare Eq. (2.29)], so that with increasing σ the larger particle sizes in the

distribution gain more weight.

For the materials parameters chosen and a spherical particle shape, the vortex

structure appears at low fields for particle sizes larger than about D = 20nm and

is present at least up to D = 100nm (larger sizes were not taken into account

in our simulations) [10]. This explains why we see an oscillatory p(r) at zero

field for increasing σ [Fig. 4.11(b)]; in other words, at remanence we have a

weighted superposition of vortex structures with different sizes, while at 1.0 T

we deal with a weighted superposition of nearly uniformly magnetized spheres

[Fig. 4.11(e)]. The global minimum of p(r) at zero field shifts to larger distances

with increasing σ, from r ≅ 29nm for σ = 1.1 to r ≅ 50nm for σ = 1.6. For

a nonzero defect concentration xd ≠ 0, the behavior of the dΣM/dΩ, p(r), and

c(r) are qualitatively similar, demonstrating the rather robust character of the
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Figure 4.11: Effect of a log-normal particle-size distribution on the azimuthally-
averaged magnetic SANS cross section dΣM/dΩ and on the correlation functions
p(r) and c(r). Upper row [(a)−(c)] is for µ0H0 = 0 T and the lower row [(d)−(f)] is
for µ0H0 = 1.0 T. Parameters are D0 = 40nm and xd = 0%, and σ varies between
1.1 and 1.6 [see inset in (c)]. For each σ, the p(r) and c(r) were normalized to
their respective maximum value at 0 T and 1.0 T. The inset in (a) displays q−1max

versus σ, where qmax is the position of the maximum of dΣM/dΩ (line is a guide
to the eye). The inset in (f) depicts the used size-distribution function f(D)
for D0 = 40nm and σ = 1.6. For each size class, 40 random particle orientations
were used to compute the averaged magnetic SANS cross section. Figure taken
from [1].

oscillatory low-field feature in p(r) [1].

4.5 Comparison to Experimental Results

As shown in Ref. [10] and in this thesis (see, e.g., Figs. 4.4 and 4.8), the mag-

netodipolar interaction gives rise to vortex-like flux-closure structures in a set

of spherical magnetic nanoparticles. These magnetization textures can be stud-

ied using the correlation function analysis of the corresponding magnetic SANS

cross section; their characteristic signature is a damped oscillatory behavior in

the correlation function. In Ref. [13], this specific analysis technique has been

applied to experimental scattering data to find strong evidence for the existence
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of vortexlike flux-closure textures within the grains of a Nd-Fe-B magnet. These

results will be discussed in the following.

Figures 4.12 and 4.13 summarize the results. Figure 4.12(a) and (b) show

the two-dimensional total nuclear and magnetic SANS cross section dΣ/dΩ at

a field close to saturation, µ0H0 = 10 T, and at remanence, µ0H0 = 0 T. At

the highest field, the total dΣ/dΩ is elongated perpendicular to the applied field

H0, which is indicative for the dominance of longitudinal ∣M̃z ∣2 sin2 θ correlations

in the unpolarized SANS cross section [compare Eq. (2.26)]. At remanence, we

observe an elongation of dΣ/dΩ along H0, which is known as the so-called spike

anisotropy. The origin of this scattering pattern, which becomes more pronounced

when subtracting the high-field measurement (a) from the low-field data (b) to

obtain the pureley magnetic SANS cross section dΣM/dΩ [Fig. 4.12(c)], is related

to the magnetodipolar interaction (see Ref. [12] for details).

The magnetic correlation function can be computed from azimuthally-averaged

data for dΣM/dΩ via the following one-dimensional Fourier transformation:

C(r) = 1

r

∞

∫
0

dΣM

dΩ
(q) sin(qr)qdq. (4.10)

The results for C(r) are displayed in Fig. 4.12(d) for applied fields ranging be-

tween zero field and 4 T; Fig. 4.12(e) shows the corresponding data for the pair

distance distribution function P (r) = r2C(r). Due to the r2 factor, a damped

oscillatory feature at intermediate r becomes clearly visible in P (r). Based on the

simulation results on spherical nanoparticles [1,10], one may relate this feature in

the correlation function to a vortex-type spin structure in the Nd-Fe-B magnet.

The C(r) of a uniformly magnetized sphere is given by

C0(r) = 1 −
3r

4R
+ r3

16R3
(4.11)

[compare Eq. (2.36)]. For comparison, this function is plotted in Fig. 4.12(d) for

R = 560nm and exhibits a slower decay than the experimental data.
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(a) (b) (c)

(d) (e)

Figure 4.12: Correlation function analysis of the experimental unpolarized SANS
cross section of an isotropic Nd-Fe-B permanent magnet. Total nuclear and mag-
netic SANS at (a) µ0H0 = 10T (near saturation) and at (b) µ0H0 = 0T (rema-
nence). (c) Purely magnetic SANS cross section dΣM/dΩ obtained by subtracting
(a) from (b). The white dashed line in (c) is a guide for the eyes to emphasize
the spike-type angular anisotropy due to the magnetodipolar interaction [12].
(d) Experimental field dependence of the magnetic correlation function C(r).
Blue dashed line: C0(r) = 1 − 3r/(4R) + r3/(16R3) of a uniformly magnetized
sphere with a radius of R = 560 nm. (e) Corresponding pair distance distribution
function P (r) = r2C(r). Figures taken from Ref. [13].

Using the experimental C(r) data in Fig. 4.12(d), a magnetic correlation

length Lc can be computed using the following expression (first moment of the

correlation function):

Lc(H0) =

∞

∫
0

rC(r,H0)dr
∞

∫
0

C(r,H0)dr
. (4.12)

Figure 4.13 shows Lc as a function of H0. The experimental results (open circles)

are compared with simulation data (filled circles) that were obtained on a single

40 nm-sized spherical Fe particle.1 The Lc(H0) data are described by the following

1Due to the large magnetocrystalline anisotropy of Nd-Fe-B, the corresponding single-domain
size (for a spherical particle) is relatively large, about 210 nm [60]. To disclose a vortex structure
eventually in a Nd-Fe-B sphere requires a much larger particle diameter, on the order of 500 nm,
which from a micromagnetic simulation point of view is computationally very challenging.
Therefore, to see the general field-dependent behavior of the correlation length of a single
vortex, we assumed (for the simulation results displayed in Fig. 4.13) the materials parameters
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Figure 4.13: Magnetic correlation length Lc as a function of the externally applied
magnetic field H0. Open (filled) circles refer to the experimental (simulation)
data (note the different scales). Solid lines: Fit to Eq. (4.13). Figure taken from
Ref. [13].

phenomenological power law (solid lines in Fig. 4.13):

Lc(H0) = Lc(H0 = 0) + βHp
0 . (4.13)

At low fields, when the vortex is present, one expects an Lc that is significantly

smaller than the size of the sphere, while, towards saturation, Lc increases with

field and takes on its maximum value. This consideration motivates the above

choice for Lc(H0). Using the analytical expression for C0(r) in Eq. (4.12), we

obtain the limiting value of Lc at saturation as LH0→∞
c = 8

15R, or L
H0→∞
c = 297 nm

using the experimental parameter R = 560 nm, and LH0→∞
c = 10.7 nm using

R = 20 nm from the micromagnetic simulations.

From the fit analysis, we obtain Lc(0) = 127.0 ± 0.3 nm, β = 14.5 ± 0.5nm/Tp
,

and p = 0.86 ± 0.02 for the experimental data, and Lc(0) = 4.8 ± 0.1 nm, β =

19.0±1.0nm/Tp
, and p = 1.70±0.09 for the simulation data. As discussed already

above, at low magnetic fields, one expects the value of Lc to be significantly

smaller than the saturated ones due to the presence of the vortex structure. This

prediction, which is very well followed in the simulations (see the red dashed line in

of Fe, for which a vortex-type structure already appears for diameters larger than about 20 nm
[11,27]. These results are expected to be qualitatively transferable to the case of Nd-Fe-B. The
value of 40 nm for the Fe sphere diameter is arbitrary, and we could have equally well chosen a
larger size. The simulations on the 40 nm sphere serve as a guide that also allow us to test the
predictions for the correlation length [Eq. (4.13)] in the limiting case of a saturated sphere.
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Fig. 4.13), also seems to describe the experimental data. However, to demonstrate

unambiguously the suitability of Eq. (4.13), further neutron experiments at larger

field values are necessary.

The different values for the characteristic power law exponent p in the sim-

ulations (p = 1.70) and experiment (p = 0.86) might be due to the presence of

vortex-vortex interactions in the Nd-Fe-B sample. This type of interaction is

currently absent in the simulations. To better understand the dependency of the

magnetic correlation length Lc on the applied magnetic field requires the inclusion

of interacting vortexlike structures in the micromagnetic SANS theory [97,98].

