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ABSTRACT
Multi-Precision Integer (MPI) arithmetic is a performance-critical
component of many public-key cryptosystems, including besides
classical ones (e.g., RSA, ECC) also isogeny-based post-quantum
schemes. In this paper, we analyze and compare two widely-used
MPI representations, namely full-radix and reduced-radix, for the
efficient implementation of modular arithmetic operations on the
64-bit RISC-V (RV64GC) architecture. We also evaluate how the
execution times of both can be further improved with Instruction
Set Extensions (ISEs). The ISEs we propose are able to accelerate
a CSIDH-512 class group action by a factor of 1.71 compared to
a standard software implementation on a 64-bit Rocket core. This
speed-up comes at the cost of a hardware overhead of about 10%.

CCS CONCEPTS
•Computer systems organization→Reduced instruction set
computing; • Security and privacy→ Cryptography.
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1 INTRODUCTION
The majority of public-key cryptosystems operate in certain alge-
braic structures like finite groups, rings or fields, whose elements
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are unsigned integers of a length of hundreds or even thousands
of bits. Important examples include not only “classical” schemes
such as RSA, DSA, and Diffie-Hellman, as well as elliptic-curve
variants of the latter (i.e., ECDSA and ECDH), but also some more
recent post-quantum cryptosystems based on isogenies between
supersingular elliptic curves [5]. All these cryptosystems have in
common that, at the lowest level, they perform arithmetic oper-
ations (e.g., addition, multiplication, inversion) on large integers
modulo a prime or a product of primes or a near-prime [6].

Software libraries for Multi-Precision Integer (MPI) arithmetic
usually represent the operands (i.e., integers of a length of n bits)
via arrays of w-bit digits or limbs, where w equals the word-size
of the target platform (“full-radix” representation) or is a few bits
below the word-size (“reduced-radix” representation). Algorithms
for MPI arithmetic operate on digit/limb arrays by executing the
w-bit instructions supported by the processor, e.g.,w-bit addition
or (w ×w)-bit multiplication. The most basic approaches for MPI
multiplication, namely the row-wise and column-wise technique
(also known as operand scanning and product scanning [7]) have
complexity O(l2) for l-digit operands (where l = ⌈n/w⌉), i.e., the
number of (w ×w)-bit multiply instructions to be executed grows
with the square of the operand length n.

Depending on the operand length n and the word-sizew of the
processor, such basic techniques for MPI multiplication (and also
MPI squaring and MPI modular reduction) can involve the execu-
tion of dozens, or even hundreds, of multiply instructions. This
makes MPI arithmetic and, hence, most public-key cryptosystems
relatively costly in software. The high execution times of public-
key cryptosystems has initiated a body of research on hardware
acceleration to support MPI arithmetic operations, especially the
multiplication, squaring, and modular reduction. Besides classical
acceleration through loosely-coupled co-processors, also various
forms of hardware-software co-design have been analyzed in the
literature. A promising approach is to extend the basic Instruction
Set Architecture (ISA) of a general-purpose processor by a small
set of “custom” instructions, tailored specifically to accelerate the
most performance-critical operations of MPI arithmetic, i.e., the
operations in the inner loop(s) of the arithmetic functions.

This paper describes the design and prototype implementation
of ISEs for MPI arithmetic on the RISC-V architecture. RISC-V is
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a royalty-free and very permissively licensed ISA based on well-
accepted RISC principles. The architecture is modular and comes
with a minimalist base integer instruction set that contains less
than 50 unique instructions [15]. In addition, different extensions
have been developed in recent years to better support common
application domains. One of the extensions targets cryptographic
workloads and provides a set of special instructions to accelerate
major symmetric cryptosystems like the AES [11]. Although some
papers, e.g., [1, 10, 13], have studied custom ISE designs for lattice-
based cryptography, however, currently 1) no standard extension
for public-key cryptography exists, and 2) no paper proposes an
ISE approach for flexible (i.e., scalable) MPI arithmetic. With the
present paper we contribute to fill this gap and introduce an ISE
design to speed up MPI arithmetic on RISC-V. Our design adheres
to (most of) the general ISE design principles put forward by the
RISC-V community; therefore, the proposed instructions could be
considered to become part of a standard extension.

