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Semi-primal algebras

Definition ( Primal algebra)

An algebra D is primal if every operation f : Dk → D with k ≥ 1
is term-definable in D.

Foster 1953 [8] ; Foster, Pixley 1964 [9] ; Pixley 1971 [18]
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Semi-primal algebras

Definition (Semi-primal algebra)

An algebra D is semi-primal if every operation f : Dk → D with k ≥ 1
which preserves subalgebras is term-definable in D.

Theorem

For a finite algebra D, t.f.a.e.:

1 D is semi-primal.

2 The variety HSP(D) is arithmetical (i.e., congruence-distributive and
-permutable) and all subalgebras of D are simple and rigid.

3 The ternary discriminator is term-definable in D and all subalgebras
of D are rigid.

Foster 1953 [8] ; Foster, Pixley 1964 [9] ; Pixley 1971 [18]
2 / 49



Semi-primal algebras

Definition (Semi-primal algebra)

An algebra D is semi-primal if every operation f : Dk → D with k ≥ 1
which preserves subalgebras is term-definable in D.

Theorem

For a finite algebra D, t.f.a.e.:

1 D is semi-primal.

2 The variety HSP(D) is arithmetical (i.e., congruence-distributive and
-permutable) and all subalgebras of D are simple and rigid.

3 The ternary discriminator is term-definable in D and all subalgebras
of D are rigid.

Foster 1953 [8] ; Foster, Pixley 1964 [9] ; Pixley 1971 [18]
2 / 49



Semi-primal algebras

Definition (Semi-primal algebra)

An algebra D is semi-primal if every operation f : Dk → D with k ≥ 1
which preserves subalgebras is term-definable in D.

Theorem

For a finite algebra D, t.f.a.e.:

1 D is semi-primal.

2 The variety HSP(D) is arithmetical (i.e., congruence-distributive and
-permutable) and all subalgebras of D are simple and rigid.

3 The ternary discriminator is term-definable in D and all subalgebras
of D are rigid.

Foster 1953 [8] ; Foster, Pixley 1964 [9] ; Pixley 1971 [18]
2 / 49



Semi-primal lattice-expansions

Proposition

For a finite algebra D with bounded lattice reduct, t.f.a.e.:

1 D is semi-primal.

2 For every d ∈ D, the unary operation τd = χ{x≥d} is term-definable
and the unary operation T0 = χ{0} is term-definable.

For a finite algebra D with bounded residuated lattice reduct, t.f.a.e.:

1 D is semi-primal.

2 For every d ∈ D, the unary operation τd = χ{x≥d} is term-definable.

For the second part, note that we can define T0(x) = τe(x\0) where e is
the monoid unit of D.
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Semi-primal chains: Examples

• The Post chains Pn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,′ , 0, 1⟩.

P4 : 0 1
4

2
4

3
4 1

• The finite MV-chains

 Ln = ⟨{0, 1
n , . . . ,

n−1
n , 1},⊙,⊕,∧,∨,¬, 0, 1⟩.

• The finite  Lukasiewicz-Moisil chains

Mn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, 0, 1, (τd | d ∈ Mn)⟩.
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n−1
n , 1},⊙,⊕,∧,∨,¬, 0, 1⟩.

• The finite  Lukasiewicz-Moisil chains

Mn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, 0, 1, (τd | d ∈ Mn)⟩.

• The finite Cornish chains Cn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, f , 0, 1⟩.1

C4 : 0 1
4

2
4

3
4 1

1Davey, Gair 2017 [5]
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Semi-primal lattices: Examples (1)

FOUR = ⟨{t, f,⊤,⊥},∧,∨,⊗,⊕,¬,⊃, t, f⟩.

≤t

f

t

⊤ ⊥

≤k

⊥

⊤

t f

Figure: The truth-order ≤t and the knowledge-order ≤k .

U. Rivieccio’s PhD thesis
5 / 49



Semi-primal lattices: Examples (2)

• Residuated lattices, e.g.,

1

a

b

c = a2 d

ab

R6,2
1,11

1

a

b c

d = a2 = c2

ab = bc

R6,3
1,9

Notation from list of finite residuated lattices of size up to 6 by N. Galatos and P. Jipsen
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Semi-primal lattices: Examples (3)

• De Morgan monoids (with unit e) / Relevant algebras (without e)

0

e

a

1 = a2

C01
4

0

1 = a2

e a

D01
4

Moraschini, Raftery, Wannenburg 2019 [17]
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Semi-primal duality

Let D be semi-primal bounded lattice-expansion, A := HSP(D) = ISP(D).

There is a dual equivalence

StoneD A
Π′

Σ′

Definition (The category StoneD)

The category StoneD has objects (X , v) where X ∈ Stone and
v : X → S(D) is continuous w.r.t. the upset topology on S(D).
A morphism f : (X1, v1)→ (X2, v2) is a continuous map X1 → X2 with
v2(f (x)) ≤ v1(x) for all x ∈ X1.

