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Systematic determination of a material’s magnetic ground state
from first principles
Andres Tellez-Mora 1✉, Xu He 2, Eric Bousquet 2, Ludger Wirtz 3 and Aldo H. Romero 1,3

We present a self-consistent method based on first-principles calculations to determine the magnetic ground state of materials,
regardless of their dimensionality. Our methodology is founded on satisfying the stability conditions derived from the linear spin
wave theory (LSWT) by optimizing the magnetic structure iteratively. We demonstrate the effectiveness of our method by
successfully predicting the experimental magnetic structures of NiO, FePS3, FeP, MnF2, FeCl2, and CuO. In each case, we compared
our results with available experimental data and existing theoretical calculations reported in the literature. Finally, we discuss the
validity of the method and the possible extensions.
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INTRODUCTION
Magnetic materials have garnered significant interest due to their
wide range of technological applications, from everyday items like
refrigerator magnets to complex devices such as electric motors,
generators, sensors, and computer memories1–3. Their magnetic
behavior stems from the presence of unpaired electrons in atomic
orbitals and the subsequent interactions between the magnetic
moments of these atoms. Depending on the crystal structure and
chemistry of the material, these magnetic moments can align in a
particular direction (ferromagnetic interaction) or anti-align (anti-
ferromagnetic interaction). The complex interaction between mag-
netic moments gives rise to various magnetic phases, including
conventional ferro and antiferromagnetism, weak ferromagnetic
canting, spin waves, topological orders such as skyrmions, spin
glasses, and even exotic magnetic monopoles3. Notably, the
magnetic interactions between neighboring atoms are relatively
weak compared to other electron–electron interactions. Conse-
quently, magnetism is a sensitive property easily influenced by
various factors such as temperature, pressure, strain, and magnetic
field. These external parameters can dramatically alter the magnetic
behavior of a material, leading to intriguing phenomena and
providing opportunities for technological advancements. Hence,
the development of high-throughput methodologies for the
computation of magnetic properties and the exploration of various
potential magnetic phases would be a valuable endeavor4–7.
Effective models such as the Heisenberg model are commonly

employed to understand magnetic interactions and predict
magnetic phases in materials8,9. These models simplify the
many-body problem and can be parameterized using first-
principles calculations, typically based on density functional
theory (DFT). Real space energy mapping and spin-spiral
calculations are two standard methods for obtaining Heisenberg
Hamiltonian parameters from DFT calculations10–12. The real space
energy mapping method involves calculating the energy spec-
trum of different magnetic configurations and mapping it to the
Hamiltonian13,14. This approach often requires the use of super-
cells to accommodate different magnetic orders. On the other
hand, the spin-spiral method relates the magnon spectra to the

total energies of the many spin-spiral states, allowing the
determination of exchange parameters. Both methods are widely
used for simplicity but can be computationally demanding since
the number of required calculations scales with the number of
exchange parameters considered. An alternative approach is the
Green’s function method, which uses the Magnetic Force Theorem
(MFT) proposed by Liechtenstein, Katsnelson, Antropov, and
Gubanov (LKAG)15,16. Initially implemented with the Koringa-
Kohn-Rostoker Green’s function, this method accurately describes
magnetic properties without the efficiency issues associated with
energy mapping and spin-spiral methods17. The LKAG method is
well-suited for high-throughput analyses, where computational
efficiency is crucial. However, it has one limitation: it requires prior
knowledge of the magnetic ground state. Although it can estimate
the ground state from a non-ground-state approximated Heisen-
berg model, the estimation can be inaccurate based on the
limitations of the Heisenberg model, which will be discussed later.
Knowing the magnetic ground state of a material is crucial as it

enables the exploration of its magnetic response under various
conditions. Once the magnetic ground state is determined, a
perturbative approach (like the LKAG method) can be employed to
compute other magnetic excitations. These excitations can be
obtained by finding the eigenmodes of the Heisenberg Hamiltonian,
providing a comprehensive picture of the magnon spectra.
Furthermore, with the knowledge of all parameters in the Heisenberg
Hamiltonian, researchers can perform atomistic spin dynamics
simulations, which allow them to obtain dynamical properties in
magnetic materials18. By understanding the magnetic ground state,
researchers can also investigate how the material responds to
different external factors, such as temperature, pressure, or magnetic
fields. This knowledge is essential for studying the material’s
magnetic behavior and predicting its properties under various
conditions.
In the following sections, we outline our formalism for exploring