The research contribution of this paper is twofold and can be
summarized as follows. First, we study ISA-only implementations
of MPI arithmetic on RV64GC, i.e., implementations using basic
integer and multiply instructions, considering both full-radix and
reduced-radix representations. We take the prime-field arithmetic
of the post-quantum key exchange algorithm CSIDH [3] as case
study, for which we developed and evaluated a number of highly-
optimized Assembly functions. Although the RISC-V architecture
does not support ALU status flags such as a carry flag, our results
show that the full-radix representation is the better option. The
second contribution is a proposal for two different ISEs for MPI
arithmetic; one for a full-radix and the other for a reduced-radix
representation. Each ISE includes a pair of novel fused multiply-
add instructions and one instruction to efficiently implement the
carry propagation. Using the two sets of custom instructions, we
studied the question of which of the two radix representations is
more suitable for acceleration via ISEs. Our experiments, carried
out with a Rocket core [2], showed that 1) the reduced-radix ISEs
reached better performance, and 2) ISE-supported CSIDH-512 is
about 1.71× faster than the full-radix ISA-only version.

2 BACKGROUND
RISC-V. As we already stated above, a major tenet of RISC-V is

modularity, i.e., the general-purpose RISC-V ISA can be enhanced
with a set of special-purpose, standard or non-standard (custom)
extensions. Due to these features and the availability of a diverse
supporting infrastructure (e.g., development tools/utilities) from
surrounding communities, a variety of RISC-V implementations
exist, which are usually open-source. In this work, we define the
base ISA (i.e., serving as “baseline”) as RV64GC, which includes
the 64-bit integer ISA RV64I plus the general-purpose M (multi-
plication), A (atomic), and C (compressed) extensions, as well as
the F and D extensions for floating-point arithmetic.

Relevant instructions. The most relevant RV64GC instructions
for MPI arithmetic include the integer addition add, integer sub-
traction sub, and bit-wise shift slli, srli, srai from RV64I, as
well as the two integer multiply instructions mul and mulhu from
RV64M. Notably, since RISC-V does not support a carry flag, the
corresponding (i.e., overflow-related) carry propagation uses two

instructions: one sltu from RV64I for carry-out (i.e., overflow)
check, and one add for propagating the carry.

Basic CSIDH facts. Commutative Supersingular Isogeny Diffie-
Hellman (CSIDH) [3] is a quantum-secure key exchange protocol
using extremely short keys. It operates on supersingular elliptic
curves E given in Montgomery form [6] and defined over a prime
field Fp , where p has the special form p = 4 · ℓ1 · · · ℓn − 1 and its
factors ℓ1 < · · · < ℓn are small odd primes. For p ≡ 3 mod 8, the
Fp -endomorphism ring satisfies EndFp (E) � Z[

√−p]. At the core
of the CSIDH key exchange is a free and transitive group action
⋆ : CL(Z[√−p]) × S → S , where CL(Z[√−p]) is the ideal class
group of order Z[√−p] and S is the set of all supersingular elliptic
curves with Fp -endomorphism ring Z[√−p]. The existence of the
commutative group action is a very attractive feature, leading the
authors of [3] to state that CSIDH-based key exchange “can serve
as a drop-in replacement for the (EC)DH key-exchange protocol
while maintaining security against quantum computers". CSIDH
has gained a lot of attention over the past few years; however, its
main drawback is the high execution time, with the commutative
group action being the most demanding part of the protocol. The
CSIDH protocol comes in three instantiations, determined by the
(approximate) length of p, namely CSIDH-512, CSIDH-1024, and
CSIDH-1792, targeting NIST PQ security levels 1, 2, and 3.

Although the work of Peikert [14] claims that the three above
instantiations do not reach the targeted NIST security levels, the
concrete security of CSIDH is still under debate. Nonetheless, the
protocol attracts enormous interest due to its unique combination
of commutativity with extremely short public keys (e.g., 64 bytes
for the NIST security level 1). In this paper, we only consider the
CSIDH-512 instantiation, where the prime p is 511 bits long.

