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Abstract
5G New Radio Time of Arrival (ToA) data has the potential to revolutionize indoor localization for micro aerial vehicles
(MAVs). However, its performance under varying network setups, especially when combined with IMU data for real-time
localization, has not been fully explored so far. In this study, we develop an Error State Kalman Filter (ESKF) and a PoseGraph
Optimization (PGO) approach to address this gap. We systematically evaluate the performance of the derived approaches for
real-time MAV localization in realistic scenarios with 5G base stations in Line-Of-Sight (LOS), demonstrating the potential
of 5G technologies in this domain. In order to experimentally test and compare our localization approaches, we augment the
EuRoC MAV benchmark dataset for visual-inertial odometry with simulated yet highly realistic 5G ToA measurements. Our
experimental results comprehensively assess the impact of varying network setups, including varying base station numbers
and network configurations, on ToA-based MAV localization performance. The findings show promising results for seamless
and robust localization using 5G ToA measurements, achieving an accuracy of 15 cm throughout the entire trajectory within
a graph-based framework with five 5G base stations, and an accuracy of up to 34 cm in the case of ESKF-based localization.
Additionally, wemeasure the run time of both algorithms and show that they are both fast enough for real-time implementation.

Keywords 5G Time of Arrival (ToA) · Inertial Measurement Unit (IMU) · Indoor localization · Pose Graph Optimization
(PGO) · Error State Kalman Filter (ESKF) · Sensor fusion · Micro Aerial Vehicles (MAV).
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AoA Angle of Arrival
AoD Ange of Departure
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ATE Absolute Trajectory Error
BSs Base Stations
BW Bandwidth
CSI Channel State Information
DNN Deep Neural Network
DoF Degrees of Freedom
EKF Extended Kalman Filter
ESKF Error State Kalman Filter
GNSS Global Navigation Satellite Systems
IMU Inertial Measurement Unit
iSAM2 Incremental Smoothing and Mapping 2
LOS Line-Of-Sight
MAP Maximum a Posteriori
MAV Micro Aerial Vehicle
NLOS Non-Line-Of-Sight
NN Neural Networks
NR New Radio
OFDM Orthogonal Frequency Division Multiplexing
PBCH physical broadcast channel
PDSC Physical Downlink Shared Channel
PGO Pose Graph Optimization
PRB Resource Block
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PRS Positioning Reference Signal
QPSK Quadrature Phase Shift Keying
RB Resource Block
RBs Resource Blocks
RE Resource Element
RMSE Root Mean Square Error
RPE Relative Pose Error
SLAM Simultaneous Localization and Mapping
SNR Signal-to-Noise Ratio
SS synchronization signals
ToA Time of Arrival
UWB Ultra-Wideband

Sets and Constants
X Set of State Variables
T Set of Time Instances
F Set of Factors
Z Set of Measurements
SO(3) Special Orthogonal Group in Three Dimensions
SE(3) Special Euclidean Group in Three Dimensions
W World Frame
B IMU/Body Frame
Lk k-th Landmark 3D Position
N Total Number of Pose Nodes
g Gravitational Acceleration
ωG Rotational Velocity Due to Earth’s Rotation
c Speed of Light

ESKFMatrices
F State transition matrix
G Input matrix
H Measurement Jacobian matrix
K Kalman gain matrix
R Covariance matrix of distance measurement noise
P Covariance matrix of state estimate
QIMU Covariance matrix of IMU noise

Measurements and Noises
Bω̄ Angular Velocity Measured by IMU
Bā Linear Acceleration Measured by IMU
ρ̄ Time of Arrival Measurements Vector
d̄ Distance Measurement Vector
ηg Gyroscopic Measurement Noise
ηa Accelerometer Measurement Noise
ηDist Distance Measurement Noise
ηwg Random Walk Noise of IMU Gyroscope Bias
ηwa Random Walk Noise of IMU Acceleration Bias

States and Variables
Xt State Vector at Time t
X The Set of All States
T Pose Transformation

p Translation Vector
R Rotation Matrix
q Rotation Quaternion
v Linear Velocity
bg Gyroscope Bias
ba Accelerometer Bias
δp Translation Error
Bω Angular Velocity in IMU Frame
Wa Acceleration in World Frame
δq Rotation Error Quaternion
δθ Small Rotation Increments
δbg Gyroscope Bias Error
δv Linear Velocity Error
δba Accelerometer Bias Error
X̂t State Estimate at Time t
Z f
t Measurements Used by Factor f at Time t

d Real Distance Vector
rρ ESKF Innovation
�R̄i j Preintegrated Measurement of Rotation Between

Times i and j
�p̄i j Preintegrated Measurement of Position Between

Times i and j
�v̄i j Preintegrated Measurement of Velocity Between

Times i and j
rbi j Bias Total Residual Between Times i and j

rρ
ik ToA Residual at Time i for Base Station k
EX RMSE Error in x-axis
EY RMSE Error in y-axis
EZ RMSE Error in z-axis

1 Introduction

Small drones, so-called Micro Aerial Vehicles (MAVs), are
increasingly being used in indoor environments due to their
versatility across various applications, such as surveillance
tasks or monitoring in intralogistics, to mention only a
few. Precise positioning and orientation are paramount for
these applications. For instance, MAVs must adeptly navi-
gate through constrained passageways and enclosed spaces in
search-and-rescue missions to pinpoint and assist distressed
individuals. Similarly, in warehouse scenarios, MAVs must
navigate accurately to efficiently carry out tasks like item
retrieval and delivery.

While Global Navigation Satellite Systems (GNSS) stand
as the predominant positioning technology for outdoor drone
applications, their effectiveness diminishes in indoor set-
tings due to the challenges posed by signal attenuation and
multipath effects. Consequently, they struggle to provide
accurate localization within enclosed spaces. Inertial naviga-
tion systems (INSs) present an alternative method for indoor
localization, yet they are susceptible to accumulating noise
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over time, leading to significant deviations in positional accu-
racy if left uncorrected.

Recent advances in sensor technology have made LiDAR
and image-based methods promising alternatives for indoor
MAV localization due to their high accuracy and robustness.
However, challenges such as computational complexity, the
need for sophisticated algorithms, the high cost and still con-
siderable size andweight ofLiDARsensors, and the difficulty
of image-based methods in poor-texture or poorly illumi-
nated environments hinder their widespread adoption.

Indoor localization alternatives based onwireless commu-
nication, including WLAN, Bluetooth, and Ultra-Wideband
(UWB), exhibit limitations in accuracy, scalability, energy
efficiency, and cost, as highlighted by various studies [1, 2].
For instance, WLAN is notably susceptible to noise inter-
ference, Bluetooth faces constraints related to range and
precision, and UWB has seen slow progress in standardiza-
tion. Furthermore, with its focus on low-power communica-
tion and constrained range, also Zigbee has limited potential
for accurate indoor positioning. These difficulties highlight
the need for other MAV indoor positioning technologies to
offer sufficient precision and dependability without relying
on GNSS signals.

However, recent advances inmobile communications have
paved the way for developing location-based services and
applications that rely on accurate localization [3]. In par-
ticular, the deployment of fifth-generation cellular networks
(5G New Radio, or 5G for short) has opened up new pos-
sibilities for indoor localization due to their characteristics,
such as high bandwidth, low latency, advanced beamform-
ing techniques, and enhanced coverage [4–6]. Small cell
technologies like femtocells and picocells further facilitate
comprehensive indoor coverage. Moreover, 5G has been
tailored to cater to the diverse requirements of various indus-
tries, encompassing fields like industrial automation, asset
tracking, and virtual and augmented reality (VR&AR). The
positioning prerequisites outlined by the 3rd Generation
Partnership Project (3GPP) span from meter-level accuracy

to sub-decimeter precision for vehicle-to-everything (V2X)
scenarios (as detailed in [7] and related references). In the
mm-wave frequency range, 5G benefits from an increased
likelihood of Line-Of-Sight (LOS) connections and broader
bandwidth, contributing to an elevated positioning accu-
racy level. 5G employs a dedicated pilot signal termed
the Positioning Reference Signal (PRS) for downlink posi-
tioning. This signal is utilized to gauge signal delay by
cross-correlating the received PRS with a locally generated
counterpart at the transmitter. The resulting delay, the so-
called Time of Arrival (ToA), is determined by identifying
the peak correlation value between the two signals.

Therefore, while accomplishing precise and reliableMAV
indoor localization continues to be challenging, primar-
ily attributed to indoor environment’ intricate and dynamic
nature as well as the highly dynamic motion of the MAV, our
work proposes a novel approach to this problem capitalizing
on 5G ToA measurements. However, relying solely on 5G
ToA data may not yield adequate information for ensuring
dependable indoor localization. To enhance reliability and
precision, the integration of supplementary sensors becomes
imperative. Therefore, we fuse 5G ToA measurements with
data obtained from an on-board inertial measurement unit
(IMU), providing inertial accelerations and angular veloc-
ities of the MAV during flight. By integrating these two
types of measurement using advanced optimization tech-
niques, we can achieve accurate and robust real-time pose
(i.e., position and orientation) estimations, even when the
MAV ismaneuvering through complex indoor environments.
Figure 1 illustrates a typical example scenario in which
a MAV has to navigate within a warehouse environment
equipped with 5G base stations (BSs).

Thus, our research aims to fuse 5G ToA with IMU mea-
surements, enhancing real-time pose estimation for a flying
MAV, specifically focusing on improvements in localization
accuracy, scalability and adaptability, real-time performance,
and integration with sensor fusion frameworks. This empha-
sis on drone localization distinguishes our work from studies

Fig. 1 Illustration of a MAV
indoor localization example
scenario using several 5G base
stations

123



   87 Page 4 of 27 Journal of Intelligent & Robotic Systems           (2024) 110:87 

primarily focused on the 5G side aspects, highlighting our
contribution to advancing indoor drone localization tech-
niques. Building upon our prior work [8], this extended
version proposes two novel algorithmic approaches to this
sensor fusion problem, namely an Error State Kalman Filter
(ESKF) and Pose Graph Optimization (PGO) using a factor
graph. Within the ESKF framework, we establish models for
the IMU error states and their corresponding covariances.
These models facilitate the precise representation of error
states as we acquire high-frequency IMU measurements. In
the subsequent update stage, we then enhance the estimation
process by seamlessly integrating the state estimate and error
covariance with lower frequency 5G ToA measurements.
This integration mitigates errors and counteracts the intrin-
sic drift tendencies commonly associated with IMU-based
estimations. In the PGO approach, we introduce a novel fac-
tor related to the 5G ToA measurements and also apply the
idea of IMU preintegration [9]. We apply the GTSAM [10]
framework to solve the resulting PGO problem.

