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Abstract

This dissertation addresses the topic of dynamic resource management optimization

for flexible satellite payloads. The capability to flexibly allocate on-board resources

over the service coverage is becoming a must for future broadband satellite systems.

The trend for future satellite flexible payloads is to assign resources in an intelligent

manner according to the heterogeneous traffic demands. In particular, this thesis

focuses on Beam Hopping (BH)-enabled systems, where a subset of beams can be

illuminated at a given time. Conventional BH illumination pattern design provides

all available spectrum to a selected set of beams as long as they are not adjacent to

each other (to avoid inter-beam interference). In this thesis, advanced BH illumi-

nation pattern designs are explored and assessed. First, we address the BH design

for geostationary satellites and target the shortcomings of adjacent beam avoidance

requirements of conventional BH illumination designs. In particular, we propose a

dynamic beam illumination scheme combined with selective precoding, where only

sub-sets of beams that are subject to strong inter-beam interference implement in-

terference mitigation techniques like precoding. The formulated binary quadratic

programming (BQP) problem is proved to converge to a local optimum solution.

Next, we propose a two-stage framework with a probabilistic perspective that ex-

ploits flexibility in the time and power domains at the same time. The first stage

addresses the coupling relationship between power and beam activation probabil-

ity. Conditioned on the optimal solution, we reformulate the problem and prove

its convexity, and lastly propose a method for solving it iteratively. The second

stage designs the detailed beam illumination pattern by mapping the beam activa-

tion probability obtained in the first stage. Last but not least, we address the BH

illumination design problem for Lower Earth Orbit (LEO) satellite constellation sys-

tems, where a virtual cell on the ground can be served by multiple beams belonging

to multiple satellites. As a consequence, we extend the flexibility in the time and

power domains with the flexibility of serving a cell with different satellites. This

additional degree of flexibility is shown to minimize transmission energy consump-

tion. More precisely, we address the demand satisfaction constraint with the load

coupling model, where parameters are given by their expectations. Based on the

optimum condition, the three-variable problem is reformulated to an inverse matrix

optimization problem with two variables. We prove the convexity of the objective

and propose an iterative algorithm to solve the problem.
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I Introduction

1 Background and Motivation

The roll-out of the next generation of wireless communication systems is expected to
deliver faster internet access and increased capacity, providing customized services in
a variety of use cases [2]. Despite the global growth of digital technologies, the United
Nations (UN) has recently announced in the General Assembly that half of the world’s
population still has no internet access [3]. The reason behind this is the fact that deploy-
ment of fiber and general terrestrial infrastructure is not feasible (or is not worth the
investment) in remote areas, or the ground equipment is with high probability subject
to disruption by man-made events.

Satellite communication (SatCom) systems have been identified as a key solution to pro-
vide connectivity everywhere. It has the advantage of wide coverage and supporting
terminals located in remote areas, making them a vital component of global communi-
cation infrastructure [4]. As a key component of SatCom, conventional High Through-
put Satellite (HTS) systems have employed multi-beam technology, where satellites are
equipped with antenna architectures able to form high-directional spot-beam serving
terminals located in geographical virtual cells [5]. However, the provided capacity is
equally distributed across the multiple beams, which generates a waste of limited on-
board resources considering the heterogeneous traffic demands of beams [6]. Therefore,
it is of great interest to develop fully reconfigurable resource allocation schemes that
can smartly provide capacity matching the required traffic demands of beams so as to
improve the system’s cost efficiency.
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The recent advances in space technology have opened the door to unprecedented flex-
ibility and adaptability to on-board satellite resources. As highlighted by the major
satellite industry experts in Europe [7], ”The continuous development of new technolo-
gies and the huge increase in satellite interest and investment, witnessed in recent time,
have indeed pushed the satellite communication potentialities towards higher limits
that now need to be explored to support the efficient and sustainable development of
new markets and smart services”. As pointed out, making full flexibility of onboard re-
sources has been identified as the major challenge that needs to be resolved to unleash
the potential of next-generation SatCom systems [7].

The most advanced GEO HTS systems are claimed to be reconfigurable. One of the flag-
ship flexible HTS satellites, the so-called Eutelsat Quantum, developed under an ESA
Partnership Project with the satellite operator Eutelsat and the prime manufacturer Air-
bus, was launched in July 2021. Eutelsat Quantum is claimed to be the first commercial
fully flexible software-defined satellite in the world [8]. Coverage, spectrum, and capac-
ity all can be reconfigured in orbit via its innovative reconfigurable payloads, which can
efficiently serve any application. According to the technical capabilities of the Eutelsat
Quantum [9], spot beams can be hopped to spatially diverse regions rapidly and seam-
lessly. With a similar vision in mind, SES, the satellite operator, worked with Thales
Alenia Space to manufacture SES-17. The satellite was launched in October 2021 and
incorporates a digital transparent processor (DTP), enabling unique features, such as
reconfigurable resource allocation, to meet real-time traffic demands [10]. Additionally,
most of the industry-led projects are still in the testing phase, where the algorithms to
unleash the potential of the system are still in the early stages. For instance, the Euro-
pean Commission has recently launched two 3-year projects related to optimal on-board
resource management [11, 12].

Beam Hopping (BH) is one of the technologies that enable the systems to allocate on-
board resources flexibly. Unlike traditional fixed-beam systems, the BH-enabled sys-
tems only activate a subset of spot beams within a designated period, known as ”dwell
time”. These active beams can be changed dynamically, following the illumination pat-
tern which determines the status of a beam at a time slot for all beams during the time
window and is designed according to the required uneven traffic demands. BH offers
numerous benefits, among which the most significant is that it offers flexibility in the



time and power domains to hop beams, and thus provides capacity to different beams
as needed. Moreover, activating fewer beams at any given time requires fewer onboard
Radio Frequency (RF) chains, which can reduce the spacecraft’s weight and size. Ulti-
mately, this reduction may result in decreased launch costs.

BH-enabled SatCom technology has reached a level of maturity, significantly bolstered
by industry support. This support has led to adaptations, such as the standardization of
satellite air interfaces, to accommodate BH synchronization needs [13, 14]. An example
of this technology in action is the Eutelsat Quantum satellite, which employs forward
link BH. While the technical capability for beam illumination and configuration exists,
the effective management of these functions remains an active area of research and de-
velopment. This is mainly because crafting an optimal beam time-activation plan and
allocating power effectively is a complex task. Specifically, it is challenging to properly
allocate the time and the limited power across the active beams to meet the dynamic
demands while satisfying the satellite payload hardware limitations.

BH technology offers the operator natural flexibility of onboard resources, i.e. the allo-
cation of time and power of beams, for GEO SatCom systems, where the virtual cells
are usually one-to-one linked with the radiated beams when it comes to serving infor-
mation. While a virtual cell could be served by multiple beams within a Low Earth
Orbit (LEO) satellite constellation system, each being linked to one satellite, which pro-
vides extra flexibility in allocating required loads of beams serving the same cell [15].
LEO satellite constellation systems have developed rapidly recently, such as Starlink
and Eutelsat OneWeb. Usually, the systems consist of thousands of satellites, and each
satellite is designed to provide communication service to users located in its coverage.
Moreover, to guarantee global coverage, the coverage area of adjacent satellites has sig-
nificant overlap [16].

Furthermore, precoding is another technology that increases the systems’ throughput.
Similar to the situation in the terrestrial domain, the rapid development of data-hungry
services has also resulted in a spectrum scarcity context in the satellite domain. As a
consequence, the satellite digital broadcasting standard (DVB-S2X) introduced the pos-
sibility of using the channel state information feedback to implement precoding tech-
niques and enable efficient spectrum management while increasing the spectrum reuse
across satellite spot beams [17, 18]. The feasibility and potential of precoding applied



to HTS systems have been recently validated via live experiments on a GEO satellite
scenario [19], confirming its relevance for future HTS deployments.

It is worth highlighting that SatCom systems should carefully manage energy consump-
tion. Satellite payloads are equipped with solar panels that convert solar energy into
electricity, which powers wireless transmission and other operations [20]. Given that
these panels can only collect a limited amount of power, it is crucial for these systems
to address the issue of energy efficiency. Additionally, excessive energy consumption
can have adverse effects on the payload’s mass and lifespan [21]. As a consequence,
the minimization of transmit power has a significant impact on general non-terrestrial
communication platforms, e.g. [22].

In recent years, flexible resource allocation strategies to match uneven traffic demands
of user terminals for SatCom systems have attracted considerable attention. In [23], the
authors propose allocating power based on traffic demands and channel conditions. An
energy-aware power allocation problem for non-BH systems is formulated in the work
[21], which aims to minimize both unmet system capacity and total radiated power.
Both [23] and [21] consider only the flexibility of onboard resources in the power do-
main. The benefits of the application of BH technology to GEO SatCom systems have
also been demonstrated in academic works, which explore flexibility in the time domain
(in general). Conventional BH was conceived to exploit the full available spectrum (i.e.
full frequency reuse) over a subset of selected beams, ensuring that the geographical
distance between selected beams is far enough to work under a noise-limited scenario
[24]. The design of illumination pattern with conventional BH usually involves binary
variables. Therefore, the formulated problem falls within the general mixed integer
non-linear programming problem [25], which is difficult to solve. To increase the sys-
tems’ throughput, the activation of an adjacent set of beams (referred to as a cluster) was
investigated within the European Space Agency (ESA) [26] and proposed in [27, 28],
with the so-called Cluster Hopping scheme, where linear precoding [29] was consid-
ered to mitigate the intra-beam interference. However, there exists a trade-off between
the diversity of available clusters and computational costs, limiting the performance of
this method. Therefore, it is worth modeling a general framework that releases the full
potential of joint design of precoding and flexibility of onboard resources including the
time-domain illumination pattern and the transmit power.



Moreover, power allocation is another domain that provides flexibility in resource al-
location, which has been evaluated for non-beam-hopping SatCom systems in the lit-
erature. In [23], the authors proposed allocating power based on traffic demands and
channel conditions. An energy-aware power allocation problem for non-BH systems
is formulated in the work [21], which aims to minimize both unmet system capacity
and total radiated power. Although [30] proposed jointly allocating power and fre-
quency carriers to minimize the weighted objective of energy consumption and fre-
quency occupation, the proposed design does not fully utilize the precious spectrum
resources. Consequently, it would be interesting to exploit the full flexibility in the time
and power domains for the communication systems, which are not only able to reuse
the full frequency but also provide potential in energy consumption. Additionally, The
load coupling model, originally analyzed by [31], characterizes the coupling relation-
ships among the temporal occupation of beams. The model has been employed in [32],
where the power and temporal load of beams are studied for cellular networks to mini-
mize energy consumption. However, [32] does not consider the constraint on the maxi-
mal number of simultaneously active beams, where all beams are available all the time.
While there is a constraint of the maximal number of simultaneously active beams for
SatCom systems, the scenario in [32] is a special case of the one that needs to be solved.
Therefore, it is interesting to exploit the potential of joint design of flexibility in the time
and power domain with the load coupling model subject to the practical constraint for
the BH-enabled SatCom system.

Furthermore, the methods proposed by the above-mentioned works focus on GEO Sat-
Com systems. In the literature, some works address the resource allocation problem
for LEO SatCom, e.g. [33, 34, 35]. [33] jointly optimize the power, time, and band-
width to maximize the throughput for multiple satellites. [34] summarizes heuristic
algorithms for the resource allocation problem for LEO SatCom. Additionally, [35] pro-
poses to minimize the latency of the systems. [36] propose to integrate satellite with
base stations to provide communication service. However, these works either consider
the energy consumption problem or fail to utilize the extra flexibility that an on-ground
virtual cell being served by multiple beams, each per satellite. Although [15] proposes
a method utilizing this flexibility, the proposed method is conditioned on balancing the
loads of each satellite, which lacks theoretical verification. Moreover, as far as the au-



thors’ knowledge, no paper has simultaneously utilized the full flexibility (time, power,
required loads of beams) for the LEO SatCom systems.

2 Objectives

In order to take full advantage of the flexibility of available resources onboard in im-
proving computational cost and energy efficiencies, this thesis proposes new tech-
niques for beam-hopping-enabled satellite communication systems, including illumina-
tion pattern design algorithms and joint design of power and time optimization frame-
work for GEO satellite system, and joint optimization of power, time and required loads
of beams for LEO satellite constellation systems. Specifically, the objectives of our re-
search include:

• Objective 1: Considering that large geographical areas covered by GEO satellites
may aggregate high-traffic demands, thus involving more than one adjacent beam
to be simultaneously activated, we consider the design of the temporal illumina-
tion pattern to meet heterogeneous traffic demands of beams, where precoding
technique is employed to mitigate inter-beam interference only for those beams
that subject to strong interference. By utilizing the precoding technique, interfer-
ence from other beams is kept within an acceptable level, which helps to increase
the spectral and energy efficiencies of the system.

• Objective 2: Making full advantage of flexibility in both time and power domains
of onboard resources so as to minimize the total transmission energy consump-
tion while satisfying both the uneven traffic demands and limited hardware con-
straints for GEO satellite communication systems.

• Objective 3: Taking into account that on-ground virtual cells can be served by
multiple LEO satellites, besides the flexibility in the time and power domains, it
is essential to optimize the flexibility in balancing the load across satellites and
beams that are providing coverage to the same on-ground virtual cell. This opti-
mization aims to minimize the total energy consumption while meeting the het-
erogeneous traffic demands of cells for LEO satellite constellation systems.



3 Major Contributions of the Thesis

The main contributions of the thesis are as follows:

• To address Objective 1: We propose a general framework and its mathemati-
cal model to support dynamic and flexible cluster hopping for beam-hopping-
enabled GEO satellite systems, where geographically adjacent beams are allowed
to be activated simultaneously whenever needed according to the required traffic
demands of beams. The optimization aims to minimize the usage of precoding
while meeting both uneven demands satisfaction of beams and limited hardware
of payload constraints. First, we propose a novel method to approximate the de-
mands in the number of time slots, then the formulated binary quadratic pro-
gramming (BQP) problem is efficiently addressed by three methodologies, among
which the proposed multiplier penalty and majorization minimization (MPMM)
method is proved to converge to a local optimum. Compared with the conven-
tional cluster hopping method, the proposed framework efficiently reduces the
required computational cost for precoding while satisfying the constraints.

• To address Objective 2: We propose a two-stage framework to jointly design
power allocation and beam scheduling for beam-hopping-enabled GEO satellite
systems. Within the framework, by utilizing the mean-field theory, a probabilis-
tic reformulation becomes available, paving the way for addressing the intrinsic
coupling between beam power and beam illumination pattern. Besides, for the
reformulated problem, we analyze the optimality conditions and develop an iter-
ative method to yield an optimal solution. We also develop a systematic mapping
scheme that converts the probabilistic solution obtained in the first stage into a
deterministic one satisfying all constraints. To ensure the practicality of the so-
lution, beam hopping latency is also integrated into the scheme. Numerical sim-
ulation results validate the theoretical findings: i) the system consumes minimal
energy when all available beams are active during the time window; ii) increasing
the maximal number of active beams could reduce energy consumption. Further-
more, given that our mathematical model is based on the Shannon formula, we
acknowledge a potential performance loss due to coding modulation methods in
real-world applications. To address this concern, our study includes a method



specifically designed to compensate for such performance loss, ensuring the com-
pleteness and applicability of our approach in practical scenarios.

• To address Objective 3: We propose a joint design of power allocation, beam
scheduling, and required load assignments for beam hopping-enabled LEO satel-
lite constellation systems. Employing the load coupling model, the energy mini-
mization problem is formulated from a probabilistic perspective. We analyze the
demand satisfaction constraint, which provides the condition to prove the con-
vexity of the objective. Moreover, we analyze the impact of systematic parameters
on the problem’s feasibility and performance and validate with numerical simula-
tions the theoretical findings: i) compared with fixed loads of beams, the flexibility
in assigning loads reduces energy consumption; ii) the proposed method flexibly
assigns loads of beams making the infeasible problem feasible with fixed assign-
ment of loads.

4 Organization of the Thesis

This is a cumulative thesis that constraints 3 published or submitted journal papers.
The following of the thesis is structured as follows. Chapter II summarizes the work
appended in Chapter VIII, which introduces the methods of flexible resource alloca-
tion in the time domain for GEO satellite systems. In Chapter III, we introduce the
methods of joint optimization of resources in time and power domains for GEO satellite
systems, which are detailed in the work appended in Chapter IX. Following, Chapter
IV introduces methods utilizing full flexibility in the time, power, and load domains
of onboard resources for LEO satellite constellation systems, as detailed in the work
appended in Chapter X. Finally, the thesis is concluded, and future research is recom-
mended in Chapter V.



II Flexible Resource Allocation in
Time Domain for Beam
Hopping-Enabled GEO Satellite
Communication Systems

In this chapter, we explore the flexibility in the time domain of resource allocation for
Beam Hopping-enabled GEO satellite communication systems. In addition, to mitigate
the strong interference from adjacent beams, we utilize the precoding technique. Specif-
ically, we propose a general framework for the illumination pattern design, where the
transmission of activated beams in separating clusters can be jointly precoded. The
objective is to minimize the interference-based penalty with the aim of reducing the
use of precoding while constraining the system to satisfy a certain beam demand in a
given time window. Such technical design can be stated into a Binary Quadratic Pro-
gramming. Whenever high demand expands over multiple adjacent beams, the solution
from the proposed framework considers precoding to deal with the resulting inter-beam
interference. With such a selective precoding mechanism, complexity at the ground seg-
ment is reduced where precoding operation can be considered flexible.

To linearize the BQP problem, we introduce a procedure to convert the beam demand
constraint into a more tractable notation involving required illuminated time slots per
beam. Next, we present different ways to convexify the BQP problem. Inspired by
methods proposed in [37, 38], we reformulate the BQP into a Semi-Definite Program-
ming (SDP) form which can be solved efficiently by employing some standard optimiza-
tion solver tools. We also propose a novel solving framework MPMM which integrates

19



Multiplier Penalty (MP) [39] and Majorization-Minimization (MM) [40] methods. In
particular, we convexify the problem by penalizing the binary constraint, where the
penalty is given by its augmented Lagrangian function. Subsequently, the penalized-
form problem is solved in a sequence, which drives the solution to binary values and
guarantees to approach the local optimum. Since the previously proposed methods pri-
oritize performance versus computational complexity, we complement this paper by
proposing a heuristic greedy algorithm that provides a sub-optimal but efficient solu-
tion. Please refer to Chapter VIII for more detail.



III Flexible Resource Allocation in
Time and Power Domains for
Beam Hopping-Enabled GEO
Satellite Communication Systems

In Chapter II, we investigate the methods that flexibly allocate the resources in the time
domain for GEO satellite communication systems. In this chapter, besides the time,
we also consider the flexibility in the power domain such that energy consumption is
minimized.

To address the challenges, we propose a two-stage framework to solve the combina-
torial non-convex problem. In the first stage, utilizing the mean-field theory [41, 42],
we reinterpret the beam illumination patterns with beam activation probabilities. Con-
sequently, the corresponding power will be the average for the whole time window.
Accordingly, the original problem is reformulated into a new one, where the average
powers and activation probabilities of the beams are the optimization variables. An it-
erative method is also proposed to solve this problem optimally. In the second stage,
the activation probabilities of the solution obtained in the first stage are mapped into
the discrete beam illumination patterns by solving a binary quadratic programming
problem. Please refer to Chapter IX for more detail.
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IV Flexible Resource Allocation in
Time and Power and Load
Domains for Beam
Hopping-Enabled LEO Satellite
Communication Systems

In the previous chapters, we have made full flexibility to allocate resources onboard for
GEO satellite communication systems. In this chapter, we focus on LEO satellite con-
stellation communication systems. In addition to examining time and power considera-
tions, we investigate the methods that flexibly allocate loads of beams serving the same
virtual on-ground cell, the feature of LEO systems, to minimize energy consumption.

To tackle the challenges, first, we formulate an ideal illumination pattern design prob-
lem, within which we employ the load coupling model to deal with the complicated
demand-matching constraints, within which the three variables are coupled. To ad-
dress the formulated problem, we find a necessary condition for the optimum, based
on which we find that power is a function of activation probability and the required
loads of beams. The reformulated problem is solved by the proposed iterative method.
Second, the obtained activation probability is mapped into the illumination pattern by
solving binary quadratic programming. Please refer to Chapter X for more detail.
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V Conclusion

1 Summary

In this dissertation, we have focused on the time flexibility provided by Beam-Hopping
in high throughput satellite systems. In particular, this thesis addressed the resource
management design, including beam illumination pattern, power allocation and load
balancing between multiple satellites. Theoretical analysis and numerical simulations
have demonstrated the effectiveness of the proposed discrete illumination pattern de-
sign method and the two-stage framework with a probabilistic perspective for GEO
satellite systems, and the full flexibility optimization for the LEO satellite constellation
systems. The main contributions of the dissertation are summarized as follows:

• We propose an analytical framework, a class of binary quadratic programming
problems, to support dynamic beam illumination design considering selective
precoding for the next generation of time-flexible GEO satellite broadband sys-
tems. Three algorithms are proposed to solve the problem: (i) SDP-based ap-
proach, (ii) MPMM methodology, and (iii) low-complexity greedy algorithm. All
three methods target cross-beam interference minimization, such that the number
of beams that need to be precoded is kept to a minimum in an attempt to reduce
system complexity. An extensive evaluation has been carried out based on numer-
ical simulations. The results have shown interesting gains provided by the pro-
posed algorithm with respect to the relevant benchmark schemes. In particular,
the proposed framework provides an efficient solution to deal with high-demand
areas while keeping the precoding-related complexity low.
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• We propose a novel two-stage framework for optimizing energy consumption
through the joint design of power and time slot allocation. The framework is de-
signed to achieve optimal performance by addressing various challenges. In the
first stage, we utilize mean-field theory to extract the activation probability and
reformulate the mathematical model into an inverse matrix optimization prob-
lem. This reformulation enables us to convert the problem into a convex form,
which has been thoughtfully analyzed and solved efficiently using a proposed it-
erative method. In the second stage, we employ the MPMM method to map the
activation probability into the illumination pattern. Additionally, we introduce
a compensation method to mitigate the performance loss resulting from the dis-
crepancy between practical adaptive coding modulation and the ideal Shannon
formula. Overall, this step yields a deterministic and practical solution for the
considered beam-hopping satellite system. To validate our theoretical findings,
we conduct numerical simulations. The results demonstrate that our proposed
method surpasses the benchmark in terms of energy consumption and demand-
matching performance.

• We propose a method to jointly optimize power, required loads, and time slot allo-
cation to minimize total energy consumption while satisfying the traffic demands
of cells in LEO constellation satellite systems. There are two difficulties within
the problem: i)satisfaction of uneven traffic demands of beams, ii)and binary il-
lumination pattern design. We propose to address it by decomposing it into two
problems. First, we employ the load coupling model to simplify the demand satis-
faction constraint, where parameters are represented with their expectations. Sub-
sequently, the problem is reformulated into an inverse matrix optimization form,
which is approximated by a convex problem. We propose an iterative method to
obtain a high-quality solution to the original problem. With the power, activation
probability, and the required loads of beams obtained from the first problem, we
employ the MPMM method to design the practical illumination pattern. More-
over, we propose demand compensation methods to eliminate systematic perfor-
mance loss caused by the gap between the Shannon formula and the DVB-S2X
standard. Finally, simulations validate our theoretical findings and prove that the
proposed method outperforms the baseline.



2 Limitations and Outlook

The limitations of the proposed algorithms are twofold. First, the proposed algorithms
are conditioned on the precise given traffic demands of beams (cells), which, however,
usually have to be predicted in advance in practice. Thus, the demand-matching per-
formance is also based on the precise traffic prediction algorithm. The other limitation
of the proposed algorithms comes from the complexity of the solving methods when it
comes to real-time practical application for large-scale systems. All three chapters em-
ploy the MPMM method to design the discrete illumination pattern, which is a double-
loop iterative method. The computational complexity of the inner loop is O((MN)3),
and there is a trade-off between the systematic performance and convergence condi-
tion (the computational time). In this initial work, we have aimed at achieving the best
performance at the cost of complexity, to help us understand the achievable gains.