Notation.We denote multiple-precision integers with a capital
letter (e.g., A) and its i-th word/limb with ai . Any integer within
the machine word-size is referred to by a lowercase letter such as
a. With x ≪ y (resp., x ≫ y) we denote a logical left (resp., right)
shift of x by y bits. In addition, based on the notation in [11], the
prefix EXTS (short for “Sign-EXTended”) represents an arithmetic
shift. This means EXTS(x ≪ y) and EXTS(x ≫ y) is an arithmetic
left and right shift, respectively, of x by y bits. Finally, we write
x ∥ y for a concatenation of x and y, and x {h ...l } for an extraction
of all bits with index h (the more-significant index) through l (the
less-significant index) inclusive from some operand x .

3 DESIGN AND IMPLEMENTATION
The high-level computations (e.g., curve and isogeny arithmetic)
of CSIDH rely, in essence, on low-level arithmetic operations in
the prime field Fp . Our focus is on multiplication in Fp since it is
particularly performance-critical. We implemented this operation
through Montgomery multiplication, which is a common choice
for moduli that do not have a special form [9]. Our work includes
two full-radix (64 bits/digit) and two reduced-radix (w bits/limb
where w < 64 bits) implementations. The latter two actually use
a radix-257 representation, i.e., 57 bits/limb. Two variants execute
solely “native” RV64GC instructions and, therefore, we call them
ISA-only implementations, whereas the remaining two, referred to
as ISE-supported implementations, use besides native RV64GC also
custom instructions to speed up the inner-loop operations.
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3.1 ISA-Only Implementation
Montgomery multiplication: High-level techniques. A very basic

way to carry out a Montgomery modular multiplication involves
the separate (i.e., sequential) execution of MPI multiplication and
MPI Montgomery reduction. Among the implementation options
for these operations are operand/product scanning, Karatsuba’s
algorithm, etc. [7]. In addition, the integration of multiplication
steps and modular reduction steps has been studied, which led to
coarsely and finely integrated approaches, see [9] for details. The
differences between these separated or integrated techniques are
mainly apparent in the loop structure (e.g., number of outer and
inner loops), the operations performed in the inner loop, and the
number of memory accesses when the register-space is small. In
our case (i.e., RV64GC), the register space is large enough to store
the operands and intermediates up to 512 bits, and we also unroll
the loops fully. Therefore, the mentioned integration techniques
are very similar in performance on our base ISA.

Montgomery multiplication: Low-level optimizations. The Mont-
gomery multiplication techniques we implemented are based on
product-scanning in some form; thus, the main building block is
an operation of the form S ← S + ai · bj , commonly referred to as
Multiply-and-ACcumulate (MAC). This MAC operation computes
a double-precision partial product ai · bj of digits/limbs from the
operands A and B, and adds it to an accumulator or a cumulative
sum S . After several such MAC operations, a part of S yields the
digit/limb ri+j of the final result R. When the MPI multiplication
and/or MPI reduction is implemented in a looped way, the MAC
is actually performed in the inner-loop, which means it dominates
the execution time of Montgomery multiplication. Therefore, the
MAC deserves careful optimization at Assembly level.

Listing 1: ISA-only full-radix MAC operation.
/* Input/Output: 192-bit accumulator e || h || l */
/* Input: 64-bit operands a and b */
mulhu z, a, b; mul y, a, b; add l, l, y; sltu y, l, y;
add z, z, y; add h, h, z; sltu z, h, z; add e, e, z;

Listing 2: ISA-only reduced-radix MAC operation.
/* Input/Output: 128-bit accumulator h || l */
/* Input: 64-bit operands a and b */
mulhu z, a, b; mul y, a, b; add l, l, y; sltu y, l, y;
add z, z, y; add h, h, z;

