

Algebraic and coalgebraic modal logic: From Boolean algebras to semi-primal varieties

Wolfgang Poiger

Doctoral Defense

Belval, Luxembourg - June 28, 2024

Table of Contents

1 Perspectives on semi-primal varieties

- A. Kurz, W.P., B. Teheux: *New perspectives on semi-primal varieties*. Journal of Pure and Applied Algebra **228**(4), 107525, 2024. doi: [10.1016/j.jpaa.2023.107525](https://doi.org/10.1016/j.jpaa.2023.107525)

2 Many-valued coalgebraic logic: From Boolean algebras to semi-primal varieties

- A. Kurz, W.P., B. Teheux: *Many-valued coalgebraic logic over semi-primal varieties*. To appear in: Logical Methods in Computer Science (LMCS), 2024. <https://arxiv.org/abs/2308.14581>

- A. Kurz, W.P.: *Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties*. CALCO, 2023. doi: [10.4230/LIPIcs.CALCO.2023.17](https://doi.org/10.4230/LIPIcs.CALCO.2023.17)

3 Many-valued positive modal logic over finite MV-chains

- W.P.: *Positive modal logic over finite MV-chains*. To appear in: Advances in Modal Logic (AiML), 2024.

- W.P.: *Natural dualities for varieties generated by finite positive MV-chains*. To appear in: Algebra Universalis, 2024. <https://arxiv.org/abs/2309.16998>

Table of Contents

1 Perspectives on semi-primal varieties

 A. Kurz, W.P., B. Teheux: *New perspectives on semi-primal varieties*. Journal of Pure and Applied Algebra **228**(4), 107525, 2024. doi: [10.1016/j.jpaa.2023.107525](https://doi.org/10.1016/j.jpaa.2023.107525)

2 Many-valued coalgebraic logic: From Boolean algebras to semi-primal varieties

 A. Kurz, W.P., B. Teheux: *Many-valued coalgebraic logic over semi-primal varieties*. To appear in: Logical Methods in Computer Science (LMCS), 2024. <https://arxiv.org/abs/2308.14581>

 A. Kurz, W.P.: *Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties*. CALCO, 2023. doi: [10.4230/LIPIcs.CALCO.2023.17](https://doi.org/10.4230/LIPIcs.CALCO.2023.17)

3 Many-valued positive modal logic over finite MV-chains

 W.P.: *Positive modal logic over finite MV-chains*. To appear in: Advances in Modal Logic (AiML), 2024.

 W.P.: *Natural dualities for varieties generated by finite positive MV-chains*. To appear in: Algebra Universalis, 2024. <https://arxiv.org/abs/2309.16998>

Semi-primal algebras

Definition (Primal algebra)

An algebra \mathbf{D} is *primal* if every operation $f: D^k \rightarrow D$ with $k \geq 1$ is term-definable in \mathbf{D} .

Semi-primal algebras

Definition (Semi-primal algebra)

An algebra \mathbf{D} is *semi-primal* if every operation $f: D^k \rightarrow D$ with $k \geq 1$ which preserves subalgebras is term-definable in \mathbf{D} .

Semi-primal algebras

Definition (Semi-primal algebra)

An algebra \mathbf{D} is *semi-primal* if every operation $f: D^k \rightarrow D$ with $k \geq 1$ which preserves subalgebras is term-definable in \mathbf{D} .

Theorem

For a finite algebra \mathbf{D} , t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② The variety $\text{HSP}(\mathbf{D})$ is arithmetical (i.e., congruence-distributive and -permutable) and all subalgebras of \mathbf{D} are simple and rigid.

Semi-primal algebras

Definition (Semi-primal algebra)

An algebra \mathbf{D} is *semi-primal* if every operation $f: D^k \rightarrow D$ with $k \geq 1$ which preserves subalgebras is term-definable in \mathbf{D} .

Theorem

For a finite algebra \mathbf{D} , t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② The variety $\text{HSP}(\mathbf{D})$ is arithmetical (i.e., congruence-distributive and -permutable) and all subalgebras of \mathbf{D} are simple and rigid.
- ③ The ternary discriminator is term-definable in \mathbf{D} and all subalgebras of \mathbf{D} are rigid.

Proposition

For a finite algebra \mathbf{D} with bounded lattice reduct, t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② For every $d \in D$, the unary operation $\tau_d = \chi_{\{x \geq d\}}$ is term-definable and the unary operation $T_0 = \chi_{\{0\}}$ is term-definable.

Semi-primal lattice-expansions

Proposition

For a finite algebra \mathbf{D} with bounded lattice reduct, t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② For every $d \in D$, the unary operation $\tau_d = \chi_{\{x \geq d\}}$ is term-definable and the unary operation $T_0 = \chi_{\{0\}}$ is term-definable.

For a finite algebra \mathbf{D} with bounded *residuated* lattice reduct, t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② For every $d \in D$, the unary operation $\tau_d = \chi_{\{x \geq d\}}$ is term-definable.

Semi-primal lattice-expansions

Proposition

For a finite algebra \mathbf{D} with bounded lattice reduct, t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② For every $d \in D$, the unary operation $\tau_d = \chi_{\{x \geq d\}}$ is term-definable and the unary operation $T_0 = \chi_{\{0\}}$ is term-definable.

For a finite algebra \mathbf{D} with bounded *residuated* lattice reduct, t.f.a.e.:

- ① \mathbf{D} is semi-primal.
- ② For every $d \in D$, the unary operation $\tau_d = \chi_{\{x \geq d\}}$ is term-definable.

For the second part, note that we can define $T_0(x) = \tau_e(x \setminus 0)$ where e is the monoid unit of \mathbf{D} .

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, ', 0, 1 \rangle$.

$$\mathbf{P}_4 : \quad 0 \xrightarrow{\quad} \frac{1}{4} \xrightarrow{\quad} \frac{2}{4} \xrightarrow{\quad} \frac{3}{4} \xrightarrow{\quad} 1$$

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, ', 0, 1 \rangle$.

$$\mathbf{P}_4 : \quad 0 \xrightarrow{\quad} \frac{1}{4} \xrightarrow{\quad} \frac{2}{4} \xrightarrow{\quad} \frac{3}{4} \xrightarrow{\quad} 1$$

- The finite MV-chains

$$\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \odot, \oplus, \wedge, \vee, \neg, 0, 1 \rangle.$$

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, ', 0, 1 \rangle$.

$$\mathbf{P}_4 : \quad 0 \xrightarrow{\quad} \frac{1}{4} \xrightarrow{\quad} \frac{2}{4} \xrightarrow{\quad} \frac{3}{4} \xrightarrow{\quad} 1$$

- The finite MV-chains

$$\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \odot, \oplus, \wedge, \vee, \neg, 0, 1 \rangle.$$

- The finite Łukasiewicz-Moisil chains

$$\mathbf{M}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \neg, 0, 1, (\tau_d \mid d \in M_n) \rangle.$$

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, ', 0, 1 \rangle$.

$$\mathbf{P}_4 : \quad 0 \xrightarrow{\quad} \frac{1}{4} \xrightarrow{\quad} \frac{2}{4} \xrightarrow{\quad} \frac{3}{4} \xrightarrow{\quad} 1$$

- The finite MV-chains

$$\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \odot, \oplus, \wedge, \vee, \neg, 0, 1 \rangle.$$

- The finite Łukasiewicz-Moisil chains

$$\mathbf{M}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \neg, 0, 1, (\tau_d \mid d \in M_n) \rangle.$$

- The finite Cornish chains $\mathbf{C}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \neg, f, 0, 1 \rangle$.¹

$$\mathbf{C}_4 : \quad [0 \xrightarrow{\quad} \frac{1}{4} \xrightarrow{\quad} \frac{2}{4} \xrightarrow{\quad} \frac{3}{4} \xrightarrow{\quad} 1]$$

¹Davey, Gair 2017 [5]

Semi-primal lattices: Examples (1)

$$\mathbf{FOUR} = \langle \{t, f, \top, \perp\}, \wedge, \vee, \otimes, \oplus, \neg, \supset, t, f \rangle.$$

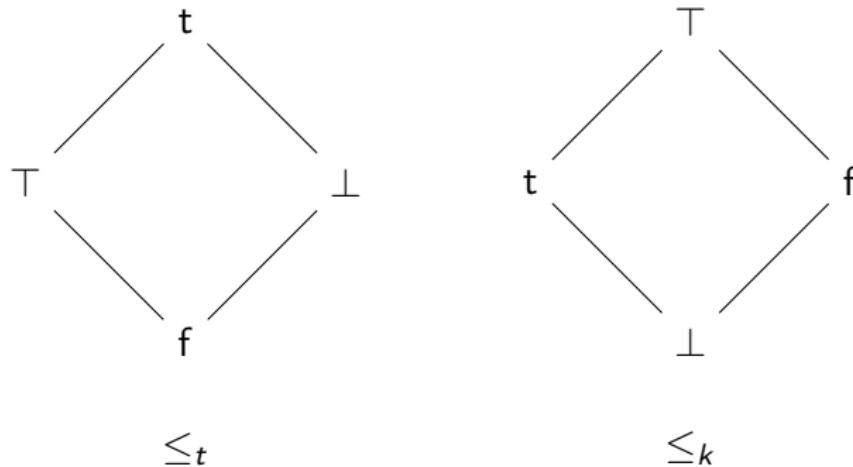
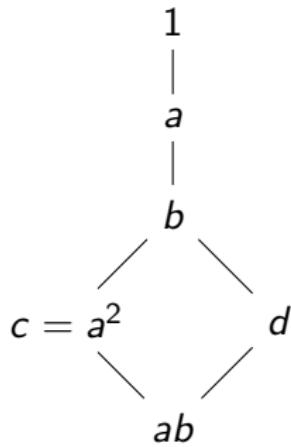


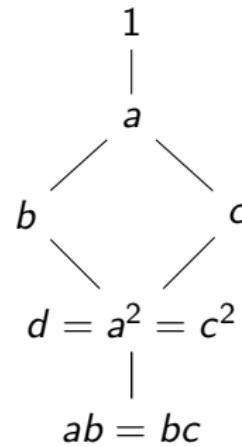
Figure: The truth-order \leq_t and the knowledge-order \leq_k .

Semi-primal lattices: Examples (2)

- Residuated lattices, e.g.,



$$\mathbf{R}_{1,11}^{6,2}$$

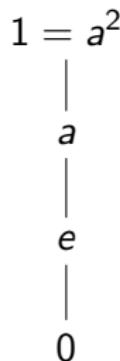
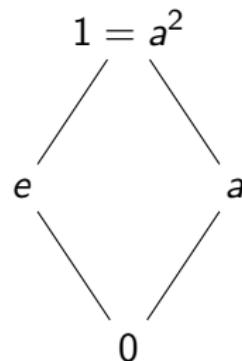


$$\mathbf{R}_{1,9}^{6,3}$$

Notation from list of finite residuated lattices of size up to 6 by N. Galatos and P. Jipsen

Semi-primal lattices: Examples (3)

- De Morgan monoids (with unit e) / Relevant algebras (without e)



\mathbf{C}_4^{01}

\mathbf{D}_4^{01}

Semi-primal duality

Let \mathbf{D} be semi-primal bounded lattice-expansion, $\mathcal{A} := \mathbb{HSP}(\mathbf{D}) = \mathbb{ISP}(\mathbf{D})$.

There is a dual equivalence

$$\text{Stone}_{\mathbf{D}} \begin{array}{c} \xrightarrow{\Pi'} \\ \xleftarrow{\Sigma'} \end{array} \mathcal{A}$$

Semi-primal duality

Let \mathbf{D} be semi-primal bounded lattice-expansion, $\mathcal{A} := \mathbb{HSP}(\mathbf{D}) = \mathbb{ISP}(\mathbf{D})$.

There is a dual equivalence

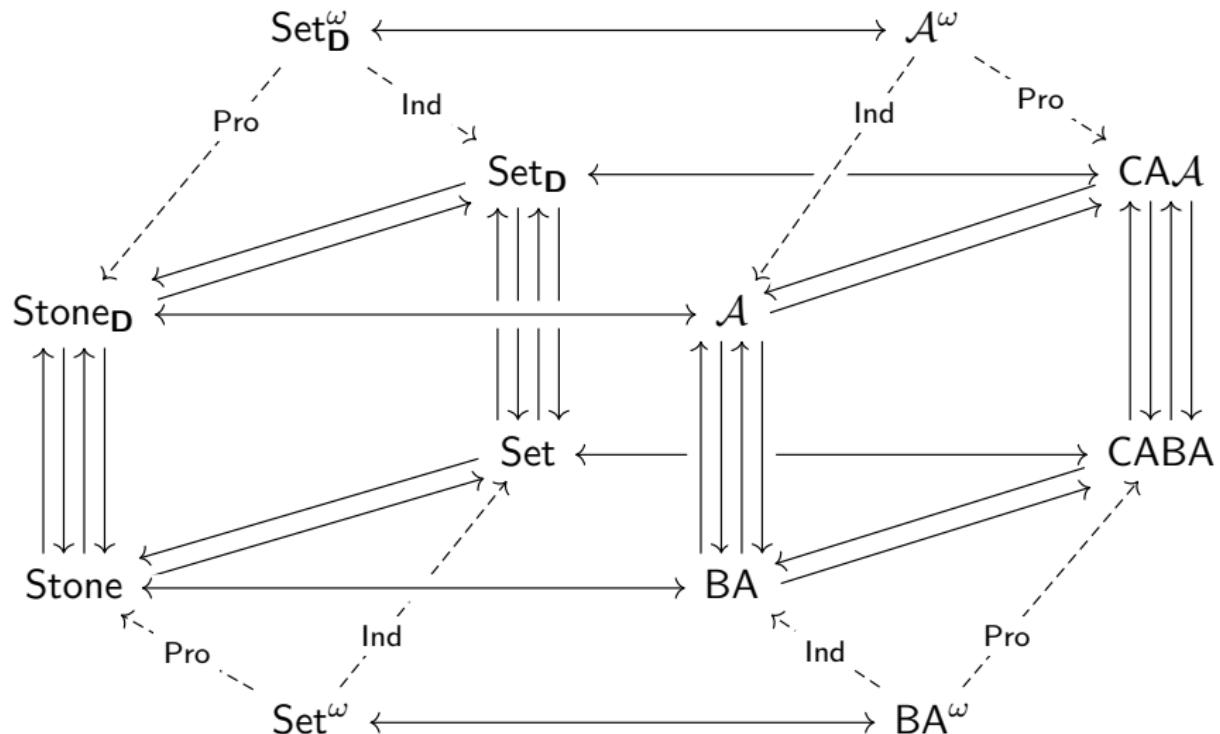
$$\text{Stone}_{\mathbf{D}} \begin{array}{c} \xrightleftharpoons[\Sigma']{\Pi'} \\ \xrightleftharpoons[\Sigma']{\Pi'} \end{array} \mathcal{A}$$

Definition (The category $\text{Stone}_{\mathbf{D}}$)

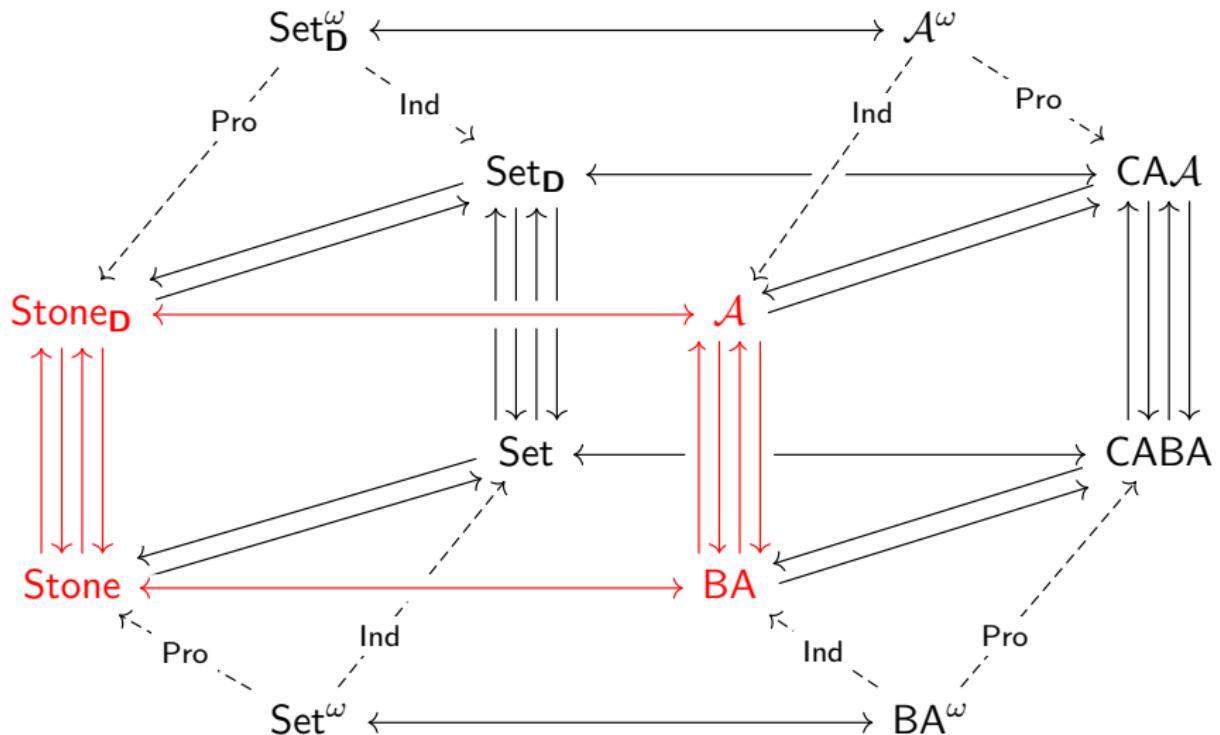
The category $\text{Stone}_{\mathbf{D}}$ has objects (X, \mathbf{v}) where $X \in \text{Stone}$ and $\mathbf{v}: X \rightarrow \mathbb{S}(\mathbf{D})$ is continuous w.r.t. the upset topology on $\mathbb{S}(\mathbf{D})$.