Although there are limitations, both limitations have the potential to be addressed
through mature learning-based methods. First, the learning-based methods have shown
their advantages in extracting the hidden structure of historical data, with which
one could make good predictions. Second, although the proposed methods may not
suit real-time applications, they could be accelerated with the use of machine learn-
ing. In particular, a learning model can be trained to mimic the performance of the
optimization-based methods presented in this thesis. Once the model is trained (which
can be done offline), the trained model can be used to provide the resource alloca-
tion outcomes. Using machine learning for complex optimization acceleration is well-
known in the literature and has shown great potential.
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Abstract

Beam Hopping (BH) is a popular technique considered for the next-generation multi-beam satellite

communication system which allows a satellite focusing its resources on where they are needed by

selectively illuminating beams. While the beam illumination plan can be adjusted according to its

needs, the main limitation of conventional BH is the adjacent beam avoidance requirement needed

to maintain acceptable levels of interference. With the recent maturity of the precoding technique, a

natural way forward is to consider a dynamic beam illumination scheme with selective precoding,

where large areas with high demand can be covered by multiple active precoded beams. In this

paper, we mathematically model such beam illumination design problem employing an interference-

based penalty function whose goal is to avoid precoding whenever possible subject to beam demand

satisfaction constraints. The problem can be written as a binary quadratic programming (BQP). Next, two

convexification frameworks are considered namely: (i) A Semi-Definition Programming (SDP) approach

particularly targeting BQP type of problems, and (ii) Multiplier Penalty and Majorization-Minimization

(MPMM) based method which guarantees to converge to a local optimum. Finally, a greedy algorithm

is proposed to alleviate complexity with minimal impact on the final performance. Supporting results

based on numerical simulations show that the proposed schemes outperform the relevant benchmarks

in terms of demand-matching performance while minimizing the use of precoding.

Index Terms

Dynamic Beam Illumination, Selective Precoding, User Scheduling, Binary Quadratic Programming

The preliminary results of this manuscript were presented in EUSIPCO 2021 [1]. This work has been supported by the

Luxembourg National Research Fund (FNR) under the project “FlexSAT: Resource Optimization for Next Generation of Flexible

SATellite Payloads” (C19/IS/13696663). The authors are with the Interdisciplinary Centre for Security, Reliability and Trust

(SnT), University of Luxembourg, 1855 Luxembourg Ville, Luxembourg. The corresponding author is Lin Chen(lin.chen@uni.lu).



2

I. INTRODUCTION

The roll-out of the next generation of wireless communication systems is expected to deliver

faster internet access and increased capacity, providing customized services in a variety of use

cases [2]. Despite the global growth of digital technologies, the United Nations (UN) has recently

announced in the General Assembly that half of the world’s population still has no internet

access [3]. It is because of that there are still many remote locations where fiber and general

terrestrial infrastructure cannot be deployed (or are not worth the investment), or where the

ground equipment is with high probability subject to disruption by man-made events.

Exploiting satellite communications has been identified as a key solution to deliver ubiquitous

and high-quality connectivity anywhere in the globe [4]. Conventional High-Throughout Satellite

(HTS) systems have employed the spot beam technology with which satellite capacity is equally

distributed across the multiple beams and contiguous coverage over a specific region can be

provided [5]. While HTS with multi-beam architecture has dramatically improved the satellite

system throughput, there have been increasing interests in developing fully reconfigurable satellite

schemes that can smartly allocate the high capacity “hot-spot” areas [6].

The recent advances in space technology have opened the door to unprecedented flexibility

and adaptability to satellite resources. As highlighted by the major satellite industry experts in

Europe [7], “the continuous development of new technologies and the huge increase in satellite

interest and investment, witnessed in recent time, have indeed pushed the satellite communication

potentialities towards higher limits that need now to be explored to support the efficient and

sustainable development of new markets and smart services”. In the same document [7], spectrum

usage and smart resource management are identified as major research challenges that need to

be resolved to unleash the potential of the next-generation satellite communication system.

Concerning the satellite industry’s interest in the aforementioned challenges, next, we provide

an overview of two of the most advanced GEO HTS systems developed recently. One of the flag-

ship flexible HTS satellites, the so-called Eutelsat Quantum, developed under an ESA Partnership

Project with the satellite operator Eutelsat and the prime manufacturer Airbus, was launched in

July 2021. Eutelsat Quantum is claimed to be the first commercial fully flexible software-defined

satellite in the world [8]. Coverage, spectrum, and capacity can all be reconfigured in-orbit via

its innovative reconfigurable payload, to efficiently serve any applications and ensure optimal use

of its resources. According to the technical capabilities of Eutelsat Quantum [9], beams can be
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hopped to spatially diverse regions rapidly and seamlessly. With a similar vision in mind, SES,

the satellite operator, worked with Thales Alenia Space to manufacture SES-17. The satellite

was launched in October 2021 and incorporates a digital transparent processor (DTP), enabling

unique features, such as re-configurable resource allocation, to meet real-time traffic demands

[10]. In addition, most of the industry-led projects are still in the testing phase, where the

algorithm to unleash the flexibility of satellite optimally is still in the early stages. For instance,

the European Commission has recently launched two 3-year projects related to optimal on-board

resource management [11, 12].

Furthermore, similar to the situation in the terrestrial domain, the rapid development of data-

hungry services has also resulted in a spectrum scarcity context in the satellite domain. As a

consequence, the satellite digital broadcasting standard (DVB-S2X) introduced the possibility

of using precoding techniques to enable efficient spectrum management while increasing the

spectrum reuse across satellite spot-beams [13, 14]. The feasibility and potential of precoding

applied to HTS systems have been recently validated via live experiments on a GEO satellite

scenario [15, 16], confirming its relevance for future HTS deployments. In this work, we therefore

address a combination of the two aforementioned challenges, namely (i) optimization of payload

flexibility; and (ii) spectrum reuse.

Within the flexible satellite payload architectures, this paper focuses on the so-called time-

domain flexibility which is commonly implemented via beam-hopping (BH) over time. BH

became promising in the early 2010s since this technique can provide a good compromise

between complexity and cost. The most attractive feature of BH is the payload mass reduction

which is reflected in a reduced cost. Essentially, a BH-enabled satellite scheme can activate

a sub-set of beams at each time slot following a time-space transmission pattern and this

mechanism can be repeated periodically. In such schemes, the bandwidth can be re-used fully

across all activated beams and the inter-beam interference can be well-managed by avoiding the

geographically-adjacent-beam activation. While BH provides a certain degree of flexibility, an

extremely asymmetrical traffic demand scenario over the coverage may critically challenge the

conventional BH methods. In particular, high-demand areas expanding over multiple adjacent

beams necessitate clusters of beams to be simultaneously activated while making use of the

full available spectrum. An example can be the surroundings of an international airport with

multiple high-demand mobile platforms flying around or a highly dense populated area with

multiple backhauling satellite terminals.
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A. Related Works

The works presented in the literature related to multi-beam HTS systems involving BH can

be classified into two main categories:

1) Conventional Beam Hopping: The benefits of BH applied to Geostationary (GEO) satellite

systems have been well-demonstrated in multiple academic works. Additionally, BH has attracted

much attention from some key industrial players, e.g. [17, 18], and has been taken into account

in the updated DVB-S2X standard [19]. However, exploiting the conventional BH techniques

has also raised some challenges. Conventional BH was conceived to exploit the full available

spectrum (i.e. full frequency reuse) over a subset of selected beams, ensuring that the geographical

distance between selected beams is far enough to work under a noise-limited scenario [20]. The

main technical challenge addressed in the literature has been the design of effective illumination

patterns, i.e. determining the different sets of beams that need to be activated at each time

slot while trying to align the offered capacity with the beam traffic demands over time. The

design of illumination patterns for conventional BH usually involves binary variables representing

the beam activation simultaneously. Therefore, the problem typically falls within the general

mixed integer non-linear programming problem (MINLP) [21], which is very difficult to solve.

The authors in [22] considered genetic algorithm targeting a globally optimal solution at the

expense of high computational time. In a similar vein, [23] proposed to employ a simulated

annealing method which also requires a long time of implementation. As an alternative to

optimization-based methods, the works in [24, 25] developed heuristic iterative procedures that

operate in a much faster and more efficient fashion by sacrificing optimality. Clearly, the key

challenge identified in early works is the fact that exploiting the beam-activation binary variables

results in a large searching space which exponentially aggravates due to the increasing number

of potential beams. Following the trends of Machine Learning (ML) applied to optimization

problems, [26, 27] investigated the applicability of deep learning tools within the BH illumination

pattern optimization procedure. In addition, the conventional BH methods normally focus on no-

multiplexing transmission across activated beams, which limits its capability of coping with some

irregular traffic-demand scenarios in the IoT era [28].

2) Cluster Hopping: The activation of an adjacent set of beams (referred to as a cluster)

was investigated within the European Space Agency (ESA) [28] and proposed in [29, 30] with

the so-called Cluster Hopping (CH) scheme, where linear precoding [14] was considered to
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mitigate the resulting intra-cluster interference. The downside of the works in [29, 30] is the

fact that the overall virtual multi-beam grid is split into a set of non-overlapping clusters of

fixed size and shape. This is done to reduce the search space and exclude the cluster design

from the optimization problem. While some practical guidelines about the clustering design have

been discussed in [30], the problem remains largely unsolved, especially when considering the

complexity added by the precoding within the clusters.

B. Our Contribution

In this paper, we propose a general framework for the illumination pattern design, where the

transmission of activated beams in separating clusters can be jointly precoded. The objective

is to minimize the interference-based penalty with the aim of reducing the use of precoding

while constraining the system to satisfy a certain beam demand in a given time window. Such

technical design can be stated into a Binary Quadratic Programming. Whenever high demand

expands over multiple adjacent beams, the solution from the proposed framework considers

precoding to deal with the resulting inter-beam interference. With such a selective precoding

mechanism, complexity at the ground segment is reduced where precoding operation can be

considered flexible.

To linearize the BQP problem, we first present a procedure to convert the beam demand

constraint into a more tractable notation involving required illuminated time slots per beam. Next,

we present different ways to convexify the BQP problem. First, inspired by the mathematical

works in [31, 32], we reformulate the BQP into a Semi-Definite Programming (SDP) form which

can be solved efficiently by employing some standard optimization solver tools. In another

approach, we also propose a novel solving framework MPMM which integrates Multiplier

Penalty (MP) [33] and Majorization-Minimization (MM) [34] methods. In particular, we relax

the binary constraint and add its augmented Lagrangian function into the objective function by

using the so-called penalty parameters. Then, the new penalty-form problem is solved iteratively

by sequentially updating the penalty multipliers and driving the solution to binary values. In

particular, in each iteration, we adopt the MM method to transfer the penalty-form problem into

a sequence of simple problems, each of which can be solved optimally. The sequence generated

by the optimal solutions of these simple problems is proved to converge to a stationary point.

According to the convexity of the penalty-form problem, one also concludes that the stationary

point is the optimal solution. Since the previously proposed methods prioritize performance



6

versus computational complexity, we complement this paper by proposing a heuristic greedy

algorithm that provides a sub-optimal but efficient solution.

Our main contributions are summarized as follows.

• We propose a general framework and its mathematical formulation to support dynamic and

flexible cluster hopping, where geographically adjacent beams are allowed to be simultane-

ously activated whenever needed according to its demand request. The resulting intra-cluster

interference is mitigated with linear precoding, whose utilization is minimized by focusing

the design on an interference-based penalty function.

• Based on probability theory, we propose an effective way to reformulate the beam demand

constraint and convert it into the number of illuminated time slots required per beam in

order to satisfy the demand. Such simplification convexifies the constraint and helps ease

the tractability of the problem.

• Three different methodologies are proposed to address the BQP problem. We first make

use of a novel SDP notation specifically designed for BQP problems. As a more accurate

alternative, we propose an algorithm that integrates MP and MM methods. Finally, a novel

heuristic algorithm is presented to rapidly provide a solution with acceptable performance.

• We provide a detailed complexity analysis for each of the proposed methods.

• Finally, an extensive numerical evaluation is carried out, where the proposed methods are

compared with conventional BH and the previously proposed CH1. The results evidence

the effectiveness of the proposed algorithms and demonstrate the flexibility of the proposed

framework in adapting to any demand distribution.

Please note that, although this paper focuses its notation and simulations on GEO satellite

systems, the methodology itself can be applicable to the beam placement problem encountered

in NGEO constellations. However, the precoding application for distributed satellite swarms is

still in the early stages of investigation and may need further discussion.

The remainder of this paper is organized as follows. In Section II, we present the system

model. In Section III, we present the general formulation of the dynamic beam illumination

design problem. To solve the problem, Section IV provides the method to simplify the non-

convex demand constraints into the linear forms based on which the BH-design problem is

reformulated as a BQP. In Section V, two efficient optimization-based algorithms and a greedy

1These benchmarks are detailed in the numerical results section.
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mechanism are presented to deal with BQP. In Section VI, we present numerical simulations.

Finally, Section VII concludes the paper. Notations used in this paper are summarized in Table I.

II. SYSTEM MODEL

This paper studies the forward link of a bent-pipe multi-beam geostationary (GSO) satellite

system, whose coverage area is divided into a virtual grid of N spot beams. In this system, the

illumination pattern is designed over a specific BH window, which is periodically repeated over

time. The BH window is divided into a set of M time slots (TSs), and within each TS no more

than K beams (K << N ) can be illuminated. The duration of one TS is denoted as Ts (seconds)

which also represents the minimum dwelling time of the hopping mechanism. Let gl be the traffic

demand in bps of beam l, and g = [g1, . . . , gN ]T represents the all-beam demand vector. For

simplicity, a one-user-per-beam scenario is assumed, i.e. a single virtual user located inside the

beam footprint (e.g., 4 dB contour) is assumed whenever this beam is activated. Note that the

single virtual user is assumed to aggregate the demand of the whole beam user density. The

assumption of a single virtual user per beam is performed to abstract the user scheduling. User

scheduling is out of the scope of the general BH design for different reasons. The multiplexing of

multiple users is assumed to be performed in a time-division-multiple access (TDMA) fashion.

A. Channel Model

Let H 2 CN⇥N be the channel matrix containing all the channel coefficients of the forward

link. In particular, the channel between antenna of the satellite payload corresponding to beam

l and user k on the ground is modeled following the approach in [5], and can be written as,

Hk,l =
q
G(k)

R
Gl (xk, yk) ej�k,l/

✓
4⇡

dk
�

◆
(1)

where G(k)
R

is the receiving antenna gain at user k; Gl (xk, yk) stands for the beam pattern gain

due to beam l at k which can be estimated according to the user’s longitude xk and latitude yk;

�k,l is the phase component associated with the antenna beam pattern; dk represents the distance

from the satellite to that user; � denotes the wavelength of the carrier frequency band.

Doppler and absorption loss are intentionally not included in our model. The movement of the

GEO satellite is maintained in a very tight box and has a negligible Doppler shift (note that daily

maneuvering is performed to maintain the satellite in its position). Concerning the absorption

loss, this would appear as a constant loss in our link budgeting thus not making an impact in our
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TABLE I: Notations

Notation Definition

M Total number of TSs

N Total number of beams

Pb Transmit power per beam

B Available full bandwidth

g Demand vector in [bps]

d Demand vector in [number of TSs]

Hk,l Channel between beam l and user k

xk Longitude of user k

yk Latitude of user k

G
(k)
R Gain of receiving antenna at user k

dk Distance from the satellite to user k

� Wavelength of the carrier frequency

�(A) Minimal eigenvalue of A

Sj Coverage area of beam j

↵ Predefined regularization factor for MMSE

Ŵi MMSE precoding matrix for cluster i

Wi Normalized precoding matrix for cluster i

W Normalized precoding matrix for all beams

w
t
k Precoding vector for user k at TS t

n Zero-mean additive Gaussian noise

hk Channel vector for user k

s[t] Transmitted symbol vector at TS t

L[t] Number of clusters at TS t

⌧ Blotzmann constant

�
2
T Power of thermal noise at temperature T

TRx Clear sky noise temperature of the receiver

K Maximal number of active beams

Kavg Average number of active beams for an instance

⌦i,j Penalty which is equal to !i,j

⇣n Average achievable rate of beam n

 Clustering threshold

�k,l Phase component between beam l and user k

Gl (xk, yk) Radiated gain due to beam l and user k

xn,t Illumination variable due to beam n in TS t

xt Vector of all illumination variable in TS t

!i,j Influence factor from beam i to beam j
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Fig. 1: Proposed flexible cluster hopping scheme

study. This is because the beam hopping window time is usually below a few hundred frames.

For instance, considering a frame duration of 1.3 msec (the number of symbols in a super-frame

is 612540, and its duration is about 1.3 msec for a 500 MHz bandwidth), and considering 256

frames, the total BH window-time is approximate to 330 msec. Clearly, the atmospheric loss has

a longer coherence time.

B. Selective Precoding Strategy

As depicted in Fig. 1, we envision an illumination pattern design that dynamically activates

clusters of beams. Whenever the cluster size is greater than one, precoding is needed to alleviate

the inter-beam interference. The illumination pattern design is discussed in Section III. Herein,

we detail how precoding is implemented for a given illumination pattern2. It is worth noting that

the precoding operation entails significant complexity at the gateway side, which exponentially

scales with the number of involved beams [35]. Hence, the precoding strategy should be designed

smartly by grouping active beams into different precoded clusters, which are subsequently

precoded independently. In what follows, we provide a detailed description of the two-step

procedure of grouping beams in clusters and how the precoding matrix is designed for a specific

cluster.

2Note that precoding refers to the exploitation of instantaneous CSI and it is implemented at the ground segment. It needs

to be distinguished from the beam pattern formation, which is implemented onboard the satellite and is assumed to be fixed in

this work.
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1) Precoded-Clustering Strategy: Given the illumination pattern, at TS t, the definition of

precoded clusters is given as follows. The general idea is that beams generating strong inter-

ference with each other should be grouped into one precoded cluster. First, we introduce the

so-called influence factor !i,j , which captures the impact of the inter-beam relative interference

from beam i to beam j, and it is defined as

!i,j =

RR
Sj
|Hk,i|

2 Pidxk dyk
RR

Sj
|Hk,j|

2 Pjdxk dyk

(*)
=

RR
Sj
Gi (xk, yk) dxk dyk

RR
Sj
Gj (xk, yk) dxk dyk

(2)

where Pi denotes the transmission power of beam i and Sj stands for coverage area of beam

j which is defined by the beam contour at -4 dB from the maximum gain. As can be seen,

!i,j represents the ratio of the interference power from beam i to beam j. Here, the power of

signals is calculated as the average value over the coverage area of beam j, (⇤) in (2) implies

the simplified influence factor when the same transmission power for all activated beams and

the same receiving gain at all users are assumed.

In a second step, these factors !i,j are compared to a predetermined threshold 3. Two beams

corresponding to an influence factor greater than the threshold will be located in one cluster. The

proposed threshold-based clustering strategy is summarized in Algorithm 1. Particularly, in each

TS, one starts by setting every activated beam as a separate cluster. Then, if there are any two

beams in two separate clusters whose corresponding influence factor is greater than the threshold,

these two corresponding clusters are merged into one. This process is iteratively repeated until

there is no change in the clustering structure. Note that the outcome of Algorithm 1 classifies

all active beams into clusters, some of which may contain one beam. Only those clusters with

a size greater than one will be considered for the precoding process.

2) Precoding Design: Once the clusters are formed, the precoding matrix is designed sepa-

rately for each of them. Let L[t] be the number of clusters in TS t; here, all non-illuminated

beams are grouped into a non-transmission cluster for convenience. Denote Wi 2 Cci⇥ci as the

precoding matrix of cluster i where ci stands for its cardinality. For the non-illuminated beams,

the corresponding precoding matrix must be zeros since they are silent during that particular

TS. For the clusters consisting of only one beam, the precoding matrix can be defined simply

as
p
Pb, where Pb denotes the per-beam transmit power. For the remaining clusters (the ones

3The value of the threshold can be easily set, as there is an evident abrupt drop in influence values for those beams that

are not causing harmful interference.
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that are formed with more than one active beam), their corresponding precoding matrices are

obtained using the MMSE-based strategy as given in [14, 36]. In particular, the MMSE-based

precoding matrix Ŵi can be expressed as

Ŵi =
p
PbH

H

i

�
HiH

H

i
+ ↵I

��1 (3)

where Hi represents the channel matrix of all the users in cluster i and ↵ stands for a predefined

regularization factor. Then, Wi is determined based on Ŵi by normalizing every column vector

of the matrix to meet the per-beam power constraints Pb.

Let zk[t] be the received signal at user k in TS t, and zi[t] = [zk[t]|k 2 Ci]T be the vector

of received signals corresponding to cluster i. The vector z[t] = [zT1 [t], ..., z
T

L
[t]]T including all

users’ received signal can be expressed as

z[t] = HW[t]s[t] + n = H BDiag (W1, ...,WL) s[t] + n (4)

where BDiag(⇤) stands for the block-diagonal matrix operation, W[t] 2 CN⇥N represents to

the precoding matrix for all beams, s[t] 2 CN⇥1 denotes the transmitted symbol vector; and n

stands for the noise vector. In this paper, the zero-mean additive Gaussian noise is assumed at

all the users where E
⇥
nn

H
⇤
= �2

T
I and �T =

p
⌧TRxB; ⌧ denotes the Boltzmann constant and

TRx is the clear sky noise temperature of the receiver [5].

III. BH ILLUMINATION PATTERN DESIGN FORMULATION

Let us denote xn,t 2 {0, 1} as the binary assignment variable indicating the illumination of

beam n in TS t. Then, the number of illuminated beams in TS t can be described as
P

N

n=1 xn,t.

Due to the typical payload mass limitations of a BH-enabled satellite, the number of active

beams must remain not greater than the number of RF chains K, i.e.,
P

N

n=1 xn,t  K, 8t.

The achievable rate of user n in TS t can be expressed as

Rn[t] = B log2

 
1 +

xn,t|hnw
t

n
|
2

P
k 6=n

xk,t|hnw
t

k
|2 + �2

T

!
(5)

where w
t

n
denotes the precoding vector designed for user n in TS t, e.g. column of W[t]

corresponding to that user. Note that W[t] is also a function of illumination pattern x which

determines the way to do clustering for precoding. Considering the average traffic demand of

user n, gn [bps], we can express the per-user demand constraint as,

1

M

MX

t=1

Rn[t] � gn [bps]. (6)
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Algorithm 1 THRESHOLD-BASED CLUSTERING ALGORITHM

1: Initializaion ,!i,j

2: Let Bac[t] be the set of activated beams in TS t.

3: Define Ck = {k} initial cluster consisting user k (k 2 B
ac[t]).

4: Define �[t] = {Ck|k 2 B
ac[t]} initial set of clusters, �[t] = B

ac[t] initial set of cluster indices.

5: repeat

6: for k 2 �[t] in ascending order do

7: for l 2 �[t] that l > k do

8: if 9i 2 Cl that maxj2Ck !i,j �  then

9: Ck = Ck \ Cl, �[t] = �[t]/{Cl}, �[t] = �[t]/{l}.

10: end if

11: end for

12: end for

13: until There is no change of �[t] and �[t].

The main objective of this work is to develop a BH illumination pattern design such that the

users’ demands are satisfied while avoiding the use of precoding whenever possible (to ease the

complexity burden). For this purpose, we shall avoid the strong cross-interference among the

illuminated beam in every TS as much as possible. To formulate such a problem, we make use

of the influence factors defined in (2) to generate a penalty matrix ⌦ 2 RN⇥N as

[⌦](i,j) = !i,j, 1  i, j  N (7)

where [⌦](i,j) indicates the element on the i-th row and j-th column of ⌦. Using this penalty



13

matrix, one can state the BH design problem as4

(P0) :minimize
x1,...,xM

MX

t=1

x
T

t
⌦ xt

subject to (C1) :
NX

n=1

xn,t  K, 8t

(C2) :
MX

t=1

Rn[t] � Mgn, 8n

(C3) : xn,t 2 {0, 1}, 8t, n

(8)

where xt = [x1,t, x2,t, ..., xN,t]T . Problem (P0) is an integer programming (IP) which is an NP

problem in general. The challenge of solving this problem not only comes from the binary

assignment variables but also from the non-convex function of Rn[t] in constraint (C2) which

is a function of x.

Remark 1: It is worth mentioning that problem (P0) is stated in a general form in which ⌦

can take any values. In particular, for different designing goals, ⌦ can be determined carefully.

Therefore, the BH strategy proposed in the following parts can stand in many schemes with

appropriate penalty matrices.

IV. PROBLEM REFORMULATION

In this section, effective approaches for dealing with the challenging problem given by (8)

are presented. Particularly, according to the idea of estimating the average supplied capacity, we

first simplify the complicated non-convex traffic-demand constraints (C2) to linear forms. Based

on this, the problem is re-formulated as a binary quadratic programming (BQP).