Listing 1 shows an RV64GC Assembly implementation (where
each line has to be read from left to right) of the MAC operation
for full-radix arithmetic, which means S is held in three registers
(e , h, l) and the MAC computes (e ∥ h ∥ l) ← (e ∥ h ∥ l) + a · b. The
corresponding Assembly source code for the reduced-radix case
(given in Listing 2) differs a bit since S can now be placed in two
registers (h and l) and the computation (h ∥ l) ← (h ∥ l) + a · b is
carried out. When considering only the MAC operation itself, the
reduced-radix variant seems better as it needs fewer instructions
than its full-radix counterpart (i.e., 6 versus 8). However, for the
full Montgomery multiplication, the reduced-radix representation
introduces a few implicit overheads. First, for common operand
sizes, e.g., 512 bits, the number of limbs in the reduced-radix case
is normally higher than the number of digits/words of a full-radix
representation, which is unfavorable since the number of MACs
increases with the square of the limb/digit count. In addition, the

Algorithm 1: Addition-based fast modulo-p reduction.
Input: An operand A ∈ [0, 2p − 1] and modulus P .
Output: Fully reduced result R ∈ [0, p − 1].

1 T ← A − P
2 M ← 0 − SLTU (A, P ) // M is either 0 or an all-1 mask

3 M ← M ∧ P
4 R ← T +M
5 return R

Algorithm 2: Swap-based fast modulo-p reduction.
Input: An operand A ∈ [0, 2p − 1] and the modulus P .
Output: Fully reduced result R ∈ [0, p − 1].

1 T ← A − P
2 M ← 0 − SLTU (A, P ) // M is either 0 or an all-1 mask

3 M ← M ∧ (A ⊕ T )
4 R ← T ⊕ M
5 return R

reduced-radix version needs a few extra instructions to align the
accumulator and propagate the carries in the outer loop. On the
other hand, in the full-radix setting, the proper alignment of the
accumulator is “naturally” given and the carry-propagation in the
outer loop is basically free. All these aspects make it very hard to
predict which radix representation is more efficient on RISC-V.

Fast reduction modulo p.When an operand A is known to be in
the range [0, 2p − 1], a fast modulo-p reduction can be performed
(instead of the costly Montgomery reduction) to get a residue in
[0,p − 1]. The first step of this fast reduction is a MPI subtraction
of the form T = A − P . Thereafter, depending on whether T < 0
(i.e., A was already in [0,p − 1]) or not, either operand A or the
difference T is returned. This second step can be implemented to
have constant execution time according to two approaches, one
is addition-based and the other conditional-swap-based, shown in
Algorithm 1 and 2, respectively. The operation SLTU(A, P) gives
either 0 or 1 as result (to detect underflows); it is actually a “side-
product” of the subtraction A − P . Note that a fast reduction can
be directly used for the Fp -addition and also as final step of the
Montgomery reduction. A variant of Algorithm 1, where line 1 is
modified to T = A − B (here, B is another operand instead of the
prime modulus P ), can be used for Fp -subtraction.

For full-radix representation, the addition-based method is the
more efficient option on most ISAs since it can save an operation
compared to a swap-based version (see line 3 in Algorithm 1 and
2). However, this does not hold for RISC-V because of the absence
of a carry flag, making the addition at the end of Algorithm 1 (in
line 4) rather costly. This, in turn, helps the swap-based version
to become the faster option for our full-radix implementation. In
the reduced-radix case, a swap-based version is the better choice
for the final step of Montgomery reduction since it can avoid the
carry propagation caused by an addition. But for Fp -addition, the
swap-based version is slower because it requires the sum (before
reduction) to be in canonical form with strictly 57 bits/limb.

3.2 ISE Design
Design guidelines. We aim to provide an ISE design that could

be considered to be part of a standard extension, and to this end
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Table 1: Overview of our ISEs.

Functionality ISEs
full-radix reduced-radx

Integer multiply-add maddlu, maddhu madd57lu, madd57hu
Carry propagation cadd sraiadd

Table 2: Examples of some existing integer fused multiply-
add instructions on ARM and Intel AVX-512.