To validate our solutions, we apply them to the widely
used EuRoCMAVbenchmark dataset [11], which comprises
onboard visual-inertial sensor measurements and related
ground truth pose data collected during a number of experi-
mentalMAV indoor flight sequences. Extending our previous
work [8], we augment six distinct sequences of these flight
data (where we use the inertial measurements only and
discard the vision data) with related simulated yet highly
realistic 5G ToA measurements generated with the help of
the QuaDRiGa (quasi-deterministic radio channel generator)
channel simulator [12]. Herein, our simulations include three
5G indoor network configurations with a varying number of
base stations (BSs) and assumed Line-Of-Sight (LOS) com-
munication. To ensure precise channel modeling during the
simulations, we incorporated the ground truth 6 Degrees-
of-Freedom (DoF) pose data from the related EuRoC MAV
datasets.

To summarize, the novel contributions provided by this
paper are the following:

• To the best of our knowledge, this is the first derivation of
two novel approaches where 5G ToA and IMUmeasure-
ments are fused for real-time pose estimation of a MAV
during indoor flights: (1) an ESKF-based approach and
(2) an approach based on PGO using factor graphs.

• We augment a part of the well-known EuRoC MAV
benchmark dataset with related simulated 5G ToA mea-
surements. In order to obtain highly realistic simulated
data, we use the ground truth pose data of six selected
EuRoC MAV flight sequences in a simulation of a 5G
indoor network with different configurations and num-
ber of BSs, and a very detailed communication channel
model provided by the QuaDRiGa simulator.

• We present a thorough assessment and comparison of
the two novel proposed approaches forMAV indoor pose
estimation using the augmentedEuRoCMAVbenchmark
dataset. Herein, we also systematically compare various
5G networks and communication settings across indoor
environments. For the assessment,weutilize the twomost
popular metrics in Simultaneous Localization and Map-
ping (SLAM), i.e., the Absolute Trajectory Error (ATE)
and the Relative Pose Error (RPE) [13].

• We finally show that both proposed approaches for MAV
indoor pose estimation achieve high accuracy while
the PGO-based approach considerably outperforms the
ESKF-based approach in terms of accuracy.

2 RelatedWorks

The literature on localization using 5G is relatively limited,
especially when considering a dynamic target, i.e., the MAV
in our case, and the integration of sensor fusion frameworks.
The existing literature often relies on simplistic methodolo-
gies and scenarios. Ferre et al. [14] compared localization
accuracy for different combinations of the 5G network con-
figurations (center frequency, sub-carrier spacing, and PRS
comb size) in terms of the Root Mean Square Error (RMSE).
Also, their study considered a stationary target and employed
multilateration based on PRS-derived ToA data from multi-
ple BSs. A study by del Peral-Rosado et al. [15] explored
the impact of positioning performance using a 5G network
when BSs are linearly placed along a straight roadside. They
utilized Gauss-Newton optimization and simulated a vehicle
traveling at a constant velocity of 100 km/h on a highway.
The study revealed an accuracy of less than 20-25 cm for a
communication bandwidth of 50-100MHz. Additionally, the
researchers calculated the ToA by determining the first cor-
relation peak between the PRS and the received signal. Saleh
et al. [16] proposed a time-based position estimation by com-
bining vehicle velocity information and 5G measurements.
They evaluated their approach in a simulated urban canyon
using Siradel’s S_5GChannel simulator [17] and employed
an Extended Kalman Filter (EKF) with a constant velocity
model for sensor fusion. The study also analyzed the impact
of the 5G geometrical setup on EKF position estimation.
Another EKF-based positioning framework is proposed by
Menta et al. [18]. The authors leveraged the 5G Angle of
Arrival (AoA) extracted from the communication signal of
BSs equipped with multi-array antennas. By utilizing this
information, they achieve sub-meter accuracy in localiza-
tion. Sun et al. [19] studied localization by combining AoA
estimates from 5G BSs with ToAmeasurements from GNSS
satellites. The authors utilized the Taylor series to linearize
the mathematical model. As post-processing, they applied a
moving averaging to the raw position estimates to minimize
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errors. Klus et al. [20] explored the fusion of beamformed
RSS information with GNSS data using Neural Networks
(NN), achieving meter accuracy. In a study by Talvitie et al.
[21], a simulation-based systemwas proposed for positioning
high-speed trains using 5G technology. The system utilized
measurements from both the Angle of Departure (AoD) and
ToA from beamformed 5G synchronization signals. Using
an EKF to track the train’s position, the study found that
ToA-based positioning was more accurate than AoD-based.
However, combining bothmeasurements improved accuracy,
i.e., submeter accuracy could be achieved for more than 75%
of the tracking time.

There are also works whose primary focus is on the
communication side, emphasizing the analysis of signal
characteristics, like channel estimation, or computing ToA
and AoA using MUSIC (Multiple Signal Classification)
algorithms, and then primarily considering a simplified
multilateration scenario for localization. For instance, Pan
et al. [22] estimated the AoA and ToA based on the chan-
nel state information (CSI) for indoor positioning. Then,
using multilateration, they investigated the position accu-
racy. Shamaei and Kassas [23] proposed an opportunistic
ToA estimation approach that exploits 5G synchronization
signals (SS) and the physical broadcast channel (PBCH),
with broadcast in the downlink channel andwithout requiring
any communication with the network. This block is trans-
mitted periodically and is always on, even when the user
is not connected to the network. The authors developed a
software-defined receiver (SDR) to extract ranging infor-
mation from these signals and derived the statistics of the
code phase error in a multipath-free environment and in the
presence of multipath. They also conducted experiments to
evaluate the ranging performance of the proposed SDR with
real 5G signals, achieving a ranging error standard deviation
of 1.19m. In a fingerprinting-basedmethod, Zhang et al. [24]
utilized ToA, AoA, and multi-path effects to improve posi-
tioning accuracy. They created a fingerprint dataset using 5G
AoA and amplitude information for all paths obtained from
channel state data. This datasetwas used to train a deep neural
network (DNN) as a position estimator. The authors reported
an accuracy of approximately onemeter, even in non-line-of-
sight (NLOS) environments. In a more advanced theoretical
approach, Chu et al. [25], Mendrzik et al. [26] investigated
both localization and radio mapping, where the multi-path
information is used to estimate the positions of the vehicle as
well as the reflectors (obstacles) in the environment simul-
taneously using factor graphs. Their work, however, lacks
network simulations and fusion schemes.

An Error State Kalman Filter (ESKF) is typically used for
highly nonlinear systems, and it can improve the accuracy
and robustness of state estimation [27–29]. Yin et al. [30]
used the ESKF and Rauch–Tung–Striebel (RTS) smoother
to fuse GNSS and IMU data for localization and achieved

good results even in challenging environments. Similarly,
Marković et al. [31] proposed an ESKF-based multi-sensor
fusion algorithm for UAV localization in indoor environ-
ments, which was able to accurately track the UAV’s position
using measurements from IMU, LiDAR, visual odometry,
and UWB sensors. Mourikis and Roumeliotis [32] intro-
duced theMulti-State Constraint Kalman Filter (MSCKF) as
an algorithm for estimating the state of a vision-aided iner-
tial navigation (VINS) system. The MSCKF is based on the
ESKF and fuses visual and inertial measurements to estimate
the vehicle’s position, orientation, and velocity. Its perfor-
mance has been evaluated using several datasets, including
the EuRoCMav dataset [11], and the results show that it out-
performs previous VINS algorithms in terms of accuracy and
robustness.

While filtering is a sequential approach to pose estimation,
Pose Graph Optimization (PGO) is a batch-based approach
that considers more information over time, leading to more
accurate and robust pose estimates [33]. For example, Mas-
caro et al. [34] proposed a PGO-based multi-sensor fusion
approach for drone localization. It fuses visual-inertial odom-
etry poses and GPS measurement to infer the 6 DoF pose
of the robot in real-time. ORB-SLAM 2 [35] and ORB-
SLAM 3 [36] are popular examples of PGO-based mobile
robot localization systems that fuse images and IMU data.
ORB-SLAM 2 is a real-time visual SLAM system that uses
PGO to estimate the pose of a camera as it moves through
an environment. ORB-SLAM 3 is a recent version of ORB-
SLAM that includes several improvements, including amore
efficient PGO implementation.

Unlike previous approaches that consider localization
based on 5G data, we address indoor localization using a
factor graph to model the relation among non-homogeneous
sensor measurements. We also leverage the advanced IMU
preintegration factor [9] to propagate the MAV’s 6 DoF pose
between two lower frequency ToA measurements, obtaining
6 DoF pose estimates at a higher frequency. Furthermore, to
establish a comprehensive benchmark for our graph-based
method, we have also implemented an ESKF in this paper.
This incorporation enables a direct and insightful compar-
ison between the graph-based approach and the sequential
ESKF technique, providing a well-rounded evaluation and
comparison of the efficacy and performance of both local-
ization methodologies.

To identify the key research gaps within the literature, we
can summarize them as follows:

• Limited scope:

– Most existing methods focus on static targets or vehi-
cles with constant velocity, while MAVs are dynamic
with complex motion patterns.
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– Existing studies often consider simplistic scenarios
lacking real-world complexity.

– There’s a lack of research on sensor fusion frame-
works specifically designed for 5G-basedMAVlocal-
ization.