A. Demand Constraint Simplification

The actual supplied capacity Rn[t] is a non-convex function of the variable xt and, therefore,

it causes a big challenge for the BH protocol design. Some works in literature have suggested

different frameworks to address this issue, such as simple interference-free relaxation given in

[37], limiting the set of illuminated beams to avoid the strong interference in [29]. Considering

a different approach to dealing with this issue, we aim to convert the demand gn [bps] into a

4The satellite is assumed to be dimensioned according to the expected demands, i.e. to have enough resources to address

the expected demand gn, 8n.
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minimum number of TSs that each beam must be activated in order to meet its traffic demand.

To do so, we first consider the following proposition.

Proposition 1: Let ⇣n be the average achievable rate of beam n, i.e., ⇣n
P

M

t=1 xn,t =
P

M

t=1 Rn[t].

Then, constraint (C2) can be re-formulated as

(Ĉ4) :
MX

t=1

e
T

n
xt � dn, 8n (9)

where en denotes a vector in which the n-th component equals to one and all others are zeros,

dn = dMgn/⇣ne (10)

and d⇤e stands for the ceiling operator.

Proof: The proposition can be proved as follows. Since, ⇣n
P

M

t=1 xn,t =
P

M

t=1 Rn[t] and

e
T

n
xt = xn,t, constraint (C2) is equivalent to

MX

t=1

e
T

n
xt =

MX

t=1

xn,t �
Mgn
⇣n

, 8n (11)

Additionally,
P

M

t=1 e
T

n
xt is an integer. Hence, the right hand side of (11) can be replaced by

dn = dM gn

⇣n
e. This has closed the proof.

In constraint (Ĉ4), dn can be considered as the minimum number of TSs in each of which beam

n is illuminated. Next, the following theorem regards the relation between the optimal solution

of problem (P0) and dn.

Theorem 1: Let x?

t
’s be the optimal solution of (P0), then we have

P
M

t=1 e
T

n
x
?

t
= dn, 8n, if

⇣n’s are estimated accurately, which means constraints (Ĉ4) hold for all beams.

Proof: This theorem can be proved easily by using the contradiction method. In particular,

one assumes that there exists at least one beam that the corresponding constraint (Ĉ4) does not

hold. Denote this such beam as n⇤ which yields
P

M

t=1 x
?

n⇤,t > dn⇤ . Selecting any TS t⇤ that

x?

n⇤,t⇤ = 1, we generate the new solution of (P0), x0
t
’s, that x0

n,t
= x?

n,t
8(n, t) 6= (n⇤, t⇤) and

x0
n⇤,t⇤ = 0. It is easy to observe that x0

t
’s satisfies constraints (Ĉ4). Moreover, this new solution

meets the requirement of constraints (C1) and (C3) while resulting in the lower objective function.

It follows by a contradiction since x
?

t
’s is the optimal solution. Therefore, constraint (Ĉ4) holds

for all beams with any optimal solution of problem (P0).

Thanks to Theorem 1, the following lemma can stand.
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Lemma 1: If ⇣n’s are estimated accurately, one can replace constraint (C2) by the following

one without changing the optimal solution of problem (P0).

(C4) :
MX

t=1

e
T

n
xt = dn, n = 1, . . . , N (12)

Due to this result, in what follows, we propose an iterative framework to estimate the average

achievable rate ⇣n for each beam by appraising the expected interference.

1) Average Achievable Rate Estimation Framework: According to the mean field theory[38],

we assume the uniform distribution of beams to be activated over the time window. Thanks to

Lemma 1, the illuminating probability of beam n in a specific TS, e.g., TS t, can be given by

pn = Prob{xn,t = 1|t} = dn/M (13)

Regarding the clustering and precoding processes, the expected interference to beam n can

be expressed by taking into account the interference from the beams with low corresponding

influence factors and their illuminating probability as  n =
P

j,j2An
pjPb|Hn,j|

2, where An =

{i | ⌦i,n < , i 2 N, i  N, i 6= n}. Based on that, the expected average achievable rate of beam

n can be described as

⇣n = B log2

✓
1 +

Pb|hn,n|
2

 n + �2
T

◆
(14)

Although one of (dn, pn, n, ⇣n)’s can be defined if the others are given, determining the accu-

rate values of these factors is very challenging. Exploiting the expectation maximization (EM)

algorithm given in [38], we propose an iterative framework to estimate ⇣n’s as summarized

in Algorithm 2. Particularly, the algorithm initializes with zeros illuminating probability for

all beams and repeatedly updating (dn, pn, n, ⇣n)’s in each iteration. Each iteration processes

two steps, namely, expectation (E-Step) and maximization (M-Step). The E-Step is called for

updating the interference based on the illuminating probabilities of the previous iteration while

the M-Step stands for calculating ⇣n’s, dn’s, and adjusting the probabilities. The iterative process

stops at the convergence according to the following proposition.

Proposition 2: Algorithm 2 converges after a finite number of iterations.

Proof: As can be observed, pn’s increase while ⇣n’s decrease in every iteration. Since pn’s

are upper bounded by ones and ⇣n’s are lower bounded by zeros. The iterative process must

converge to a stable point after a finite number of iterations.

Remark 2: Note that if the required demand gn is higher than ⇣new
n

in a specific iteration,

dnew
n

will be re-set as M - the highest number of TSs. One also notices that problem (P0) is
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Algorithm 2 AVERAGE CAPACITY ESTIMATION

1: Initializaion Pb, B, �T ,H,⌦,,An,pold = 0

2: while k ⇣new
� ⇣old

k
2
 ◆ do

3: For all n = 1, ..., N , update:

E Step:  new
n

=
X

j,j2An

pold
j
Pb|hn,j|

2 (15)

M Step: ⇣new
n

= B log2

✓
1 +

Pb|hn,n|
2

 new
n

+ �2
T

◆
(16)

dnew
n

= dM
gn
⇣new
n

e (17)

pold
n

=
dnew
n

M
(18)

4: end while

infeasible if K is smaller than the average number of active beams Kavg which is expressed as

Kavg = d
P

8n dn/Me.

Remark 3: It is worth noting that (C2) and (C4) may be not equivalent if ⇣n is not estimated ac-

curately. In addition, once ⇣n is well evaluated as in Algorithm 2, and dn is calculated as in (10),

the unmet capacity of beam n must be smaller than,
h
Mgn � dnB log2

⇣
1 + |hn,n|2PbP

k 6=n |hk,n|2Pb+�
2
T

⌘i+

since
P

k 6=n
|hk,n|

2Pb is the highest interference power suffering beam n in any TS.

2) Problem Reformulation: For the sake of simplicity, we compact our notation by rearranging

all TSs t into a single tall vector xT =
h
x
T

1 x
T

2 · · · x
T

M

i
. Thanks to Lemma 1, problem (P0)

can be re-stated as
(P1) : minimize

x
x
T
Ax

subject to (C5) : Bx � K · 1M ,

(C6) : Dx = d

(C7) : x 2 {0, 1}NM

(19)

where d = [d1, d2, . . . , dN ]T , A = IM ⌦ ⌦, B = IM ⌦ 1
T

N
, D = 1

T

M
⌦ IN . Herein, ⌦ denotes

the Kronecker product, 1M stands for the vector with M one elements, and IM is the identity

matrix with dimension of M .
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B. Objective Function Convexification

As can be observed, problem (P1) is a BQP which is NP-hard in general. To ease the

tractability of (P1), we aim to characterize the objective function convexity by considering

the following theorem.

Theorem 2: For any value of a, problem (P1) is equivalent to the following problem

(Pa) : minimize
x

x
T (A+ aI)x

subject to (C5), (C6), (C7).
(20)

Proof: Due to the constraint (C6), if x0 is a solution of problem (P1), then we have axT
Ix =

a
P

N

n=1 dn which is a constant. Then, x0 must be a solution of problem (Pa). Inversely, it is

easy to prove that any solution of (Pa) must be a solution of (P1). Hence, (P1) and (Pa) are

equivalent for any value of a.

In addition, the convexity of the objective function (Pa) can be guaranteed if a is selected

so that it is not less than ��(A) - the minimum eigenvalue of A. Thanks to Theorem 2, we

can state that problem (P1) is equivalent to an integer QP with a convex objective function,

i.e., xT
Ãx where Ã = A � �(A)I. To this end, instead of solving (P1), we will focus on the

following
(P1) : minimize

x
x
T
Ãx

subject to (C5), (C6), (C7).
(21)

V. BINARY QUADRATIC PROGRAMMING OPTIMIZATION

In this section, three optimization approaches are introduced to deal with the BQP problem

(P̃1). Particularly, two efficient solving approaches using the SDP relaxation and MPMM meth-

ods, respectively. For completeness, a low-complexity greedy algorithm is also proposed. Finally,

a complexity analysis of the proposed solution mechanisms is presented.

A. SDP-based Algorithm

Problem (P̃1) corresponds to a BQP form, i.e. a problem involving a quadratic objective

function with binary variables, which could be solved by relaxing the binary constraint [39].

Firstly, the binary constraint (C7) is equivalent to two equations [40], i.e.

x 2 {0, 1}MN
() X = xx

T and (C8) : diag (X) = x. (22)
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Herein, the “rank-one” constraint X = xx
T can be further relaxed as [40]

8
>>><

>>>:

(C9) :

2

4X x

x
T 1

3

5 ⌫ 0 (equivalent to X ⌫ xx
T )

(C10) : X 2 S
n.

(23)

Then, problem (P̃1) can be approximated to the following semidefinite problem,

(PSDP) :minimize
x,X

Tr
⇣
ÃX

⌘

subject to (C5), (C6), (C8), (C9), (C10)

(24)

Problem (PSDP) in (24) can be solved efficiently by employing the advanced mixed-integer

optimization toolboxes such as CVX [41]. If the matrix obtained by solving (PSDP) is “rank-

one”, then it provides the optimal solution to the problem. In the case of SDP providing a solution

matrix whose rank is higher than one, the SDP-based branch and bound method [42, 43] can be

applied to obtain the final solution.

B. MPMM Algorithm

In this section, we first introduce the general principles of MP and MM methods based on

which a novel multiplier penalty and majorization-minimization (MPMM) algorithm is proposed

to solve problem (P̃1) efficiently. Then, the convergence of this approach is also discussed.

1) Multiplier Penalty Method: The MP method is an efficient approach for solving the

constrained optimization problem. Considering, a general equality-constraint problem as follows,

minimize
x2X

f (x)

subject to hi (x) = 0, i = 1, . . . ,m
(25)

where X is a convex set. Following the MP method, this problem could be solved by minimizing

the following sequential problems

x
[`] = arg min

x2X
f (x) +

mX

i=1

⌘[`]
i
hi (x) +

⇢[`]

2

mX

i=1

[hi (x)]
2 (26)

where ` is the index of iteration, {⌘[`]
}, {⇢[`]} stand for sequences of penalty factors. Here, the

penalty term is introduced by its augmented Lagrangian function. The feature of MP method is

the way to update ⌘[`] step by step [44], which is given by

[⌘[`+1]]i = ⌘[`]
i
+ ⇢[`]hi (x) . (27)

The result given in [33] also concludes that the sequence of {⌘[`]
} will converge to a fixed point

at which {x
[`]
} converges to a local optimum of problem (25).
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2) Majorization-Minimization Method: The MM method is a well-known approach to dealing

with a complicated problem by transferring it into a sequence of simple problems which can be

solved effectively. The main idea of this scheme is to construct the surrogate function u
�
x | x(k)

�

which approximates the original objective function, then solve the constructed problems in

sequence until convergence. For the general minimization problem, minx2X f (x) where X is

convex set. The constructed surrogate function u
�
x | x(k)

�
should satisfy

f (x)  u
�
x | x(k)

�
, 8x 2 X , and f

�
x(k)

�
 u

�
x(k) | x(k)

�
(28)

Then the sequence of {x(k)} is given by x(k+1) = arg minx2X u
�
x | x(k)

�
, which will converge

to a stationary point of the original problem [45]. If the problem is convex, then the stationary

point is the global minimum.

3) Proposed MPMM Method: The challenge on solving P̃1 mainly comes from the binary

constraint (C7). To cope with this challenge, we aim to employ MP method to relax the binary

constraint and deal with a sequence of penalty problems. In particular, the augmented Lagrangian

function is added to the objective function with penalty parameters while the binary constraint

(C7) is relaxed to form the penalty problem as

(PMPMM) : x
[`] = arg min

x2Y
f
�
x|⌘[`], ⇢[`]

�
, (29)

where f
�
x|⌘[`], ⇢[`]

�
= x

T
Ãx +

P
i
⌘[`]
i
(xi � x2

i
) + ⇢

[`]

2

P
i
(xi � x2

i
)2 and Y = {x|Bx � K ·

1M ,Dx = d, 0  xi  1, 8i}. It is worth noting that xi 2 {0, 1} is equivalent to xi�x2
i
= 0, 8i.

Moreover, the MP-based framework focus on solving (PMPMM) iteratively and updating penalty

parameters ⌘[`], ⇢[`] to drive the solution of (PMPMM) to a point that |xi � x2
i
| is closed to zero.

Here, the binary constraint is strengthened by adding 0  xi  1, i.e., x2
i
� xi  0, 8i to the

convex set X . According to the MP-based framework given in [44], the penalty parameters can

be updated as

[⌘[`+1]]i = [⌘[`]]i + ⇢[`]
✓
x[`]
i
�

⇣
x[`]
i

⌘2
◆

and ⇢[`+1] = �[`]⇢[`], (30)

where �[`] is the parameter to update ⇢ step by step. Usually, ⇢[`] would be initialized with a

small value and then increased with iterations. Note that ⇢[`] can also keep fixed after certain

iterations [33]. Due to the high order of variable x appearing in the objective function, it is very

challenging to solve (PMPMM) directly. To overcome this issue, we employ the MM method

by constructing a surrogate function and then finding the optimum solution in a sequence. The
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Algorithm 3 MPMM ALGORITHM

1: Initialization: ` = 1,⌘[1] = 0, ⇢[1] = 1,x[1]
(0) = 0

2: repeat

3: Set k = 0.

4: repeat

5: Solve x
[`]
(k+1) = arg minx2X u

⇣
x | x

[`]
(k),⌘

[`], ⇢[`]
⌘

.

6: Update k = k + 1.

7: until Convergence

8: Set x[`] = x
[`]
(k).

9: Update [⌘[`+1]]i = [⌘[`]]i + ⇢[`]
✓
x[`]
i
�

⇣
x[`]
i

⌘2
◆

, ⇢[`+1] = �[`]⇢[`].

10: Update ` = `+ 1.

11: until Convergence

proposed algorithm is summarized in Algorithm 3. The surrogate function is constructed by

linearizing the binary constraint with its first-order Taylor series and is given by

x
[`]
(k+1) = arg min

x2Y
u
⇣
x | x

[`]
(k),⌘

[`], ⇢[`]
⌘

(31)

where u
⇣
x|x

[`]
(k),⌘

[`],⇢[`]
⌘
= x

T
Ãx+

P
i
⌘[`]
i

⇣
1�2 (xi)

[`]
(k)

⌘
xi+

⇢
[`]

2

P
i

⇣
1�2 (xi)

[`]
(k)

⌘
xi+

⇣
(xi)

[`]
(k)

⌘2
�2

.

4) Convergence Analysis: Regarding the same approach analyzing the convergence of the MP

method given in [33], one can prove the convergence of the proposed algorithm by addressing

two facts: i) for given ⌘[`], ⇢[`], the MM procedure converges to the global optimum of x
[`]; ii)

the sequence {⌘[`]
} updated as in (30) converges to a fixed Lagrangian multiplier of P̃1.

Lemma 2: 9a � a0 such that the objective function f
�
x|⌘[`], ⇢[`]

�
is convex.

The proof is presented in Appendix B. Then the convergence of sequence {x
[`]
(k)} will converge

to the global optimum of x[`].

C. Greedy Algorithm

In this section, we propose a heuristic approach to solving (P̃1). The basic idea is to firstly

solve the relaxed problem, i.e. (Prlx), in which the binary variables are relaxed as continuous

one, i.e.

(Prlx) : minimize
x2Y

x
T
Ãx. (32)
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Algorithm 4 GREEDY ALGORITHM

1: Round x
con into binary solution, named x

bin, by setting dn highest elements of the set
�
xcon
n,t

 M

t=1
to 1 and setting the remaining elements to 0.

2: Calculate B 2 RN⇥M as Bn,t =
P
j 6=n

⇣
Ãj,n + Ãn,j

⌘
xbin
j,t
, 8(n, t).

3: while x
bin is not a feasible solution do

4: Denote S
+ =

⇢
t

����1  t  M,
NP

n=1
xbin
n,t

> K

�
, S� =

⇢
t

����1  t  M,
NP

n=1
xbin
n,t

< K

�
.

5: Let T =
�
(n, t, u)|t 2 S

+, u 2 S
�, xbin

n,t
= 1, xbin

n,u
= 0

 
.

6: Solve (n⇤, t⇤, u⇤) = argmin(n,t,u)2T Bn,u � Bn,t.

7: Swap the values of xbin
n⇤,t⇤ and xbin

n⇤,u⇤ by setting xbin
n⇤,t⇤ = 0, xbin

n⇤,u⇤ = 1.

8: end while

The continuous optimal out-comes, denoted as xcon, are then rounded to binary solution, xbin. The

rounding mechanism is developed so that all the practical requirements of (P̃1) are guaranteed.

In addition, the approach also aims to minimize the total penalty. In particular, after solving the

problem (Prlx), for each user n, the first dn highest elements among the set {xcon
n,t

}
M

t=1 are set to

be ones while the others are down-rounded to zeros. Then, the illumination of beams over TSs

can be further swapped to satisfy constraint (C5) and keep the total penalty as small as possible.

The greedy algorithm is presented in Algorithm 4 and described in Fig. 2.

D. Complexity Analysis

In this section, the complexity of our proposed algorithms are investigated based on the number

of required operations.

1) Threshold-based Clustering Algorithm: Let Bt = |B
ac[t]| be the number of activated beam

in TS t where |X | stands for the cardinal number of set X . As can be observed, Algorithm 1

consists of three loops, i.e., one “repeat” loop and two “for” loops, and it initializes with Bt

clusters each of which contains one beam. In each iteration of the “repeat” loop, the number of

clusters decreases if �[t] changes. Moreover, the “repeat” loop stops when there is no change

of �[t]. Therefore, the iteration number of the “repeat” loop must be less than Bt. Regarding

“for” loops, we can observe that for each couple (k, l) in �[t], one has to compare !i,j to  for

all (i, j) 2 Cl ⇥ Ck. Then, according to |�[t]|, |Ck|  Bt for all k 2 B
ac[t], the complexity of

Algorithm 1 can be estimated as O (B5
t
).
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Fig. 2: The process of the Greedy Algorithm to design the illumination pattern. The demand of

TSs of user n is dn. At TS t, the number of active beams is greater than the limitation K, while

the number is less than K at TS u. The exchange of active beam for user n will happen if this

exchange would bring in a minimal increase of the objective function.

2) SDP-based Algorithm: As given in [46], the computational complexity involved in solving

the SDP is O(max(m,n)4n1/2) where n and m are the numbers of variables and constraints,

respectively. As can be observed, these numbers corresponding to problem (PSDP) are (MN)2+

MN and M +N + 1, and (MN)2 +MN must be much greater than M +N + 1. Therefore,

the complexity of solving problem (PSDP) by employing SDP method can be estimated as

O ([MN(MN + 1)]4.5) .

3) MPMM Algorithm: MPMM algorithm consists of two loops where the inner loop at-

tempts to solve problem (31) in each inner iteration while the outer loop aims to update the

penalty parameters in each step as in (28). Generally, problem (31) is a convex QP with MN

variables which can be solved in polynomial time with the complexity of O ((MN)3) [47].

Hence, the complexity of MPMM algorithm can be expressed based on the number of iterations

as IouterMPMM

�
I innerMPMMO ((MN)3) +O (MN)

�
where IouterMPMM and I innerMPMM are the average iteration

numbers of outer and inner loops required in Algorithm 3 to solve problem (P̃1), respectively.

4) Greedy Algorithm: The initial step of this algorithm attempts to solve the QP (P1) with

continuous variable x with the complexity of O ((MN)3) [47]. Then, it requires to calculate

elements of matrix B before iteratively updating sets S+, S�, and T . At the end of each iteration,

the comparison procedure is processed to select the two specific beams in two different TSs for
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swapping. It is worth noting that the cardinality of T cannot exceed MN and decrease after

every iteration. Hence, the number of iterations in Algorithm 4 must be smaller than MN .

Hence, the complexity of the greedy algorithm can be estimated based on that due to solving

QP, calculating B and iterative process as O ((MN)3) +MN + (MN)2 = O ((MN)3) .

VI. NUMERICAL RESULTS

Monte Carlo simulations are conducted to evaluate the performance of the proposed three

algorithms in terms of demand matching, the total computation for precoding, and an average

number of active beams per TS, compared with two benchmarks: conventional beam hopping

(BH) and cluster hopping (CH). In particular, the conventional BH method is given in Appendix A

while CH benchmark solution is proposed in [29, 30].

A. Simulation Setup

We consider a GEO satellite system with 67 spot beams, i.e., N = 67. The setting pa-

rameters are summarized in Table II. The simulation setup is the same as the one considered

in [28, 30]. Unless mentioned otherwise, the number of TSs is set to M = 20. The traffic

demand of all the users is generated uniformly at random between 400r and 1500r (Mbps), i.e.,

400r  Dn  1500r 8n. Herein, r represents the demand-density factor which is selected in

{0.25, 0.3, 0.35, 0.4, 0.45} where r = 0.25 implies the low demand setting while r = 0.45 refers

to the high demand. For each selected value of r, 50 demand instances are generated for testing.

A single representative user within each beam is assumed, which aggregates the overall beam

demand.

B. Estimating Number of Time-Slots per-Beam Required to Satisfy Demand

Fig. 3 illustrates the convergence of Algorithm 2 where the evolution in terms of average

numbers of activated beams per TS, i.e., Kavg, is shown with respect to iterations. In Fig.

3, we have illustrated the convergence for five demand instances based on the values of r 2

{0.25, 0.3, 0.35, 0.4, 0.45}. It can be observed that the algorithm converges after 2� 3 iterations,

where Kavg increases before saturating at constant values. Moreover, Fig. 3 also shows that the

larger the value of r (i.e. the higher the demand), the higher the number of average numbers

of activated beams per TS. According to Remark 2, the users’ demand cannot be satisfied if

K is less than Kavg; hence, unless mentioned otherwise, we set K = Kavg in the subsequent

simulations.



24

1 2 3 4 5 6 7 8 9 10

Index of iteration

10

15

20

25
r=0.25

r=0.30

r=0.35

r=0.40

r=0.45

Fig. 3: Average number of active beams per TSs.

TABLE II: Simulation Parameters

Satellite Orbit 13�E (GEO)

Satellite Beam Power 80 W

OBO 3 dB

Addition Payload Loss 2 dB

Number of Virtual Beams (N ) 67

Beam Radiation Pattern (Gi (x, y) ej�x,y ) Provided by ESA

Downlink Carrier Frequency 19.5 GHz

User Link Bandwidth, B 500 MHz

Roll-off Factor 20%

Temperature 50 K

Number of TSs (M ) 20

Threshold do precoding() 0.08

TABLE III: Clusters’ Distribution (r = 0.25)

Size SDP MPMM Greedy BH CH

1 4494 12549 12225 13061 0

2 1801 36 119 0 0

3 795 0 27 0 0

4 264 0 9 0 0

5 100 0 4 0 0

6 53 0 1 0 1814

7 25 0 1 0 186

8 8 0 1 0 0

9 3 0 0 0 0

1 The total relative computation for precoding is

1.0000, 0.0031, 0.0418, 0.0000 and 4.9754 in the

order of SDP, MPMM, Greedy, BH and CH.

C. Discussion on MPMM Convergence

1) The Convergence of MPMM Algorithm: In Fig. 4, we regard the convergence of Algo-

rithm 3. In order to illustrate the convergence, three parameters are considered, i) gap (xi) =

min{|xi � 0|, |xi � 1|} which describes the minimal distance between the continuous element

xi and a binary variable; ii) T (z) = {xi| gap (xi)  z, i = 1, . . . ,MN} is the set of elements
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Fig. 4: The Convergence of MPMM. (a) Geometric distribution of the elements of x; (b) Evolution of the objective function

x
T
Ãx.

which belongs to the variable x, whose gap (x) is not greater than z; iii) P (z) = |T (z)|
MN

describes

the percentage of the elements in variable x whose gap (x) is less than z.