4.6 Conclusion

In summary, by employing micromagnetic simulations, we have examined the in-

fluence of pore-type microstructural defects in spherical magnetic nanoparticles

on their magnetic SANS cross section dΣM/dΩ, pair-distance distribution func-

tion p(r), and correlation function c(r). These simulations consider the isotropic

exchange interaction, magnetocrystalline anisotropy, dipolar interaction, and an

externally applied magnetic field. Notably, the dΣM/dΩ and p(r) of nonuniformly

magnetized nanoparticles can no longer be accurately described using the super-

spin model, which assumes a homogeneous spin structure. The dipolar interaction

gives rise to various complex magnetization structures and associated anisotropic

scattering patterns. For small applied magnetic fields and sufficiently large par-

ticle sizes (specifically, for D ≳ 20nm), the dipolar energy induces a vortex-type

spin structure and a concomitant oscillatory feature in the p(r) function. This

characteristic signature appears stable against the pore-type defects considered

here. The oscillatory shape of p(r) persists even in the presence of a particle size

distribution. At low fields, deviations from the Guinier law and intricate real-

space correlations are observed. In the current defect modeling approach where

defects are represented by computational cells with zero saturation magnetization

Ms, their effect on the SANS observables is relatively minor. The predominant
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defect in spherical nanoparticles seems to be the particles’ outer surface. A more

realistic defect treatment could involve moderate changes in material parame-

ters, such as reducing the saturation magnetization to a lower, but nonzero value

and/or diminishing the exchange interaction between the defects and the other

cells [99]. Additionally, incorporating the magnetoelastic interaction into the mi-

cromagnetic energy functional could be considered. This interaction is currently

not implemented in most micromagnetic codes, although recent research efforts

are moving in this direction [100]. Similarly, phenomenological models for surface

anisotropy, such as Néel anisotropy, which introduce additional boundary condi-

tions on the surface, are also not included in numerical simulations of magnetic

SANS. The micromagnetic approach to magnetic SANS involves determining,

through magnetic energy minimization, the three-dimensional vector field of the

magnetization M(r). This represents a conceptual shift and is fundamentally

different from the traditional approach of finding a scalar function describing the

structural saturation-magnetization profile Ms(r) of the particle ensemble. The

simulation approach has been successfully used to analyze experimental magnetic

SANS data on an isotropic Nd-Fe-B magnet.



Chapter 5

Signature of the Dzyaloshinskii-Moriya

Interaction in the SANS Signal of Spherical

Nanoparticles

The Dzyaloshinskii-Moriya interaction (DMI) arises in systems with broken in-

version symmetry and strong spin-orbit coupling [50,51]. Examples for materials

with intrinsic DMI [75,76] are MnSi and FeGe which exhibit noncentrosymmetric

crystal structures. Other examples where a DMI may appear are materials with a

high volume fraction of microstructural defects, where the DMI is a result of the

disruption of the structural inversion symmetry at the defect sites [47, 101–108].

The competition between the exchange interaction and the DMI gives rise

to various complex chiral magnetization configurations of topological spin struc-

tures, such as skyrmions which might be of importance for spintronics appli-

cations (see, e.g., Refs. [109–114]). Using micromagnetic simulations, we study

the effects of the DMI on the magnetic SANS cross section and the related pair

distance distribution function of FeGe nanoparticles. This work will consider a

total magnetic Gibbs free energy that consists of the Zeeman energy, magneto-

static energy, exchange energy, magnetocrystalline energy, and the DMI energy.

It is worth mentioning that the DMI does not inherently lead to the presence of

topological spin structures. Typically, these structures are only detected within

a limited region of the associated phase space. The results of this chapter are

already published in Ref. [2].
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5.1 Details on the Micromagnetic Simulations of FeGe

Nanospheres

This project investigates spherical nanoparticles made of FeGe and focuses on the

impact of the DMI on the spin-flip SANS cross section and the associated chiral

function [54]. The continuum expressions for the energies are the same as those

in Section 4.1 (see alsoChapter 3); here, we add the DMI energy as:

Edmi = D∫ m ⋅ ∇ ×mdV, (5.1)

where D represents the bulk DMI constant. The material parameters of FeGe

are [93, 115]: Ms = 384kA/m, Kc1 = 1.0 × 104 J/m3, A = 8.8 × 10−12 J/m, and

D = 1.6 × 10−3 J/m−2. These values yield the following micromagnetic exchange

lengths: lM =
√
2A/(µ0M2

s ) = 9.7nm, lK =
√
A/Kc1 = 29.7nm, and a helical period

of ld = 4πA/D = 69.1nm [93,116].

Both the magnetic field and magnetization are pseudovectors, which means

that they manifest an even behavior under the space-inversion operation (r →

−r) [117]. The micromagnetic energy expressions [Eqs. (4.1)−(4.4)] (Zeeman,

magnetostatic, exchange, and magnetocrystalline energy) remain invariant un-

der space inversion. However, the ∇ (del operator) breaks the space-inversion

symmetry, causing the DMI energy [Eq. (5.1)] to be a pseudoscalar that changes

sign under r → −r. These symmetry properties persist after the variation of the

total magnetic Gibbs free energy (with respect to m) is performed to derive the

partial differential equations that describe the system’s behavior. In this case,

the effective field is given by:

heff = h0 + hd + hani + hex + hdmi, (5.2)

where hdmi = −ldmi∇ ×m refers to the field conjugate to the DMI and ldmi =

2D/(µ0M2
s ) = 17.3nm is the characteristic length scale of the DMI. On space
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Figure 5.1: Illustration of the discretization of a nanosphere into cubical cells
with a size of 2× 2× 2nm3. The blue-colored cells mark the middle layer through
the center of the particle for which the topological charge [Eq. (5.6)] has been
computed. Note that she small-angle scattering from such a sphere in the sat-
urated state agrees very well with the analytical solution for the sphere form
factor [1, 10]. Figure taken from [2].

inversion, only hdmi changes its sign in Eq. (5.2).

The simulation model which is used in this project of FeGe nanospheres is

shown in Fig. 5.1. The finite-difference method was used to divide the vol-

ume of the sphere into cubical cells “i” with a volume of Vi = 2 × 2 × 2nm3.

Simulations were performed for sphere diameters D ranging between 60nm to

200nm. The magnetic moment vector for each cell “i” with volume Vi is given

by µi = µi(r) = MsVimi(r), where the vector mi(r) represents the unit vector

pointing in the direction of the magnetization at a given position r. The winding

number [Eq. (5.6)] for the middle layer of the sphere (represented by blue color)

has been computed. The simulations were carried out by first applying a large

external field to fully align all the spins in the system, then the external field

was gradually reduced in steps of typically 5mT to follow the hysteresis loop.

Open boundary conditions were used in the simulations, since we are interested

in the scattering behavior of an ensemble of noninteracting single particles having

random easy-axis orientations c1,2,3 [compare Eq. (4.3)].

As discussed in Appendix C, the Fourier components M̃x,y,x(q) of the mag-

netization are evaluated in the plane qx = 0 (corresponding to the perpendicular
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scattering geometry Fig. 2.2) and then used to compute the SANS cross section.

In this chapter, we focus on the spin-flip SANS cross section dΣsf/dΩ and on the

so-called chiral function χ as follows [Eqs. (5.12) and (5.9) below]:

⟨f⟩EA =
N
∑
i=1
fi, (5.3)

where the variable fi represents either dΣsf/dΩ or −iKχ for a spherical particle

with diameter D and a specific random easy axis orientation denoted by “i”.

The SANS observables are examined in the context of a scenario in which the

cubic magnetocrystalline anisotropy axes (“EA”) of the particles are randomly

distributed with respect to the direction of the external magnetic field H0 (which

is parallel to the global ez direction). For each value of H0, micromagnetic sim-

ulations are performed considering approximately N ∼ 500 random orientations

between the easy axis and H0. It should be noted that the simulations do not

take into account interparticle-interference effects, as indicated by Eq. 5.3.

Moreover, in Section 5.5, we will discuss azimuthally-averaged data for the

spin-flip SANS cross section dΣsf/dΩ, which is computed as follows:

Isf(q) =
1

2π ∫
2π

0

dΣsf

dΩ
(q, θ)dθ. (5.4)

Using Eq. (5.4), the pair distance distribution function is then obtained as:

psf(r) = r
∞

∫
0

Isf(q) sin(qr)qdq. (5.5)

5.2 Skyrmions in FeGe Nanoparticles

Skyrmions, which are of interest in the field of condensed matter physics, are

fascinating spin structures that have attracted the attention of researchers since

they were first proposed by Tony Skyrme in the 1960s [111,112]. These small-scale

particle-like entities resemble whirlpools and represent localized and stable spin

configurations. One key characteristic that sets skyrmions apart is their quantized
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winding number or skyrmion number, which represents the extent of spin rotation

within the structure. This winding number is a topological property that imparts

skyrmions their robustness against local disturbances. The topological protection

of skyrmions makes them particularly interesting for fundamental research, as

they provide insights into the underlying principles of condensed matter systems.

