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Semi-primal algebras

Definition ( Primal algebra)

An algebra D is primal if every operation f: DX — D with k > 1
is term-definable in D.

Foster 1953 [8] ; Foster, Pixley 1964 [9] ; Pixley 1971 [18]
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Semi-primal algebras

Definition (Semi-primal algebra)
An algebra D is semi-primal if every operation f: DK — D with k > 1
which preserves subalgebras is term-definable in D.

For a finite algebra D, t.f.a.e.

@ D is semi-primal.
@ The variety HSP(D) is arithmetical (i.e., congruence-distributive and
-permutable) and all subalgebras of D are simple and rigid.

© The ternary discriminator is term-definable in D and all subalgebras
of D are rigid.

Foster 1953 [8] ; Foster, Pixley 1964 [9] ; Pixley 1971 [18]
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Semi-primal lattice-expansions

Proposition

For a finite algebra D with bounded lattice reduct, t.f.a.e.:
@ D is semi-primal.

© For every d € D, the unary operation 7y = X{x>q} is term-definable
and the unary operation To = x{o} is term-definable.
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@ D is semi-primal.

© For every d € D, the unary operation 7y = X{x>q} is term-definable
and the unary operation To = x{o} is term-definable.

For a finite algebra D with bounded residuated lattice reduct, t.f.a.e.:

Q@ D is semi-primal.

© For every d € D, the unary operation Ty = X{x>q} is term-definable.

v

For the second part, note that we can define To(x) = 7e(x\0) where e is
the monoid unit of D.
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Semi-primal chains: Examples

e The Post chains P, = ({0,1,..., =1 1} A v/, 0,1).

n

P, : 0_l_%_§_)1
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e The Post chains P, = ({0,1,..., =1 1} A v/, 0,1).

n

P, : 0_l_%_§_)1

e The finite MV-chains

t,= (0,1 .. =1} 0,8, A,v,,0,1).

n’

e The finite Lukasiewicz-Moisil chains

Mn: <{0 1 ---7n_171}7/\’v7_"0717(7-d ‘ de Mn)>
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Semi-primal chains: Examples

e The Post chains P, = ({0,1,..., =1 1} A v/, 0,1).
e The finite MV-chains
t,=({o, i, .. =t

e The finite Lukasiewicz-Moisil chains

M, =({0,%,. .. =1

e The finite Cornish chains C, = ({0, 1

9y >'

,(Td ‘ de /\/I,,)>

)

Y >1

Yt
L

— 1
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Cy: So—

BIN
Blw

i 2 _
4 ..y Sy

'Davey, Gair 2017 [5]
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Semi-primal lattices: Examples (1)

FOUR = ({t,f, T, L}, A, V,®,®,—, D, t,f).

/\ /\
\/ \/

<t <k

Figure: The truth-order <; and the knowledge-order <j.

U. Rivieccio's PhD thesis
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Semi-primal lattices: Examples (2)

e Residuated lattices, e.g.,

1 1
| |
a a
| AN
b b c
VRN NS
c = a2 d d=a%=¢?
NS |
ab ab = bc
RYT RYS

Notation from list of finite residuated lattices of size up to 6 by N. Galatos and P. Jipsen
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Semi-primal lattices: Examples (3)

e De Morgan monoids (with unit e) / Relevant algebras (without e)

1=2a? 1=2a?
| / \
a
‘ e a
e \ /
|
0 0
cy oy

Moraschini, Raftery, Wannenburg 2019 [17]
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Semi-primal duality

Let D be semi-primal bounded lattice-expansion, A := HSP(D) = ISP(D).
There is a dual equivalence
I—Il

Stonep " A
Z/

Keimel, Werner 1974 [12] ; Clark, Davey 1998 [4]
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Semi-primal duality

Let D be semi-primal bounded lattice-expansion, A := HSP(D) = ISP(D).
There is a dual equivalence
I—Il

Stonep . T A
Z/

Definition (The category Stonep)

The category Stonep has objects (X, v) where X € Stone and

v: X — S(D) is continuous w.r.t. the upset topology on S(D).

A morphism f: (X1,v1) — (Xz,v2) is a continuous map X; — X with
va(f(x)) < vi(x) for all x € X;.

Keimel, Werner 1974 [12] ; Clark, Davey 1998 [4]
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Dualities via categorical completions

w N w
SetD < ? .//4 R
’ N ’ Se
i 4 P
!:’ro Ind\) /!nd ro\}l
/// SetD < // 4 CA.A
7/ /
///T T //
V i
Stonep H l > A
Set < » CABA
] / 4
Stone < - s BA 7
r\\ e )/\ v
Pro /!nd Ind /Pro
Set® « s BAY
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The adjoint functors on the dual side
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The adjoint functors on the dual side

Stone—— —=BA
pN

Let U be the forgetful functor.