the magnetic ground state of crystal systems. First, we describe
how we map the problem of finding the magnetic ground state
into a minimization procedure of a positive definite hermitian
matrix. Then, we present our computational method for determin-
ing the magnetic ground state, which uses the computed
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magnetic exchange couplings from the LKAG method. Finally, we
test our method for three systems: two bulk 3D materials and one
2D material. We compare the obtained results for each system
with available experimental and existing theoretical data. By
providing a comprehensive analysis of the obtained results and
their comparison with experimental and theoretical data, we aim
to showcase the effectiveness of our computational approach in
exploring the magnetic ground state and understanding the
magnetic behavior of different materials. Additionally, we
elaborate on the potential limitations of our methodology. The
paper concludes by discussing some perspectives on the use of
our development.

RESULTS
Heisenberg model
The Heisenberg model is the starting point of many analyses of
the magnetic properties of materials. In the absence of an external
magnetic field, it is contained in the following Hamiltonian:

H ¼ �
X
i

STi AiSi �
X
i≠ j

STi JijSj; (1)

where Ai denotes the single-ion anisotropy tensor, Jij is the
exchange coupling tensor, and Si is the spin operator correspond-
ing to the ith magnetic atom. While Ai and Jij are represented by
3 × 3 matrices, Si corresponds to a 3 × 1 column unit vector that
points in the direction of the magnetic moment mi at site i. Here,
Jij includes the isotropic exchange (Jisoij ), the anisotropic exchange
(Janiij ), and the Dzyaloshinskii-Moriya interaction (DMI; Dij). While
Jisoij is a number independent of the magnetic sites’ relative
orientation with the lattice, Janiij and Dij are second and first-order
tensors that describe anisotropic and anti-symmetric interactions.
The exchange coupling tensor Jij can be constructed from the
foregoing terms by the expression

Jij ¼ Janiij þ
0 Dij

z �Dij
y

�Dij
z 0 Dij

x

Dij
y �Dij

x 0

2
64

3
75þ Jisoij I; (2)

where I is the identity matrix.
Although Eq. (1) contains an infinite number of interactions, the

values of the exchange tensors decrease with distance, and only a
finite set of them is needed to obtain a good approximation. The
product STi JijSj effectively describes the interactions between
magnetic species in a crystal lattice by quantifying the effect on
the total energy of each interacting pair i, j. Consequently, if Ai and
Jij are known, we can access relevant information about a
magnetic material, like its critical temperature, the spin-wave
energies, and the magnetic ground state configuration, which we
will discuss in this paper.
The exchange tensors describe how the alignment of a

particular local magnetic moment mi affects the overall system.
For example, consider a purely isotropic case for which the
matrices in Eq. (1) are multiples of the identity matrix so that Jij
only contains Jisoij terms. Then, if we suppose that Jisoij is positive
(negative) for a given interacting pair i, j, it will favor a parallel
(antiparallel) alignment between the local magnetic moments of
sites i and j. Furthermore, if Jij contains anisotropic components
(nonzero diagonal entries), it also contains information about the
local magnetic moments’ alignments relative to the lattice. Thus,
in principle, we can expect the Heisenberg model to predict the
most favorable magnetic configuration. We argue that such a
prediction can be obtained by considering a stability condition on
the eigenvalue problem of the Heisenberg Hamiltonian, which we
discuss in the next section.

Linear spin wave theory
A general solution of Eq. (1) in the one-magnon picture can be
obtained from linear spin-wave theory (LSWT). Toth and Lake19

used LSWT to develop an algorithm capable of solving Eq. (1) for
systems with an incommensurate magnetic structure. Their
method uses a local coordinate system that transforms any
magnetic structure into ferromagnetic ordering for which the
spin-wave energies are easily calculable. Here, we briefly discuss
their algorithm’s mathematics but refer to ref. 19 for further details.
First, we state that any magnetic configuration can be described

by a propagation vector Q in the reciprocal lattice (that describes
how the orientation mi rotates depending on its positions in the
lattice) and the relative alignment of each mi within its crystal-
lographic unit cell. This introduces the following transformation:

Si ¼ Rϕi
RiS0i ; (3)

where Ri is a matrix that rotates ẑ into the relative orientation ofmi

within its unit cell and Rϕi
represents the propagation vector

rotation by the phase ϕi=Q ⋅ ri, where ri is the position vector of
the magnetic site i. Thus, the transformation Rϕi