In order to investigate the presence of a skyrmion in FeGe nanoparticles, we

performed numerical calculations to determine the winding number Q for the

middle layer in the x-y plane of a nanoparticle (with the applied field H0 defining

the z direction), as shown in Fig. 5.1 [52,118]:

Q = 1

4π ∫
m ⋅ (∂m

∂x
× ∂m
∂y
)dxdy, (5.6)

where m is the unit magnetization vector field. For a vortex-type planar config-

uration with m = 1
2{−y, x,0} and ∇ ×m = {0,0,1}, the topological charge Q is

calculated as 0. In contrast, for skyrmions, Q assumes values of ±1 [111]. It is

important to keep in mind that a Q value of unity supposes that the skyrmion

fully fits inside a nanoparticle and that the magnetization vector far away from

the skyrmion center approaches a constant value (the so-called ferromagnetic

background). This is of course fulfilled by the mathematical trial functions that

are used to describe Néel and Bloch skyrmions (e.g., [76]). In the micromagnetic

simulations on finite-sized nanoparticles, the magnetodipolar interaction (which

is always present) aims to avoid volume and surface charges by demanding that

∇ ⋅m = 0 and m ⋅ n = 0, where n denotes the local unit normal vector to the

surface. This implies that the surface spins (those far away from the skyrmion

center, which is supposed to be localized in the sphere center due to symmetry

reasons) may not attain a constant value, but vary over the sphere surface. There-

fore, in micromagnetic simulations using open boundary conditions on finite-sized

systems one should not expect to find Q values very close to unity.

Figure 5.2 depicts the numerically-computed values of the topological charge

Q [Eq. (5.6)] of a single nanoparticle for sphere diameters D between 60nm and
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Figure 5.2: The field-diameter phase diagram of an oriented FeGe sphere with
particle sizes D ranging between 60nm and 200nm and −1T ≤ µ0H0 ≤ 1T. One
of the cubic anisotropy axes is parallel to the externally applied magnetic field
H0 ∥ ez. (a) Toplogical charge Q [Eq. (5.6)] numerically calculated for the middle
layer in the x-y plane. (b) Q averaged of all layers in the particle. The spacing
(resolution) in D and H0 is, respectively, 5 nm and 5mT. Figure taken from [2].

200nm and for applied fields µ0H0 ranging from −1T to +1T. In this particular

example one of the cubic anisotropy axes has been chosen to be parallel to H0, so

that the results in Fig. 5.2 are representative for an oriented particle, and not for

an ensemble of randomly-oriented nanoparticles (to be discussed in Section 5.5).

The topological charge has been computed for the middle layer in the x-y plane

[Fig. 5.2(a)], and Q has also been averaged over all the layers in the particle

[Fig. 5.2(b)]. As can be seen, the averaging procedure results (as expected) in a

smearing of the data, leaving however the main features unaltered. Several regions

with Q values approaching unity are found indicating a possible skyrmion phase,

most prominently is a region 165nm ≲ D ≲ 175nm and 0.05T ≲ µ0H0 ≲ 0.65T

where Q→ −1.

Figure 5.2 aims to demonstrate that also skyrmionic spin structures may form

in individual, favorably-oriented nanoparticles of an ensemble [93]. Changing the
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direction of the (here cubic) magnetic anisotropy axes of the particle relative

to the global direction given by H0, as it is required for the description of a

randomly-oriented nanoparticle ensemble, alters the energetics of the problem

and may result in a fraction of the particles being in a skyrmion or a vortex-like

state while other particles exhibit textures with zero net topological charge, such

as spiral-type textures or even near single-domain structures.

This is illustrated in Fig. 5.3(a)−(d), where the spin structures of two differently-

oriented FeGe nanoparticles are shown. In Fig. 5.3(a) we display the structure

of a 170nm-sized FeGe sphere at a field of 5mT and with one of the cubic

anisotropy axes aligned parallel to H0; Fig. 5.3(b) features the spin distribution

in the middle-layer x-y plane, which is characterized by a topological charge of

Q ≅ −0.94. When the particle is oriented with the same cubic anisotropy axis at an

angle of ∼72○ relative toH0 [Fig. 5.3(c)] a significantly different magnetization dis-

tribution is obtained, withQ ≅ −0.39 in the middle-layer plane [Fig. 5.3(d)]. These

considerations imply that for a dilute set of randomly-arranged FeGe nanopar-

ticles, the different spin configurations of differently oriented nanoparticles give

rise to a spin-disorder-induced smearing of the SANS observables, even in the

absence of a particle-size distribution. This smearing effect is naturally the most

pronounced at low fields [see, e.g., Fig. 5.7(a) below].

In the remaining part of this chapter, we will concentrate on the effect of

the DMI on the randomly-averaged SANS observables, keeping in mind that a

variety of different spin structures may co-exist at a particular field in a set of

nanoparticles.

5.3 Symmetry Properties of the Spin-Flip SANS Cross

Section and the Chiral Function

This project aims to investigate the elastic differential spin-flip scattering cross

section and its associated chiral function. These are fundamental quantities in

polarized neutron scattering that can be determined through an experiment in-
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Figure 5.3: (a) Spin structure (snapshot) of a 170nm-sized FeGe sphere at an
external magnetic field of µ0H0 = 5mT. Initially, the spin structure was saturated
along H0 ∥ ez. One of the three cubic anisotropy axes was chosen to be parallel
to the global H0 direction. In panel (b) we display the spin structure within the
middle-layer x-y plane, resulting in a topological charge of Q ≅ −0.94. (c) Similar
to (a), but with the same cubic anisotropy axis from (a) oriented at an angle of
72○ relative to H0. (d) Same as in (b), but with the cubic axis at 72○ relative to
H0 (Q ≅ −0.39). Figure taken from [2].

volving uniaxial polarization analysis (e.g., [28,38,54,119]). Specifically, we con-

sider a situation where the applied magnetic field H0 ∥ ez is perpendicular to

the wave vector k0 ∥ ex of the incident neutrons (compare Fig. 2.2). For this

scattering geometry, the two spin-flip SANS cross sections dΣ+−sf /dΩ and dΣ−+sf /dΩ

can be written as (compare Section 2.4.2):

dΣ+−sf
dΩ

= 8π3

V
b2H (∣M̃x∣2 + ∣M̃y ∣2 cos4 θ + ∣M̃z ∣2 sin2 θ cos2 θ (5.7)

−(M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos3 θ − iχ) ,
dΣ−+sf
dΩ

= 8π3

V
b2H (∣M̃x∣2 + ∣M̃y ∣2 cos4 θ + ∣M̃z ∣2 sin2 θ cos2 θ (5.8)

−(M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos3 θ + iχ) ,

where V is scattering volume, bH = 2.91 × 108A−1m−1, θ is the angle between

q and H0, the complex-conjugated quantity is denoted by an asterisk “∗”, and

χ = χ(q) denotes the chiral function, which characterizes the nonreciprocity in

the polarized neutron scattering cross section. χ is obtained by taking (one-half
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times) the difference between the two spin-flip SANS cross sections:

−iKχ(q) = 1

2
(
dΣ+−sf
dΩ
−
dΣ−+sf
dΩ
) (5.9)

= −iK [(M̃xM̃
∗
y − M̃∗

xM̃y) cos2 θ − (M̃xM̃
∗
z − M̃∗

xM̃z) sin θ cos θ] ,

where K = 8π3

V b2H. The magnetization Fourier components M̃x,y,z can be rep-

resented by their real (“R”) and imaginary (“I”) parts, i.e., M̃x = M̃R
x + iM̃ I

x,

M̃∗
x = M̃R

x −iM̃ I
x (where M̃

R
x ∈ R and M̃ I

x ∈ R). By rearranging the expression (5.9),

−iKχ(q) ∈ R can be written as follows:

−iKχ(q) = −2K [(M̃R
x M̃

I
y − M̃ I

xM̃
R
y ) cos2 θ − (M̃R

x M̃
I
z − M̃ I

xM̃
R
z ) sin θ cos θ] ,

(5.10)

which shows that the chiral function vanishes at complete magnetic saturation

(Mx =My = 0), or when the Fourier components of the magnetization M̃x,y,z are

either purely real-valued or purely imaginary. Moreover, by using the fact that

the magnetization vector is a real-valued quantity, i.e., Mx,y,z(r) ∈ R, one can

utilize the well-known result that the real parts of M̃x,y,z(q) are even functions

of q, while the imaginary parts are odd functions of q. In other words:

M̃R
x,y,z(q) = M̃R

x,y,z(−q) and M̃ I
x,y,z(q) = −M̃ I

x,y,z(−q),

where q = {qy, qz} represents the two-dimensional Cartesian scattering vector in

the detector plane. Consequently, both terms in Eq. (5.10), which always involve

the product of two even functions (e.g., M̃R
x and sin θ cos θ) and one odd function

(e.g., M̃ I
z), are odd functions of q. Therefore, the following symmetry relation

holds for the chiral function (odd under spatial inversion of q):

iKχ(q) = −iKχ(−q). (5.11)
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Table 5.1: Summary of all the possible combinations of symmetry properties
(even or odd) of the real-space magnetization components Mx,y,z(r) and the
ensuing symmetries (real or imaginary) of the Fourier-space magnetization
components M̃x,y,z(q) and the chiral function χ (zero or nonzero). The case that
the Mx,y,z(r) are composed of a nonzero even and odd part will always result in
a nonzero chiral function. Table taken from [2].