VT(X) = (X,vP) where vP(x) = D for all x € X.

V+(X) = (X, vE) where vE(x) = E := (0,1) for all x € X.
CL(X,v) = {x € X | v(x) = E}.
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The adjoint functors on the algebraic side

I‘I/
m
Stonep A
Z/

VT4 U 4 vid|ct PIFSFPLH| 6L
n
m
Stone— = T—BA
b3

These functors all have algebraic duals.
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The adjoint functors on the algebraic side

VT4 U 4 vid|ct PlFSFPLH|G6L
n
e
Stone— = T—BA
b

These functors all have algebraic duals.
The dual of the forgetful functor U is the Boolean skeleton functor &.
The duals of VT and V- are certain Boolean power functors 3 and 3 | .
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Boolean skeletons

For every d € D, the unary operation Ty = x(g4; is term-definable in D.

Definition (Boolean skeleton)
The Boolean skeleton of A € A is given by

S(A) = (6(A),A,V, Tp,0,1),

where G(A) = {ac A| Ti(a) = a}.

Maruyama 2012 [16]
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Boolean skeletons

For every d € D, the unary operation Ty = x(g4; is term-definable in D.

Definition (Boolean skeleton)

The Boolean skeleton of A € A is given by
6(A) = (G(A)v AN TOa 07 1)7

where G(A) = {ac A| Ti(a) = a}.

For every A € A, there is a homeomorphism given by restriction

u— U‘G(A)
A(A,D) = BA(S(A),2)

This defines a natural isomorphism UYL’ = ¥ &.

Maruyama 2012 [16]
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Boolean powers

Definition (Boolean power)

Let M be a finite algebra and B € BA. The Boolean power M[B] consists
of all £&: M — B which satisfy £(mq) A §(m2) = 0 for my # my and
V mem &(m) = 1. If o is some (for simplicity assume binary) operation of
M, define

(€og)(m= "\ &(m)Ag(ma).

mjomy=—m

This turns M[B] into a member of HSP(M).

Foster 1953 [§]
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Boolean powers

Definition (Boolean power)

Let M be a finite algebra and B € BA. The Boolean power M[B] consists
of all £&: M — B which satisfy £(mq) A §(m2) = 0 for my # my and

V mem &(m) = 1. If o is some (for simplicity assume binary) operation of
M, define

Eo&)m)= \/  &m)Ag(m).

mjomy=—m

This turns M[B] into a member of HSP(M).

The Boolean power functor 3(B) = D[B] is right-adjoint to the Boolean
skeleton functor G.

Foster 1953 [§]
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The adjoint functors on the algebraic side (ctd.)

I-I/
m
Stonep A
Z/
VT[4 U 4 vid|ct PG F P61
M

Stone————=BA

>

So we have an algebraic description of the adjunction B - &.
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The adjoint functors on the algebraic side (ctd.)

I‘I/
m
Stonep— =0T ==A
Z/

VT4 U 4 vi+ct PlF S+ FLr|6L
M
e
Stone— = T—BA
b

So we have an algebraic description of the adjunction B - &.
The adjunction 3, F &, can be explained similarly.
In fact, it is a specific instance of the more general subalgebra adjunctions.
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The subalgebra adjunctions

I‘I/
m
Stonep A
Z/
vs| H |cs Ps| - |Gs
M

Stone— = T—BA

>

For every S € S(D) there is an adjunction VS 4 CS.
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VS(X) = (X,v®) with vS =S for all x € X.
C3(X,v) = {x € X | v(x) C S}.

Vs takes the Boolean power Ps(B) = S[B].

15/49



The subalgebra adjunctions

rl/
Stonep—0———=A
Z/

vs| 4 |cS Bs| + |SGs

n

Stone— =
b

BA

For every S € S(D) there is an adjunction VS 4 CS.
VS(X) = (X,v®) with vS =S for all x € X.
C3(X,v) = {x € X | v(x) C S}.

Vs takes the Boolean power Ps(B) = S[B].

G takes the Boolean skeleton of a quotient.
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The subalgebra adjunctions

I‘I/
m
Stonep A
Z/
vs| H |cs Ps| - |Gs
M

Stone— = T—BA

>

Any (X,v) € Stonep can be recovered from all VSCS(X,v) via the coend

ses(D)
(X.v) = / VSCS(X,v).
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The subalgebra adjunctions

I‘I/
m
Stonep A
Z/
vs| H |cs Ps| - |Gs
M

Stone— = T—BA

>

Dually, any A € A can be recovered from all PsSg(A) via the end

A = / PsSs(A).
Ses(D)
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Characterizing semi-primality

Let M be a bounded lattice-based algebra with smallest subalgebra
E = (0,1). Then M is semi-primal if and only if there exists a topological
adjunction

LBwm =5 - Pe.