Ri rotates ẑ into m̂i .
From this step, we also define the vectors ui and vi by

uki ¼ Rk1i þ iRk2i ;

vki ¼ Rk3i ;
(4)

where k= 1, 2, 3.
The next step in the LSWT method is to expand the rotated spin

operators in terms of bosonic annihilation and creation operators.
When only the linear terms are considered, we obtain the expression

S0þi ¼ ffiffiffiffiffiffi
2Si

p
bi

S0�i ¼ ffiffiffiffiffiffi
2Si

p
byi

S0zi ¼ Si � byi bi;

(5)

where S0±i ¼ S0xi ± iS0yi and bi and byi satisfy the bosonic commu-
tation relations:

bi ; b
y
j

h i
¼ δij: (6)

Then, by getting the Fourier transformation of the bosonic
operators and the exchange tensors:

bi ¼ 1
N

X
kϵB:Z

biðkÞeik�ri ; Jij ¼
X
kϵB:Z

JijðkÞeik�ri (7)

we can express the Heisenberg Hamiltonian from equation (1) as

H ¼
X
kϵB:Z

xyðkÞhðkÞxðkÞ: (8)

Here, xi ¼ ½b1ðkÞ; ¼ ; bNðkÞ; by1ðkÞ; ¼ ; byNðkÞ� and h(k) is a
Hermitian block matrix given by

hðkÞ ¼ AðkÞ � C BðkÞ
ByðkÞ Að�kÞ � C

� �
; (9)

with

AijðkÞ ¼
ffiffiffiffiffi
SiSj

p
2 uT

i J
0
ijð�kÞuj;

BijðkÞ ¼
ffiffiffiffiffi
SiSj

p
2 uT

i J
0
ijð�kÞuj;

Cij ¼ δij
P
l
SlvTi J

0
ijð0Þvj ;

J0ijðkÞ ¼ RTϕi
JijðkÞRϕj

:

(10)

Since only the first-order terms of the boson operators are
considered, equation (8) remains only as a linear approximation of
equation (1). The details of obtaining equation (8) from equation
(1) can be found in section 6 of Toth and Lake’s paper19.
Since the new Hamiltonian in Eq. (8) is a quadratic form of the

bosonic operators, the matrix h(k) must be positive definite in
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addition to being Hermitian20. Hence, for a given set of fixed Jij,
the vectors ui and vi (and thus the vectors m̂i) must be such that
h(k) is positive definite for every vector k of the reciprocal lattice.
Finally, when this condition is satisfied, the eigenvalues or spin-
wave energies of H will be the positive eigenvalues of the matrix

L ¼ KygK ; (11)

where h(k)= K†K corresponds to a Cholesky decomposition and

g ¼ I 0
0 �I

� �
is a block matrix with the same dimensions as h(k).

Therefore, the problem of finding the magnetic ground state
becomes the problem of finding a magnetic structure that satisfies
the positive definiteness condition of h(k) and minimizes the spin-
wave energies.

Magnetic ground state workflow
Predicting a structure’s magnetic ground state begins with
determining the exchange tensors from the Heisenberg model.
Traditionally, fitting Eq. (1) to the total energy changes resulting
from spin perturbations using DFT has been a common first-
principles approach21. This involves generating multiple spin
configurations and calculating their total energies. However, this
method becomes computationally demanding for systems with
numerous interactions, requiring many spin configurations. To
overcome these challenges, we employ the LKAG Green’s function
method15. This method has been extended to consider magnetic
anisotropy and the Dzyaloshinskii-Moriya interaction (DMI)22,23.
Using the Green’s function method, we can determine the
exchange tensors with fewer single-point DFT calculations. Only
one calculation is needed for the isotropic case, while up to six
calculations are required for the anisotropic case. Our procedure
involves running a DFT calculation to construct a tight-binding
model and then utilizing Green’s function method to generate
spin perturbations and calculate the exchange tensors efficiently.
This approach allows us to predict a wide range of exchange
tensors by performing a limited number of calculations, making it
particularly advantageous for systems with many interactions and
accurately predicting their magnetic properties.
To facilitate Green’s function method, we employ the TB2J

package24, which automates the process using the output of
various DFT codes. In our case, we utilize Siesta25 for the DFT
calculations. Siesta’s basis set of localized atomic orbitals simplifies
the construction of the tight-binding model, making it advanta-
geous compared to DFT codes that employ a plane-wave basis set.
Using TB2J with Siesta eliminates the need for another step to
build Wannier functions, as discussed in Section 4.3.1 of the main
TB2J paper24. Also, we note that to calculate the anisotropic
exchange parameters and the DMI, the Siesta calculations need to
include spin-orbit coupling corrections.
Once the exchange tensors are calculated, we leverage the