• Methodological limitations:

– Many studies rely on basic multilateration using sig-
nals frommultiple base stations, neglecting advanced
algorithms and sensor fusion techniques.

– Some approaches focus primarily on communi-
cation aspects, analyzing signals and estimating
angles/times of arrival without fully addressing local-
ization challenges.

– Existing works often use simplified mathematical
models that don’t accurately capture the complexi-
ties of real-world environments and MAV dynamics

• Accuracy and robustness limitations:

– Many methods achieve sub-meter accuracy, which
might not be sufficient for precise indoor MAV oper-
ations.

– Limited research exists on methods that address the
drift inherent in inertial measurement units (IMUs),
crucial for MAV localization.

• Lack of benchmarking and comparison:

– Existing studies often use different datasets, metrics,
and network configurations, making comparisons
challenging.

– Few works directly compare different localization
approaches, leaving unclear which methods perform
best in specific scenarios.

Table 1 provides a concise overview of existing research
on 5G-based localization for MAVs, elucidating the princi-
pal gaps and limitations in prior approaches. Each study is
outlinedwith details including the primary gap identified, uti-
lization of 5G data, experimental/simulation approach, inte-
gration of sensor fusion, localization technique employed,
and consideration of fixed or dynamic MAV targets.

3 Materials andMethods

3.1 5G Signal Structure and PRS Fundamentals
for Localization

This section introduces some preliminary concepts related to
5G that are essential for understanding the ToA configura-
tions and other related topics discussed in Section 4.

5G employs Orthogonal Frequency Division Multiplex-
ing (OFDM) with the inclusion of a cyclic prefix, which is
a guard band added to the beginning of each OFDM sym-
bol to reduce inter-symbol interference. In the time domain,
OFDM breaks down a high-speed stream of digital bits into
multiple parallel slower-moving streams. In the frequency
domain, OFDM divides a wideband signal into multiple nar-
rowband subcarriers, each of which carries a small portion
of the data. Subcarrier spacing, referring to the separation or
interval between adjacent subcarriers within the frequency
domain, is a crucial parameter in 5G localization accuracy.
5G offers flexible options for subcarrier spacing, ranging
from 15 kHz to 240 kHz, influencing the number of sub-
carriers within each narrowband subcarrier.

In 5G’s downlink transmission, a frame has a duration of
10 milliseconds, which is further divided into ten subframes,
each lasting 1 millisecond. Figure 2 shows the time-domain
structure of the 5G frame, illustrating its reliance on the sub-
carrier spacing. In the time domain, the choice of subcarrier
spacing determines the number of slots in a subframe, each
slot contains 14 OFDM symbols. As illustrated in this figure,
subframes are subdivided into 1, 2, 4, 8, or 16 slots, depend-
ing on the chosen subcarrier spacing, all utilizing a standard
cyclic prefix.

The resource grid is a two-dimensional structure where
time is represented along one axis, and frequency is rep-
resented along the other (matrix of subcarriers and OFDM
symbols). A resource grid is characterized by one subframe
in the timedomain and full carrier bandwidth in the frequency
domain. This grid is used to allocate resources for commu-
nication between the base station (gNodeB) and user devices
(User Equipment UE). Resource grids are further divided
into resource blocks (RBs). Each RB is composed of a group
of subcarriers. The number of subcarriers in an RB depends
on the subcarrier spacing. For example, with 15 kHz sub-
carrier spacing, an RB contains 12 subcarriers. A Physical
resource block (PRB) is the smallest unit of resource that can
be allocated to a user in 5G. A PRB is defined as a group of
consecutive subcarriers in the frequency domain and a group
of consecutive OFDM symbols in the time domain. Finally, a
resource element (RE) is the smallest unit of resource alloca-
tion in the 5G resource grid. Each RE contains one subcarrier
and one OFDM symbol. Figure 3 shows the resource grid,
PRBs, Rbs, RE, as well as the distribution of the reference
signal PRS which will be explained in more detail in the next
section.

For precise positioning 5G supports Positioning Refer-
ence Signals (PRS) in downlink. PRS are generated using
Gold sequences, which are a type of pseudo-random code,
enabling easy reproduction of the PRS at the receiver and
resistance to interference. Gold sequences also have good
cross-correlation properties, meaning that they have a low
correlation with all other sequences in the same set of Gold
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Fig. 2 5G frame structure

sequences. PRS symbols then are generated using Quadra-
ture Phase Shift Keying (QPSK) modulation and distributed
across time and frequency in the resource grid. The PRS pat-
tern can be configured with parameters like starting resource
element, periodicity, and density. The configuration depends
on the specific requirements of the positioning application.
One critical configuration that significantly impacts the ToA
estimation accuracy is the PRS bandwidth. A wider PRS
bandwidth will result in more accurate and robust localiza-
tion but at the cost of increased interference.

Downlink PRS utilizes a comb-like frequency structure by
transmitting PRS within a subset of the sub-bands derived
from the divided PRS bandwidth. The comb size N in 5G
PRS dictates that every Nth subcarrier is used by PRS sym-
bols, with configurable values of N (2, 4, 6, or 12). This
effectively diminishes interference from neighboring base
stations. It also helps to improve the correlation properties
of the PRS signal, which leads to enhanced accuracy and
robustness of ToA estimation. PRS mutation is another fea-
ture in 5G PRS which can also decrease the interference of
PRS from neighboring BSs. Figure 4 illustrates a Physical
Resource Block (PRB) featuring PRS symbols configured
with a comb-6 structure for twoBSs. Formore detailed infor-
mation, we refer to [7]. Finally, before transmission, the PRS
and data signals are OFDM modulated and a cyclic prefix is
added to the beginning of each OFDM symbol.

At the receiver, the UE receives the signal, eliminates the
cyclic prefix, and applies Fast Fourier Transform (FFT) to
reconstruct all OFDM symbols in the frame, including PRSs.
Assuming tight synchronization between the receiver and

base station, the UE correlates the received PRS signal with
the known PRS pattern. The UE identifies the peak of the
correlation function, which corresponds to the ToA of the
signal from the base station. This process is repeated for all
BSs from which signals are received.

3.2 Problem Definition

In this section,we formulate theMAVlocalizationproblem in
5G networks combining IMU data, i.e., angular velocity and
linear acceleration, with ToA measurements, which provide
the radial distance from multiple BSs. These measurements
could then be fused to track the MAV motion by the estima-
tion approaches described in the following sections.

It is worth noting that while recent breakthroughs in
machine learning, like Variational Autoencoders (VAEs) and
other learning-based approaches, hold promise for localiza-
tion tasks, this study concentrates onmodel-based estimation
techniques, specifically the ESKF and PGO, for a few key
reasons:

• Data Availability, Offline Learning

– Learning-based methods often require large datasets
for effective learning, which can be challenging to
obtain, especially for unique environments or specific
5G deployments. Although transfer learning could
mitigate this issue, it falls outside the scope of our
current study due to the additional data needed for
fine-tuning and the potential computational burdenon
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Fig. 3 Visualization of the 5G resource grid structure, highlighting
Resource Blocks (RBs) and Resource Elements (REs), showcasing the
allocation of resources in resource grid

Fig. 4 PRS distribution in a physical resource block in 5G NR with
two BSs using a comb-6 structure

resource-constrained drones. As such, we prioritized
alternative approaches better suited to our real-time
and resource-constrained scenario.

• Interpretability and Safety:

– In safety-critical applications like drone navigation,
understanding the decision-making process behind
localization is paramount. Model-based methods
such as ESKF and PGO provide greater transparency
in their calculations compared to learning-based
methods, which can be black boxes and difficult to
interpret. This transparency aligns better with the
safety requirements of our application.

3.2.1 Sensing and State Representation for MAV
Localization

We aim to determine the 3D location and orientation of the
MAV’s body center, which we align with the IMU frame
B, in the world fixed frame W. The set of state variables
X contains the pose and velocity of the MAV. Moreover,
we need to estimate the time-variant biases of the IMU’s
gyroscope bg ∈ R

3 and accelerometer ba ∈ R
3 to account

for the IMU noise drift.
The state vector X can then be represented as:

X = [
qT (bg)T vT (ba)T pT

]T
. (1)

Here, each transformation T = (R,p) ∈ SE(3) is com-
posed of a rotation R ∈ SO(3) and a translation p ∈ R

3.
This transformation matrix T effectively transforms the body
frame B to the world frame W, in which the base stations
(BSs) are positioned. Additionally, the quaternion form of
rotation, denoted as q, is related to the rotation matrix R in
the transformation T.

3.2.2 IMUMeasurements

IMU measurements are provided w.r.t. the B frame. Our
approach involves a 6-axis IMU that measures the linear
acceleration Bā and angular velocity Bω̄. The IMU realmotion
state {Ba, Bω} is altered by additive Gaussian white noise
{ηa, ηg} and slowly time-varying biases {ba,bg} affecting
respectively the accelerometer and gyroscope as defined by
the following IMU measurement model [32, 37]:

Bω̄ = Bω + RTωG + bg + ηg,

Bā = RT
(

Wa − g + 2ωG×v + [ωG×]2p
)

+ ba + ηa

(2)

where Bω̄ and Bā denote the gyro and accelerometer mea-
surements in the body frame, and Wa is the acceleration of
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the body frame expressed in the world frame. The terms ηa

and ηg represent the stochastic noise affecting accelerometer
and gyroscopic measurement readings, respectively.

The term ωG incorporates the effects of the earth’s
rotation, and the accelerometer measurements include the
gravitational acceleration g. The operatorω× denotes a skew-
symmetricmatrix, and forω = (ωx ,ωy,ωz), it is defined by:

ω× =
⎡

⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎦ .

3.2.3 Time of Arrival (ToA) Measurements

In this context, we leverage ToA measurements denoted as
ρ̄ = (ρ̄1, . . . , ρ̄K ), where K is the total number of 5G BSs.
By multiplying the ToA values with the speed of light c, we
can deduce the distances to each BS, respectively. Let us
represent these distances using the vector:

d̄ = (d̄1, . . . , d̄K )T .