HSP(M)

Pwm F5 H Pe

BA

16 /49



Characterizing semi-primality

Let M be a bounded lattice-based algebra with smallest subalgebra
E = (0,1). Then M is semi-primal if and only if there exists a topological
adjunction

LBwm =5 - Pe.

In particular, if M has no proper subalgebras this adjunction ‘collapses’ to
a categorical equivalence and we recover Hu's Theorem.?

Corollary (Hu)

A variety is generated by a primal algebra if and only if it is categorically
equivalent to BA.

’Hu 1971 [11]
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Dualities via categorical completions (ctd.)

w N w
SetD < ? .//4 R
y .- y N
’ Ind I Pro
/!Dm ~ /nd pt
,/ SetD < // 4 CA.A
/ //
7/ /
7 /
7/ /
%4 /T T VL
Stonep H l
Set < » CABA
/'7\ /7\
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Stone - BA 7
r\\ e )/\ v
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Dualities via categorical completions (ctd.)

Setp < > AY
// \\ /// \\
‘ Ind | Pro_
/!Dm ~ /nd pt
/// SetD / CAA
7/ /
///T T S/
\ v
Stonep l l > A
Set CABA
] / 4
Stone < m— > BA o
" Pro !nd " Ind Fro
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Discrete semi-primal duality

I—Il
dis
Setp " CAA
Z:iis

Definition (The category Setp)

The category Setp has objects (X, v) where X € Set and v: X — S(D).
A morphism f: (X1, v1) = (X2, v2) is a map f: X; — Xp with
va(f(x)) < vi(x) for all x € X.
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Discrete semi-primal duality

I—Il
dis
Setp " CAA
Z:iis

Definition (The category Setp)

The category Setp has objects (X, v) where X € Set and v: X — S(D).
A morphism f: (X1, v1) = (X2, v2) is a map f: X; — Xp with
va(f(x)) < vi(x) for all x € X.

An algebra A € A is a member of CAA if and only if its Boolean skeleton
GS(A) is a member of CABA.
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Many-valued modal logic

o Let D be a finite algebra of truth-degrees with bounded lattice reduct.

@ Modal formulas ¢ € Form are constructed from propositional
variables p € Prop, the connectives of D and modal operators [, §.

Relational models are 9t = (W, R, Val) with Val: W x Prop — D.

Val is inductively extended to all formulas via the rules

Val(w,0y) = /\{Val(w',¢) | wRw'},
Val(w, Q) = \/{Vél' ) | wRw'}.

o We define M, w IF ¢ iff Val(w, p) = 1.

@ Recover classical modal logic if D = 2 € BA.

19/49



Examples from many-valued modal logic (1)

Let D be the (n 4+ 1)-element finite MV-chain

L" = <{O7l RN n_171}7®7®7/\7\/7—'7071>-

n’ n

Hansoul, Teheux 2013 [10] ; Bou, Esteva, Godo, Rodriguez 2011 [1]
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Examples from many-valued modal logic (1)

Let D be the (n 4+ 1)-element finite MV-chain

t,=({0,7,..., 5, 1},0,®,A,V,~,0,1).

n

For every d € L, the unary operation 74: L, — L, is term-definable in £:

(x) 1 ifx>d,
T4(X) =
d 0 if x #d.

Hansoul, Teheux 2013 [10] ; Bou, Esteva, Godo, Rodriguez 2011 [1]
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Examples from many-valued modal logic (1)

Let D be the (n 4+ 1)-element finite MV-chain

t,=({0,7,..., 5, 1},0,®,A,V,~,0,1).

n

For every d € L, the unary operation 74: L, — L, is term-definable in £:

(x) 1 ifx>d,
T4(X) =
d 0 if x #d.

The algebraic counterpart of the corresponding modal logic:

Definition
A modal MV,,-algebra is an algebra (A,) with A € MV,, = HSP(t,),

o O(xAy)=0xA0Oy and 01 =1,
o Ory(x) = 74(Ox) for all d € £,\{0}.

Hansoul, Teheux 2013 [10] ; Bou, Esteva, Godo, Rodriguez 2011 [1]
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Examples from many-valued modal logic (2)

H=(H,A,V,—0,1,(Tyg | d € H)),
where (H, A, V,—,0,1) is a finite Heyting algebra expanded by unary

T4(x) 1 ifx=d,
X) =
I 0 ifx#d.

Note that 74(x) = \/{Tc(x) | ¢ > d} are again term-definable in H.

Maruyama 2009 [15]
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H=(H,A,V,—0,1,(Tyg | d € H)),
where (H, A, V,—,0,1) is a finite Heyting algebra expanded by unary

T4(x) 1 ifx=d,
X) =
I 0 ifx#d.

Note that 74(x) = \/{Tc(x) | ¢ > d} are again term-definable in H.

