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Abstract. Metamorphic testing (MT) has proven to be a successful so-
lution to automating testing and addressing the oracle problem. However,
it entails manually deriving metamorphic relations (MRs) and convert-
ing them into an executable form; these steps are time-consuming and
may prevent the adoption of MT. In this paper, we propose an approach
for automatically deriving executable MRs (EMRs) from requirements
using large language models (LLMs). Instead of merely asking the LLM
to produce EMRs, our approach relies on a few-shot prompting strategy
to instruct the LLM to perform activities in the MT process, by pro-
viding requirements and API specifications, as one would do with soft-
ware engineers. To assess the feasibility of our approach, we conducted a
questionnaire-based survey in collaboration with Siemens Industry Soft-
ware, a worldwide leader in providing industry software and services,
focusing on four of their software applications. Additionally, we evalu-
ated the accuracy of the generated EMRs for a Web application. The
outcomes of our study are highly promising, as they demonstrate the
capability of our approach to generate MRs and EMRs that are both
comprehensible and pertinent for testing purposes.

Keywords: metamorphic testing - large language model - LLM - exe-
cutable metamorphic relations

1 Introduction

In many sectors, software is typically verified with executable test cases that,
at a high level, consist of a set of inputs provided to the software under test
(SUT) and a set of test assertions verifying that the SUT outputs match the
expected results. However, defining executable test cases is expensive because
of the many intellectual activities involved. This cost limits the number of test
cases that can be implemented. Moreover, software faults are often subtle and
triggered by a narrow portion of the input domain. Therefore, they are detected
only after exercising the SUT with a large set of test inputs.
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Although several tools for the automated generation of test inputs have been
developed [QI10], they can only identify crashes or regressions faults, because
they lack the capability of determining what the expected output for the soft-
ware should be. Further, manually specifying test assertions for thousands of
automatically generated test inputs is practically infeasible. The impossibility
to programmatically derive expected outputs is known as the oracle problem [3].

Metamorphic testing (MT) has recently gained success as a solution to ad-
dress the oracle problem in many contexts [6]. MT relies on the concept of
metamorphic relations (MRs), which describe the relationships between input
transformations and expected output changes, serving as oracles in software test-
ing. Briefly, to perform MT on the SUT, engineers first need to derive MRs from
the SUT’s requirements and then convert the derived MRs into an executable
form to determine the test outcome. These steps require substantial manual
effort, which increases the MT cost and may prevent its adoption.

Many MT approaches have been developed to test various SUTs, including
search engines [26], Web applications [5], and embedded systems [I]. These meth-
ods, however, require significant manual efforts to define MRs, which limits their
scalability, particularly in cases where SUT executions are lengthy and expen-
sive. A few recent studies [I2/25] have investigated using Large Language Models
(LLMs) to automate MR derivation directly from LLM knowledge bases. How-
ever, they currently only work with SUTs known during LLM training and are
not effectively applicable to test new, unseen systems. In addition, to the best
of our knowledge, there is no existing work that aims at automating the conver-
sion of MRs into an executable form, hereafter referred to as EMRs (Executable
MRs), which is an essential step to fully automate the MT process.

Contribution. In this paper, we propose an approach for automatically
deriving EMRs from the SUT’s requirements using LLMs. Differently from ex-
isting work, our approach does not merely involve querying an LLM for MRs
based solely on the LLM knowledge base. Instead, we rely on prompt engineering
practices to teach the LLM both (1) the specifications of the SUT, which are
necessary to derive MRs, and (2) the DSL to use for EMRs, which is necessary
to enable MR execution.

We evaluated the feasibility of our approach through two experiments: (1) by
conducting a questionnaire-based survey in collaboration with Siemens Industry
Software, a worldwide leader in providing software and services across industry
domains (hereafter, SISW), involving four of their software applications, and
(2) by assessing the correctness of the generated EMRs for a Web application.

In our experiments, we used OpenAl GPT-3.5 and GPT-4 [15] as LLM, ac-
cessed (to provide prompts and generate responses for deriving MRs and subse-
quently converting them into EMRs) through the web interface of ChatGPT [14].
When converting MRs into EMRs, we instructed the LLM to use SMRL [13] as
a domain-specific language (DSL) for specifying MRs in an executable form. The
results are promising, indicating that the generated MRs and EMRs are under-
standable and relevant for testing, and that the EMRs were correctly converted
from their corresponding MRs.
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Fig. 1. Our approach for generating EMRs using LLMs.