Fig. 4a shows the geometric distribution of elements in x, i.e. P (z) achieved in each outer-

loop iteration. For the sake of clarity, in this simulation a single demand factor r is considered,

being r = 0.3. It can be observed that the elements in x are closer to binary values after each

iteration. As can be observed, the curves corresponding to iteration 3 and 4 illustrate that P (z) is

close to one with very small gaps. Certainly, this has confirmed that the final solution converges

to binary variables.

Fig. 4b shows the variation of the objective function of problem (P̃1), i.e., xT
Ãx, achieved

in every outer-loop iteration. The algorithm initiates with penalty parameters ⌘[1] = 0, ⇢[1] = 1

which will increase after each iteration.

D. Performance Evaluation

In this section, we aim to evaluate the performance of the proposed algorithms in terms of

two main aspects: (i) per-beam demand matching, and (ii) a number of beams that would require

the implementation of precoding to deal with co-channel interference.

To begin with, Fig. 5a shows an example of an illumination pattern design obtained by

implementing Algorithm 3 for a particular demand instance obtained with r = 0.25. In this figure,

the white rectangles imply that the corresponding beams are illuminated while the blacks refer

to the inactive ones in a specific TS. In addition, the illumination map of beams corresponding to
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Fig. 5: Example of Illumination Pattern obtained with MPMM. (a) Satellite illumination pattern; (b) Beam pattern at the 15-th

TS.

TABLE IV: Clusters’ Distribution (r = 0.35)

Size SDP MPMM Greedy BH CH

1 3895 16562 14774 16865 0

2 1693 514 1207 0 0

3 1024 80 134 0 0

4 532 29 41 0 0

5 292 6 19 0 0

6 216 5 7 0 1814

7 119 1 8 0 186

8 91 0 0 0 0

9 51 0 3 0 0

10 35 0 2 0 0

11 16 0 1 0 0

12 10 0 1 0 0

13 5 0 0 0 0

14 1 0 0 0 0

15 1 0 0 0 0

16 1 0 0 0 0

1 The total relative computation for precoding is

1.0000, 0.0273, 0.0788, 0.0000, and 1.2061 in the

order of SDP, MPMM, Greedy, BH, and CH.

TS 15 of this simulation is illustrated in Fig. 5b, where the green areas represent the foot-prints

of the illuminated beams.

Next, we consider the precoding utilization in the proposed algorithms in Table III, IV and

V, which will have an impact on the system complexity. It is worth noting that the complexity
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TABLE V: Clusters’ Distribution (r = 0.45)

Size SDP MPMM Greedy BH CH

1 3066 13076 11265 16963 0

2 1270 1585 2222 0 0

3 893 798 1028 0 0

4 532 432 425 0 0

5 373 171 207 0 0

6 267 148 114 0 1814

7 174 81 64 0 186

8 147 35 44 0 0

9 143 33 28 0 0

10 109 18 18 0 0

11 85 13 13 0 0

12 66 9 5 0 0

13 55 5 2 0 0

14 47 6 4 0 0

15 46 3 5 0 0

16 32 0 1 0 0

17 19 0 1 0 0

18 9 0 0 0 0

19 12 0 0 0 0

20 2 0 0 0 0

21 3 0 1 0 0

22 4 0 1 0 0

23 1 0 0 0 0

1 The total relative computation for precoding is

1.0000, 0.1697, 0.1820, 0.0000, and 0.2829 in the

order of SDP, MPMM, Greedy, BH, and CH.

TABLE VI: Average Number of Active Beams

SDP MPMM Greedy BH CH

r=0.25 12.62 12.62 12.62 13.06 12.19

r=0.35 18.01 18.01 18.01 16.87 12.19

r=0.45 23.88 23.88 23.88 16.96 12.19

TABLE VII: Jain’s Fairness Index

SDP MPMM Greedy BH CH

r=0.25 0.9892 0.9852 0.9873 0.9842 0.8582

r=0.35 0.9924 0.9916 0.9911 0.9760 0.8582

r=0.45 0.9952 0.9955 0.9952 0.9651 0.8583
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for MMSE-based precoding of a cluster of N beams is estimated as O (N3) in general [14,

36]. Therefore, we aim to demonstrate the precoding complexity corresponding to different BH

mechanisms by illustrating the number of clusters with different sizes. In particular, Tables

III, IV and V show the distribution of clusters in various sizes at different demand instances

assuming r = 0.25, 0.35 and 0.45, respectively. In addition, based on the numbers given in these

tables, the total computation for precoding due a specific BH mechanism can be estimated as

T =
P

N

ni=2 mi ·(ni)
3, where ni represents the size of clusters and mi represents the total number

of the corresponding clusters at a demand density instance. At the footnote of these tables, we

show the total relative computation cost for precoding by comparing T ’s, where SDP is set as

the baseline. Particularly, the precoding complexity due to a BH method is defined as the ratio

of its T to that of SDP.

For the three proposed algorithms, these tables have demonstrated that: (i) the number of

larger-size clusters is smaller, (ii) increasing the traffic demand results in a higher number of

larger-size clusters. Interestingly, the MPMM method shows its superiority when it is on the

smaller size of the cluster which would result in less computation for precoding. When r = 0.25,

the total computation for precoding with the SDP method is more than 300 times that of MPMM.

In addition, no adjacent beams will be illuminated simultaneously with the BH method, then

there is an upper bound of the maximum number of activated beams. So the total number of

active beams will not change much with the increase of the density of demands. The CH method

predefines the clusters where the cluster size is 6 or 7.

Next, we analyze the average number of active beams per TS, which determines the resulting

interference as well as the operating power consumption of the satellite. In principle, one would

like to minimize the number of active beams but make sure that the demand requirements are met.

Table VI shows the average number of beams activated per TS for the different methodologies.

For the proposed algorithms, the number of activated beams per TS is fixed and given by

Algorithm 2, while the conventional methods provide different values. For the CH technique, the

number of active beams is fixed and does not depend on the demands, which typically results in

an inaccurate demand-matching performance. Regarding the BH technique, the number of active

beams slightly increases as the demand increases, but the illumination design is limited to non-

adjacent beams, and therefore the increase in the number of active beams is not so prominent.

Unlike the benchmarks, the proposed techniques are more flexible in activating more beams

and adapting to the demand increases. The results in Table VI match the distribution of cluster
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numbers with different sizes depicted in Tables III, IV and V.

To evaluate the fairness of users’ satisfaction corresponding to the proposed and benchmark

methods, we consider Jain’s Fairness Index proposed in [48]. The definition of the index is

given as J (y) =
(
Pn

i=1 yi)
2

n·
Pn

i=1 y
2
i

where yi is the chosen metric and is given by yi =
ci
gi

in which

ci is defined as 1
M

P
M

t=1 Rn[t]. This index aims to determine whether users are receiving a fair

demand matching or not. “One” value of J (y) implies the highest fairness level among all users.

The Jain’s fairness indices achieved by implementing various BH mechanisms, the proposed and

benchmark methods, for different demand factors are given in Table VII. From the results, it can

be concluded that all three proposed methods can provide better fair indices than the benchmark,

especially in the high-demand scenarios. In addition, it can be observed that the CH method stays

at around 0.86 independent of the demand entry. Furthermore, Jain’s index of the conventional

BH method suffers from maintaining a good level of fairness as the demand increases.

In the subsequent results, we focus our evaluation on the capabilities of the proposed tech-

niques to match the offered capacity with the actual demand. In particular, Fig. 6 illustrates the

cumulative distribution function (CDF) of C/D – the ratio of the provided capacity of the beam

to its required demand, for 3 different demand factors r = 0.25, 0.35 and 0.45. On the top of

Fig. 6, we show the performance of the proposed methods with respect to the benchmarks. On

the bottom of Fig. 6, the reader can find a zoom-in figure to better discern the performance of

the proposed techniques. The vertical dashed line indicates the ideal scenario where ci/gi = 1,

8i.

First, Fig. 6 confirms that the CH technique suffers from the limitation of pre-defined clustering

shapes, which unavoidably illuminate low-demand beams with high-demand beams. On the other

hand, the conventional BH is shown to experience significant degradation when the demand factor

increases. This is because BH falls short of supplying enough capacity due to its inability to

illuminate high-demand areas at once. Focusing on the proposed techniques, we can see from

Fig. 6(b) and Fig. 6(c) that all three outperform the benchmarks, especially for moderate and

high demand factors. It can also be observed that the SDP-based method provides ci/gi > 1 for

almost all cases which implies that this approach can provide a capacity larger than the demand. It

may not be expected in some specific circumstances that one avoids spending expensive network

resources to serve the users much more than what satisfies them. The MPMM approach seems to

provide a better trade-off as its curve is closer to the ideal case. The greedy algorithm provides

performance in between SDP and MPMM methods and seems to be closer to the SDP solution
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Fig. 6: Comparison of algorithms in demand matching at different density of demands.

for the low demand factor while it approaches the MPMM solution for the high demand factor.

E. Impact of number of TSs in BH window

Herein we evaluate the impact of the parameter M , which determines the number of TSs

within a BH window. In particular, Fig. 7 evaluates the number of average precoded beams

within a hopping window with respect to M shows the CDF of (ci/gi) for different values of

M . In Fig. 7, we focus on the MPMM method’s behavior, which was found to be the best in
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Fig. 7: Comparison of M in terms of average number of active beams and demand matching at different density of demands.

demand matching fairness among users in the previous simulation result. As usual, we evaluate

three different demand factors, i.e. r = 0.25, 0.35, and 0.45. From Fig. 7(a), Fig. 7(b), and

Fig. 7(c), it can be observed that a higher value of M translates into a lower average number of

precoded beams. This is an expected result where the more TSs are available, the less number of

beams need to be activated simultaneously. Another interesting result is that the average number
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of precoded beams increases with the users’ demand. Focusing now on the CDF curves, depicted

in Fig. 7(d), Fig. 7(e), and Fig. 7(f), we can observe that the longer window length can push

the achievable capacity closer to the users’ demand. This is because of that the higher value of

M gains a higher degree of freedom in selecting the illuminating TSs for each beam to meet

their demand.

F. Impact of imperfect CSI

The simulations above are based on perfect CSI which is unrealistic in practice. In this

subsection, following [49], we model the CSI uncertainty with an additive complex Gaussian

error with parameters (mean, standard deviation) as shown in Table VIII. Note that (I/N) in

Table VIII denotes the Interference-to-Noise Ratio, which is a measurement of how strong are

the signals (coming from different beams) to be measured.

Table IX compares the performance with perfect CSI and imperfect CSI in terms of estimated

demand (dn) and Jain’s fairness index for different demand densities r, where the results are

averaged for 50 Monte Carlo simulation. The only difference between each simulation is the

channel information, one of which is with perfect channel and the other is with estimated channel.

The first thing we observe is that the estimated average demand dn is lower with imperfect CSI.

The latter occurs due to the nullification of certain CSI components in the imperfect CSI (note

that I/N lower than -10dB are not measured at all). The nullification of the channel matrix

translates into a reduction of the assumed interference levels. This biased demand estimation

could be compensated by modifying the way we calculate the average demand, maybe adding a

margin, but this is out of the scope of this work. When comparing the values of Jain’s fairness

index in Table IX, we can observe an evident performance loss for the imperfect CSI case, which

is justified essentially by the reduced estimated demand. Fig. ?? illustrates the demand matching

for the same cases evaluated in Table IX for completeness. As expected, the figure shows that

the perfect CSI scheme outperforms the imperfect CSI one where it can supply more beams as

their demands than the other.

G. Impact of Random User Location

The assumption of a single virtual user per beam is performed to abstract the user scheduling.

However, the assumed location of such a virtual user may have some impact on the final

performance. For instance, having the virtual user on the beam edge will not have a strong
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TABLE VIII: Mean and Standard Deviation of the channel

estimate (reference signal SNR=10 dB) [49]

I/N Amplitude Phase

[dB] Mean Std. Mean(�) Std.

10 0 0 0 0

5 0.02 0.005 0 0.2

0 0.04 0.010 0 0.5

-5 0.10 0.020 0 1.0

-10 0.16 0.030 3 2.0

-11 No lock No lock No lock No lock

TABLE IX: Comparison between Perfect and Imperfect CSI

r

Avg. Demand Jain’s Index

Imperfect Perfect Percentage Imperfect Perfect

0.25 11.95 12.62 0.9470 0.9831 0.9852

0.35 16.39 18.01 0.9098 0.9883 0.9916

0.45 21.03 23.88 0.8808 0.9915 0.9955

1 The percentage is the ratio of estimated average demand in the

number of TSs with imperfect CSI to that with perfect CSI.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

C/D

0

0.2

0.4

0.6

0.8

1

C
D

F

Imperfect CSI
Perfect CSI

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

C/D

0

0.2

0.4

0.6

0.8

1

C
D

F

Imperfect CSI
Perfect CSI

(b)

Fig. 8: Comparison between perfect and imperfect channels in demand matching at different

demand densities.

TABLE X: Comparison in Jain’s Index

r

Jain’s Index

Random Centered

0.45 0.9878 0.9955

0.50 0.9839 0.9961

0.55 0.9775 0.9961

0.60 0.9691 0.9956

impact whenever the active beam is isolated. However, for high-demand instances, we expect

the edge users to impact the selective precoding and generate a higher miss-match between the
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estimated capacity and the actual supplied capacity. For the latter, estimating the capacity with a

user on the edge will provide lower capacity than a user in the beam center, therefore requiring

more TSs to satisfy the demand.

To evaluate this, we have run some results by randomly selecting the virtual user location

within its �3 dB beamwidth. For the sake of comparison purposes, for each instance of random

user location, the same beam traffic demand (in bps) as the user in the beam center is assumed.

In addition, there are 50 instances, each of whose demands are randomly generated. Table X

compares the performance in terms of demand satisfaction between random users and centered

users at different densities of demand. It can be observed that, as the demand r increases, the

error in the demand matching increases when the non-centered virtual user is considered.

VII. CONCLUSION

In this paper, we propose an analytical framework, a class of BQP problems, to support

dynamic beam illumination design considering selective precoding for the next generation of

time-flexible satellite broadband systems. Three algorithms are proposed to solve the problem:

(i) SDP-based approach, (ii) MPMM methodology, and (iii) low-complexity greedy algorithm.

All three methods target cross-beam interference minimization, such that the number of beams

that need to be precoded is kept to a minimal in an attempt to reduce system complexity.

An extensive evaluation has been carried out based on numerical simulations. The results

have shown interesting gains provided by the proposed algorithm with respect to the relevant

benchmark schemes. In particular, the proposed framework provides an efficient solution to deal

with high-demand areas while keeping the precoding-related complexity low.

APPENDIX A

CONVENTIONAL BEAM-HOPPING METHOD

The conventional BH method is one of the methods to design the illumination pattern and is

developed by solving the following problem

(PConv) :maximize
X, t

t (33a)

subject to (S1) :
MX

i=1

xi � ⇣M ⌫ t ·� (33b)

(S2) : X (i, :) +X (j, :) � 1
T

M
, 8 (i, j) 2 B (33c)
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(S3) : 1
T

N
X � K · 1

T

M
(33d)

(S4) : xi 2 {0, 1}N (33e)

where X = [x1,x2, · · · ,xM ] and B = {(i, j) |Qi,j = 1, i = 1, · · · , N ; j = 1, · · · , N}, Q is

the adjacent matrix of the graph G = (V , E) and ⇣ 2 R
N represents the estimated capacity for

all the beam, which is given by (14) where no inter-beam interference is considered. Herein,

G = (V , E) is defined as follows. Each beam center is considered as a vertex v 2 V and any two

vertices are connected with an edge e 2 E if those vertices represent geographically adjacent

beams. To solve the problem, one needs to estimate the capacity ⇣ first and then calculate the

set B according to the adjacent matrix of the graph. In the last, the problem (PConv) could be

solved by advanced optimization toolboxes such as CVX[41]. After calculating the illumination

pattern X, one could exactly calculate the capacity for each beam.

APPENDIX B

CONVERGENCE OF MM PROCEDURE

The Hessian matrix of f
�
x|⌘[`], ⇢[`]

�
is given by

r
2f
�
x|⌘[`], ⇢[`]

�
=A+ aI� Diag

⇣
2⌘[`]1 , ..., 2⌘[`]

MN

⌘

+ 6⇢[`]��
⇢[`]

2
I

(34)

where Diag (⇤) represents the diagonal matrix operator, and � = Diag
⇣�

x1 �
1
2

�2
, ...,

�
xMN �

1
2

�2⌘.

Since the sequences {⇢[`]} and [⌘[`]]i =
P

`�1
k=0 ⇢

[k]

✓
x[k]
i

�

⇣
x[k]
i

⌘2
◆

are bounded, then 9a � a0

such that r2f
�
x|⌘[`], ⇢[`]

�
⌫ 0. So f

�
x|⌘[`], ⇢[`]

�
is convex. Additionally, the set Y is convex.

Therefore, the resulting stationary point of the problem is the global optimum point.
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I. INTRODUCTION

Satellite communications (SatCom) are widely acknowledged for their capability to offer

pervasive connectivity and reliable data transfer, utilizing high-altitude satellites to encompass

extensive geographic regions. Historically used for television broadcasting through single-beam

Geostationary (GEO) satellites, the technology has advanced significantly since the 2000s. The

evolution has led to multi-beam high-throughput satellites that operate in the higher frequency

ranges (i.e., Ku and Ka bands) and cater to the broadband market [1]. Nowadays, SatCom’s

capabilities to connect anyone, anywhere, and anytime are considered a key feature to extend

terrestrial 5G cellular connectivity to unreachable areas [2].

Current broadband satellite communication systems typically use a static beam configuration

where the coverage is evenly divided into hundreds of spot-beam areas. To avoid interfering

among beams, the operator schedules the active beams using an orthogonal frequency reuse

strategy. However, this method is frequency-inefficient, which has motivated the development of

more adaptable payload designs [3, 4].

To address this challenge, the concept of Beam-Hopping (BH)-enabled satellite communication

systems has been introduced [5]. Unlike traditional fixed-beam systems, BH systems only activate

a subset of spot beams within a designated period, known as "dwell time." These active beams can

be changed dynamically, following a beam illumination plan that responds to varying demands.

Beam-hopping offers numerous benefits, the most significant being the temporal flexibility it

provides in distributing capacity to different beams as needed. Additionally, activating fewer

beams at any given time requires fewer onboard Radio Frequency (RF) chains, which can reduce

spacecraft weight and size. Ultimately, this reduction may result in decreased launch costs.

BH satellite communication technology has reached a level of maturity, significantly bolstered

by industry support. This support has led to adaptations, such as the standardization of satellite

air interfaces, to accommodate BH synchronization needs [6, 7]. An example of this technology

in action is the Eutelsat Quantum satellite, which employs forward link BH. While the technical

capability for beam illumination and configuration exists, the effective management of these

functions remains an active area of research and development. This is mainly because crafting

an optimal beam time-activation plan and allocating power effectively is complex. Specifically,

it is challenging to properly allocate the limited satellite power across all active beams to meet

the dynamic demands while satisfying the satellite payload hardware limitations.
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SatCom systems should carefully manage energy consumption. Satellite payloads are equipped

with solar panels that convert solar energy into electricity, which powers wireless transmission

and other operations [8]. Given that these panels can only collect a limited amount of power,

it is crucial for these systems to address the issue of energy efficiency. Additionally, excessive

energy consumption can have adverse effects on the payload’s mass and lifespan [9]. As a

consequence, the minimization of transmit power has become a significant area of research for

general non-terrestrial communication platforms, e.g. [10].

In recent years, flexible resource allocation strategies for satellite communication systems

have attracted considerable attention. For instance, [11] offers a design and analysis of the beam

illumination pattern for BH systems, aiming to optimally match the traffic demands. In [12],

[13], and [14] BH is combined with interference mitigation techniques to enable the simultaneous

activation of adjacent beams, using the same spectral resources. Notably, [14] proposed to design

the illumination pattern by penalizing the activation of adjacent beams, with the aim of reducing

the usage of precoding techniques whenever possible. Other works, like [15], and [16], proposed

to design the illumination pattern via deep learning techniques. These works focus only on

exploring the flexibility in the time domain, which does not fully utilize the capabilities of

onboard resources. Power allocation for non-BH satellite systems has also been evaluated. In

[17], the authors propose allocating power based on traffic demands and channel conditions.

An energy-aware power allocation problem for non-BH systems is formulated in the work [9],

which aims to minimize both unmet system capacity and total radiated power. Both [17] and [9]

consider only the flexibility of onboard resources in the power domain. Although [18] proposed

jointly allocating power and frequency carriers to minimize the weighted objective of energy

consumption and frequency occupation, the proposed design does not fully utilize the precious

spectrum resources. The load coupling model, originally analyzed by [19], characterizes the

coupling relationships among the temporal occupation of beams. The model has been employed,

for instance, in [20], the work most closely related to ours, where the power and load of beams are

studied for cellular networks to minimize energy consumption. However, [20] does not consider

the constraint on the maximal number of simultaneously active beams, an issue that is addressed

in our work.

Based on the existing works, we consider the joint design of beam illumination patterns and

power allocation to optimize the energy efficiency of the BH satellite system, which has a limit

on the maximum number of simultaneously active beams. Intrinsically, the beam pattern and
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the corresponding power assignment are coupled, both of which contribute to the achievable

capacity and therefore influence the overall energy consumption. To the best of our knowledge,

this challenge has not been effectively addressed in the literature to date.

To address the challenge stated above, we propose a two-stage framework to solve the com-

binatorial nonconvex problem. In the first stage, utilizing the mean-field theory [21, 22], we

reinterpret the beam illumination patterns with beam activation probabilities, consequent to which

the corresponding power will be the average one for the whole time window. Accordingly,

the original problem is reformulated into a new one, where the average powers and activation

probabilities of the beams are the optimization variables. An iterative method is also proposed

to solve this problem optimally. In the second stage, the activation probabilities of the solution

obtained in the first stage are mapped into the discrete beam illumination patterns by solving a

binary quadratic programming problem. Our major contributions are summarized as follows:

• We propose a two-stage framework to jointly design power allocation and beam scheduling

for BH satellite systems. Within the framework, by utilizing the mean-field theory, a prob-

abilistic reformulation becomes available which paves the way for addressing the intrinsic

coupling between beam power and beam illumination pattern. Besides, for the reformulated

problem, we analyze the optimality conditions and develop an iterative method to yield a

globally optimal solution.

• We also develop a systematic mapping scheme that converts the probabilistic solution

obtained in the first stage into a deterministic one satisfying all constraints. To ensure

the practicality of the solution, beam hopping latency is also integrated into the scheme.

• Numerical simulation results validate the theoretical findings: i) the system consumes min-

imal energy when all available beams are active during the time window; ii) increasing the

maximal number of active beams could reduce energy consumption. Furthermore, given

that our mathematical model is based on the Shannon formula, we acknowledge a potential

performance loss due to coding modulation methods in real-world applications. To address

this concern, our study includes a method specifically designed to compensate for such

performance loss, ensuring the completeness and applicability of our approach in practical

scenarios.

The remainder of the paper is organized as follows. In section II, we present the system model

and formulate the energy minimization problem from a deterministic perspective. In section III,
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TABLE I: Glossary of notations

Notation Definition

B Available full bandwidth

K Maximal number of simultaneously active beams

M Total number of TSs within the time window

N Total number of beams

d Vector of demands in bps

d̂ Vector of demands in [number of TSs]

H The channel matrix

pn,t Transmit power of beam n at TS t

pn Average transmit power of beam n

p Vector of the average transmit power

P Penalty matrix

xn,t Beam activation indicator n at TS t

y Vector of consumed energy of beams

⇢ Vector of activation probability of beams

�T Duration of TS

�(·) Spectral radius of the matrix

�
2
T Power of thermal noise

g(⇢n) ⇢n(2
dn

B⇢n � 1)

Gi Diag(g(⇢i)), i = 0, 1, 2

⌧ Latency trade-off factor

✏ Demand compensation coefficient

dim(·) the dimension of the vector

b·c The minimal integer of the value

we reformulate the problem from a statistical perspective. Section IV, we focus on solving

the statistical problem, and we simply introduce the method to convert the statistical solution

to design the deterministic illumination pattern in Section V. In Section VI, we validate the

proposed framework with numerical simulations. The conclusion is made in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for the considered beam-hopping satellite

system and then formulate the problem of energy efficiency, which minimizes the total consumed

energy while satisfying both the limited onboard resources and on-ground user demands.
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A. System Model for Beam-Hopping Satellite

A bent-pipe multi-beam geostationary orbit (GEO) satellite system is considered for the

forward-link transmission. The system covers the area of service by N spot beams, each of

which reuses the same spectrum of the bandwidth B. The BH time window for the system is

composed of M consecutive time slots (TSs) with time-slot duration 4T . The considered system

configurations are compliant with the satellite DVB-S2(X) standard [23] air interface, where the

duration of the superframe [24] corresponds to the minimum switching time 4T defined above.