The algebraic counterpart of the corresponding modal logic:

Definition

A modal H-algebra is an algebra (A,O) with A € HSP(H),
o O(xAy)=0xA0Oyand 01 =1,
o Ury(x) = 74(0Ox) for all d € H\{0}.

Maruyama 2009 [15]
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Examples from many-valued modal logic (3)

Let D be given by the (n + 1)-element tukasiewicz-Moisil chain

M, = ({0,1 ... =1 1} AV, —,0,1, (14 | d € My)).

’n? n

where — is the MV-negation and 74 = X{x>q} similar to before.

Diaconescu, Georgescu 2007 [6]
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Examples from many-valued modal logic (3)

Let D be given by the (n + 1)-element tukasiewicz-Moisil chain

M, = <{07%7'--7n_171}7/\7\/7—'70717(7—d ‘ de Mn)>

n

where — is the MV-negation and 74 = X{x>q} similar to before.
The algebraic counterpart of the corresponding tense logic:
Definition
A tense £ Mp-algebra is an algebra (A, G, H) with A € tM, = HSP(M,,),
@ G(xNy)=GxAGyand Gl =1,
@ H(x ANy)=HxA Hy and H1 =1,
@ x < GPx and x < HFx,
o G7y(x) = 14(Gx) for all d € M,\{0},
o Hry(x) = 14(Hx) for all d € M,\{0}.

Diaconescu, Georgescu 2007 [6]
22/49



Algebras and Coalgebras

Let C be a category and let F: C — C be an endofunctor.

a: F(A)— A v: X = F(X)

F-algebra F-coalgebra
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Algebras and Coalgebras

Let C be a category and let F: C — C be an endofunctor.

a: F(A)— A v: X = F(X)
F-algebra F-coalgebra
Morphisms:
F(AD) —— A X; — F(Xy)
Fhl lh fl lFf
F(AQ) T2> As Xo T) F(XQ)

Gives rise to categories Alg(F) and Coalg(F).

23 /49



Jénsson-Tarski duality, coalgebraically

.
" BA

Y

Stone

Start with Stone duality 1: Stone — BA (takes clopens) and
Y : BA — Stone (takes ultrafilters).

Kupke, Kurz, Venema 2003 [14]
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- @ —

n
% @tone ” BA
>

Start with Stone duality 1: Stone — BA (takes clopens) and
Y : BA — Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of
coalgebras for the Vietoris functor V: Stone — Stone.
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Jénsson-Tarski duality, coalgebraically

V@tone ’ BASLD J: LgN=nvy

Start with Stone duality 1: Stone — BA (takes clopens) and
Y : BA — Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of
coalgebras for the Vietoris functor V: Stone — Stone.

The category of modal algebras is isomorphic to the category of algebras
for the functor Lo: BA — BA which has a presentation by a unary
operation O with equations C(x A y) = Ox A Oy and 01 = 1.

Jénsson-Tarski duality: There is a natural isomorphism Lgll == IMTV.

Kupke, Kurz, Venema 2003 [14]
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Classical modal logic, coalgebraically

P

Set ¢ ~ BA

S

Begin with dual adjunction P: Set — BA (takes powerset) and
S: BA — Set (takes ultrafilters).

Kupke, Kurz, Pattinson 2004 [13]
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Classical modal logic, coalgebraically

P
PCSet - BASLD 0: LgP = PP
S

Begin with dual adjunction P: Set — BA (takes powerset) and
S: BA — Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras
for the (covariant) powerset functor P: Set — Set.

The category of modal algebras is isomorphic to the category of algebras
for the functor Lg: BA — BA as before.

Sending a Kripke frame to its complex algebra can be realized by a natural
transformation LoP = PP.

Kupke, Kurz, Pattinson 2004 [13]
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Abstract and concrete coalgebraic logics

TCX/—N(\/A

Definition (Coalgebraic logic)
Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X — X be an endofunctor.
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Abstract and concrete coalgebraic logics

P
TCX/—N(\/AUL 0: LP=PT

Definition (Coalgebraic logic)

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X — X be an endofunctor.

© An abstract coalgebraic logic for T is a pair (L, d) consisting of an
endofunctor L: A — A and a natural transformation §: LP = PT.
@ A concrete coalgebraic logic for T is a triple (L, d, E) consisting of an

abstract coalgebraic logic (L,d) and a presentation E of L by
operations and equations.
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One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L,d) for T is one-step complete if § is a
monomorphism, i.e., every component of § is injective.
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One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L,d) for T is one-step complete if § is a
monomorphism, i.e., every component of § is injective.

For example, the abstract coalgebraic logic (L, d) for P is one-step
complete.

Definition (Expressivity)

An abstract coalgebraic logic (L,d) for T is expressive if the
adjoint-transpose ¢' is a component-wise monomorphism.