Instruction ISA/ISE Computation Radix
mla ARM rd <- lo(rs1*rs2)+rs3 F + R

umlal ARM (rd2||rd1) <- (rs1*rs2)+(rd2||rd1) F + R
umaal ARM (rd2||rd1) <- (rs1*rs2)+rd2+rd1 F + R

vpmadd52luq AVX-512 rd <- lo52(rs1*rs2)+rs3 R
vpmadd52huq AVX-512 rd <- hi52(rs1*rs2)+rs3 R

we adopt the principles described in [12, Sect. 3] as guidelines. In
detail, our guidelines are: 1) the ISE must use the general-purpose
scalar register file to store operands; 2) the ISE must not introduce
a special-purpose architectural state, nor rely on special-purpose
micro-architectural state, e.g., cache, scratch-pad memory; 3) the
instruction encodings use at most two source register addresses
and one destination register address, but we permit instructions
for the MAC operation (which is highly performance-critical) to
exceptionally use an R4-type instruction format1.

Overview of our ISEs. As shown in Table 1, we present two sets
of ISEs in this paper: one for full-radix arithmetic and one for the
reduced-radix realm. Each set has three custom instructions.

Existing ISEs for MPI arithmetic. An integer fused multiply-add
instruction exists for almost any mainstream ISA, e.g., ARM and
x64. Some of these instructions were specifically added to speed
up MPI arithmetic for public-key cryptosystems; a good example
are the 8-way SIMD integer fused multiply-add instructions from
the AVX-512 ISA, which according to Intel are “new instructions
for big number multiplication” [8]. Table 2 specifies two families
of fused integer multiply-add instructions; the first is part of the
ARM architecture and the second of Intel’s AVX-512 ISA. These
instructions were chosen to illustrate different design approaches
and so we omit similar (e.g., signed) variants. In Table 2, lo refers
to the lower half of a product; lo52 (resp., hi52) takes exactly the
lower (resp., higher) 52 bits of a 104-bit product; F (resp., R) is an
abbreviation of full-radix (resp., reduced-radix) representation.

We analyze the instructions from three angles: 1) Computation:
all instructions (except umaal) can be formalized into a Multiply-
Shift-And-Add (MSA2) paradigm, which can be written in general
form as rd <- (((rs1*rs2) >> j) & m) + rs3. We assume the
length of the multiplier is in line with the register size (resp., the
element width in the case of SIMD instructions). The offset j and
maskm jointly control whether the full product or a part of it is
accumulated and, in the latter case, which part exactly. In order to
accumulate the full product, instructions like umlal or umaal are
required perform a “widening” multiplication. The umaal instruc-
tion can even include two additions in the result. However, since
we use standard R4-type format, accumulating the full product is
not possible for our instructions. 2) Instruction Encoding: all these
instructions use at least three source register addresses, and some
1We note that there exists a standard R4-type instruction format, defined with three
source register addresses and one destination register address. The R4 format is used
by the floating-point fused multiply-add (i.e., F[N]MADD and F[N]MSUB) instructions
of the RV64GC ISA [15, Sect. 11.6]. However, since an R4-type instruction consumes
a significant amount of encoding space, we restrict R4 to the MAC operation.

012345678910111213141516171819202122232425262728293031

rs3 00 rs2 rs1 111 rd 1111011 maddlu

rs3 01 rs2 rs1 111 rd 1111011 maddhu

• maddlu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1

5 r ← (x*y + z) & m

6 GPR[rd] ← r

• maddhu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1

5 r ← ((x*y+z)>>64) & m

6 GPR[rd] ← r

Figure 1: Proposed multiply-add instructions for full-radix
implementation.

instructions overwrite one or two source registers, which means
a source register also serves as destination. 3) Supported Radix: in
general, multiply-add instructions can support both full-radix and
reduced-radix representation. However, vpmadd52[luq/huq] are
exceptions as they only work properly with reduced radix.

Our multiply-add instructions for full-radix.When designing an
ISE for fused multiply-add for full-radix MPI arithmetic, mla can
serve as a valuable starting point. We first propose an instruction
maddlu, which has exactly the same functionality and is used to
accumulate the lower half of the 128-bit product. It makes sense
to accordingly have a maddhu instruction to be able to accumulate
the upper half of the product (of an unsigned multiplication). The
details of maddlu and maddhu are shown in Figure 1. It should be
noted that our maddhu follows the paradigm Multiply-Add-Shift-
And instead of the conventional MSA2 paradigm. Because in this
way, the carry propagation can be handled inside maddhu to save
an explicit carry-out check (i.e., an sltu instruction).