information from the Heisenberg model to predict the magnetic
ground state. As outlined in the precious section, our objective is
to determine appropriate vectors ui, vi, and Q that yield a positive
definite matrix h(k) and minimize the spin-wave energies. It is
noteworthy that gh(k) represents the dynamical matrix associated
with Eq. (8)26. Therefore, we focus on minimizing the eigenvalues
of h(k) to determine the most favorable spin-wave energies.
First, we optimize the value of Q. The propagating vector k

associated with a spin-wave mode can be taken from the first
Brillouin zone. This motivates us to define the vector kmin that
minimizes the eigenvalues of h. When kmin ≠ 0, there exists a spin-
wave mode with lower energy than the magnetic structure given
by Q. If this is the case, then Q is corrected by setting Q= kmin.
Relative to the new supercell, we then get that kmin= 0. Next, we
optimize the vectors ui and vi. Since ui and vi depend on the polar
and azimuthal angles θi and ϕi that determine the orientation of

mi, we define the function

f ðθ;ϕÞ ¼ inf λ : hð0Þx ¼ λxf gj j; (12)

where θ ¼ θ1; ¼ ; θNð Þ, ϕ ¼ ϕ1; ¼ ;ϕNð Þ, and N is the number of
magnetic sites inside a unit cell. The previous step ensures that
h(0) has the lowest eigenvalues; therefore, the values of θ and ϕ
that give the magnetic ground state are obtained by finding the
global minima of f. Here, both the propagation vector and the
optimized angles are found by using the Basin-hopping global
optimization technique as implemented in the Scipy package27.
The Green’s function method and LSWT impose an additional

challenge since their results depend on how far the system is from
the magnetic ground state (which is yet to be known). To address
this challenge, we employ a self-consistency procedure. We start
with an initial magnetic configuration, often chosen as ferromag-
netic (Q= 0). We calculate the exchange tensors and optimize the
values of Q, θ, and ϕ. If the optimized values lead to a magnetic
configuration different from the previous one, we iterate the
process. We calculate a new set of exchange tensors based on the
updated magnetic configuration and obtain new values for Q, θ,
and ϕ. We repeat this procedure until the optimized values of Q,
θ, and ϕ yield the same magnetic configuration from which they
were calculated (Fig. 1).
It is important to note that any magnetic configuration with a

nonzero Q requires using a supercell to represent it accurately.
However, no supercell can contain the magnetic structure if the
magnetic phase is incommensurate (i.e., Q has irrational
components). We choose the closest commensurate supercell to
approximate the magnetic structure in such cases. For example, if
kmin= (0.2136324…, 0.0, 0.0) ≈ (1/5, 0, 0), then we can approxi-
mate the corresponding magnetic structure with a 5 × 1 × 1
supercell. To automatically generate the supercell, we define a
neighborhood U of kmin such that the energies of the members of
U differ from the energy of kmin by less than a cut-off value ϵ
(usually ϵ= 0.5 meV, but this might depend on the system).
Finally, we choose the member of U that gives the smallest
supercell. Additionally, the supercells are chosen based on cut-off
values that limit their dimensions and number of atoms. The size
cut-off values will depend on the available computational
resources, but we typically limit the supercells to having less than
120 atoms. Similarly, if there are points of the h(k) dispersion
outside U that also have energies inside the ϵ cut-off window, we
select the one that yields the smallest supercell.

Test cases
Here, we present our method applied to three magnetic materials:
NiO, FePS3, and FeP. We chose these materials since they
represent cases of interest: a simple collinear antiferromagnet
(NiO), a 2D layered van der Waals material with interlayer
interactions (FePS3), and a helimagnet with spin canting (FeP).
We only included the isotropic interactions for the first two cases
since the anisotropic components’ values are insignificant. In the
third case, however, we find that the anisotropic exchange has a
measurable effect on the predicted magnetic ground state.
Furthermore, for every case, we considered interacting pairs
within a 20 Å interacting distance.
We first apply our method to the well-known antiferromagnetic

structure of FCC NiO. Initially, we consider the ferromagnetic
configuration using the primitive cell. We focus on the isotropic
exchange constants of magnetic pairs within a distance of 30 Å.
Table 1 presents the values obtained for the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interactions. Notably, the
NNN interaction dominates the magnetism in NiO, contributing
significantly more to the total energy than the NN interaction. This
highlights the importance of considering interactions beyond the
short range to accurately predict the magnetic properties of a
system. Furthermore, we provide results from DFT and DFT+U
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calculations (see Table 1). We use U= 5.847 eV and J= 0.589 eV
from the Materials Project Database28.
Given the isotropic exchange tensors, we calculate the