A morphism $f: (X_1, \mathbf{v}_1) \rightarrow (X_2, \mathbf{v}_2)$ is a continuous map $X_1 \rightarrow X_2$ with $\mathbf{v}_2(f(x)) \leq \mathbf{v}_1(x)$ for all $x \in X_1$.

Dualities via categorical completions



Dualities via categorical completions

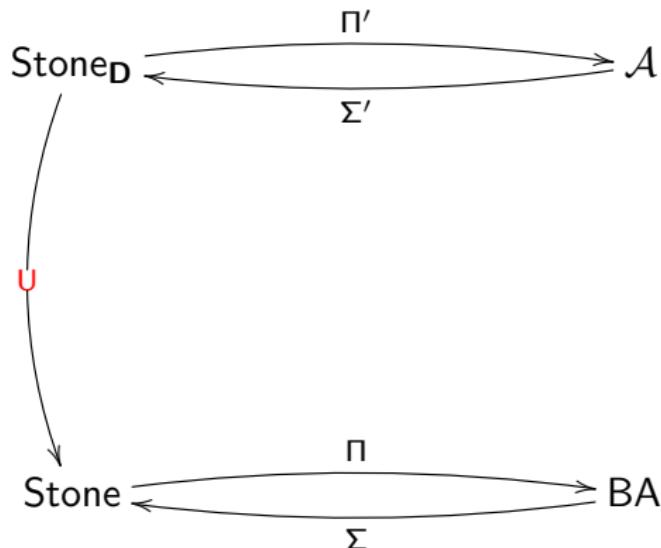


The adjoint functors on the dual side

$$\text{Stone}_{\mathbf{D}} \begin{array}{c} \xrightarrow{\Pi'} \\ \xleftarrow{\Sigma'} \end{array} \mathcal{A}$$

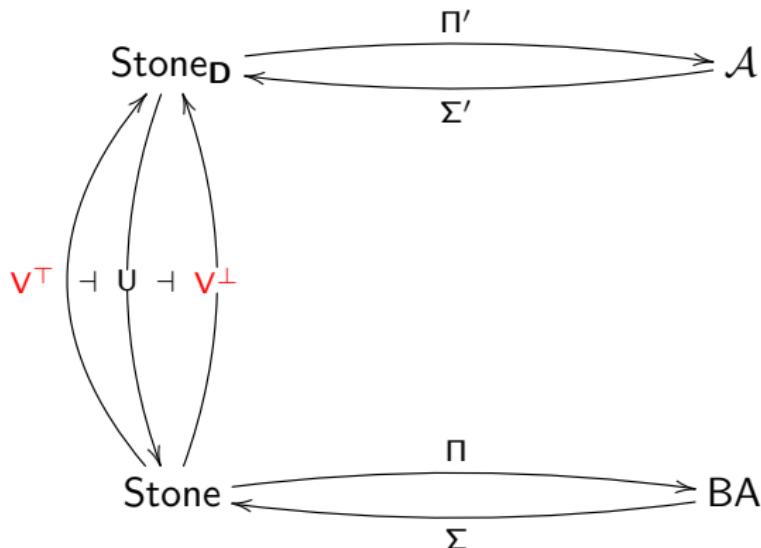
$$\text{Stone} \begin{array}{c} \xrightarrow{\Pi} \\ \xleftarrow{\Sigma} \end{array} \text{BA}$$

The adjoint functors on the dual side



Let **U** be the the forgetful functor.

The adjoint functors on the dual side

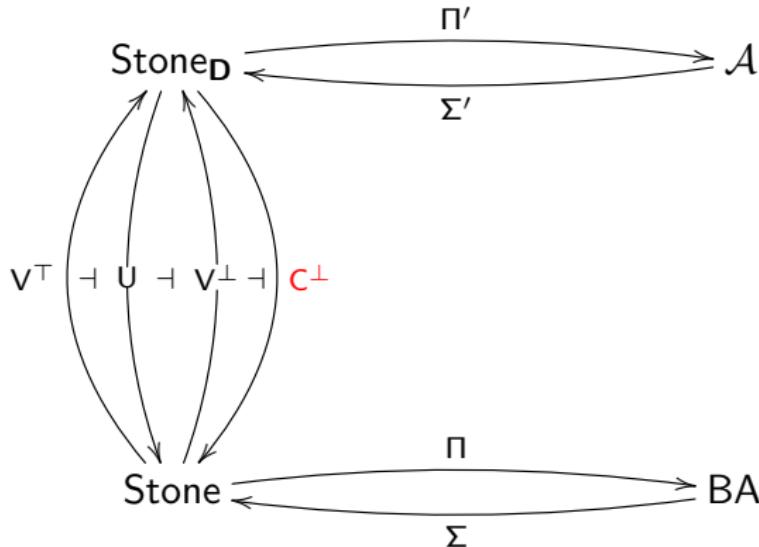


Let U be the forgetful functor.

$V^\top(X) = (X, v^D)$ where $v^D(x) = D$ for all $x \in X$.

$V^\perp(X) = (X, v^E)$ where $v^E(x) = E := \langle 0, 1 \rangle$ for all $x \in X$.

The adjoint functors on the dual side



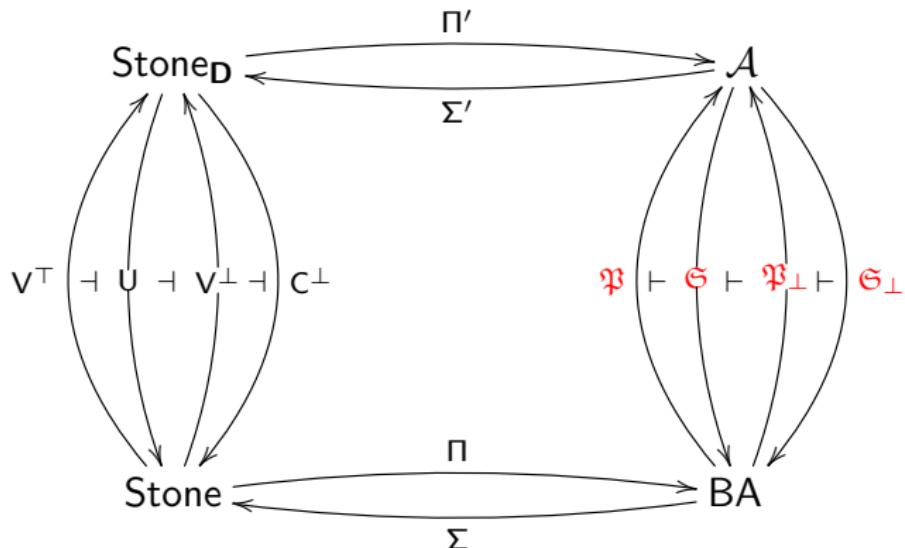
Let U be the forgetful functor.

$V^T(X) = (X, \mathbf{v}^{\mathbf{D}})$ where $\mathbf{v}^{\mathbf{D}}(x) = \mathbf{D}$ for all $x \in X$.

$V^\perp(X) = (X, \mathbf{v}^{\mathbf{E}})$ where $\mathbf{v}^{\mathbf{E}}(x) = \mathbf{E} := \langle 0, 1 \rangle$ for all $x \in X$.

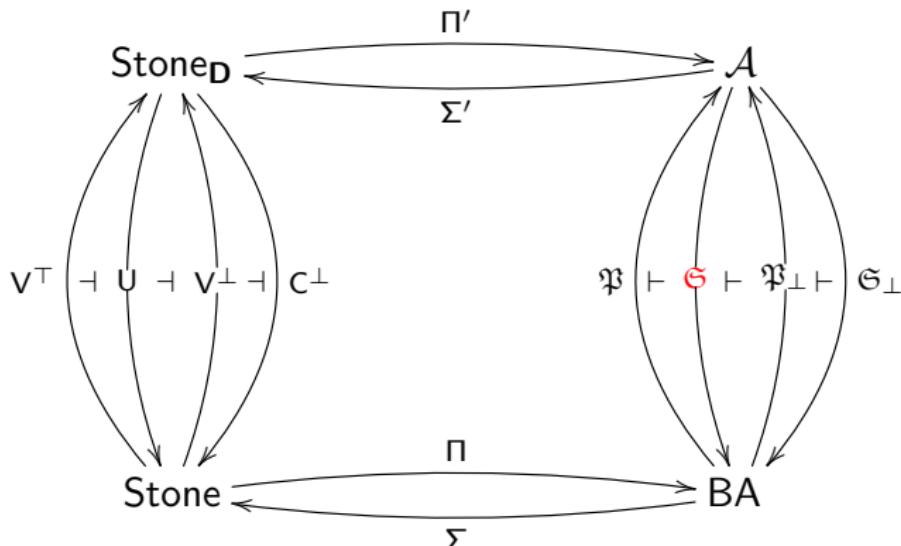
$C^\perp(X, \mathbf{v}) = \{x \in X \mid \mathbf{v}(x) = \mathbf{E}\}$.

The adjoint functors on the algebraic side



These functors all have **algebraic duals**.

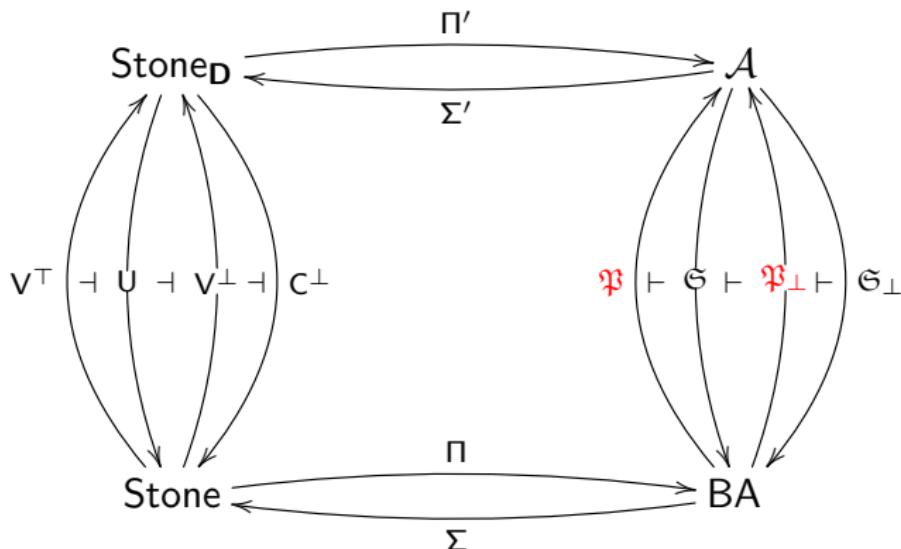
The adjoint functors on the algebraic side



These functors all have algebraic duals.

The dual of the forgetful functor U is the **Boolean skeleton** functor \mathfrak{S} .

The adjoint functors on the algebraic side



These functors all have algebraic duals.

The dual of the forgetful functor U is the Boolean skeleton functor \mathfrak{S} .

The duals of V^\top and V^\perp are certain Boolean power functors \mathfrak{P} and \mathfrak{P}_\perp .

Boolean skeletons

For every $d \in D$, the unary operation $T_d = \chi_{\{d\}}$ is term-definable in \mathbf{D} .

Definition (Boolean skeleton)

The *Boolean skeleton* of $\mathbf{A} \in \mathcal{A}$ is given by

$$\mathfrak{S}(\mathbf{A}) = (\mathfrak{S}(A), \wedge, \vee, T_0, 0, 1),$$

where $\mathfrak{S}(A) = \{a \in A \mid T_1(a) = a\}$.

Boolean skeletons

For every $d \in D$, the unary operation $T_d = \chi_{\{d\}}$ is term-definable in \mathbf{D} .

Definition (Boolean skeleton)

The *Boolean skeleton* of $\mathbf{A} \in \mathcal{A}$ is given by

$$\mathfrak{S}(\mathbf{A}) = (\mathfrak{S}(A), \wedge, \vee, T_0, 0, 1),$$

where $\mathfrak{S}(A) = \{a \in A \mid T_1(a) = a\}$.

Theorem

For every $\mathbf{A} \in \mathcal{A}$, there is a homeomorphism given by restriction
 $u \mapsto u|_{\mathfrak{S}(\mathbf{A})}$

$$\mathcal{A}(\mathbf{A}, \mathbf{D}) \cong \text{BA}(\mathfrak{S}(\mathbf{A}), \mathbf{2})$$

This defines a natural isomorphism $U\Sigma' \Rightarrow \Sigma\mathfrak{S}$.

Boolean powers

Definition (Boolean power)

Let \mathbf{M} be a finite algebra and $\mathbf{B} \in \text{BA}$. The *Boolean power* $\mathbf{M}[\mathbf{B}]$ consists of all $\xi: M \rightarrow B$ which satisfy $\xi(m_1) \wedge \xi(m_2) = 0$ for $m_1 \neq m_2$ and $\bigvee_{m \in M} \xi(m) = 1$. If \circ is some (for simplicity assume binary) operation of \mathbf{M} , define

$$(\xi \circ \xi')(m) = \bigvee_{m_1 \circ m_2 = m} \xi(m_1) \wedge \xi(m_2).$$

This turns $\mathbf{M}[\mathbf{B}]$ into a member of $\text{HSP}(\mathbf{M})$.

Boolean powers

Definition (Boolean power)

Let \mathbf{M} be a finite algebra and $\mathbf{B} \in \text{BA}$. The *Boolean power* $\mathbf{M}[\mathbf{B}]$ consists of all $\xi: M \rightarrow B$ which satisfy $\xi(m_1) \wedge \xi(m_2) = 0$ for $m_1 \neq m_2$ and $\bigvee_{m \in M} \xi(m) = 1$. If \circ is some (for simplicity assume binary) operation of \mathbf{M} , define

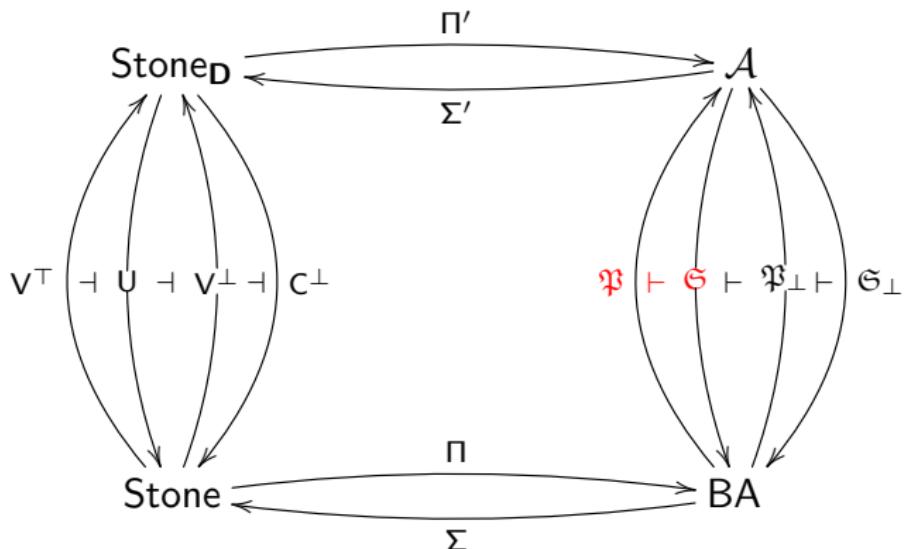
$$(\xi \circ \xi')(m) = \bigvee_{m_1 \circ m_2 = m} \xi(m_1) \wedge \xi(m_2).$$

This turns $\mathbf{M}[\mathbf{B}]$ into a member of $\text{HSP}(\mathbf{M})$.

Theorem

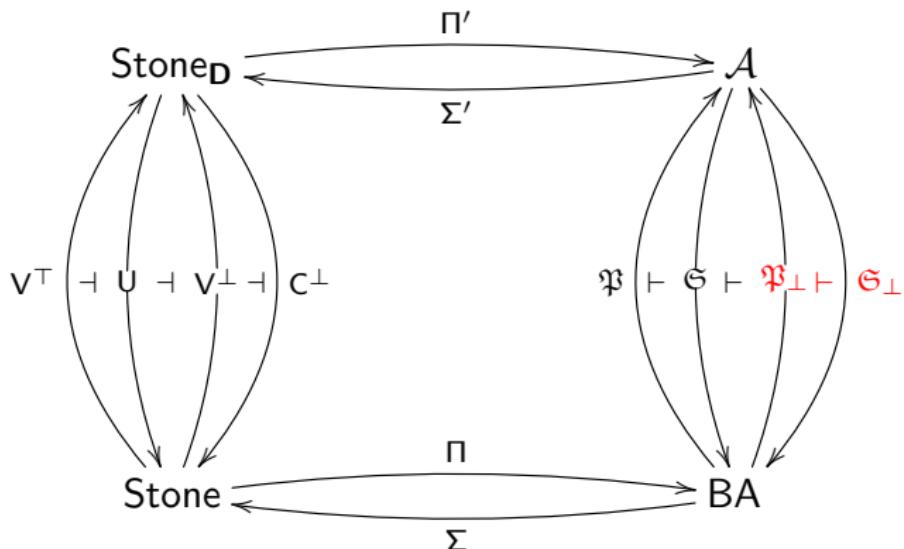
The Boolean power functor $\mathfrak{P}(\mathbf{B}) = \mathbf{D}[\mathbf{B}]$ is right-adjoint to the Boolean skeleton functor \mathfrak{S} .