For example, the abstract coalgebraic logic (Lo, d) for Pgy, is expressive.
This is also known as the Hennessy-Milner property.
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Lifting algebra-coalgebra dualities

I—l/
Stonep A
Z/
VS| CS PBs|+-|Gs
M
Stone BA
Y

S
(X,v)%/ VSCS(X,v) and A%/S‘BSGS(A).
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Lifting algebra-coalgebra dualities
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Suppose T and L are duals of each other.
S
(X,v) %/ VSCS(X,v) and Ag/mSGS(A).
S

28/49



Lifting algebra-coalgebra dualities
I—l/
(e ]
z/

n
T @tone - BAi} L

>

Suppose T and L are duals of each other. Define
s
T'(X,v) = / VSTCS(X,v) and L'(A) = /apngs(A).
s
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Lifting algebra-coalgebra dualities
I—l/
(e O

z/
VS| CS Bs|-|Ss
M
T@tone - BAi}L
Y

Suppose T and L are duals of each other. Define

T’(X,v)%/SVSTCS(X,v) and L'(A) g/smngs(A).

Then T’ and L’ are duals of each other as well. 5 /10



Lifting algebra-coalgebra dualities
|—|/
V’@oneo - A 3 L

Z/
VS[H|cS BsI-|Ss
M
VGtone - BAi} Lo
pu

For example, this can be used to obtain Maruyama's [16] ‘semi-primal
version’ of Jonsson-Tarski duality as lifting of the ‘original’ Jénsson-Tarski
duality.
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Lifting algebra-coalgebra dualities
|—|/
/\/”Gconep - _Ai)l-/@

zl
VvS[H| CS PBs[-|Gs
M
NGtone - BAi}L@
pu

It can also be used to obtain a ‘semi-primal version’ of Do%en duality from
the ‘original’ one, described as algebra-coalgebra duality by Bezhanishvilis,
de Groot [2].
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Lifting abstract coalgebraic logics

P/
SetD “« - A
S/
VvS|H|CS Bs|-|Ss
P
TCSet - BAi} L 5: LP = PT
S

Start with an abstract coalgebraic logic (L, d) for T.
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Start with an abstract coalgebraic logic (L, d) for T.
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Lifting abstract coalgebraic logics

P/
T CSeto P | L/ 5 UP = P'T
S/
VS| CS Bs|-|Ss
P
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S

Start with an abstract coalgebraic logic (L, d) for T.
Similarly to before, we can lift T and L to T" and L'.
Furthermore, we can define an appropriate ¢’ from 4.
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How to obtain ¢’ from ¢

limit
L’P’(X,v):fS(D)‘BsLGSP’(X,v) ME _, BsLSsP/(X, v)

PIT(X,v) = [y PVSTCS(X,v) —"™, prvsTCS(x, 1)
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How to obtain ¢’ from ¢

mit o sL&sP/(X, v)

\g

PsLPCS(X, v)

L'P/(X,v) = fS(D) PsLSsP'(X, v)

PsPTCS(X, v)

limit

PT/(X,v) = fS(D) P'VSTCS(X,v) — 2= PVSTCS(X, v)
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How to obtain ¢’ from ¢

limit
L'P/(X,v) = [y BsLOsP (X, v) — = PsL&sP'(X, v)
PsLPC3(X, v)
EMEX,V) wedge iBséCS

PsPTCS(X, v)

o~
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Lifting abstract coalgebraic logics

P/
T Cseto - A L’ 5 L'P = P'T/
S/
VvS|H|CS Bs|-|Ss
P
TCSet - BAi} L 5:LP = PT
S

Start with an abstract coalgebraic logic (L, d) for T.
Similarly to before, we can lift T and L to T" and L'.
Furthermore, we can define an appropriate ¢’ from 4.

Thus we obtain a many-valued abstract coalgebraic logic (L', ") for T'.
30/49



One-step completeness and expressivity

Let (L, 0") be the lifting of (L, d) as defined on the previous slides.
@ If (L,0) is one-step complete, then (L', d") is one-step complete.
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One-step completeness and expressivity

Let (L, 0") be the lifting of (L, d) as defined on the previous slides.
@ If (L,0) is one-step complete, then (L', d") is one-step complete.

@ If (L,0) is expressive, then (L', d") is expressive.

@ If L has a presentation by operations and equations, then L’ has one.

If (L, 6) is one-step complete/expressive, then so is (L/,6").

VP P’
TCSet 7 Setp : 3 L sT =¢§VT
cP S
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Lifting concrete coalgebraic logics (1)

(x) 1 ifx>d
Td(x) =
I 0 ifx#d.