Keimel, Werner 1974 [12] ; Clark, Davey 1998 [4]
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Dualities via categorical completions

SetωD Aω

SetD CAA

StoneD A

Set CABA

Stone BA

Setω BAω

Pro
Ind ProInd

Ind
Pro Ind

Pro
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The adjoint functors on the dual side

StoneD

Π′

--

UV⊤ V⊥

A
Σ′

mm

P S P⊥ S⊥

Stone
Π

-- BA
Σ

mm

Let U be the forgetful functor.
V⊤(X ) = (X , vD) where vD(x) = D for all x ∈ X .
V⊥(X ) = (X , vE) where v E(x) = E := ⟨0, 1⟩ for all x ∈ X .
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V⊥(X ) = (X , vE) where vE(x) = E := ⟨0, 1⟩ for all x ∈ X .
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The adjoint functors on the algebraic side

StoneD

Π′

--

U

��

AA

⊣V⊤

UU

V⊥⊣ ⊣ C⊥

��

A
Σ′

mm AA

⊢P S

��

UU

P⊥⊢ ⊢ S⊥

��
Stone

Π
-- BA

Σ

mm

These functors all have algebraic duals.
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These functors all have algebraic duals.
The dual of the forgetful functor U is the Boolean skeleton functor S.
The duals of V⊤ and V⊥ are certain Boolean power functors P and P⊥.
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Boolean skeletons

For every d ∈ D, the unary operation Td = χ{d} is term-definable in D.

Definition (Boolean skeleton)

The Boolean skeleton of A ∈ A is given by

S(A) = (S(A),∧,∨,T0, 0, 1),

where S(A) = {a ∈ A | T1(a) = a}.

Theorem

For every A ∈ A, there is a homeomorphism given by restriction
u 7→ u|S(A)

A(A,D) ∼= BA(S(A),222)

This defines a natural isomorphism UΣ′ ⇒ ΣS.

Maruyama 2012 [16]
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Boolean powers

Definition (Boolean power)

Let M be a finite algebra and B ∈ BA. The Boolean power M[B] consists
of all ξ : M → B which satisfy ξ(m1) ∧ ξ(m2) = 0 for m1 ̸= m2 and∨

m∈M ξ(m) = 1. If ◦ is some (for simplicity assume binary) operation of
M, define

(ξ ◦ ξ′)(m) =
∨

m1◦m2=m

ξ(m1) ∧ ξ(m2).

This turns M[B] into a member of HSP(M).

Theorem

The Boolean power functor P(B) = D[B] is right-adjoint to the Boolean
skeleton functor S.

Foster 1953 [8]
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The adjoint functors on the algebraic side (ctd.)

StoneD

Π′

--

U

��

AA

⊣V⊤

UU

V⊥⊣ ⊣ C⊥

��

A
Σ′

mm AA

⊢P S

��

UU

P⊥⊢ ⊢ S⊥

��
Stone

Π
-- BA

Σ

mm

So we have an algebraic description of the adjunction P ⊢ S.
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The subalgebra adjunctions

StoneD

Π′

--
HH

VS CS⊣

��

A
Σ′

mm HH

PS SS⊢

��
Stone

Π
-- BA

Σ

mm

For every S ∈ S(D) there is an adjunction VS ⊣ CS.
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Any (X , v) ∈ StoneD can be recovered from all VSCS(X , v) via the coend

(X , v) ∼=
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The subalgebra adjunctions

StoneD

Π′

--
HH

VS CS⊣

��

A
Σ′

mm HH

PS SS⊢

��
Stone

Π
-- BA

Σ

mm

Dually, any A ∈ A can be recovered from all PSSS(A) via the end

A ∼=
∫

S∈S(D)
PSSS(A).

15 / 49



Characterizing semi-primality

Theorem

Let M be a bounded lattice-based algebra with smallest subalgebra
E = ⟨0, 1⟩. Then M is semi-primal if and only if there exists a topological
adjunction

PM ⊢ s ⊢ PE.

BA

HSP(M)

sPM PE⊢ ⊢
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Characterizing semi-primality

Theorem

Let M be a bounded lattice-based algebra with smallest subalgebra
E = ⟨0, 1⟩. Then M is semi-primal if and only if there exists a topological
adjunction

PM ⊢ s ⊢ PE.

In particular, if M has no proper subalgebras this adjunction ‘collapses’ to
a categorical equivalence and we recover Hu’s Theorem.2

Corollary (Hu)

A variety is generated by a primal algebra if and only if it is categorically
equivalent to BA.

2Hu 1971 [11]
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Dualities via categorical completions (ctd.)