For such a system, we aim to design the beam illumination pattern, which assigns these N beams

over the M time slots within the time window.

Let H 2 CN⇥N be the channel matrix containing all the channel coefficients of the forward

link. In particular, the channel coefficient corresponding to the n-th satellite beam to the user k

is modeled following the approach in [25], and can be written as,

Hn,k =
q
GRx

k
GTx

n
(xk, yk)e

j�n,k/(4⇡
Dk

�
) (1)

where GRx

k
denotes the receive antenna gain of the user k; GTx

n
(xk, yk) denotes the transmit

antenna gain from the n-th satellite beam to the user k, which is located at the longitude xk and

latitude yk; �n,k is the phase component associated with the n-th satellite beam and the user k;

� denotes the wavelength of the carrier frequency band; Dk denotes the distance between the

satellite and the user k.

Note that our main focus is on beam-demand satisfaction, concentrating on beam scheduling

rather than ground user scheduling, which is beyond the scope of this work. Accordingly, a

super-user terminal is modeled, which essentially aggregates all user’s demands and is served by

one of the N beams. This abstraction is compliant with the unicast transmission mode typically

employed in the DVB-S2(X) air interface, where the multiplexing of users is done via Time-

Division Multiple Access (TDMA). Thus given this one-to-one mapping between the beam and

super-user, the index n interchangeably refers to both the satellite beam and super-user terminal.

We denote the traffic demand for beam n as dn with unit bps, and the vector of demands

of all beams as d = [d1, . . . , dN ]T . We denote the transmit power for beam n at TS t by

pn,t, 8n = 1, . . . , N, t = 1 . . . ,M . The activation of beam n at TS t is indicated by xn,t 2 {0, 1}

with xn,t = 1 if the beam is activated and xn,t = 0 otherwise.

The achievable rate of the terminal in beam n at TS t is

Rn[t] = B log2(1 +
pn,t|Hn,n|

2

P
i 6=n

pi,t|Hi,n|
2 + �2

T

), (2)
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where �2
T
= ⌧TRxB represents the thermal noise power with ⌧ being the Boltzmann constant,

and TRx being the clear sky noise temperature of the receiver [25].

Therefore, the demand constraint is

1

M

MX

t=1

Rn[t] � dn, 8n, (3)

which ensures that the average achievable rate within the M TSs is no less than the requested

traffic demand of the n-th beam.

B. Problem Formulation of Energy Minimization

We formulate a resource allocation problem to jointly optimize power allocation and beam

illumination to minimize the total consumed energy while satisfying uneven beam demands.

Therefore, the problem, denoted as P0, is formulated as

(P0) :minimize
pn,t

MX

t=1

NX

n=1

pn,t (4a)

subject to (C1) :
1

M

MX

t=1

Rn[t] � dn, 8n, (4b)

(C2) :
NX

n=1

xn,t  K, 8t, (4c)

(C3) : pn,t � 0, 8n, t, (4d)

(C4) : xn,t = sign(pn,t), 8n, t, (4e)

where Rn[t] is defined by Eq. (2), and sign(·) is the sign function. The problem is subject to

four constraints: C1, the demand constraint, C2, the maximum number of simultaneously active

beams, C3, the non-negativity of pn,t, and C4, the binarization of xn,t. Among these constraints,

C2 is incroporated. Due to the mass limit of the satellite payload, the maximum number of

simultaneously active beams should not exceed the number of digital RF chains, denoted as

K(K  N). The constraint is a key feature of BH-based SatCom systems, as it enables a

significant reduction in satellite mass. P0 is a non-convex mixed-integer programming problem,

which poses significant challenges in finding a solution.
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Fig. 1: The formulation and reformulation of the problem. (a) the original problem P0; (b) the

intermediate status of the problem conversion; (c) the reformulated problem P1.

III. PROBLEM REFORMULATION VIA MEAN FIELD THEORY

For a conventional approach to mixed integer programming problems, it first relaxes the

binary variable xn,t to be continuous and linearizes the demand constraint with respect to pn,t.

Subsequently, the variables are alternatively updated with iterations.

However, the variables of P0 are coupled, making this typical approach less suitable. Fur-

thermore, popular learning methods such as deep learning often require a large dataset for

model training. Given the aforementioned challenges, properly addressing the strong coupling

relationship between pn,t and xn,t is crucial for efficiently solving the problem P0. To achieve this,

we employ the Mean Field Theory (MFT) [21, 22] to decouple the power and beam activation

indicator.

In the mean-field method, the mutual influence between random variables is replaced by an

effective field, which acts independently on each random variable [21]. Considering that the

power variable pn,t serves dual functions — represents both the power value and potentially

indicating the status of the beam at a given instance of TS— these variables are mutually

influenced in the time domain via the demand constraint C1. To simplify the problem, we apply

the Mean Field Theory method, which replaces the power vector variable with its average power

across all beams. This is followed by replacing the indicator vector variable with its activation

probability. We summarize the reformulation progress graphically in Fig. 1.

Specifically, suppose that we have obtained the optimal solution to P0, denoted by (pn,t, xn,t), 8n, t.

We define pn and ⇢n as the average power and activation probability, respectively, over the
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entire time window for beam n across all beams. The variable ⇢n represents the probability

that beam n is activated during the time window of the optimal solution, and is defined as

⇢n =
PM

t=1 xn,t

M
2 (0, 1].

Accordingly, the total energy consumption can be reformulated as the total expected consumed

energy, ⇢T
p·4T , where ⇢ = [⇢1, . . . , ⇢N ]T and p = [p1, . . . , pN ]T . The number of simultaneously

active beams can be expressed as the expected number of active beams, ⇢T
1. Regarding the

demand constraint C1, it can be reformulated to ensure the expected capacity meets its demand

as follows.

⇢nB log2(1 +
pn|Hn,n|

2

P
i 6=n

⇢ipi|Hi,n|
2 + �2

T

) � dn, 8n. (5)

which can be further rewritten as

⇢n � fn(⇢,p) ,
dn

B log2(1 +
pn|Hn,n|2P

i 6=n ⇢ipi|Hi,n|2+�
2
T
)
, 8n. (6)

Therefore, P0 can be reformulated as

(P1) :minimize
⇢,p

⇢T
p (7a)

subject to (Ĉ1) : ⇢ ⌫ f(⇢,p), (7b)

(Ĉ2) : ⇢
T
1  K, (7c)

(Ĉ3) : p � 0, (7d)

(Ĉ4) : 0 � ⇢ � 1, (7e)

where f(⇢,p) = [f1(⇢,p), . . . , fN(⇢,p)]T . The curled inequality symbol ⌫ (and its strict form

�) is used to denote a generalized component-wise inequality between vectors. The vectors 0

and 1 are the ones with all elements being 0 and 1, respectively.

Note that the solution of P1 is in terms of activation probabilities of the N beams, which needs

to be converted into discrete illumination pattern. This conversion method will be developed in

Section V. In the next section, we will focus on solving P1.

IV. FIRST-STAGE: PROBABILISTIC BEAM HOPPING SOLUTION

In this section, our focus is on solving the non-convex problem P1. The conventional approach

might involve linearizing constraint Ĉ1 first and then updating the two variables through iterations

[18]. However, this approach often leads to performance loss due to the approximation error
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between the original and linearized versions and is typically time-consuming. In this work,

we propose a novel method that optimally solves the problem. Briefly, we first prove that the

fixed point satisfying ⇢ = f(⇢,p) is a necessary condition for the optimum of P1. Based

on this necessary condition, the optimal power can be expressed as a function of the optimal

activation probability. Consequently, the objective of the problem boils down to an inverse matrix

optimization problem, which we have further demonstrated is equivalent to a convex problem.

A. Necessary Condition for the Feasible Problem P1

According to [26], a fixed point of a function is a point that the function maps to itself, i.e.

x = 1 is a fixed point of the function f(x) = x2 because f(1) = 1. In nonlinear programming, the

characteristics of the fixed point can be utilized to devise iterative methods for finding solutions

[27]. The following theorem indicates that the solution to P1 is a fixed point.

Theorem 1: Given d,H, and K, the solution to the problem P1, if it exists, is the fixed point

of the equations: ⇢ = f(⇢,p).

Proof: The proof is in Appendix A.

Theorem 1 illustrates the coupling relationship between power and activation probability.

Intuitively, a change in demand for one beam can strongly affect the solutions of adjacent beams

and, consequently, the entire system. This observation validates the theorem and leads to the

following corollary.

Corollary 1: Denoting the relationship between the optimal activation probability ⇢ and the

optimal power p as p = f̂ (⇢), the function f̂(·) is a one-to-one mapping.

Proof: Theorem 1 states that the fixed point is the necessary condition of the solution to

the P1. Given the fixed point equation ⇢n = fn(⇢,p), 8n, we can derive the followings.

dn = ⇢nB log2(1 +
pn|Hn,n|

2

P
i 6=n

⇢ipi|Hi,n|
2 + �2

T

) (8a)

) pn = (2
dn
B⇢n � 1)(

X

i 6=n

⇢ipi
|Hi,n|

2

|Hn,n|
2
+

�2
T

|Hn,n|
2
) (8b)

) ⇢npn = ⇢n(2
dn
B⇢n � 1)(

X

i 6=n

⇢ipi
|Hi,n|

2

|Hn,n|
2
+

�2
T

|Hn,n|
2
) (8c)

) yn = g(⇢n)(
X

i 6=n

yiAi,n + bn) (8d)

where we denote matrix A with elements An,n = 0, and 8i 6= n,Ai,n = |Hi,n|2
|Hn,n|2 ; bn =

�
2
T

|Hn,n|2 ;

g(⇢n) = ⇢n(2
dn
B⇢n � 1); and yn = ⇢npn, representing the consumed energy of the n-th beam.
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According to (8d), we denote the vector of all beams’ consumed energies by y = [y1, . . . , yN ]
T

and establish its relationship with the vector ⇢ compactly as follows:

y = (I�GA)�1
Gb (9a)

) p = Diag(⇢�1)(I�GA)�1
Gb (9b)

where G = Diag(g(⇢)), and g(⇢) = [g(⇢1), . . . , g(⇢N)]T . Diag(x) denotes the diagonal matrix

with diagonal elements given by vector x, and I is the identity matrix. Finally, b = [b1, . . . , bN ]T .

Eq. (9b) indicates that the relationship between the optimal power and the activation probability

is a one-to-one mapping and thereby completes the proof.

Based on Eq. (9a), P1 is equivalent to

(P2) :minimize
⇢

1
T (I�G(⇢)A)�1

G(⇢)b (10a)

subject to (Ĉ2) : ⇢
T
1  K (10b)

(C̃3) : �(G(⇢)A) < 1 (10c)

(Ĉ4) : 0 � ⇢ � 1 (10d)

where G(⇢) = Diag(g(⇢)) is a function of ⇢ and will be denoted as G for simplicity. �(X)

denotes the spectral radius of the matrix X – the largest absolute eigenvalue of X.

The constraint C̃3 in P2 corresponds to the constraint Ĉ3 in P1. Note that 8⇢ � 0, there holds

G � 0. Additionally, b � 0,A � 0 for all times. According to Eq. (9b), given ⇢ � 0, the

positivity of p is equivalent to the positivity of the matrix (I�GA)�1 which is determined by

the spectral radius of the matrix GA. The following Theorem 2 provides a detailed explanation.

Theorem 2: Given d,H and K, a feasible positive solution of the Eq. (9b) exists if and only

if there exists a ⇢ such that the spectral radius of the matrix GA is less than 1, i.e. �(GA) < 1.

Proof: The proof is given by the [28, Theorem 1].

Theorem 2 establishes the necessary condition for the feasibility of the solution to P2.

B. Convexity Analysis of Problem P2

P2 involves matrix inverse and spectral radius, making it challenging to solve in general.

However, by analyzing and exploiting the special structures of the constraints and the objective
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function, we demonstrate that solving P2 is equivalent to solving a convex problem. This insight

paves the way for obtaining the global optimal solution to P1.

Lemma 1: Given B, d, the function g(z) = z(2
d
Bz �1) is monotonically decreasing and convex

in the domain z 2 (0,+1)

Proof: The proof is in Appendix B.

Lemma 2: Given H,d, the set Y = {⇢|�(GA)  1,0 � ⇢ � 1} is convex.

Proof: The proof is in Appendix C.

In the proof presented in Appendix C, we define the condition to determine whether the given

parameters H,d are reasonable. When given reasonable parameters, the set Y is non-empty.

1
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Fig. 2: The feasible zone for P3 is indicated by the yellow shading. By increasing the parameter

K from K1 to K2, the previously infeasible problem becomes feasible.

Theorem 3: The solution to P2 is equivalent to the solution to a convex problem, which is

given by

P3 : minimize
⇢2Ŷ

L(⇢) (11)

where Ŷ = Y \ {⇢|⇢T
1  K}, and

L(⇢) =

8
<

:
1
T (I�GA)�1

Gb ⇢ 2 Ŷ \ {⇢|�(GA) = 1}

+1 ⇢ 2 {⇢|�(GA) = 1}
(12)

Proof: The proof is in Appendix D.

Previously, we explored the problem theoretically. Next, we will graphically illustrate the

potential characteristics of the optimum, providing the basis for mapping the statistical solution

to the deterministic one in Section V.
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Lemma 3: Given reasonable d,H, i.e. Y 6= ;, the feasibility of P3 depends on the parameter

K, which represents the maximum number of active beams. If K is small, the problem may be

infeasible. However, increasing K may render an initially infeasible problem feasible.

Proof: The feasible set of P3 is the intersection of two convex sets, i.e., Ŷ = Y\{⇢|⇢T
1 

K}, thus it is convex.

According to Lemma 2, given reasonable H,d, the set Y is convex and non-empty. Therefore,

whether the set Ŷ is empty is determined by the parameter K. Additionally, for 8⇢1 ⌫ ⇢2, it

holds that G1A  G2A (The symbol � is defined in Appendix C). Consequently, based on [29,

Corollary 1.5 p-27], we have �(G1A)  �(G2A).

Based on these two characteristics, we illustrate how K affects the set Ŷ using Fig. 2. As

seen in the figure, the left side displays the N dimensions of the variable ⇢ and the right side

illustrates the slice of set Ŷ cut by the plane determined by any two dimensions of ⇢, i.e.

⇢iO⇢j, 8i 6= j. Given reasonable d,H, the zone EAQBCD is non-empty, which denotes the

slice of the set Y . The dashed curve EAQBC denotes the boundary on which �(GA) = 1. The

line AB denotes the boundary on which ⇢T
1 = K. The yellow shadow with its boundaries, i.e.

AQBP , is the slice of the set Ŷ , which denotes the slice of the feasible zone cut.

When K is small, i.e. K = K1, the zone AQBP is ;, denoting the infeasibility of P3.

However, by increasing K to K2, the line AB will move parallel to the direction of vector ~OD,

which would result in the feasibility of the problem. Thereby, we complete the proof.

Lemma 4: The total consumed energy L(⇢) is monotonically decreasing with respect to the

variable ⇢ 2 Ŷ .

Proof: The proof is in Appendix E.

Theorem 4: The system achieves minimal energy consumption when all available beams are

active within the time window; furthermore, increasing the maximum number of simultaneously

active beams further reduces the energy consumed.

Proof: The proof is in Appendix F.

Theorem 4 demonstrates that the solution to P3, if it exists, will be located on the boundary

where ⇢T
1 = K. This theorem also suggests that increasing the maximum number of active

beams reduces energy consumption. It is important to note that there is an inherent constraint on

K, which must not exceed the total number of beams due to the satellite hardware constraints.

Choosing an appropriate value for K is a complex task that involves considerations such as size,
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weight, power (SWaP), and the distribution of traffic demands. However, these considerations

are beyond the scope of this paper.

C. Iterative Optimization of Problem P3

For solving P3, we will start by rewriting the spectral radius constraint using its equivalent

expression. Then, we will develop a method based on Successive Convex Approximation (SCA)

[30] to tackle the resulting problem.

In general, the SCA method addresses a complicated problem by iteratively approximating the

function value. When the original problem is convex, SCA can find the global optimum [30].

The objective function can be expressed as

L(⇢) = Tr{(I�GA)�1
GB} (13)

where B = b · 1
T , and Tr · represents the trace of the matrix. Given ⇢0 and subsequently

defining G0 = Diag(g(⇢0)), we approximate inverse matrix (I � GA)�1 using its first-order

Taylor expansion with respect to the variable G [31]. This allows us to approximate the total

consumed energy as follows:

L(⇢|⇢0) ⇡ Tr{(I�G0A)�1

| {z }
T

GB+ (I�G0A)�1
A(I�G0A)�1

GB(G�G0)} (14a)

= g
T (⇢) Diag(1T

TATB)| {z }
⌦

g(⇢) + [1T
TB� 1

T
TATG0B]| {z }

b̂T

g(⇢) = g
T (⇢)⌦g(⇢) + g

T (⇢)b̂

(14b)

Since ⌦ is a diagonal matrix of positive elements, the function y(z) = z
T
⌦z is convex and

non-decreasing when z � 0. As the function g(⇢) is convex, and following the composition rules

outlined in [32], the composite function L(⇢|⇢0) with respect to the variable ⇢ is also convex.

Furthermore, according to [33], �(X)  t is equivalent to �(X)  t, �(�X)  t, which is

further equivalent to 0

@ tI X

X
T tI

1

A ⌫ 0. (15)

By substituting the equivalent expression into the constraint �(GA)  1 in P3, we obtain the

subproblem to be solved at each SCA iteration as follows:
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(P4) :minimize
⇢

L(⇢|⇢0) (16a)

subject to (Ĉ2) : ⇢
T
1  K, (16b)

(C̃3) :

0

@ I Diag(g(⇢))A

A
TDiag(g(⇢)) I

1

A ⌫ 0, (16c)

(C4) : 0 � ⇢ � 1, (16d)

which is convex and can be efficiently solved using CVX [34]. An overview of the proposed

approach for solving P3 is provided in Algorithm 1.

D. Computational Complexity

The overall computational complexity of Algorithm 1 scales linearly with the number of outer

loop iterations. Given ⇢0, the non-symmetric exponential cone optimization of P4 is solved using

CVX [35] with an advanced solver, which employs a primal-dual interior point method with a

worst-case computational complexity of O((MN)3) [36, 37].

Algorithm 1 INVERSE MATRIX OPTIMIZATION

1: Initialization ⇢0 = 1, K,A,d,H, k = 0

2: repeat

3: if �(GkA) < 1 then

4: Set k = k + 1, Update ⌦, b̂

5: Solve ⇢
k+1 = arg minimize

⇢2Ŷ
L(⇢|⇢

k
)

6: else

7: Return: Infeasible

8: end if

9: until k⇢k+1�⇢kk2
dim(⇢k)

 10�3

V. SECOND-STAGE: STATISTIC-TO-DETERMINISTIC SOLUTION MAPPING

In this section, we first introduce the method to convert the acquired activation probability

into discrete demands. Subsequently, we design the illumination pattern, where beam hopping

latency is also considered.
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A. Conversion to Discrete Demands

Recall that in the previous section, we obtained the optimal beam activation probability and

power. To implement this resource allocation solution in a satellite system, we still need to

convert them into deterministic illumination operations. This involves selecting time slots for

beam activation and assigning the corresponding power.

We present a rounding scheme that converts the continuous probability into discrete demand

in the number of TS. According to Theorem 4, the optimum is located on the boundary where

⇢T
1 = K. Therefore, the rounding algorithm aims to find an integer point, i.e. the number of

selected active TS for all beams, that is not only close to M⇢ but also sums up to MK. The

rounding scheme is detailed in the Algorithm 2.

Algorithm 2 ROUNDING

1: Input: ⇢?, M , K

2: The lower bound of the demands d̂ = b⇢?
·Mc

3: The residual o = ⇢?
·M � d̂

4: Sort the residual o in descending order and find the index of its first KM � 1
T
d̂ elements.

5: Modify the demands d̂ by adding 1 to the selected indexes of beams.

Recall that the relationship between the optimal power and the corresponding activation

probability is a one-to-one mapping. Consequently, by applying the rounding algorithm, the

power also needs to be modified given that the beam activation probability changes. Specifically,

the modification is expressed as

⇢̂ =
d̂

M
, p̂ = Diag(⇢̂�1)(I� ĜA)�1

Ĝb (17)

where d̂ is the vector of converted discrete demands and Ĝ = Diag(g(⇢̂)).

B. Mapping to Deterministic Illumination Pattern

With the required power and discrete demand for all beams, the next step is to design the

illumination pattern. This involves choosing specific TS from the entire time window to meet

the required number of TS for each beam and assigning the necessary power to them. In a prior

study [38], a heuristic method was proposed to randomly assign the demands while satisfying

the constraints.
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However, as discussed in Section III, the problem reformulation is based on the assumption

that we have obtained the optimal solution. In other words, the activation probability denotes

the probability of a beam being activated during the BH window of the optimal solution, which

minimizes consumed energy while meeting the constraints. We follow the optimal assumption to

design the deterministic solution xn,t, 8n, t. Given (p̂, ⇢̂), the consumed energy is determinate.

In this context, we propose focusing on demand-matching performance while satisfying the

constraint of a maximum number of active beams. Specifically, our proposed method penalizes

the activation of any two beams simultaneously, aiming to minimize the total penalty while

adhering to the constraints.

The penalty P̂ 2 RN⇥N defines the relative accumulated interference from one beam to the

other. Specifically, the interference from the i-th beam to the j-th beam is defined as

P̂i,j =

RR
Sj
|Hi,k|

2 pidxk dyk
RR

Sj
|Hj,k|

2 pjdxk dyk
(18)

where (xk, yk) represents the longitude and latitude of user k which is in the beam j; and Sj

stands for the coverage of beam j which is defined by the beam contour at �3dB from the

maximum gain.

Moreover, the operator must also take into account the minimization of the beam-hopping

latency when designing the illumination pattern in practice. In the context of the considered

system, beam-hopping latency of the beam refers to the number of times the beam switches

from on to off and from off to on in a given time window. Given the required number of

active time slots for the beam within a specific time window, latency increases more when the

frequency of the switch turning on and off is higher. This increase in latency is due to the

multiple operations required across various layers, including but not limited to the physical and

MAC layers, which result in additional time consumption.

Based on the above illustration, the goal to avoid the latency increase is equivalent to reducing

the total number of switching times of the designed beam pattern, which can be expressed as
NX

n=1

M�1X

t=1

k xn,t � xn,t+1 k
2 (19a)

=
NX

n=1

{2d̂n � x2
n,1 � x2

n,M
�

M�1X

t=1

2xn,txn,t+1} (19b)

=� x
T
P̃x+ Const (19c)
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where xt = [x1,t, . . . , xN,t]T is the binary vector indicating the status of all beams at TS t, and

x = [xT

1 , . . . ,x
T

M
]T . The matrix P̃ is characterized as a block tridiagonal matrix. When M = 2

and M � 3, its expressions can be given respectively by

P̃ =

2

4IN IN

IN IN

3

5

2N⇥2N

(20a)

P̃ =

2

666666666664

IN IN 0N . . . 0N 0N

IN 0N IN . . . 0N 0N

0N IN 0N

. . . ...
...

...
... . . . . . . IN 0N

0N 0N . . . IN 0N IN

0N 0N . . . 0N IN IN

3

777777777775

MN⇥MN

(20b)

where IN signifies the identity matrix and 0N represents the zero matrix, both of which are of

dimensions N ⇥N ."

Therefore, the mapping problem is defined as follows:

(Pm) :minimize
x

x
T (P� ◆P̃)x (21a)

subject to (C5) : Etx � K · 1M (21b)

(C6) : Ebx = d̂ (21c)

(C7) : x 2 {0, 1}MN (21d)

where P = Diag(P̂, . . . , P̂) 2 RMN⇥MN is the block diagonal penalty matrix and ◆ is the

trade-off factor between the interference penalty and the operation cost.