This distance is determined by both the dynamic position of
the drone and the fixed positions of the 5G BSs (landmarks),
defined by the equation:

d̄k = dk + ηDistk = ‖p − Lk‖2 + ηDistk , k ∈ {1, ..., K }. (3)

Here d̄k denotes the distance measurement between the
drone and the k-th BS and Lk ∈ R

3 denotes the 3D position
of the k-th 5G BS.

Please note that unless explicitly stated, the explicit time
index is omitted for brevity and all variables will be inter-
preted as values at time t .

3.2.4 Dynamic MAVModel

Assuming the MAV has a rigid frame, we apply the dynam-
ics of a rigid body to characterize its motion. The MAV’s
attached IMU allows us to use IMU measurements as inputs
to the dynamic model. This results in the following dynamic
model governing IMU states:

q̇ = 1

2
�(ω(t))q(t),

ḃg = ηwg(t),

v̇ = Wa,

ḃa = ηwa(t),

ṗ = v,

(4)

whereηwa andηwg are randomwalknoise of IMUaccelerom-
eter and gyroscope biases, and

�(ω) =
[−ω× ω

−ωT 0

]
. (5)

Taking into account the IMU measurement model described
in Eq. 2 and applying the expectation operator ,̂ we obtain
the following set of dynamic equations:

˙̂q = 1

2
�

(
ω̂(t)

)
q̂(t),

˙̂bg = 0,

˙̂v = R̂T â + g − 2[ωG×]v̂ − [ωG×]2p̂,

˙̂ba = 0,

˙̂p = v̂,

(6)

with â = Bā − b̂a and ω̂ = Bω̄ − b̂g − R̂TωG . Note that we
consider W as an inertial frame of reference, neglecting the
effect of the Earth’s rotation, i.e., ωG = 0.

3.3 Error State Kalman Filter for MAV Localization
(Indirect Method)

The Extended Kalman filter (EKF) is a widely employed
technique for estimating and tracking system states, par-
ticularly for non-linear system dynamics or measurement
models. The EKF operates by linearizing the system dynam-
ics and the observation (measurement) model around the
current state estimate.Although theEKFperforms accurately
enough inmany situations, its efficacymaydiminish in highly
nonlinear systems.

One effective approach is to utilize the error-state Kalman
filter (ESKF) method for enhanced precision and confidence
in estimations, as elucidated by [28]. ESKF entails approxi-
mating the error state, representing the disparity between the
true and estimated states, rather than directly estimating the
states themselves. The rationale behind adopting an ESKF,
also known as the indirect method, is that errors are typically
smaller and exhibit more linearity than the states, making
them well-suited for linear Gaussian filtering. This enables
the ESKF to refine estimations with greater precision. This
process unfolds in two main steps, namely prediction and
update.

During the prediction stage, the system state is forecasted
using integration, disregardingminor disturbances and noise.
However, this straightforward projection can result in the
gradual accumulation of errors due to noise and disturbances.
The ESKF simultaneously calculates a Gaussian estimate of
the error state’s distribution while integrating the nominal
state to address these inaccuracies. This dual process refines
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our real-time understanding of the evolving errors. By iden-
tifying small, subtle signals within the system’s behavior, the
ESKF enhances state estimation accuracy.

The update step is triggered by the reception of the
new measurements, a less frequent occurrence than pre-
diction. These measurements serve to expose accumulated
errors. Exploiting this new information, the ESKF refines
the error state estimate, enhancing the comprehension of its
distribution and contributing to higher accuracy. The error
state is then augmented with the estimated state, enabling
necessary adjustments. While the error state is reset to zero,
its uncertainty is updated.

Table 2 presents the key differences between the EKF
and ESKF, highlighting the trade-off between accuracy and
computational complexity. In summary, while EKF directly
estimates states and linearizes around the current estimate,
leading to lower computational complexity, its accuracy may
be compromised in highly non-linear systems. The ESKF, on
the other hand, tackles this challenge by estimating the error
between true and estimated states and linearizing around
this error state. This approach achieves higher accuracy in
non-linear scenarios, although at a slightly increased com-
putational cost due to additional calculations and memory
requirements. In both filters, the prediction stage utilizes
linearized dynamics to forecast the state (ESKF predicts
both error and nominal state), while the update stage refines
the estimate using new measurements (ESKF updates error
before refining the full state).

3.3.1 Prediction Step

Having the statesX defined in Eq. 1, the error state is defined
as per [32]:

δX = [
δθT (δbg)T δvT (δba)T δpT

]T
. (7)

Herein, δx = x − x̂ , where x represents the true value,
and x̂ is the estimated value. However, the quaternion error
is defined as q = δq ⊗ q̂, with q being a real value and q̂ as

the estimated one. To effectively represent slight rotational
errors, we adopt the following approximation:

δq � ( 1
2δθ

T 1
)T

. (8)

This approximation serves to simplify the representation of
minor rotational errors within quaternion-based state estima-
tion.

Note that we explicitly estimate the IMU biases states
within the overall state vector(δX ). This allows the filter to
learn and compensate for these constant offsets over time.
In the error state equation, bias state dynamics would be
modeled as: ˙δbg ≈ 0 and ˙δba ≈ 0 (assuming random walk
noise is negligible).

Employing the minimal representation provided by δθ ,
it reduces computational complexity while simultaneously
maintaining accuracy.

Based on Eqs. 6 and 7, the error state equation can be
expressed in the following form:

δẊ = FδX + GηIMU, (9)

where ηIMU = [
(ηg)T (ηwg)T (ηa)T (ηwa)T

]T
, F, and G

are given as follows:

F =

⎡

⎢⎢
⎢⎢
⎣

−[ω̂×] −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−R̂T [â×] 03×3 −2[ωG×] −R̂T −[ωG×]2
03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

⎤

⎥⎥
⎥⎥
⎦

,

and

G =

⎡

⎢⎢⎢⎢
⎣

−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −R̂T 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

⎤

⎥⎥⎥⎥
⎦

,

where I3 ∈ R
3×3 denotes the Identity matrix.

Table 2 Comparison of
Extended Kalman Filter (EKF)
and Error State Kalman Filter
(ESKF)

Feature EKF ESKF

State representation Actual system states Error between true and esti-
mated states

Linearization point Current state estimate Error state

Suitability for non-linearity Less accurate More accurate

Computational complexity Lower Slightly higher

Prediction stage Predicts system state based
on linearized dynamics

Predicts error state evolution
& nominal state

Update stage Updates state estimate
directly

Updates error state estimate
& refines state through error
augmentation
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In the discrete implementation, the IMU captures mea-
surements at discrete time intervals, namely ω̄t and āt , which
are then employed to propagate the state and covariance
matrix. The ESKF is initialized with the initial state esti-
mate and covariance matrix. Upon the arrival of a fresh
IMU measurement, the IMU-derived state estimate under-
goes propagation through a numerical integration, effectively
accounting for the dynamic model of the system as specified
by Eq. 6. The covariance matrix is also propagated using a
numerical integration of the Lyapunov equation:

Ṗ = FP + PFT + GQIMUGT . (10)

Note that the IMU noise characteristics are represented by
a noise covariancematrix (QI MU ) tailored to the specific sen-
sor used. This matrix captures the variances and correlations
of different noise sources (gyroscope noise, accelerometer
noise, etc.). Accurate estimation of QI MU , whether through
empirical measurements or manufacturer specifications, is
crucial to precise noise modeling. The G matrix in the error
state (9) acts as a gain matrix, mapping IMU noise directly
into the error state dynamics. Each non-zero entry inG indi-
cates how a specific noise component influences a particular
state error. For example, gyroscopenoise primarily affects the
attitude error, while accelerometer noise impacts both atti-
tude and velocity errors. Furthermore, in the propagation of
the covariance matrix, the process noise term (GQI MUGT )
in the Lyapunov (10) drives the growth of the state covariance
matrix (P). As the covariance matrix increases, it reflects the
increasing uncertainty in the state estimates due to IMUnoise
accumulation

3.3.2 Update Step

Upon receiving Time of Arrival (ToA) measurements, we
proceed with the update stage. Given (3), we define the mea-
surement function h(X ) as follows:

h(X ) =
⎡

⎢
⎣

‖p − L1‖2
...

‖p − LK ‖2

⎤

⎥
⎦ ∈ R

K×1.

Now the residual rρ ∈ R
K×1 is formulated as:

rρ = d̄ − h(X̂ ) = h(X ) − h(X̂ ) + ηDist

= h(X̂ + δX ) − h(X̂ ) + ηDist

≈ HδX + ηDist,

(11)

where ηDist represents the vector of noise associated with
the distance measurements and the measurement Jacobian

matrix H is defined by:

H = ∂rρ

∂(δX )
|X̂

=

⎡

⎢⎢
⎣

01×12
p̂x−L1x

d1
p̂y−L1y

d1
p̂z−L1z

d1
...

...
...

...

01×12
p̂x−LKx

dK
p̂y−LKy

dK
p̂z−LKz

dK

⎤

⎥⎥
⎦

k×15

(12)

Here Lk = (Lkx , Lky, Lkz), for k ∈ 1, ..., K represent the
position of the kth base station.

The update rules at time t will be:

Kt =Pt |t−1HT
(
HPt |t−1HT + R

)−1
, (13)

δX̂t |t =Ktr
ρ
t , (14)

Pt |t =(I − KtH)Pt |t−1. (15)

In these equations, R represents the covariance matrix of
the distance measurement noise. The process involves calcu-
lating the Kalman Gain Kt , updating the error state estimate
δX̂t |t and the error covariance matrix. Finally, δX̂t |t is appro-
priately incorporated into the predicted state X̂t |t−1 based
on the specific calculations for each component of the state
vector. This step refines the estimated state using ToA mea-
surements and their associated uncertainties.

The ESKF algorithm’s core steps are outlined in the pseu-
docode presented in Algorithm 1, serving as an overview of
the ESKF implementation, helping to grasp the algorithm’s
logical flow and key components.