The adjoint functors on the algebraic side (ctd.)



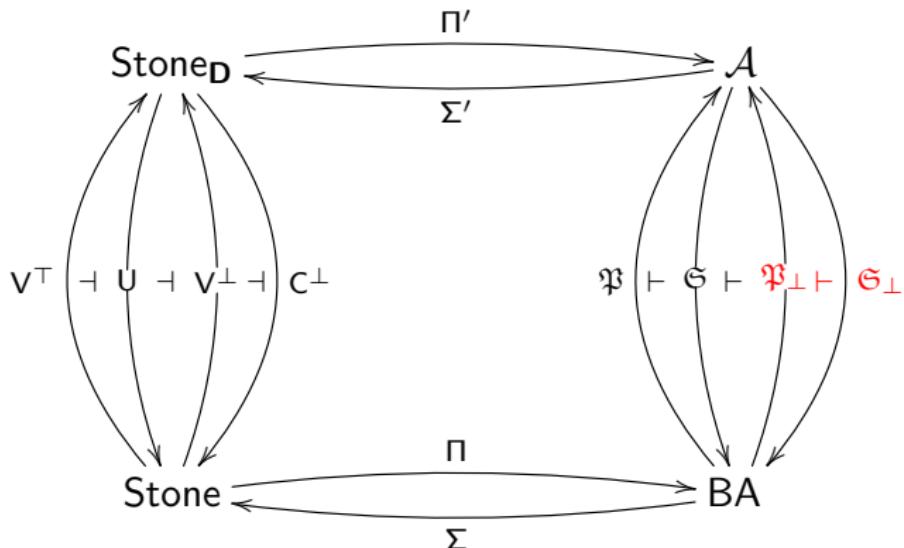
So we have an algebraic description of the adjunction $\mathfrak{P} \vdash \mathfrak{S}$.

The adjoint functors on the algebraic side (ctd.)



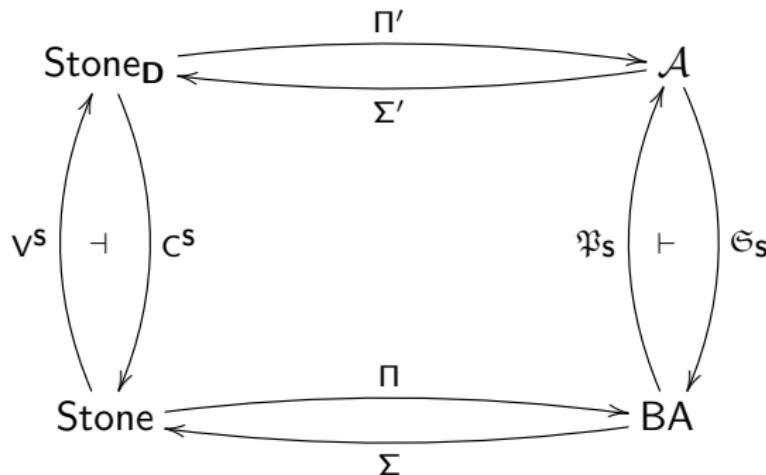
So we have an algebraic description of the adjunction $\mathfrak{P} \dashv \mathfrak{S}$.
The adjunction $\mathfrak{P}_\perp \dashv \mathfrak{S}_\perp$ can be explained similarly.

The adjoint functors on the algebraic side (ctd.)



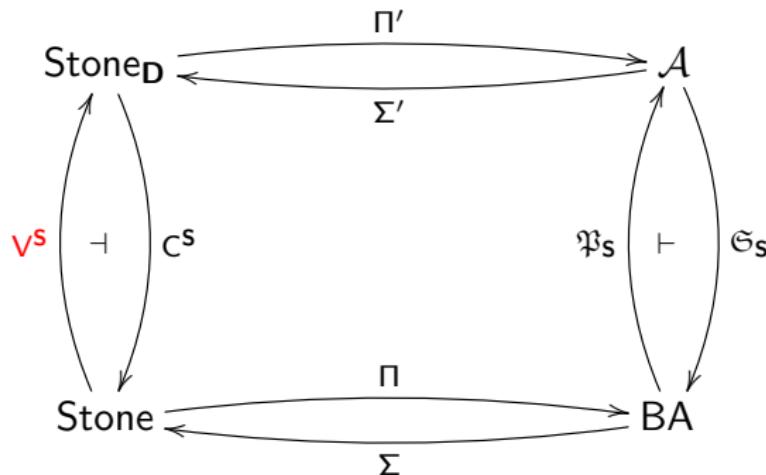
So we have an algebraic description of the adjunction $\mathfrak{P} \vdash \mathfrak{S}$.
The adjunction $\mathfrak{P}_\perp \vdash \mathfrak{S}_\perp$ can be explained similarly.
In fact, it is a specific instance of the more general **subalgebra adjunctions**.

The subalgebra adjunctions



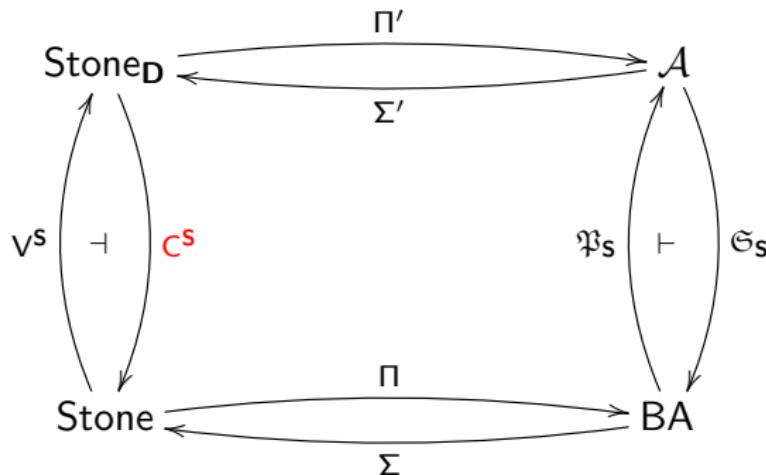
For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $V^{\mathbf{S}} \dashv C^{\mathbf{S}}$.

The subalgebra adjunctions



For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $V^{\mathbf{S}} \dashv C^{\mathbf{S}}$.
 $V^{\mathbf{S}}(X) = (X, v^{\mathbf{S}})$ with $v^{\mathbf{S}} = \mathbf{S}$ for all $x \in X$.

The subalgebra adjunctions

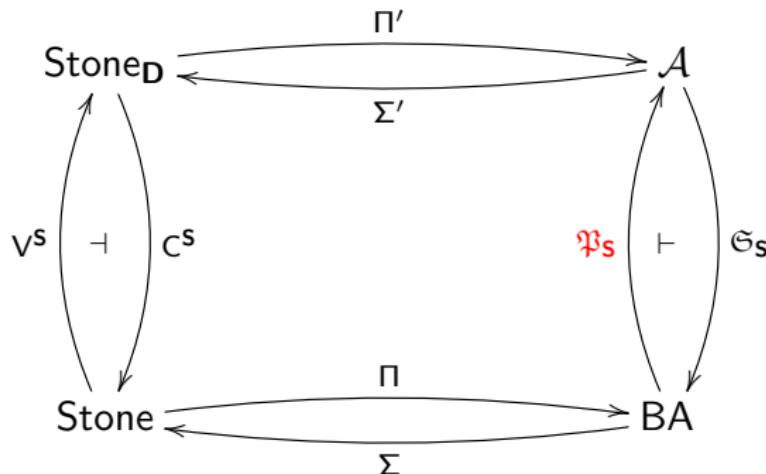


For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $\nabla^{\mathbf{S}} \dashv C^{\mathbf{S}}$.

$\nabla^{\mathbf{S}}(X) = (X, \mathbf{v}^{\mathbf{S}})$ with $\mathbf{v}^{\mathbf{S}} = \mathbf{S}$ for all $x \in X$.

$C^{\mathbf{S}}(X, \mathbf{v}) = \{x \in X \mid \mathbf{v}(x) \subseteq \mathbf{S}\}$.

The subalgebra adjunctions



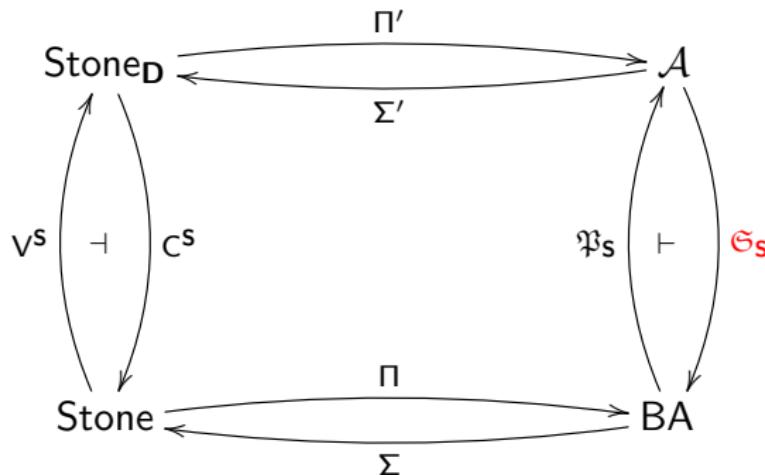
For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $V^{\mathbf{S}} \dashv C^{\mathbf{S}}$.

$V^{\mathbf{S}}(X) = (X, v^{\mathbf{S}})$ with $v^{\mathbf{S}} = \mathbf{S}$ for all $x \in X$.

$C^{\mathbf{S}}(X, v) = \{x \in X \mid v(x) \subseteq \mathbf{S}\}$.

$\Psi_{\mathbf{S}}$ takes the Boolean power $\Psi_{\mathbf{S}}(\mathbf{B}) = \mathbf{S}[\mathbf{B}]$.

The subalgebra adjunctions



For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $V^{\mathbf{S}} \dashv C^{\mathbf{S}}$.

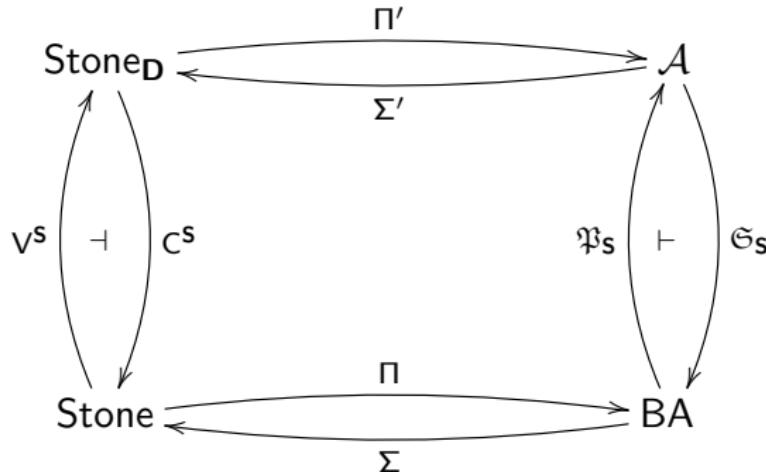
$V^{\mathbf{S}}(X) = (X, v^{\mathbf{S}})$ with $v^{\mathbf{S}} = \mathbf{S}$ for all $x \in X$.

$C^{\mathbf{S}}(X, v) = \{x \in X \mid v(x) \subseteq \mathbf{S}\}$.

$\Psi_{\mathbf{S}}$ takes the Boolean power $\Psi_{\mathbf{S}}(\mathbf{B}) = \mathbf{S}[\mathbf{B}]$.

$\Sigma_{\mathbf{S}}$ takes the Boolean skeleton of a *quotient*.

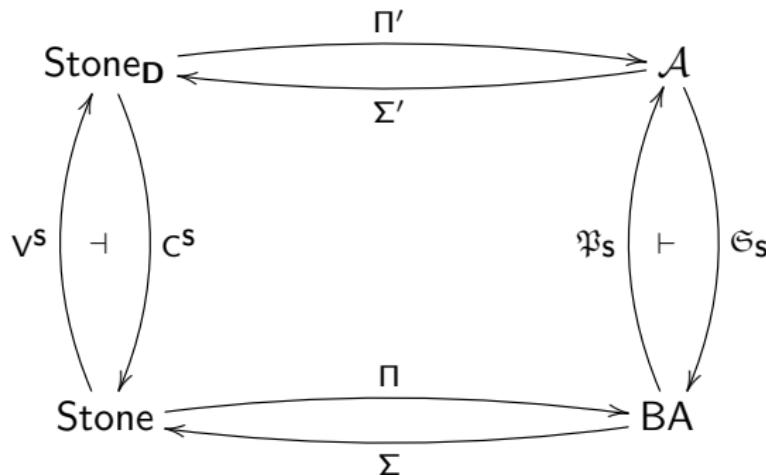
The subalgebra adjunctions



Any $(X, \mathbf{v}) \in \text{Stone}_{\mathbf{D}}$ can be recovered from all $V^S C^S(X, \mathbf{v})$ via the *coend*

$$(X, \mathbf{v}) \cong \int^{\mathbf{S} \in \mathbb{S}(\mathbf{D})} V^S C^S(X, \mathbf{v}).$$

The subalgebra adjunctions



Dually, any $\mathbf{A} \in \mathcal{A}$ can be recovered from all $\mathfrak{P}_S \mathfrak{S}_S(\mathbf{A})$ via the *end*

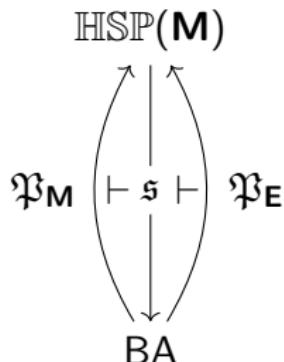
$$\mathbf{A} \cong \int_{S \in \mathbb{S}(D)} \mathfrak{P}_S \mathfrak{S}_S(\mathbf{A}).$$

Characterizing semi-primality

Theorem

Let \mathbf{M} be a bounded lattice-based algebra with smallest subalgebra $\mathbf{E} = \langle 0, 1 \rangle$. Then \mathbf{M} is semi-primal if and only if there exists a topological adjunction

$$\mathfrak{P}_{\mathbf{M}} \vdash \mathfrak{s} \vdash \mathfrak{P}_{\mathbf{E}}.$$



Characterizing semi-primality

Theorem

Let \mathbf{M} be a bounded lattice-based algebra with smallest subalgebra $\mathbf{E} = \langle 0, 1 \rangle$. Then \mathbf{M} is semi-primal if and only if there exists a topological adjunction

$$\mathfrak{P}_{\mathbf{M}} \vdash \mathfrak{s} \vdash \mathfrak{P}_{\mathbf{E}}.$$

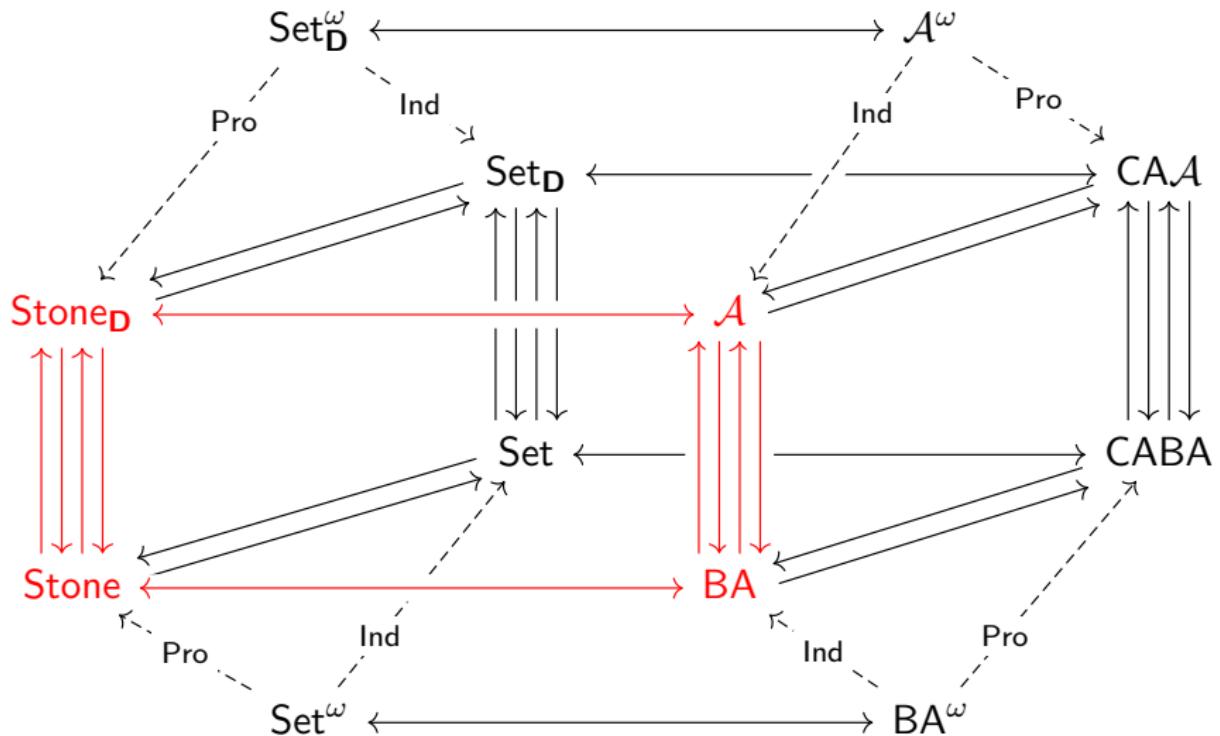
In particular, if \mathbf{M} has no proper subalgebras this adjunction ‘collapses’ to a categorical equivalence and we recover Hu’s Theorem.²