Our multiply-add instructions for reduced-radix. In the reduced-
radix setting, vpmadd52luq and vpmadd52huq (both part of Intel’s
AVX-512IFMA) can serve as inspiration. However, as explained in
[4, Sect. 3.1], when using an MPI representation with 52-bit limbs
(or slightly shorter, e.g., 51 bits), one has to pay attention to the
so-called multiplier saturation problem. For some reasons, such as
delayed carry propagation during the computation of a crypto-
system, a limb can increase by few bits and, therefore, exceed the
maximum input size for the multiplier. Thus, when executing an
AVX-512IFMA instruction on such limbs, some extra instructions
are required to bring the limbs back into the valid range. On the
other hand, an implementer may also opt for a more conservative
radix representation, i.e., shorter limbs, to avoid this problem.

We decided to solve the saturation problem at the instruction-
design level (for our custom instructions). Concretely, rather than
using a reduced-length multiplier with respect to the word size
or element width (e.g., 52 instead of 64 bits in AVX-512IFMA), we
employ a “full” 64-bit multiplier that produces 128-bit results and
control the part of the product to be accumulated with help of the
offset j and the maskm. The offset j equals the limb-length of the
given MPI representation;m equals (1 ≪ j) − 1 in the instruction
accumulating lower part of the product and (1 ≪ 64) − 1 in the
instruction accumulating higher part. Note that the latter has to
return more bits (i.e., requires a largerm), because the product is
usually larger than 2j bits, especially when the carry-propagation
is delayed. More details of our custom multiply-add instructions
for radix-257 (designed in MSA2 style) are given in Figure 2.

Our carry-propagation instructions. The implementation of the
full-radix MAC in Listing 1 contains two propagations of carries
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012345678910111213141516171819202122232425262728293031

rs3 10 rs2 rs1 111 rd 1111011 madd57lu

rs3 11 rs2 rs1 111 rd 1111011 madd57hu

• madd57lu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 57) - 1

5 r ← ((x*y) & m) + z

6 GPR[rd] ← r

• madd57hu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1

5 r ← (((x*y)>>57)&m)+z

6 GPR[rd] ← r

Figure 2: Proposed multiply-add instructions for reduced-
radix implementation.

012345678910111213141516171819202122232425262728293031

rs3 10 rs2 rs1 111 rd 1111011 cadd

1 imm rs2 rs1 111 rd 0101011 sraiadd

• cadd rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 r ← ((x+y)>>64) + z

5 GPR[rd] ← r

• sraiadd rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← x + EXTS(y>>imm)

4 GPR[rd] ← r

Figure 3: Proposed carry-propagation instructions.

(i.e., two sltu and the two corresponding add instructions). Even
though our maddhu saves one carry propagation, the other one is
still there and slows down the execution. Therefore, we designed
an instruction to reduce the cost of this carry propagation, shown
in Figure 3 (cadd stands for compute-Carry-then-ADD). While in
the full-radix case the carries are propagated instantly, a reduced-
radix implementation usually delays some carry propagations in
intermediate computations and performs a one-time propagation
at the end. Though delaying the carries can save instructions, the
final one-time propagation still introduces high latency and, even
worse, high dependency compared to other operations. It makes
therefore sense to have a custom instruction to support this final
propagation in a reduced-radix implementation. Our design (see
Figure 3), in essence, fuses sari and add into one instruction.