Algorithm 1 ESKF-based localization.
Input: IMU and ToA measurements
Result: state estimate X̂
Initialize: X̂0, P ;
while new IMU measurement received do

Prediction Stage:
Propagate state using Runge-Kutta integration;
Propagate covariance matrix using Runge-Kutta
integration;
if new ToA measurements received then

Update Stage:
Obtain distance measurements d̄t ;
Calculate residual rρ

t ← d̄t − h(X̂t |t−1);
Calculate Jacobian matrix Ht for measurement model;
Calculate Kalman Gain Kt ;

Update error state estimate δX̂t |t ← Ktr
ρ
t ;

Update covariance matrix Pt |t ← (I − KtHt )Pt |t−1;

Update state estimate X̂t |t ← X̂t |t−1 ⊕ δX̂t |t ;
end

end
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3.4 Pose Graph Optimization (PGO)

As a second alternative method to estimate the drone’s 6DoF
pose we also leverage graph-based optimization techniques.
This method models the relationships between the pose vari-
ables based on sensor measurements and then performs the
estimation using least squares optimization. For that purpose,
a factor graph model [33] is created to abstract the problem.
Factor graphs are bipartite graphs with two types of nodes,
namely variables and factors, where factors represent func-
tions on subsets of the variables. Edges in the factor graph
between a factor and a set of variables indicate that the factor
depends only on those variables. In our case, the variables are
the state variables that should be estimated at certain instants
and the factors correspond to the likelihood of the adjacent
state variable nodes given the related measurements, see the
structure of the resulting factor graph in Fig. 5. The figure
illustrates a factor graph used for optimizing variables, with
circles representing variables and squares representing fac-
tors. Nodes Tt represent pose variables, vt represent velocity,
and bt represent bias. IMU pre-integration factors connect
these nodes, while ToA measurements create range factors.
Prior factors constrain initial values.

Therefore, the factor graph can be used to specify the joint
posterior probability density p(X |Z) of thewhole set of state
variables X and the whole set of measurements Z as the

product of all factors fi (Xi ) in the graph

p(X |Z) ∝
∏

∀ fi∈F
fi (Xi ) , (16)

whereXi is the set of state variable nodes adjacent to the fac-
tor fi (Xi ) and F is the set of all factors in the graph. Herein,
the measurements are no longer explicitly represented but
simply become a fixed parameter in the corresponding fac-
tor. This factorization will be exploited for pose estimation
as described in the following.

3.4.1 IMU Factor

Due to the IMU’s higher sampling frequency than other sen-
sors, it typically captures multiple measurements between
two ToA instances. The IMU factor is constructed utilizing
a preintegrated measurement [9] constraining the relative
motion increments. Especially, we obtain the condensed
measurements �R̄i j of rotation, �p̄i j of position, and �v̄i j
of velocity by integrating multiple IMU readings {Bāt , Bω̄t :
∀t ∈ [ti , t j ]}. So, we can define the residual terms r for the
states {Ri j ,pi j , vi j }:

rRi j = Log
(
�R̄Ti j R

T
i R j

)
, (17)

Fig. 5 The figure visualizes the structure of the factor graph used to
optimize the variables, represented by circles, by relating them through
factors, represented by squares. The nodesTt incorporate the 6DoF pose
variables, vt nodes encapsulate the velocity variables, and bt nodes
denote the bias variables, encompassing biases from both gyroscopes
and accelerometers. IMU pre-integration factors connect all of these

nodes. ToA measurements create range factors between robot pose
nodes and BSs position nodes, with a single instance, L1, visualized
here to enhance graph clarity. Prior factors, namely prior pose, prior
velocity, and prior bias, are connected to the respective nodes T1, v1,
and b1 to constrain them with their initial values in the trajectory
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rpi j = RTi
(
p j − pi − vi�ti j − 1

2g�t2i j
) − �p̄i j , (18)

rvi j = RTi
(
v j − vi − g�ti j

) − �v̄i j , (19)

where �ti j = t j − ti is the total time interval with ti < t j .
Also, Log : SO(3) → R

3 defines the logarithm map
that associates elements of the rotation manifold SO(3) to
vectors on the Euclidean tangent spaceR3 representing rota-
tion increments. Regarding the biases, the total residual rbi j
between time ti and t j is set as follows:

rbi j = bgj − bgi + baj − bai . (20)

3.4.2 ToA Range Factor

By multiplying the estimated ToA values ρsk by the speed
of light c, i.e.,ifnextchar.gobble dsk = ρsk · c, we obtain K
metric distance measurements dsk ∈ R of the drone to the k-
th BS at locationLk at time ts . Notably, we explicitly express
the possibility of having fewer ToA measurements than the
number of tracked poses. The residual rρ

sk of the ToA factor
at time ts with the BS Lk is defined as:

rρ
sk = dsk − ‖ps − Lk‖2 . (21)

3.4.3 Optimization

The PoseGraphOptimization problem is formulated asMax-
imum a Posteriori (MAP) estimation that involves finding the
state X ∗ that maximizes the posterior:

X ∗ = argmax
X

p(X |Z). (22)

Considering the proportional relationship in Eqs. 16, 22 is
equivalent to the maximization of the product of all factors
in the factor graph:

X ∗ = argmax
X

∏

∀ fi∈F
fi (Xi ) . (23)

In our application, the factor graph evolves with time, where
we consider t = {1, . . . , N } instants and Xt is the state
at instant t . Therefore, the overall set of states is X =
{X1, . . . ,XN } starting with a given initial state X0. The fac-
tors are likelihoods derived from the respective previously
described measurements, assumed to be corrupted by zero-
mean, normally distributed noise. Now we denote with fti
the factors between state Xt and the state Xt+1 and, if ToA
measurements are available, the factors between stateXt and
the respective BSs. Taking the negative log of Eq. 23 finally

leads to the minimization of the sum of the respective resid-
uals in the following form:

X ∗ = argmin
X

‖r0‖2�0
+

N−1∑

t=1

∑

∀ fti∈F

∥∥r fti

∥∥2
� fti

, (24)

where ‖r‖2� = rT�−1r is the squared Mahalanobis norm,
and r fti are the residual functions related to the aforemen-
tioned factors fti with covariance matrix � fti . We denote
with r0 the residual derived from the prior on the initial pose
with �0 being its covariance matrix.

To efficiently solve the MAP optimization problem, we
utilize the iSAM2 (Incremental Smoothing and Mapping
2) iterative optimization algorithm [38] implemented in
GTSAM [10]. This algorithm can automatically identify the
variables that require linearization at each step, and it enables
us to keepour graph solution updatedwhile addingnewnodes
without experiencing memory overload.

iSAM2 effectively leverages a Bayesian tree structure
to incorporate historical data during optimization, but its
performance can be impacted by the growing tree depth
for extended temporal horizons. In scenarios where both
long-term memory retention and real-time performance are
critical, [39] offers a promising solution that is based on
a spanning tree-based hierarchy. This method leverages a
simplified spanning tree representation of the pose graph,
reducing complexity. It also employs a coarse-to-fine opti-
mization strategy, achieving faster convergence by first
optimizing on supernodes formed by connected components
and then refining within each supernode using the original
measurements. While this approach introduces a slight accu-
racy approximation, its reduced complexity and potential for
real-time performance make it a valuable option for specific
applications.

Within Algorithm 2„ we have encapsulated the essence of
graph-based state estimation in a streamlined manner.

4 Evaluation and Results

In order to evaluate the two derived approaches for pose esti-
mation, we intend to apply them as far as possible to real
experimental data. For this purpose we selected the EuRoC
MAVdataset [11] that comprises vision data and inertial sen-
sormeasurements aswell as the relatedground truth posedata
collected during a number of MAV indoor flight sequences.
The dataset is widely used in the literature as a benchmark
for the evaluation of visual-inertial odometry or SLAM solu-
tions. However, while it provides the inertial measurements
for our evaluation, it does so far not include the necessary 5G
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Algorithm 2 Graph-based localization.
Input: IMU and ToA measurements
Result: Optimized state estimates X ∗
Initialize: X ∗

0 = X0;
while true do

for each fixed time interval do
Accumulate IMU measurements;
preintegrate accumulated IMU measurements;
Add a new node;
Create an IMU factor linking the new node to the
previous one;
if New ToA measurement arrives then

Determine the temporally nearest node to the
ToA measurement.;
Incorporate a range factor between the node and
the relevant landmark;

end
Perform optimization using iSAM2;
Update the state estimates X ∗;

end
end

ToA data. Therefore, we had to augment the EuRoc MAV
dataset with such suitable data that could either be generated
experimentally or via simulations. However, an experimen-
tal generation of these 5G ToA data would not only require
an exact repetition of the flights with the same equipment
and configurations, but also the setup of a configurable 5G
indoor network and an on-board 5G receiver with ToA mea-
surements.While such 5G networks (e.g., 5G femtocells) are
foreseen for the near future bymanymobile communications
equipment suppliers, it is currently still a major challenge to
acquire them commercially and install them in an academic
lab environment.

Therefore, we decided to generate the missing 5G ToA
data via a suitable simulation environment. In the following,
we describe in more detail our approach to generate such
simulated yet highly realistic data and finally present our
assessment based on the augmented EuRoC MAV dataset.

4.1 Augmenting the EuRoCMAV Dataset
with Simulated 5GToA Data

Figure 6 shows the overall structure of the simulation envi-
ronment with its core components and their interaction for
the augmentation of the EuRoC MAV dataset. In addition, it
shows the connection of the resulting dataset with the pose
estimators for the assessment.

Herein, the main components are:

• EuRoC MAV dataset: provides inertial measurements
and ground truth pose data from real MAV flights.

• Signal generation: Generates the 5G signals as emitted
from a number of simulated BSs placed at defined loca-
tions.

• QuaDRiGa channel simulation: Simulates the propa-
gation of the 5Gsignals from theBSswith their respective
fixed poses through the environment to a supposed flying
MAVwith its current pose provided by the EuRoCMAV
ground truth data.