Organization. The remainder of this paper is structured as follows: Sec-
tion 2] describes our approach. Sections [3]and [@] respectively, present our experi-
ment design and results. Sections [f] discusses threats to the validity and research
opportunities. Section [6] surveys related work. Section [7] concludes the paper.

2 Approach

This section describes our approach to automatically deriving EMRs from the
requirements of the SUT. Specifically, our approach relies on an LLM to au-
tomate the MT process, particularly by leveraging the LLM’s capabilities in
understanding and processing natural language documents, identifying relevant
information, and synthesizing that information into structured forms (i.e., MRs
and EMRs) useful for software testing.

2.1 Overview

Our approach, shown in Fig. [I} advances the MT process by introducing two
automated activities: “derive MRs” and “generate EMRs”. The “derive MRs”
activity takes as input requirements specifications (in the form of specification
documents) and outputs (MRs in natural language). Unlike existing work that
queries an LLM for MRs based on the LLM built-in knowledge, we provide
SUT specification documents to the LLM. This enables our approach to derive
SUT-specific MRs, which would otherwise be unattainable because the LLM
lacks awareness of the specific software properties that need to be considered.
The “generate EMRs” activity takes as input MRs and the SUT (depicted as
“software system” in Fig. . It outputs EMRs, which are executable programs
used to verify that the SUT satisfies the properties captured by the MR. In
the following subsections, we further describe these activities, focusing on their
implementation as adopted in our preliminary experiments (see section .

2.2 Deriving metamorphic relations

We aim at automatically deriving MRs from the provided requirements specifi-
cation documents. To this end, our approach relies on ChatGPT and develops
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M | want to derive MRs for testing purposes from a M1 Can you identify sentences that are related to
technical document. Can you assist me? system inputs and outputs, and may be
considered by engineers when defining MRs?

M @)
Certainly! ... Based on the document, here are sentences
L L] related to system inputs and outputs that

engineers may consider when defining MRs ...

M Here is a technical document. ... M1 Can you rephrase the sentences you found into
the form of MRs?

@ @
The technical document you provided, titled ..., is Certainly! ...
L from ... L]

Fig. 2. Prompts to derive MRs from the SUT’s requirements, grouped by phases in
the conversation: (1) setting the context, (2) providing requirements specification docu-
ment(s), (3) identifying relevant sentences, and (4) rewriting these sentences into MRs.

a prompt sequence for automation. Since deriving MRs from requirements is a
complex task, when using ChatGPT for this purpose, we break the task down
into simpler, decomposed stepsﬂ

Figure [2] shows the prompts that derive MRs from the requirements of the
SUT. We have omitted some parts of the text, indicated by “...”, to focus on
the essential prompts of our work. Note that the complete prompts are available
online [I7]. As shown in Fig. [2| (1), our prompt sequence begins by setting the
context, i.e., deriving MRs, to guide ChatGPT for the following interactions.
The remaining sequence, which decomposes the task of deriving MRs, consists of
prompts directing ChatGPT to perform simpler steps, as described below. First,
our approach instructs ChatGPT to read a requirements document in order
for ChatGPT to access the requirements needed for defining MRs for the SUT
(see Fig. [2[ (2)); in response, ChatGPT provides a short summary of it. Second,
given the requirements document, ChatGPT is directed to find sentences that
are specifically related to the SUT’s inputs and outputs, as well as those that
engineers may consider when defining MRs (Fig. [2| (3)). This step is important
because MRs fundamentally describe how outputs should be changed in response
to specific changes in inputs. The last step then asks ChatGPT to write MRs
based on the identified relevant sentences (Fig. [2| (4)).

For example, consider a scenario where our approach is used to derive MRs
from the requirements document of an online shopping system that includes a
searchItem function. After setting the context and reading the requirements
document, ChatGPT could identify requirement R1 in Table [T} which concerns
the advanced search options in the searchItem function. Given requirement R1,
ChatGPT then proceeds to define an MR, referred to as MR1 in the table. MR1
specifies the relationship between the outputs of an initial search query and those
of a subsequent query where additional filters are applied.

3 We note that when we passed a single, monolithic query to ChatGPT for deriving
MRs, it was unable to derive meaningful MRs.
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Table 1. An example requirement for an online shopping system and an MR derived
from this requirement.

R1 The system should provide advanced search options to allow users to refine
their searches based on specific attributes such as price range, category, brand,
customer ratings, and availability.

MRI1 For a given search query, applying additional filters (e.g., narrowing down by
category or price range) should reduce the number of search results or refine
them to match the filters more closely.