Mx(r) My(r) Mz(r) M̃x(q) M̃y(q) M̃z(q) iKχ(q)
odd odd odd imaginary imaginary imaginary zero
even odd odd real imaginary imaginary nonzero
odd even odd imaginary real imaginary nonzero
even even odd real real imaginary nonzero
odd odd even imaginary imaginary real nonzero
even odd even real imaginary real nonzero
odd even even imaginary real real nonzero
even even even real real real zero

Table 5.1 lists the chiral function (zero or nonzero) for all the possible combi-

nations of symmetry properties (odd or even) of the real-space magnetization

components. We also refer to the review by Maleev [120] for a discussion of the

symmetry properties of the chiral function.

In addition to the difference between dΣ+−sf /dΩ and dΣ−+sf /dΩ, one can also

examine (one-half times) their sum:

dΣsf

dΩ
= 1

2
(
dΣ+−sf
dΩ
+
dΣ−+sf
dΩ
) (5.12)

= K (∣M̃x∣2 + ∣M̃y ∣2 cos4 θ + ∣M̃z ∣2 sin2 θ cos2 θ

−(M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos3 θ) ,

where the quantity dΣsf/dΩ is called the (polarization-independent) spin-flip

SANS cross section. Based on the foregoing, it is easily seen that dΣsf/dΩ is

an even function of q (even under spatial inversion of q) [7]:

dΣsf

dΩ
(q) = dΣsf

dΩ
(−q). (5.13)
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Figure 5.4: (a) Normalized magnetization curves of randomly-oriented FeGe
nanoparticles with particle diameters of D = 60nm, 120nm, and 150nm (see
inset). The solid lines are with DMI and the dashed lines are without DMI.
(b) Same as (a), but for −0.15T ≤ µ0H0 ≤ 0.15T. The reduced remanence of the
D = 60nm “sample” is ∼0.832 (without DMI), which is very close to the Stoner-
Wohlfarth value, suggesting the presence of single-domain particles [14]. Figure
taken from [2].

5.4 Effect of DMI on Magnetization

Figure 5.4 illustrates the effect of the DMI on the randomly-averaged magne-

tization of an ensemble of noninteracting spherical FeGe nanoparticles. Nor-

malized magnetization curves mz(H0) for different particle diameters with and

withoput the DMI are shown. The black line represents particles with a diameter

of D = 60 nm, the red line with a diameter of D = 120nm, and the blue line

with a diameter of D = 150nm. The solid lines correspond to simulations with

DMI, while the dashed line correspond to simulations without DMI. Figure 5.4(b)

shows an enlarged region close to the remanent state. Without DMI, the hys-

teresis curve for D = 60nm agrees with the predictions of the Stoner-Wohlfart

model (see Section 2.6), i.e., the reduced remanence for particles with a positive

cubic anisotropy evaluates to mr ≅ 0.832, indicating that the system is in a single-

domain state. This is also supported by an estimate for the critical single-domain

size of spherical FeGe particles, Dc = 72
√
AK1

µ0M2
s
≅ 115nm, which suggests that for

particle diameters below 115nm the system is in a single-domain state. When the
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Figure 5.5: (a) The randomly-averaged spin-flip SANS cross section dΣsf/dΩ and
(b) chiral function −iKχ of FeGe nanoparticles with a diameter of 170nm and at
a saturating field of µ0H0 = 3T (H0 ∥ ez).

DMI is included, the remanent magnetization of the particle ensemble is reduced.

Similar results were previously reported in Ref. [121].

5.5 Effect of DMI on Spin-Flip SANS Cross Section, Chi-

ral Function, and Correlation Function

Figure 5.5 shows the two-dimensional (2D) spin-flip SANS cross section dΣsf/dΩ

and the chiral function −iKχ of 170nm-sized FeGe nanoparticles at a saturating

field of 3T. In this case, dΣsf/dΩ [Fig. 5.5(a)] is determined by the longitudinal

magnetization Fourier component ∣M̃z ∣2 and exhibits the characteristic sin2 θ cos2 θ

angular anisotropy [compare Eq. (5.12)]. As expected, −iKχ [Fig. 5.5(b)], and

the effect of the DMI, is negligible at saturation, since Mx,y → 0 at 3T.

The corresponding results for the randomly-averaged dΣsf/dΩ and −iKχ with

and without the DMI and at a small applied field of µ0H0 = 5mT are shown in

Fig. 5.6. Figure 5.6(c) and 5.6(f) display examples (snapshots) of real-space spin

structures contributing to the respective scattering cross section [Fig. 5.6(c) with

DMI and Fig. 5.6(f) without the DMI]. The reduction of the field results in the

appearance of various complex M(r) patterns [compare, e.g., Fig. 5.3(a) and (c)]

and in a correspondingly complicated randomly-averaged dΣsf/dΩ [Fig. 5.6(a)].

If the DMI is omitted in the simulations, a significantly altered dΣsf/dΩ arises

[Fig. 5.6(d)], which exhibits (here for 5mT) a sin2 θ type anisotropy, characteristic
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Figure 5.6: (a) dΣsf/dΩ and (b) −iKχ at an applied magnetic field of 5mT for an
ensemble of 500 randomly-oriented FeGe nanoparticles with a diameter of 170nm.
(c) Example for a real-space spin structure at 5mT. (d)−(f) Corresponding results
for dΣsf/dΩ, −iKχ, and the spin structure without the DMI. Figure taken from [2].

of the saturated state in unpolarized SANS in the H0 ⊥ k0 scattering geometry

[compare Eq. (2.26)].

One of the main results of this project on randomly arranged particle en-

sembles is that for 60nm ≤ D ≤ 200nm and −1T ≤ µ0H0 ≤ 1T, the chiral func-

tion −iKχ vanishes when the DMI is not included in the simulations [compare

Fig. 5.6(b) and (e) and the corresponding data in Appendix A]; in other words,

due to the absence of chirality selection, the individual Fourier cross correlations

in the expression for −iKχ [Eqs. (5.9) and (5.10)] add up to zero in the random av-

erage case and no DMI. Similar to previous simulations on Fe nanospheres [1,10],

we find dipolar-energy-driven vortex-type structures in FeGe when the DMI is

not taken into account [e.g., Fig. 5.6(f)]. The ensemble of vortex configurations

exhibit, on the average, an equal amount of clockwise and counterclockwise ro-

tation senses, so that the corresponding chiral function averages to zero. This

result is somehow expected (no chirality selection), and the symmetry properties

of the chiral function are well known [120], but here we comprehensively study

the signature of the DMI on the diffuse SANS cross section of an ensemble of
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randomly-oriented magnetic nanoparticles.

Figures 5.7 and 5.8 display the results for the azimuthally-averaged neutron

data Isf(q) and the pair distance distribution psf(r) [computed using Eqs. (5.4)

and (5.5)]. In Fig. 5.7, the effect of the DMI is shown for FeGe particle sizes of

D = 60nm, 120nm and 150nm at an applied magnetic field of µ0H0 = 20mT.

Fig. 5.8 highlights the field dependence of Isf(q) and psf(r) at a fixed particle

size of D = 170nm (including the DMI). While it is challenging to make general

statements about the spin structure of individual nanoparticles, we observe the

tendency of the formation of periodic domain structures when the DMI is present

[see, e.g., Fig. 5.6(c)]. This is evident in the psf(r) data, which (for D = 120nm

and D = 150nm) exhibit three zero crossings with DMI [Fig. 5.7(b)], while only

one such zero crossing is observed when the DMI is absent [Fig. 5.7(d)]. The

D = 60nm spheres are in a nearly single-domain state without DMI [Fig. 5.7(d)]

and exhibit a vortex-type spin structure with DMI [Fig. 5.7(b)].

As depicted in Fig. 5.8, when the field reaches a saturation level of 3T, the

analytical results for a uniformly magnetized sphere are retrieved [yellow dashed

line in Fig. 5.8(b)]. However, when the field is decreased to 0.12T and 0.02T,

the scattering curves exhibit the previously mentioned blurring caused by spin

disorder, i.e., the sample is composed of particles that all have the same struc-

tural size D, but their internal spin structures may be different. Therefore, the

form factor oscillations (which are most prominent at 3T) become progressively

smeared and damped at lower fields. At large values of q, where structure on a

nanometer-scale is probed, all the scattering curves follow the well-known Porod

law Isf(q) ∝ q−4 [as shown by the black dashed line in Fig. 5.8(a)]. Furthermore,

the nucleation of an inhomogeneous spin structure at lower fields leads to the

appearance of a peak in the Isf(q) curve at intermediate momentum transfers,

accompanied by a decrease in the value of Isf as q → 0, reflecting the behavior of

the average ensemble magnetization.

In order to characterize the way in which the system of randomly-oriented
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Figure 5.7: (a) Isf(q) and (b) psf(r) for randomly-oriented FeGe nanoparticles
with D = 60nm, 120nm and 150nm and at an applied magnetic field of µ0H0 =
0.02T (see inset). (c) Isf(q) and (d) psf(r) without DMI. Black dashed line in
(b): psf(r) ∝ sin(kdr) with kd = 0.09nm−1. Figure taken from [2].