• ToA calculation: Calculates the current ToA measure-
ments as provided by a supposed MAV on-board 5G
receiver by analyzing the received 5G signal, and stores
them as a dataset.

• Pose estimator: Estimates the pose of the MAV using
the stored simulated ToA measurements and the inertial
measurement from the EuRoCMAV dataset using one of
the two pose estimators (i.e., ESKF or PGO) as derived
in Sections 3.4 and 3.3, respectively.

The EuRoCMAV dataset [11] was collected by an indoor
flying MAV equipped with a stereo-camera module captur-
ing images at 20 Hz and a calibrated IMU providing inertial
measurements at a rate of 200 Hz. The dataset also containes
theMAV’s position and orientation data obtained through the
Vicon motion capture system as ground truth, recording the

Fig. 6 System architecture for augmentation of EuRoC MAV dataset with 5G simulation
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full 6DoF at approximately 100 Hz. The full set of calibrated
rigid transformations between sensors and the Vicon system
is also given. The EuRoC MAV dataset comprises multiple
flight sequences while our study examines all six sequences
from the Vicon Room 1 and Vicon Room 2 datasets.

To estimate the distance to 5G BSs, we generate the 5G
signal, including PRS and Physical Downlink Shared Chan-
nel (PDSCH) resources transmitted by each BS. We use the
MATLAB 5G Toolbox to generate resource blocks for these
signals, setting the transmit power to 0 dBm (1 mW) and the
SNR to 10 dB, which is a conservative value, as real-world
scenarios often have higher SNR levels.

We then employ theQuaDRiGa (quasi-deterministic radio
channel generator) channel simulator [12] to create an
impulse response that emulates the wireless channel char-
acteristics based on specific network configurations, given
receiver and transmitter positions, orientations, velocities,
and the chosen indoor environment. QuaDRiGa is a real-
istic channel simulator that has been validated through
extensive measurements. For the MAV trajectories we have
used the available 6DoF ground truth poses of the MAV
provided by the EuRoC MAV dataset, from which we com-
pute the required velocity considering the translation vectors
between two time-consecutive poses. We virtually place two
up to five fictitious BSs in the room where the trajectory
is recorded. The positions of the BSs in the EuRoC MAV
Vicon system’s coordinate frame are BS1 = (−10,−7, 2),
BS2 = (7, 13, 3), BS3 = (25,−35, 4), BS4 = (−6, 9, 5),
BS5 = (−4,−14, 6). These values are used to initialize the
corresponding state variables of the optimization problem
with a small covariance.

We consider three QuaDRiGa channel simulator sce-
narios, each operating at different frequencies, to sim-
ulate the wireless communication environment realisti-
cally: QuaDRiGa-Industrial-LOS for 5 GHz, 3GPP-38.901-
Indoor-LOS for 28 GHz, and mmMAGIC-Indoor-LOS for
78 GHz.

• QuaDRiGa_Industrial_LOS [40]: This scenario is de-
signed to replicate a line-of-sight (LOS) environment for
industrial applications. The simulation is optimized for
frequencies ranging from 2 to 6 GHz and aims to cap-
ture the radio propagation behavior typically observed

in automation industry halls. The scenario is validated
through measurements conducted across five factory
halls within Siemens’ Nuremberg operational premises.

• 3GPP_38.901_Indoor_LOS [41]: This scenario sim-
ulates an indoor environment with a 0.5-100 GHz
frequency in LOS conditions. It aims to encompass
various indoor deployment scenarios, such as those com-
monly found in office buildings and shopping centers.
These indoor settings typically consist of open cubicle
spaces, private enclosed offices, common areas, corri-
dors, etc.

• mmMAGIC_Indoor_LOS[42]: This is designed specif-
ically for frequencies in the range of 6-100 GHz and
indoor scenarios with LOS like traditional enclosed
offices, semi-closed offices (cubicle areas), and open
offices.

We also assumed that both the receiver and all transmit-
ters used omnidirectional antennas. Other configurations are
detailed in Table 3. It includes information such as frequency
band, bandwidth, subcarrier spacing, number of resource
blocks (RBs), comb size, signal-to-noise ratio (SNR), and
cyclic prefix type for each 5G scenario.

We finally convolve the transmitted signal with the
impulse response to replicate the effects of the transmission
environment, generating the received signal. We generate
the received signal at the receiver every 0.2 seconds, which
enables us to calculate the ToA at a frequency of 5 Hz. We
then correlate the received signal with the transmitter’s PRS
pattern and calculate the delay by analyzing the correlation
profile. Typically, the initial or highest peak is considered as
the response. However, this approach can be compromised
by noise or when the LOS coefficient is weaker than the
multipath coefficient. To address this, we set a threshold to
eliminate values below it and choose the first peak above the
threshold as the response. We have empirically determined
that a threshold of 0.2 is optimal for ToA estimation with
the generated data. An example of a correlation profile in
the simulation is displayed in Fig. 7. The response shown
in green is neither the first nor the maximum peak. Still, a
suitable threshold allowed the selection of the first peak as
the response. Table 4 gives the statistics of the error in the
resulting estimated distance to each BS.

Table 3 5G system configurations

5G Sim. Scenario Freq (GHz) Bw (MHz) Subcarrier Spacing
(KHz)

Number of RBs Comb size SNR Cyclic prefix

QuaDRiGa-Industrial-LOS 5 (FR1) 100 30 275 6 10 dB Normal

3GPP-38.901-Indoor-LOS 28(FR2) 200 60 275 6 10 dB Normal

mmMAGIC-Indoor-LOS 78(FR2) 400 120 275 6 10 dB Normal
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Fig. 7 PRS correlation profile

4.2 EvaluationMetrics

For the evaluation of our approach, we utilize the two most
popular metrics in Simultaneous Localization and Mapping
(SLAM): Absolute Trajectory Error (ATE) andRelative Pose
Error (RPE) [13]. ATE is a metric for global consistency,
defined as the Root Mean Square Error (RMSE) between
the absolute distances of the estimated and ground truth
trajectories. RPE complements ATE by focusing on local
accuracy and is primarily utilized for evaluating odometry
systems. It provides a concise measure of the error between
consecutive poses in the estimated trajectory compared to
the ground truth trajectory. RPE helps to assess the drift or
error accumulation in pose estimation over time, specifically
at smaller time intervals.

In addition to these metrics, we analyzed the RMSE for
each trajectory coordinate axis, denoted as Ea where a repre-
sents x , y, or z. This calculation was carried out to assess the
accuracy of the estimation along specific spatial directions.
The RMSE error for each coordinate axis a ∈ {x, y, z} was
calculated using the following formula:

Ea =
√√
√√ 1

N

N∑

i=1

(ai,est − ai,gt)2, a ∈ {x, y, z}

In this equation, N represents the total number of poses,
while the subscripts (i, est) and (i, gt) correspond to the i-th
estimated and ground truth poses, respectively. This analysis
gave us valuable insights into potential accuracy variations
dependent on the spatial direction. By evaluating the error
along each axis separately, we could identify any discrepan-
cies in performance for different spatial orientations.

To further assess the suitability of the proposed algorithms
for real-time applications, we evaluated their implementation

times. For PGO,we calculated the average and standard devi-
ation (std) of the time taken for each optimization process.
For the ESKF, we recorded the average and std of the time
taken to complete one prediction plus update state cycle.

4.3 Results

The experiments were performed on a Ubuntu 20.04 lap-
top with an Intel(R) Core(TM) i9-10885H CPU@ 2.40GHz
with 16 cores and 32GbofRAM.All codes (PGOandESKF)
are implemented in Python, utilizing the relative interface of
GTSAM v4.0 for creating and optimizing the factor graphs.
The drone’s position andorientation results are obtained from
the factor graph based on the final Maximum A Posteriori
(MAP) estimate for each node, where nodes are consistently
generated at 10 Hz, twice the frequency of ToA measure-
ments. On the other hand, the results for the Error State
Kalman Filter (ESKF) approach are acquired at each update
stage, coinciding with the reception of ToA measurements.
To comprehensively evaluate the performance of the local-
ization algorithm, errormetrics are computed by establishing
a comparison between the ground truth Vicon pose and the
estimated pose that is temporally closest.

The detailed results for the graph-based and ESKF meth-
ods are exhaustively documented in Tables 5 and 6, corre-
sponding to Vicon Room 1 and Vicon Room 2, respectively.
These tables provide comprehensive information encom-
passing ATE, RPE, and translation RMSE for each distinct
motion direction in various 5G simulation scenarios for both
methods.Additionally, theATEavg. columnpresents the aver-
age ATE for each method across each scenario with 2, 3, 4,
and 5 base stations.