2.3 Generating executable metamorphic relations

We ask ChatGPT to convert MRs written in natural language into EMRs spec-
ified using SMRL [I3], a DSL developed for specifying EMRs. SMRL provides
MR-specific language constructs, which are built on Java, to specify EMRs. Ta-
ble 2] presents a subset of SMRL constructs. The construct Input(int i) refers
to the i-th sequence of actions performed by a user with the SUT. The construct
Output(int i) refers to the sequence of outputs produced by the SUT in re-
sponse to Input(i). The construct CREATE(Object y, Object x) defines y as
a copy of x and satisfies y = x. The last three rows in the table capture Boolean
expressions corresponding to implication (IMPLIES()), negation (NOT()), and
disjunction (OR()). Using these constructs, engineers can specify EMRs in terms
of inputs, input transformations, outputs, output changes, and logical expres-
sions to define the expected relations among them. In addition, SMRL is already
integrated into the MST-wi framework [5], which generates executable Java code
from specified EMRs to automatically perform MT.

Figure [3] depicts a sequence of prompts that converts MRs into EMRs, selec-
tively omitting text using “...” for a clearer exposition. Our approach involves
instructing ChatGPT to understand SMRL and to use SMRL for converting
MRs into EMRs. Specifically, as shown in Fig.|3| (1), when using ChatGPT, we
first set the context by indicating that the subsequent interactions will aim at
converting MRs into EMRs. We then provide ChatGPT with the notations for
the SMRL constructs (see Table , enabling it to use the SMRL constructs
when converting MRs into EMRs (Fig. [3 (2)). To transform MRs into EMRs
in a consistent form, we provide ChatGPT with an EMR template (Fig. 3] (3)).
Subsequently, we apply the few-shot learning strategy [21] to instruct ChatGPT

Table 2. A subset of the SMRL constructs.

Construct Description

Input(int i) returns the i-th input sequence

Output (int i) returns the sequence of outputs generate by Input(i)
CREATE(Object y,0Object x) creates y as a copy of x

IMPLIES (boolean x,boolean y) is equivalent to the Java expression !'x || y

NOT (boolean x) is equivalent to the Java expression !x

OR(boolean x,boolean y) is equivalent to the Java expression x || y
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M

| need your coding capabilities to convert MRs M Here is the first example of an executable MR
written in natural language into executable code written in SMRL. The following MR captures the
in a domain-specific language ... called SMRL ... property: ...

) @
Absolutely, ... Thank you for ... the example ... Now, if you
L Ll have ... another MR ..., please share it with me,

and I'll proceed to create an executable MR ...

M @ Before we start, here are the notations of SMRL. rl @ Now | will provide you with the APIs of the SUT.

@ ®)
Thank you for providing the notations of SMRL. It Thank you for ... the APIs ... With this ..., | can
L appears to be a Java-based DSL ... L assist you in writing ... MRs ...

M1 When | ask you to create an executable MR, (| Can you use the APIs to rewrite the MR below in
please create it by replacing <body> as in the SMRL to test the SUT? MR: ...
@) following template: ...

6)
Understood. I'll use the provided template ... Certainly! ... Here's the MR rewritten using the
L L APIs ...

Fig. 3. Prompts to convert MRs into EMRs, grouped by phases in the conversation:
(1) setting the context, (2) learning the syntax of SMRL, (3) instructing the output
format, (4) few-shot learning of SMRL, (5) learning the SUT’s APIs, and (6) trans-
forming MRs into EMRs.

to understand SMRL, by providing three pairs of MR and corresponding EMR
from prior work [5] (Fig. [3| (4)). The few-shot learning strategy is suitable in
our study context, as SMRL is a state-of-the-art DSL with a limited number
of examples available, and it is built on Java, which ChatGPT already knows.
In addition, we further instruct ChatGPT to understand the SUT’s APIs by
providing the documentation and signature of the API methods (Fig. [3[(5)). For
example, to test the Web application described in prior work [5], which includes
38 APIs, we need to provide ChatGPT with the details of these APIs. Last, we
then ask ChatGPT to transform MRs into EMRs using SMRL and to invoke the
APIs in the EMRs for testing the SUT (Fig. 3| (6)).

Figure[dshows an EMR generated by our approach, corresponding to the MR
described in Table [I} This EMR specifies that adding filters to a search query
should either reduce the number of results or refine them to better match the
filter criteria. Below, we provide the comments generated by ChatGPT to explain
the EMR statements; each corresponds to one annotation // (#) in Fig.