Corollary (Hu)

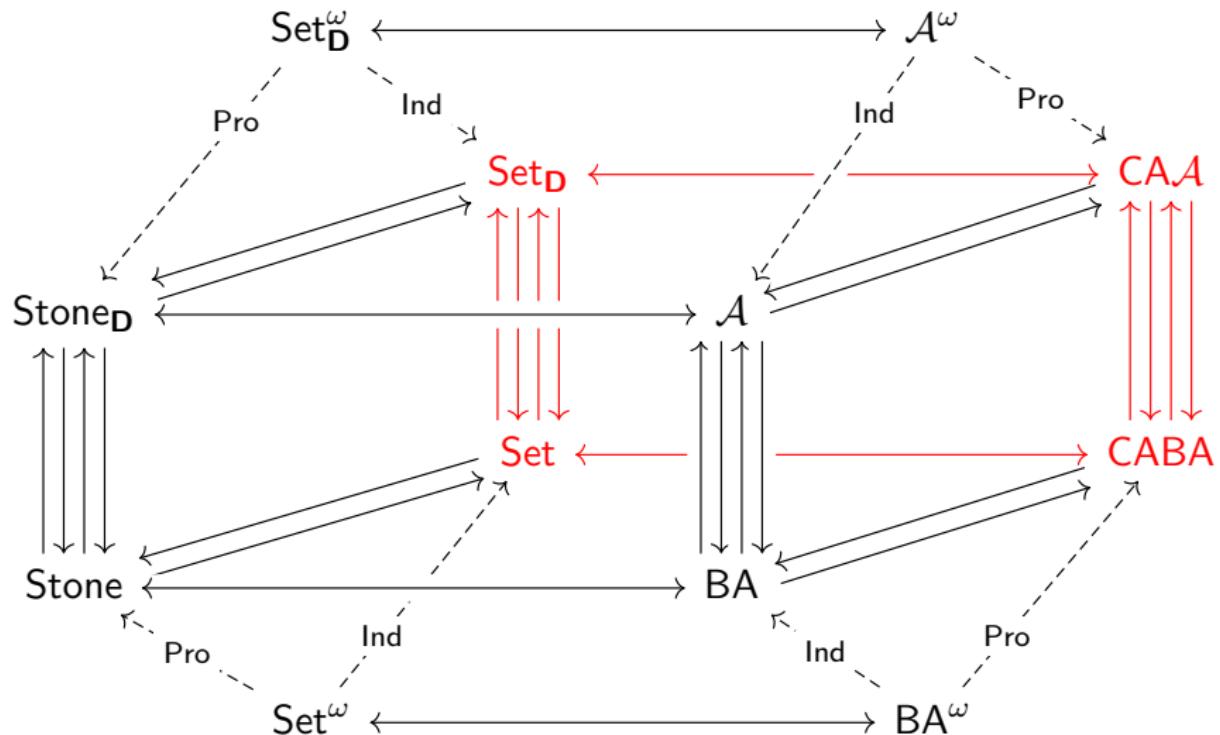
A variety is generated by a primal algebra if and only if it is categorically equivalent to BA.

²Hu 1971 [11]

Dualities via categorical completions (ctd.)



Dualities via categorical completions (ctd.)



Discrete semi-primal duality

$$\begin{array}{ccc} & \Pi'_{\text{dis}} & \\ \text{Set}_{\mathbf{D}} & \begin{array}{c} \swarrow \\ \uparrow \end{array} & \mathbf{CA\mathcal{A}} \\ & \Sigma'_{\text{dis}} & \end{array}$$

Definition (The category $\text{Set}_{\mathbf{D}}$)

The category $\text{Set}_{\mathbf{D}}$ has objects (X, v) where $X \in \text{Set}$ and $v: X \rightarrow \mathbb{S}(\mathbf{D})$.
A morphism $f: (X_1, v_1) \rightarrow (X_2, v_2)$ is a map $f: X_1 \rightarrow X_2$ with
 $v_2(f(x)) \leq v_1(x)$ for all $x \in X$.

Discrete semi-primal duality

$$\text{Set}_{\mathbf{D}} \begin{array}{c} \xleftarrow{\quad \Pi'_{\text{dis}} \quad} \\[-10pt] \xrightarrow{\quad \Sigma'_{\text{dis}} \quad} \end{array} \text{CA}\mathcal{A}$$

Definition (The category $\text{Set}_{\mathbf{D}}$)

The category $\text{Set}_{\mathbf{D}}$ has objects (X, v) where $X \in \text{Set}$ and $v: X \rightarrow \mathbb{S}(\mathbf{D})$. A morphism $f: (X_1, v_1) \rightarrow (X_2, v_2)$ is a map $f: X_1 \rightarrow X_2$ with $v_2(f(x)) \leq v_1(x)$ for all $x \in X$.

Theorem

An algebra $\mathbf{A} \in \mathcal{A}$ is a member of $\text{CA}\mathcal{A}$ if and only if its Boolean skeleton $\mathfrak{S}(\mathbf{A})$ is a member of CABA .

Table of Contents

1 Perspectives on semi-primal varieties

- A. Kurz, W.P., B. Teheux: *New perspectives on semi-primal varieties*. Journal of Pure and Applied Algebra **228**(4), 107525, 2024. doi: [10.1016/j.jpaa.2023.107525](https://doi.org/10.1016/j.jpaa.2023.107525)

2 Many-valued coalgebraic logic: From Boolean algebras to semi-primal varieties

- A. Kurz, W.P., B. Teheux: *Many-valued coalgebraic logic over semi-primal varieties*. To appear in: Logical Methods in Computer Science (LMCS), 2024. <https://arxiv.org/abs/2308.14581>

- A. Kurz, W.P.: *Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties*. CALCO, 2023. doi: [10.4230/LIPIcs.CALCO.2023.17](https://doi.org/10.4230/LIPIcs.CALCO.2023.17)

3 Many-valued positive modal logic over finite MV-chains

- W.P.: *Positive modal logic over finite MV-chains*. To appear in: Advances in Modal Logic (AiML), 2024.

- W.P.: *Natural dualities for varieties generated by finite positive MV-chains*. To appear in: Algebra Universalis, 2024. <https://arxiv.org/abs/2309.16998>

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of *truth-degrees* with bounded lattice reduct.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of *truth-degrees* with bounded lattice reduct.
- Modal formulas $\varphi \in \text{Form}$ are constructed from propositional variables $p \in \text{Prop}$, the connectives of \mathbf{D} and modal operators \Box, \Diamond .

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of *truth-degrees* with bounded lattice reduct.
- Modal formulas $\varphi \in \text{Form}$ are constructed from propositional variables $p \in \text{Prop}$, the connectives of \mathbf{D} and modal operators \Box, \Diamond .
- Relational models are $\mathfrak{M} = (W, R, \text{Val})$ with $\text{Val}: W \times \text{Prop} \rightarrow \mathbf{D}$.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of *truth-degrees* with bounded lattice reduct.
- Modal formulas $\varphi \in \text{Form}$ are constructed from propositional variables $p \in \text{Prop}$, the connectives of \mathbf{D} and modal operators \Box, \Diamond .
- Relational models are $\mathfrak{M} = (W, R, \text{Val})$ with $\text{Val}: W \times \text{Prop} \rightarrow \mathbf{D}$.
- Val is inductively extended to all formulas via the rules

$$\text{Val}(w, \Box\psi) = \bigwedge \{\text{Val}(w', \psi) \mid wRw'\},$$

$$\text{Val}(w, \Diamond\psi) = \bigvee \{\text{Val}(w', \psi) \mid wRw'\}.$$

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of *truth-degrees* with bounded lattice reduct.
- Modal formulas $\varphi \in \text{Form}$ are constructed from propositional variables $p \in \text{Prop}$, the connectives of \mathbf{D} and modal operators \Box, \Diamond .
- Relational models are $\mathfrak{M} = (W, R, \text{Val})$ with $\text{Val}: W \times \text{Prop} \rightarrow \mathbf{D}$.
- Val is inductively extended to all formulas via the rules

$$\text{Val}(w, \Box\psi) = \bigwedge \{\text{Val}(w', \psi) \mid wRw'\},$$

$$\text{Val}(w, \Diamond\psi) = \bigvee \{\text{Val}(w', \psi) \mid wRw'\}.$$

- We define $\mathfrak{M}, w \Vdash \varphi$ iff $\text{Val}(w, \varphi) = 1$.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of *truth-degrees* with bounded lattice reduct.
- Modal formulas $\varphi \in \text{Form}$ are constructed from propositional variables $p \in \text{Prop}$, the connectives of \mathbf{D} and modal operators \Box, \Diamond .
- Relational models are $\mathfrak{M} = (W, R, \text{Val})$ with $\text{Val}: W \times \text{Prop} \rightarrow \mathbf{D}$.
- Val is inductively extended to all formulas via the rules

$$\begin{aligned}\text{Val}(w, \Box\psi) &= \bigwedge \{\text{Val}(w', \psi) \mid wRw'\}, \\ \text{Val}(w, \Diamond\psi) &= \bigvee \{\text{Val}(w', \psi) \mid wRw'\}.\end{aligned}$$

- We define $\mathfrak{M}, w \Vdash \varphi$ iff $\text{Val}(w, \varphi) = 1$.
- Recover classical modal logic if $\mathbf{D} = \mathbf{2} \in \text{BA}$.

Examples from many-valued modal logic (1)

Let \mathbf{D} be the $(n + 1)$ -element finite MV-chain

$$\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \odot, \oplus, \wedge, \vee, \neg, 0, 1 \rangle.$$

Examples from many-valued modal logic (1)

Let \mathbf{D} be the $(n + 1)$ -element finite MV-chain

$$\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \odot, \oplus, \wedge, \vee, \neg, 0, 1 \rangle.$$

For every $d \in \mathbf{L}_n$, the unary operation $\tau_d : \mathbf{L}_n \rightarrow \mathbf{L}_n$ is term-definable in \mathbf{L}_n :

$$\tau_d(x) = \begin{cases} 1 & \text{if } x \geq d, \\ 0 & \text{if } x \not\geq d. \end{cases}$$

Examples from many-valued modal logic (1)

Let \mathbf{D} be the $(n + 1)$ -element finite MV-chain

$$\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \odot, \oplus, \wedge, \vee, \neg, 0, 1 \rangle.$$

For every $d \in \mathbf{L}_n$, the unary operation $\tau_d : \mathbf{L}_n \rightarrow \mathbf{L}_n$ is term-definable in \mathbf{L}_n :

$$\tau_d(x) = \begin{cases} 1 & \text{if } x \geq d, \\ 0 & \text{if } x \not\geq d. \end{cases}$$

The algebraic counterpart of the corresponding modal logic:

Definition

A *modal MV_n -algebra* is an algebra (\mathbf{A}, \square) with $\mathbf{A} \in MV_n = \mathbb{HSP}(\mathbf{L}_n)$,

- $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$,
- $\square \tau_d(x) = \tau_d(\square x)$ for all $d \in \mathbf{L}_n \setminus \{0\}$.

Examples from many-valued modal logic (2)

$$\mathbf{H} = \langle H, \wedge, \vee, \rightarrow, 0, 1, (T_d \mid d \in H) \rangle,$$

where $\langle H, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a finite Heyting algebra expanded by unary

$$T_d(x) = \begin{cases} 1 & \text{if } x = d, \\ 0 & \text{if } x \neq d. \end{cases}$$

Note that $\tau_d(x) = \bigvee \{T_c(x) \mid c \geq d\}$ are again term-definable in \mathbf{H} .

Examples from many-valued modal logic (2)

$$\mathbf{H} = \langle H, \wedge, \vee, \rightarrow, 0, 1, (T_d \mid d \in H) \rangle,$$

where $\langle H, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a finite Heyting algebra expanded by unary

$$T_d(x) = \begin{cases} 1 & \text{if } x = d, \\ 0 & \text{if } x \neq d. \end{cases}$$

Note that $\tau_d(x) = \bigvee \{T_c(x) \mid c \geq d\}$ are again term-definable in \mathbf{H} .

The algebraic counterpart of the corresponding modal logic:

Definition

A *modal \mathbf{H} -algebra* is an algebra (\mathbf{A}, \square) with $\mathbf{A} \in \mathbb{HSP}(\mathbf{H})$,

- $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$,
- $\square \tau_d(x) = \tau_d(\square x)$ for all $d \in H \setminus \{0\}$.

Examples from many-valued modal logic (3)

Let \mathbf{D} be given by the $(n + 1)$ -element Łukasiewicz-Moisil chain

$$\mathbf{M}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \neg, 0, 1, (\tau_d \mid d \in M_n) \rangle.$$

where \neg is the MV -negation and $\tau_d = \chi_{\{x \geq d\}}$ similar to before.

Examples from many-valued modal logic (3)

Let \mathbf{D} be given by the $(n + 1)$ -element Łukasiewicz-Moisil chain

$$\mathbf{M}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \neg, 0, 1, (\tau_d \mid d \in M_n) \rangle.$$

where \neg is the MV -negation and $\tau_d = \chi_{\{x \geq d\}}$ similar to before.

The algebraic counterpart of the corresponding tense logic:

Definition

A *tense \mathcal{LM}_n -algebra* is an algebra (\mathbf{A}, G, H) with $\mathbf{A} \in \mathcal{LM}_n = \mathbb{HSP}(\mathbf{M}_n)$,

- $G(x \wedge y) = Gx \wedge Gy$ and $G1 = 1$,
- $H(x \wedge y) = Hx \wedge Hy$ and $H1 = 1$,
- $x \leq GPx$ and $x \leq HFx$,
- $G\tau_d(x) = \tau_d(Gx)$ for all $d \in M_n \setminus \{0\}$,
- $H\tau_d(x) = \tau_d(Hx)$ for all $d \in M_n \setminus \{0\}$.

Algebras and Coalgebras

Let C be a category and let $F: C \rightarrow C$ be an endofunctor.

$$\alpha: F(A) \rightarrow A$$

F -algebra

$$\gamma: X \rightarrow F(X)$$

F -coalgebra

Algebras and Coalgebras

Let C be a category and let $F: C \rightarrow C$ be an endofunctor.

$$\alpha: F(A) \rightarrow A$$

F -algebra

$$\gamma: X \rightarrow F(X)$$

F -coalgebra

Morphisms:

$$\begin{array}{ccc} F(A_1) & \xrightarrow{\alpha_1} & A_1 \\ \downarrow Fh & & \downarrow h \\ F(A_2) & \xrightarrow{\alpha_2} & A_2 \end{array} \qquad \begin{array}{ccc} X_1 & \xrightarrow{\gamma_1} & F(X_1) \\ \downarrow f & & \downarrow Ff \\ X_2 & \xrightarrow{\gamma_2} & F(X_2) \end{array}$$

Gives rise to categories $\text{Alg}(F)$ and $\text{Coalg}(F)$.

Jónsson-Tarski duality, coalgebraically

$$\text{Stone} \begin{array}{c} \xrightarrow{\Pi} \\ \xleftarrow{\Sigma} \end{array} \text{BA}$$

Start with Stone duality $\Pi: \text{Stone} \rightarrow \text{BA}$ (takes clopens) and $\Sigma: \text{BA} \rightarrow \text{Stone}$ (takes ultrafilters).

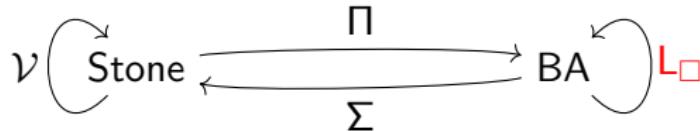
Jónsson-Tarski duality, coalgebraically

$$\begin{array}{ccc} \mathcal{V} & \begin{matrix} \curvearrowright \\ \text{Stone} \end{matrix} & \begin{matrix} \Pi \\ \curvearrowright \\ \Sigma \end{matrix} \end{array}$$
$$\text{BA} \quad \quad \quad$$

Start with Stone duality $\Pi: \text{Stone} \rightarrow \text{BA}$ (takes clopens) and $\Sigma: \text{BA} \rightarrow \text{Stone}$ (takes ultrafilters).

The category of *descriptive general frames* is isomorphic to the category of coalgebras for the Vietoris functor $\mathcal{V}: \text{Stone} \rightarrow \text{Stone}$.

Jónsson-Tarski duality, coalgebraically



Start with Stone duality $\Pi: \text{Stone} \rightarrow \text{BA}$ (takes clopens) and $\Sigma: \text{BA} \rightarrow \text{Stone}$ (takes ultrafilters).

The category of *descriptive general frames* is isomorphic to the category of coalgebras for the Vietoris functor $\mathcal{V}: \text{Stone} \rightarrow \text{Stone}$.

The category of *modal algebras* is isomorphic to the category of algebras for the functor $L\Box: \text{BA} \rightarrow \text{BA}$ which has a *presentation* by a unary operation \Box with equations $\Box(x \wedge y) = \Box x \wedge \Box y$ and $\Box 1 = 1$.