The matrix Et = IM ⌦ 1
T

N
serves as the selective matrix, with each row selecting all the

active beams at TS t, where ⌦ denotes the Kronecker product; and 1N denotes a column vector

of dimension N with all elements equal to 1. Additionally, Eb = 1
T

M
⌦ IN is another selective

matrix, with each row selecting all the active TS for the beam. Lastly, d̂ is the converted discrete

demands in terms of the number of TS.

Pm is a binary quadratic programming (BQP) task, efficiently addressed using the multiplier

penalty and majorization-minimization (MPMM) method proposed in our previous work [14].

In summary, Fig. 3 illustrates the procedures of the proposed framework. Given the request

demands d, the framework provides the designed illumination pattern x and the corresponding
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Fig. 3: The proposed framework.

power of beams p̂ such that the provided capacity c matches the demands as closely as possible.

The preprocessing demand compensation part will be explained in Section VI-C.

VI. NUMERICAL RESULTS

In this section, we conduct various simulations to evaluate the proposed framework. First, we

demonstrate the influence of system parameters on the final performance. Specifically, we show

the convergence of the proposed solving method and validate the theoretical findings. Second, the

ideal capacity given by the Shannon formula [39] is undermined in practical implementations,

we propose a preprocessing scheme to compensate in advance for the difference between the

ideal and practical capacities. Third, we analyze the impact of different latency trade-off factors

on system-level performance. Lastly, to assess the performance of the proposed framework,

we compare it with state-of-the-art alternatives in terms of energy consumption and demand-

matching performance, also providing computational time complexity.

A. Simulation Setup

The parameter settings of the GEO satellite are summarized in TABLE II. The traffic demands

of all beams are randomly generated and follow a uniform distribution between 400r and 1500r

(Mbps), that is, 400r  dn  1500r, 8n. Herein r stands for the demand density factor, selected

from the set {0.1, 0.2, 0.3, 0.4, 0.5}. For each selected r, 50 demand instances are generated for

testing. A single user in the beam center is assumed. To the best of our knowledge, the method

described in [14] represents the state-of-the-art and is thus chosen as the baseline. For the



20

TABLE II: Summary of System Parameters

Satellite orbit 13�E (GEO)

Additional payload loss 2 dB

Number of virtual beams (N ) 67

Beam radiation pattern (GTx
n (xk, yk) e

j�n,k ) Provided by ESA

Downlink carrier frequency 19.5 GHz

User link bandwidth, (B) 500 MHz

Roll-off factor 20%

Temperature 50 K

Number of TSs (M ) 20

1 2 3 4 5 6

Iteration
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Fig. 4: The convergence of the proposed method. The maximal number of simultaneously active

beams K = 26, and consumed energy is calculated by 10 log 10(⇢T
p).

baseline, we set the power of each beam as 60 W with 3 dB output back-off (OBO). 1 Unless

stated otherwise, all the parameter settings are applied to simulations.

1The first step of the baseline is to convert the demands in bps into demands in the number of time slots by approximation,

within which the expected interference from adjacent beams will be omitted because of the use of precoding. Since there is no

precoding in this paper, we would not take this part into account when conducting approximation in the baseline.
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B. Performance of the Proposed Method

1) Convergence of Algorithm 1: Fig. 4 shows the convergence of the proposed Inverse Matrix

Optimization Algorithm 1 at different demand densities. As observed, the algorithm converges

to the optimum within approximately two to three iterations across all demand densities. We

set the initial point to ⇢0 = 1, representing the largest value of ⇢, which results in the minimal

objective value and the spectral radius of the matrix. However, this initial point falls outside the

feasible zone unless K = N . Consequently, the consumed energy initially increases due to the

objective function’s monotonically decreasing nature.

2) Impact of the maximum number of simultaneously active beams: TABLE III and IV

illustrate the influence of the maximum number of simultaneously active beams, denoted as

K, on the total consumed energy and the corresponding optimal spectral radius of the matrix

GA, respectively.

The results yield the following findings and corresponding analysis: As shown in TABLE III,

the total consumed energy decreases with an increase in the maximum number of simultaneously

active beams across all demand densities. This observation validates Theorem 4. Furthermore,

we confirm Lemma 3. Specifically, P3 becomes feasible when the value of K surpasses a certain

threshold. For instance, at a demand density of r = 0.4, P3 is infeasible with the initially set

K, but becomes feasible when K is increased to 20. Lastly, comparing TABLE III with TABLE

IV, we find that energy consumption has a positive correlation with the spectral radius of the

matrix.

3) Correlation among Parameters Density Distribution: We define the parameter density

distribution as the normalized distribution of the parameter of the beam across all beams. Fig.

5 intuitively demonstrates the correlation among the density distribution of parameters such as

demands, power, activation probability, and consumed energy.

Initially, the given demands are decomposed into power and activation probability with the

proposed framework. Subsequently, the consumed energy can be calculated by multiplying the

power by the activation probability. As expected, the resulting energy density distribution has

great similarity with the given demands density distribution, which validates our proposed

framework. Surprisingly, we also find that the probability density distribution has a positive

correlation with that of the demands, which suggests an efficient heuristic approach to allocate

the limited maximal number of simultaneously active beams.
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TABLE III: Influence of K on energy

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5

K = 10 14.89 24.43 NaN NaN NaN

K = 15 13.69 20.34 27.46 NaN NaN

K = 20 13.12 18.77 23.43 39.74 NaN

K = 25 12.80 17.91 21.71 27.87 NaN

K = 30 12.58 17.37 20.72 25.34 30.80

K = 35 12.43 17.00 20.07 23.96 27.55

K = 40 12.32 16.73 19.60 23.07 25.93

K = 45 12.23 16.52 19.25 22.44 24.90

K = 50 12.16 16.36 19.00 21.97 24.21

1 NaN represents that there is no optimal solution in the case.
2 The energy is given by 10 log 10(⇢T

p)

TABLE IV: Influence of K on spectral radius

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5

K = 10 0.097 0.477 NaN NaN NaN

K = 15 0.075 0.265 0.644 NaN NaN

K = 20 0.066 0.201 0.417 0.970 NaN

K = 25 0.062 0.171 0.326 0.669 NaN

K = 30 0.059 0.155 0.278 0.530 0.801

K = 35 0.057 0.144 0.249 0.452 0.655

K = 40 0.056 0.136 0.230 0.402 0.567

K = 45 0.055 0.131 0.216 0.369 0.511

K = 50 0.054 0.128 0.207 0.346 0.474

1 NaN represents that there is no optimal solution in the case.
2 The spectral radius is �(GA) of the optimal solution.

C. Demand Precompensation

As illustrated in Fig. 3, the proposed two-stage framework aims to design power p̂ and

illumination pattern x for the satellite communication system such that the satellite’s capacities

(outputs, c) for the ground users match correspondingly the required traffic demands (inputs, d)

of these users. In the first stage of the proposed framework, the formulated problem is conditioned

on the Shannon Formula, which indicates that the capacity y and the SINR (x) are related by

y = log2(1 + x) as shown in the blue curve in Fig. 6(a).
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Fig. 5: Density distribution of parameters of an instance. The demand density is at r = 0.3.

However, in practice, the operator modulates the signal based on the range of the SINR follow-

ing the DVB-S2X standard [23] when transmitting the information. Due to these modulations,

there is a gap between the Shannon capacity and the DVB-S2X actual output, as seen clearly in

Fig. 6(a). Taking a step further, we plot the ratio of DVB-S2X output to Shannon capacity along

with SINR, which is the blue curve in Fig. 6(b). It is observed that the information transmission

can be conducted well only when the SINR exceeds a particular level. Specifically, when the

SINR exceeds 5 dB, the observed ratio surpasses 0.8. However, as long as the ratio is not 1,

there is always a transmission loss systematically.

To compensate for the gap, a straightforward approach is to increase the input demands.

This adjustment can be expressed as d̃ = d/✏, where ✏ is the chosen compensation coefficient.

With a smaller coefficient, the required demands become higher, resulting in increased energy

consumption.

For performance comparison of energy consumption and demand-matching, we choose three

different coefficients. The performance metric of energy ratio is defined as

ER1 =
⇢?

✏

T
p
?

✏

⇢?

1
T
p
?

1

(22)
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Fig. 6: The comparison between Shannon and DVB-S2X standard in terms of spectral efficiency.

(a) the spectral efficiency of DVB-S2X standard and Shannon capacity; (b) the ratio of DVB-

S2X standard output to Shannon capacity.
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Fig. 7: Performance comparison with different compensation coefficients for the experiment on

50 instance with r = 0.3 and the value of K decided via the baseline [14]. (a) energy consumption

performance; (b) demand matching performance.

where ⇢?

1 and p
?

1 are the optimal solutions to P3; ⇢?

✏
and p

?

✏
are the compensated ones with

the parameter ✏. The performance metric of demand matching is illustrated by the cumulative

distribution function (CDF) of the ratio of the provided capacity to the required demand (C/D)

of the beam.

In Fig. 7(a), the performance of the energy ratio is provided. It is observed that the proposed

system would necessitate approximately 2.2 times the energy of the ideal system when ✏ = 0.80,
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whereas it is around 1.8 times when ✏ = 0.84.

Fig. 7(b) demonstrates demand-matching performance with different compensation coeffi-

cients. The red dashed line indicates the ideal situation where the provided capacity perfectly

matches the demand for all beams. It is observed that when ✏ = 0.80, the demands of almost all

beams are satisfied. However, with ✏ = 0.84, more than 10% of the beams remain unsatisfied.

Additionally, at ✏ = 0.82, less than 5% of the beams are unsatisfied, with the satisfaction ratio

ranging between 0.95 and 1. Based on the performance metrics shown in Fig. 7, we conclude

that the selection of ✏ represents a trade-off between energy consumption and demand-matching

performance. For all subsequent simulations, we will use ✏ = 0.82.

D. Influence on Latency Trade-off Factor

Fig. 8 demonstrates the influence of the trade-off factor ◆ on the BH pattern design. Fig.

8(a) examines the impact of three factors on total latency at a demand density r = 0.3 across

50 instances. It is shown a significant reduction in latency when the trade-off factor exceeds

0. Moreover, as expected, the larger the factor, the lower the latency. Fig. 8(b) highlights the

corresponding demand-matching performance. It is evident that, despite a latency penalty, all

three curves of the demand-matching ratio fall within the range of 0.95 and 1.15, demonstrating

the superior demand-matching performance of the proposed method. Additionally, as expected,

the curve without latency penalties outperforms the latency-penalized curves. Specifically, fewer

than 3% of the beams represented by the non-latency-penalized curve fail to meet the criteria,

compared to over 6% of the beams depicted by the latency-penalized curve.

E. Designed Illumination Pattern

Fig. 9 shows an example of an illumination pattern designed by the proposed method at

a particular demand instance obtained by r = 0.3. In Fig. 9(a), the white block refers to

the corresponding active beams while the dark ones are passive. Moreover, the beam pattern

corresponding to the first TS of the illumination pattern is illustrated in Fig. 9(b), where the

green circle refers to the illuminated spot-beam.
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Fig. 8: The influence of trade-off factor on the performance. The demand density is at r = 0.3.

(a) the total latency per instance; (b) the demand matching ratio per beam.
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Fig. 9: The designed illumination pattern. (a) illumination pattern; (b) the specific beam pattern

at one TS

F. Influence of Length of Time Window

The influence of the length of time window on the performance is also provided. We define

the energy consumption performance metric as

ER2 =
⇢̂T

p̂

⇢?Tp?
(23)

where ⇢? and p
? denotes the optimal solution to P3, and ⇢̂ and p̂ are the modified solutions

obtained after rounding, defined by Eq. (17).
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Fig. 10: The influence of M on the performance for the experiments on 50 instances with r = 0.3,

K = 21 and ✏ = 0.82. (a) the energy consumption ratio; (b) the demand matching

In Fig. 10(a), we can find that the higher the number of time slots (M ) in the time window,

the closer the distance between the approximated solution and the optimum. For instance, when

M is small, i.e. M = 10, the total consumed energy increases by a maximum of 8% compared

to the optimum. However, when M exceeds 20, the extra required energy stabilizes at less than

1.5% of the optimum. Notably, this amount drops to less than 0.5% when M exceeds 40. Fig.

10(b) illustrates the demand-matching performance. As observed in the figure, almost 10% of

beams are not satisfied when M = 10, but more than 97% of beams are satisfied when M

exceeds 20. Furthermore, the higher the M is, the better the demand-matching performance.

G. Comparison with the Baseline on Energy Efficiency and Demand Matching

Fig. 11 demonstrates the performance comparison with the baseline on energy consumption

and demand matching across three different demand densities. The performance metric of energy

consumption is ER2 defined by Eq. (23) and the demand matching is by illustrating the CDF

of the ratio of the provided capacity to the required demand of the beam. To ensure a fair

comparison, both methods are constrained by the same value of K, determined by the method

in baseline.

The left-hand side of the figures depicts the energy consumption performance. It is evident

that the baseline method incurs significantly higher energy costs in all instances, amounting to

approximately 2.5 times, 1.5 times, and 1.2 times the energy consumed by the proposed frame-

work at demand densities r = 0.1, 0.3, 0.5, respectively. The right-hand side figures illustrate

the demand-matching performance. Although the baseline successfully fulfills the requirements
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Fig. 11: The performance comparison between the proposed method with the baseline.

for nearly all beams, it tends to exceed the necessary capacity. In contrast, the proposed method

demonstrates greater stability in its performance. The demand-matching ratio generally falls

within the range of 0.95 to 1.1 across all demand densities.
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Fig. 12: The relative time-consumption comparison.

H. Comparison with Baseline on Computational Complexity

Fig. 12 presents the time consumption of the proposed framework relative to the baseline

at the different number of variables. The y-axis value is the ratio of the time consumption

of the proposed framework to that of the baseline, which is averaged over 50 instances at

r = 0.3, M = 20. The number of variables is MN , where N 2 {10, 20, 30, 40, 50, 60, 67} is the

number of beams and M is the number of TS in the time window. The convergence conditions

of the iterative algorithms are given by kxk+1�xkk2
dim(xk)

 10�3, where dim(x) denotes the dimension

of the vector x.

We also provide Table V, which compares the system performances of the proposed framework

and the baseline. The Jain’s Fairness Index is used to measure the satisfaction coverage of the

users’ demands and is defined as f(y) = (
P

i yi)
2

dim(y)
P

i y
2
i )

, where the merit function yi =
ci
di

is the ratio

of the provided capacity to the request traffic demand of the beam [40]. The higher the index

is, the better the scheme of the resource allocation would be. In addition, statistical parameters

for the energy consumption ratio of the proposed framework to that of the baseline across 50

instances are also provided. Based on the results, we can see that, although the running time

of the proposed framework is around 1.3 times that of the baseline, the system gets a notable

performance improvement. Specifically, the proposed solution consumes only 65% of the energy
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by the baseline while still providing slightly better demand-matching performance.

TABLE V: Performance comparison on resource allocation fairness and total consumed

energy

Number of Variables 200 400 600 800 1000 1200 1340

Jain’s Fairness Index
Proposed 0.9994 0.9992 0.9992 0.9992 0.9991 0.9991 0.9990

Baseline 0.9898 0.9904 0.9909 0.9920 0.9925 0.9930 0.9922

Consumed Energy

Mean 0.5119 0.6333 0.6159 0.6444 0.6647 0.6739 0.6766

Min 0.3744 0.4839 0.5295 0.5608 0.5730 0.6125 0.6073

Max 0.7931 0.8026 0.7801 0.7535 0.7564 0.7602 0.7583

a "Consumed Energy" denotes the ratio of energy consumption of the proposed framework to that of the baseline.

VII. CONCLUSION

In this paper, we propose a novel two-stage framework for optimizing energy consumption

through the joint design of power and time slot allocation. The framework is designed to achieve

optimal performance by addressing various challenges. In the first stage, we utilize mean-field

theory to extract the activation probability and reformulate the mathematical model into an

inverse matrix optimization problem. This reformulation enables us to convert the problem into

a convex form, which has been thoughtfully analyzed and solved efficiently using a proposed

iterative method. In the second stage, we employ the MPMM method to map the activation

probability into the illumination pattern. Additionally, we introduce a compensation method to

mitigate the performance loss resulting from the discrepancy between practical adaptive coding

modulation and the ideal Shannon formula. Overall, this step yields a deterministic and practical

solution for the considered beam-hopping satellite system. To validate our theoretical findings,

we conduct numerical simulations. The results demonstrate that our proposed method surpasses

the benchmark in terms of energy consumption and demand-matching performance.

APPENDIX A

Proof: Given d,H, and K, assume that the optimal solution to P1 is (⇢?,p?). Consequently,

this solution satisfies the demand constraint Ĉ2.

Suppose (⇢?,p?) is not the fixed point, taking into account that it is the solution to the

problem into account, then there 9n such that ⇢?
n
> fn(⇢?,p?) and ⇢?

i
� fi(⇢?,p?), 8i 6= n.
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Consequently, there exists another point (⇢̂,p?) such that ⇢̂n = fn(⇢?,p?) and ⇢̂i = ⇢?
i
, 8i 6= n.

Subsequently, according to the definition at Eq. (6), there would have ⇢̂i > fi(⇢̂,p), 8i 6= n,

which proves that it is the feasible solution to the problem. Moreover, it consumes less energy

than the supposed optimal solution, which contradicts the optimal assumption. Thus the optimal

solution to P1 should be the fixed point of the equations.

APPENDIX B

Proof: The first-order and second-order derivatives of the function g(z) are given by g
0
(z) =

2
d
Bz (1� d ln 2

Bz
)�1 and g

00
(z) = 1

z3
(d ln 2)2

B2 2
d
Bz respectively. There always holds that g00

(z) > 0, 8z >

0, so the first-order derivative of the function is monotonically increasing on the zone (0,+1).

Taking g
0
(+1) = 0 into account, we would have g

0
(z) < 0, 8z > 0 and thereby completes the

proof.

APPENDIX C

Proof: We define the given parameters are reasonable if the minimal spectral radius of

the matrix is no greater than 1. If the condition is not met, the parameters are irreasonable.

When given irreasonable parameters H,d, the set is empty, i.e. Y = ;, thus it is convex. In the

following, we will first give the condition to check if the given parameters are reasonable, and

then prove the convexity of the set when given reasonable parameters.

Firstly, we define A � B if Ai,j � Bi,j , 8i, j, and A > B if A � B, A 6= B. According

to [29, Corollary 1.5 on p.27], given matrix A,B, if A > B > 0, there would have �(A) >

�(B), where 0 is the matrix all of whose elements are 0. Moreover, based on the Lemma 4,

the function g(z) is monotonically decreasing, thus the minimal spectral radius of the matrix

GA = Diag(g(⇢))A is at the point ⇢ = 1 as 1 ⌫ ⇢ 2 Y . According to the previous definition,

the condition is to check if the spectral radius of the matrix Diag(g(1))A is less than 1.

Secondly, when given reasonable parameters, the set Y is non-empty. Suppose ⇢1,⇢2 2 Y ,

then there have �(G1A)  1, �(G2A)  1, where Gi = Diag(g(⇢
i
)), i = 1, 2.

Assume that ⇢ = ✓⇢1 + (1� ✓)⇢2, 8 ✓ 2 [0 1]. According to [41, Remark 1.3], if the function

g(z) is log-convex, there would have �(GA)  �(G1A)✓ ·�(G2A)(1�✓)
 1, which proves that

the convexity of the set is conditioned on the log-convex of the function g(z). In the following,

we will prove the log-convex of the function g(z).
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According to [35], that a function is log-convex is equivalent to the positivity of the function

h(z) = g(z) · g(z)
00
� (g(z)

0
)2. The function h(z) and its first-order derivative can be given by

h(z) = (t2 � t)m
2

z2
� [t(1�m)� 1]2 and h

0
(z) = m

2

z3
{2t2m(z2 � 1) + t(m� 4t) + z2(2t� 2t2)}

respectively, where t = 2
d
Bz ,m = d ln 2

Bz
. Considering that there would have (z2 � 1)  0, (m �

4t) < 0, (2t � 2t2) < 0, 8 0 < z  1, subsequently h
0
(z) < 0, which proves that the function

h(z) is strictly decreasing. Taking into account that h(1) = 0, thus 8z > 0, h(z) > 0. According

to [35], the function g(z) is log convex, which thereby completes the proof.

APPENDIX D

Proof: According to Lemma 2, the set Ŷ is the intersection of two convex sets, thus it is

convex [35]. In the following, we will first prove the convexity of P3 and then demonstrate that

the solutions to P2 and P3 are equivalent.

The total derivatives of the objective function L(⇢) is given by

dL(⇢) = Tr{d[(I�GA)�1]GB+ (I�GA)�1d[G]B} (24a)

= Tr{(A(I�GA)�1
GB+B)((I�GA)�1

| {z }
Z

d[G]} (24b)

where B = b · 1
T .

Note that G = Diag(g(⇢)) is a diagonal matrix, thus

d[G] = Diag([g
0
(⇢1)d⇢1, . . . , g

0
(⇢N)d⇢N ]

T ) (25)

According to [42] and Eq. (24b, 25), the first-order derivative of the objective L(⇢) is

@L

@⇢i
= Zi,ig

0
(⇢i), 8i (26)

Subsequently the Hessian matrix of the objective is given by @L
2

@⇢i@⇢j
=

8
<

:
0 i 6= j

Zi,ig
00
(⇢i) i = j

,

which is a diagonal matrix.

In the following, we will prove the positive of the elements in the diagonal of the matrix. First,

according to Lemma 1, we have g
00
(⇢i) > 0, 8⇢i > 0. Second, when ⇢ 2 Ŷ \ {⇢|�(GA) = 1},

there have (I � GA)�1
� 0 because of �(GA) < 1. Then, according to the definition of Z

in (24b), there have Zi,i > 0 8i. Taking these two parts into account, the Hessian matrix of
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the objective is positive definite at the domain ⇢ 2 Ŷ \ {⇢|�(GA) = 1}. In addition, when

⇢ 2 {⇢|�(GA) = 1}, there would have lim�(GA)!1 L(⇢) = +1. To summarize, P3 is convex.

The difference between P2 and P3 is that the feasible set of P3 contains the boundary points,

i.e. ⇢ 2 {⇢|�(GA) = 1}[{0}, while P2 does not. However, the optimum would not be located

at these boundaries as lim�(GA)!1 L(⇢) = +1. Thereby we complete the proof.

APPENDIX E

Proof: According to the Appendix D , the first order derivative of L(⇢) is @L

@⇢i
= Zi,ig

0
(⇢i),

where Z = (A(I�GA)�1
GB+B)((I�GA)�1. For 8⇢ 2 Ŷ , there would have �(GA)  1,

and thus Zi,i > 0, 8i. In addition, according to Lemma 1, g0
(z) < 0, 8z > 0. To sum up, the

first-order derivative of the objective is negative, so the total consumed energy is monotonically

decreasing within the feasible zone.

APPENDIX F

Proof: Suppose ⇢?, the solution to P3, is not on the boundary, i.e. (⇢?)T1 < K. Conse-

quently, without losing generality, we can always construct a point ⇢+ in the following manner:

given any index n, the set ⇢+
j
= ⇢?

j
, for all j 6= n, and ⇢+

n
> ⇢?

n
. This configuration also satisfies

the condition (⇢+)T1 = K.

Because of the monotonically decreasing of the function g(z) and the corollary in [29,

Corollary 1.5 p-27], there would have �(Diag(g(⇢?))) > �(Diag(g(⇢+))). In addition, taking

the constraint �(Diag(g(⇢?)))  1 into account, there has �(Diag(g(⇢+))) < 1. Consequently,

the constructed point is in the feasible set, i.e. ⇢+
2 Ŷ .

However, according to the Lemma 4, the objective L(⇢) is monotonically decreasing. Thus

there would have L(⇢?) > L(⇢+) as ⇢?
� ⇢+. This contradicts the optimal assumption. There-

fore, if a solution to P3 exists, it would be located on the boundary. This implies that the system

achieves minimal energy consumption when all available beams are activated simultaneously.

With this, we complete the first part of the theorem.

As seen in Fig. 2, the line AB would move parallel to the direction of vector ~OD when K

is increased, resulting in the solution of the former preceding the latter, i.e. ⇢?

former
� ⇢?

latter
.