(1) & (2): Iterate over all actions within the input sequence to identify search actions.
(8): Retrieve the original search results before any additional filters are applied. (4):
Iterate over possible filter types (e.g., categories, price ranges) that can be applied to
the search. (5): Create a new input sequence where a specific filter is applied to the
identified search action. (6): Ensure the new input sequence (Input(2)) is properly
created with the applied filter. (7): Check that the same filter hasn’t already been
applied to the search action to avoid redundant checks. (8): Verify that applying the
filter results in fewer search results compared to the original, indicating a refinement
of the search output. (9): Alternatively, check that the results are more relevant to
the applied filter, even if the number of results does not decrease. This could involve
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1 MR {{
2 for (Action searchAction : Imput(1).actions()) { //(1)
if (!isSearchAction(searchAction)) continue; //(2)
il var originalResults = Output(Input(1), searchAction.getPosition()); //(3)
for (var filterType : getFilterTypes()) { //(4)
6 var filteredInput = applyFilter (Input(1),searchAction.getPosition(),filterType);//(5)
7 IMPLIES(
8 CREATE(Input(2), filteredInput) && //(6)
9 notSameFilterApplied(searchAction, filterType), //(7)
10 OR(
11 fewerResults (Output (Input(2), searchAction.getPosition()), originalResults), //(8)
12 moreRelevantResults (Output (Input(2), searchAction.getPosition()), originalResults,
filterType) //(9)
13 )
14 );//end-IMPLIES
15 }//end-for
16 }//end-for
17 }}//end-MR

Fig. 4. An EMR generated by ChatGPT based on the MR presented in Table

comparing the characteristics of the search results against the filter criteria to ensure
they match more closely.

We note that we did not provide ChatGPT with the API details of the online
shopping system. Hence, ChatGPT autonomously created some function invo-
cations, such as applyFilter() and notSameFilterApplied(), to implement
the EMR using SMRL. This capability of ChatGPT is desirable in test-driven
development practices as it helps engineers identify which APIs are needed to
test the SUT at early development stages.

3 Experiment Design

To assess the feasibility of our approach, we have carried out two experiments,
namely EXP1 and EXP2. EXP1 aims at collecting feedback from practitioners.
EXP2 aims at evaluating the correctness of generated EMRs.

EXP1 - SISW applications. To assess whether our approach can prac-
tically help software practitioners, it is important to collect and analyze their
perceptions on our work. In collaboration with SISW, we have conducted a
questionnaire-based survey to gather their feedback on the MRs and EMRs ob-
tained by applying our approach to their software applications. Due to confi-
dentiality reasons, SISW was not able to share the requirements and the APIs
of their applications; instead, SISW selected four non-confidential technical doc-
uments based on their interests. These documents describe their applications
(modelling and simulation) for marine design [I9], wind turbine [I8], aircraft
propulsion [20], and aero-acoustics [4]. They provided us with these documents
(83 pages in total) as requirements specifications. As remarked above, in absence
of appropriate APIs, ChatGPT suggests invoking functions that should be imple-
mented to automate the execution of the MR. Further, despite the lack of APIs,



8 S. Shin et al.

considering the preliminary nature of this work, these subjects still enable us to
gather feedback from practitioners on how well ChatGPT can generate EMRs.

In EXP1, we relied on GPT-4 because, at the time we designed our experi-
ments (January 2024), it was the only available top-5 leaderboard LLM capable
of processing PDF documentsﬂ Note that our questionnaire-based survey study
does not enforce practitioners to respond to all questions. We adopted this survey
strategy to obtain higher quality responses to the questions that practitioners
feel confident in answering, since the participating practitioners have varying
levels of expertise across the four applications developed by SISW.

The questionnaire for MRs (resp. EMRs) contains three statements for each
MR (resp. EMR). It requests practitioners to indicate their level of agreement
with the statements on a Likert scale (i.e., strongly agree, agree, neutral, dis-
agree, and strongly disagree). We designed the statements in our questionnaire-
based survey, drawing inspiration from Rogers’ theory of innovation diffusion [16].
In this theory, the following five characteristics, based on practitioners’ percep-
tions, are introduced for their impact on the adoption of innovative solutions:

— Complexity: Reflecting the extent to which an innovation is perceived as
challenging to understand or implement.

— Compatibility: Referring to the extent to which an innovation aligns with
practitioners’ existing values, experiences, and needs.

— Trialability: Indicating the extent to which an innovation can be tried on a
limited scale or adopted incrementally.