FeGe nanoparticles scatters at low fields and for not too small particle sizes

(so that a DMI-induced spin modulation appears), we present the following phe-

nomenological expression (“educated guess”) for the spin-flip correlation function:

csf(r) = B j0(kdr) exp(−r/R), (5.14)

where B is a scaling constant, R = D/2 is the sphere radius, and j0(z) = sin z/z

denotes the zeroth-order spherical Bessel function that provides a damped oscilla-

tion with a wave number of ∼kd. We emphasize that Eq. (5.14) does not represent

a true particle correlation function, since it extends to infinity and vanishes for

r > D. The exponential decay forces the spatial extent of csf(r) to be roughly
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Figure 5.8: (a) Isf(q) and (b) psf(r) of randomly-oriented FeGe nanoparticles with
D = 170nm and at three different applied magnetic fields (3T, 0.12T, 0.02T, see
inset). The DMI is included in the simulations. Black dashed line in (a): Isf(q) ∝
q−4. Yellow dashed line in (b): analytical expression for psf(r) for a uniformly
magnetized sphere [Eq. (2.36)]. Figure taken from [2].

limited to r ≲D. Equation (5.14) is an easy-to-implement expression that, as we

will see below, grasps the main low-field characteristics found in the simulations.

The corresponding analytical expression for the spin-flip SANS cross section is

given by:

Isf(q) =
∞

∫
0

csf(r)j0(qr)r2dr (5.15)

= 2BR3

[1 + (q − kd)2R2] [1 + (q + kd)2R2]
,

which exhibits a field-independent maximum at qmax =
√
k2dR

2 − 1/R ≅ kd and an

asymptotic q−4 dependency; Isf(q = 0) = 2BR3/(1 + k2dR2)2.

Figure 5.9 features a comparison between Eqs. (5.14) and (5.15) and the nu-

merically computed Isf(q), csf(r), and psf(r) = r2csf(r). Overall, we see that the

expressions reproduce the main features of the spin-flip scattering, i.e., a peak at

about the helical wavevector kd followed by a q−4 Porod decay at large q. The

r2 factor in the definition of psf(r) amplifies the error at the larger distances. The

behavior of Isf(q) at large q does not depend on kd.
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Figure 5.9: Comparison between the simplified analytical model [Eqs. (5.14)
and (5.15)] and the numerical micromagnetic simulations. (a) Isf(q), (b) csf(r),
and (c) psf(r) of randomly-oriented FeGe nanoparticles (D = 170nm and
µ0H0 = 0.02T). Black dashed lines: micromagnetic simulation. Blue solid
lines: Eqs. (5.14) and (5.15) (scaled to the simulation data). Figure taken from [2].
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Figure 5.10: Dependence of the randomly-averaged Isf(q) (a) and psf(r) (b) of
FeGe nanospheres on the DMI constant (see inset) (D = 170nm and µ0H0 =
0.02T). The peak maximum in Isf(q) scales with kd = D/(2A). Peak positions
in (a): 0.062nm−1, 0.086nm−1, and 0.172nm−1. Figure taken from [2].

To confirm that the helical period due to the DMI is indeed observable in

the spin-flip SANS cross section, we compare Isf(q) and psf(r) data for different

values D of the DMI constant. Figure 5.10(a) displays Isf(q) for D = 170nm,

µ0H0 = 0.02 T, and for D values of D = 1.6 × 10−3 J/m−2 (black line), 0.8D (red

line), and 2D (blue line). Previous analysis suggests that the peak position of

Isf appears at kd = D/(2A), so that a shift should occur as D increases, which

is indeed observable in Fig. 5.10(a). The pair distance distribution [Fig. 5.10(b)]

exhibits oscillations with a shorter (longer) period as the DMI constant becomes

larger (smaller). All these results suggest that the helical period due the DMI is
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indeed observable in Isf(q) and psf(r) for nanoparticles with sizes larger than the

helical period (D > ld) and for small applied magnetic fields.

5.6 Conclusion

To summarize, numerical micromagnetic simulations were used to study the im-

pact of the antisymmetric DMI on the diffuse magnetic spin-flip SANS cross sec-

tion for a collection of randomly-oriented FeGe nanoparticles. Unlike the other

magnetic interactions accounted for in our simulations (isotropic exchange, mag-

netic anisotropy, dipolar, and Zeeman interactions), the DMI energy is a pseu-

doscalar that breaks space-inversion symmetry. The relative alignment between

the magnetic anisotropy axes of the nanoparticles and the orientation of the ex-

ternally applied magnetic field can lead to a variety of spin configurations within

nanoparticles of a specific size class D (e.g., skyrmions, vortex and spiral type,

nearly single domain). This results in an intrinsic broadening of the spin-flip

SANS cross section due to spin disorder (even when all particles are of the same

size). Within the explored parameter range for particle size (60nm ≤D ≤ 200nm)

and applied magnetic field (−1T ≤ µ0H0 ≤ 1T), we discovered that the ensemble-

averaged chiral function −iKχ is nonzero exclusively when the DMI is included

in the simulations. An intriguing open issue in this context is the correlation

between the symmetry properties of the micromagnetic energies (and their con-

jugate fields) under space inversion and the real and imaginary components of

M̃x,y,z(q). To address this, one would need to Fourier transform Brown’s non-

linear equations, involving complex convolution products that are challenging to

compute directly. However, it has been demonstrated in Ref. [46] that within a

linearized analytical framework applicable to bulk ferromagnets, a nonzero DMI

yields complex M̃x,y,z(q) and subsequently a nonzero chiral function. Inspired

by the emergence of low field spin textures modulated by the characteristic wave

number kd = D/(2A), we proposed phenomenological formulas for the correlation

function and the resulting SANS cross section [Eqs. (5.14) and (5.15)], which can
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replicate the principal features of a random assembly of FeGe nanoparticles.



Chapter 6

Summary and Outlook

The objective of this doctoral thesis was to investigate the magnetic small an-

gle neutron scattering (SANS) cross section and related correlation function of

spherical magnetic nanoparticles using micromagnetic simulations. The research

has focused on two key aspects:

1. Analyzing the magnetic SANS observables (mainly cross section and corre-

lation function) in the presence of pore-type defects in spherical Fe nanopar-

ticles [1].

2. Investigating the impact of the Dzyaloshinskii-Moriya interaction on the

randomly-averaged magnetic SANS observables of spherical FeGe nanopar-

ticles [2].

Micromagnetic simulation techniques have been used to examine how microstruc-

tural defects of the pore-type affect the observable parameters of diffuse magnetic

SANS in spherical magnetic nanoparticles made of Fe. The simulations took into

account various magnetic energy contributions, such as the isotropic exchange

interaction, the (cubic) magnetocrystalline anisotropy, the magnetodipolar inter-

action, and an external magnetic field. The presence of pore-type defects gives rise

to nonuniformly magnetized nanoparticles, the scattering behavior of which devi-

ates from the superspin model. This clearly shows that assuming a homogeneous

spin microstructure is insufficient for the description of magnetic SANS. Addi-

tionally, the dipolar interaction resulted in complex magnetization structures,

causing anisotropic scattering patterns. Under certain conditions (low fields and

particle sizes larger than about 20nm), a vortex-type spin structure appears in
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the magnetic microstructure; its signature in the pair-distribution function p(r)

is a damped oscillatory behavior due to negative correlations.

This thesis also examined the impact of the antisymmetric Dzyaloshinkii-

Moriya interaction (DMI) on the randomly-averaged diffuse magnetic SANS cross

section of FeGe nanoparticles through numerical micromagnetic simulations. Dif-

ferent spin structures, including skyrmions, vortex and spiral types, and nearly

single domains, were observed depending on the relative orientations of the mag-

netic anisotropy axes and the external magnetic field. The investigation focused

on the spin-flip SANS cross section as well as on the associated chiral function

and pair distance distribution function. A central finding is that the randomly-

averaged chiral function vanishes when the DMI is not taken into account in

the simulations, highlighting its essential role for understanding magnetic SANS.

This result has been discussed within the context of the symmetry properties of

the magnetization Fourier components and of the involved energies under space

inversion. A phenomenological expression describing the correlations in FeGe

at low fields has been suggested, which explains the main features found in the

simulations.

In the future, the defect modeling of magnetic SANS might be improved by the

adjustment of the material parameters and by the integration of the magnetoe-

lastic interaction due to the strain field around the defects (see, e.g., Ref. [100]).

Atomistic SANS simulations [122,123], although more time consuming, might also

be of interest due to possibility to take the lattice structure into account. This

would allow e.g. to model more complex exchange interactions, such as in iron

oxide nanostructures [90]. Furthermore, future research may explore the incorpo-

ration of phenomenological models for surface anisotropy (e.g., Néel or conven-

tional surface anisotropy [122,123]) in numerical MuMax3 simulations of magnetic

SANS. The present shift from scalar functions to three-dimensional vector fields

in micromagnetic SANS approaches demonstrates the continuous development in

understanding the magnetic scattering behavior of magnetic nanoparticles.
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A. Chacon, S. Mühlbauer, C. Franz, M. Garst, D. Grundler, and C. Pflei-

derer, Phys. Rev. X, vol. 9, p. 041059, 2019.