dispersion relation of h(k) for the ferromagnetic configuration
(Fig. 2a). For this case, every eigenvalue of h(k) is negative,
implying the instability of NiO’s ferromagnetic state. Moreover, we
see that h(k) has a minimum at kmin= (0.5, 0.5, 0.5)= L. Thus, our
method predicts that the spin-spiral generated by the propaga-
tion vector (0.5, 0.5, 0.5) gives a more stable magnetic configura-
tion at the L point. Hence, the exchange tensors and the spin
dispersion are recomputed from this L point magnetic ordering.
This is the reported magnetic structure from neutron scattering
experiments29,30. The dispersion obtained by this configuration
has nonnegative values with a global minimum at the Γ point (Fig.
2b), which shows that it is the final ground state from the self-
consistency cycle (although L is also a global minimum, Γ yields
the smallest supercell; see the discussion in “Magnetic Ground
State Workflow”). Also, we note that we obtained the same

magnetic structure for NiO when using both DFT and DFT+U
despite the differences in the exchange constants.
Next, we apply our methodology to the quasi-two-dimensional

antiferromagnet FePS3. Like the NiO case, we begin with the
ferromagnetic configuration of the primitive cell (Fig. 4b left) and
initially consider only the isotropic exchange interactions. In the
Brillouin zone, h(k) exhibits negative eigenvalues for every k
vector, indicating the instability of the ferromagnetic state (Fig.
3a), which compares to the positive values of the antiferromag-
netic configuration. While both the Γ and Z≔ (0, 0, 1/2) points
appear as potential global minima of h(k), the Z point has a lower
energy than Γ by a margin of 2.0 meV. Thus, our method suggests
that the magnetic order associated with the reciprocal vector
Q= (0, 0, 1/2) represents the state with the lowest energy.
In the case of FePS3, selecting a new propagation vector does

not ensure that h(k) becomes a positive definite matrix. The
stability conditions are satisfied only by minimizing the function f
defined in Eq. (12). After optimization, the angles for the unit cell
of FePS3 with four magnetic atoms are θ= (0, 0, π, π) and
ϕ= (0, 0, 0, 0). This indicates that the resulting magnetic config-
uration involves half of the Fe atoms in the unit cell having
opposite magnetic moments (Fig. 4b right). The predicted
antiferromagnetic structure of FePS3 with a propagation vector
Q= (0, 0, 1/2) aligns with the findings from neutron scattering
experiments31.

Table 1. Isotropic exchange constants for different magnetic
configurations of NiO.

Configuration Functional JNN (meV) JNNN (meV)

FM PBE 2.78 −52.54

AFM PBE 0.51 −15.40

FM PBE+U 0.15 −11.58

AFM PBE+U 0.12 −11.52

AFM72 PBE+U 1.2 −14.0

AFM73 GW −0.77, −1.00 −14.7

Experiment74 – 0.69 −9.15

JNN and JNNN correspond to the nearest-neighbor and next-nearest-
neighbor interactions, respectively. The AFM configuration corresponds
to the Q= L state.

Fig. 1 Magnetic ground state workflow.

Fig. 2 Dispersion relation of the matrix h(k) for FCC NiO.
a Eigenvalues of a ferromagnetic configuration. b Eigenvalues
corresponding to the predicted antiferromagnetic structure. The
plots correspond to the U= 0 case.
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This example also allows us to discuss the robustness of our
method, particularly in terms of the impact of variations in the
exchange parameters on the predicted magnetic ground state. In
a study conducted by Olsen32, it was found that the magnetic
properties of FePS3 obtained with DFT+U strongly depend on the
choice of the Hubbard parameter U. Here, we compare the results
of our method using DFT+U with U= 0 and U= 3 eV (see Table 2).
From the obtained exchange parameters, we also compute the
magnon spectra (Fig. 5) for comparison. Our choice of U= 3 eV is
made since this value gave the most accurate predictions in a
recent FePS3 study32. Despite the significant differences in the
exchange parameters and magnon spectra between these two
cases (Fig. 5), both scenarios predict the same magnetic ground
state as previously mentioned.
Moreover, we compare our calculated data with experimental

results and other first principles studies. In Table 2, we show the
values of the near neighbors’ isotropic interactions (Fig. 4a). The
U= 3 eV agrees significantly better with the reported values than
the U= 0 case. Also, we note that in contrast to other studies, we
treat the J1, J