Considering that the objective function is monotonically decreasing, we deduce that L(⇢?

former
) >

L(⇢?

latter
). This indicates that increasing the maximum number of active beams reduces the

consumed energy, thereby completing the proof.
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terrestrial base stations with the Low Earth Orbit (LEO) satellite constellation systems, capable of

providing communication services to users worldwide. Beam Hopping is one of the promising techniques

that makes this intelligent system possible, wherein spot beams are selectively illuminated based on

users’ traffic demands. LEO satellite constellation systems feature a virtual cell on the ground being

served by multiple beams, each per satellite, however, this provided flexibility in optimizing the required

loads of beams that have not been exploited in the conventional smart systems. In this paper, we propose

a novel optimization problem that, besides the natural flexibility of resources onboard in the time and

power domains, optimizes the required loads of beams to minimize energy consumption. We employ the

load coupling model to address the demand satisfaction constraint, where parameters are represented by

their expectations. Based on the optimum condition, the problem is reformulated as an inverse matrix

minimization style, whose objective is then proved to be convex. An iterative method is proposed to solve

the problem with a high-quality solution. Moreover, taking into account the gap between the output of the

DVB-S2 standard and the ideal Shannon Formula based on which the problem is formulated, we propose

traffic compensation and SINR protection measures to guarantee the demand-matching performance for

practical systems. Numerical simulations demonstrate the benefits brought by the proposed method in
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I. INTRODUCTION

Satellite communication (SatCom) systems play an indispensable role in modern life, providing

global connectivity, supporting scientific research, and promoting economic growth [1]. It has

the advantage of wide coverage and supporting terminals located in remote areas, making them

a vital component of the global communication infrastructure [2]. LEO satellite constellation

systems have developed rapidly recently, such as Starlink, Eutelsat OneWeb, and so on. Each

satellite is designed to provide communication service to users located in its coverage. Moreover,

to guarantee global coverage, the coverage area of adjacent satellites has common serving areas.

How to utilize the limited onboard resources while satisfying the heterogeneous traffic demands

of on-ground user terminals is a major problem in LEO constellation systems [3].

The next generation of high-throughput satellites is equipped with multiple antennas radiating

spot beams that are featured with high gain and narrow beam width [4]. These spot beams make

it possible to address the above problem, providing flexibility in allocating resources in time,

power, and frequency domains to meet the uneven geographically distributed traffic demands of

terminals. However, how to make full use of the provided flexibility motivates the development

of the onboard intelligent resource allocation algorithm.

Recently, Beam Hopping (BH) has drawn the researcher’s attention, which selectively activates

the beams according to the beams’ traffic demands [5]. In other words, unlike the traditional

fixed-beam system, the BH-enabled SatCom can dynamically activate the beams based on their

traffic needs. Moreover, a list of superframe specifications is designed in the DVB-S2X standard

[6] to support the application of BH technology in SatCom systems. SatCom systems benefit

significantly from the utilization of beam hopping (BH) technology. This technology allows the

system to fully exploit flexibility across four domains to serve user terminals: the time domain,

power domain, frequency domain, and space domain. Additionally, selectively activating beams

would reduce the interference from other beams, and consequently increase the spectral efficiency.

Lastly, BH requires only a limited number of beams that can be activated simultaneously, which

reduces the need for the radio frequency chains and, consequently the launch cost of the satellite.

Satellite communication systems should efficiently manage energy consumption, which is

primarily provided by a combination of solar power and battery storage. The equipped solar

panels transfer solar energy into electricity, which powers wireless communication transmission

and other applications [7]. Taking into account that a solar panel can only collect limited energy,
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increasing system energy efficiency helps to reduce the number of solar panels, and consequently

the mass of the satellite and the cost of launch. Thus, it is important to minimize the energy

consumption for satellite communication [8].

Flexibly allocating the onboard resources to match the uneven traffic demands of user terminals

has drawn researchers’ attention in recent years. A heuristic algorithm is proposed to allocate

bandwidth per beam such that the provided capacity matches the traffic demands per beam in

[9]. In [10], the researchers propose a power allocation method based on traffic distribution and

channel conditions. Moreover, [11], [12], and [13] is proposed to combine the BH technique

with the interference mitigation method such that the provided capacity satisfies the required

traffic demands. Especially, [12] proposed a novel general framework to design the illumination

pattern by penalizing any pair of simultaneously active beams with the aim of minimizing the

total penalty. The above works consider neither the power nor the time domain, wasting not

exploring the full flexibility of resources. Although, [14] proposed to jointly allocate the power

and bandwidth per beam to minimize energy consumption while meeting the traffic demands,

which does not fully utilize the rare spectral efficiency. The works as mentioned above only

consider a single satellite, which does not suit LEO constellation systems. [15] deals with the

multiple satellites problem, where the authors propose jointly optimizing resources in various

domains. However, [15] failed to consider the required load allocation among beams serving the

same cell. [16] proposed to address this issue by balancing the load per satellite first, which lacks

theoretical validation. The load coupling model, originally analyzed by [17], characterizes the

coupling relationships among the temporal occupation of beams. The model has been employed,

for instance, in [18], the work most closely related to ours, where the power and load of beams are

studied for cellular networks to minimize energy consumption. However, [18] does not consider

the constraint on the maximal number of simultaneously active beams, an issue that is addressed

in our work.

However, these works do not fully utilize the flexibility of onboard resources, wasting energy

consumption. To address the problem, we propose to make full flexibility in time, power, and

required loads of beams to minimize energy consumption while meeting the uneven traffic

demands of cells. First, we formulate an ideal illumination pattern design problem, within which

we employ the load coupling model to deal with the complicated demand-matching constraints,

within which the three variables are coupled. To address the formulated problem, we find a

necessary condition for the optimum, based on which we find that power is a function of
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activation probability and the required loads of beams. Based on the equation, we reformulate

the problem solved by the proposed iterative method. Second, the obtained activation probability

is mapped into the illumination pattern by solving a binary quadratic programming problem.

Our major contributions are summarized as follows:

• We propose a joint design of power, time slot, and required loads of beams so as to minimize

total transmission energy consumption while satisfying the uneven traffic demands for the

LEO constellation systems for the first time. We prove the convexity of the objective, based

on which we propose an iterative method to solve the problem.

• We propose methods to compensate for the systematic performance loss. There is an output

gap between the practical coding modulation method and the Shannon formula, based on

which the problem is formulated.

• Numerical simulations validate the theoretical finding that the infeasible problem with fixed

required loads of beams becomes feasible when there is flexibility in the required loads of

beams.

The remainder of the paper is organized as follows. In Section II, we present the system

model. In Section III, we formulate the ideal pattern design problem. We analyze the problem

and introduce methods to solve the problem in Section IV. In Section V, we analyze the impact

of systematic parameters on the performance and introduce methods to implement practical

illumination pattern design. Numerical simulations are conducted in Section VI, and lastly, we

conclude in Section VII. Notations used in the paper are summarized in Table ??.

II. SYSTEM MODEL

In this section, we first introduce the considered BH-enabled regional multiple satellite systems.

Next, we consider the load coupling model for the system.

A. Preliminaries

In this paper, the forward-link transmission of regional multiple satellites is considered. The

layout of satellites follows the standard Walker Delta constellation [19], where orbit planes at

the same inclination and spread evenly around the equator, and satellites spread evenly around

each orbit. Specifically, we denote j, j 2 Ns = {1, . . . , Ns} as the satellite j, and there are Ns

satellites in total to serve a specific area covered by Nc virtual cells. The set of all virtual cells

is denoted as I, subsequently, it holds that Nc = |I|, where | · | denotes the cardinality of the
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TABLE I: Glossary of notations

Notation Definition

Ns Set of index of satellites

Ns Total number of satellites

I Set of index of virtual cells

Nc Total number of cells

| · | cardinality of the set

Ai Set of index of satellites covering cell i

Bj Set of index of cells covered by satellite j

J1(x) Bessel function of the first kind and first order with argument x

a Antenna’s circular aperature

f Frequency of operation

n
j
i Index of the antenna on the satellite j, which is designed to serve the virtual cell i

#
i,nj

i
Angle between a ray from antenna n

j
i to the user terminal located in cell i and the bore sight of the antenna’s main beam.

G0 Maximal antenna gain

H
i,nj

i
Channel between the terminal located in cell i and satellite j

qn Traffic demands of cell n in bps

B Full spectrum bandwidth

M Total number of time slots within the time window

�T Duration of time slot

Kj Maximal number of active beams of satellite j

pi,j Transmit power to cell i from satellite j

⇢i,j Activation probability to cell i from satellite j

Ri,j Expected achievable rate of the user located in cell i from satellite j

�
2
T Thermal noise power

⌧ Boltzmann constant

TRx Clear sky noise temperature of receiver

di,j Required load of the beam serving cell i, radiated by the antenna on satellite j

pj Power vector of all beams radiated by satellite j

p Power vector of all beams of the systems

⇢j Activation probability vector of all beams of satellite j

⇢ Activation probability vector of all beams

P
j
max Maximal power of satellite j

Tr{·} Trace of the matrix

set. The set of cells covered by the satellite j is denoted as Bj . Thus, I =
S

Ns

j=1 Bj . We denote

Ai, i 2 I as the set of index of satellites covering the cell i. Taking into account that some of the

cells are covered by multiple satellites, subsequently, it holds that |Ai| � 1, 8i. An example of
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(a) (b)

Fig. 1: The coverage of beams for regional multiple satellites. (a) regional multiple satellites;

(b) the layout of beam coverage.

the layout of virtual cells for regional multiple satellites is illustrated in Fig. 1, where there are

7 satellites, each of which has 19 spot-beams serving corresponding cells and are in a different

color. Cells located in the marginal areas of adjacent satellites can be served by all of these

satellites.

The antenna gain pattern, corresponding to a typical reflector antenna with a circular aperture,

following the work [20], is expressed as

GTx(#
i,n

j
i
) =

8
>><

>>:

4G0|

J1(ka sin#i,n
j
i
)

ka sin#
i,n

j
i

|
2, 0 < |#

i,n
j
i
|  ⇡/2

1, #
i,n

j
i
= 0

(1)

where J1(x) is the Bessel function of the first kind and first order with argument x; a is the

antenna’s circular aperture; k = 2⇡f/c is the wave number; f is the frequency of operation; c

is the speed of the light in vacuum; nj

i
denotes the index of the antenna on satellite j, which is

designed to serve the virtual cell i; and #
i,n

j
i

is the angle between the ray from the antenna nj

i

to the user terminal located in cell i and the bore sight of the antenna’s main beam. Lastly, G0

is the maximal antenna gain.

The free space path loss is expressed as

Li,j = (
c

4⇡fli,j
)2 (2)
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where li,j describes the distance between the satellite j and the user within the cell i.

Assuming that the Doppler frequency offset caused by the satellite motion is compensated

by the user and the sky is clear, thus rain attenuation is not considered. The channel coefficient

between the user within the cell i and the corresponding antenna nj

i
of the satellite j, similar to

the expression in [21], can be given by

H
i,n

j
i
=

q
GTx(#

i,n
j
i
)GRxLi,j (3)

where GRx is the gain of receiver.

Note that our focus is on ground cell-demand satisfaction, concentrating on beam scheduling

rather than user scheduling (which is beyond the scope of this work.). Accordingly, we consider a

super-user terminal that essentially represents all the users covered within a cell, meaning that all

users’ demands are aggregated. We denote the traffic demand of cell n as qn in bps, and demands

of all cells as q = [q1, . . . , qNc ]
T . In order to fully utilize the spectrum resource, all beams reuse

the full spectrum bandwidth B. In other words, the interference among simultaneously active

beams can not be ignored. We consider a typical beam-hopping satellite system within which

a BH window is composed of M consecutive time slots (TSs) with time duration �T . The

goal of designing an illumination pattern refers to determining which beams are activated during

a specific TS within the time window. To comply with the satellite DVB-S2(X) standard, the

M TSs corresponds to the M superframes [6]. Due to the mass limitation of satellite payload,

the maximal number of active beams should not exceed the number of radio frequency chains,

dented as Kj, 8j.

B. Load Coupling

We consider the load coupling model [18] to address the demand constraint. We define pi,j and

⇢i,j as the average transmit power and activation probability, respectively, of the beam radiated

by the corresponding antenna of satellite j to serve the user located in virtual cell i. Whenever

the beam is activated, the transmit power of the beam is pi,j , while the activation probability

describes the probability of the beam being activated during the time window.

The expected achievable rate of the user located in cell i, which is served by satellite j, j 2 Ai,
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can be expressed as

Ri,j = ⇢i,jB log2(1 +
pi,j|Hi,n

j
i
|
2

X

s2Ns\Ai

X

b2Bs

⇢b,spb,s|Hi,n
s
b
|
2

| {z }
Term 1

+
X

s2Ai

X

b2Bs\{i}

⇢b,spb,s|Hi,n
s
b
|
2

| {z }
Term 2

+�2
T

) (4)

where Term 1 denotes the expected interference from beams radiated by unrelated satellites,

i.e. s 2 Ns \ Ai; and Term 2 denotes the expected interference from beams radiated by related

satellites, i.e. s 2 Ai; �2
T

represents as the thermal noise power, dented as �2
T
= ⌧TRxB, where

⌧ denotes the Boltzmann constant, and TRx denotes clear sky noise temperature of receiver [21].

Taking into account that some cells are served by multiple satellites, we define di,j as the

required load of the beam serving cell i, radiated by the corresponding antenna of satellite j.

In other words, when cell i is served by a solo satellite, we define that the required load of the

beam is no less than the required traffic demand of the cell, denoted as di,j � qi,Ai = {j};

While when cell i is served by multiple satellites, the sum of the required load of beams serving

cell i is no less than the required traffic, denoted as
P

j2Ai
di,j � qi.

Subsequently, the demand constraint can be expressed as
8
>><

>>:

Ri,j � di,j, 8i, j
X

j2Ai

di,j � qi, 8i
(5)

which means that the expected rate of the beam served by the satellite should be greater than

that of the required load, and can be equivalently rewritten as

⇢i,j � fi,j(⇢,p,d) ,
di,j

B log2(1 +
pi,j |H

i,n
j
i
|2

P
s2Ns\Ai

P
b2Bs

⇢b,spb,s|Hi,ns
b
|2+

P
s2Ai

P
b2Bs\{i} ⇢b,spb,s|Hi,ns

b
|2+�

2
T
)

(6)

where we denote pj as the power vector for all beams radiated by satellite j, and p = [pT

1 , . . . ,p
T

Ns
]T

as the power vector for all beams of the systems. Similarly, we define ⇢
j

and ⇢ as the activation

probability vectors, and dj and d as the required load vectors, for the beams of satellite j and

the systems, respectively. Finally, for the sake of simplicity, in the same manner, we define

fj(⇢,p,d) and f(⇢,p,d).
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III. IDEAL PATTERN DESIGN PROBLEM FORMULATION

Our objective is to minimize the total consumed energy while satisfying both the limited

onboard resource constraints and heterogeneous traffic demands, where the consumed energy is

given by its total expectation. The formulated problem is expressed as

(P1) : minimize
⇢,p,d

⇢T
p (7a)

subject to (C1) : ⇢ ⌫ f(⇢,p,d), (7b)

(C2) :
X

j2Ai

di,j � qi, 8i (7c)

(C3) : ⇢
T

j
1  Kj, 8j (7d)

(C4) : ⇢
T

j
pj  P j

max, 8j (7e)

(C5) :
X

j2Ai

⇢i,j  1, 8i (7f)

(C6) : 0  ⇢i,j  1, 8i, j (7g)

(C7) : pi,j � 0, 8i, j (7h)

(C8) : di,j � 0, 8i, j (7i)

where C1 companions with C2 form the demand constraint; C3 is the maximal number of active

beams, which means that the expected number of active beams should not exceed the maximum

number of simultaneously active beams; C4 is to limit the maximum power of each satellite,

which is given by the expected power of the satellite for all satellites; C5 prevents the cell from

being simultaneously served by different satellites to avoid the interference; C6 ⇠ C8 are the

natural constraints of the three variables, respectively. Note that we omit the constant �T in the

objective, as it does not affect the solution.

Once we have solved P1, we map the continuous activation probabilities into binary illumi-

nation pattern, determining whether to activate a beam at a particular TS, which we will explain

in detail in Section V-D. In the next section, we will focus on solving P1.

IV. IDEAL PATTERN DESIGN SOLUTION METHOD

Problem P1 is generally hard to solve, as the coupling relationships among the three vector

variables within the demand satisfaction constraint C1 and the maximum power per satellite

constraint C4. Typical optimization techniques would work, such as the Difference of Convex
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Functions method [22] and Successive Convex Approximation method [23] are applied to deal

with the demand constraint in work [14]. However, applying these methods to our problem

directly would bring performance loss because of the coupling relationships among the variables.

In this section, we propose a novel method to solve the problem optimally. Firstly, based on the

necessary condition to the optimum of problem P1, we obtain the one-to-one mapping relation-

ship from the activation probability and required load to the power of beams. Subsequently, we

reformulate the problem, which is proved to be convex. Lastly, we propose an iterative method

to solve the convex problem optimally.

A. Equivalent Problem P2

One of the main difficulties in solving problem P1 comes from the demand satisfaction

constraint C1. The following theorem helps to address this issue and subsequently simplify

the problem.

Theorem 1: Given q,H, the solution to problem P1, if it exists, is the fixed point of the

equations: ⇢ = f(⇢,p,d).

Proof: The proof is given by [Chapter IX, Theorem 1]. Do not forget to change the reference.

Theorem 1 indicates the coupling relationships among the three variables, i.e. ⇢,p, and

d, which is the necessary condition of the solution to problem P1. Based on the fixed point

equations, we derive the following.

⇢i,j =
di,j

B log2(1 +
pi,j |H

i,n
j
i
|2

P
s2Ns\Ai

P
b2Bs

⇢b,spb,s|Hi,ns
b
|2+

P
s2Ai

P
b2Bs\{i} ⇢b,spb,s|Hi,ns

b
|2+�

2
T
)

(8a)

pi,j⇢i,j = g(⇢i,j, di,j)(
X

s2Ns\Ai

X

b2Bs

⇢b,spb,s
|Hi,n

s
b
|
2

|H
i,n

j
i
|2
+

X

s2Ai

X

b2Bs\{i}

⇢b,spb,s
|Hi,n

s
b
|
2

|H
i,n

j
i
|2
+

�2
T

|H
i,n

j
i
|2
) (8b)

where g(⇢i,j, di,j) = ⇢i,j(2
di,j
B⇢i,j � 1).

According to Eq. (8b), we denote yi,j = pi,j⇢i,j as the expected consumed energy of the

i-th beam of satellite j, yj for all beams of satellite j, and y = [yT

1 , . . . ,y
T

Ns
]T for all beams.

Subsequently, y can be expressed as

y = ⇢T
p = (I�GA)�1

Gb (9a)
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) p = Diag(⇢�1)(I�GA)�1
Gb (9b)

where I is the identity matrix; G = Diag(g(⇢,d)) is the diagonal matrix with the diagonal

elements given by the vector g(⇢,d); Vectors g(⇢,d) and b are vectorized the same way as y,

whose elements are given by g(⇢i,j, di,j), 8i, j and bi,j =
�
2
T

|H
i,n

j
i
|2 , 8i, j, respectively; We define

the element of matrix A as

A(b,s),(i,j) =

8
>><

>>:

0 b = i, s 2 Ai

|Hi,n
s
b
|
2

|H
i,n

j
i
|2

otherwise
(10)

where (b, s) and (i, j) are the index of the row and column of the matrix, respectively, vectorized

the same way as y.

Eq. (9b) maps the power as a function of activation probability and the required load of all

beams. Based on this equation, the equivalent problem to P1 can be expressed as

(P2) : minimize
⇢,d

Tr{(I�G(⇢,d)A)�1
G(⇢,d)B} (11a)

subject to (C2) :
X

j2Ai

di,j � qi, 8i (11b)

(C3) : ⇢
T

j
1  Kj, 8j (11c)

(C̃4) : Tr{(I�G(⇢,d)A)�1
G(⇢,d)EjB}  P j

max 8j (11d)

(C5) :
X

j2Ai

⇢i,j  1, 8i (11e)

(C6) : 0  ⇢i,j  1, 8i, j (11f)

(C̃7) : �(G(⇢,d)A)  1 (11g)

(C8) : di,j � 0, 8i, j (11h)

where B = b1
T ; 1 denotes the vector with all of its elements are 1; Tr{·} denotes the trace of

the matrix; For simplicity, we denote G = G(⇢,d) in the rest of paper.

Based on C1, the equivalent problem P2 simplifies P1 by substituting the power with activation

probability and required loads of beams. Consequently, related constraints should be modified: i)

we omit the constraint C1; ii) we modify C4 into C̃4, where Ej is the diagonal matrix, selecting

the corresponding index of all beams of satellite j; iii) we re-express the natural constraint on

power as C̃7, where �(·) denotes the spectral radius of the matrix. Initially, the natural constraint

on power is p ⌫ 0,p 6= 0, taking into account that it holds the mapping relationship among
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variables, i.e. Eq.(9b), and b ⌫ 0,A � 0,G � 0, where � denotes the pointwise greater than or

equal to, the constraint of non-negative of power is equivalent to C̃7 [24, Theorem A.51]. Note

that we keep �(GA) = 1 within C̃7, which does not affect the solution, as the objective would

approach infinity at this point.

B. Convex Analysis of Problem P2

Problem P2 is generally difficult to solve, as the matrix multiplication involves an inverse

matrix within the objective and the spectral radius of the matrix within the constraint. In this

section, we first prove the convex of the objective. To deal with the constraint of the spectral

radius of the matrix, we approximate it with a convex one.

Lemma 1: The objective of problem P2 is convex.

Proof: The proof is in Appendix A.

As the objective is convex, taking into account that constraint C̃4 is the multiplication of the

objective and the corresponding selective matrix, limiting the maximum power of each satellite,

thus it is convex [25]. The rest of the constraints, except for constraint C̃7, are linear, and

consequently convex [25].

According to [26, Theorem 3.12], the spectral radius is bounded by all norms, i.e. �(X) 

kXk, where k · k is any norm of the matrix. We approximate the spectral radius of the matrix

with its 2-norm, denoted as

�(X)  kXk2 =
p
�(X)�((X)T )  t (12)

which is equivalent to

t2I�XX
T
⌫ 0 (13)

which, according to Schur complement [27], is further equivalent to
0

@ tI X

X
T tI

1

A ⌫ 0 (14)

which is convex [25].

Note that the condition on the first equality holds in Eq. (12) is that, in the considered context,

the matrix X is symmetric, i.e. X = X
T . Taking into account that G = Diag(g(⇢,d)) is diagonal

and symmetric, and A is close to symmetric, thus the 2-norm is a good estimation of the spectral

radius constraint.
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C. Iterative Solving Method to Problem P2

Although the objective has been proven to be convex, as far as the author’s knowledge,

there is no way to solve it directly. For solving problem P2, based on the Successive Convex

Approximation (SCA) method [28], we propose an iterative method to address the resulting

problem. Generally, the SCA estimates the value of a complicated function with its approximation

in a sequence. Moreover, if the problem is convex, SCA would obtain the optimum [28].

Given (⇢0,d0), the first order Taylor’s series of the objective can be expressed as

L(⇢,d|⇢0,d0) ⇡ Tr{(I�G0A)�1

| {z }
T

GB+ (I�G0A)�1
A(I�G0A)�1

GB(G�G0)} (15a)

= g
T (⇢,d) Diag(1T

TATB)| {z }
⌦

g(⇢,d) + [1T
TB� 1

T
TATG0B]| {z }

b̂T

g(⇢,d) (15b)

= g
T (⇢,d)⌦g(⇢,d) + g

T (⇢,d)b̂ (15c)

where G0 = Diag(g(⇢0,d0)).

Subsequently, the constraint C̃4, maximum power for each satellite, can be expressed as

g
T (⇢,d)Ej⌦Ejg(⇢,d)  P j

max, 8j (16)

Consequently, the sub-problem to be solved in each iteration can be expressed as

(P3) : minimize
⇢,d

L(⇢,d|⇢0,d0) (17a)

subject to (C2) :
X

j2Ai

di,j � qi, 8i (17b)

(C3) : ⇢
T

j
1  Kj, 8j (17c)

(Ĉ4) : g
T (⇢,d)Ej⌦Ejg(⇢,d)  P j

max, 8j (17d)

(C5) :
X

j2Ai

⇢i,j  1, 8i (17e)

(C6) : 0  ⇢i,j  1, 8i, j (17f)

(Ĉ7) :

0

@ I Diag(g(⇢,d))

Diag(g(⇢,d)) I

1

A ⌫ 0 (17g)

(C8) : di,j � 0, 8i, j (17h)

which is convex and can be efficiently solved by the CVX [29] with advanced solvers, i.e. Mosek

[30].
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The iterative procedures to obtain the activation probability, power, and required loads of

beams to match the required traffic demands while minimizing the consumed energy as detailed

in Algorithm 1.