[85] E. Jellyman, P. Jefferies, S. Pollard, E. M. Forgan, E. Blackburn,

E. Campillo, A. T. Holmes, R. Cubitt, J. Gavilano, H. Wang, J. Du, and

M. Fang, Phys. Rev. B, vol. 101, p. 134523, 2020.
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Appendix A

SANS results for dΣsf/dΩ and iKχ with and

without the Dzyaloshinskii-Moriya Interaction

In this Appendix, we display additional results (Figs. A.1−A.3) for the randomly-

averaged spin-flip SANS cross section dΣsf/dΩ and the chiral function iKχ of

FeGe nanoparticles [2]. All the magnetic interactions (Zeeman, isotropic ex-

change, anisotropy, and dipolar energy) were taken into account, and we com-

pare results with and without the DMI energy. By varying the particle diameter

and the applied magnetic field (60nm ≤ D ≤ 200nm and −1T ≤ µ0H0 ≤ 1T), we

find that the chiral function vanishes in the case when the DMI is absent, while

including the DMI gives rise to complex scattering patterns.
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without DMIwith DMI

(b)

(a)

(c)

𝜇0𝐻0 = 0.02T 

𝜇0𝐻0 = 0.12T 

𝜇0𝐻0 = 0.67T 

Figure A.1: Micromagnetic simulation results for the randomly-averaged spin-flip
SANS cross section dΣsf/dΩ and the chiral function iKχ of FeGe nanoparticles
with a diameter of D = 60nm. Results are shown for three different applied
magnetic fields: (a) µ0H0 = 0.02T, (b) µ0H0 = 0.12T, and (c) µ0H0 = 0.67T.
The left panel displays the simulation results with the Dzyaloshinskii-Moriya
interaction (DMI), while the data in the right panel do not include the DMI.
Image taken from [2].
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(b)
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(c)

𝜇0𝐻0 = 0.02T 

𝜇0𝐻0 = 0.12T 

𝜇0𝐻0 = 0.67T 

Figure A.2: Similar to figure A.1, but for D = 120nm. Image taken from [2].
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(a) 𝜇0𝐻0 = 0.02T 

𝜇0𝐻0 = 0.12T 

(c) 𝜇0𝐻0 = 0.67T 

Figure A.3: Similar to figure A.1, but for D = 150nm. Image taken from [2].
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Appendix B

Single Skyrmion in a Cylindrical FeGe Disk

In this Appendix, we present the results for the magnetization distribution in a

single cylindrical FeGe disk. This research was undertaken in order to replicate

the numerical results for the micromagnetic standard problem of materials with

DMI proposed in Ref. [124]. They serve as a benchmark for the SANS simulations

on the FeGe spheres in Chapter 5.

The simulations were performed on a circular FeGe platelet with a constant

height of 20nm and a diameter ranging between 60nm and 200nm [124]. The

volume of the nanodot was discretized into 1 × 1 × 1nm cells; for a nanodot

with a height of 20nm and a diameter of 100nm, this leads to approximately

157000 cells. We have taken into account the following contributions to the total

magnetic Gibbs free energy: Zeeman energy Ez in the external magnetic field

H0, isotropic and symmetric exchange energy Eex, as well as the antisymmet-

ric DMI energy Edmi. For simplicity, we have ignored the magnetic anisotropy

energy and the magnetodipolar interaction, which can also be taken into ac-

count. Periodic boundary conditions in the x and y directions were employed

and the following materials parameters for FeGe were used [93]: Ms = 384kA/m,

A = 8.78 × 10−12 J/m, and D = 1.58 × 10−3 J/m2.

Figure B.1 displays the computed spin structures of FeGe nanodisks with

diameters of 60nm and 200nm at an applied magnetic field of 40mT. It becomes

visible that, while mz is an even function of the position (along the x direction),

both transversal magnetization components mx and my are uneven functions of

the position within the considered middle layer extending from 9−11nm. This is

a consequence of the DMI, which breaks structural inversion symmetry, and is
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Figure B.1: Skyrmion spin structures in circular FeGe nanodots with diameters
of (a) 60nm and (b) 200nm (respective height is 20nm). H0 ∥ ez with µ0H0 =
40mT. Below the 3D spin structures we display, for the respective middle layer
(extending from 9−11nm), the spatial profile of the Cartesian components of m
along the x direction (see inset). The winding number of these spin structures
(middle layer), computed as Q = (4π)−1 ∫ d2rm ⋅ (∂m/∂x× ∂m/∂y), evaluates to
Q ≅ −1.

expected to result in a nonzero chiral function contained in the spin-flip channels.

All in all we can say that the results agree very well with the ones reported in

Ref. [124].
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Appendix C

Numerical Fourier Transformation

The magnetic small angle neutron scattering cross section depends on the Fourier

components M̃x,y,x(q) of the magnetizationM(r). The continuous magnetization

vector field is introduced as the local thermodynamical average over N discrete

atomic magnetic moments µa within a small mesoscopic volume V .

M =M(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mx(x, y, z)

My(x, y, z)

Mz(x, y, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=̂V −1
N

∑
i=1

µa,i (C.1)

The magnitude of M is denoted as the saturation magnetization Ms, which is

only a function of temperature. The three-dimensional Fourier-transform pair of

the magnetization can then be defined as:

M(r) = 1

(2π)3/2 ∫
M̃(q) exp (iq ⋅ r) d3q, (C.2)

M̃(q) = 1

(2π)3/2 ∫V
M(r) exp (−iq ⋅ r) d3r. (C.3)

where i2 = −1, q = {qx, qy, qz} is the wave vector, and r = {x, y, z} is the position

vector. Note that the Fourier components M̃x,y,x are in units of Am2, while the

real-space magnetization components Mx,y,x come in units of A/m.

When dealing with numerical micromagnetic spin structure data, it is nec-

essary to compute the discrete Fourier transform of all the unit magnetization

vectors mi =mi(r) =Mi/Ms belonging to the spherical nanomagnet. In fact, one

needs to consider the following discrete version of the above continuous Fourier
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integral:

M̃(q) ≅ 1

(2π)3/2
K
∑
i=1

µi exp (−iq ⋅ ri) , (C.4)

where µi is the magnetic moment (in Am2) of the discretization cell “i” (with

a typical size of a = 2nm), ri = {xi, yi, zi} is the location point of the cell, q

represents the wave vector (scattering vector), and K represents the number of

cells; see Fig. 4.3 for a sketch that illustrates the discretization of a spherical

nanoparticle into cubical cells.

In the micromagnetic simulations we have set qx = 0, which corresponds to

the perpendicular scattering geometry where the applied magnetic field H0 is

perpendicular to the incident neutron beam (compare Fig. 2.2). In this case

[q ≅ {0, qy, qz}], we have typically used 103 × 103 points for the computation of a

two-dimensional (qy-qz) detector image. Moreover, using µi = µi(r) =MsVimi(r),

the discrete-space Fourier transform [Eq. (C.4)] is computed as (Vi = a3)

M̃(q) ≅ Msa3h(q)
(2π)3/2

K
∑
i=1

mi exp (−iq ⋅ ri) . (C.5)

We use the CUDA C++ environment, which does not support complex numbers.

Therefore, we split the above sum into the real (Re) and imaginary (Im) parts as

follows:

Re{M̃(q)} = Msa3h(q)
(2π)3/2

K
∑
i=1

mi cos (q ⋅ ri) (C.6)

Im{M̃(q)} = Msa3h(q)
(2π)3/2

K
∑
i=1

mi sin (q ⋅ ri) (C.7)

Using Eqs. (C.6) and (C.7), we can evaluate M̃(q) for arbitrary resolution of q.

The function

h(q) = h(qy, qz) =
sin(qya/2)
qya/2

sin(qza/2)
qza/2

(C.8)
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𝐷 

Figure C.1: Effect of the form factor of the cubic discretization cell, h(q), on
the randomly-averaged spin-flip SANS cross section Isf(q) [compare Eq. (C.4)].
Shown is Isf(q) for D = 120nm and at µ0H0 = 0.12T with the function h(qx =
0, qy, qz) = sin(qya/2)

qya/2
sin(qza/2)

qza/2 included using a cell size of a = 2nm (black line) and

for h = 1 (red line) (log-log scale). As is seen, the q dependent cell form factor
suppresses the scattering curve. Here, significant deviations become noticeable
for q ≳ 0.3nm−1. Figure taken from [2].

denotes the form factor of the cubic discretization cell with a = 2nm being the cell

size; for qy,za/2 ≪ 1, h → 1. For atomistic calculations [122, 123], this correction

is irrelevant in the small-angle regime, but for the here-used cell size becomes

already noticeable for q ≳ 0.3nm−1 illustrated in Fig. C.1. Equation (C.5) estab-

lishes the relation between the outcome of the simulations, mi, and the SANS

observables computed in this PhD thesis.
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Appendix D

Magnetic SANS Cross Section in the Presence

of a Lognormal Distribution Function

In this Appendix, we provide additional details on the incorporation of a log-

normal particle-size distribution function into the micromagnetic simulations of

Section 4.4. For the purpose of comparison to analytical expressions, we restrict

ourselves to the saturated case, but the general principle is applicable to any

azimuthally-averaged SANS cross section.