0
1 and J2, J

0
2 parameters independently (Fig. 4a), which

can increase the differences between our values and the reported
ones.
In our final example, we investigate the magnetic properties of

FeP, a well-known helimagnet with orthorhombic symmetry
(space group Pnmma). We examine the isotropic exchange

interactions in the ferromagnetic state similar to the previous
cases. We observe that the dispersion of h(k) exhibits negative
eigenvalues and a global minimum at kmin ¼ ð0:00; 0:03; 0:21Þ
(Fig. 6a). This indicates the instability of the ferromagnetic
configuration and aligns with the reported antiferromagnetic
structure characterized by the propagation vector (0.0, 0.0, 0.2)33.
From this, we automatically generate a 1 × 1 × 5 supercell (see the
end of “Magnetic Ground State Workflow”) containing a spin spiral

Fig. 3 Dispersion relation of the matrix h(k) for layered FePS3.
a Eigenvalues of a ferromagnetic configuration. b Eigenvalues
corresponding to the predicted antiferromagnetic structure. The
antiferromagnetic state is the one shown in Fig. 4b.

Fig. 4 Magnetic structure of layered FePS3. a Top view showing
the intralayer interactions between the Fe atoms. b Ferromagnetic
(left) and antiferromagnetic (right) structures of FePS3.
Q= (0.0, 0.0, 0.5) is the propagation vector of the antiferromagnetic
structure.

Table 2. Comparison of the exchange parameters of FePS3 obtained
with different methods.

Method J1 J2 J3 J01 J02

DFT (this work) 29.42 −2.20 −6.64 4.99 −1.97

DFT+U (this work) 2.71 −0.097 −3.35 −1.50 −0.48

DFT+U32 1.05 −0.11 −1.30 – –

Neutron Scattering75 1.49 0.043 −0.60 – –

Field Magnetization76 1.69 −0.89 0.19 – –

Neutron Scattering31 1.46 −0.04 −0.96 – –

A value of U= 3 eV has been used.
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magnetic structure. Furthermore, we optimize the local magnetic
moments within the unit cell from our workflow and obtain an
alignment that resembles the double helix arrangement observed
in FeP. Consequently, the resulting magnetic structure yields a
positive definite matrix h(k) for all points in the Brillouin zone, with
a global minimum at Γ (Fig. 6b).
Furthermore, we examined the impact of anisotropy on

predicting the magnetic ground state in FeP. The exchange

parameters are found in Table 3. When considering only the
isotropic interactions, the optimized local magnetic moments in
the unit cell align collinearly, with half of the magnetic moments
pointing in the opposite direction to the other half (see Fig. 7).
However, when we include both the anisotropic exchange and the
Dzyaloshinskii–Moriya interaction (DMI), where the Jij matrices are
not diagonal, the previously predicted collinear alignment is
disrupted. Instead, a spin canting effect emerges, affecting half of
the magnetic moments in the unit cell, causing them to rotate by
an angle of θ= 4.19∘. This spin canting angle aligns with the
findings of various experimental studies on FeP33,34, which report
a value of ~4∘.

Further testing
The preceding examples illustrate how the method works in
different scenarios, where the reported magnetic structures were
successfully predicted. In addition to what has been presented, we
tested our method with five additional materials: MnF2, FeCl2,
CuO, CrSBr, and Mn5Si3. The main results are summarized in Table
4. The details of each calculation can be found in Supplementary
Material.
From all the tests that we performed, our method successfully

predicted the structure of NiO, FePS3, FeP, MnF235, FeCl236, and
CuO37–39. On the other hand, our method predicts a ferromagnetic
structure for both CrSBr40,41 and Mn5Si342 in contrast with the
available experimental data. However, we notice that our
predictions are lower in energy than the experimental structures
for the specific parameters that were used on each calculation.
Thus, although we fail to predict the reported structure, our
prediction is closer to the DFT ground state. In other words, our
method as presented cannot give a better prediction than DFT
allows since we compute the exchange tensors from DFT.

Fig. 5 Magnon energies of layered FePS3 for different U values. a Magnons of the U= 0 case. b Magnons of the U= 3 eV case. The chosen
symmetry points are Γ= (0, 0, 0), N= (−1/2, 1/2, 0), P= (−1/2, 0, 0), Z= (0, 0, 1/2), and M= (0, 1/2, 0).