— Observability: Pertaining to the visibility of the results of an innovation to
others.

— Relative advantage: Describing the perception of an innovation’s superiority
compared to what is currently used.

Out of these five characteristics, our focus is on the first three: complexity, com-
patibility, and trialability. Note that the last two characteristics remain unad-
dressed in our survey, as our approach is still preliminary and has not yet been
deployed in practice.

The questionnaire on MRs, available online [I7], includes, for each MR, a form
showing the generated MR (e.g., see Table[1]) and three assessment statements
(S1, S2, and S3) described in Table 3| These forms are grouped by application,
and for each application, the questionnaire invites practitioners to provide open
feedback. Statement S1 in Table [3]is about complexity; it assesses the degree to
which a derived MR is understandable. Statement S2 relates to compatibility;
it assesses the degree to which a derived MR aligns with practitioners’ percep-
tions as a property to be considered in testing the SUT. Statement S3 concerns
triability; it examines how helpful a derived MR is as an instrument for defining
test cases (i.e., input and expected output pairs).

The questionnaire on EMRs, available online [I7], first introduces SMRL by
explaining its constructs, providing three examples of EMRs written in SMRL,
and a link to the SMRL paper [5]. The questionnaire then, for each MR, provides

* https://1msys.org/blog/2023-12-07-1eaderboard/
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Table 3. Statements (S1, S2, and S3) for collecting feedback on MRs.

S1 The MR is easy to understand.
O strongly agree [ agree [J neutral [J disagree [J strongly disagree

S2 The MR captures a property that needs to be considered when testing the appli-
cation.
O strongly agree [J agree [ neutral [ disagree [ strongly disagree

S3 The MR helps identify the expected outputs for given inputs.
O strongly agree [ agree [ neutral [ disagree [ strongly disagree

a form with an MR (e.g., see Table , an EMR (e.g., see Fig. |4}, and three
statements (S17, S2¥ and S3, listed in Table . These forms are grouped by
each SISW application. For each application group, the questionnaire includes
an open question to collect additional feedback. Statement S1Z in Table || is
about complexity, assessing the extent to which an EMR is understandable.
Statement S2F relates to compatibility, evaluating the degree to which an EMR
aligns with its corresponding MR. Statement S3¥ concerns triability, examining
the feasibility of implementing the functions invoked in an EMR.

Our approach derived 50 MRs and their corresponding EMRs from the four
documents. Of these MRs, SISW independently assigned two practitioners to
evaluate the 14 MRs derived for the aero-acoustics application, while one was
assigned to 36 MRs for the remaining three applications, totaling 64 MRs ana-
lyzed. For the EMRs, one practitioner was assigned to all the applications. Note
that these assignments were independently decided by SISW.

EXP2 - Web application. EXP2 evaluates the correctness of the EMRs
generated by our approach. Recall that EXP1 studies EMRs that are incomplete
with regard to invoking the SUTs’ APIs. Therefore, EXP2 employs a different
application, for which we have its API specifications. EXP2 uses the experiment
dataset provided by the prior work on MST-wi [5], containing both the APIs
enabling the testing of a Web application (hereafter, SUT) and MRs that are
designed to detect security vulnerabilities. Specifically, in EXP2, we randomly
selected ten MRs among the ones published online after the cutoff date of GPT-
3.5 (in EXP2, we relied on GPT-3.5 for this reason). Given the ten MRs and the
SUT’s APIs, we applied our approach to produce ten corresponding EMRs.

Table 4. Statements (S1¥, 27, and S3¥) for collecting feedback on EMRs.

S1% The EMR is easy to understand.
O strongly agree [ agree [Jneutral [ disagree [ strongly disagree

S2% The EMR is consistent with the corresponding MR.
0 strongly agree [ agree [Jneutral [ disagree [ strongly disagree

S3% It is feasible to implement all the functions used in the EMR.
O strongly agree [ agree [ neutral [ disagree [ strongly disagree
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Table 5. Annotation labels used in EXP2.

Label Type Description

CLC Simple The statement contains a correct language construct.
C Complex The statement is correct.

Al  Complex The statement does not perform exactly what the original MR does,
but it is a valid alternative implementation.

WLC Simple The statement misuses a language construct.

WS  Complex The statement is wrong; it misses some required actions, performs
the wrong operation, and the explanation does not reflect what is
requested in the MR text.

WI  Complex The statement does not correctly implement what is suggested in the
explanation.

IE  Complex The statement invokes an API function invented by ChatGPT, even
if an adequate one exists.