Subsequently, we delve into a detailed analysis of the
obtained results, uncovering the underlying factors contribut-
ing to the observed performance trends.
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Table 4 Error statistics of the
estimated ToA distance to BSs
for different scenarios and given
in meters

Dataset 5G Sim. Scenario Statistic ToA #1 ToA #2 ToA #3 ToA #4 ToA #5

V101 QuaDRiGa-Industrial-LOS Mean 0.129 –0.045 0.006 –0.081 –0.023

Std. 0.568 0.81 0.763 0.872 0.718

3GPP-38.901-Indoor-LOS Mean –0.024 –0.021 –0.059 0.041 –0.06

Std. 0.344 0.368 0.352 0.394 0.369

mmMAGIC-Indoor-LOS Mean 0.002 0.01 –0.008 0.003 –0.01

Std. 0.185 0.171 0.173 0.159 0.176

V102 QuaDRiGa-Industrial-LOS Mean 0.16 –0.033 –0.135 –0.129 –0.156

Std. 0.645 0.874 0.722 0.739 0.677

3GPP-38.901-Indoor-LOS Mean –0.104 0.104 0.106 –0.122 –0.052

Std. 0.358 0.39 0.404 0.367 0.322

mmMAGIC-Indoor-LOS Mean 0.037 –0.011 –0.018 0.016 –0.046

Std. 0.174 0.153 0.154 0.16 0.193

V103 QuaDRiGa-Industrial-LOS Mean 0.043 –0.065 1.232 –0.066 –0.387

Std. 0.775 0.784 1.628 0.772 1.275

3GPP-38.901-Indoor-LOS Mean –0.042 0.053 0.008 –0.033 –0.022

Std. 0.353 0.382 0.387 0.36 0.369

mmMAGIC-Indoor-LOS Mean 0.001 –0.011 0.012 0.0 –0.013

Std. 0.176 0.166 0.17 0.18 0.183

V201 QuaDRiGa-Industrial-LOS Mean 0.059 0.108 –0.182 –0.154 –0.27

Std. 0.751 0.897 0.592 0.986 0.79

3GPP-38.901-Indoor-LOS Mean 0.025 –0.07 –0.045 0.054 0.12

Std. 0.364 0.379 0.392 0.302 0.367

mmMAGIC-Indoor-LOS Mean –0.012 0.026 0.015 –0.019 0.015

Std. 0.164 0.177 0.163 0.18 0.192

V202 QuaDRiGa-Industrial-LOS Mean 0.027 0.141 0.072 0.082 –0.204

Std. 0.716 0.674 0.908 0.933 0.631

3GPP-38.901-Indoor-LOS Mean 0.052 –0.053 –0.039 0.012 0.043

Std. 0.391 0.348 0.427 0.359 0.351

mmMAGIC-Indoor-LOS Mean –0.007 0.007 –0.018 0.013 0.011

Std. 0.178 0.168 0.17 0.19 0.192

V203 QuaDRiGa-Industrial-LOS Mean 0.067 –0.017 0.273 –0.13 –0.045

Std. 0.754 0.73 1.343 0.724 0.684

3GPP-38.901-Indoor-LOS Mean 0.009 –0.022 –0.046 0.043 0.02

Std. 0.376 0.351 0.317 0.37 0.358

mmMAGIC-Indoor-LOS Mean 0.018 0.017 0.002 0.004 –0.009

Std. 0.17 0.181 0.174 0.178 0.174

• Base Stations and Bandwidth Influence: The results
consistently show that the accuracy of ToA-based local-
ization improves when the number of base stations
and the available bandwidth (communication scenarios)
increase. This is becausemore base stations providemore
reference points for ToAmeasurements, and higher band-
width allows for higher resolution ToA measurements.
For example, using dataset V101 and a fixed commu-
nication scenario (3GPP-38.901-Indoor-LOS), the error
decreases from 2.58m to 0.25m under graph-based opti-

mization when the number of base stations increases
from 2 to 5. However, adding more than four base
stations sometimes does not lead to significant or fur-
ther improvement. This may indicate a lower bound
to the error reduction achieved by adding more anten-
nas. Nevertheless, such redundancy may be helpful in
those environments where NLOS conditions are more
frequent. The effect of bandwidth on the accuracy is
also evident, as higher bandwidth leads to higher resolu-
tion ToA measurement. In particular, the third scenario
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(mmMAGIC-Indoor-LOS), which has the highest band-
width (400MHz), also offers the highest accuracy for the
same antennas.

• Reduced Accuracy in the Vertical Dimension (z-Axis)
Upon analyzing the Root Mean Square Error (RMSE)
along each axis (Ex , Ey , Ez), a prominent observation is
the relatively larger errors in the Ez component, indica-
tive of the vertical direction estimation challenge. This
is attributed to the limited offsets provided by base sta-
tions in the vertical direction compared to the x and y
directions.

• Limited Impact of ToA Measurements on Attitude
Estimation: In assessing attitude estimation, a lack of
discernible patterns is apparent, suggesting that the inclu-
sion of ToA measurements does not notably enhance
the accuracy of attitude estimation. This is inherently
expected as ToA measurements primarily offer informa-
tion about position rather than attitude.

• Superior Performance of Graph-Based Optimiza-
tion Compared to ESKF: Notably, the graph-based
optimization consistently outperforms ESKF across all
datasets, scenarios, and base station configurations,
demonstrating the graph-based approach’s superior effi-
cacy in enhancing indoor localization accuracy. Themain
reason behind this advantage lies in the filteringmethod’s
practice of marginalizing all older information by lim-
iting itself to the most recent states. In contrast, the
graph-basedmethod utilizes the entire historical informa-
tion, employing all past measurements up to the current
one and optimizing the entire trajectory. Notably, graph-
based methods tend to perform better when dealing with
sparse, low-frequency measurements, such as our imple-
mentation utilizing ToA measurements with a frequency
of 5 Hz, which is relatively low. This increased suscepti-
bility of the ESKF to sparsemeasurements can contribute
to more significant performance disparities between the
two methods.

• Robustness Across Different Trajectories and Datasets:
We assessed the robustness of our proposed approaches
across datasetswith varying levels of complexity, encom-
passing sequences from two different Vicon rooms:
Vicon Room 1 (V101, V102, V103) and Vicon Room
2 (V201, V202, V203). These sequences were catego-
rized into three levels of difficulty: easy (V101, V201),
medium (V102, V202), and difficult (V103, V203).
Despite the diversity in trajectory complexity and envi-
ronmental conditions, we observed that the accuracy of
our proposed approaches did not exhibit a clear pat-
tern across the different sequences. Surprisingly, in some
instances, our methods yielded better results for the more
difficult datasets, challenging conventional expectations.
This variability underscores the importance of robust-
ness and adaptability inMAVpose estimation algorithms,

especially when operating in diverse and dynamic envi-
ronments.
Our findings highlight the effectiveness of our proposed
methods in handling the complexities inherent in MAV
flight scenarios. The lack of a consistent pattern in
accuracy underscores the versatility of our approaches,
demonstrating their ability to adapt to various challenges
encountered during indoor flight missions. This adapt-
ability is crucial for real-world applications,whereMAVs
must navigate through unpredictable environments with
confidence and precision.

Table 7 presents the execution times for both PGO and
ESKF, showcasing the best results achieved using five base
stations. As evident from the table, both approaches are suit-
able for real-time implementation,with ESKFoutperforming
PGO, as expected. This observation reinforces ESKF’s supe-
rior efficiency for real-time applications. For instance, in the
V101 dataset, PGO required an average of 3.08 milliseconds
per optimization, while ESKF consumed only 0.39 millisec-
onds for a prediction-update cycle. Since the codes were
implemented in Python (with PGO partially implemented
in Python), we expect further improvement in real-time per-
formance by converting the codes entirely to C++. Overall,
while the ESKF estimation in general runs faster than the
PGO, these results also show that both estimation approaches
can be implemented for real-time MAV applications, given
a suitable on-board processing unit.

To visually illustrate the distinction between the two algo-
rithms, we focused on a specific scenario for each dataset:
mmMAGIC-Indoor-LOS configuration with five base sta-
tions. In Fig. 8, we present visual representations of the
trajectories in the xy-plane (upper row) and the z-coordinate
over time (lower row) for different datasets. Each subfig-
ure corresponds to a specific dataset (V101, V102, etc.),
and within each subfigure, three trajectories are displayed:
Blue: Ground-truth trajectory,Red: Graph-based estimation,
Green: ESKF estimation.

4.4 Limitations

The approach usedx in this study currently has several limita-
tions and hence leaves potential for futurework. The 3Dposi-
tion is not fully constrained with only two antennas, making
convergence difficult without other measurements. Never-
theless, the UAV’s rotation errors primarily result from IMU
noise, as the 5G ToA measurements only provide distances
to the antennas. The yaw estimation has drift issues because
it lacks global measurement to correct it. Integrating other
sensors can improve the localization accuracy by observ-
ing the rotation around z, e.g.,ifnextchar.gobble employing
a magnetometer. Notably, a camera can be incorporated to
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Table 7 Computation time
comparison for PGO and ESKF
in Euroc MAV dataset
localization

Method Dataset
V101 V102 V103 V201 V202 V203

Graph-based 3.08±2.38 1.85±1.34 2.36±1.69 2.89±2.44 2.62±2.24 2.44±1.72

ESKF-based 0.39±0.20 0.35±0.16 0.37±0.14 0.39±0.15 0.43±0.19 0.35±0.15

The table showcases the best results for each dataset, including the average time and standard deviation for
each PGO optimization and ESKF (both prediction and update steps). All times are reported in milliseconds

Fig. 8 Trajectories in the xy-plane (upper low) and z-coordinate over time (lower row) for different datasets.Blue represents ground-truth trajectories,
red represents graph-based estimation, and green represents ESKF estimation

123



Journal of Intelligent & Robotic Systems           (2024) 110:87 Page 25 of 27    87 

add other constraints on the 6DoF relative motion based on
visual features and loop closures.

Furthermore, the error in the z axis is larger than along
x and y axes because of limited offset or variation in
the positions of the base stations in the height direction.
We foresee possibly fusing the barometer’s absolute height
measurements to relieve such issues. Additionally, the local-
ization accuracy depends heavily on the quality of the ToA
measurements, which can be negatively affected by NLOS
conditions. In such cases, correctly setting the measurement
uncertainty for each ToA range factor, using Mahalanobis
distance to discard outliers, or applying a robust kernel (such
as e.g.,ifnextchar.gobble , aHuber kernel) to the cost function,
may be beneficial to alleviate the problem.

Finally, the proposed method assumes that the positions
of the base stations are knownwith high confidence and fixed
in the exact location, which may not be the case in real-world
scenarioswhere the stationsmay bemoving or their positions
may be completely unknown. However, especially the PGO
approach can be adapted to also include an estimation of
the unknown position of the BSs, if the ToA measurements
can be unambiguously assigned to the sending base station,
respectively.

5 Conclusion and FutureWork

In conclusion, our research demonstrates the potential of
utilizing 5G Time of Arrival (ToA) range measurements
alongside inertial sensor data for precise indoor localization
of Micro Aerial Vehicles (MAVs) across various scenar-
ios and network configurations. We accurately determined
MAV positions and orientations by employing graph-based
optimization and Error State Kalman Filtering (ESKF). We
conducted a thorough comparative analysis across different
network scenarios, trajectories, and base station setups.