SetωD Aω
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StoneD A
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Discrete semi-primal duality

SetD CAA
Π′
dis

Σ′
dis

Definition (The category SetD)

The category SetD has objects (X , v) where X ∈ Set and v : X → S(D).
A morphism f : (X1, v1)→ (X2, v2) is a map f : X1 → X2 with
v2(f (x)) ≤ v1(x) for all x ∈ X .

Theorem

An algebra A ∈ A is a member of CAA if and only if its Boolean skeleton
S(A) is a member of CABA.
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Many-valued modal logic

Let D be a finite algebra of truth-degrees with bounded lattice reduct.

Modal formulas φ ∈ Form are constructed from propositional
variables p ∈ Prop, the connectives of D and modal operators □,♢.

Relational models are M = (W ,R,Val) with Val : W × Prop→ D.

Val is inductively extended to all formulas via the rules

Val(w ,□ψ) =
∧
{Val(w ′, ψ) | wRw ′},

Val(w ,♢ψ) =
∨
{Val(w ′, ψ) | wRw ′}.

We define M,w ⊩ φ iff Val(w , φ) = 1.

Recover classical modal logic if D = 2 ∈ BA.
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Examples from many-valued modal logic (1)

Let D be the (n + 1)-element finite MV-chain

 Ln = ⟨{0, 1
n , . . . ,

n−1
n , 1},⊙,⊕,∧,∨,¬, 0, 1⟩.

For every d ∈  Ln, the unary operation τd :  Ln →  Ln is term-definable in  Ln:

τd(x) =

{
1 if x ≥ d ,

0 if x ̸≥ d .

The algebraic counterpart of the corresponding modal logic:

Definition

A modal MVn-algebra is an algebra (A,□) with A ∈ MVn = HSP( Ln),

□(x ∧ y) = □x ∧□y and □1 = 1,

□τd(x) = τd(□x) for all d ∈  Ln\{0}.

Hansoul, Teheux 2013 [10] ; Bou, Esteva, Godo, Rodŕıguez 2011 [1]
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Examples from many-valued modal logic (2)

H = ⟨H,∧,∨,→ 0, 1, (Td | d ∈ H)⟩,

where ⟨H,∧,∨,→, 0, 1⟩ is a finite Heyting algebra expanded by unary

Td(x) =

{
1 if x = d ,

0 if x ̸= d .

Note that τd(x) =
∨
{Tc(x) | c ≥ d} are again term-definable in H.

The algebraic counterpart of the corresponding modal logic:

Definition

A modal H-algebra is an algebra (A,□) with A ∈ HSP(H),

□(x ∧ y) = □x ∧□y and □1 = 1,

□τd(x) = τd(□x) for all d ∈ H\{0}.

Maruyama 2009 [15]
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Examples from many-valued modal logic (3)

Let D be given by the (n + 1)-element  Lukasiewicz-Moisil chain

Mn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, 0, 1, (τd | d ∈ Mn)⟩.

where ¬ is the MV -negation and τd = χ{x≥d} similar to before.

The algebraic counterpart of the corresponding tense logic:

Definition

A tense  LMn-algebra is an algebra (A,G ,H) with A ∈  LMn = HSP(Mn),

G (x ∧ y) = Gx ∧ Gy and G 1 = 1,

H(x ∧ y) = Hx ∧ Hy and H1 = 1,

x ≤ GPx and x ≤ HFx ,

Gτd(x) = τd(Gx) for all d ∈ Mn\{0},
Hτd(x) = τd(Hx) for all d ∈ Mn\{0}.

Diaconescu, Georgescu 2007 [6]
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Algebras and Coalgebras

Let C be a category and let F: C→ C be an endofunctor.

α : F(A)→ A γ : X → F(X )

F-algebra F-coalgebra

Morphisms:

F(A1) A1 X1 F(X1)

F(A2) A2 X2 F(X2)

α1

Fh h

γ1

f Ff

α2 γ2

Gives rise to categories Alg(F) and Coalg(F).
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Jónsson-Tarski duality, coalgebraically

Stone BA
Π

Σ

Start with Stone duality Π: Stone→ BA (takes clopens) and
Σ: BA→ Stone (takes ultrafilters).

Kupke, Kurz, Venema 2003 [14]
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Jónsson-Tarski duality, coalgebraically

Stone BA δ : L□Π⇒ ΠV
Π

Σ
V L□

Start with Stone duality Π: Stone→ BA (takes clopens) and
Σ: BA→ Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of
coalgebras for the Vietoris functor V : Stone→ Stone.

The category of modal algebras is isomorphic to the category of algebras
for the functor L□ : BA→ BA which has a presentation by a unary
operation □ with equations □(x ∧ y) = □x ∧□y and □1 = 1.

Jónsson-Tarski duality: There is a natural isomorphism L□Π ∼= ΠV.