INE Complex The statement invokes an API function invented by ChatGPT because
an adequate one does not exist.

ITE Complex The statement invokes an API function invented by ChatGPT but
delegates too much logic to it.

ES  Complex The statement invokes an existing and appropriate API function but
swaps parameters.

ENO Complex The statement invokes an existing and appropriate API function but
not in an object-oriented manner.

WAU Complex The statement misuses valid APIs.

MISS Complex The statement misses an instruction required to implement what is
reported in the explanation.

To assess the correctness of the ten generated EMRSs, we inspected and an-
notated each line of the EMRs with one of the 13 labels described in Table
In the annotation process, we considered both the EMRs and their explanations
(i.e., comments on the EMRSs) generated by our approach. Note that each EMR
statement is associated with an explanation in natural language produced by
ChatGPT. Our labels distinguish between complex and simple statements. Sim-
ple statements are the ones including only one language construct (e.g., IMPLIES,
NOT, OR). Complex statements include at least one method invocation. Further,
our labels are classified into two groups: correct and incorrect. The former con-
tains three labels (i.e., C, CLC, and AI in Table indicating, respectively,
whether a statement in an EMR implements part of the corresponding MR ex-
actly, uses SMRL constructs correctly, or implements valid alternatives. The
latter includes the remaining ten labels, each indicating a different type of issue,
such as “incorrect use of SMRL constructs” and “misuse of the SUT’s APIs”.
For example, in Fig. [4] the statement if (!isSearchAction(searchAction))
continue; on line 3 is annotated with the INE label, indicating that ChatGPT
invented isSearchAction() and the EMR invokes it because an adequate API
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of the SUT was not provided to ChatGPT when generating the EMR from the
MR described in Table [Il

4 Experiment results

EXP1. Table [f] shows the results of EXP1, focusing on the combined number of
respounses (i.e., Likert ratings) for each statement across the 64 MRs reviewed by
the three practitioners at SISW. From the results of statement S1, we found that
in 49 out of the 64 MRs (77%), the practitioners were able to understand the
proposed MRs and expressed positive feedback, i.e., “strongly agree” or “agree”.
In 12 MRs, the practitioners were neutral, and in the remaining 3 MRs, they
disagreed with statement S1. Regarding statement S2, the practitioners agreed
that the MRs capture properties that need to be considered when testing the
SUT for 41 out of the 64 MRs (64%). In 10 MRs, the practitioners were neutral;
in the remaining 13 MRs, the practitioners disagreed or strongly disagreed with
statement S2. In contrast to these results, which are more positive, the responses
to statement S3 showed mixed ratings. This statement indicates whether the
presented MR helps identify the expected outputs for given inputs. In 18 MRs,
the practitioners agreed; in 19 MRs, they were neutral; and in the remaining 27,
they disagreed or strongly disagreed.

Regarding the non-positive responses to statement S3, we identified possible
reasons from the practitioners’ qualitative feedback. In particular, one practi-
tioner, who provided 11 ratings as “disagree” and one as “strongly disagree” to
the statement, stated that while most of the MRs are correct and useful for
reminding someone what to test, they are too generic to aid in deriving ap-
propriate testing. This aligns with feedback from another practitioner at SISW
who, despite not assessing the MRs, collected and reviewed the responses to the
MRs questionnaire. The practitioner provided a possible reason for some of the
MRs being very generic, stating that it could be attributed to the nature of the
documents provided by SISW.

Regarding the survey results for the 50 EMRs in EXP1, one practitioner
provided consistent responses across all EMRs, stating they perceived that the
EMRs were clean and understandable and consistent with their corresponding
MRs. However, the practitioner deemed that not all functions used in the EMRs
were feasible to be implemented. Regarding the last opinion, the practitioner
noted that the functions in the EMRs, generated by ChatGPT, were specific
to each EMR. Therefore, there is little opportunity for reusing these functions
across different EMRs, meaning the effort required for implementation would be

Table 6. Responses to the MRs survey, for each statement (S1, S2, S3) in Table

strongly agree agree neutral disagree  strongly disagree
S1 3 46 12 3 0
S2 0 41 10 12 1
S3 0 18 19 24 3
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significant. In addition, the specific constraints of the testing environment for
their applications may pose challenges in using the exposed APIs to implement
functions in the EMRs. Even though EXP1 generated incomplete EMRs with
regard to using the SUT’s APIs, as discussed above, this finding suggests that
the characteristics of the SUT, such as its APIs, should be considered when
further elaborating our approach to deriving EMRs.