Our comprehensive investigation revealed valuable insights.
We observed that increased base stations and bandwidth
improved ToA-based localization accuracy. Despite limita-
tions in the vertical dimension due to base station offsets, ToA
measurements exhibited potential for maintaining position
estimates at a global level. Graph-based optimization con-
sistently outperformed ESKF, especially in high-bandwidth
5G setups.

Our research roadmap involves enhancing localization
accuracy by incorporating camera visual data. This inte-
gration will improve the robustness of our methodology,
particularly in scenarios prone to noise or non-line-of-sight
conditions. Combining multiple data sources promises to
elevate localization accuracy and enable effective drone oper-
ation in complex indoor environments.

Our results highlight the potential of graph-based opti-
mization for accurate indoor localization, setting the stage

for future research. The synergy between wireless communi-
cation and sensor fusion offers breakthroughs in robot pose
estimation. In closing, this research emphasizes interdisci-
plinary collaboration and paves the way for enhancing MAV
localization algorithms.

This current approach’s limitations invite further research,
particularly to elevate localization accuracy. Future work
could explore fusing 5G measurements with additional sen-
sors like magnetometers or cameras, potentially mitigating
UAV rotation errors and imposing constraints for 6 Degrees
of Freedom (6DoF) motion. Additionally, incorporating
barometers for absolute height measurements might allevi-
ate z-axis errors arising from limited base station positioning.
Strategies like improveduncertainty estimation, outlier rejec-
tion, and robust cost functions hold promise for managing
noisy Time of Arrival (ToA) measurements, especially in
non-line-of-sight scenarios. Finally, adapting localization
methods like PoseGraphOptimization to handle unknown or
dynamic base station positions could enhance the approach’s
real-world robustness.
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31. Marković, L., Kovač, M., Milijas, R., Car, M., Bogdan, S.: Error
state extended kalman filter multi-sensor fusion for unmanned
aerial vehicle localization in gps and magnetometer denied indoor
environments. In: 2022 International Conference on Unmanned
Aircraft Systems (ICUAS). pp. 184–190. (2022)

32. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint kalman
filter for vision-aided inertial navigation. In: Proceedings 2007
IEEE International Conference on Robotics and Automation. pp.
3565–3572. (2007)

33. Dellaert, F., Kaess, M.: Factor graphs for robot perception. Foun-
dations and trends in robotics, vol. 6, 2017. [Online]. Available:
http://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2306.09826
https://github.com/borglab/gtsam
https://github.com/borglab/gtsam
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://www.siradel.com/s_5gchannel-for-advanced-5g-mmw-propagation-modeling/
https://www.siradel.com/s_5gchannel-for-advanced-5g-mmw-propagation-modeling/
https://www.sciencedirect.com/science/article/pii/S2405896317325387
https://www.sciencedirect.com/science/article/pii/S2405896317325387
https://doi.org/10.3390/s23073676
https://doi.org/10.3390/s23073676
http://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf


Journal of Intelligent & Robotic Systems           (2024) 110:87 Page 27 of 27    87 

34. Mascaro, R., Teixeira, L., Hinzmann, T., Siegwart, R., Chli, M.:
Gomsf: graph-optimization based multi-sensor fusion for robust
uav pose estimation. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). pp. 1421–1428. (2018)

35. Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgb-d cameras. IEEE Trans. Rob.
33(5), 1255–1262 (2017)

36. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós,
J.D.: Orb-slam3: an accurate open-source library for visual, visual-
inertial, and multimap slam. IEEE Trans. Robotics 37(6), 1874–
1890 (2021)

37. Chatfield,A.B. : Fundamentals of high accuracy inertial navigation.
vol. 174. Aiaa (1997)

38. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Del-
laert, F.: isam2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering. In: 2011 IEEE
International Conference on Robotics and Automation. pp. 3281–
3288. (2011)

39. Tazaki, Y.: A spanning tree-based multi-resolution approach for
pose-graph optimization. IEEE Robot. Autom. Lett. 7(4), 10033–
10040 (2022)

40. Jaeckel, S., Turay, N., Raschkowski, L., Thiele, L., Vuohtoniemi,
R., Sonkki, M., Hovinen, V., Burkhardt, F., Karunakaran, P., Heyn,
T.: Industrial indoor measurements from 2-6 ghz for the 3gpp-nr
and quadriga channel model. In: 2019 IEEE 90th Vehicular Tech-
nology Conference (VTC2019-Fall). pp. 1–7. IEEE (2019)

41. 3GPP: Study on channel model for frequencies from 0.5 to 100
ghz. (2018)

42. Carneiro de Souza, L., de Souza Lopes, C.H., de Cassia Carlleti dos
Santos, R., Cerqueira Sodré Junior, A., Mendes, L.L. : A study on
propagation models for 60 ghz signals in indoor environments.
Front. Commun. Netw. 2 757842 (2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Meisam Kabiri received his M.Sc. degree in Electrical Engineer-
ing from Amirkabir University of Technology (Tehran Polytechnic),
Tehran, Iran, in 2017. He is currently a PhD researcher at the Uni-
versity of Luxembourg, affiliated with the Interdisciplinary Centre for
Security, Reliability and Trust (SnT). His research focuses on mobile
robotics, particularly in the areas of Simultaneous Localization and
Mapping (SLAM) and distributed networked control systems. Meisam
is a member of the Automation & Robotics Research Group (ARG) at
SnT, under the supervision of Prof. Holger Voos.

Claudio Cimarelli completed a PhD in Computer Science at the Univer-
sity of Luxembourg in 2022. His research focuses on computer vision
and deep learning applied to autonomous robots. His aim is to advance
situational awareness and perception systems, with contributions in
self-localization algorithms, monocular depth estimation, object detec-
tion, and human-robot interaction. Currently, he is involved in solving
autonomous robotic disassembly of EV lithium batteries to sustain the
circular economy.

Hriday Bavle received his PhD in Automatic Control and Robotics
from the Technical University of Madrid, Spain in 2019. His PhD was
focused on improving localization and mapping algorithms onboard
aerial robotic platforms for augmenting their awareness and auton-
omy in cluttered indoor environments. During his PhD, he also served
as a visiting researcher at the Aerospace Controls Lab of Mas-
sachusetts Institute of Technology, Boston, USA for 3 months where
he developed a semantic SLAM algorithm running on-board an aerial
robot flying at high speeds. After his PhD, he worked as a robotics
researcher in a robotics startup in Denmark. Hriday is currently a
postdoctoral research associate at the University of Luxembourg since
2021 researching novel techniques coupling SLAM graphs and 3D
scene graphs with a final goal of providing mobile robots with situ-
ational awareness similar to humans.

Jose Luis Sanchez-Lopez is a Research Scientist (permanent) at the
University of Luxembourg (LU). He received his Industrial Engineer-
ing degree (2010), M.Sc. in Automation and Robotics (2012), and Ph.
D. in Robotics (2017) at the Technical University of Madrid (ES),
after being a visiting researcher at the Arizona State University (AZ,
US), and at the LAAS-CNRS (Toulouse, FR). He joined the Automa-
tion & Robotics Research Group of the Interdisciplinary Centre for
Security Reliability and Trust (SnT) in June 2017. He has been a vis-
iting researcher at Inria-Rennes (FR) in 2023 and the University of
Zaragoza (ES) in 2024. His research interests in autonomous and intel-
ligent navigation of aerial and ground robots include (1) perception
and situation awareness, sensor fusion, state estimation, localization
and mapping, computer vision, and machine learning; (2) intelligent
and cognitive system architectures for multi-agent robotic systems;
and (3) trajectory and path planning and control. He has authored over
90 peer-reviewed publications in these fields, and he serves the sci-
entific community as an associate editor of several journals, on the
program committee of conferences, and as a project reviewer.

Holger Voos studied Electrical Engineering at the Saarland Univer-
sity and received the Doctoral Degree in Automatic Control from the
Technical University of Kaiserslautern, Germany, in 2002. From 2000
to 2004, he was with Bodenseewerk Gerätetechnik GmbH, Germany,
where he worked as a systems engineer and project manager in R&D
in aerospace and robotics. From 2004 to 2010, he was a Professor at
the University of Applied Sciences Ravensburg-Weingarten, Germany,
and the head of the Mobile Robotics Lab there. Since 2010, he is a
Full Professor at the University of Luxembourg in the Interdisciplinary
Centre for Security, Reliability and Trust (SnT), and the head of the
SnT Automation and Robotics Research Group. His research interests
are in the area of perception, situational awareness as well as motion
planning and control for autonomous vehicles and robots as well as
distributed and networked control and automation. Areas of applica-
tion are robotics, space systems, Industry 4.0 and energy and water
networks. He is author or co-author of more than 300 publications,
comprising books, book chapters and journal and conference papers.

123


	Graph-Based vs. Error State Kalman Filter-Based Fusion of 5G  and Inertial Data for MAV Indoor Pose Estimation
	Abstract
	1 Introduction
	2 Related Works
	3 Materials and Methods
	3.1 5G Signal Structure and PRS Fundamentals  for Localization
	3.2 Problem Definition
	3.2.1 Sensing and State Representation for MAV Localization
	3.2.2 IMU Measurements
	3.2.3 Time of Arrival (ToA) Measurements 
	3.2.4 Dynamic MAV Model

	3.3 Error State Kalman Filter for MAV Localization (Indirect Method)
	3.3.1 Prediction Step
	3.3.2 Update Step

	3.4 Pose Graph Optimization (PGO)
	3.4.1 IMU Factor
	3.4.2 ToA Range Factor
	3.4.3 Optimization


	4 Evaluation and Results
	4.1 Augmenting the EuRoC MAV Dataset  with Simulated 5G ToA Data
	4.2 Evaluation Metrics
	4.3 Results
	4.4 Limitations

	5 Conclusion and Future Work
	References