Kupke, Kurz, Venema 2003 [14]
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Classical modal logic, coalgebraically

Set BA
P

S
P L□

Begin with dual adjunction P: Set→ BA (takes powerset) and
S: BA→ Set (takes ultrafilters).

Kupke, Kurz, Pattinson 2004 [13]
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Classical modal logic, coalgebraically

Set BA δ : L□P⇒ PP
P

S
P L□

Begin with dual adjunction P: Set→ BA (takes powerset) and
S: BA→ Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras
for the (covariant) powerset functor P : Set→ Set.

The category of modal algebras is isomorphic to the category of algebras
for the functor L□ : BA→ BA as before.

Sending a Kripke frame to its complex algebra can be realized by a natural
transformation L□P⇒ PP.

Kupke, Kurz, Pattinson 2004 [13]
25 / 49



Abstract and concrete coalgebraic logics

X A
P

S
T L

Definition (Coalgebraic logic)

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X→ X be an endofunctor.

26 / 49
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X A δ : LP⇒ PT
P

S
T L

Definition (Coalgebraic logic)

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X→ X be an endofunctor.

1 An abstract coalgebraic logic for T is a pair (L, δ) consisting of an
endofunctor L: A→ A and a natural transformation δ : LP⇒ PT.

2 A concrete coalgebraic logic for T is a triple (L, δ,E ) consisting of an
abstract coalgebraic logic (L, δ) and a presentation E of L by
operations and equations.
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One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L, δ) for T is one-step complete if δ is a
monomorphism, i.e., every component of δ is injective.

For example, the abstract coalgebraic logic (L□, δ) for P is one-step
complete.

Definition (Expressivity)

An abstract coalgebraic logic (L, δ) for T is expressive if the
adjoint-transpose δ† is a component-wise monomorphism.

For example, the abstract coalgebraic logic (L□, δ) for Pfin is expressive.
This is also known as the Hennessy-Milner property.
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Lifting algebra-coalgebra dualities

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS SS

Suppose T and L are duals of each other. Define

(X , v) ∼=
∫ S

VSCS(X , v) and A ∼=
∫

S
PSSS(A).

Then T′ and L′ are duals of each other as well.
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Lifting algebra-coalgebra dualities

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS SS

V

V ′

L□

L′
□

For example, this can be used to obtain Maruyama’s [16] ‘semi-primal
version’ of Jónsson-Tarski duality as lifting of the ‘original’ Jónsson-Tarski
duality.
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Lifting algebra-coalgebra dualities

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS SS

N

N ′

L♡

L′
♡

It can also be used to obtain a ‘semi-primal version’ of Došen duality from
the ‘original’ one, described as algebra-coalgebra duality by Bezhanishvilis,
de Groot [2].
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Lifting abstract coalgebraic logics

Set BA

SetD A

⊣ ⊢

δ : LP⇒ PT
P

S

P′

S′

VS CS PS SS

T

T′

L

L′

Start with an abstract coalgebraic logic (L, δ) for T.
Similarly to before, we can lift T and L to T′ and L′.
Furthermore, we can define an appropriate δ′ from δ.
Thus we obtain a many-valued abstract coalgebraic logic (L′, δ′) for T′.
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How to obtain δ′ from δ

L′P′(X , v) =
∫
S(D)

PSLSSP′(X , v)

P′T′(X , v) =
∫
S(D)

P′VSTCS(X , v)

PSLSSP′(X , v)

P′VSTCS(X , v)

limit

limit

wedge

30 / 49



How to obtain δ′ from δ

L′P′(X , v) =
∫
S(D)

PSLSSP′(X , v)

P′T′(X , v) =
∫
S(D)

P′VSTCS(X , v)

PSLSSP′(X , v)

PSLPCS(X , v)

PSPTCS(X , v)

P′VSTCS(X , v)

limit

limit

∼=

∼=

wedge

30 / 49



How to obtain δ′ from δ

L′P′(X , v) =
∫
S(D)

PSLSSP′(X , v)

P′T′(X , v) =
∫
S(D)

P′VSTCS(X , v)

PSLSSP′(X , v)

PSLPCS(X , v)

PSPTCS(X , v)

P′VSTCS(X , v)

limit

limit

∼=

PSδCS

∼=

wedge

30 / 49



How to obtain δ′ from δ

L′P′(X , v) =
∫
S(D)

PSLSSP′(X , v)

P′T′(X , v) =
∫
S(D)

P′VSTCS(X , v)

PSLSSP′(X , v)

PSLPCS(X , v)

PSPTCS(X , v)

P′VSTCS(X , v)

limit

limit

∼=

PSδCS

∼=

wedge

30 / 49



How to obtain δ′ from δ

L′P′(X , v) =
∫
S(D)

PSLSSP′(X , v)

P′T′(X , v) =
∫
S(D)

P′VSTCS(X , v)

PSLSSP′(X , v)

PSLPCS(X , v)

PSPTCS(X , v)

P′VSTCS(X , v)

∃!δ′(X ,v)

limit

limit

∼=

PSδCS

∼=

wedge

30 / 49



Lifting abstract coalgebraic logics

Set BA

SetD A

⊣ ⊢

δ : LP⇒ PT

δ′ : L′P′ ⇒ P′T′

P

S

P′

S′

VS CS PS SS

T

T′

L

L′

Start with an abstract coalgebraic logic (L, δ) for T.
Similarly to before, we can lift T and L to T′ and L′.
Furthermore, we can define an appropriate δ′ from δ.