Fig. 6 Dispersion relation of the matrix h(k) for the
helimagnet FeP. a Eigenvalues of the ferromagnetic state.
b Eigenvalues of the spiral antiferromagnetic prediction. Here
Z= (0, 0, 1/2) and Y= (0, 1/2, 0).

Fig. 7 Top view of the basis for the double-helix of FeP. Only the
Fe atoms are shown (gold balls). The local magnetic moments (red
and blue arrows) were optimized by considering isotropic and
anisotropic exchange interactions (a and b, respectively).
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Additionally, we mention that for CuO the spin-ligand correction
as implemented in TB2J was necessary to correctly predict the
experimental magnetic structure.

DISCUSSION
It is essential to acknowledge certain limitations of the Heisenberg
model, which may render it less ideal for determining the absolute
ground state of a material. One fundamental assumption of the
Heisenberg model is that the interaction parameters are
independent of the spin state, which may not hold for all
materials. In some cases, materials can exhibit substantial
deviations from the Heisenberg model, and their behavior cannot
be adequately described by this simplified framework. As a result,
the predicted ground state from the Heisenberg model may
deviate from the actual ground state observed experimentally. For
such cases, higher-order spin-spin interactions, such as three-sites
(four-spin) or even four-sites (six-spin) interactions, may be
necessary to describe the system dynamics accurately43–46. A
method exists to compute the high-order terms with Green’s
function method47, and thus we could potentially include this in
our workflow. Nonetheless, the many terms involved make it
computationally demanding and difficult to use.
Additionally, we remark that a fundamental issue raised in using

the Heisenberg Hamiltonian comes from evaluating the “magnetic
moment of an atom" in a crystal. This is because the ways of
assigning the spins to the atoms are not unique. The usual way is
to use atomic-centered basis set functions, as in the case of
muffin-tin spheres, Wannier functions24,48, or numerical atomic
orbitals24,49. Here, it is assumed that the magnetic moments
within the basis functions of one atom rotate uniformly. This is not
always a good approximation as these functions can spread out of
the region away from the atomic center.
On the other hand, the unpaired spins may also not be included

in these functions, for example, in the ligands, which could lead to
an incomplete Heisenberg model. This can sometimes give the

wrong sign of the exchange parameters when the ligand-spin
strongly affects the magnetic interaction50. This could potentially
lead to the wrong ground state prediction of the Heisenberg
model even if DFT is at its ground state (i.e., the predicted
structure has a higher total energy). The parameters obtained with
the magnetic force theorem are only exact in the strong-coupled
limit and the rigid-spin approximation15. Many corrections have
been proposed to improve the Heisenberg models from the
magnetic force theorem. For example, including the ligand spin
effect50 could improve the prediction accuracy once they are
included in our workflow.
While the Heisenberg model may not yield the exact ground

state, it offers a reasonable approximation and a helpful starting
point for exploring the system’s energy landscape. Researchers
can leverage the predicted ground state as a guide to search for
lower energy configurations and gain valuable insights into the
material’s magnetic properties. Furthermore, the MFT method can
be utilized to estimate the exchange parameters, which are often
close to the reference state, enhancing the accuracy of the
predictions and providing valuable information for further
investigations.
Even if the Heisenberg model gives a perfect picture of a

system, our method still encounters other limitations. One comes
from the MFT giving exact results only in the limit of infinite
wavelength magnons51. To account for this, Bruno51 showed that
a renormalization approach enhances the accuracy of the MFT
predictions. At the moment, this has not been implemented in the
TB2J code, but we plan to incorporate it into our workflow in a
future version.
Another limitation arises because the LSWT method we used

assumes a single q-state, which does not hold for systems with a
ground state with multiple propagation vectors52. For the multiple
q-states, our method could still potentially generate a supercell
that encloses all propagation vectors, and then each individual
magnetic moment within the unit cell could be optimized by
following our proposed scheme. Furthermore, even if for the
single q-states, the supercell approach cannot deal with
incommensurate magnetic structures. An alternative would be
to use DFT with the generalized Bloch theorem (GBT). This could
also make our workflow more efficient since we only use the unit
cell in the calculations. However, the GBT only works for isotropic
structures (where the spin-orbit coupling is negligible), and thus
the supercell approach would still be preferred for many cases.
Lastly, we mention that the current stage of our workflow does

not include single-ion anisotropy (SIA). For most bulk systems, this
has a negligible effect, but it can be crucial in the one and two-
dimensional limits53. The addition of the SIA to TB2J is currently
under development, but we plan to incorporate this into our
workflow in the future.
In this study, we have presented a self-consistent method based