Impact of our ISEs on software. After utilizing madd[l|h]u and
cadd in the full-radix implementation, the MAC operation takes
fewer instructions. The ISE-supported full-radix MAC, shown in
Listing 3, executes the operation (e ∥ h ∥ l) ← (e ∥ h ∥ l) + a · b as
described in Sect. 3.1. Compared to the ISA-only implementation
given in Listing 1, our full-radix ISEs save half of the instructions
(i.e., the number of instructions decreases from eight to four). On
the other hand, the ISE-based MAC for reduced-radix arithmetic
(Listing 4) performs the operation (h ∥ l) ← (h ∥ l) + a · b via the
two steps l ← l + (a · b){56...0} and h ← h + (a · b){120...57} . The
ISEs for reduced-radix implementation do not only decrease the
instruction count from six (Listing 2) to two (Listing 4), but also
make the accumulator automatically aligned, which saves some
further cycles. Thus, one can expect the reduced-radix version to
experience a higher performance gain when switching from the
ISA-only to the ISE-supported version. The instruction sequence
for carry propagation from a given limb x to the next limb y in an
ISA-only radix-257 implementation is as follows.

srai z, x, 57; add y, y, z; and x, x, m;

The registerm holds the mask 257 − 1. After utilizing the custom
instruction sraiadd, the total number of instructions for the final

Listing 3: ISE-supported full-radix MAC operation.
/* Input/Output: 192-bit accumulator e || h || l */
/* Input: 64-bit operands a and b */
maddhu z, a, b, l; maddlu l, a, b, l;
cadd e, h, z, e; add h, h, z;

Listing 4: ISE-supported reduced-radix MAC operation.
/* Input/Output: 64-bit accumulators h and l */
/* Input: 64-bit operands a and b */
madd57hu h, a, b, h; madd57lu l, a, b, l;

carry propagation decreases from three to two and, moreover, the
dependency chain is weakened, as shown below.
sraiadd y, y, x, 57; and x, x, m;

3.3 Hardware Implementation
Host core. We used the highly-configurable Rocket chip genera-

tor [2] to obtain a RISC-V compliant core for the implementation
of our ISEs. Very briefly, this RV64GC core executes instructions
using a 5-stage, in-order pipeline; support is included within the
core for a branch prediction mechanism, and in the wider system
for a 16 kB instruction cache and a 16 kB data cache. In order to
support our custom instructions, two modifications were made to
the core. First, an eXtended MULtiplier (XMUL) was integrated to
execute the presented instructions. This XMUL unit extends the
core’s original pipelined multiplier, i.e., it supports not only the
special multiply-add and carry-handling instructions, but also the
base-ISA multiply instructions. All custom instructions (and also
mul[hu]) execute in one cycle. Second, ISE-related modifications
were made to the instruction decoder, which, for example, allows
it to correctly provide input operands to XMUL, control XMUL’s
computations, and accept output operands from XMUL.

XMUL. XMUL was extended from the original multiplier so as
to support the additional (third) input operand for the two fused
multiply-add and the carry-propagation instruction, as defined in
Sect. 3.2. Similar to the normal operands, the additional operand
can be fetched from the forwarding path to resolve a read-after-
write hazard associated with the previous instructions. Like the
original multiplier, XMUL is implemented with a 2-stage pipeline
(including one register stage at input operands and another at the
output result) to avoid timing-critical paths. Indeed, XMUL does
not extend the existing critical path and thus does not impact the
clock frequency. Our implementation of the XMUL computations
comes directly from the definition of the associated instructions
without aiming to optimize the arithmetic circuitry. Certainly, the
extension of XMUL causes increased hardware usage in relation
to the original multiplier of the Rocket core.

4 EVALUATION
Experimental platform. We used an Arty A7-100T board, which

hosts a Xilinx Artix-7 model XC7A100TCSG324 FPGA device2, as
experimental platform to evaluate the performance and hardware
cost of our ISEs. Furthermore, we utilized Xilinx Vivado 2019.1 to
synthesize the “stand-alone” design for our implementations (the

2https://digilent.com/reference/programmable-logic/arty-a7/start
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Table 3: Results of hardware-oriented evaluation.
Components LUTs Regs DSPs CMOS

Base core 4807 2156 16 428680
Base core + ISE (full-radix) 5019 2390 16 483248
Base core + ISE (reduced-radix) 5223 2352 16 495290

Table 4: Results of software-oriented evaluation (execution
times of CSIDH-512 operations are given in clock cycles).