Jónsson-Tarski duality, coalgebraically

$$\mathcal{V} \circlearrowleft \text{Stone} \begin{array}{c} \xrightarrow{\Pi} \\ \xleftarrow{\Sigma} \end{array} \text{BA} \circlearrowleft \mathcal{L}_{\square} \quad \delta: \mathcal{L}_{\square} \Pi \Rightarrow \Pi \mathcal{V}$$

Start with Stone duality $\Pi: \text{Stone} \rightarrow \text{BA}$ (takes clopens) and $\Sigma: \text{BA} \rightarrow \text{Stone}$ (takes ultrafilters).

The category of *descriptive general frames* is isomorphic to the category of coalgebras for the Vietoris functor $\mathcal{V}: \text{Stone} \rightarrow \text{Stone}$.

The category of *modal algebras* is isomorphic to the category of algebras for the functor $\mathcal{L}_{\square}: \text{BA} \rightarrow \text{BA}$ which has a *presentation* by a unary operation \square with equations $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$.

Jónsson-Tarski duality: There is a natural isomorphism $\mathcal{L}_{\square} \Pi \cong \Pi \mathcal{V}$.

Classical modal logic, coalgebraically

$$\begin{array}{ccc} & P & \\ \text{Set} & \begin{array}{c} \swarrow \\ \searrow \end{array} & \text{BA} \\ & S & \end{array}$$

Begin with dual adjunction $P: \text{Set} \rightarrow \text{BA}$ (takes powerset) and $S: \text{BA} \rightarrow \text{Set}$ (takes ultrafilters).

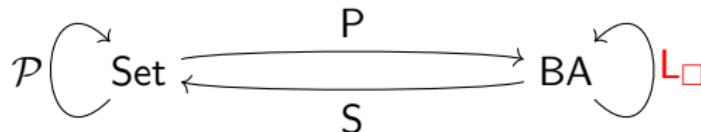
Classical modal logic, coalgebraically

$$\begin{array}{ccc} \mathcal{P} & \begin{array}{c} \curvearrowleft \\ \curvearrowright \end{array} & \text{Set} \\ & \text{P} & \text{BA} \\ & \text{S} & \end{array}$$

Begin with dual adjunction $P: \text{Set} \rightarrow \text{BA}$ (takes powerset) and $S: \text{BA} \rightarrow \text{Set}$ (takes ultrafilters).

The category of *Kripke frames* is isomorphic to the category of coalgebras for the (covariant) powerset functor $\mathcal{P}: \text{Set} \rightarrow \text{Set}$.

Classical modal logic, coalgebraically



Begin with dual adjunction $P: \text{Set} \rightarrow \text{BA}$ (takes powerset) and $S: \text{BA} \rightarrow \text{Set}$ (takes ultrafilters).

The category of *Kripke frames* is isomorphic to the category of coalgebras for the (covariant) powerset functor $\mathcal{P}: \text{Set} \rightarrow \text{Set}$.

The category of *modal algebras* is isomorphic to the category of algebras for the functor $L_\square: \text{BA} \rightarrow \text{BA}$ as before.

Classical modal logic, coalgebraically

$$\begin{array}{ccccc} \mathcal{P} & \curvearrowleft & \text{Set} & \curvearrowright & \text{BA} \\ & \curvearrowleft & \text{S} & \curvearrowright & \text{L}_\square \\ & & & & \curvearrowleft \end{array} \quad \delta: \text{L}_\square \mathcal{P} \Rightarrow \mathcal{P} \mathcal{P}$$

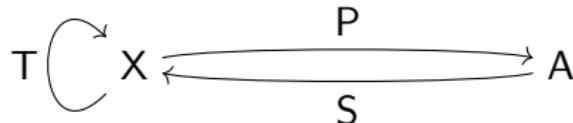
Begin with dual adjunction $P: \text{Set} \rightarrow \text{BA}$ (takes powerset) and $S: \text{BA} \rightarrow \text{Set}$ (takes ultrafilters).

The category of *Kripke frames* is isomorphic to the category of coalgebras for the (covariant) powerset functor $\mathcal{P}: \text{Set} \rightarrow \text{Set}$.

The category of *modal algebras* is isomorphic to the category of algebras for the functor $\text{L}_\square: \text{BA} \rightarrow \text{BA}$ as before.

Sending a Kripke frame to its *complex algebra* can be realized by a *natural transformation* $\text{L}_\square \mathcal{P} \Rightarrow \mathcal{P} \mathcal{P}$.

Abstract and concrete coalgebraic logics



Definition (Coalgebraic logic)

Let X be a concrete category, let A be a variety of algebras, let P and S establish a dual adjunction and let $T: X \rightarrow X$ be an endofunctor.

Abstract and concrete coalgebraic logics

Definition (Coalgebraic logic)

Let X be a concrete category, let A be a variety of algebras, let P and S establish a dual adjunction and let $T: X \rightarrow X$ be an endofunctor.

- ① An *abstract coalgebraic logic* for T is a pair (L, δ) consisting of an endofunctor $L: A \rightarrow A$ and a natural transformation $\delta: LP \Rightarrow PT$.

Abstract and concrete coalgebraic logics

Definition (Coalgebraic logic)

Let X be a concrete category, let A be a variety of algebras, let P and S establish a dual adjunction and let $T: X \rightarrow X$ be an endofunctor.

- ① An *abstract coalgebraic logic* for T is a pair (L, δ) consisting of an endofunctor $L: A \rightarrow A$ and a natural transformation $\delta: LP \Rightarrow PT$.
- ② A *concrete coalgebraic logic* for T is a triple (L, δ, E) consisting of an abstract coalgebraic logic (L, δ) and a presentation E of L by operations and equations.

One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L, δ) for T is *one-step complete* if δ is a monomorphism, *i.e.*, every component of δ is injective.

One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L, δ) for T is *one-step complete* if δ is a monomorphism, *i.e.*, every component of δ is injective.

For example, the abstract coalgebraic logic (L_\square, δ) for \mathcal{P} is one-step complete.

One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L, δ) for T is *one-step complete* if δ is a monomorphism, *i.e.*, every component of δ is injective.

For example, the abstract coalgebraic logic (L_\square, δ) for \mathcal{P} is one-step complete.

Definition (Expressivity)

An abstract coalgebraic logic (L, δ) for T is *expressive* if the adjoint-transpose δ^\dagger is a component-wise monomorphism.

One-step completeness and expressivity

Definition (One-step completeness)

An abstract coalgebraic logic (L, δ) for T is *one-step complete* if δ is a monomorphism, *i.e.*, every component of δ is injective.

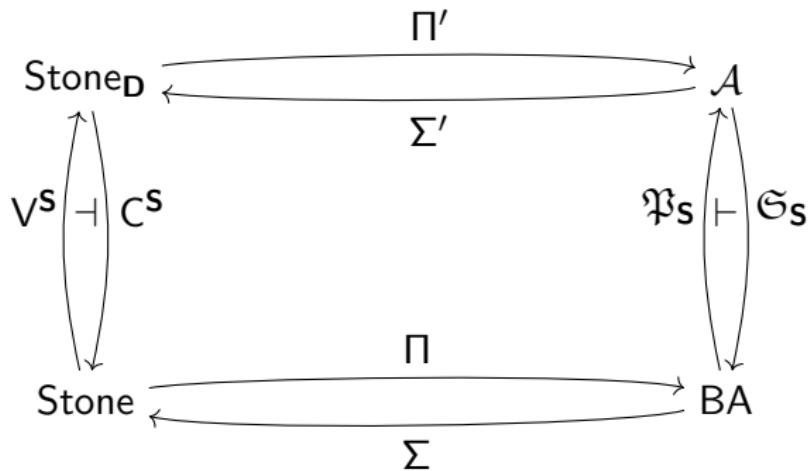
For example, the abstract coalgebraic logic (L_\square, δ) for \mathcal{P} is one-step complete.

Definition (Expressivity)

An abstract coalgebraic logic (L, δ) for T is *expressive* if the adjoint-transpose δ^\dagger is a component-wise monomorphism.

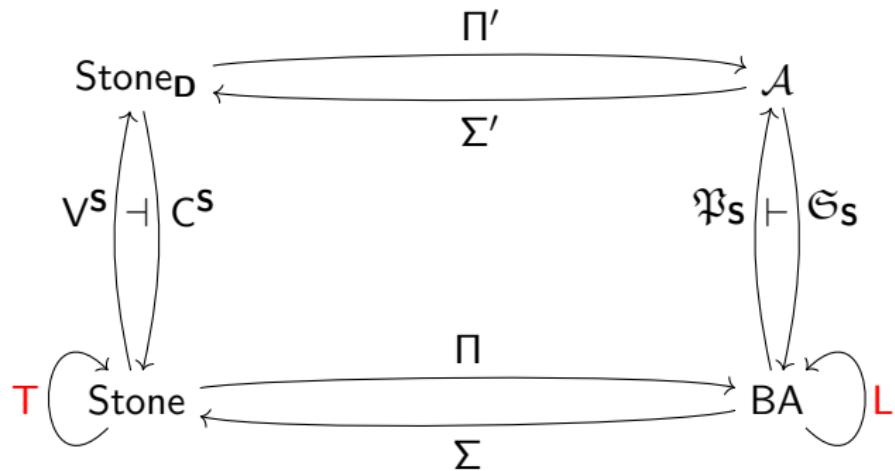
For example, the abstract coalgebraic logic (L_\square, δ) for \mathcal{P}_{fin} is expressive. This is also known as the *Hennessy-Milner property*.

Lifting algebra-coalgebra dualities



$$(X, \mathbf{v}) \cong \int^S V^S C^S(X, \mathbf{v}) \text{ and } \mathbf{A} \cong \int_S \mathfrak{P}_S \mathfrak{S}_S(\mathbf{A}).$$

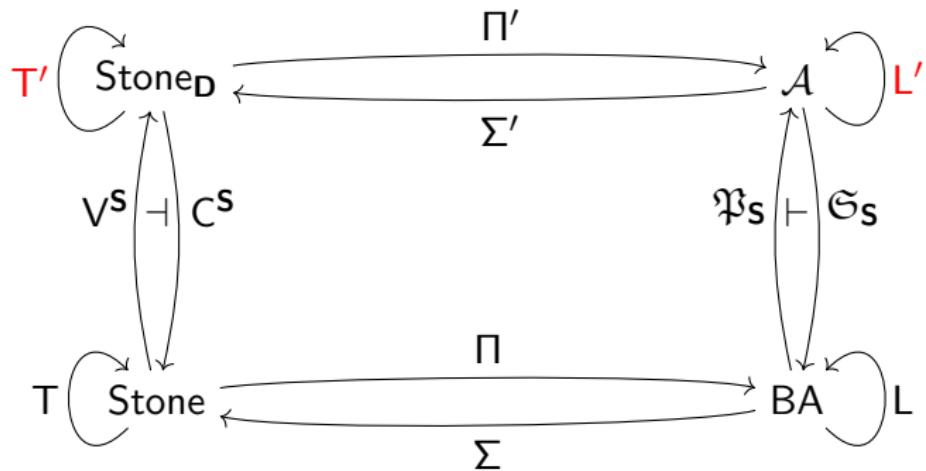
Lifting algebra-coalgebra dualities



Suppose T and L are duals of each other.

$$(X, \mathbf{v}) \cong \int^S V^S C^S(X, \mathbf{v}) \text{ and } \mathbf{A} \cong \int_S \mathfrak{P}_S \mathfrak{G}_S(\mathbf{A}).$$

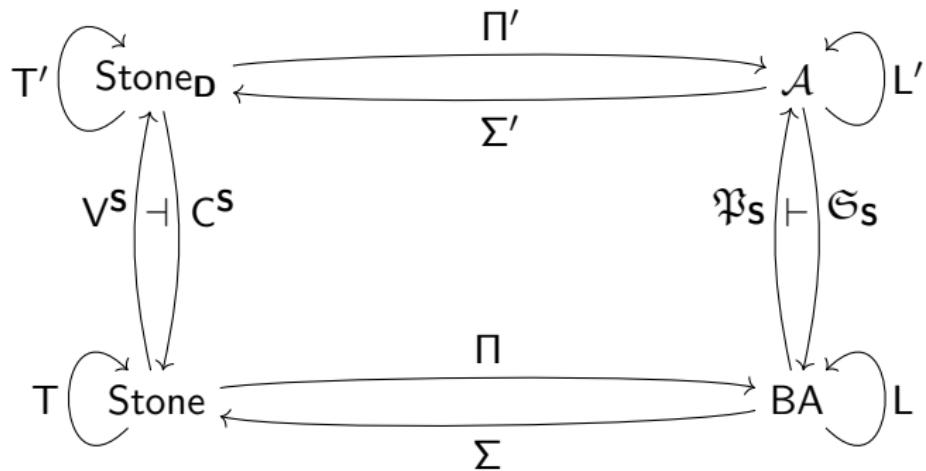
Lifting algebra-coalgebra dualities



Suppose T and L are duals of each other. Define

$$T'(X, v) \cong \int_S V^S T C^S(X, v) \text{ and } L'(\mathbf{A}) \cong \int_S P_S L G_S(\mathbf{A}).$$

Lifting algebra-coalgebra dualities

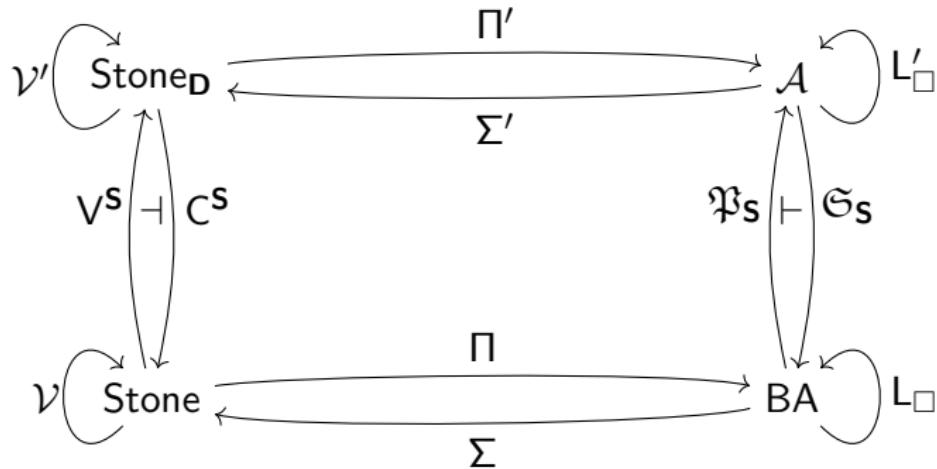


Suppose T and L are duals of each other. Define

$$T'(X, v) \cong \int^S V^S T C^S(X, v) \text{ and } L'(\mathbf{A}) \cong \int_S P_S L G_S(\mathbf{A}).$$

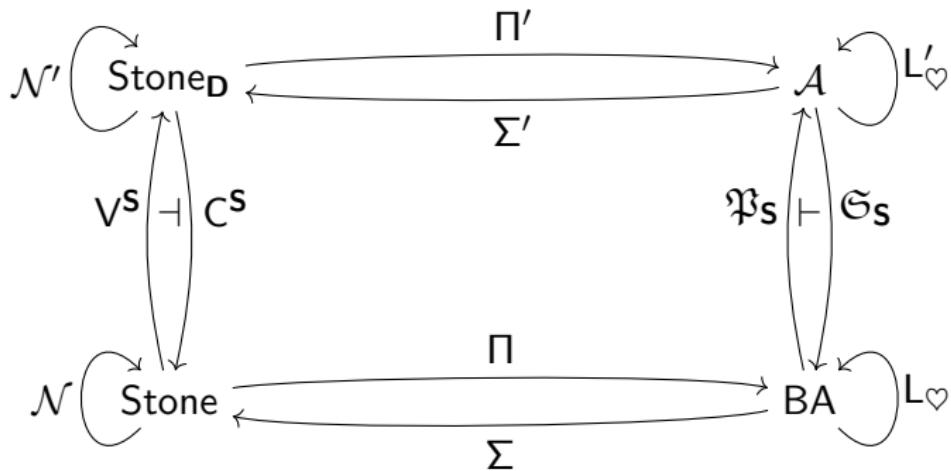
Then T' and L' are duals of each other as well.

Lifting algebra-coalgebra dualities



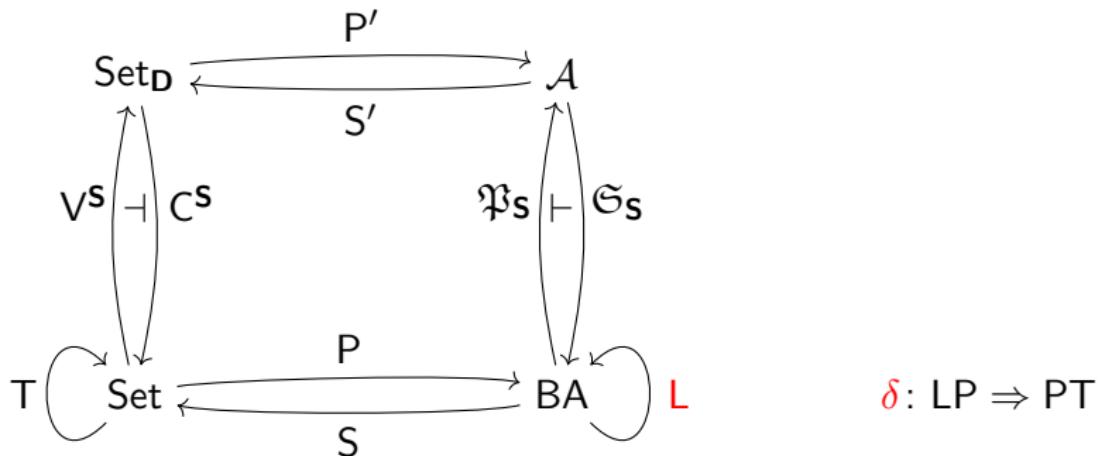
For example, this can be used to obtain Maruyama's [16] 'semi-primal version' of **Jónsson-Tarski duality** as lifting of the 'original' Jónsson-Tarski duality.