Thus we obtain a many-valued abstract coalgebraic logic (L′, δ′) for T′.

30 / 49



Lifting abstract coalgebraic logics

Set BA

SetD A

⊣ ⊢

δ : LP⇒ PT

δ′ : L′P′ ⇒ P′T′

P

S

P′

S′

VS CS PS SS

T

T′

L

L′

Start with an abstract coalgebraic logic (L, δ) for T.
Similarly to before, we can lift T and L to T′ and L′.
Furthermore, we can define an appropriate δ′ from δ.
Thus we obtain a many-valued abstract coalgebraic logic (L′, δ′) for T′.

30 / 49



One-step completeness and expressivity

Theorem

Let (L′, δ′) be the lifting of (L, δ) as defined on the previous slides.

1 If (L, δ) is one-step complete, then (L′, δ′) is one-step complete.

2 If (L, δ) is expressive, then (L′, δ′) is expressive.

3 If L has a presentation by operations and equations, then L′ has one.

Corollary

If (L, δ) is one-step complete/expressive, then so is (L′, δ⊤).

Set SetD A δ⊤ = δ′V⊤
VD

CD

P′

S′
T L′
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Lifting concrete coalgebraic logics (1)

τd(x) =

{
1 if x ≥ d

0 if x ̸≥ d .

Theorem

Let L: BA→ BA have a presentation by one unary operation □ and
equations which all hold in D if □ is replaced by any τd , including the
equation □(x ∧ y) = □x ∧□y .
Then L′ has a presentation by one unary operation □′ and the following
equations.

□′ satisfies all equations which the original □ satisfies,

□′τd(x) = τd(□′x) for all d ∈ D\{0}.
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Lifting concrete coalgebraic logics (2)

ηd(x) =

{
0 if x ≤ d

1 if x ̸≤ d .

Theorem

Let L: BA→ BA have a presentation by one unary operation ♢ and
equations which all hold in D if ♢ is replaced by any ηd , including the
equation ♢(x ∨ y) = ♢x ∨ ♢y .
Then L′ has a presentation by one unary operation ♢′ and the following
equations.

♢′ satisfies all equations which the original ♢ satisfies,

♢′ηd(x) = ηd(♢′x) for all d ∈ D\{1}.
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Many-valued modal logic as lifting of classical modal logic

The functor L□ has a presentation by □(x ∧ y) = □x ∧□y and □1 = 1.

Therefore, the functor L′
□ has a presentation by

□′(x∧y) = □′x∧□′y , □′1 = 1 and □′τd(x) = τd(□′x) for all d ∈ D\{0}.

(L□, δ) is (one-step) complete ⇒ (L′
□, δ

′) is (one-step) complete.

Replacing P by Pfin: (L□, δ) is expressive ⇒ (L′
□, δ

′) is expressive.

Set BA

SetD A

P

S

P′

S′

P

P ′

L□

L′
□
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Lifted semantics

Definition (SetD-frame & SetD-model)

A SetD-frame is a structure (W , v ,R) with v : X → S(D) and binary
relation R ⊆W 2 satisfying

wRw ′ ⇒ v(w ′) ⊆ v(w)

for all w ,w ′ ∈W .

A SetD-model adds a SetD-valuation
Val : W × Prop→ D which satisfies

Val(w , p) ∈ v(w)

for all w ∈W .

For example, if D =  L2 is the three-element MV-chain, the formula

♢(p ∨ ¬p)

is valid on a SetD-frame if and only if ∀w∃w ′ : wRw ′ ∧ v(w ′) = 2, while it
is not satisfied in any frame.
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Alternative axiomatizations: Some case studies (1)

If D =  Ln is a finite MV-chain, then L′
□ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊕ x) = □x ⊕□x ,

(B4) □(x ⊙ x) = □x ⊙□x .

If D is a finite bounded residuated lattice with τe (monoid unit e) and
truth-constants, then L′

□ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) τe(□x) = □τe(x),

(B4) □(r\x) = r\□x for all r ̸= 0.