The unpolarized magnetic SANS cross section for the perpendicular scattering

geometry can be expressed as (k0 ⊥H0):

dΣM

dΩ
= 8π3

V
b2H (∣M̃x∣2 + ∣M̃y ∣2 cos2 θ

+∣M̃z ∣2 sin2 θ − (M̃yM̃
∗
z + M̃∗

y M̃z) sin θ cos θ) . (D.1)

In the case of magnetic saturation (Mx = My = 0) and for a single spherical

particle with diameter D = 2R, this expression simplifies to:

dΣM

dΩ
= 9Vp(∆ρ)2mag (

j1(qD/2)
qD/2

)
2

sin2 θ, (D.2)

where Vp = 4/3π(D/2)3 is the sphere volume, (∆ρ)2mag = b2HM2
s is the magnetic

scattering length density contrast, and ji(z) denotes the spherical Bessel function

of the first order. Azimuthally-averaging Eq. (D.2) produces a factor of 1/2

(due to the sin2 θ factor). The lognormal distribution function can be defined as
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follows [96]:

f(D) = 1√
2πD logσ

e
−1
2
( logD − logD0

logσ
)
2

, (D.3)

where D0 is the median of the distribution and the parameter σ describes its

width (∫
∞
0 f(D)dD = 1). The magnetic SANS cross section averaged over the

distribution, ⟨dΣM/dΩ⟩f , is then computed as follows:

⟨dΣM

dΩ
(q)⟩

f

=
∞

∫
0

dΣM

dΩ
(q,D)f(D)dD. (D.4)

Note that in the actual micromagnetic simulations we have typically chosen

Dmin = 10nm and Dmax = 100nm as the limits of the above integral (see Sec-

tion 4.4). The corresponding pair distance distribution function averaged over

the distribution, ⟨p(r)⟩f , can then be computed from the azimuthally-averaged

magnetic SANS cross section according to:

⟨p(r)⟩f = r2
∞

∫
0

⟨dΣM

dΩ
(q)⟩

f

j0(qr)q2dq, (D.5)

where j0(x) = sinx/x. For comparison, the p(r) [c(r)] of a single spherical particle

with radius R reads (for r ≤ 2R) [Eq. (2.33)] [66]:

p(r) = r2c(r), (D.6)

p(r) = r2 (1 − 3r

4R
+ r3

16R3
) ,

while p(r) = 0 for r > 2R. Figure D.1 displays the effect of a particle-size distribu-

tion on the single-particle magnetic SANS cross section at saturation and on the

corresponding pair distance distribution. One can see that with increasing width

σ of f(D) the features in ⟨dΣM

dΩ (q)⟩f and ⟨p(r)⟩f are progressively washed out; the

zero in the single-particle p(r) at r = 2R = 40nm shifts to larger distances with

increasing σ. The case of a saturated spherical particle has merely been chosen
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for illustration purposes and because we can compare the results for the averaged

quantities ⟨dΣM/dΩ⟩f and ⟨p⟩f with the analytically-known single particle results

[Eqs. (D.2) and (D.6)].

103 

105 

101 

10-1 
10-2 10-1 100 

𝑟 (nm) 

0 40 80
0

1

Figure D.1: Effect of a lognormal particle-size distribution function on the single-
particle magnetic SANS cross section at saturation and the corresponding pair
distance distribution. Shown are (a) ⟨dΣM

dΩ (q)⟩f (log-log scale) and (b) ⟨p(r)⟩f
for different values of the width σ of the distribution. The black dashed lines
in (a) and (b) correspond, respectively, to a single sphere with a diameter of
D = 2R = 40 nm.
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Appendix E

MuMax3 Codes

In this Appendix, we provide the main parts of the MuMax3 codes used for the

miromagnetic SANS simulations.

E.1 Effect of Defects in Fe Nanospheres [1]

ngr id := 64

x c e l l := 2e−9

d e f e c t s := 0 .15

d := 40e−9

r := d/2

Se tGr id s i z e ( ngrid , ngrid , ngr id )

S e tC e l l s i z e ( x c e l l , x c e l l , x c e l l )

a := e l l i p s o i d (d , d , d)

r g r i d := r / x c e l l

vgr id := 4 . 0/3 . 0∗ Pi ∗( r g r i d ∗ r g r i d ∗ r g r i d )

vdef := vgr id ∗ d e f e c t s

p r i n t (” vdef =”, vdef )

maxregion := 200

k a l i := pow( vdef /maxregion , 1/3 )

p r i n t ( vgrid , vdef , ka l i , r , x c e l l )

SetGeom( a )

DefRegion (1 , a )

Msat . SetRegion (1 , 1 . 7 e6 )

Aex . SetRegion (1 , 1e−11)

Kc1 . SetRegion (1 , 4 . 7 e4 )
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Kc2 . SetRegion (1 , −0.01 e6 )

radiusR := 40e−9

setgeom ( e l l i p s o i d ( radiusR , radiusR , radiusR ) )

alpha = 1

randomSeed := CAMBIO

randSeed ( randomSeed )

Bmax := 1 .0

Bstep := 0 .5 e−2

TableAdd ( B ext )

f o r j :=0; j<maxParticleNumber ; j++{

// random cubic an i so t ropy d i r e c t i o n

theta := 2 .0∗ pi ∗ rand ( )

phi := acos (1.0 −2.0∗ rand ( ) )

ax i s1 := vec to r ( s i n ( phi )∗ cos ( theta ) , s i n ( phi )∗ s i n ( theta ) , cos ( phi ) )

theta2 := 2 .0∗ pi ∗ rand ( )

phi2 := acos (1.0 −2.0∗ rand ( ) )

he lpe r := vec to r ( s i n ( phi2 )∗ cos ( theta2 ) , s i n ( phi2 )∗ s i n ( theta2 ) , cos ( phi2 ) )

ax i s2 := ax i s1 . c r o s s ( he lpe r )

AnisC1 = ax i s1 // axes need not be normal ized

AnisC2 = ax i s2

// Save the d i r e c t i o n o f the easy axes

f p r i n t l n (” Part i−Eaxes . txt ” , j , AnisC1 , AnisC2 )

// s e t random parameters per r eg i on

f o r i :=2; i<maxRegion ; i++{

x1 :=( r ∗ rand ( ) )∗ Sin ( Pi∗ rand ( ) )∗Cos (2∗Pi∗ rand ( ) )

y1 :=( r ∗ rand ( ) )∗ Sin ( Pi∗ rand ( ) )∗ Sin (2∗Pi∗ rand ( ) )

z1 :=( r ∗ rand ( ) )∗Cos ( Pi∗ rand ( ) )

// p r in t ( x1 , y1 , z1 )

DefRegion ( i , cuboid ( x c e l l ∗ ka l i , x c e l l ∗ ka l i , x c e l l ∗ k a l i ) . t r a n s l ( x1 , y1 , z1 ) )

Msat . SetRegion ( i , 0 . 0 ) \\ d e f e c t s p r op e r t i e s

Aex . SetRegion ( i , 0 . 0 )

Ku1 . SetRegion ( i , 0 . 0 )
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Ku2 . SetRegion ( i , 0 . 0 )

alpha . SetRegion ( i , 0 . 0 )}

// I n i t i a l magnet izat ion

m=uniform ( 1 . 0 , 0 . 0 , 0 . 0 )

i :=0

iB:= 0

// h y s t e r e s i s l oops :

f o r B:=Bmax; B>=−Bmax; B−=Bstep{

i = i+1

iB = f l o o r (B∗100)

B ext = vecto r (B, 0 . 0 , 0 . 0 )

r e l a x ( )

t ab l e s ave ( )

// FilenameFormat=s p r i n t f (”%%s%%03d%03d” , iB )

// save ( mf f t squared )

// save ( mf f t imag inary )

// save ( m f f t r e a l )

FilenameFormat=s p r i n t f (”%%s%%06d”)

save (m)}

f o r B:=−Bmax; B<=Bmax; B+=Bstep{

i = i+1

iB = f l o o r (B∗100)

B ext = vecto r (B, 0 . 0 , 0 . 0 )

r e l a x ( )

t ab l e s ave ( )}

E.2 Effect of DMI in FeGe Nanospheres [2]

nx:=90

c e l l s :=2e−09

dia :=170e−09

Se tGr id s i z e (nx , nx , nx )
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S e tC e l l s i z e ( c e l l s , c e l l s , c e l l s )

SetGeom( E l l i p s o i d ( dia , dia , d ia ) )

a:= ( dia /2/ c e l l s )−10

reg1 :=Cyl inder ( dia , c e l l s )

reg2 :=Cyl inder ( dia , c e l l s ) . t r a n s l (0 ,0 ,1∗ c e l l s )

reg3 :=Cyl inder ( dia , c e l l s ) . t r a n s l (0 ,0 ,15∗ c e l l s )

reg4 :=Cyl inder ( dia , c e l l s ) . t r a n s l (0 ,0 ,−10∗ c e l l s )

reg5 :=Cyl inder ( dia , c e l l s ) . t r a n s l (0 ,0 ,−20∗ c e l l s )

reg6 :=Cyl inder ( dia , c e l l s ) . t r a n s l (0 ,0 ,5∗ c e l l s )

DefRegion (1 , reg1 )

DefRegion (2 , reg2 )

DefRegion (3 , reg3 )

DefRegion (4 , reg4 )

DefRegion (5 , reg5 )