Algorithm 1 OPTIMIZATION OF IDEAL PATTERN DESIGN

1: Initialization H,A,q,⇢0,d0, Kj, P j

max, 8j, k = 0

2: repeat

3: if �(GkA) < 1 then

4: Set k = k + 1, Update ⌦, b̂

5: Solve (⇢
k+1,dk+1) = arg minimize

⇢,d
L(⇢,d|⇢

k
,dk)

6: else

7: Return: Infeasible

8: end if

9: until Convergence

The Algorithm 1 is proposed to solve problem P1. During the re-expressions, the only

approximation comes from the estimation of the spectral radius of the matrix, which is replaced

by its 2-norm. Consequently, the algorithm obtains a high-quality solution.

V. PRACTICAL PATTERN DESIGN IMPLEMENTATION

In Section IV, we formulate and solve the ideal beam hopping pattern design problem, which

is conditioned on the infinite time window duration. However, in practice, the time window is

limited. In other words, the operator needs to convert the continuous activation probability into

the discrete required load in the number of TSs. In this section, we address the problems to be

met in practice. First, we analyze the impact of systematical parameters on the performance,

which paves the way for the implementation of the pattern design problem. Taking into account

that the problem formulation in Section IV is based on the Shannon Formula, it would bring

systematical performance loss. Then we propose a method to compensate for this loss in advance.

Lastly, a rounding algorithm is proposed to convert activation probability into discrete required

loads of beams, followed by the multiplier penalty and majorization-minimization (MPMM)

algorithm to design the pattern.
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A. Systematical Parameters Analysis

As power is mapped as a function of activation probability and the required load of beams,

the energy consumption problem is jointly optimized by the two variables. In this section, firstly

given the required loads of all beams, we analyze the impact of Kj , the maximum number of

simultaneously active beams of each satellite, on the feasibility of the problem. Subsequently,

we analyze the joint impact of the two variables on the performance of the problem.

1) Given required loads of beams:

Lemma 2: Given the channel H, whether the set X = {⇢|�(GA)  1,0 � ⇢ � 1} is empty

is determined by loads of beams, i.e. d.

Proof: The proof is given by [Chapter IX, Lemma 2].

Lemma 2 indicates that once allocating too much loads to beams, the problem is infeasible.

Here, if the set X is non-empty, we define the allocated loads to beams are reasonable, and

otherwise irreasonable. The following Lemma and Theorem indicate the impact of parameters

K on the feasibility and energy minimization performance of the problem, respectively.

Theorem 2: Given channel H and allocating reasonable loads to beams, whether the set

Y = {⇢|�(GA)  1,0 � ⇢ � 1}\{⇢|⇢T

j
1  Kj, 8j} is empty is determined by the parameters

Kj, 8j. If the parameters exceed the threshold, the set is non-empty.

Proof: The proof is given by [Chapter IX, Lemma 3]

Lemma 3: Given channel H, allocating reasonable loads to beams and providing sufficient

power for each satellite, once the parameters Kj, 8j exceed the thresholds, problem P3 is feasible

and the optimum locates on the boundary, i.e. ⇢T

j
1 = Kj, 8j. Moreover, the higher the parameters

are, the less the total consumed energy will be.

Proof: The proof is given by [Chapter IX, Theorem 4]

2) Jointly optimize loads and activation probability of beams:

Lemma 4: The optimum, if it exists, is located on the boundary, i.e. ⇢T

j
1 = Kj, 8j.

Proof: The prove is given in Appendix B.

Theorem 3: Given the infeasible problem with fixed required loads of beams, the flexibility

in allocating required loads of beams helps to convert the infeasible problem into being feasible.

Proof:

In the following, we illuminate the impact of required loads of beams on the feasibility of

problem P3. Suppose that satellites s, j serve the same cell i, i.e. s, j 2 Ai. Taking into account
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Fig. 2: The impact of flexibility in required load allocation on the feasibility of the problem. (a)

increase the required loads for satellite j; (b) decrease the required loads for satellite s.

that, given d, the set X = {⇢|�(GA)  1,0 � ⇢ � 1} is convex [Chapter IX]. The feasible

zones of the two satellites are shown in Fig. 2(a) and Fig. 2(b) respectively.

Specifically, in Fig. 2(a), the zone EAQBCD indicates the slice of the set X cut by plane

⇢k,jO⇢i,j , the zone GOHBA indicates the slice of set Yj , and the dotted area AQBP indicates

the slice of the feasible zone. Initially, the required loads of beams are given by d
1
j
, consequently

as shown in (a), the boundary of set X is given by the blue curve EAQBC. Once we increase

the required loads of beams, i.e. d2
j
= d

1
j
+ �d, where �d ⌫ 0, consequently it holds that

�(Diag(g(⇢,d2))) > �(Diag(g(⇢,d1))), which indicates that the set Xj will narrow down. The

orange line describes the modified feasible zone.

Correspondingly, the feasible zone of satellite s is illuminated by Fig. 2(b). As we can see,

initially given d
1
s
, the set Xs is empty, i.e. Xs \ Ys = ;. However, once we reduce the required

loads of beams, i.e. d2
s
= d

1
s
��d, the space of the feasible zone would increase, resulting in

the non-empty set of the feasible zone, i.e. Xs \ Ys 6= ;.

Our analysis omits the constraint of the maximum power of each satellite as the power of a

beam is determined by activation probability and the required loads of beams. In other words,

the allocation of power is dominated by the allocation of activation probability and the required
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Fig. 3: The data flow of the proposed method.

loads of beams. Once the consumption of power of each satellite exceeds the preset threshold,

it would require the satellite to adjust the required loads of beams serving the cell being able to

be served by multiple satellites.

B. Demands Compensations

Fig. 3 illuminates the data flow of the proposed method. The goal of this work is to design

the illumination pattern such that the provided capacity of cells c satisfies the required traffic q

while minimizing the total consumed energy.

The formulation of P1 is based on the Shannon formula [31], where the relationship between

output (capacity, y) and input (SINR, x) is expressed as y = log2(1+x). However, in the practical

satellite communication system, the signal should be modulated before transmission, following

DVB-S2X standard [32]. Consequently, there exists a systematic performance loss between the

provided capacity and the required traffic demands.

Fig. 4 indicates the gap in spectral efficiency between Shannon output and DVB-S2X. Specif-

ically, Fig. 4(a) indicates the spectral output of the Shannon formula and DVB-S2X. To take a

step further, Fig. 4(b) indicates the ratio of out of the DVB-S2X to that of the Shannon formula.

As we can see, the ratio is less than 1 in whole the range of SINR, which indicates the systematic

performance loss of the proposed method.

An intuitive way to compensate for this loss is demand compensation preprocessing, which

requires more demands before putting into the energy minimization problem. The preprocessing
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Fig. 4: The comparison between Shannon output and DVB-S2X in terms of Spectral Efficiency.

(a) the spectral output of Shannon formula and the DVB-S2X; (b) the ratio of the output of

Shannon output to that of the DVB-S2X.

can be expressed as q̃ = q/✏, where ✏ is the demand compensation coefficient. It is shown in

Fig. 4(b) that the ratio changes with the increase of SINR. We propose two methods to find an

appropriate coefficient.

1) Adaptive demand compensation coefficient determination: With demand compensation

preprocessing, the modified provided capacity constraint can be expressed as

⇢i,j✏B log2(1 + SINRi,j) = di,j, 8i, j (18)

where SINRi,j is the expected SINR of beam i radiated by satellite j; ✏ denotes the demand

compensation coefficient, which is related to the SINR of the beam. The equality is based on

that, to minimize energy consumption, the algorithm is expected to provide capacity that is

rightly equal to the required demand of the beam for all beams.

Suppose the expected SINR for all beams are equal, i.e. SINR = SINRi,j, 8j 2 Ns, i 2 Bj ,

consequently it holds that
X

j2Ns

X

i2Bj

⇢i,j✏B log2(1 + SINR) =
X

j2Ns

X

i2Bj

di,j =
X

i2Nc

qi (19a)

✏B log2(1 + SINR) =

P
i2Nc

qiP
j2Ns

P
i2Bj

⇢i,j
=

P
i2Nc

qiP
j2Ns

Kj

(19b)

where the second equality of Eq. (19b) is based on the Lemma 4 that the optimum, if it exists,

is located on the boundary.

Comparing the coefficient
P

i2Nb
qiP

j2Ns
Kj

with the output of spectral efficiency in DVB-S2X standard

[33, TABLE 1], one can determine the corresponding SINR, and subsequently the coefficient ✏.
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Fig. 5: The impact of the SINR requirement on the feasibility of problem P3.

2) SINR requirement determination: The operator may have requirements on modulation and

coding schemes to increase the spectral efficiency, which consequently puts the requirement on

the SINR of signals, i.e. SINR � ⇣ . The corresponding demand coefficient is determined by

checking Fig. 4(b) under the condition SINR = ⇣ , which is denoted as ✏⇣ . Consequently, the

requirement on SINR is further equivalent to

⇢i,j  ⇢⇣ ,
P

i2Nc
qi

✏⇣ log2(1 + ⇣)
P

j2Ns
Kj

, 8i, j (20)

Fig. 5 illuminates the impact of SINR requirement on the feasibility of problem P3, where the

orange line indicates the constraint on SINR. As we can see, the orange line narrows down the

feasible zone of the problem, which may result in infeasibility if the requirement is too high.

The constraint Eq. (20), denoted as C9, is linear and thus convex. One can modify the problem

P3 by adding the constraint C9.

C. Approximation from Activation Probability to Demand

In this section, we propose two rounding schemes to convert the continuous activation prob-

ability into discrete demands in the number of TS, based on different demands compensation

methods.

The proposed adaptive demand compensation scheme in Section V-B1 is based on the condition

that the optimum is located on the boundary, i.e. ⇢T

j
1 = Kj, 8j. Consequently, once employing
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the adaptive demand compensation scheme, the goal of the approximation scheme is to find

a discrete point, denoted as d̂, that is not only close to M⇢ but also satisfies the equations

d̂j

T

1 = MKj, 8j. The straightforward method is

• find the gap (residue) between the continuous optimum and its low bound, denoted as

M⇢� bM⇢c.

• distribute the remaining numbers, i.e. M
P

j2Ns
Kj�(bM⇢c)T1, to demands with the same

number of beams sorted by the residue, plus one for each.

While the SINR requirement demand compensation scheme limits the signals’ minimal ex-

pected SINR, the optimum solution may not be located on the boundary. Thus we compare

the residue with a threshold to determine whether plus one to demand of the beam. Note that

some beams serve the same cell, to guarantee the demand-matching performance for the cell,

we reallocate the accumulated residue of these beams. First, we sort the residues of these beams

and then distribute the accumulated residues to the beams in the order of the sorted list. Once

the remaining residue is greater than 1, the demand of the beam plus one, then the residue is

reduced by 1 and considering the next beam.

Recall that power is a function of activation probability and the required load of beams, i.e.

Eq. (9b). Consequently, once the activation probability of beams changes, the power should be

modified.

D. Discrete Illumination Pattern Design

Given discrete demands, power, and the required loads of beams, one has to design the

illumination pattern, determining the status and assigning the corresponding power of a beam.

A heuristic method is to assign the active beams randomly; however, this approach may not

guarantee the demand-matching performance. In this context, we propose to penalize any two

beams simultaneously being activated and design the illumination pattern by minimizing the

total penalty while satisfying all the constraints.

Specifically, we denote P̂m,n as the relative interference from beam m to beam n, which is

defined by

P̂m,n =

RR
Sn

|Hk,m|
2pmdxk dykRR

Sn
|Hk,n|

2pndxk dyk
(21)

where (xk, yk) are the longitude and latitude of user k located in cell n, respectively; and Sn

denotes the coverage of beam n which is defined by the �3 dB contour from the maximum

gain.
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TABLE II: LEO Constellation Systems Parameters

Height of satellite h= 600 km

Downlink carrier frequency 19.5 GHz

User link bandwidth, B=500 MHz

Longitude range of satellites [�0.11�E, 0.11�E]

Latitude range of satellites [�0.13�N, 0.13�N ]

Antenna circular aperture a = 1

Antenna Maximum Gain G0 = 30 dBi

Number of beams per satellite 19

Number of virtual cells Nc = 103

Number of beams Nb = 113

Number of cells served by two satellites 18

Number of cells served by three satellites 6

Temperature 50 K

Number of TSs M=20

The pattern design problem can be expressed as

(P4) :minimize
x

x
T
Px (22a)

subject to (S1) : x
T
e
t

j
 Kj, 8j, t (22b)

(S2) : x
T
eb = d̂b, 8b (22c)

(S3) : x
T
p
t

j
 P j

max, 8j, t (22d)

(S4) : x 2 {0, 1}MN (22e)

where P = Diag([P̂, . . . , P̂| {z }
M

]) is the diagonal block matrix; et
j
, 8j, t denotes the binary vector to

select all beams that belong to satellite j at t-th TS; eb, 8b denotes the binary vector to select the

b-th beam for all the whole time window; d̂b denotes the discrete demands in number of TS of the

b-th beam; pt

j
= e

t

j
·pM , where · denotes the pointwise multiplication and pM = [pT , · · · ,pT

| {z }
M

]T .

Problem P4 is a binary quadratic programming (BQP) problem, which can be efficiently

addressed by the multiplier penalty and majorization-minimization (MPMM) method proposed

in [12].
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Fig. 6: The convergence of the proposed ideal pattern design problem. The energy is given by

⇢T
p.

VI. NUMERICAL SIMULATIONS

A. Simulation Setup

The parameter settings of the LEO constellation systems are based on [20, 34] and summarized

in TABLE II. The traffic demands of all beams are randomly generated within the range of [400

Mbps, 1600Mbps]. Specifically, the demand of beams is given by 400 · r  qi  1600 · r, 8i,

where r is the demand density parameter and selected from {0.15, 0.2, 0.25}. For each selected

demand density parameter, 50 instances are generated for simulations. The maximum number

of simultaneously active beams per satellite is the same and is Kj = 5, 8j. The maximum

power of satellites is set as [20, 20, 24, 24, 20, 18, 16] W . We do beam scheduling in this

work, and we suppose one super user is located in the beam center. The baseline method jointly

optimizes power and activation probability to minimize energy consumption. In this method, the

traffic demands of a cell served by multiple satellites are equally allocated to the beams that can

serve the cell. In other words, compared with the proposed method, the baseline method has no

flexibility in traffic allocation among cells served by multiple satellites. As far as the authors

know, the baseline method is state-of-the-art. Unless stated otherwise, all parameter settings are

applied to simulations.

B. Performance of the Ideal Pattern Design Problem
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TABLE III: Influence of ⇢⇣ on energy consump-

tion

⇢⇣ = 0 ⇢⇣ = 3 ⇢⇣ = 4 ⇢⇣ = 5

r = 0.15 3.12 4.53 5.54 7.09

r = 0.20 12.49 8.93 12.20 19.19

r = 0.25 32.12 19.39 26.86 95.50

1
⇢⇣ = 0 represents the adaptive demand compen-

sation.

TABLE IV: Influence of ⇢⇣ on spectral radius of

the matrix

⇢⇣ = 0 ⇢⇣ = 3 ⇢⇣ = 4 ⇢⇣ = 5

r = 0.15 0.36 0.47 0.52 0.58

r = 0.20 0.71 0.64 0.71 0.80

r = 0.25 0.86 0.79 0.85 0.96

1
⇢⇣ = 0 represents the adaptive demand compen-

sation.

1) Convergence: Fig. 6 illuminates the convergence of the Algorithm 1 at an instance of three

demand densities respectively. The initial point is given by ⇢0 = 1, which is the largest value

of ⇢, consequently, it results in the minimal value of energy consumption. Moreover, it takes

two to three times iterations for the algorithm to converge. Additionally, it is evident that higher

demand density results in greater energy consumption. Especially, the total consumed energy

would be below 10W when the demand density is r = 0.1. However, the system consumes

around 100W energy when demand density increases to r = 0.25.

2) Demand Compensation Coefficient ⇢⇣: Moreover, we compare the influence of the choice of

⇢⇣ on energy consumption and the corresponding spectral radius of the matrix for three different

demand densities, each per instance, using Table III and Table IV, respectively. Specifically, we

select 4 kinds of demand compensation methods, which include adaptive demand compensation,

⇢⇣ = 0, and three SINR requirement determination methods, i.e. ⇢⇣ = 3, 4, 5.

As we can observe, for any chosen ⇢⇣ , the higher the demand density, the greater the consumed

energy. Interestingly, the spectral radius of the matrix demonstrates a positive coordination with

energy consumption. Moreover, the performance of the SINR requirement determination method

is as expected. Higher SINR requirements result in a higher spectral radius of the matrix and

consume greater energy. Although the adaptive demand compensation method has no limit on

SINR, it consumes greater energy than methods with a low threshold of SINR at the cases of

higher demand densities, i.e. ⇢⇣ = 3, 4 and r = 0.2, 0.25. This is because the method determines

the compensation coefficient depends on the expected SINR of signals, higher demand density

results in lower expected SINR, and subsequently requires more compensation demands.
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Fig. 7: The energy consumption comparison with the baseline.

3) Energy consumption comparison: To compare the energy consumption performance, the

merit energy saving is defined as

Energy Saving =
⇢T

0 p0 � ⇢T

1 p1

⇢T

0 p0
· 100% (23)

where (⇢0,p0) represents the solution to the problem with the baseline method and (⇢1,p1) the

proposed method.

Fig. 7 compares the energy consumption of the proposed method with the baseline at three

different demand densities for 50 instances each, where the demand is decompensated with

⇢⇣ = 4. As observed, when demand density is not high, i.e. r = 0.15, 0.2, the advantage of

the proposed method is not obvious. Both methods consume almost the same energy. This is

because the low traffic demand of cells renders the extra flexibility provided by the proposed

method in the domain of required loads of beams useless. However, when the demand density

is high, i.e. r = 0.25, the proposed method shows great priority over the baseline. Generally, the

proposed method would save about 10% of energy consumption, compared with the baseline.

In some cases, this would be up to 20%. Especially, the figure shows 48 out of 50 instances for

comparison. The rest of the 2 instances are infeasible with the baseline method, while they can
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be solved with the proposed method. These findings validate the Theorem 3 that the flexibility

in allocating required loads of beams helps to convert the infeasible problem into being feasible.

C. Pattern Design Problem
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Fig. 8: Performance comparison with the baseline in terms of demand-matching.

We define the ratio of the provided capacity of the cell to that of the required traffic demand

as the performance metric of demand matching, denoted as C/D. The performance is illustrated

with the cumulative distribution function (CDF) of the ratio of all beams of all instances. Fig.

8 compares the demand-matching performance of the proposed method with the baseline. As

we can see, almost all beams are satisfied. Note that both the baseline and the proposed method

design the illumination pattern with the MPMM method, which results in a similar performance.

However, as the proposed method consumes less energy for all instances, the proposed method

outperforms the baseline.

VII. CONCLUSION

In this paper, we propose a method to jointly optimize power, required loads, and time slot

allocation to minimize total energy consumption while satisfying the traffic demands of cells in

LEO satellite constellation systems. There are two difficulties within the problem: i)satisfaction
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of uneven traffic demands of beams, ii)and binary illumination pattern design. We propose to

address it by decomposing it into two problems. First, we employ the load coupling model

to simplify the demand satisfaction constraint, where parameters are represented with their

expectations. Subsequently, the problem is reformulated into an inverse matrix optimization

form, which is approximated by a convex problem. We propose an iterative method to obtain

a high-quality solution to the original problem. With the power, activation probability, and the

required loads of beams obtained from the first problem, we employ the MPMM method to

design the practical illumination pattern. Moreover, we propose demand compensation methods

to eliminate systematic performance loss caused by the gap between the Shannon formula and

the DVB-S2X standard. Finally, simulations validate our theoretical findings and prove that the

proposed method outperforms the baseline.

APPENDIX A

Lemma 1: The objective of problem P2 is convex.

Proof: Given the objective, i.e. L((d,⇢)), we have the following derivations, where the

differentiation of the objective with respect to G is expressed as dL(d,⇢).

L(⇢,d) = Tr{(I�GA)�1
GB} (24a)

dL(⇢,d) = Tr{(A(I�GA)�1
GB+B)(I�GA)�1

| {z }
Z

dG} (24b)

dZ = (ZA(I�GA)�1 +A(I�GA)�1
Z)| {z }

Y

dG (24c)

Note that G = Diag(g(⇢,d)) is a diagonal matrix, accompanied with the above derivations,

the second-order derivatives of the objective with respect to ⇢ and d can be expressed as

@2L
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k
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(25a)
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where ⇢k is the k-th element of ⇢ and dk is the k-th element of d; g = g(⇢,d), and @g
@⇢k

= @g(⇢k,dk)
@⇢k

denoted as g1
⇢k

. In the same way, we denote g2
⇢kdk

as @
2g

@⇢k@dk
.

The Hessian matrix of the objective, which is a diagonal block, can be given by

rL = Diag(rL1, . . . ,rLk, . . .rLNb
) (26a)

rLk =

2

4
@
2
L

@⇢
2
k

@
2
L

@⇢k@dk

@
2
L

@dk@⇢k

@
2
L

@d
2
k

3

5 (26b)

where Nb =
P

j2Ns
|Bj| is the total number of beams.

Taking into account that the eigenvalue of the diagonal block matrix is the collection of

the eigenvalue of each sub-matrix and the eigenvalues of a matrix are the solutions to the

characteristic equation, i.e. det(rLk � �I) = 0, [27]. In the following, we will prove the

positive of the eigenvalues of any of the sub-matrix.

Note that g2
⇢k

= g2
dk
(dk
⇢k
)2, g2

⇢kdk
= �

dk
⇢k
g2
dk

, the characteristic equation of a sub-matrix can be

expressed as

det(rLk��I) = �2
��(Yk,kg

1
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+
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)2
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Consequently, the discriminant of the quadratic equation in one unknown, i.e. det(rLk��I) =

0, can be expressed as

� = (Yk,kg
1
⇢k
g1
⇢k

+ Zk,kf
2
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+ Yk,kg
1
dk
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2
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� g1
dk
)2 � (g1

⇢k
+

dk
⇢k
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| {z }
h(t)

) (28d)

We define function h(t) as shown in Eq.(28d), where t = dk
⇢k

. In the following, we will prove

the positive of the function.

According to Eq. (25), the function h(t) can be expressed as

h(t) = (tet � t2et � et � t)2 � (et � 1)2 (29a)
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= (t2et � (t� 2)et + t+ 1)| {z }
h1(t)

(t2et � tet + t+ 1)| {z }
h2(t)

(29b)

Taking into account that h1(t)0 = t2et + (t+1)et +1 > 0, consequently, it holds that h1(t) �

h1(0) = 1. Moreover, as h00
2(t) = (t2 + 3t)et � 0, it holds that h0

2(t) � h0
2(0) = 0, and

consequently, we have h2(t) > 0. Finally, we have h(t) > 0, resulting in � > 0.

Taking into account that it holds that �1 + �2 > 0, �1�2 > 0, and � > 0, consequently, the

characteristic equation has two positive solutions, which therefore completes the proof.

APPENDIX B

Lemma 2: The optimum, if it exists, is located on the boundary, i.e. ⇢T

j
1 = Kj, 8j.

Proof: According to [26, Theorem 2.10], the spectral radius of a matrix can be defined as

�(GA) = maximize
x

{minimize
xk>0

g(⇢k, dk)aT

k
x

xk

} (30)

where A
T = [a1, · · · , aNb

].

According to the definition, taking into account that function g(⇢, d) is monotonically de-

creasing with respect to ⇢, consequently it holds that �(Diag(g(⇢1,d)) � �(Diag(g(⇢2,d)) if

there is ⇢1
� ⇢2. Moreover, considering that the objective function is monotonically decreasing

with respect to ⇢, each satellite would fully use the maximum number of simultaneously active

beams, i.e. Kj, 8j to decrease the energy consumption. Consequently, the solution to problem

P3, if it exists, is located at the boundary, where Yj = {⇢
j
|⇢T

j
1 = Kj}.
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