The results for EXP1 indicate that our approach generates MRs and EMRs
that practitioners deem to be understandable and relevant for testing.

EXP2. In EXP2, we annotated each line of the ten EMRs, which were con-
verted from the corresponding ten MRs studied in prior work [5]. These EMRs
have a minimum of 10 statements, a mean of 13.6 statements, and a maximum
of 20 statements, totaling 136 statements.

Table [7] shows the results of EXP2 annotations using the labels defined in
Table [5} Out of the 136 statements in the EMR code, the majority (107 state-
ments, 78.6%) were classified as correctly converted. Specifically, 52 of the 107
statements are complex, and correctly and exactly implement part of the cor-
responding MRs, as shown by column C in Table [7] 54 of the 107 statements
are simple, and correctly use SMRL constructs (column CLC). The remaining
complex statement is valid and correct with respect to the corresponding MR
(column AI). As for the 30 statements that were deemed incorrect, they can be
further categorized as follows:

— 16 statements incorrectly use APIs (labeled with IE, INE, ITE, ES, and
ENO). For example, five ITE cases introduce the method isAuthorized to
check if a user is authorized to perform an action, instead of verifying that
the outputs obtained by the source and the follow-up inputs differ.

— 10 statements incorrectly use SMRL constructs (column WLC). They are all
related to the LLM “forgetting” how to use the construct IMPLIES; indeed,
instead of separating the right-hand side of the implication with a comma
(see end of Line 9 in Fig. [4), it uses an &. They can be easily fixed manually.

— Three statements are wrong (column WS); for example, the generated MR,
checks if the returned page is an error page instead of the opposite.

— Three statements miss implementing what is described in the corresponding
explanations (column MISS); specifically, they do not compare the outputs
of the source and the follow-up inputs. Further, these three statements had
been annotated also with another label because, in addition to miss some in-

Table 7. Distribution of annotation labels (from Table [5) for the 10 EMRs obtained
from EXP2.

C CLC AI WS WI IE INE ITE ES ENO WAU WLC MISS

52 54 1 3 0 3 1 9 1 2 0 10 3
38.2% 39.7% 0.7% 2.2% 0.0% 0.7% 0.0% 6.6% 0.7% 1.5% 0.0% 7.4% 2.2%
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structions, they contained an incorrect implementation (i.e., ENO and WS),
which is the reason why our labels sum up to 139 instead of 136.

The results for EXP2 indicate that the generated EMRs are largely correct
with respect to their MRs.

5 Threats to Validity and Research Opportunities

Even though the experiment results are promising, we recognize that our work is
in its preliminary stages, and there are some potential threats to its validity. In
this section, we discuss these concerns, focusing on those that lead to challenging
yet important directions for future research.

Prompt engineering. Our prompts are designed by decomposing the pro-
cesses of deriving MRs from requirements and transforming MRs into EMRs
into smaller, simpler steps. Despite these decomposed steps aligning with those
that engineers would conduct manually, when using LLMs there might be better
sequences of prompts that could improve the accuracy and relevance of the auto-
matically generated MRs and EMRs. Further research is necessary to refine and
compare the prompts, ensuring that they efficiently guide LLMs in producing
effective MRs and EMRs.

Assessing MRs and EMRs. We evaluated the MRs and EMRs generated
by our approach using the questionnaire-base survey and annotation studies,
which rely on the quality of human assessments. Hence, such assessments are
naturally biased by the participating personnel in the study. To minimize any
threat to construct validity (i.e., researcher expectations affecting human sub-
jects” assessment), our industrial partner, SISW, invited four practitioners with
different backgrounds for the questionnaire-based survey study. For the annota-
tion study, the second author, who is familiar with SMRL, annotated the EMRs
to ensure that the annotations are accurate. Although our choice may introduce
a construct validity threat, the availability of experimental data enables other
researchers to further investigate our findings.

As part of our future work, to better address face validity (i.e., the selection
of appropriate reflective indicators), we aim to leverage recent studies on the as-
sessment of code generation models [8] and select additional quantitative metrics
to measure the degree to which MRs and EMRs are accurate and relevant to
the SUT. Such metrics are desirable not only for objective assessment but also
for automating the MT process; indeed, such metrics might be used as reward
to improve LLMs results.