Let L: BA — BA have a presentation by one unary operation [J and
equations which all hold in D if (I is replaced by any 74, including the
equation O(x A y) = Ox A Oy.
Then L’ has a presentation by one unary operation [’ and the following
equations.

e [ satisfies all equations which the original (I satisfies,

o U'ry(x) = 74(O'x) for all d € D\{0}.
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Lifting concrete coalgebraic logics (2)

(%) 0 ifx<d
X) =
nd 1 ifx£d.

Let L: BA — BA have a presentation by one unary operation ¢ and
equations which all hold in D if { is replaced by any 14, including the

equation O(x Vy) = OxV Qy.
Then L’ has a presentation by one unary operation ¢’ and the following

equations.
o (' satisfies all equations which the original { satisfies,

o O'ny(x) = nq(0'x) for all d € D\{1}.
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Many-valued modal logic as lifting of classical modal logic

The functor L has a presentation by O(x A y) = Ox AQOy and 01 = 1.

p/
P’ CSetD P A OL/D
g/

P
P CSet - BAD Lo

S
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Many-valued modal logic as lifting of classical modal logic

The functor L has a presentation by C(x A y) = Ox A Oy and 01 = 1.

Therefore, the functor L{; has a presentation by

O'(xAy) = O'xAO'y, 0’1 =1 and O'74(x) = 74(00'x) for all d € D\{0}.
(Lo, 0) is (one-step) complete = (L, d’) is (one-step) complete.
Replacing P by Pryn: (Lo, 0) is expressive = (L{,d") is expressive.

P/
Sl
P
PCset - ——BA o

S
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Lifted semantics

Definition (Setp-frame & Setp-model)

A Setp-frame is a structure (W, v, R) with v: X — S(D) and binary
relation R C W? satisfying

wRw' = v(w') C v(w)

for all w,w' € W.
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Lifted semantics

Definition (Setp-frame & Setp-model)

A Setp-frame is a structure (W, v, R) with v: X — S(D) and binary
relation R C W? satisfying

wRw' = v(w') C v(w)

for all w,w’ € W. A Setp-model adds a Setp-valuation
Val: W x Prop — D which satisfies

Val(w, p) € v(w)

for all w € W.

For example, if D = L5 is the three-element MV-chain, the formula

O(p Vv —p)

is valid on a Setp-frame if and only if Yw3w’': wRw' A v(w') = 2, while it

is not satisfied in any frame.
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Alternative axiomatizations: Some case studies (1)

If D=1, is a finite MV-chain, then L{; has a presentation by

(B1) O1 =1, (B3) O(x @ x) = Ox @ Okx,
(B2) O(x A y) =0Ox AQy, (B4) O(x ® x) = Ox © Ox.
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Alternative axiomatizations: Some case studies (1)

If D=1, is a finite MV-chain, then L{; has a presentation by

(B1) O1 =1, (B3) O(x @ x) = Ox @ Okx,
(B2) O(x Ay)=0Ox A0y, (B4) O(x ® x) = Ox ® Ox.

If D is a finite bounded residuated lattice with 7. (monoid unit e) and
truth-constants, then L{; has a presentation by

(B1) O1 =1, (B3) 7e(0x) = Ore(x),
(B2) O(x Ay)=0OxA 0y, (B4) O(r\x) = r\Ox for all r #0.

In particular, if D is a finite FLoy-algebra with truth-constants where only
0,1 are idempotent, then L has a presentation by

(B1) O1=1, (B3) O(x ©® x) = Ox © Ok,
(B2) O(x Ay)=0OxA0y, (B4) O(r—x) = r—0Ox all r #0.
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Alternative axiomatizations: Some case studies (2)

If D is a finite bi-Heyting algebra with truth-constants and with a unique
atom and coatom, then L, has a presentation by

(B1) O1 =1,

(B2) O(x Ay)=0OxA0y,

(B3) O(—~(14x)) = =(1+-0Ox),
(B4) O(b—x) = b—Ox all b#0,
(P1) O(x Vv y) <OxVy,

= Ox V Oy,
(1(*(—|X)) = 1(—(—|<>X),
=0Ox+« ball b#1,
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Many-valued modal logic for crisp neighborhoods

The neighborhood functor N is the contravariant powerset functor

composed with itself. The functor Lo has a presentation by one unary
operation ¢ and no equations.

P/ ,
N/CSGtD — @A jLQ
5/

P
N CSet - BAD Lo
S
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Many-valued modal logic for crisp neighborhoods

The neighborhood functor N is the contravariant powerset functor
composed with itself. The functor Lo has a presentation by one unary
operation ¢ and no equations.

(Lo, d) is (one-step) complete = (L¢,, d") is (one-step) complete.
Replacing N by Ngn: (Lo, ) is expressive = (Lt,, d') is expressive.

We don’t know a concrete presentation for L¢, yet, unless D is primal.