Lifting algebra-coalgebra dualities



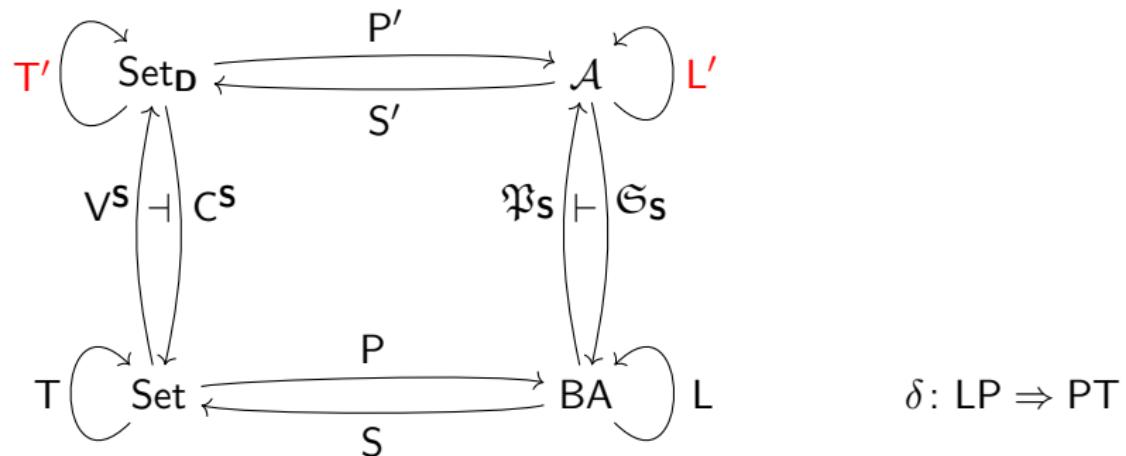
It can also be used to obtain a 'semi-primal version' of **Došen duality** from the 'original' one, described as algebra-coalgebra duality by Bezhanishvili, de Groot [2].

Lifting abstract coalgebraic logics



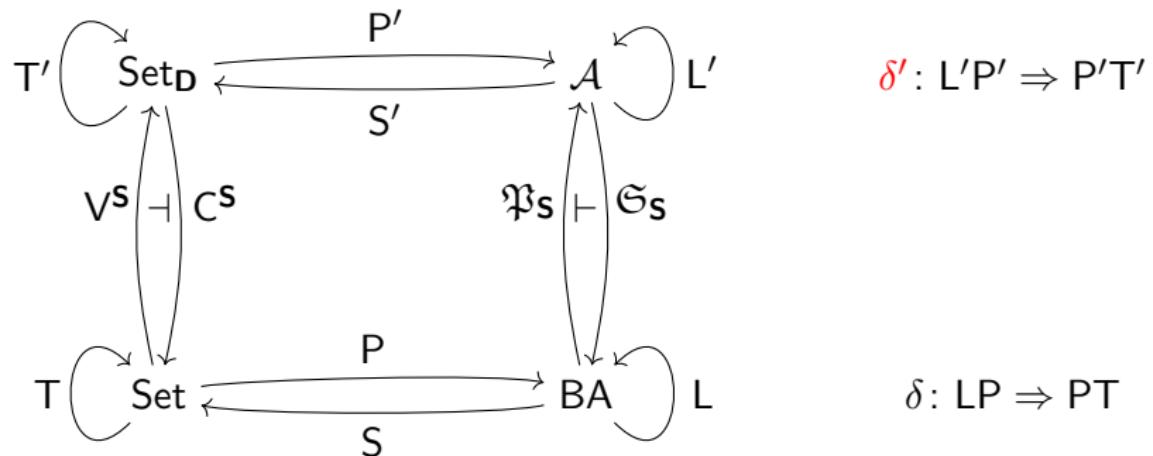
Start with an abstract coalgebraic logic (L, δ) for T .

Lifting abstract coalgebraic logics



Start with an abstract coalgebraic logic (L, δ) for T .
Similarly to before, we can lift T and L to T' and L' .

Lifting abstract coalgebraic logics



Start with an abstract coalgebraic logic (L, δ) for T .
Similarly to before, we can lift T and L to T' and L' .
Furthermore, we can define an appropriate δ' from δ .

How to obtain δ' from δ

$$L'P'(X, v) = \int_{S(D)} \mathfrak{P}_S L \mathfrak{S}_S P'(X, v) \xrightarrow{\text{limit}} \mathfrak{P}_S L \mathfrak{S}_S P'(X, v)$$

$$P'T'(X, v) = \int_{S(D)} P'V^S T C^S(X, v) \xrightarrow{\text{limit}} P'V^S T C^S(X, v)$$

How to obtain δ' from δ

$$L'P'(X, v) = \int_{\mathbb{S}(\mathbf{D})} \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) \xrightarrow{\text{limit}} \mathfrak{P}_s L \mathfrak{S}_s P'(X, v)$$

$$\downarrow \cong$$

$$\mathfrak{P}_s L P C^s(X, v)$$

$$\mathfrak{P}_s P T C^s(X, v)$$

$$\downarrow \cong$$

$$P'T'(X, v) = \int_{\mathbb{S}(\mathbf{D})} P'V^s T C^s(X, v) \xrightarrow{\text{limit}} P'V^s T C^s(X, v)$$

How to obtain δ' from δ

$$\begin{array}{ccc} L'P'(X, v) = \int_{\mathbb{S}(\mathbf{D})} \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) & \xrightarrow{\text{limit}} & \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) \\ & & \downarrow \cong \\ & & \mathfrak{P}_s L P C^s(X, v) \\ & & \downarrow \cong \\ & & \mathfrak{P}_s \delta C^s \\ & & \downarrow \cong \\ & & \mathfrak{P}_s P T C^s(X, v) \\ & & \downarrow \cong \\ P'T'(X, v) = \int_{\mathbb{S}(\mathbf{D})} P'V^s T C^s(X, v) & \xrightarrow{\text{limit}} & P'V^s T C^s(X, v) \end{array}$$

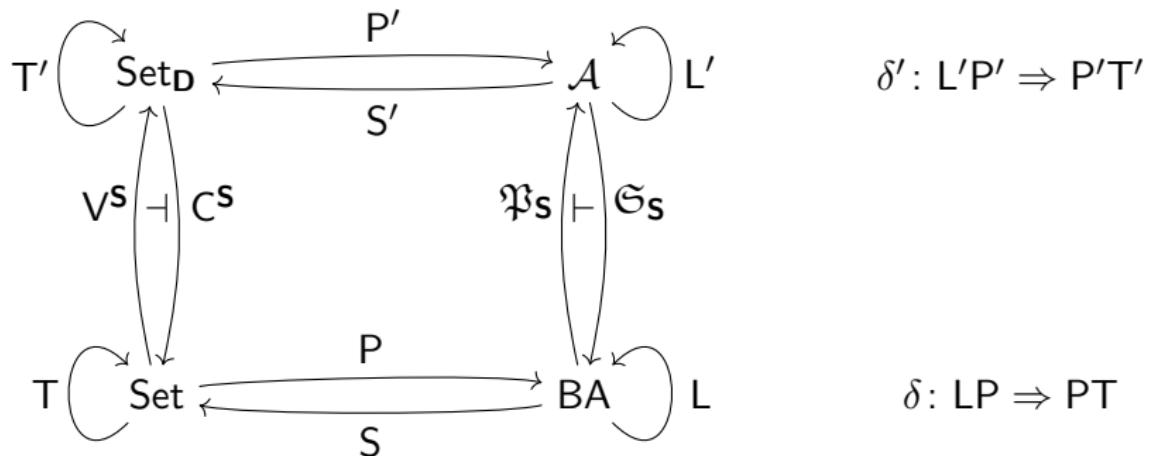
How to obtain δ' from δ

$$\begin{array}{ccc} L'P'(X, v) = \int_{\mathbb{S}(\mathbf{D})} \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) & \xrightarrow{\text{limit}} & \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) \\ & \searrow \text{wedge} & \downarrow \cong \\ & & \mathfrak{P}_s L P C^s(X, v) \\ & & \downarrow \cong \\ & & \mathfrak{P}_s \delta C^s \\ & & \downarrow \cong \\ P'T'(X, v) = \int_{\mathbb{S}(\mathbf{D})} P'V^s T C^s(X, v) & \xrightarrow{\text{limit}} & P'V^s T C^s(X, v) \end{array}$$

How to obtain δ' from δ

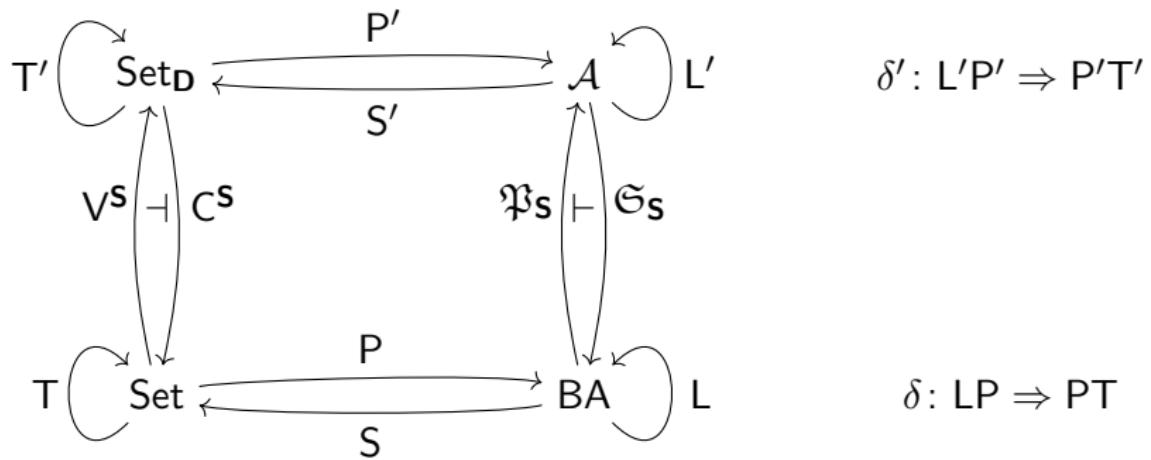
$$\begin{array}{ccc} L'P'(X, v) = \int_{\mathbb{S}(\mathbf{D})} \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) & \xrightarrow{\text{limit}} & \mathfrak{P}_s L \mathfrak{S}_s P'(X, v) \\ \downarrow \exists! \delta'_{(X, v)} & \searrow \text{wedge} & \downarrow \cong \\ & & \mathfrak{P}_s L P C^s(X, v) \\ & & \downarrow \cong \\ P' T'(X, v) = \int_{\mathbb{S}(\mathbf{D})} P' V^s T C^s(X, v) & \xrightarrow{\text{limit}} & P' V^s T C^s(X, v) \end{array}$$

Lifting abstract coalgebraic logics



Start with an abstract coalgebraic logic (L, δ) for T .
Similarly to before, we can lift T and L to T' and L' .
Furthermore, we can define an appropriate δ' from δ .

Lifting abstract coalgebraic logics



Start with an abstract coalgebraic logic (L, δ) for T .

Similarly to before, we can lift T and L to T' and L' .

Furthermore, we can define an appropriate δ' from δ .

Thus we obtain a many-valued abstract coalgebraic logic (L', δ') for T' .

One-step completeness and expressivity

Theorem

Let (L', δ') be the lifting of (L, δ) as defined on the previous slides.

- ① If (L, δ) is one-step complete, then (L', δ') is one-step complete.

One-step completeness and expressivity

Theorem

Let (L', δ') be the lifting of (L, δ) as defined on the previous slides.

- ① If (L, δ) is one-step complete, then (L', δ') is one-step complete.
- ② If (L, δ) is expressive, then (L', δ') is expressive.

One-step completeness and expressivity

Theorem

Let (L', δ') be the lifting of (L, δ) as defined on the previous slides.

- ① If (L, δ) is one-step complete, then (L', δ') is one-step complete.
- ② If (L, δ) is expressive, then (L', δ') is expressive.
- ③ If L has a presentation by operations and equations, then L' has one.

One-step completeness and expressivity

Theorem

Let (L', δ') be the lifting of (L, δ) as defined on the previous slides.

- ① If (L, δ) is one-step complete, then (L', δ') is one-step complete.
- ② If (L, δ) is expressive, then (L', δ') is expressive.
- ③ If L has a presentation by operations and equations, then L' has one.

Corollary

If (L, δ) is one-step complete/expressive, then so is (L', δ^\top) .

$$\mathbf{T} \circlearrowleft \mathbf{Set} \begin{array}{c} \xleftarrow{V^D} \\[-1ex] \xrightarrow{C^D} \end{array} \mathbf{Set}_D \begin{array}{c} \xleftarrow{P'} \\[-1ex] \xrightarrow{S'} \end{array} \mathcal{A} \circlearrowleft L' \quad \delta^\top = \delta' V^\top$$

Lifting concrete coalgebraic logics (1)

$$\tau_d(x) = \begin{cases} 1 & \text{if } x \geq d \\ 0 & \text{if } x \not\geq d. \end{cases}$$

Theorem

Let $L: BA \rightarrow BA$ have a presentation by one unary operation \square and equations which all hold in \mathbf{D} if \square is replaced by any τ_d , including the equation $\square(x \wedge y) = \square x \wedge \square y$.

Then L' has a presentation by one unary operation \square' and the following equations.

- \square' satisfies all equations which the original \square satisfies,
- $\square' \tau_d(x) = \tau_d(\square' x)$ for all $d \in D \setminus \{0\}$.

Lifting concrete coalgebraic logics (2)

$$\eta_d(x) = \begin{cases} 0 & \text{if } x \leq d \\ 1 & \text{if } x \not\leq d. \end{cases}$$

Theorem

Let $L: BA \rightarrow BA$ have a presentation by one unary operation \diamond and equations which all hold in \mathbf{D} if \diamond is replaced by any η_d , including the equation $\diamond(x \vee y) = \diamond x \vee \diamond y$.

Then L' has a presentation by one unary operation \diamond' and the following equations.

- \diamond' satisfies all equations which the original \diamond satisfies,
- $\diamond' \eta_d(x) = \eta_d(\diamond' x)$ for all $d \in D \setminus \{1\}$.

Many-valued modal logic as lifting of classical modal logic

The functor L_\square has a presentation by $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$.

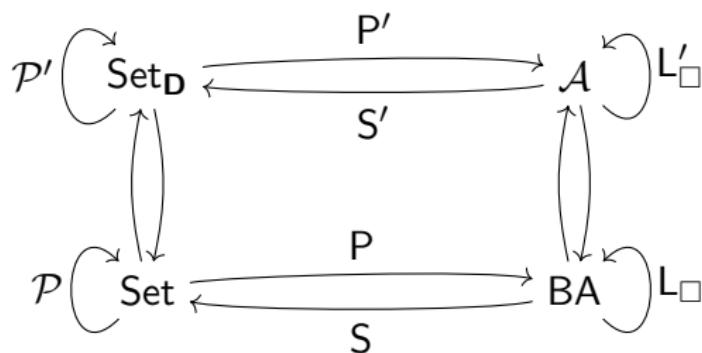


Many-valued modal logic as lifting of classical modal logic

The functor L_{\square} has a presentation by $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$.

Therefore, the functor L'_{\square} has a presentation by

$\square'(x \wedge y) = \square'x \wedge \square'y$, $\square'1 = 1$ and $\square'\tau_d(x) = \tau_d(\square'x)$ for all $d \in D \setminus \{0\}$.



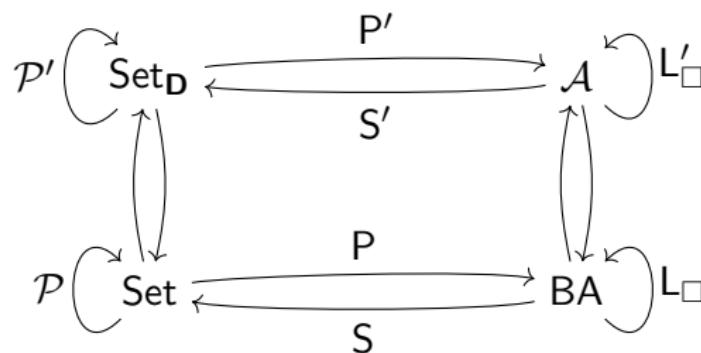
Many-valued modal logic as lifting of classical modal logic

The functor L_{\square} has a presentation by $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$.

Therefore, the functor L'_{\square} has a presentation by

$\square'(x \wedge y) = \square'x \wedge \square'y$, $\square'1 = 1$ and $\square'\tau_d(x) = \tau_d(\square'x)$ for all $d \in D \setminus \{0\}$.

(L_{\square}, δ) is (one-step) complete $\Rightarrow (L'_{\square}, \delta')$ is (one-step) complete.



Many-valued modal logic as lifting of classical modal logic

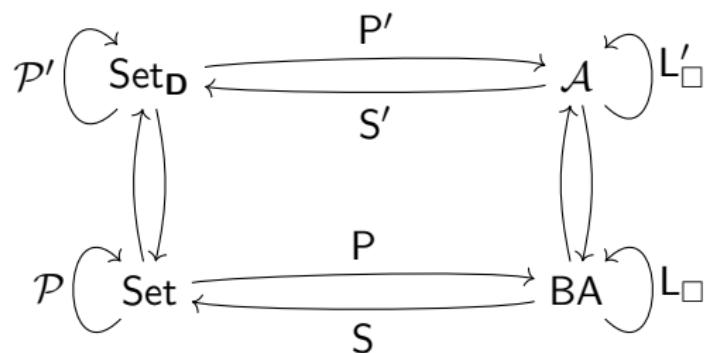
The functor L_{\square} has a presentation by $\square(x \wedge y) = \square x \wedge \square y$ and $\square 1 = 1$.