on first-principles calculations to determine the magnetic ground
state of materials, regardless of their dimensionality. Our
methodology is founded on satisfying the stability conditions
derived from the linear spin wave theory (LSWT) by optimizing the
magnetic structure iteratively. It enables the consideration of
isotropic and anisotropic exchange interactions and the
Dzyaloshinskii-Moriya interaction (DMI). We have incorporated
Green’s function method using the TB2J-Siesta codes interface to
enhance efficiency. This interface, implemented with AiiDA54,55,
offers a user-friendly workflow that ensures convergence and
improves variables as necessary to achieve the desired level of
convergence. We demonstrated the effectiveness of our method
by successfully predicting the experimental magnetic structures of
NiO, FePS3, FeP, MnF2, FeCl2, and CuO. In each case, we compared
our results with available experimental data and theoretical
calculations reported in the literature. Furthermore, our metho-
dology can be easily combined with phonon calculations56,
enabling a comprehensive approach to investigate magnons’

Table 3. Exchange parameters of FeP in units of meV.

Interaction Jiso Janixx Janiyy Janizz Dx

Nearest neighbor −4.642 0.105 0.059 0.165 0.000

Next nearest neighbor −1.456 0.032 0.135 0.049 0.020

We only show the components that have a significant value.

Table 4. Total energy differences as obtained from DFT.

Material ΔEFM ΔEFP

NiO 138.7 0

FePS3 7.7 0

FeP 12.8 0

MnF2 20.0 0

FeCl2 0.6 0

CuO 28.4 0

CrSBr −0.1 −0.1

Mn5Si3 −25.6 −25.6

Ei denotes the total energy per atom calculated from a specific magnetic
configuration in units of meV. EFM corresponds to the ferromagnetic
structure; EFP to the final prediction of our method, and Eexp to the reported
experimental magnetic structure. From this we define ΔEFM= EFM− Eexp
and ΔEFP= EFP− Eexp. Notice that if ΔEFP= 0, then our method predicted
the reported magnetic configuration.
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influence on materials’ thermal properties. Overall, our self-
consistent approach provides a reliable and versatile framework
for studying magnetic ground states and can contribute to
advancing our understanding of the magnetic properties of
diverse materials. As magnetic materials are correlated systems,
the correlation effects can be accounted for by considering DFT
+U. The U and J parameters from DFT+U can be passed as inputs
to the workflow where they will have an impact on the results.
We emphasize that various materials’ properties may be quite

sensitive to the exact nature of the magnetic ground state. These
properties include atomic vibrations (phonons) through the spin-
phonon coupling57,58; elastic properties through the magnetoe-
lastic coefficients59; magnon-magnon interactions60,61; magne-
tothermal response62; magnon-polaron interaction63; and even
optical properties, such as the magnon-exciton coupling64.
Therefore, knowing the magnetic ground state will improve our
understanding of those materials.

METHODS
Computational details
All the DFT calculations are performed with the Siesta code25,
while the LKAG method is implemented within the TB2J code24.
We use the Siesta version that can compute the Hubbard model
corrections with spin-orbit coupling65. We use norm-conserving
fully relativistic pseudo-potentials taken from the Pseudo-Dojo
database66 in the psml format67. In all our calculations, we use the
exchange-correlation functional given by the general gradient
approximation (GGA) as parametrized by Perdew, Burke, and
Ernzerhof68. The optimized k-point grids for each test case are
13 × 13 × 13 (NiO), 8 × 4 × 8 (FePS3), and 12 × 7 × 7 (FeP). For all
cases, we use a mesh-cutoff energy of 400 Ry. Also, we use a
double-zeta polarized LCAO basis automatically generated by
Siesta. We optimize the geometry of every structure by allowing a
maximum force on each atom of 0.01 eV Å−1. Additionally, we
perform the LSWT calculations with the NumPy library69. Finally, all
the structure models were drawn with the VESTA code70, while the
rest of the graphs were generated with the Matplotlib library71.

DATA AVAILABILITY
The magnetic data from every test case considered in this paper is available in the
Materials Cloud repository https://doi.org/10.24435/materialscloud:5m-2t.

CODE AVAILABILITY
The AiiDA plugin developed in this study can be found in https://github.com/
antelmor/aiida_tb2j_plugin. Also, the TB2J and Siesta repositories can be found in
https://github.com/mailhexu/TB2J and https://gitlab.com/siesta-project/siesta,
respectively.
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