P/ ,
N/CSGtD . | jLQ
5/

P
N CSet - BAD Lo
S
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Finite positive MV-chains

Definition (finite positive MV-chain)
Let n > 1 be a natural number. The (n + 1)-element positive MV-chain is
given by

Pt,=({0,1,...221 1} AV, 0,9,0,1),

’n? n

understood as a reduct of £,,.
We write PMV,, for the variety HSP(PL,) generated by Pt,,.
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Finite positive MV-chains

Definition (finite positive MV-chain)
Let n > 1 be a natural number. The (n + 1)-element positive MV-chain is
given by

Pt,=({0,1,...221 1} AV, 0,9,0,1),

’n? n

understood as a reduct of £,,.
We write PMV,, for the variety HSP(PL,) generated by Pt,,.

Proposition

Q@ PMV, =ISP(Pt,).

@ The subalgebras of Pt, coincide with those of £, (i.e., correspond to
divisors of n).

© The unary terms 74 = X{x>q4} are still term-definable in Pt

39/49



Natural duality for PMV,,

There is a (natural) duality between PMV,, and a category X, of Priestley
spaces with additional subrelations of the order.
An optimal dualising structure is determined by a subset S, C S(<).
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Natural duality for PMV,,

There is a (natural) duality between PMV,, and a category X, of Priestley
spaces with additional subrelations of the order.
An optimal dualising structure is determined by a subset S, C S(<).

Example (Dual category for PMV;)

In the case of the three-element chain Py, we have S, = {1, <} with
a={(a,b)ePt3|a=0o0r b=1}.

The members of X, are of the form (X, <X <1X) and need to satisfy an
additional separation property:
If x 4% y but x <X y, then there exist a clopen upset U and a clopen
downset D with the following properties

e x¢Dandy¢ U,

o Forall z,Z € X, if z<X 2/ thenze D or 2 € U.

£
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Distributive skeletons

" PMV,

Xn&

DL

Priest .~~~ 7

There again is a forgetful functor U.
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Distributive skeletons

— Pmy,

Xn&

DL

Priest .~~~ 7

There again is a forgetful functor U.
Its dual is given by the distributive skeleton defined analogously to the
Boolean skeleton.

PMV,(A,PLt,) = DL(S(A),2) via restriction p — P’e(A)-
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Introduction to positive modal logic

e Positive modal logic: The {A,V,0,1,0, 0}-reduct of standard modal
logic. Algebraically, move to modal distributive lattices (L,, () with

(B1) O1=1, (D1) 00 =0,
(B2) O(xAy)=0xA0Qy, (D2) O(xVy)=0xV Oy,
(P1) O(xVy) <OxVy, (P2) Ox A Qy < O(xAy).

Dunn 1995 [7] ; Celani, Jansana 1997 [3]
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e Positive modal logic: The {A,V,0,1,0, 0}-reduct of standard modal
logic. Algebraically, move to modal distributive lattices (L,, () with

(B1) O1=1, (D1) 00 =0,
(B2) O(xAy)=0xA0Qy, (D2) O(xVy)=0xV Oy,
(P1) O(xVy) <OxVy, (P2) Ox A Qy < O(xAy).

@ Shortcomings of ‘usual’ semantics over Set-frames. E.g., the
consequence pairs
Opkpand pk-Op

define the same class of frames but are not mutually inter-derivable
anymore.

Dunn 1995 [7] ; Celani, Jansana 1997 [3]
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e Positive modal logic: The {A,V,0,1,0, 0}-reduct of standard modal
logic. Algebraically, move to modal distributive lattices (L,, () with

(B1) O1=1, (D1) 00 =0,
(B2) O(xAy)=0xA0Qy, (D2) O(xVy)=0xV Oy,
(P1) O(xVy) <OxVy, (P2) Ox A Qy < O(xAy).

@ Shortcomings of ‘usual’ semantics over Set-frames. E.g., the
consequence pairs

Opkpand pk-Op

define the same class of frames but are not mutually inter-derivable
anymore.

o Better-behaved semantics over Pos-frames (X, <, R) adding a partial
order. Now the above correspond to the distinct classes with reflexive
Ro:=Ro<and Ry:=Ro>
Dunn 1995 [7] ; Celani, Jansana 1997 [3]
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Positive modal logic over finite MV-chains: Semantics

Signature ‘CEI?/IV ={N\,V,®,®,0,1,0,0}, inductively define formulas

FormE,?AV (with countable set of propositional variables Prop) as usual.
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Positive modal logic over finite MV-chains: Semantics

Signature EE&V ={A\,V,®,®,0,1,00,0}, inductively define formulas
FormE,&V (with countable set of propositional variables Prop) as usual.

Definition (Pos,-frame & Pos,-model)

A Pos,-frame is a structure (X, <, v, R) such that v: X — S(Pt,) and
the accessibility relation satisfies the compatibility conditions

e For all x,y € X it holds that

x <y = R[x] <em R[y].
@ Whenever x,y € X satisfy y € R[x], there exist y’, y” € R[x] with

y' <y <y"and v(y'),v(y") C v(x).
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Signature EE&V ={A\,V,®,®,0,1,00,0}, inductively define formulas

FormE,&V (with countable set of propositional variables Prop) as usual.