Therefore, the functor L'_{\square} has a presentation by

$\square'(x \wedge y) = \square'x \wedge \square'y$, $\square'1 = 1$ and $\square'\tau_d(x) = \tau_d(\square'x)$ for all $d \in D \setminus \{0\}$.

(L_{\square}, δ) is (one-step) complete $\Rightarrow (L'_{\square}, \delta')$ is (one-step) complete.

Replacing \mathcal{P} by \mathcal{P}_{fin} : (L_{\square}, δ) is expressive $\Rightarrow (L'_{\square}, \delta')$ is expressive.



Definition ($\text{Set}_{\mathbf{D}}$ -frame & $\text{Set}_{\mathbf{D}}$ -model)

A $\text{Set}_{\mathbf{D}}$ -frame is a structure (W, v, R) with $v: X \rightarrow \mathbb{S}(\mathbf{D})$ and binary relation $R \subseteq W^2$ satisfying

$$wRw' \Rightarrow v(w') \subseteq v(w)$$

for all $w, w' \in W$.

Definition ($\text{Set}_{\mathbf{D}}$ -frame & $\text{Set}_{\mathbf{D}}$ -model)

A $\text{Set}_{\mathbf{D}}$ -frame is a structure (W, v, R) with $v: X \rightarrow \mathbb{S}(\mathbf{D})$ and binary relation $R \subseteq W^2$ satisfying

$$wRw' \Rightarrow v(w') \subseteq v(w)$$

for all $w, w' \in W$. A $\text{Set}_{\mathbf{D}}$ -model adds a $\text{Set}_{\mathbf{D}}$ -valuation

$\text{Val}: W \times \text{Prop} \rightarrow \mathbf{D}$ which satisfies

$$\text{Val}(w, p) \in v(w)$$

for all $w \in W$.

Definition ($\text{Set}_{\mathbf{D}}$ -frame & $\text{Set}_{\mathbf{D}}$ -model)

A $\text{Set}_{\mathbf{D}}$ -frame is a structure (W, v, R) with $v: X \rightarrow \mathbb{S}(\mathbf{D})$ and binary relation $R \subseteq W^2$ satisfying

$$wRw' \Rightarrow v(w') \subseteq v(w)$$

for all $w, w' \in W$. A $\text{Set}_{\mathbf{D}}$ -model adds a $\text{Set}_{\mathbf{D}}$ -valuation

$\text{Val}: W \times \text{Prop} \rightarrow \mathbf{D}$ which satisfies

$$\text{Val}(w, p) \in v(w)$$

for all $w \in W$.

For example, if $\mathbf{D} = \mathbf{L}_2$ is the three-element MV-chain, the formula

$$\Diamond(p \vee \neg p)$$

is valid on a $\text{Set}_{\mathbf{D}}$ -frame if and only if $\forall w \exists w': wRw' \wedge v(w') = 2$, while it is not satisfied in any frame.

Alternative axiomatizations: Some case studies (1)

If $\mathbf{D} = \mathbf{L}_n$ is a finite MV-chain, then \mathbf{L}'_{\square} has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \square(x \oplus x) = \square x \oplus \square x,$$

$$(B4) \quad \square(x \odot x) = \square x \odot \square x.$$

Alternative axiomatizations: Some case studies (1)

If $\mathbf{D} = \mathbf{L}_n$ is a finite MV-chain, then L'_\square has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \square(x \oplus x) = \square x \oplus \square x,$$

$$(B4) \quad \square(x \odot x) = \square x \odot \square x.$$

If \mathbf{D} is a finite bounded residuated lattice with τ_e (monoid unit e) and truth-constants, then L'_\square has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \tau_e(\square x) = \square \tau_e(x),$$

$$(B4) \quad \square(r \setminus x) = r \setminus \square x \text{ for all } r \neq 0.$$

Alternative axiomatizations: Some case studies (1)

If $\mathbf{D} = \mathbf{L}_n$ is a finite MV-chain, then L'_\square has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \square(x \oplus x) = \square x \oplus \square x,$$

$$(B4) \quad \square(x \odot x) = \square x \odot \square x.$$

If \mathbf{D} is a finite bounded residuated lattice with τ_e (monoid unit e) and truth-constants, then L'_\square has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \tau_e(\square x) = \square \tau_e(x),$$

$$(B4) \quad \square(r \setminus x) = r \setminus \square x \text{ for all } r \neq 0.$$

In particular, if \mathbf{D} is a finite FL_{ew} -algebra with truth-constants where only $0, 1$ are idempotent, then L'_\square has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \square(x \odot x) = \square x \odot \square x,$$

$$(B4) \quad \square(r \rightarrow x) = r \rightarrow \square x \text{ all } r \neq 0.$$

Alternative axiomatizations: Some case studies (2)

If \mathbf{D} is a finite bi-Heyting algebra with truth-constants and with a unique atom and coatom, then L'_\square has a presentation by

$$(B1) \quad \square 1 = 1,$$

$$(B2) \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$(B3) \quad \square(\neg(1 \leftarrow x)) = \neg(1 \leftarrow \square x),$$

$$(B4) \quad \square(b \rightarrow x) = b \rightarrow \square x \text{ all } b \neq 0,$$

$$(P1) \quad \square(x \vee y) \leq \square x \vee \diamond y,$$

$$(D1) \quad \diamond 0 = 0,$$

$$(D2) \quad \diamond(x \vee y) = \diamond x \vee \diamond y,$$

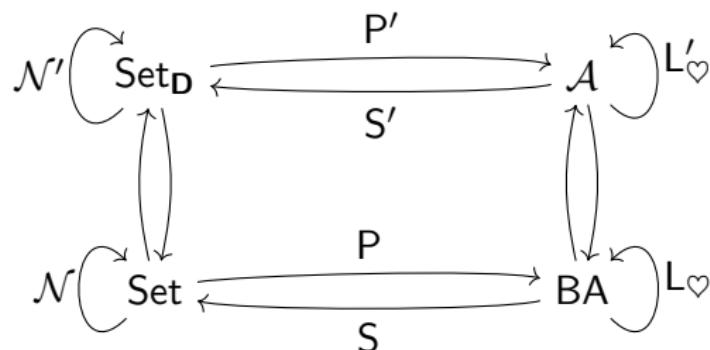
$$(D3) \quad \diamond(1 \leftarrow (\neg x)) = 1 \leftarrow (\neg \diamond x),$$

$$(D4) \quad \diamond(x \leftarrow b) = \diamond x \leftarrow b \text{ all } b \neq 1,$$

$$(P2) \quad \square x \wedge \diamond y \leq \diamond(x \wedge y).$$

Many-valued modal logic for crisp neighborhoods

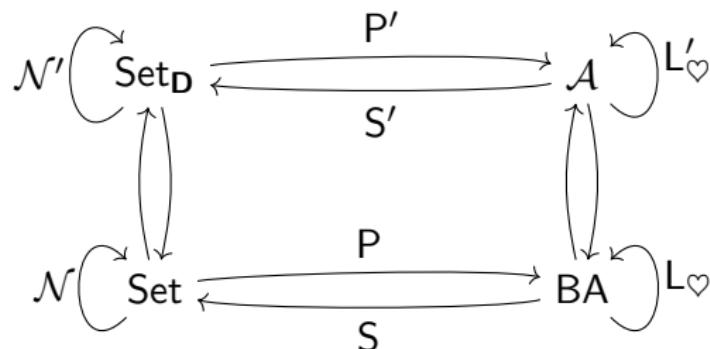
The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor L_{\heartsuit} has a presentation by one unary operation \heartsuit and *no* equations.



Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor L_{\heartsuit} has a presentation by one unary operation \heartsuit and *no* equations.

(L_{\heartsuit}, δ) is (one-step) complete $\Rightarrow (L'_{\heartsuit}, \delta')$ is (one-step) complete.

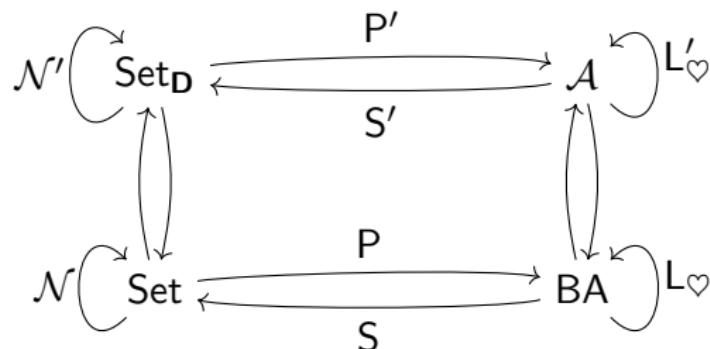


Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor L_\heartsuit has a presentation by one unary operation \heartsuit and *no* equations.

(L_\heartsuit, δ) is (one-step) complete $\Rightarrow (L'_\heartsuit, \delta')$ is (one-step) complete.

Replacing \mathcal{N} by \mathcal{N}_{fin} : (L_\heartsuit, δ) is expressive $\Rightarrow (L'_\heartsuit, \delta')$ is expressive.



Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor L_{\heartsuit} has a presentation by one unary operation \heartsuit and *no* equations.

(L_{\heartsuit}, δ) is (one-step) complete $\Rightarrow (L'_{\heartsuit}, \delta')$ is (one-step) complete.

Replacing \mathcal{N} by \mathcal{N}_{fin} : (L_{\heartsuit}, δ) is expressive $\Rightarrow (L'_{\heartsuit}, \delta')$ is expressive.

We don't know a concrete presentation for L'_{\heartsuit} yet, unless \mathbf{D} is primal.

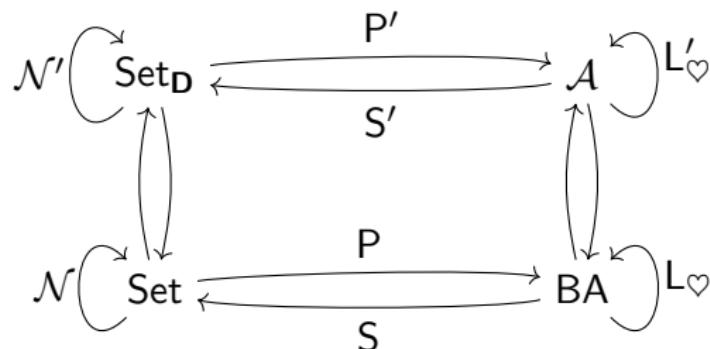


Table of Contents

1 Perspectives on semi-primal varieties

 A. Kurz, W.P., B. Teheux: *New perspectives on semi-primal varieties*. Journal of Pure and Applied Algebra **228**(4), 107525, 2024. doi: [10.1016/j.jpaa.2023.107525](https://doi.org/10.1016/j.jpaa.2023.107525)

2 Many-valued coalgebraic logic: From Boolean algebras to semi-primal varieties

 A. Kurz, W.P., B. Teheux: *Many-valued coalgebraic logic over semi-primal varieties*. To appear in: Logical Methods in Computer Science (LMCS), 2024. <https://arxiv.org/abs/2308.14581>

 A. Kurz, W.P.: *Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties*. CALCO, 2023. doi: [10.4230/LIPIcs.CALCO.2023.17](https://doi.org/10.4230/LIPIcs.CALCO.2023.17)

3 Many-valued positive modal logic over finite MV-chains

 W.P.: *Positive modal logic over finite MV-chains*. To appear in: Advances in Modal Logic (AiML), 2024.

 W.P.: *Natural dualities for varieties generated by finite positive MV-chains*. To appear in: Algebra Universalis, 2024. <https://arxiv.org/abs/2309.16998>

Finite positive MV-chains

Definition (finite positive MV-chain)

Let $n \geq 1$ be a natural number. The $(n + 1)$ -element positive MV-chain is given by

$$\mathbf{P}\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \odot, \oplus, 0, 1 \rangle,$$

understood as a reduct of \mathbf{L}_n .

We write PMV_n for the variety $\mathbb{HSP}(\mathbf{P}\mathbf{L}_n)$ generated by $\mathbf{P}\mathbf{L}_n$.

Finite positive MV-chains

Definition (finite positive MV-chain)

Let $n \geq 1$ be a natural number. The $(n + 1)$ -element positive MV-chain is given by

$$\mathbf{P}\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \odot, \oplus, 0, 1 \rangle,$$

understood as a reduct of \mathbf{L}_n .

We write PMV_n for the variety $\text{HSP}(\mathbf{P}\mathbf{L}_n)$ generated by $\mathbf{P}\mathbf{L}_n$.

Proposition

- ① $\text{PMV}_n = \text{ISP}(\mathbf{P}\mathbf{L}_n)$.

Finite positive MV-chains

Definition (finite positive MV-chain)

Let $n \geq 1$ be a natural number. The $(n + 1)$ -element positive MV-chain is given by

$$\mathbf{P}\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \odot, \oplus, 0, 1 \rangle,$$

understood as a reduct of \mathbf{L}_n .

We write PMV_n for the variety $\text{HSP}(\mathbf{P}\mathbf{L}_n)$ generated by $\mathbf{P}\mathbf{L}_n$.

Proposition

- ① $\text{PMV}_n = \text{ISP}(\mathbf{P}\mathbf{L}_n)$.
- ② The subalgebras of $\mathbf{P}\mathbf{L}_n$ coincide with those of \mathbf{L}_n (i.e., correspond to divisors of n).

Finite positive MV-chains

Definition (finite positive MV-chain)

Let $n \geq 1$ be a natural number. The $(n + 1)$ -element positive MV-chain is given by

$$\mathbf{P}\mathbf{L}_n = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, \odot, \oplus, 0, 1 \rangle,$$

understood as a reduct of \mathbf{L}_n .

We write PMV_n for the variety $\text{HSP}(\mathbf{P}\mathbf{L}_n)$ generated by $\mathbf{P}\mathbf{L}_n$.

Proposition

- ① $\text{PMV}_n = \text{ISP}(\mathbf{P}\mathbf{L}_n)$.
- ② The subalgebras of $\mathbf{P}\mathbf{L}_n$ coincide with those of \mathbf{L}_n (i.e., correspond to divisors of n).
- ③ The unary terms $\tau_d = \chi_{\{x \geq d\}}$ are still term-definable in $\mathbf{P}\mathbf{L}_n$.

Natural duality for PMV_n

Theorem

There is a (natural) duality between PMV_n and a category \mathcal{X}_n of *Priestley spaces with additional subrelations of the order*.

An optimal *dualising structure* is determined by a subset $\mathcal{S}_n \subseteq \mathbb{S}(\leq)$.

Natural duality for PMV_n

Theorem

There is a (natural) duality between PMV_n and a category \mathcal{X}_n of *Priestley spaces with additional subrelations of the order*.

An optimal *dualising structure* is determined by a subset $\mathcal{S}_n \subseteq \mathbb{S}(\leq)$.

Example (Dual category for PMV_2)

In the case of the three-element chain $\text{P}\mathbf{L}_2$, we have $\mathcal{S}_2 = \{\triangleleft, \leq\}$ with

$$\triangleleft = \{(a, b) \in \text{P}\mathbf{L}_2^2 \mid a = 0 \text{ or } b = 1\}.$$

Natural duality for PMV_n

Theorem

There is a (natural) duality between PMV_n and a category \mathcal{X}_n of *Priestley spaces with additional subrelations of the order*.

An optimal *dualising structure* is determined by a subset $\mathcal{S}_n \subseteq \mathbb{S}(\leq)$.

Example (Dual category for PMV_2)

In the case of the three-element chain $\text{P}\mathbf{L}_2$, we have $\mathcal{S}_2 = \{\triangleleft, \leq\}$ with

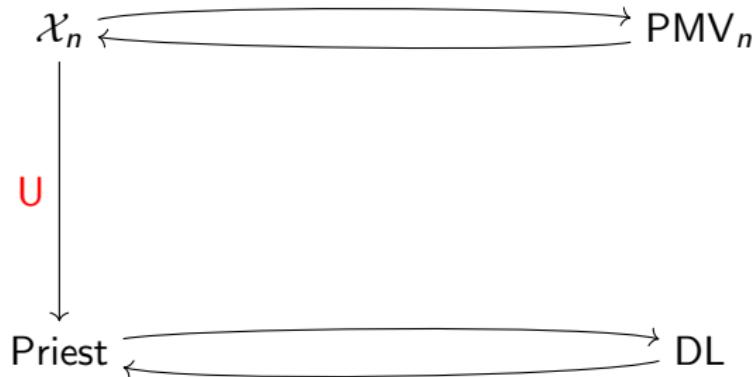
$$\triangleleft = \{(a, b) \in \text{P}\mathbf{L}_2^2 \mid a = 0 \text{ or } b = 1\}.$$

The members of \mathcal{X}_2 are of the form $(X, \leq^X, \triangleleft^X)$ and need to satisfy an additional separation property:

If $x \not\triangleleft^X y$ but $x \leq^X y$, then there exist a clopen upset U and a clopen downset D with the following properties

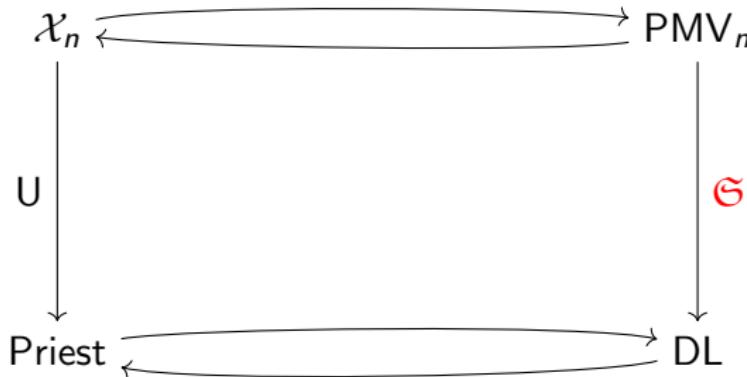
- $x \notin D$ and $y \notin U$,
- For all $z, z' \in X$, if $z \triangleleft^X z'$ then $z \in D$ or $z' \in U$.