DefRegion (6 , reg6 )

defMsat := 384 e3

Msat = defMsat

defAex := 8 .8 e−12

Aex = defAex

Kc1 = 10 e3

defDbulk := 1 .6 e−3

Dbulk = defDbulk

Edgesmooth = 8

alpha = 0 .5

openBC = true

maxParticleNumber := 1

randomSeed := CAMBIO

randSeed ( randomSeed )

// random cubic an i so t ropy d i r e c t i o n

theta := 2 .0∗ pi ∗ rand ( )

phi := acos (1.0 −2.0∗ rand ( ) )

// ax i s1 := vec to r ( 0 , 0 , 1 )

ax i s1 := vec to r ( s i n ( phi )∗ cos ( theta ) , s i n ( phi )∗ s i n ( theta ) , cos ( phi ) )
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theta2 := 2 .0∗ pi ∗ rand ( )

phi2 := acos (1.0 −2.0∗ rand ( ) )

he lpe r := vec to r ( s i n ( phi2 )∗ cos ( theta2 ) , s i n ( phi2 )∗ s i n ( theta2 ) , cos ( phi2 ) )

ax i s2 := ax i s1 . c r o s s ( he lpe r )

AnisC1 = ax i s1 // axes need not be normal ized

AnisC2 = ax i s2

// Save the d i r e c t i o n o f the easy axes

f p r i n t l n (” Part i−Eaxes . txt ” , j , AnisC1 , AnisC2 )

l ex := sq r t ( ( 2 . 0∗ defAex )/ (pow( defMsat , 2 )∗mu0) )

ld := (4∗3 .14∗ defAex )/ defDbulk

p r in t (” l ex (nm)” , l ex ∗1 e09 )

p r i n t (” ld (nm)” , ld ∗1 e09 )

// p r in t (” p i ” , p i )

p r i n t (”Msat =”,Msat )

m = BlochSkyrmion (1 ,−1)

qtop1 :=0.0

qtop2 :=0.0

qtop3 :=0.0

qtop4 :=0.0

qtop5 :=0.0

qtop6 :=0.0

Bmax := 1 .0

Bstep := 0 .5 e−2

TableAdd ( B ext )

tableaddvar ( qtop1 , ” q1 ” ,””)

tableaddvar ( qtop2 , ” q2 ” ,””)

tableaddvar ( qtop3 , ” q3 ” ,””)

tableaddvar ( qtop4 , ” q4 ” ,””)

tableaddvar ( qtop5 , ” q5 ” ,””)

tableaddvar ( qtop6 , ” q6 ” ,””)

tableadd (AnisU )

tableadd ( e x t t op o l o g i c a l c h a r g e )
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tableadd ( e x t t o p o l o g i c a l c h a r g e l a t t i c e )

tableadd ( E to ta l )

tableadd (E zeeman )

tableadd ( E exch )

tableadd (E demag )

tableadd ( E anis )

// h y s t e r e s i s l oops :

f o r B:=−3.0; B<=−1.0; B+=0.25{

qtop1=0.0

qtop2=0.0

qtop3=0.0

qtop4=0.0

qtop5=0.0

qtop6=0.0

f p r i n t l n (” f i l ename . txt ” , i , B)

B ext = vecto r ( 0 . 0 , 0 . 0 ,B)

p r i n t (B, ”B”)

r e l ax ( )

FilenameFormat=s p r i n t f (”%%s%%06d”)

save (m)

count1 :=0

count2 :=0

count3 :=0

count4 :=0

count5 :=0

count6 :=0

f o r i :=0; i<nx ; i++{

f o r j :=0; j<nx ; j++{

f o r k :=0; k<nx ; k++{

i f r e g i on s . GetCel l ( i , j , k)==1 {
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count1++

}

i f r e g i on s . GetCel l ( i , j , k)==2 {

count2++

}

i f r e g i on s . GetCel l ( i , j , k)==3 {

count3++

}

i f r e g i on s . GetCel l ( i , j , k)==4 {

count4++

}

i f r e g i on s . GetCel l ( i , j , k)==5 {

count5++

}

i f r e g i on s . Ge t c e l l ( i , j , k)==6 {

count6++

}

}

}

}

s1 := ex t t opo l o g i c a l c h a r g ed en s i t y . r eg i on ( 1 ) . average ( )

s2 := ex t t opo l o g i c a l c h a r g ed en s i t y . r eg i on ( 2 ) . average ( )

s3 := ex t t opo l o g i c a l c h a r g ed en s i t y . r eg i on ( 3 ) . average ( )

s4 := ex t t opo l o g i c a l c h a r g ed en s i t y . r eg i on ( 4 ) . average ( )

s5 := ex t t opo l o g i c a l c h a r g ed en s i t y . r eg i on ( 5 ) . average ( )

s6 := ex t t opo l o g i c a l c h a r g ed en s i t y . r eg i on ( 6 ) . average ( )

qtop1= 0.25∗ c e l l s ∗ c e l l s / p i ∗ s1 ∗ count1

qtop2= 0.25∗ c e l l s ∗ c e l l s / p i ∗ s2 ∗ count2

qtop3= 0.25∗ c e l l s ∗ c e l l s / p i ∗ s3 ∗ count3

qtop4= 0.25∗ c e l l s ∗ c e l l s / p i ∗ s4 ∗ count4

}
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E.3 Single Skyrmion in a Cylindrical FeGe Disk

This code was used to replicate the numerical results for the micromagnetic stan-

dard problem of materials with DMI proposed in Ref. [124].

l x := 200e−9

ly := 200e−9

l z := 20e−9

dx := 1e−09

dy := 1e−09

dz := 1e−09

SetGr idS ize (200 ,200 ,20)

S e t c e l l S i z e (dx , dy , dz )

//Def ine the cy l i nd e r

SetGeom( C i r c l e ( l x ) )

defMsat := 0.384 e6

Msat = defMsat

defAex := 8 .78 e−12

Aex = defAex

defDbulk := 1 .58 e−3

Dbulk = defDbulk

SetPBC(2 , 2 , 0 )

//Demag

NoDemagSpins = 1 \\ without d i po l a r i n t e r a c t i o n

l ex := sq r t ( ( 2 . 0∗ defAex )/ (pow( defMsat , 2 )∗mu0) )

ld := (4∗3 .14∗ defAex )/ defDbulk

p r in t (” l ex (nm)” , l ex ∗1 e09 )

p r i n t (” ld (nm)” , ld ∗1 e09 )

// p r in t (” p i ” , p i )

p r i n t (”Msat =”,Msat )
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// I n i t i a l magnet izat ion

m=BlochSkyrmion (1 ,−1)

B ext = vecto r ( 0 . 0 , 0 . 0 , 0 . 4 )

minimize ( )

save (m)

tableAdd ( B ext )

tableAdd ( e x t t op o l o g i c a l c h a r g e )

tableAdd ( e x t t o p o l o g i c a l c h a r g e l a t t i c e )

tableAdd ( E to ta l )

tableAdd (E zeeman )

tableAdd ( E exch )

tableAdd (E demag )

tableAdd ( E anis )

t ab l e s ave ( )

SaveAs (m,” i s o l a t ed FeGe cy l i nd e r ”)


	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Basic Properties of the Neutron
	Motivation for the PhD Project

	Theoretical Scattering Concepts
	Scattering Principle 
	SANS Scattering Geometry
	Origin of Magnetic SANS
	Magnetic SANS Cross Section
	Unpolarized SANS Cross Section
	Polarized SANS Cross Section 

	Pair Distance Distribution and Correlation Function
	The Stoner-Wohlfarth Model 
	Details on the Micromagnetic Simulation Method 

	Micromagnetic Theory
	Exchange Energy
	Dzyaloshinskii-Moriya Energy
	Magnetocrystalline Anisotropy Energy 
	Zeeman Energy
	Magnetodipolar Energy
	Length Scales in Micromagnetism 

	Magnetic SANS from Spherical Nanoparticles with Pore-Type Defects
	Summary of Recent Results 
	Effect of Pore-Type Defects on Spin Structure and Magnetization 
	Effect of Defects on the Magnetic SANS Observables 
	Effect of a Particle-Size Distribution Function 
	Comparison to Experimental Results
	Conclusion

	Signature of the Dzyaloshinskii-Moriya Interaction in the SANS Signal of Spherical Nanoparticles
	Details on the Micromagnetic Simulations of FeGe Nanospheres
	Skyrmions in FeGe Nanoparticles
	Symmetry Properties of the Spin-Flip SANS Cross Section and the Chiral Function 
	Effect of DMI on Magnetization 
	Effect of DMI on Spin-Flip SANS Cross Section, Chiral Function, and Correlation Function 
	Conclusion

	Summary and Outlook
	References
	SANS results for d sf / d  and i K  with and without the Dzyaloshinskii-Moriya Interaction
	Single Skyrmion in a Cylindrical FeGe Disk
	Numerical Fourier Transformation
	Magnetic SANS Cross Section in the Presence of a Lognormal Distribution Function
	MuMax3 Codes
	Effect of Defects in Fe Nanospheres evelynprb2023
	Effect of DMI in FeGe Nanospheres evelyn2024
	Single Skyrmion in a Cylindrical FeGe Disk