Operation Full-radix Reduced-radix
ISA-only ISE-sup. ISA-only ISE-sup.

Integer multiplication 608 371 625 303
Integer squaring 440 371 398 216
Montgomery reduction 730 469 818 389
Fast modulo-p reduction 107 107 112 104
Fp -addition 163 163 148 132
Fp -subtraction 143 143 139 123
Fp -multiplication 1446 954 1561 799
Fp -squaring 1279 951 1334 712
CSIDH group action 701.0M 502.9M 736.2M 411.1M

1.00× 1.39× 0.95× 1.71×

default synthesis settings were applied, with no effort invested in
synthesis or post-implementation optimizations). The FPGA gets
a 100MHz external clock input, which is scaled down to 50MHz
internal clock frequency for the host core itself.

Hardware evaluation. Table 3 presents a summary of synthesis
results for each of the two ISE designs. We give the (cumulative)
hardware costs in terms of the number of LUTs, Regs, DSPs, and
CMOS. The costs are compared to the RV64GC core alone, and so
excludes the wider system; doing so seems more representative in
that, for example, the caches would dominate otherwise. In line
with our definition of base ISA (see Sect. 2) is what we term the
base core (i.e., a core serving as “baseline” for our work), which is
a 64-bit Rocket core that supports only RV64GC. We extend this
RV64GC core with support for our custom instructions to obtain
what we term an extended core. The implementation of full-radix
(resp., reduced-radix) ISEs entails an increase of 4% (resp., 9%) in
the number of LUTs, as well as an increase of 11% (resp., 9%) in
the number of Regs, on the extended core versus the base core.

Software evaluation. Using the source code3 from the designers
of CSIDH, we developed a total of four different implementations
of CSIDH-512. All implementations are based on the same code
for the high-level computations, but the low-level Fp -arithmetic
uses (constant-time) Assembler functions, which we wrote from
scratch for both the ISA-only and the ISE-supported version. The
execution times of operations at different arithmetic layers of the
CSIDH-512 protocol are summarized in Table 4. Our experiments
showed that product-scanning is more efficient than Karatsuba’s
algorithm for MPI multiplication, and so we used the former. The
fastest ISA-only implementation, i.e., the full-radix version, is the
baseline for comparison in Table 4. In the ISA-only case, the full-
radix implementation is faster for multiplication and squaring in
Fp due to the smaller number of digits (resp., limbs) compared to
reduced-radix, but slower for addition/subtraction in Fp because
of costly carry checks and propagations (while the reduced-radix
implementation can just delay the carry propagation). But when
using our ISEs, the reduced-radix multiplication and squaring in
Fp become faster than the full-radix versions. This performance
gain for multiplication/squaring propagates all the way up to the
3https://csidh.isogeny.org/software.html

highest arithmetic layer, i.e., the CSIDH group action. Thanks to
our ISEs, the reduced-radix option becomes the more efficient one
and the execution time of the CSIDH-512 group action decreases
from 701.0M to 411.1M cycles, i.e., by a factor of 1.71×.

5 CONCLUSIONS
We provided some new insights into the efficient implementation
of MPI arithmetic (i.e., addition, multiplication, reduction) on the
RV64GV architecture, both with and without ISEs. Focussing on
implementations that use only the base RV64GC instructions, we
analyzed the impact of full-radix versus reduced-radix represen-
tation of operands. Intuitively, one would expect a reduced-radix
implementation to outperform its full-radix counterpart since the
RISC-V ISA lacks an “add-with-carry” instruction. However, the
results we obtained show that, for 512-bit operands (i.e., CSIDH-
512), using full-radix representation is the better option. We then
designed a small set of custom instructions in order to accelerate
the execution of MPI arithmetic, whereby we focused mainly on
the inner loop of Montgomery multiplication. Using our ISEs, we
again analyzed the performance of the two representations, and
concluded that the reduced-radix representation is more suitable
for ISE-supported MPI arithmetic on an RV64GC processor. This
is again somewhat counterintuitive since almost all previous ISEs
for MPI arithmetic were designed for full-radix representation.
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