In particular, if D is a finite FLew-algebra with truth-constants where only
0, 1 are idempotent, then L′

□ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊙ x) = □x ⊙□x ,

(B4) □(r→x) = r→□x all r ̸= 0.
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Alternative axiomatizations: Some case studies (2)

If D is a finite bi-Heyting algebra with truth-constants and with a unique
atom and coatom, then L′

□ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □
(
¬(1←x)

)
= ¬(1←□x),

(B4) □(b→x) = b→□x all b ̸= 0,

(P1) □(x ∨ y) ≤ □x ∨ ♢y ,

(D1) ♢0 = 0,

(D2) ♢(x ∨ y) = ♢x ∨ ♢y ,

(D3) ♢
(
1←(¬x)

)
= 1←(¬♢x),

(D4) ♢(x ← b) = ♢x ← b all b ̸= 1,

(P2) □x ∧ ♢y ≤ ♢(x ∧ y).
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Many-valued modal logic for crisp neighborhoods

The neighborhood functor N is the contravariant powerset functor
composed with itself. The functor L♡ has a presentation by one unary
operation ♡ and no equations.

(L♡, δ) is (one-step) complete ⇒ (L′
♡, δ

′) is (one-step) complete.

Replacing N by Nfin: (L♡, δ) is expressive ⇒ (L′
♡, δ

′) is expressive.

We don’t know a concrete presentation for L′
♡ yet, unless D is primal.

Set BA

SetD A

P

S

P′

S′

N

N ′

L♡

L′
♡
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Finite positive MV-chains

Definition (finite positive MV-chain)

Let n ≥ 1 be a natural number. The (n + 1)-element positive MV-chain is
given by

P Ln = ⟨{0, 1
n , . . .

n−1
n , 1},∧,∨,⊙,⊕, 0, 1⟩,

understood as a reduct of  Ln.
We write PMVn for the variety HSP(P Ln) generated by P Ln.

Proposition

1 PMVn = ISP(P Ln).

2 The subalgebras of P Ln coincide with those of  Ln (i.e., correspond to
divisors of n).

3 The unary terms τd = χ{x≥d} are still term-definable in P Ln.
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Natural duality for PMVn

Theorem

There is a (natural) duality between PMVn and a category Xn of Priestley
spaces with additional subrelations of the order.
An optimal dualising structure is determined by a subset Sn ⊆ S(≤).

Example (Dual category for PMV2)

In the case of the three-element chain P L2, we have S2 = {◁,≤} with

◁ = {(a, b) ∈ P L2
2 | a = 0 or b = 1}.

The members of X2 are of the form (X ,≤X ,◁X ) and need to satisfy an
additional separation property:
If x ⋪X y but x ≤X y , then there exist a clopen upset U and a clopen
downset D with the following properties

x /∈ D and y /∈ U,

For all z , z ′ ∈ X , if z ◁X z ′ then z ∈ D or z ′ ∈ U.
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Distributive skeletons

Priest DL

Xn PMVn

U

There again is a forgetful functor U.
Its dual is given by the distributive skeleton S defined analogously to the
Boolean skeleton.

PMVn(A,P Ln) ∼= DL(S(A),222) via restriction p 7→ p|S(A).
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Introduction to positive modal logic

Positive modal logic: The {∧,∨, 0, 1,□,♢}-reduct of standard modal
logic. Algebraically, move to modal distributive lattices (L,□,♢) with

(B1) □1 = 1,
(B2) □(x ∧ y) = □x ∧□y ,
(P1) □(x ∨ y) ≤ □x ∨ ♢y ,

(D1) ♢0 = 0,
(D2) ♢(x ∨ y) = ♢x ∨ ♢y ,
(P2) □x ∧ ♢y ≤ ♢(x ∧ y).

Shortcomings of ‘usual’ semantics over Set-frames. E.g., the
consequence pairs

□p ⊢ p and p ⊢ ♢p

define the same class of frames but are not mutually inter-derivable
anymore.

Better-behaved semantics over Pos-frames (X ,≤,R) adding a partial
order. Now the above correspond to the distinct classes with reflexive

R□ := R ◦ ≤ and R♢ := R ◦ ≥

Dunn 1995 [7] ; Celani, Jansana 1997 [3]
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(P1) □(x ∨ y) ≤ □x ∨ ♢y ,

(D1) ♢0 = 0,
(D2) ♢(x ∨ y) = ♢x ∨ ♢y ,
(P2) □x ∧ ♢y ≤ ♢(x ∧ y).

Shortcomings of ‘usual’ semantics over Set-frames. E.g., the
consequence pairs

□p ⊢ p and p ⊢ ♢p

define the same class of frames but are not mutually inter-derivable
anymore.

Better-behaved semantics over Pos-frames (X ,≤,R) adding a partial
order. Now the above correspond to the distinct classes with reflexive

R□ := R ◦ ≤ and R♢ := R ◦ ≥
Dunn 1995 [7] ; Celani, Jansana 1997 [3]
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Positive modal logic over finite MV-chains: Semantics

Signature L□♢
PMV = {∧,∨,⊕,⊙, 0, 1,□,♢}, inductively define formulas

Form□♢
PMV (with countable set of propositional variables Prop) as usual.