Distributive skeletons



There again is a forgetful functor U .

Distributive skeletons



There again is a forgetful functor U .

Its dual is given by the *distributive skeleton* defined analogously to the Boolean skeleton.

$$\text{PMV}_n(\mathbf{A}, \mathbf{P}\mathbf{L}_n) \cong \text{DL}(\mathfrak{S}(\mathbf{A}), \mathbf{2}) \text{ via restriction } p \mapsto p|_{\mathfrak{S}(\mathbf{A})}.$$

Introduction to positive modal logic

- *Positive modal logic*: The $\{\wedge, \vee, 0, 1, \Box, \Diamond\}$ -reduct of standard modal logic. Algebraically, move to *modal distributive lattices* $(\mathbf{L}, \Box, \Diamond)$ with

$$(B1) \quad \Box 1 = 1,$$

$$(B2) \quad \Box(x \wedge y) = \Box x \wedge \Box y,$$

$$(P1) \quad \Box(x \vee y) \leq \Box x \vee \Diamond y,$$

$$(D1) \quad \Diamond 0 = 0,$$

$$(D2) \quad \Diamond(x \vee y) = \Diamond x \vee \Diamond y,$$

$$(P2) \quad \Box x \wedge \Diamond y \leq \Diamond(x \wedge y).$$

Introduction to positive modal logic

- Positive modal logic: The $\{\wedge, \vee, 0, 1, \Box, \Diamond\}$ -reduct of standard modal logic. Algebraically, move to *modal distributive lattices* $(\mathbf{L}, \Box, \Diamond)$ with

$$(B1) \quad \Box 1 = 1,$$

$$(B2) \quad \Box(x \wedge y) = \Box x \wedge \Box y,$$

$$(P1) \quad \Box(x \vee y) \leq \Box x \vee \Diamond y,$$

$$(D1) \quad \Diamond 0 = 0,$$

$$(D2) \quad \Diamond(x \vee y) = \Diamond x \vee \Diamond y,$$

$$(P2) \quad \Box x \wedge \Diamond y \leq \Diamond(x \wedge y).$$

- Shortcomings of 'usual' semantics over Set-frames. E.g., the consequence pairs

$$\Box p \vdash p \text{ and } p \vdash \Diamond p$$

define the same class of frames but are not mutually inter-derivable anymore.

Introduction to positive modal logic

- Positive modal logic: The $\{\wedge, \vee, 0, 1, \Box, \Diamond\}$ -reduct of standard modal logic. Algebraically, move to *modal distributive lattices* $(\mathbf{L}, \Box, \Diamond)$ with

$$(B1) \quad \Box 1 = 1,$$

$$(B2) \quad \Box(x \wedge y) = \Box x \wedge \Box y,$$

$$(P1) \quad \Box(x \vee y) \leq \Box x \vee \Diamond y,$$

$$(D1) \quad \Diamond 0 = 0,$$

$$(D2) \quad \Diamond(x \vee y) = \Diamond x \vee \Diamond y,$$

$$(P2) \quad \Box x \wedge \Diamond y \leq \Diamond(x \wedge y).$$

- Shortcomings of 'usual' semantics over Set-frames. *E.g.*, the consequence pairs

$$\Box p \vdash p \text{ and } p \vdash \Diamond p$$

define the same class of frames but are not mutually inter-derivable anymore.

- Better-behaved semantics over Pos-frames (X, \leq, R) adding a *partial order*. Now the above correspond to the distinct classes with reflexive

$$R_{\Box} := R \circ \leq \text{ and } R_{\Diamond} := R \circ \geq$$

Positive modal logic over finite MV-chains: Semantics

Signature $\mathcal{L}_{\text{PMV}}^{\square\Diamond} = \{\wedge, \vee, \oplus, \odot, 0, 1, \square, \Diamond\}$, inductively define formulas
Form $^{\square\Diamond}_{\text{PMV}}$ (with countable set of propositional variables Prop) as usual.

Positive modal logic over finite MV-chains: Semantics

Signature $\mathcal{L}_{\text{PMV}}^{\square\Diamond} = \{\wedge, \vee, \oplus, \odot, 0, 1, \square, \Diamond\}$, inductively define formulas
Form $^{\square\Diamond}_{\text{PMV}}$ (with countable set of propositional variables Prop) as usual.

Definition (Pos_n-frame & Pos_n-model)

A Pos_n-frame is a structure (X, \leq, v, R) such that $v: X \rightarrow \mathbb{S}(\text{P}\mathbf{L}_n)$ and
the accessibility relation satisfies the *compatibility conditions*

- For all $x, y \in X$ it holds that

$$x \leq y \Rightarrow R[x] \leq_{\text{EM}} R[y].$$

- Whenever $x, y \in X$ satisfy $y \in R[x]$, there exist $y', y'' \in R[x]$ with

$$y' \leq y \leq y'' \text{ and } v(y'), v(y'') \subseteq v(x).$$

Positive modal logic over finite MV-chains: Semantics

Signature $\mathcal{L}_{\text{PMV}}^{\square\Diamond} = \{\wedge, \vee, \oplus, \odot, 0, 1, \square, \Diamond\}$, inductively define formulas
Form $^{\square\Diamond}_{\text{PMV}}$ (with countable set of propositional variables Prop) as usual.

Definition (Pos_n-frame & Pos_n-model)

A Pos_n-frame is a structure (X, \leq, v, R) such that $v: X \rightarrow \mathbb{S}(\mathbf{PL}_n)$ and the accessibility relation satisfies the *compatibility conditions*

- For all $x, y \in X$ it holds that

$$x \leq y \Rightarrow R[x] \leq_{\text{EM}} R[y].$$

- Whenever $x, y \in X$ satisfy $y \in R[x]$, there exist $y', y'' \in R[x]$ with

$$y' \leq y \leq y'' \text{ and } v(y'), v(y'') \subseteq v(x).$$

A Pos_n-model adds a valuation $\text{Val}: X \times \text{Prop} \rightarrow \mathbf{PL}_n$ satisfying

- If $x \leq y$, then $\text{Val}(x, p) \leq \text{Val}(y, p)$ for all $p \in \text{Prop}$.
- $\text{Val}(x, p) \in v(x)$ for all $x \in X$ and $p \in \text{Prop}$.

Positive modal logic over finite MV-chains: Algebras

Definition (Modal PMV_n-algebras)

A *modal PMV_n-algebra* is an algebra $\langle \mathbf{A}, \square, \diamond \rangle$, where $\mathbf{A} \in \text{PMV}_n$ and $\square, \diamond: A \rightarrow A$ satisfy

$$\text{B1} \quad \square 1 = 1,$$

$$\text{B2} \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$\text{B3} \quad \tau_d(\square x) = \square \tau_d(x),$$

$$\text{P1} \quad \square(x \vee y) \leq \square x \vee \diamond y,$$

$$\text{D1} \quad \diamond 0 = 0,$$

$$\text{D2} \quad \diamond(x \vee y) = \diamond x \vee \diamond y,$$

$$\text{D3} \quad \tau_d(\diamond x) = \diamond \tau_d(x),$$

$$\text{P2} \quad \square x \wedge \diamond y \leq \diamond(x \wedge y).$$

We denote the variety of modal PMV_n-algebras by mPMV_n.

Positive modal logic over finite MV-chains: Algebras

Definition (Modal PMV_n-algebras)

A *modal PMV_n-algebra* is an algebra $\langle \mathbf{A}, \square, \diamond \rangle$, where $\mathbf{A} \in \text{PMV}_n$ and $\square, \diamond: A \rightarrow A$ satisfy

$$\text{B1} \quad \square 1 = 1,$$

$$\text{B2} \quad \square(x \wedge y) = \square x \wedge \square y,$$

$$\text{B3} \quad \tau_d(\square x) = \square \tau_d(x),$$

$$\text{P1} \quad \square(x \vee y) \leq \square x \vee \diamond y,$$

$$\text{D1} \quad \diamond 0 = 0,$$

$$\text{D2} \quad \diamond(x \vee y) = \diamond x \vee \diamond y,$$

$$\text{D3} \quad \tau_d(\diamond x) = \diamond \tau_d(x),$$

$$\text{P2} \quad \square x \wedge \diamond y \leq \diamond(x \wedge y).$$

We denote the variety of modal PMV_n-algebras by mPMV_n.

The axioms B3 and D3 can be equivalently replaced by

$$\text{B}\oplus \quad \square(x \oplus x) = \square x \oplus \square x,$$

$$\text{B}\odot \quad \square(x \odot x) = \square x \odot \square x,$$

$$\text{D}\oplus \quad \diamond(x \oplus x) = \diamond x \oplus \diamond x,$$

$$\text{D}\odot \quad \diamond(x \odot x) = \diamond x \odot \diamond x.$$

Theorem

Let $\varphi, \psi \in \text{Form}_{\text{PMV}}^{\square\Diamond}$ be modal PMV-formulas. Then the following are equivalent.

- ① $\varphi \vdash \psi$ is valid on all Pos_n -frames.
- ② $\varphi \vdash \psi$ is valid on all Set-frames.
- ③ $m\text{PMV}_n \models \varphi \leq \psi$.

Theorem

Let $\varphi, \psi \in \text{Form}_{\text{PMV}}^{\square\Diamond}$ be modal PMV-formulas. Then the following are equivalent.

- ① $\varphi \vdash \psi$ is valid on all Pos_n -frames.
- ② $\varphi \vdash \psi$ is valid on all Set-frames.
- ③ $m\text{PMV}_n \models \varphi \leq \psi$.

The additional 'richness' of the semantics over Pos_n -frames plays a role when it comes to axiomatic extensions, definability and canonicity.

A case study in canonicity

In modal logic over \mathbf{L}_n (i.e., with negation), the formulas

$$\square(x \oplus x) \rightarrow \square x \text{ and } \diamond(x \oplus x) \rightarrow \diamond x$$

both define the Set_n -frames (X, v, R) which satisfy $xRy \Rightarrow v(y) = \mathbf{P}\mathbf{L}_1$.
The former is canonical³, so the latter is derivable from it.

³Hansoul, Teheux 2013 [10]

A case study in canonicity

In modal logic over \mathbf{L}_n (i.e., with negation), the formulas

$$\square(x \oplus x) \rightarrow \square x \text{ and } \diamond(x \oplus x) \rightarrow \diamond x$$

both define the Set_n -frames (X, v, R) which satisfy $xRy \Rightarrow v(y) = \mathbf{PL}_1$.
The former is canonical³, so the latter is derivable from it.

In modal logic over \mathbf{PL}_n , this is not the case anymore. The semantics over Pos_n reflect this as for any Pos_n -frame \mathfrak{F} we have:

- ① The consequence pair $\square(p \oplus p) \vdash \square p$ is valid in \mathfrak{F} if and only if \mathfrak{F} satisfies

$$\forall x \forall y : (xRy \rightarrow \exists y' : (xRy' \wedge y' \leq y \wedge v(y') = \mathbf{PL}_1)).$$

- ② The consequence pair $\diamond(p \oplus p) \vdash \diamond p$ is valid in \mathfrak{F} if and only if \mathfrak{F} satisfies

$$\forall x \forall y : (xRy \rightarrow \exists y'' : (xRy'' \wedge y \leq y'' \wedge v(y'') = \mathbf{PL}_1)).$$

³Hansoul, Teheux 2013 [10]

Table of Contents

1 Perspectives on semi-primal varieties

- A. Kurz, W.P., B. Teheux: *New perspectives on semi-primal varieties*. Journal of Pure and Applied Algebra **228**(4), 107525, 2024. doi: [10.1016/j.jpaa.2023.107525](https://doi.org/10.1016/j.jpaa.2023.107525)

2 Many-valued coalgebraic logic: From Boolean algebras to semi-primal varieties

- A. Kurz, W.P., B. Teheux: *Many-valued coalgebraic logic over semi-primal varieties*. To appear in: Logical Methods in Computer Science (LMCS), 2024. <https://arxiv.org/abs/2308.14581>

- A. Kurz, W.P.: *Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties*. CALCO, 2023. doi: [10.4230/LIPIcs.CALCO.2023.17](https://doi.org/10.4230/LIPIcs.CALCO.2023.17)

3 Many-valued positive modal logic over finite MV-chains

- W.P.: *Positive modal logic over finite MV-chains*. To appear in: Advances in Modal Logic (AiML), 2024.

- W.P.: *Natural dualities for varieties generated by finite positive MV-chains*. To appear in: Algebra Universalis, 2024. <https://arxiv.org/abs/2309.16998>

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras
- Or even arbitrary finite lattice-based algebras

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras
- Or even arbitrary finite lattice-based algebras
- Lattice-(semi-)primal algebras

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras
- Or even arbitrary finite lattice-based algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain $[0, 1]$

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras
- Or even arbitrary finite lattice-based algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain $[0, 1]$

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras
- Or even arbitrary finite lattice-based algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain $[0, 1]$

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation
- Probabilistic Logic

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal = Finite discriminator algebras
- Or even arbitrary finite lattice-based algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain $[0, 1]$

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation
- Probabilistic Logic
- Propositional Dynamic Logic, Linear Temporal Logic, etc.

The end

Thanks for your attention!

References I

- [1] Bou, F., Esteva, F., Godo, L., Rodríguez, R. O.: On the minimum many-valued modal logic over a finite residuated lattice. *Journal of Logic and Computation* **21**, 739–790 (2011) doi:10.1093/logcom/exp062
- [2] Bezhanishvili, G., Bezhanishvili, N., de Groot, J.: A Coalgebraic Approach to Dualities for Neighborhood Frames. *Logical Methods in Computer Science* **18**, 4:1–4:39 (2022) doi:10.46298/lmcs-18(3:4)2022
- [3] Celani S., Jansana, R.: A New Semantics for Positive Modal Logic. *Notre Dame Journal of Formal Logic* **38**, 1–18 (1997) doi:10.1305/ndjfl/1039700693
- [4] Clark, D. M., Davey, B. A.: Natural Dualities for the Working Algebraist. Cambridge studies in advanced mathematics, vol. 57. Cambridge University Press (1998)
- [5] Davey, B. A., Gair, A.: Restricted Priestley dualities and discriminator varieties. *Studia Logica* **105**, 843–872 (2017) doi:10.1007/s11225-017-9713-4
- [6] Diaconescu, D., Georgescu, G.: Tense operators on MV-algebras and Łukasiewicz-Moisil algebras. *Fundamenta Informaticae* **81**, 379–408 (2007)
- [7] Dunn, J. M.: Positive Modal Logic. *Studia Logica* **55**, 301–317 (1995) doi:10.1007/BF01061239
- [8] Foster, A. L.: Generalized “Boolean” theory of universal algebras. Part I. *Mathematische Zeitschrift* **58**, 306–336 (1953) doi:10.1007/BF01174150

References II

- [9] Foster, A. L., Pixley, A. F.: Semi-categorical algebras. I. Semi-primal algebras. *Mathematische Zeitschrift* **83**, 147–169 (1964) doi:10.1007/BF01111252
- [10] Hansoul, G., Teheux, B.: Extending Łukasiewicz logics with a modality: Algebraic approach to relational semantics. *Studia Logica* **101**, 505–545 (2013) doi:10.1007/s11225-012-9396-9
- [11] Hu, T.-K.: On the topological duality for primal algebra theory. *Algebra Universalis* **1**, 152–154 (1971) doi:10.1007/BF02944971
- [12] Keimel, K., Werner, H.: Stone duality for varieties generated by quasi-primal algebras. *Memoirs of the American Mathematical Society* **148**, 59–85 (1974)
- [13] Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. *Electronic Notes in Theoretical Computer Science* **106**, 219–241 (2004) doi:10.1016/j.entcs.2004.02.037
- [14] Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. *Theoretical Computer Science* **327**, 109–134 (2003) doi:10.1016/S1571-0661(04)80638-8
- [15] Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal logic. In: Ramanujam, R., Sarukkai, S. (eds) *Logic and Its Applications*. ICLA, 170–184. Springer, Berlin Heidelberg (2009) doi:10.1007/978-3-540-92701-3_12

References III

- [16] Maruyama, Y.: Natural duality, modality, and coalgebra. *Journal of Pure and Applied Algebra* **216**, 565–580 (2012) doi:10.1016/j.jpaa.2011.07.002
- [17] Moraschini, T., Raftery, J. G., Wanneburg, J. J.: Varieties of De Morgan monoids: Minimality and irreducible algebras. *Journal of Pure and Applied Algebra* **227**, 2780-2803 (2019) doi:10.1016/j.jpaa.2018.09.015
- [18] Pixley, A. F.: The ternary discriminator in universal algebra. *Mathematische Annalen* **191**, 167–180 (1971) doi:doi:10.1016/0012-365X(79)90096-7