Human expertise. In our work, we leveraged human expertise to select
technical documents and assess the outputs, i.e., MRs and EMRs. Since our
approach does not involve humans-in-the-loop (e.g., the textual MRs generated
by the LLM for EXP1 are not rewritten by humans before generating EMRs),
the quality of outputs highly depends on the quality of inputs. To mitigate any
bias originated from the input documents (construct validity), SISW selected
four technical documents independently from the authors who developed the
approach.
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In the future, even if we aim to automate the MT process, incorporating
humans in the loop could be used to refine and validate the inputs and the
intermediate outputs, to efficiently and effectively guide our approach to produce
more accurate and relevant MRs and EMRs. Therefore, future research should
explore methods to effectively incorporate human expertise into an Al-based MT
process, balancing automation with human interventions.

External validity. To mitigate generalizability threats, for EXP1, we con-
sidered specifications of industrial modelling and simulation software for four
different applications domains (marine design, wind turbine, air-craft propul-
sion, and aero-acoustics). Although such software may differ from other types of
software systems (e.g., content management software), it is of high complexity
and adopted in many industrial sectors including automotive and space. Further,
for EXP2, we focused on MRs that demonstrated effective for content manage-
ment (e.g., Joomla [I1I]) and Web-based automation software (e.g., Jenkins [7]),
thus complementing the choice made for EXP1.

6 Related Work

Many MT approaches have been developed for testing various SUTs, such as
search engines [26], Web applications [5], and embedded systems [I], accounting
for the requirements specific to these SUTs. However, these approaches heavily
rely on manual efforts to elicit MRs, inherently limiting the applicability of MT.
To reduce the cost of defining MRs, researchers have proposed relying on meta-
heuristic search [24I23] and genetic programming [2] to automatically derive
MRs from execution data. Although promising, such approaches require several
executions of the SUT, which makes them suitable for small programs, but may
not scale for large software where executions may take several minutes and a lot
of outputs are produced.

Recently, a few studies [12/25] have proposed the use of LLMs to automati-
cally derive MRs from the knowledge base of LLMs. However, these studies are
limited to deriving MRs for SUTs already known in the adopted LLMs. In other
words, there are no studies demonstrating the applicability of LLMs to derive
MRs that account for the requirements specific to an SUT that was unseen dur-
ing the LLM training phases. Considering that, in industrial contexts, software
testing activities often target new products implementing requirements different
from those implemented by existing systems, LLM-based approaches for the au-
tomated generation of MRs should be capable of handling unseen requirements.
This capability is what we presented in this paper.

Additionally, we note that, to the best of our knowledge, there is no work
that automates the conversion of MRs into an executable form, which is required
to fully automate the MT process. Chaleshtari et al. [5] proposed the adoption
of a DSL to automate the execution of MRs; however, DSL-based MRs may have
limited readability, contrary to MRs in natural language.

In summary, there is no solution in the literature that aims at fully au-
tomating the MT process, involving the derivation of MRs from SUT-specific
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requirements and the generation of EMRs, for the automated determination of
test results in MT. An alternative is the automated generation of test cases—
including oracles—using LLMs, which is under active development [22]. However,
since LLM-generated code may still require human validation, we believe that
validating EMRs is more cost-effective than validating test cases. Indeed, a single
validated EMR, enables exercising the SUT with multiple inputs, which might
otherwise be exercised by different test cases, each needing validation.

7 Conclusion and Future work

In this paper, we have introduced our approach for automatically deriving EMRs
from requirements using LLMs. In our preliminary experiments, we applied our
approach to four applications of our industry partner (SISW) and conducted a
questionnaire-based survey study to collect opinions from SISW practitioners. In
addition, we evaluated the correctness of the EMRs generated by our approach,
by applying it to a Web application. The feedback from practitioners at SISW
confirmed that our work is a promising direction for automating the derivation of
MRs and EMRs from requirements. Furthermore, our annotation results indicate
that our approach has strong potential for correctly generating EMRs from MRs.
However, our results also reveal that the derived MRs need to be more specific
to the SUTs, and the derived EMRs could be further improved with regard to
the use of DSL constructs and APIs, which necessitate further research.

In our future work, we plan to explore several key areas related to our current
research. A primary focus will be on automating prompt engineering to facili-
tate the generation of prompts for deriving MRs from requirements and their
subsequent conversion into EMRs. Recognizing the significance of input qual-
ity, particularly in requirements, another important area will involve developing
methods to assist engineers in providing high-quality inputs. Integrating human
expertise, or “human in the loop”, will also be an important aspect of our re-
search, aiming to further enhance the accuracy and relevance of the generated
MRs and EMRs.

Data availability. Our experiment package with prompts, MRs, EMRs, and
questionnaires is available online [17].
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