Definition (Pos,-frame & Pos,-model)

A Pos,-frame is a structure (X, <, v, R) such that v: X — S(Pt,) and
the accessibility relation satisfies the compatibility conditions

e For all x,y € X it holds that

x <y = R[x] <em R[y].
@ Whenever x,y € X satisfy y € R[x], there exist y’, y” € R[x] with
/ " / !
y' <y <y"and v(y'), v(y") C v(x).

A Pos,-model adds a valuation Val: X x Prop — PL, satisfying
e If x <y, then Val(x, p) < Val(y, p) for all p € Prop.
e Val(x,p) € v(x) for all x € X and p € Prop.

W
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Positive modal logic over finite MV-chains: Algebras

Definition (Modal PMV ,-algebras)

A modal PMV ,-algebra is an algebra (A,[0, O), where A € PMV,, and
0, 0: A— A satisfy

Bl 01 =1, D1 00=0,

B2 O(x Ay)=0OxAdy, D2 O(xVy)=0xVy,
B3 74(0x) = Org(x), D3 14(0x) = O1a(x),

P1 O(xVy)<0OxVy, P2 OxAQy <O(xAy).

We denote the variety of modal PMV ,-algebras by mPMV,,.
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Positive modal logic over finite MV-chains: Algebras

Definition (Modal PMV ,-algebras)

A modal PMV ,-algebra is an algebra (A,[0, O), where A € PMV,, and
0, 0: A— A satisfy

Bl 01 =1, D1 00=0,

B2 O(x Ay)=0OxAdy, D2 O(xVy)=0xVy,
B3 74(0x) = Org(x), D3 14(0x) = O1a(x),

P1 O(xVy)<0OxVy, P2 OxAQy <O(xAy).

We denote the variety of modal PMV ,-algebras by mPMV,,.

The axioms B3 and D3 can be equivalently replaced by

B O(x @ x) = Ux ¢ Ux, D& O(x @ x) = Ox @ Ox,
Bo O(x o x)=0Ox o Ox, DO O(x ® x) = Ox © Ox.
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Algebraic completeness

Let p, v € FormP,VIV be modal PMV-formulas. Then the following are
equivalent.

@ ¢ % is valid on all Pos,-frames.
@ o 1 is valid on all Set-frames.
@ mPMV, E ¢ <.
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Algebraic completeness

Let p, v € FormE,?,lV be modal PMV-formulas. Then the following are
equivalent.

@ ¢ % is valid on all Pos,-frames.
@ o 1 is valid on all Set-frames.
@ mPMV, E ¢ <.

The additional ‘richness’ of the semantics over Pos,-frames plays a role
when it comes to axiomatic extensions, definability and canonicity.
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A case study in canonicity

In modal logic over £, (i.e., with negation), the formulas
O(x @ x) — Ox and O(x & x) — Ox

both define the Set,-frames (X, v, R) which satisfy xRy = v(y) = Pi;.
The former is canonical3, so the latter is derivable from it.

*Hansoul, Teheux 2013 [10]
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A case study in canonicity

In modal logic over £, (i.e., with negation), the formulas
O(x @ x) — Ox and O(x & x) — Ox

both define the Set,-frames (X, v, R) which satisfy xRy = v(y) = Pi;.
The former is canonical3, so the latter is derivable from it.

In modal logic over PL,, this is not the case anymore. The semantics over
Pos,, reflect this as for any Pos,-frame § we have:

@ The consequence pair O(p @ p) - Op is valid in § if and only if §
satisfies

VxVy: (xRy — 3y’ : (xRy' Ay’ <y Av(y') = PLy)).

@ The consequence pair O(p @ p) - Op is valid in § if and only if §
satisfies

VxVy: (XRy =" (xRy" Ny <y" Av(y') = Pl'.l))
*Hansoul, Teheux 2013 [10]
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Future Research

Investigate broader classes of algebras of truth-degrees, e.g.
@ Quasi-primal = Finite discriminator algebras
@ Or even arbitrary finite lattice-based algebras
o Lattice-(semi-)primal algebras
o Infinite algebras, e.g., standard MV-chain [0, 1]
Investigate broader classes of logics, e.g.
@ Many-valued modal logic with many-valued accessibility relation
@ Probabilistic Logic

@ Propositional Dynamic Logic, Linear Temporal Logic, etc.
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Thanks for your attention!

IN CONCLUSION,
AAARARARAAAAA !l

THE BEST THESIS DEFENSE 15 A GOOD THESIS OFFENSE.

https://xkcd.com/1403/
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