Definition (Posn-frame & Posn-model)

A Posn-frame is a structure (X ,≤, v ,R) such that v : X → S(P Ln) and
the accessibility relation satisfies the compatibility conditions

For all x , y ∈ X it holds that

x ≤ y ⇒ R[x ] ≤EM R[y ].

Whenever x , y ∈ X satisfy y ∈ R[x ], there exist y ′, y ′′ ∈ R[x ] with

y ′ ≤ y ≤ y ′′ and v(y ′), v(y ′′) ⊆ v(x).

A Posn-model adds a valuation Val : X × Prop→ P Ln satisfying

If x ≤ y , then Val(x , p) ≤ Val(y , p) for all p ∈ Prop.

Val(x , p) ∈ v(x) for all x ∈ X and p ∈ Prop.
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Positive modal logic over finite MV-chains: Algebras

Definition (Modal PMVn-algebras)

A modal PMVn-algebra is an algebra ⟨A,□,♢⟩, where A ∈ PMVn and
□,♢ : A→ A satisfy

B1 □1 = 1,

B2 □(x ∧ y) = □x ∧□y ,

B3 τd(□x) = □τd(x),

P1 □(x ∨ y) ≤ □x ∨ ♢y ,

D1 ♢0 = 0,

D2 ♢(x ∨ y) = ♢x ∨ ♢y ,

D3 τd(♢x) = ♢τd(x),

P2 □x ∧ ♢y ≤ ♢(x ∧ y).

We denote the variety of modal PMVn-algebras by mPMVn.

The axioms B3 and D3 can be equivalently replaced by

B⊕ □(x ⊕ x) = □x ⊕□x ,

B⊙ □(x ⊙ x) = □x ⊙□x ,

D⊕ ♢(x ⊕ x) = ♢x ⊕ ♢x ,

D⊙ ♢(x ⊙ x) = ♢x ⊙ ♢x .
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Algebraic completeness

Theorem

Let φ,ψ ∈ Form□♢
PMV be modal PMV-formulas. Then the following are

equivalent.

1 φ ⊢ ψ is valid on all Posn-frames.

2 φ ⊢ ψ is valid on all Set-frames.

3 mPMVn |= φ ≤ ψ.

The additional ‘richness’ of the semantics over Posn-frames plays a role
when it comes to axiomatic extensions, definability and canonicity.
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A case study in canonicity

In modal logic over  Ln (i.e., with negation), the formulas

□(x ⊕ x)→ □x and ♢(x ⊕ x)→ ♢x

both define the Setn-frames (X , v ,R) which satisfy xRy ⇒ v(y) = P L1.
The former is canonical3, so the latter is derivable from it.

In modal logic over P Ln, this is not the case anymore. The semantics over
Posn reflect this as for any Posn-frame F we have:

1 The consequence pair □(p ⊕ p) ⊢ □p is valid in F if and only if F
satisfies

∀x∀y :
(
xRy → ∃y ′ : (xRy ′ ∧ y ′ ≤ y ∧ v(y ′) = P L1)

)
.

2 The consequence pair ♢(p ⊕ p) ⊢ ♢p is valid in F if and only if F
satisfies

∀x∀y :
(
xRy → ∃y ′′ : (xRy ′′ ∧ y ≤ y ′′ ∧ v(y ′′) = P L1)

)
.

3Hansoul, Teheux 2013 [10]
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Quasi-primal = Finite discriminator algebras
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Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Or even arbitrary finite lattice-based algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Or even arbitrary finite lattice-based algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Or even arbitrary finite lattice-based algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Or even arbitrary finite lattice-based algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Or even arbitrary finite lattice-based algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Or even arbitrary finite lattice-based algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Probabilistic Logic

Propositional Dynamic Logic, Linear Temporal Logic, etc.

48 / 49



The end

Thanks for your attention!

https://xkcd.com/1403/
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[1] Bou, F., Esteva, F., Godo, L., Rodŕıguez, R. O.: On the minimum many-valued modal
logic over a finite residuated lattice. Journal of Logic and Computation 21, 739–790
(2011) doi:10.1093/logcom/exp062

[2] Bezhanishvili, G., Bezhanishvili, N., de Groot, J.: A Coalgebraic Approach to Dualities for
Neighborhood Frames. Logical Methods in Computer Science 18, 4:1–4:39 (2022)
doi:10.46298/lmcs-18(3:4)2022

[3] Celani S., Jansana, R.: A New Semantics for Positive Modal Logic. Notre Dame Journal
of Formal Logic 38, 1-18 (1997) doi:10.1305/ndjfl/1039700693

[4] Clark, D. M., Davey, B. A.: Natural Dualities for the Working Algebraist. Cambridge
studies in advanced mathematics, vol. 57. Cambridge University Press (1998)

[5] Davey, B. A., Gair, A.: Restricted Prietley dualities and discriminator varieties. Studia
Logica 105, 843–872 (2017) doi:10.1007/s11225-017-9713-4

[6] Diaconescu, D., Georgescu, G.: Tense operators on MV-algebras and  Lukasiewicz-Moisil
algebras. Fundamenta Informaticae 81, 379–408 (2007)

[7] Dunn, J. M.: Positive Modal Logic. Studia Logica 55, 301-317 (1995)
doi:10.1007/BF01061239

[8] Foster, A. L.: Generalized “Boolean” theory of universal algebras. Part I. Mathematische
Zeitschrift 58, 306–336 (1953) doi:10.1007/BF01174150

49 / 49

https://doi.org/10.1093/logcom/exp062
https://doi.org/10.46298/lmcs-18(3:4)2022
https://doi.org/10.1305/ndjfl/1039700693
https://doi.org/10.1007/s11225-017-9713-4
https://doi.org/10.1007/BF01061239
https://doi.org/10.1007/BF01174150


References II

[9] Foster, A. L., Pixley, A. F.: Semi-categorical algebras. I. Semi-primal algebras.
Mathematische Zeitschrift 83, 147–169 (1964) doi:10.1007/BF01111252

[10] Hansoul, G., Teheux, B.: Extending  Lukasiewicz logics with a modality: Algebraic
approach to relational semantics. Studia Logica 101, 505–545 (2013)
doi:10.1007/s11225-012-9396-9

[11] Hu, T.-K.: On the topological duality for primal algebra theory. Algebra Universalis 1,
152–154 (1971) doi:10.1007/BF02944971

[12] Keimel, K., Werner, H.: Stone duality for varieties generated by quasi-primal algebras.
Memoirs of the American Mathematical Society 148, 59–85 (1974)

[13] Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. Electronic
Notes in Theoretical Computer Science 106, 219–241 (2004)
doi:10.1016/j.entcs.2004.02.037

[14] Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoretical Computer Science 327,
109–134 (2003) doi:10.1016/S1571-0661(04)80638-8

[15] Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal logic. In:
Ramanujam, R., Sarukkai, S. (eds) Logic and Its Applications. ICLA, 170–184. Springer,
Berlin Heidelberg (2009) doi:10.1007/978-3-540-92701-3_12

49 / 49

https://doi.org/10.1007/BF01111252
https://doi.org/10.1007/s11225-012-9396-9
https://doi.org/10.1007/BF02944971
https://doi.org/10.1016/j.entcs.2004.02.037
https://doi.org/10.1016/S1571-0661(04)80638-8
https://doi.org/10.1007/978-3-540-92701-3_12


References III

[16] Maruyama, Y.: Natural duality, modality, and coalgebra. Journal of Pure and Applied
Algebra 216, 565–580 (2012) doi:10.1016/j.jpaa.2011.07.002

[17] Moraschini, T., Raftery, J. G., Wanneburg, J. J.: Varieties of De Morgan monoids:
Minimality and irreducible algebras. Journal of Pure and Applied Algebra 227, 2780-2803
(2019) doi:10.1016/j.jpaa.2018.09.015

[18] Pixley, A. F.: The ternary discriminator in universal algebra. Mathematische Annalen 191,
167–180 (1971) doi:doi:10.1016/0012-365X(79)90096-7

49 / 49

https://doi.org/10.1016/j.jpaa.2011.07.002
https://doi.org/10.1016/j.jpaa.2018.09.015
https://doi.org/doi:10.1016/0012-365X(79)90096-7

	Perspectives on semi-primal varieties   beamericonarticle A. Kurz, W.P., B. Teheux: New perspectives on semi-primal varieties. Journal of Pure and Applied Algebra 228(4), 107525, 2024. doi: 10.1016/j.jpaa.2023.107525
	Many-valued coalgebraic logic: From Boolean algebras to semi-primal varieties   beamericonarticle A. Kurz, W.P., B. Teheux: Many-valued coalgebraic logic over semi-primal varieties. To appear in: Logical Methods in Computer Science (LMCS),   2024. https://arxiv.org/abs/2308.14581   beamericonarticle A. Kurz, W.P.: Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties. CALCO, 2023. doi: 10.4230/LIPIcs.CALCO.2023.17
	Many-valued positive modal logic over finite MV-chains   beamericonarticle W.P.: Positive modal logic over finite MV-chains. To appear in: Advances in Modal Logic (AiML), 2024.   beamericonarticle W.P.: Natural dualities for varieties generated by finite positive MV-chains. To appear in: Algebra Universalis, 2024. https://arxiv.org/abs/2309.16998

